@@ -93,7 +93,6 @@ def func(x):
93
93
@pytest .fixture ()
94
94
def func_dataframe_groupby_apply ():
95
95
def func (df ):
96
- import math
97
96
dum = 0
98
97
for item in df .b :
99
98
dum += math .log10 (math .sqrt (math .exp (item ** 2 )))
@@ -157,46 +156,6 @@ def func(x):
157
156
return dict (named = func , anonymous = lambda x : x ** 2 )[request .param ]
158
157
159
158
160
- @pytest .fixture ()
161
- def func_dataframe_resampler_apply ():
162
- def func (df ):
163
- import math
164
- dum = 0
165
- for item in df .b :
166
- dum += math .log10 (math .sqrt (math .exp (item ** 2 )))
167
-
168
- return dum / len (df .b )
169
-
170
- return func
171
-
172
-
173
- @pytest .fixture ()
174
- def func_dataframe_resampler_apply_complex ():
175
- def func (df ):
176
- return pd .DataFrame (
177
- [[df .b .mean (), df .b .min (), df .b .max ()]],
178
- columns = ["b_mean" , "b_min" , "b_max" ],
179
- )
180
-
181
- return func
182
-
183
-
184
- @pytest .fixture ()
185
- def func_dataframe_resampler_apply_series ():
186
- def func (df ):
187
- return df .iloc [0 ]
188
-
189
- return func
190
-
191
-
192
- @pytest .fixture ()
193
- def func_series_resampler_apply ():
194
- def func (x ):
195
- return x .sum ()
196
-
197
- return func
198
-
199
-
200
159
@pytest .fixture
201
160
def pandarallel_init (progress_bar , use_memory_fs ):
202
161
pandarallel .initialize (
@@ -397,69 +356,3 @@ def test_dataframe_axis_1_no_reduction(
397
356
res_parallel = df .parallel_apply (func_dataframe_apply_axis_1_no_reduce , axis = 1 )
398
357
399
358
assert res .equals (res_parallel )
400
-
401
-
402
- def test_dataframe_resampler_apply (
403
- pandarallel_init , func_dataframe_resampler_apply , df_size
404
- ):
405
- df = pd .DataFrame (
406
- dict (
407
- b = np .random .rand (df_size ),
408
- c = np .random .rand (df_size ),
409
- ),
410
- index = pd .to_datetime (np .arange (df_size ), unit = "m" )
411
- )
412
-
413
- if pd .__version__ != "1.0.5" :
414
- res = df .resample ("h" ).apply (func_dataframe_resampler_apply )
415
- res_parallel = df .resample ("h" ).parallel_apply (func_dataframe_resampler_apply )
416
- assert res .equals (res_parallel )
417
- else :
418
- with pytest .raises (AttributeError ):
419
- res = df .resample ("h" ).apply (func_dataframe_resampler_apply )
420
-
421
-
422
- def test_dataframe_resampler_apply_complex (
423
- pandarallel_init , func_dataframe_resampler_apply_complex , df_size
424
- ):
425
- df = pd .DataFrame (
426
- dict (b = np .random .rand (df_size )),
427
- index = pd .to_datetime (np .arange (df_size ), unit = "m" )
428
- )
429
-
430
- if pd .__version__ != "1.0.5" :
431
- res = df .resample ("h" ).apply (func_dataframe_resampler_apply_complex )
432
- res_parallel = df .resample ("h" ).parallel_apply (func_dataframe_resampler_apply_complex )
433
- assert res .equals (res_parallel )
434
- else :
435
- with pytest .raises (AttributeError ):
436
- res = df .resample ("h" ).apply (func_dataframe_resampler_apply_complex )
437
-
438
-
439
- def test_dataframe_resampler_apply_series (
440
- pandarallel_init , func_dataframe_resampler_apply_series , df_size
441
- ):
442
- df = pd .DataFrame (
443
- dict (
444
- b = np .random .rand (df_size ),
445
- c = np .random .rand (df_size ),
446
- ),
447
- index = pd .to_datetime (np .arange (df_size ), unit = "m" )
448
- )
449
-
450
-
451
- res = df .resample ("h" ).apply (func_dataframe_resampler_apply_series )
452
- res_parallel = df .resample ("h" ).parallel_apply (func_dataframe_resampler_apply_series )
453
- assert res .equals (res_parallel )
454
-
455
- def test_series_resampler_apply (
456
- pandarallel_init , func_series_resampler_apply , df_size
457
- ):
458
- df = pd .Series (
459
- np .random .rand (df_size ),
460
- index = pd .to_datetime (np .arange (df_size ), unit = "m" )
461
- )
462
-
463
- res = df .resample ("h" ).apply (func_series_resampler_apply )
464
- res_parallel = df .resample ("h" ).parallel_apply (func_series_resampler_apply )
465
- assert res .equals (res_parallel )
0 commit comments