-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChemTools.py
1023 lines (948 loc) · 50 KB
/
ChemTools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Draw
from rdkit.Chem import QED
from rdkit.Chem import Lipinski
from rdkit.Chem import Descriptors
from rdkit.Chem import Crippen
from faerun import Faerun
import logging
import matplotlib.pyplot as plt
from matplotlib.table import Cell
from mhfp.encoder import MHFPEncoder
import networkx as nx
import numpy as np
import networkx as nx
import os
import pandas as pd
import platform as pf
import random as ran
import re
from sklearn.manifold import TSNE
import sys
import subprocess as sp
from tabulate import tabulate as tab
from time import time
###JMR. Carefuly im disabling this but if you comment this out you can see all the warnings being generated.
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
############# ChemTools.py ##############
# Includes all the functions neccessary for the ChemHopper algorithm
# program should work if the script imports this file, assuming I didn't make a mistake
#########################################
### define some chemical data
# Corresponding atomic numbers of atomic_names
allowed_atomic=[6,7,8,9,15,16,17,35]
atomic_names=["C","N","O","F","P","S","Cl","Br"]
#Have you validated the Phosphorus chemistry? I would be careful here and think about the chemistry more. Many of the molecules when i look at the chemical space graph have wild phosphorus and sulfer chemistry
halogens=[9,17,35]
halo_names=["F","Cl","Br"]
type_i=[0,1,2,1.5]
types=["SINGLE","DOUBLE","TRIPLE","AROMATIC"]
### helper functions for molecule editing
### returns the degree of the atom (or molecule) on the chemical graph.
# IOW returns the number of non-H bonds for an atom, OR one-half the sum of said numbers for all atoms in a molecule (if a mol is passed)
def degree(at):
return sum([types.index(str(x.GetBondType()))+1 for x in at.GetBonds()])
### returns the name/element of the atom
def aname(at):
return atomic_names[allowed_atomic.index(at.GetAtomicNum())]
### returns the type of a given bond
def btype(b):
return str(b.GetBondType())
### changes an atom
## old_m - the mol to be mutated
## at - the atom that is being changed. Not sure if this is needed, as it is never used within the functions
## ati - the index of the atom being changed
## newat - the new atom type (what the atom is being changed to)
## newcrg - the new formal charge of the atom
def mutate(old_m,at,ati,newat,newcrg):
# make a new molecule with the
edit_mol=Chem.rdchem.RWMol(old_m)
#nm=Chem.MolFromSmiles(Chem.MolToSmiles(m))#make new mol
new_atom=Chem.rdchem.Atom(allowed_atomic[atomic_names.index(newat)])
#new_atom.SetAtomicNum(allowed_atomic[atomic_names.index(newat)])
new_atom.SetFormalCharge(newcrg)
edit_mol.ReplaceAtom(ati,new_atom,preserveProps=True)
new_smi=Chem.MolToSmiles(edit_mol)
#ato=edit_mol.GetAtoms()[ati]
#ato.SetAtomicNum(allowed_atomic[atomic_names.index(newat)])
#ato.SetFormalCharge(newcrg)
return new_smi
### adds a single bond to a new atom and returns a new SMILE string
## m - the mol object to be changed
## at -
## ati - the index of the atom on the old mol to which the new atom will be attached
## newat - type of new atom to be added; given as atomic symbol (i.e. 'C', 'N', etc.)
def add_single_bond(m,at,ati,newat):
# RWMol is a subclass of the Mol object class that is basically an editable form of a Mol
## https://herongyang.com/Cheminformatics/RDKit-rdkit-Chem-rdchem-RWMol-Class.html#:~:text=rdkit.Chem.rdchem.RWMol%20represents%20a%20molecule%20class%20with%20additional%20read,some%20useful%20methods%20provided%20in%20the%20RWMol%20sub-class.
edit_mol=Chem.rdchem.RWMol(m)
# creates a new atom based on the corresponding atomic number of the the atomic symbol
new_atom=Chem.rdchem.Atom(allowed_atomic[atomic_names.index(newat)])
# adds the new atom to edit_mol and returns the new index of the atom (at_ind)
at_ind=edit_mol.AddAtom(new_atom)
# adds the new bond, returns the new number of bonds
edit_mol.AddBond(ati,at_ind,Chem.BondType.SINGLE)
# the new smile string generated is sometimes weird, but still encodes the molecule so I guess it's alright
new_smi=Chem.MolToSmiles(edit_mol)
#currently deliminates sterochemistry uhg..
#check out https://github.com/rdkit/rdkit/issues/2627
#exit()
return new_smi
### adds a double bond to a new atom and returns a new SMILE string
## m - the mol object to be changed
## at -
## ati - the index of the atom on the old mol to which the new atom will be attached
## newat - type of new atom to be added; given as atomic symbol (i.e. 'C', 'N', etc.)
def add_double_bond(m,at,ati,newat):
# making an editable version of the mol
edit_mol=Chem.rdchem.RWMol(m)
# creates a new atom based on the corresponding atomic number of the the atomic symbol
new_atom=Chem.rdchem.Atom(allowed_atomic[atomic_names.index(newat)])
# adds the new atom to edit_mol and returns the new index of the atom (at_ind)
at_ind=edit_mol.AddAtom(new_atom)
# adds the new bond, returns the new number of bonds
edit_mol.AddBond(ati,at_ind,Chem.BondType.DOUBLE)
# the new smile string generated is sometimes weird, but still encodes the molecule so I guess it's alright
new_smi=Chem.MolToSmiles(edit_mol)
#currently deliminates sterochemistry uhg..
return new_smi
# ** Note that when converting from an RWMol to SMILE back to Mol, the atom indexing changes. This is easily visible in the jupyter sandbox **
### adds a triple bond to a new atom and returns a new SMILE string
## m - the mol object to be changed
## at -
## ati - the index of the atom on the old mol to which the new atom will be attached
## newat - type of new atom to be added; given as atomic symbol (i.e. 'C', 'N', etc.)
def add_triple_bond(m,at,ati,newat):
# making an editable version of the mol
edit_mol=Chem.rdchem.RWMol(m)
# creates a new atom based on the corresponding atomic number of the the atomic symbol
new_atom=Chem.rdchem.Atom(allowed_atomic[atomic_names.index(newat)])
# adds the new atom to edit_mol and returns the new index of the atom (at_ind)
at_ind=edit_mol.AddAtom(new_atom)
# adds the new bond, returns the new number of bonds
edit_mol.AddBond(ati,at_ind,Chem.BondType.TRIPLE)
# the new smile string generated is sometimes weird, but still encodes the molecule so I guess it's alright
new_smi=Chem.MolToSmiles(edit_mol)
#currently deliminates sterochemistry uhg..
return new_smi
### removes an atom from the mol
## m - the mol object to be changed
## ati - the index of the atom to be removed
def remove_atom(m,at,ati):
edit_mol=Chem.rdchem.RWMol(m)
#mtmp=Chem.MolFromSmiles(Chem.MolToSmiles(m))#,isomericSmiles=True
#mw = Chem.RWMol(mtmp)
edit_mol.RemoveAtom(ati)
new_smi=Chem.MolToSmiles(edit_mol)
return new_smi
### Checks if the molecule is connected, i.e. without ionic bonds
# ionic bonds are represented in SMILES as a '.', i.e. [Na+].[Cl-]
def check_connected(m):
if "." in Chem.MolToSmiles(m):
return False
else:
return True
### changes a bond to a single bond
## m - the mol to be changed
## b -
## bi - the index of the bond to be changed
def make_single(m,b,bi):
edit_mol=Chem.rdchem.RWMol(m)
edit_mol.GetBonds()[bi].SetBondType(Chem.BondType.SINGLE)
#change hybridization of both atoms?
new_smi=Chem.MolToSmiles(edit_mol)
return new_smi
### changes a bond to a double bond
## m - the mol to be changed
## b -
## bi - the index of the bond to be changed
def make_double(m,b,bi):
edit_mol=Chem.rdchem.RWMol(m)
edit_mol.GetBonds()[bi].SetBondType(Chem.BondType.DOUBLE)
#mw.SetBondType(mw.GetBonds()[bi],Chem.BondType.DOUBLE)
new_smi=Chem.MolToSmiles(edit_mol)
return new_smi
### changes a bond to a triple bond
## m - the mol to be changed
## b -
## bi - the index of the bond to be changed
def make_triple(m,b,bi):
edit_mol=Chem.rdchem.RWMol(m)
edit_mol.GetBonds()[bi].SetBondType(Chem.BondType.TRIPLE)
new_smi=Chem.MolToSmiles(edit_mol)
return new_smi
### removes a bond; results in the molecule being split in two, as it doesn't delete any atoms
## m - the mol to be edited
## bi - index of first atom of bond (order doesn't matter)
## bj - index of second atom of bond
def remove_bond(m,bi,bj):
edit_mol=Chem.rdchem.RWMol(m)
edit_mol.RemoveBond(bi,bj)
new_smi=Chem.MolToSmiles(edit_mol)
return new_smi
### Checks if a given bond b is in between double bonds AND in a ring. Returns True/False
## m - the mol in question, although not used in the function
## b - the bond in question
def is_bet_dub_and_ring(m,b):
bond_beg=[btype(xxx) for xxx in b.GetBeginAtom().GetBonds() if xxx !=b]
bond_end=[btype(xxx) for xxx in b.GetEndAtom().GetBonds() if xxx !=b]
in_bet_dub=all([any([xxx == 'DOUBLE' for xxx in bond_beg]),any([xxx == 'DOUBLE' for xxx in bond_end])])
in_ring=b.IsInRing()
return all([in_bet_dub,in_ring])
### adds a single bond between two atoms already present with the molecule (for intramolecular bonds)
## m - the mol to be changed
## ai - index of the first atom
## aj - index of the second atom
def add_single(m,ai,aj):
edit_mol=Chem.rdchem.RWMol(m)
edit_mol.AddBond(ai,aj,order=Chem.rdchem.BondType.SINGLE)
new_smi=Chem.MolToSmiles(edit_mol)
return new_smi
### adds a single intramolecular bond and returns a new SMILE string
## m - the mol object to be changed
## ati - the index of the first atom
## atj - the index of the second atom
def add_single_intrabond(m,ati,atj):
# RWMol is a subclass of the Mol object class that is basically an editable form of a Mol
## https://herongyang.com/Cheminformatics/RDKit-rdkit-Chem-rdchem-RWMol-Class.html#:~:text=rdkit.Chem.rdchem.RWMol%20represents%20a%20molecule%20class%20with%20additional%20read,some%20useful%20methods%20provided%20in%20the%20RWMol%20sub-class.
edit_mol=Chem.rdchem.RWMol(m)
# adds the new bond, returns the new number of bonds
edit_mol.AddBond(ati,atj,Chem.BondType.SINGLE)
# the new smile string generated is sometimes weird, but still encodes the molecule so I guess it's alright
new_smi=Chem.MolToSmiles(edit_mol)
#currently deliminates sterochemistry uhg..
#check out https://github.com/rdkit/rdkit/issues/2627
#exit()
return new_smi
### adds a double bond between two atoms already present with the molecule (for intramolecular bonds)
## m - the mol to be changed
## ai - index of the first atom
## aj - index of the second atom
def add_double(m,ai,aj):
edit_mol=Chem.rdchem.RWMol(m)
edit_mol.AddBond(ai,aj,order=Chem.rdchem.BondType.DOUBLE)
new_smi=Chem.MolToSmiles(edit_mol)
return new_smi
### ensures that rings do not break the predefined ring rules; returns 1 if passes, 0 if fails
## smii - smile string
def check_cylces(smii):
## ring rules:
max_n_ring=4
min_ring_size=5
max_ring_size=7
test_mo=Chem.MolFromSmiles(smii)
rinf=test_mo.GetRingInfo()
ring_ok=1
#check number of rings
nring=rinf.NumRings()
if nring > max_n_ring:
return 0
#check minimum ring size
ring_sizes=[len(aring) for aring in rinf.AtomRings()]
if min(ring_sizes)<min_ring_size:
return 0
if max(ring_sizes)>max_ring_size:
return 0
return 1
### def extract_intersection - gets the extracted elemenets between two lists
##### list master - the list to be referred to for intersection function (no duplicates)
##### list target - the list that will get its intersection removed (no duplicates); should be all molecules generated from nextGen())
### returns:
##### list uniq - the list of unique elements in target (elements that are not in master)
##### list intersect - the list of elements in target that are also in master (the intersection)
def extract_intersection(target, master):
# this if statement will make sure master_list has no duplicates (it shouldn't at this point - this is a failsafe)
if (len(master)!=len(set(master))):
print("Duplicates in master_list detected!")
master = list(dict.fromkeys(master))
uniq = [i for i in target if i not in master]
intersect = [i for i in target if i in master]
return uniq, intersect
### def make_dirs(dirs)
# makes the directories needed for the Gradient Descent Program
### string list dirs - list of directories to make
def make_dirs(dirs):
for d in dirs:
if os.path.isdir(d):
continue
else: os.mkdir(d)
return
### writes the configuration file confi.txt for a vina run
## receptor - the name of the receptor file (string, .pdbqt)
## ligand - the name of the ligand file (string, .pdbqt)
## iiter - key to what molecule this configuration corresponds to (iiter because iter is a python keyword apparently)
## fname - name of the configuration file, defaults to config
## size - the size of the search grid, in Angstroms
## exhuastiveness - how exhaustive the search is
## center_x,y,z - coordinates of the grid's center
## out - default name of the output file
## cpu - number of CPUs to use; deafult is to detect the number available and use those
## num_modes max number of binding modes to generate
## score_only - can the search space be omitted? true/false
def configure(receptor,ligand,iteration='test',fname="config",size=20,exhaustiveness=8,center_x=12.95,center_y=15.76,center_z=2.28,out='vina_outs/out',cpu=16,num_modes=9,seed=0,verbosity=1,score_only=False):
config_i=fname+"_"+iteration+'.txt'
out_name=out+"_"+iteration
os.chdir('configs')
f = open(config_i,'w')
f.write('receptor = '+receptor+'\n')
f.write('ligand = '+ligand+'\n\n')
f.write('out = '+out_name+'.pdbqt'+'\n\n')
f.write('center_x = '+str(center_x)+'\n')
f.write('center_y = '+str(center_y)+'\n')
f.write('center_z = '+str(center_z)+'\n\n')
f.write('size_x = '+str(size)+'\n')
f.write('size_y = '+str(size)+'\n')
f.write('size_z = '+str(size)+'\n\n')
f.write('exhaustiveness = '+str(exhaustiveness)+'\n\n')
f.write('cpu = '+str(cpu)+'\n\n')
f.write('num_modes = '+str(num_modes)+'\n\n')
f.write('seed = '+str(seed)+'\n\n')
f.write('verbosity = '+str(verbosity))
if score_only:
f.write('\n\nscore_only = true')
f.close()
os.chdir('../')
return config_i,out_name
### prepares the receptor for docking with vina, returns the file name in .pdbqt format
## prot_file - the name of the pdb file of the protein/pocket/receptor
def prepare_receptor(prot_file):
if pf.system()=='Linux':
sp.call("pythonsh ~/Desktop/ChemHopper/docking/prepare_receptor4.py -r "+prot_file+" -v",shell=True)
elif pf.system()=='Windows':
sp.call("python2 C:/Users/nbeck/Desktop/Summer_Research_2022/docking/prepare_receptor4.py -r "+prot_file+" -v",shell=True)
return prot_file+'qt'
### prepares the ligand for docking with vina, returns the file name in .pdbqt format
## lig_file - the name of the pdb file of the mol/ligand
def prepare_ligand(lig_file):
os.chdir('mols')
if pf.system()=='Linux':
sp.call("pythonsh ~/Desktop/ChemHopper/docking/prepare_ligand4.py -l "+lig_file+" -v",shell=True)
elif pf.system()=='Windows':
sp.call("python2 C:/Users/nbeck/Desktop/Summer_Research_2022/docking/prepare_ligand4.py -l "+lig_file+" -v",shell=True)
os.chdir('../')
return lig_file+'qt'
#### MY DOCK_IT()
### attempts to dock the molecule
## To do this, there a few unique steps. Create and prepare ligand pdb, prepare the receptor pdb (may only have to do this once if working with the same pocket), run vina (remember to log), and
## return a docking score. First, we need to create a pdb file from the smile string we are inputting. That rewuires making a mol object, addding Hs, Embedding it (which acts like a legitimacy
## test for the molecules), and then obtimizing the forcefield. Then we prepare this pdb file (convert to pdbqt).
## conf_file - the configuration file for vina
## lig_smile - smile string of the mol to be docked
## prot_pdbqt - name of protein file to be docked to
def dock_it(lig_smile,prot_pdbqt,exhaustiveness=8,iiter='test'):
# try:
# iiter=str(gen)+"."+str(i)
# except NameError:
# iiter='test'
mol=Chem.MolFromSmiles(lig_smile)
mh = Chem.AddHs(mol)
# Generates the 3D coordinates for the molecule; serves as a test for generated molecules, as RDkit will not create coordinates if the mol is not chemically viable
global no_embed
if AllChem.EmbedMolecule(mh,useRandomCoords=True,maxAttempts=100)!=0: # it would be a good idea to track how many molecules cannot be embedded
no_embed.append((iiter,lig_smile))
# I don't think I need to align within rdkit, probably just need to run prepare_ligand4.py
#Chem.rdMolAlign.AlignMol(mh,ref_lig)
# Merck Molecular Force Field: https://en.wikipedia.org/wiki/Merck_molecular_force_field
# uses MMFF to optimize a molecule's structure
# RETURNS: 0 if the optimization converged, -1 if the forcefield could
# not be set up, 1 if more iterations are required.
Chem.rdForceFieldHelpers.MMFFOptimizeMolecule(mh,maxIters=5000)
# create the ligand file with unique name
lig_pdb="mols/mol_"+iiter+".pdb"
# creates a PDB file for the ligand
Chem.rdmolfiles.MolToPDBFile(mh,lig_pdb)
# prepares ligand and returns lig_pdbqt
lig_pdbqt=prepare_ligand(lig_pdb)
configuration,out_name=configure(prot_pdbqt,lig_pdbqt,iiter,exhaustiveness=exhaustiveness,seed=1,verbosity=2)
# runs vina and logs results
logfile="logs/log_"+iiter+".txt"
log = open(logfile, 'w')
if pf.system()=='Linux':
run=sp.run("vina_1.2.3_linux_x86_64 --config=configs/"+configuration,shell=True,stdout=log)
elif pf.system()=='Windows':
run=sp.run("vina --config=configs/"+configuration,shell=True,stdout=log)
log.close()
# splitting output
sp.call("vina_split --input "+out_name+'.pdbqt',shell=True)
# deleting the original out file from vina plus all but the best modes from vina_split
print("OUT_NAME:",out_name)
os.remove(out_name+'.pdbqt')
# systematically deleting all output ligands other than the best (ligand_1)
count=2
fname = '{}_ligand_{}.pdbqt'.format(out_name, count)
while os.path.isfile(fname):
os.remove(fname)
count+=1
fname = '{}_ligand_{}.pdbqt'.format(out_name, count)
# renaming the best ligand output
best_out=out_name+"_ligand_1.pdbqt"
split=best_out.rsplit("_1",1)
os.rename(best_out,''.join(split))
# Opening the log file to read in the best affinity
results = open(logfile, 'r')
lines=results.readlines()[::-1]
best_mode=[i for i in lines if re.match('\s+1\s',i)][0]
print("9th line from the end:\n",best_mode)
s=0
while len(best_mode.split(' ')[s])<=1:
s+=1
print("THE SPLIT:",best_mode.split(' ')[s])
affinity=float(best_mode.split(' ')[s])
print(lig_smile,affinity)
return(affinity)
### returns a list containg the grid images of the molecules and their correpsonding affinities
## mols - the list of mol objects to be printed
## top - best molecule for the generation (to be highlighted)
## affinities - the corresponding affinities of the mols - SAME INDEXING IS ASSUMED
## gen - the generation number (needed for th e)
## row_len - # of mols to be printed per grid row
## rows_per_page - # of rows of mols to be printed per page
def save_grids(mols,top,affinities,gen,row_len=8,col_len=10,highlight=True):
num_mols=len(mols)
nrows=num_mols/row_len
if not nrows.is_integer():
nrows=int(nrows+1)
npgs=nrows/col_len
if not npgs.is_integer():
npgs=int(npgs+1)
mols_per_pg=row_len*col_len
mol_chunks=[]
affin_chunks=[]
for i in range(0, len(mols), mols_per_pg):
mol_chunks.append(mols[i:i+mols_per_pg])
affin_chunks.append(affinities[i:i+mols_per_pg])
grids=[]
for i in range(int(npgs)):
if highlight==True:
img=Draw.MolsToGridImage(mol_chunks[i],molsPerRow=row_len,subImgSize=(350,350),legends=[str(a) for a in affin_chunks[i]],highlightAtomLists=[mol.GetSubstructMatch(top) for mol in mol_chunks[i]])
else:
img=Draw.MolsToGridImage(mol_chunks[i],molsPerRow=row_len,subImgSize=(350,350),legends=[str(a) for a in affin_chunks[i]])
img.save("grids/gen_"+str(gen+1)+"_grid_"+str(i)+".png")
grids.append(img)
return grids
# Ring-building chunk to add to nextGen() ***IN-PROGRESS****
def buildRings(smile):
new_smis = []
mol = Chem.MolFromSmiles(smile)
mol = Chem.rdchem.RWMol(mol)
# kekulize so that aromatic bonds are treated as alternative double/single bonds, but keep aromatic flags on atoms
Chem.rdmolops.Kekulize(mol,clearAromaticFlags=False) # clearAromaticFlags default param is False btw
for i, atom in enumerate(mol.GetAtoms()):
# use i+1 to avoid i=j; this would cause GetShortestPath() to throw an error
# You might think it would be efficient to start the enumeration here at i+4, that way we don't waste time generating paths
# between atoms that are less than 4 bonds away; good thinking, but doesn't work due to the way rdkit assigns atom indices.
# These indices quickly become arbitrary as the complexity of the molecule increases, which means that the difference in
# indices does not relate to the distance between atoms. For instance, for propofol, atoms 3 and 13 are seperated by 4 bonds,
# but the difference in indices is 10.
for j in range(i+1, mol.GetNumAtoms()):
# a list of atoms to traverse to get from atom i to j (includes i and j)
path = Chem.GetShortestPath(mol, i, j)
# the number of bonds that seperate atom i from j
distance = len(path)-1
# only try to from 5 or 6 membered rings (remember distance is the # of bonds seperating 2 atoms)
if distance==4 or distance==5: # the largest filter - goes first
# list of path atoms, but converted to True or False depending wether or not each path atom is in a ring
path_atoms_in_ring = [mol.GetAtomWithIdx(a).IsInRing() for a in path]
# Rules for paths over aromatic rings: if any atoms within the path are flagged as aromatic...
if any(mol.GetAtomWithIdx(a).GetIsAromatic()==True for a in path):
# getting ring info from the mol
rings = mol.GetRingInfo()
# list containing the number of rings an atom is part of for all the atoms in path
num_rings_atoms_are_in = [rings.NumAtomRings(a) for a in path]
# valid building pattern for 3 ring atoms
val_pat = [1,2,1]
if sum(path_atoms_in_ring)==3:
if any(num_rings_atoms_are_in[x:x+len(val_pat)] == val_pat for x in range(len(num_rings_atoms_are_in)-len(val_pat)+1)):
new_smis.append(add_single_intrabond(mol,i,j))
if sum(path_atoms_in_ring) in [1,2]:
# print(path_atoms_in_ring)
new_smis.append(add_single_intrabond(mol,i,j))
if sum(path_atoms_in_ring)==4:
ai, aj = mol.GetAtomWithIdx(i).GetSymbol(), mol.GetAtomWithIdx(j).GetSymbol()
if (ai in ["N","O","S"]) ^ (aj in ["N","O","S"]):
new_smis.append(add_single_intrabond(mol,i,j))
# Rules for paths over non-aromatic rings
# ...if no atoms are aromatic, but still in a ring
# if the number of path atoms in a non-aromatic ring are exactly 1,2,3, or 4 (these rules apply to 5 and 6-membered rings)
elif sum(path_atoms_in_ring) in [1,2,3,4]:
new_smis.append(add_single_intrabond(mol,i,j))
# Rules for paths over non-rings (atom chains)
# ... if path atoms are neither aromatic or in a ring
elif sum(path_atoms_in_ring)==0:
new_smis.append(add_single_intrabond(mol,i,j))
# aligning smiles, removing bad smiles, removing duplicates
return tightenSmileList(new_smis)
def tightenSmileList(new_smis):
## the below lines 'align' smile strings basically (see duplicate bug described in phenethylamine test)
# converting all new smiles into mol objects
new_mols = [Chem.MolFromSmiles(smi) for smi in new_smis]
# converting all new mols back into smis - to fix the synonymous smiles bug
corrected_new_smis = [Chem.MolToSmiles(mol) for mol in new_mols if mol is not None]
# remove duplicates
new_smis_uniq=list(dict.fromkeys(corrected_new_smis))
return new_smis_uniq
### def nextGen(parent_smi,master_list)
##### string parent_smi - the SMILE string of the parent molecule
### returns:
##### string list all_desc - SMILE list of all immediate descendants
def nextGen(parent_smi):
all_desc = []
parent_mol=Chem.MolFromSmiles(parent_smi)
# Not sure what this line does specifically, but it is necessary so that the function degree() returns the proper bond counts.
# JMR "kekulizing" means turning groups of aromatic bonds into alternating single and double bonds.
if parent_mol == None:
return None
Chem.rdmolops.Kekulize(parent_mol,clearAromaticFlags=True)
# Begin working through the molecular editing process - iterating through ATOMS
for i,atom in enumerate(parent_mol.GetAtoms()):
at_deg=degree(atom)
atom_n=aname(atom)
bond_types = [str(x.GetBondType()) for x in atom.GetBonds()]
#### Try to Mutate Atoms
if at_deg == 4:# could be C, S, or N
if atom_n=="C":
all_desc.append(mutate(parent_mol,atom,i,"N",1))# mutates atom in molecule to "N"
if atom_n=="N":
all_desc.append(mutate(parent_mol,atom,i,"C",0))
if atom_n=="S":
all_desc.append(mutate(parent_mol,atom,i,"C",0))
all_desc.append(mutate(parent_mol,atom,i,"N",1))
if atom_n!="S" and bond_types.count("DOUBLE")>=1: # if there is at least 1 double bond with deg=4, then can be sulfur
all_desc.append(mutate(parent_mol,atom,i,"S",0))
if at_deg == 3:#could be a C, N, or P
if atom_n=="C":
all_desc.append(mutate(parent_mol,atom,i,"N",0))
#all_desc.append(mutate(parent_mol,atom,i,"N",1))#could be protonated?
if atom_n=="N":
all_desc.append(mutate(parent_mol,atom,i,"C",0))
if atom_n=="P":
all_desc.append(mutate(parent_mol,atom,i,"C",0))
all_desc.append(mutate(parent_mol,atom,i,"N",0))
if atom_n!="P" and bond_types.count("TRIPLE")==0: # phosphorus doesn't form triple bonds as far as I know
all_desc.append(mutate(parent_mol,atom,i,"P",0))
if at_deg <=2: #could be a C or N or O
if atom_n=="C":
all_desc.append(mutate(parent_mol,atom,i,"N",0))
#all_desc.append(mutate(parent_mol,atom,i,"N",1))#could be protonated?
all_desc.append(mutate(parent_mol,atom,i,"O",0))
all_desc.append(mutate(parent_mol,atom,i,"S",0))
all_desc.append(mutate(parent_mol,atom,i,"P",0))
if atom_n=="N":
all_desc.append(mutate(parent_mol,atom,i,"C",0))
all_desc.append(mutate(parent_mol,atom,i,"O",0))
all_desc.append(mutate(parent_mol,atom,i,"S",0))
all_desc.append(mutate(parent_mol,atom,i,"P",0))
if atom_n=="O":
all_desc.append(mutate(parent_mol,atom,i,"C",0))
all_desc.append(mutate(parent_mol,atom,i,"N",0))
all_desc.append(mutate(parent_mol,atom,i,"S",0))
all_desc.append(mutate(parent_mol,atom,i,"P",0))
#all_desc.append(mutate(parent_mol,atom,i,"N",1))#could be protonated?
if atom_n=="P":
all_desc.append(mutate(parent_mol,atom,i,"C",0))
all_desc.append(mutate(parent_mol,atom,i,"N",0))
all_desc.append(mutate(parent_mol,atom,i,"S",0))
all_desc.append(mutate(parent_mol,atom,i,"O",0))
if atom_n=="S":
all_desc.append(mutate(parent_mol,atom,i,"C",0))
all_desc.append(mutate(parent_mol,atom,i,"N",0))
all_desc.append(mutate(parent_mol,atom,i,"O",0))
all_desc.append(mutate(parent_mol,atom,i,"P",0))
# if the atom is a halogen, it has degree of 1
if atom_n in halo_names:
all_desc.append(mutate(parent_mol,atom,i,"C",0))
all_desc.append(mutate(parent_mol,atom,i,"N",0))
all_desc.append(mutate(parent_mol,atom,i,"O",0))
all_desc.append(mutate(parent_mol,atom,i,"P",0))
all_desc.append(mutate(parent_mol,atom,i,"S",0))
if at_deg <= 1:
for element in atomic_names:
if element!=atom_n:
all_desc.append(mutate(parent_mol,atom,i,element,0))
if atom_n=="F":
all_desc.append(mutate(parent_mol,atom,i,"Cl",0))
all_desc.append(mutate(parent_mol,atom,i,"Br",0))
if atom_n=="Cl":
all_desc.append(mutate(parent_mol,atom,i,"F",0))
all_desc.append(mutate(parent_mol,atom,i,"Br",0))
if atom_n=="Br":
all_desc.append(mutate(parent_mol,atom,i,"Cl",0))
all_desc.append(mutate(parent_mol,atom,i,"F",0))
#### Try to add a single atom w/ new atom bonded to the existing atom on molecule
if atom_n=="S" and at_deg==4: # sulfur has deg 4, it can take a final double bond
for element in ["C","N","O","S","P"]:
all_desc.append(add_double_bond(parent_mol,atom,i,element))
if at_deg == 3:# could be a C, N, or P
if atom_n=="C": # phosphorus does not form 4 non-H bonds to my knowledge (nor does N)
#FIX TO ALLOW N(-C)4, non-heteroatom quaternary nitrogen
for element in atomic_names:
all_desc.append(add_single_bond(parent_mol,atom,i,element))
if atom_n=="P":
for element in ["C","N","O","S","P"]:
all_desc.append(add_double_bond(parent_mol,atom,i,element))
if at_deg ==2:# could be a C, N, O, S, or P but dont add to O
if atom_n == "C":
#add single bonded atom
for element in atomic_names:
all_desc.append(add_single_bond(parent_mol,atom,i,element))
#add double bonded atom but only if the bond is not in a ring
if all([not bond.IsInRing() for bond in atom.GetBonds()]):
for element in ["C","N","O","S","P"]:
all_desc.append(add_double_bond(parent_mol,atom,i,element))
elif atom_n=="N":
for element in atomic_names:
all_desc.append(add_single_bond(parent_mol,atom,i,element))
elif atom_n=="S":
# sulfur can't have 4 single bonds, but can have 2 double or 1 double +2 single
for element in ["C","N","O","S","P"]:
all_desc.append(add_double_bond(parent_mol,atom,i,element))
elif atom_n=="P":
for element in atomic_names:
all_desc.append(add_single_bond(parent_mol,atom,i,element))
if at_deg <=1:# could be a C, N, O, P, or S, but dont add double bond to O
if atom_n == "C" :
#add single bonded atom
for element in atomic_names:
all_desc.append(add_single_bond(parent_mol,atom,i,element))
#add double bonded atom
for element in ["C","N","O","S","P"]:
all_desc.append(add_double_bond(parent_mol,atom,i,element))
#add triple bonded atom
all_desc.append(add_triple_bond(parent_mol,atom,i,"N"))
all_desc.append(add_triple_bond(parent_mol,atom,i,"C"))
elif atom_n =="N":
# add single bond to everything
for element in atomic_names:
all_desc.append(add_single_bond(parent_mol,atom,i,element))
for element in ["C","N","O","S","P"]:
all_desc.append(add_double_bond(parent_mol,atom,i,element))
for element in ["C","N"]:
all_desc.append(add_triple_bond(parent_mol,atom,i,element))
elif atom_n=="O":
#add single bonded atom
for element in atomic_names:
all_desc.append(add_single_bond(parent_mol,atom,i,element))
# add double bond to carbon
all_desc.append(add_double_bond(parent_mol,atom,i,"C"))
elif atom_n=="P":
for element in atomic_names:
all_desc.append(add_single_bond(parent_mol,atom,i,element))
for element in ["C","N","O","S","P"]:
all_desc.append(add_double_bond(parent_mol,atom,i,element))
elif atom_n=="S":
for element in atomic_names:
all_desc.append(add_single_bond(parent_mol,atom,i,element))
for element in ["C","N","O","S","P"]:
all_desc.append(add_double_bond(parent_mol,atom,i,element))
elif atom_n in halo_names:
all_desc.append(add_single_bond(parent_mol,atom,i,"C"))
#### Try removing atom
if at_deg==1:#no worries
all_desc.append(remove_atom(parent_mol,atom,i))
elif at_deg>=2:#only can remove if the resulting molecule is connected (doesn't have floating framents)
tmp_mols=remove_atom(parent_mol,atom,i)
tmp_mol=Chem.MolFromSmiles(tmp_mols)
if check_connected(tmp_mol)==1:
all_desc.append(tmp_mols)
### Begin iteration through BONDS
for i,bond in enumerate(parent_mol.GetBonds()):
# get the indices of the beginning and end atoms within the bond
aidx1 = bond.GetBeginAtomIdx()
aidx2 = bond.GetEndAtomIdx()
#ignore bonds to halogens
if parent_mol.GetAtoms()[aidx1].GetAtomicNum() not in halogens and parent_mol.GetAtoms()[aidx2].GetAtomicNum() not in halogens:
#determine the names of elements in bond
atom1=parent_mol.GetAtoms()[aidx1]
atom2=parent_mol.GetAtoms()[aidx2]
aname1=atomic_names[allowed_atomic.index(atom1.GetAtomicNum())]
aname2=atomic_names[allowed_atomic.index(atom2.GetAtomicNum())]
#determine degree of atoms in bond
degree1=degree(parent_mol.GetAtoms()[aidx1])
degree2=degree(parent_mol.GetAtoms()[aidx2])
#check bond type and apply chemical rules
if btype(bond) =="SINGLE":
#check if not (between two double bonds and in ring)
if not is_bet_dub_and_ring(parent_mol,bond):
if(aname1=="C" and aname2=="C" and degree1<=3 and degree2<=3):
all_desc.append(make_double(parent_mol,bond,i))
elif(aname1=="C" and degree1<=3) or (aname2=="C" and degree2<=3):
if(aname2 in ["N","P"] and degree2<=2) or (aname1 in ["N","P"] and degree1<=2):
all_desc.append(make_double(parent_mol,bond,i))
elif(aname2 in ["O","S"] and degree2==1) or (aname1 in ["O","S"] and degree1==1):
all_desc.append(make_double(parent_mol,bond,i))
elif(aname1 in ["N","P"] and degree1<=2) or (aname2 in ["N","P"] and degree2<=2):
if(aname1 in ["N","P"] and degree1<=2) and (aname2 in ["N","P"] and degree2<=2):
all_desc.append(make_double(parent_mol,bond,i))
elif(aname1 in ["O","S"] and degree1==1) or (aname2 in ["O","S"] and degree2==1):
all_desc.append(make_double(parent_mol,bond,i))
elif(degree1==1 and degree2==1):
all_desc.append(make_double(parent_mol,bond,i))
#try making it a triple bond
#-C#N or -C#C or -C#C-
if (aname1 =="N" and degree1==1 and aname2=="C" and degree2<=2) or (aname1 =="C" and degree1<=2 and aname2=="N" and degree2==1) :# -C-N -> -C#N
all_desc.append(make_triple(parent_mol,bond,i))
elif aname1 =="C" and aname2=="C" and degree1<=2 and degree2<=2:
all_desc.append(make_triple(parent_mol,bond,i))
elif btype(bond) =="DOUBLE":
#try making a single bond, should be fine. but maybe diols are unlikely?
all_desc.append(make_single(parent_mol,bond,i))
#try making it a triple bond if bond is not in ring
if not bond.IsInRing():
if (aname1=="C" and aname2=="C" and degree1<=3 and degree2<=3):
all_desc.append(make_triple(parent_mol,bond,i))
if (aname1=="C" or aname2=="C") and (aname1=="N" or aname2=="N"): #if we have a C=N or N=C
if (aname1=="C"):
if(degree1<=3 and degree2<3):
all_desc.append(make_triple(parent_mol,bond,i))
elif (degree2<=3 and degree1<3):
all_desc.append(make_triple(parent_mol,bond,i))
if (aname1=="N" and aname2=="N" and degree1<3 and degree2<3):
all_desc.append(make_triple(parent_mol,bond,i))
if (aname1=="P" and aname2=="P" and degree1<3 and degree2<3):
all_desc.append(make_triple(parent_mol,bond,i))
elif btype(bond) =="TRIPLE":
#try making a single bond
all_desc.append(make_single(parent_mol,bond,i))
#try making a double bond, it already was a triple, so should be fine
all_desc.append(make_double(parent_mol,bond,i))
#try removing the bond
tmp_mols=remove_bond(parent_mol,aidx1,aidx2)
tmp_mol=Chem.MolFromSmiles(tmp_mols)
if check_connected(tmp_mol)==1:
all_desc.append(tmp_mols)
# remove bad smiles, duplicates, align smiles
return tightenSmileList(all_desc)
### JMR returns some atom properties based on your GPCRLigNet.frame_data.py
def get_mol_props(smiles):
mol=Chem.MolFromSmiles(smiles)
NHD=Lipinski.NumHDonors(mol)
NHA=Lipinski.NumHAcceptors(mol)
MWT=Descriptors.ExactMolWt(mol)
MLP=Descriptors.MolLogP(mol)
MMR=Crippen.MolMR(mol)
NAT=mol.GetNumAtoms()#notice the mol object generated from the smiles has this method
PSA=QED.properties(mol)[4]#a bit redundant sincewe already calculated some of these
#QEDproperties(MW=180.15899999999996, ALOGP=1.3101, HBA=4, HBD=1, PSA=63.60000000000001, ROTB=2, AROM=1, ALERTS=2)
return NHD,NHA,MWT,MLP,MMR,NAT,PSA
### JMR checks if the molecule is real, returns 1 if it is not
def check_if_not_real(smiles):
#try to add hydrogens and give it 3d coordinates
try:
mol=Chem.MolFromSmiles(smiles)
m2=Chem.AddHs(mol)
check_val=AllChem.EmbedMolecule(m2)
except:
check_val=1
return check_val
### def buildGraph:
##### string seed - the SMILE string of the starting molecule to seed the graph
##### int depth - the number of generations to explore
##### boolean complete_connections - flag to determine wether or not to add the remaing connections to outermost nodes post-loop
##### boolean write_to_log - flag todetermine if log file for grpah build should be written. Default True.
### returns nx.Graph chemical_space_graph - the completed chemical space graph
def buildGraph(seed, depth, complete_connections = False, write_to_log = True):
log_file_name = "log_"+seed+"_d"+str(depth)+"_ec"+str(complete_connections)+".txt"
if write_to_log:
logfile = open(log_file_name, "w")
logfile.write(tab([[seed, depth, complete_connections]],headers=['Seed','Depth','Complete Connections'])+'\n')
start_graph_time = time()
print('GRAPH PARAMETERS')
print(tab([[seed, depth, complete_connections]],headers=['Seed','Depth','Complete Connections']),'\n')
leafs=[seed]#current 'leafs' (molecules whose neighbors we have not calculated yet)
chemical_space_graph = nx.Graph()# regular graph does not allow duplicate edges. Digraph would add directionality to edges. Regular graph is fine for now
chemical_space_graph.add_node(seed)#I think adding the smiles string as the name of the node may simplify things
#now build the graph
for gen in range(1,depth+1):
#list of leafs for the next generation
new_leafs=[]
#list of times it took to process a leaf
leaf_times=[]
branch_start = time()
#loop over all leafs - leafs is the list of molecules whose neighbors have not been generated yet
for leaf in leafs:
#get the wall time
ti=time()
#comptue neighbors for the current leaf in the loop
all_neigh = nextGen(leaf)
##Possibly speed this up by using
for i,mol_smiles in enumerate(all_neigh): # iterates through the generated neighbors of the current leaf
#check if we have computed found this node yet
if mol_smiles not in chemical_space_graph.nodes:
#add it to the graph
chemical_space_graph.add_node(mol_smiles)
#since its a new smiles add it to the new leaf list
new_leafs.append(mol_smiles)
#add the edge to the graph
chemical_space_graph.add_edge(leaf,mol_smiles)
#get the difference in wall time
iter_time = time()-ti
leaf_times.append(iter_time)
#set the leaf list to the new one
leafs=new_leafs
print("actual time for last iter:",reportTime(time() - branch_start))
print("number of leafs for next iter",len(leafs))
if write_to_log:
logfile.write("\nnumber of leafs for next iter: "+str(len(leafs)))
# estimating and reporting time for next generation of nodes to be added
expected_time = len(leafs)*np.average(leaf_times)
print("expected time for next iter:",reportTime(expected_time))
if write_to_log:
logfile.write("\nexpected time for next iter: "+reportTime(expected_time))
if complete_connections:
print("all nodes created; now adding remaing edges (expected time above)")
if write_to_log:
logfile.write("\nall nodes created; now adding remaing edges (expected time above)")
# it will be most efficient to just add the last remaining connections post-loop, once all nodes are created
ti = time()
for leaf in leafs:
all_neigh=nextGen(leaf)
for neigh in all_neigh:
if neigh in chemical_space_graph.nodes:
chemical_space_graph.add_edge(leaf,neigh)
tf = time() - ti
print("adding final edges actually took:",reportTime(tf))
if write_to_log:
logfile.write("\nadding final edges actually took: "+reportTime(tf))
build_time = time() - start_graph_time
print("total build time for this graph:",reportTime(build_time))
print("total number of nodes:",chemical_space_graph.number_of_nodes())
print("total number of edges",chemical_space_graph.number_of_edges())
if write_to_log:
logfile.write("\ntotal build time for this graph: "+reportTime(build_time))
logfile.write("\ntotal number of nodes: "+str(chemical_space_graph.number_of_nodes()))
logfile.write("\ntotal number of edges: "+str(chemical_space_graph.number_of_edges()))
logfile.close()
return chemical_space_graph
### def reportTime
##### float t - total time in seconds
### returns a string reporting the time in hours:minutes:seconds
def reportTime(t):
hours, remainder = divmod(t, 3600)
minutes, seconds = divmod(remainder, 60)
return "{:.0f}:{:02.0f}:{:02}".format(hours,minutes,round(seconds))
### def get_node_labels_fps()
##### nx.Graph csg - the chemical space graph
### returns list - the SMILE strings of each node [list] and their corresponding fingerprints [list]
def get_node_labels_fps(csg):
enc = MHFPEncoder(1024)
#the min hash fingerprint from the mhfp package
fps=[]
print('encoding molecules using MHFP')
node_labels = []#Faerun has something internal that turns the smiles into a molecule image (sweeeet)
for i, s in enumerate(csg.nodes):
node_labels.append(s)
###instead of the minimal spanning tree of the chemical space graph we will use a more traditional method for determinine node positions
fps.append(np.array(enc.encode_mol(Chem.MolFromSmiles(s))))
fps=np.array(fps)
return node_labels, fps
### def getPlotList()
##### list node_labels - all of the smiles from the graph
### returns prop_list - 8 molecular properties for each of the smiles; a single list for each property, 8 lists total-> [8x[]]
### dependencies: get_mol_props()
def getPropList(node_labels):
#properties to include
NHD=[]
NHA=[]
MWT=[]
MLP=[]
MMR=[]
NAT=[]
PSA=[]
# adding a continuous druglikeness metric
qed=[]
# prop_list = [NHD,NHA,MWT,MLP,MMR,NAT,PSA,qed]
prop_list = [[],[],[],[],[],[],[],[]]
for node_smiles in node_labels:
# mol_props is a list of all the molecular properties for a given smile
mol_props=get_mol_props(node_smiles)
# for i, prop in enumerate(mol_props):
# prop_list[i].append(mol_props[i])
# # from rdkit.Chem import QED
# prop_list[7] = QED.default(Chem.MolFromSmiles(node_smiles))
NHD.append(mol_props[0])
NHA.append(mol_props[1])
MWT.append(mol_props[2])
MLP.append(mol_props[3])
MMR.append(mol_props[4])
NAT.append(mol_props[5])
PSA.append(mol_props[6])
qed.append(QED.default(Chem.MolFromSmiles(node_smiles)))
return NHD, NHA, MWT, MLP, MMR, NAT, PSA, qed
# mol_props - list: a list of properties for a given smile from get_mol_props
# node_labels - list of all the smiles in the graph
# fps - corresponding list of all the fingerprints from the graph
# prop_list - list of all the molecular properties of all the molecules in the graph (corresponds with above).
def faerunPlot(chemical_space_graph, scatter_name,node_labels,fps):
# enc = MHFPEncoder(1024)
# #the min hash fingerprint from the mhfp package
# fps=[]
# print('encoding molecules using MHFP')
# node_labels = []#Faerun has something internal that turns the smiles into a molecule image (sweeeet)
# for i, s in enumerate(chemical_space_graph.nodes):
# node_labels.append(s)
# ###instead of the minimal spanning tree of the chemical space graph we will use a more traditional method for determinine node positions
# fps.append(np.array(enc.encode_mol(Chem.MolFromSmiles(s))))
#lf = tm.LSHForest(1024, 64)
#x_posit, y_posit, start_tmap, termini_tmap, _ = tm.layout_from_lsh_forest(lf)# this is also not supported on my macOS
# fps=np.array(fps)
print('fingerprint array shape',fps.shape)
#use TSNE to visualize the chemical space
time_init=time()
print('computing the t-distributed stochastic neighbor embedding')
X_embedded = TSNE(n_components=2, learning_rate='auto', init='random', perplexity=3).fit_transform(fps)
x_posit=X_embedded[:,0]
y_posit=X_embedded[:,1]
print('computing the t-distributed stochastic neighbor embedding took',(time()-time_init),'seconds')
### I tried to directly add the chemical space graph, but my macOS didn't support layout_from_edge_list (smh)
### we can still add the links from the chemical space graph
print('extracting edges from the CSG')
start_nodes=[]
end_nodes=[]
for edges in chemical_space_graph.edges:
start_nodes.append(node_labels.index(edges[0]))
end_nodes.append(node_labels.index(edges[1]))
# ## Turns out we dont need tmap for a minimal spanning tree. tmap's thing is speed, so maybe we want to move to it in the future
# ## I ran into prioblems specific to macOS that i dont want to debug https://github.com/reymond-group/tmap/issues/12
# chemical_space_tree=nx.minimum_spanning_tree(chemical_space_graph)
# ## now compute an xy representation of the tree (https://stackoverflow.com/questions/57512155/how-to-draw-a-tree-more-beautifully-in-networkx)
# ##this was pretty slow for me
# pos_dict = nx.nx_agraph.graphviz_layout(chemical_space_tree, prog="twopi")
# x_posit=[]
# y_posit=[]
# for node in node_labels:
# x_posit.append(pos_dict[node][0])
# y_posit.append(pos_dict[node][1])
# x_posit=(np.array(x_posit)-np.min(x_posit))/(np.max(x_posit)-np.min(x_posit))
# y_posit=(np.array(y_posit)-np.min(y_posit))/(np.max(y_posit)-np.min(y_posit))
print('computing some molecule properties')
#use a physchem prop for coloring
color_values=[]
NHD, NHA, MWT, MLP, MMR, NAT, PSA, qed = getPropList(node_labels)
# plt.scatter(x_posit,y_posit)
# plt.show()
print('generating faerun .html')
faerun = Faerun(view="front", coords=False)
# scatter_name="Aspirin_Chemical_Space"
tree_name="Aspirin_Chemical_Space_Tree"
faerun.add_scatter(