-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
85 lines (71 loc) · 3.62 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import plotly.graph_objects as go
import locale
from analysis import *
locale.setlocale(locale.LC_ALL, 'en_US.utf8')
voter_percentages = population_voter_analysis()
male_female_ratios = gender_ratios()
st.sidebar.markdown('#### Kenya 2019 Population Census Summary')
df = pd.read_csv('county_list.csv')
counties = st.sidebar.selectbox('Select county', df['COUNTY'], index=29)
registered_voters = st.sidebar.checkbox("Compare With Voter Registration Data, (IEBC 2017)")
st.sidebar.markdown(' #### 📈 Parts Of Tens')
remittances_data_file = st.sidebar.file_uploader(label="Upload File")
parts_of_tens = st.sidebar.selectbox('', ('Select Option...', '10 Most Populous Counties', '10 Least Populous Counties',
'Highest Male To Female Ratio', 'Highest Female To Male Ratio',
'Highest % Of Registered Voters', 'Lowest % Of Registered Voters'))
if remittances_data_file is not None:
remittances_data = pd.read_csv(remittances_data_file)
st.write(remittances_data)
if '10 Most Populous Counties' in parts_of_tens:
st.subheader('10 Most Populous Counties')
st.table(male_female_ratios[2])
elif '10 Least Populous Counties' in parts_of_tens:
st.subheader('10 Least Populous Counties')
st.table(male_female_ratios[3])
elif 'Highest Male To Female Ratio' in parts_of_tens:
st.subheader('Highest Male To Female ratio')
st.table(male_female_ratios[0])
elif 'Highest Female To Male Ratio' in parts_of_tens:
st.subheader('Highest Female To Male Ratio')
st.table(male_female_ratios[1])
elif 'Highest % Of Registered Voters' in parts_of_tens:
st.subheader('Highest % Of Registered Voters')
st.table(voter_percentages[0])
elif 'Lowest % Of Registered Voters' in parts_of_tens:
st.subheader('Lowest % Of Registered Voters')
st.table(voter_percentages[1])
else:
county_data = df.loc[df.COUNTY == counties]
total = county_data['TOTAL'].values[0]
voters = county_data['VOTERS'].values[0]
male = county_data['MALE'].values[0]
female = county_data['FEMALE'].values[0]
intersex = county_data['INTERSEX'].values[0]
st.subheader(counties + " County, Total Population: " + locale.format_string("%d", total, grouping=True))
st.text("Male: " + locale.format_string("%d", male, grouping=True))
st.text("Female: " + locale.format_string("%d", female, grouping=True))
st.text("Intersex: " + locale.format_string("%d", intersex, grouping=True))
if registered_voters:
'''
### Voter Registration
'''
st.text('Total Voters: ' + locale.format_string("%d", voters, grouping=True))
voters_percentage = (voters / total) * 100
st.text("% of voters: " + str(round(voters_percentage, 2)))
hover_text = "% of voters: " + str(round(voters_percentage, 2))
voters_vs_pop = ['Population', 'Voters']
colors = ['burlywood', 'chocolate']
fig = go.Figure(data=[
go.Bar(x=voters_vs_pop, y=[total, voters], hovertext=['', hover_text], marker_color=colors)])
fig.update_layout(title_text='Population Against No. Of Registered Voters')
st.plotly_chart(fig)
else:
labels = ['Male', 'Female']
values = [male, female]
colors = ['burlywood', 'chocolate']
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
fig.update_traces(marker=dict(colors=colors, line=dict(color='#F5F5DC', width=1)))
st.plotly_chart(fig)
st.sidebar.markdown(' #### About')
st.sidebar.info("This app uses data that is publicly available. It is not affiliated to IEBC or KNBS.")
st.sidebar.info("Email: tazamadata@gmail.com")