-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpre-proccessing.py
84 lines (63 loc) Β· 2.58 KB
/
pre-proccessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from imutils import paths
import numpy as np
import imutils
import cv2
import pickle
import os
#Pathsto models and dataset
dataset = 'Attendence-System-Face-Recognition/datasets'
embeddingFile = 'Attendence-System-Face-Recognition/output/embeddings.pickle'
embeddingModel = 'Attendence-System-Face-Recognition/openface.nn4.small2.v1.t7'
prototxt = 'Attendence-System-Face-Recognition/model/deploy.prototxt.txt'
model = 'Attendence-System-Face-Recognition/model/res10_300x300_ssd_iter_140000.caffemodel'
#Load models
print("[INFO] Loading face detector...")
detector = cv2.dnn.readNetFromCaffe(prototxt, model)
print("[INFO] Loading face embedding model...")
embedder = cv2.dnn.readNetFromTorch(embeddingModel)
imagePaths = list(paths.list_images(dataset))
knownEmbeddings = []
knownNames = []
total = 0
conf = 0.3
for (i, imagePath) in enumerate(imagePaths):
print(f"[INFO] Processing image {i+1}/{len(imagePaths)}: {imagePath}")
name = imagePath.split(os.path.sep)[-2]
image = cv2.imread(imagePath)
image = imutils.resize(image, width=600)
(h, w) = image.shape[:2]
imageBlob = cv2.dnn.blobFromImage(
cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0), swapRB=False, crop=False
)
detector.setInput(imageBlob)
detections = detector.forward()
if len(detections) > 0:
i = np.argmax(detections[0, 0, :, 2])
confidence = detections[0, 0, i, 2]
if confidence > conf:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
startX = max(0, startX)
startY = max(0, startY)
endX = min(w, endX)
endY = min(h, endY)
face = image[startY:endY, startX:endX]
(fH, fW) = face.shape[:2]
if fW < 20 or fH < 20:
continue
faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False)
embedder.setInput(faceBlob)
vec = embedder.forward()
knownNames.append(name)
knownEmbeddings.append(vec.flatten())
total += 1
cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 2)
cv2.imshow("Face", face)
cv2.imshow("Detection", image)
cv2.waitKey(1)
print(f"[INFO] Total embeddings created: {total}")
print("[INFO] Saving embeddings...")
data = {"embeddings": knownEmbeddings, "names": knownNames}
with open(embeddingFile, "wb") as f:
f.write(pickle.dumps(data))
print("[INFO] Process Completed.")