forked from boostcampaitech2/mrc-level2-nlp-05
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_qa.py
244 lines (199 loc) · 8.32 KB
/
trainer_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Question-Answering task와 관련된 'Trainer'의 subclass 코드 입니다.
"""
import time
import math
from typing import Callable, List
import torch
import torch.nn as nn
import datasets
from datasets import Dataset
from transformers import TrainingArguments, TrainerState, TrainerControl
from transformers.trainer import Trainer
from transformers.trainer_utils import speed_metrics
from transformers.trainer_callback import TrainerCallback
class FreezeEmbeddingCallback(TrainerCallback):
"""Callback for freezing Embedding"""
def __init__(
self,
model: nn.Module,
freeze_epochs: float = 1.0
) -> None:
super().__init__()
self.model = model
self.freeze_epochs = float(freeze_epochs)
print("Freeze Embedding Layers Initially")
self.freeze_embedding_layers()
def print_frozen_layers(self):
# printing the names of the frozen layers
frozen_layer_names = [name for name, param in self.model.named_parameters() if not param.requires_grad]
if len(frozen_layer_names) > 0:
if len(frozen_layer_names) > 5:
print("Frozen layers:", frozen_layer_names[:4], "..." ,frozen_layer_names[-1])
else:
print("Frozen layers:", frozen_layer_names)
else:
print("No frozen layers")
def freeze_embedding_layers(self, layer_name: str = "embeddings"):
for name, param in self.model.named_parameters():
if name.count(layer_name) == 0:
# do not freeze -> requires_grad == True
param.requires_grad = True
else:
# freeze -> requires_grad == False
param.requires_grad = False
self.print_frozen_layers()
def unfreeze_all_layers(self):
for name, param in self.model.named_parameters():
param.requires_grad = True
self.print_frozen_layers()
def on_evaluate(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
current_epoch = state.epoch
print(current_epoch, self.freeze_epochs)
if current_epoch < self.freeze_epochs:
pass
else:
self.unfreeze_all_layers()
class FreezeBackboneCallback(TrainerCallback):
"""Callback for freezing Embedding"""
def __init__(
self,
model: nn.Module,
backbone_name: str,
freeze_epochs: float = 1.0
) -> None:
super().__init__()
self.model = model
self.backbone_name = backbone_name
self.freeze_epochs = float(freeze_epochs)
print("Freeze Backbone Layers Initially")
self.freeze_backbone_layers()
def print_frozen_layers(self):
# printing the names of the frozen layers
frozen_layer_names = [name for name, param in self.model.named_parameters() if not param.requires_grad]
if len(frozen_layer_names) > 0:
if len(frozen_layer_names) > 5:
print("Frozen layers:", frozen_layer_names[:4], "..." ,frozen_layer_names[-1])
else:
print("Frozen layers:", frozen_layer_names)
else:
print("No frozen layers")
def freeze_backbone_layers(self):
for name, param in self.model.named_parameters():
if name.count(self.backbone_name) == 0:
# do not freeze -> requires_grad == True
param.requires_grad = True
else:
# freeze -> requires_grad == False
param.requires_grad = False
self.print_frozen_layers()
def unfreeze_all_layers(self):
for name, param in self.model.named_parameters():
param.requires_grad = True
self.print_frozen_layers()
def on_evaluate(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
current_epoch = state.epoch
print(current_epoch, self.freeze_epochs)
if current_epoch < self.freeze_epochs:
pass
else:
self.unfreeze_all_layers()
class QATrainer(Trainer):
def __init__(
self,
*args,
eval_examples: Dataset=None,
post_process_function: Callable=None,
**kwargs
):
super().__init__(*args, **kwargs)
self.eval_examples = eval_examples
self.post_process_function = post_process_function
def evaluate(
self,
eval_dataset: Dataset=None,
eval_examples: Dataset=None,
ignore_keys: List[str]=None,
):
self._memory_tracker.start()
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
eval_examples = self.eval_examples if eval_examples is None else eval_examples
eval_dataloader = self.get_eval_dataloader(eval_dataset)
start_time = time.time()
temp_compute_metrics = self.compute_metrics
self.compute_metrics = None
try:
output = self.evaluation_loop(
eval_dataloader,
description="Evaluation",
prediction_loss_only=True if temp_compute_metrics is None else None,
ignore_keys=ignore_keys,
metric_key_prefix="eval"
)
finally:
self.compute_metrics = temp_compute_metrics
if isinstance(eval_dataset, datasets.Dataset):
eval_dataset.set_format(
type=eval_dataset.format["type"],
columns=list(eval_dataset.features.keys())
)
if self.post_process_function is not None and self.compute_metrics is not None:
eval_preds = self.post_process_function(
examples=eval_examples,
features=eval_dataset,
predictions=output.predictions,
training_args=self.args,
)
output.metrics.update({"eval_" + k: v for k, v in self.compute_metrics(eval_preds).items()})
total_batch_size = self.args.eval_batch_size * self.args.world_size
self.control = self.callback_handler.on_evaluate(
self.args, self.state, self.control, output.metrics
)
self.log(output.metrics)
self.log(
speed_metrics(
"eval",
start_time,
num_samples=output.num_samples,
num_steps=math.ceil(output.num_samples / total_batch_size),
)
)
return output.metrics
def predict(self, test_dataset, test_examples, ignore_keys=None):
test_dataloader = self.get_test_dataloader(test_dataset)
compute_metrics = self.compute_metrics
self.compute_metrics = None
try:
output = self.prediction_loop(
test_dataloader,
description="Evaluation",
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
)
finally:
self.compute_metrics = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
if isinstance(test_dataset, datasets.Dataset):
test_dataset.set_format(
type=test_dataset.format["type"],
columns=list(test_dataset.features.keys()),
)
predictions = self.post_process_function(
test_examples, test_dataset, output.predictions, self.args
)
return predictions