-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathconfig.py
56 lines (43 loc) · 3.32 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
""" config.py
"""
import argparse
import time
parser = argparse.ArgumentParser('PGGAN')
## general settings.
parser.add_argument('--train_data_root', type=str, default='/homes/user/Desktop/YOUR_DIRECTORY')
parser.add_argument('--random_seed', type=int, default=int(time.time()))
parser.add_argument('--n_gpu', type=int, default=1) # for Multi-GPU training.
## training parameters.
parser.add_argument('--lr', type=float, default=0.001) # learning rate.
parser.add_argument('--lr_decay', type=float, default=0.87) # learning rate decay at every resolution transition.
parser.add_argument('--eps_drift', type=float, default=0.001) # coeff for the drift loss.
parser.add_argument('--smoothing', type=float, default=0.997) # smoothing factor for smoothed generator.
parser.add_argument('--nc', type=int, default=3) # number of input channel.
parser.add_argument('--nz', type=int, default=512) # input dimension of noise.
parser.add_argument('--ngf', type=int, default=512) # feature dimension of final layer of generator.
parser.add_argument('--ndf', type=int, default=512) # feature dimension of first layer of discriminator.
parser.add_argument('--TICK', type=int, default=1000) # 1 tick = 1000 images = (1000/batch_size) iter.
parser.add_argument('--max_resl', type=int, default=8) # 10-->1024, 9-->512, 8-->256
parser.add_argument('--trns_tick', type=int, default=200) # transition tick
parser.add_argument('--stab_tick', type=int, default=100) # stabilization tick
## network structure.
parser.add_argument('--flag_wn', type=bool, default=True) # use of equalized-learning rate.
parser.add_argument('--flag_bn', type=bool, default=False) # use of batch-normalization. (not recommended)
parser.add_argument('--flag_pixelwise', type=bool, default=True) # use of pixelwise normalization for generator.
parser.add_argument('--flag_gdrop', type=bool, default=True) # use of generalized dropout layer for discriminator.
parser.add_argument('--flag_leaky', type=bool, default=True) # use of leaky relu instead of relu.
parser.add_argument('--flag_tanh', type=bool, default=False) # use of tanh at the end of the generator.
parser.add_argument('--flag_sigmoid', type=bool, default=False) # use of sigmoid at the end of the discriminator.
parser.add_argument('--flag_add_noise', type=bool, default=True) # add noise to the real image(x)
parser.add_argument('--flag_norm_latent', type=bool, default=False) # pixelwise normalization of latent vector (z)
parser.add_argument('--flag_add_drift', type=bool, default=True) # add drift loss
## optimizer setting.
parser.add_argument('--optimizer', type=str, default='adam') # optimizer type.
parser.add_argument('--beta1', type=float, default=0.0) # beta1 for adam.
parser.add_argument('--beta2', type=float, default=0.99) # beta2 for adam.
## display and save setting.
parser.add_argument('--use_tb', type=bool, default=True) # enable tensorboard visualization
parser.add_argument('--save_img_every', type=int, default=20) # save images every specified iteration.
parser.add_argument('--display_tb_every', type=int, default=5) # display progress every specified iteration.
## parse and save config.
config, _ = parser.parse_known_args()