-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeodesicline.go
469 lines (420 loc) · 11.4 KB
/
geodesicline.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
package geographiclibgo
import "math"
type GeodesicLine struct {
tiny_ float64
_A1m1 float64
_A2m1 float64
_A3c float64
_A4 float64
_B11 float64
_B21 float64
_B31 float64
_B41 float64
_C1a [_GEODESIC_ORDER + 1]float64
_C1pa [_GEODESIC_ORDER + 1]float64
_C2a [_GEODESIC_ORDER + 1]float64
_C3a [_GEODESIC_ORDER]float64
_C4a [_GEODESIC_ORDER]float64
_b float64
_c2 float64
_calp0 float64
_csig1 float64
_comg1 float64
_ctau1 float64
_dn1 float64
_f1 float64
_k2 float64
_salp0 float64
_somg1 float64
_ssig1 float64
_stau1 float64
a13 float64
a float64
azi1 float64
calp1 float64
caps uint64
f float64
lat1 float64
lon1 float64
s13 float64
salp1 float64
}
// NewGeodesicLine creates a GeodesicLine, with `caps` of STANDARD | DISTANCE_IN
func NewGeodesicLine(
geod Geodesic,
lat1, lon1, azi1 float64,
) GeodesicLine {
// Specify default `caps`
caps := STANDARD | DISTANCE_IN
return new_geodesic_line_all_options(
geod,
lat1,
lon1,
azi1,
caps,
math.NaN(),
math.NaN(),
)
}
// NewGeodesicLineWithCapability is the same as NewGeodesicLine but the user specifies a
// `caps` field.
func NewGeodesicLineWithCapability(
geod Geodesic,
lat1, lon1, azi1 float64,
caps uint64,
) GeodesicLine {
return new_geodesic_line_all_options(
geod,
lat1,
lon1,
azi1,
caps,
math.NaN(),
math.NaN(),
)
}
// new_geodesic_line_all_options is the same as NewGeodesicLine but the user specifies a
// `caps` field.
// If you do not wish to specify `salp1` and/or `calp1`, set them as math.NaN()
func new_geodesic_line_all_options(
geod Geodesic,
lat1, lon1, azi1 float64,
caps uint64,
salp1, calp1 float64,
) GeodesicLine {
// This was taken from geodesic, putting it here for convenience
tiny_ := math.Sqrt(get_min_val())
a := geod.a
f := geod.f
_b := geod.b
_c2 := geod.c2
_f1 := geod.f1
caps |= LATITUDE | AZIMUTH | LONG_UNROLL
if math.IsNaN(salp1) || math.IsNaN(calp1) {
azi1 = ang_normalize(azi1)
salp1, calp1 = sincosd(ang_round(azi1))
}
lat1 = lat_fix(lat1)
sbet1, cbet1 := sincosd(ang_round(lat1))
sbet1 *= _f1
sbet1, cbet1 = norm(sbet1, cbet1)
cbet1 = math.Max(tiny_, cbet1)
_dn1 := math.Sqrt(1.0 + geod.ep2*sq(sbet1))
_salp0 := salp1 * cbet1
_calp0 := math.Hypot(calp1, salp1*sbet1)
_ssig1 := sbet1
_somg1 := _salp0 * sbet1
var _csig1 float64
if sbet1 != 0.0 || calp1 != 0.0 {
_csig1 = cbet1 * calp1
} else {
_csig1 = 1.0
}
_comg1 := _csig1
_ssig1, _csig1 = norm(_ssig1, _csig1)
_k2 := sq(_calp0) * geod.ep2
eps := _k2 / (2.0*(1.0+math.Sqrt(1.0+_k2)) + _k2)
_A1m1 := 0.0
var _C1a [_GEODESIC_ORDER + 1]float64
_B11 := 0.0
_stau1 := 0.0
_ctau1 := 0.0
if caps&_CAP_C1 != 0 {
_A1m1 = a1m1f(eps, geod.GEODESIC_ORDER)
c1f(eps, _C1a[:], int(geod.GEODESIC_ORDER))
_B11 = sin_cos_series(true, _ssig1, _csig1, _C1a[:])
s := math.Sin(_B11)
c := math.Cos(_B11)
_stau1 = _ssig1*c + _csig1*s
_ctau1 = _csig1*c - _ssig1*s
}
var _C1pa [_GEODESIC_ORDER + 1]float64
if caps&_CAP_C1p != 0 {
c1pf(eps, _C1pa[:], int(geod.GEODESIC_ORDER))
}
_A2m1 := 0.0
var _C2a [_GEODESIC_ORDER + 1]float64
_B21 := 0.0
if caps&_CAP_C2 != 0 {
_A2m1 = a2m1f(eps, geod.GEODESIC_ORDER)
c2f(eps, _C2a[:], int(geod.GEODESIC_ORDER))
_B21 = sin_cos_series(true, _ssig1, _csig1, _C2a[:])
}
var _C3a [_GEODESIC_ORDER]float64
_A3c := 0.0
_B31 := 0.0
if caps&_CAP_C3 != 0 {
geod._C3f(eps, _C3a[:])
_A3c = -f * _salp0 * geod._A3f(eps)
_B31 = sin_cos_series(true, _ssig1, _csig1, _C3a[:])
}
var _C4a [_GEODESIC_ORDER]float64
_A4 := 0.0
_B41 := 0.0
if caps&_CAP_C4 != 0 {
geod._C4f(eps, _C4a[:])
_A4 = sq(a) * _calp0 * _salp0 * geod.e2
_B41 = sin_cos_series(false, _ssig1, _csig1, _C4a[:])
}
s13 := math.NaN()
a13 := math.NaN()
return GeodesicLine{
tiny_: tiny_,
_A1m1: _A1m1,
_A2m1: _A2m1,
_A3c: _A3c,
_A4: _A4,
_B11: _B11,
_B21: _B21,
_B31: _B31,
_B41: _B41,
_C1a: _C1a,
_C1pa: _C1pa,
_comg1: _comg1,
_C2a: _C2a,
_C3a: _C3a,
_C4a: _C4a,
_b: _b,
_c2: _c2,
_calp0: _calp0,
_csig1: _csig1,
_ctau1: _ctau1,
_dn1: _dn1,
_f1: _f1,
_k2: _k2,
_salp0: _salp0,
_somg1: _somg1,
_ssig1: _ssig1,
_stau1: _stau1,
a: a,
a13: a13,
azi1: azi1,
calp1: calp1,
caps: caps,
f: f,
lat1: lat1,
lon1: lon1,
s13: s13,
salp1: salp1,
}
}
func (g GeodesicLine) _gen_position(arcmode bool, s12_a12 float64, outmask uint64) (
a12 float64,
lat2 float64,
lon2 float64,
azi2 float64,
s12 float64,
m12 float64,
M12 float64,
M21 float64,
S12 float64,
) {
a12 = math.NaN()
lat2 = math.NaN()
lon2 = math.NaN()
azi2 = math.NaN()
s12 = math.NaN()
m12 = math.NaN()
M12 = math.NaN()
M21 = math.NaN()
S12 = math.NaN()
outmask &= g.caps & OUT_MASK
if !(arcmode || (g.caps&(OUT_MASK&DISTANCE_IN) != 0)) {
return a12, lat2, lon2, azi2, s12, m12, M12, M21, S12
}
B12 := 0.0
AB1 := 0.0
var sig12 float64
var ssig12 float64
var csig12 float64
var ssig2 float64
var csig2 float64
if arcmode {
sig12 = s12_a12 * DEG2RAD
ssig12, csig12 = sincosd(s12_a12)
} else {
// tau12 = s12_a12 / (g._b * (1 + g._A1m1))
tau12 := s12_a12 / (g._b * (1.0 + g._A1m1))
s := math.Sin(tau12)
c := math.Cos(tau12)
B12 = -sin_cos_series(
true,
g._stau1*c+g._ctau1*s,
g._ctau1*c-g._stau1*s,
g._C1pa[:],
)
sig12 = tau12 - (B12 - g._B11)
ssig12 = math.Sin(sig12)
csig12 = math.Cos(sig12)
if math.Abs(g.f) > 0.01 {
ssig2 = g._ssig1*csig12 + g._csig1*ssig12
csig2 = g._csig1*csig12 - g._ssig1*ssig12
B12 = sin_cos_series(true, ssig2, csig2, g._C1a[:])
serr := (1.0+g._A1m1)*(sig12+(B12-g._B11)) - s12_a12/g._b
sig12 -= serr / math.Sqrt(1.0+g._k2*sq(ssig2))
ssig12 = math.Sin(sig12)
csig12 = math.Cos(sig12)
}
}
ssig2 = g._ssig1*csig12 + g._csig1*ssig12
csig2 = g._csig1*csig12 - g._ssig1*ssig12
dn2 := math.Sqrt(1.0 + g._k2*sq(ssig2))
if outmask&(DISTANCE|REDUCEDLENGTH|GEODESICSCALE) != 0 {
if arcmode || math.Abs(g.f) > 0.01 {
B12 = sin_cos_series(true, ssig2, csig2, g._C1a[:])
}
AB1 = (1.0 + g._A1m1) * (B12 - g._B11)
}
sbet2 := g._calp0 * ssig2
cbet2 := math.Hypot(g._salp0, g._calp0*csig2)
if cbet2 == 0.0 {
cbet2 = g.tiny_
csig2 = g.tiny_
}
salp2 := g._salp0
calp2 := g._calp0 * csig2
if outmask&DISTANCE != 0 {
if arcmode {
s12 = g._b * ((1.0+g._A1m1)*sig12 + AB1)
} else {
s12 = s12_a12
}
}
if outmask&LONGITUDE != 0 {
somg2 := g._salp0 * ssig2
comg2 := csig2
E := math.Copysign(1, g._salp0)
var omg12 float64
if outmask&LONG_UNROLL != 0 {
omg12 = E * (sig12 - (math.Atan2(ssig2, csig2) - math.Atan2(g._ssig1, g._csig1)) + (math.Atan2((E*somg2), comg2) - math.Atan2((E*g._somg1), g._comg1)))
} else {
omg12 = math.Atan2((somg2*g._comg1 - comg2*g._somg1), (comg2*g._comg1 + somg2*g._somg1))
}
lam12 := omg12 + g._A3c*(sig12+(sin_cos_series(true, ssig2, csig2, g._C3a[:])-g._B31))
lon12 := lam12 * RAD2DEG
if outmask&LONG_UNROLL != 0 {
lon2 = g.lon1 + lon12
} else {
lon2 = ang_normalize(
ang_normalize(g.lon1) + ang_normalize(lon12),
)
}
}
if outmask&LATITUDE != 0 {
lat2 = atan2_deg(sbet2, g._f1*cbet2)
}
if outmask&AZIMUTH != 0 {
azi2 = atan2_deg(salp2, calp2)
}
if outmask&(REDUCEDLENGTH|GEODESICSCALE) != 0 {
B22 := sin_cos_series(true, ssig2, csig2, g._C2a[:])
AB2 := (1.0 + g._A2m1) * (B22 - g._B21)
J12 := (g._A1m1-g._A2m1)*sig12 + (AB1 - AB2)
if outmask&REDUCEDLENGTH != 0 {
m12 = g._b * ((dn2*(g._csig1*ssig2) - g._dn1*(g._ssig1*csig2)) - g._csig1*csig2*J12)
}
if outmask&GEODESICSCALE != 0 {
t := g._k2 * (ssig2 - g._ssig1) * (ssig2 + g._ssig1) / (g._dn1 + dn2)
M12 = csig12 + (t*ssig2-csig2*J12)*g._ssig1/g._dn1
M21 = csig12 - (t*g._ssig1-g._csig1*J12)*ssig2/dn2
}
}
if outmask&AREA != 0 {
B42 := sin_cos_series(false, ssig2, csig2, g._C4a[:])
var salp12 float64
var calp12 float64
if g._calp0 == 0.0 || g._salp0 == 0.0 {
salp12 = salp2*g.calp1 - calp2*g.salp1
calp12 = calp2*g.calp1 + salp2*g.salp1
} else {
var to_mul float64
if csig12 <= 0.0 {
to_mul = g._csig1*(1.0-csig12) + ssig12*g._ssig1
} else {
to_mul = ssig12 * (g._csig1*ssig12/(1.0+csig12) + g._ssig1)
}
salp12 = g._calp0 * g._salp0 * to_mul
calp12 = sq(g._salp0) + sq(g._calp0)*g._csig1*csig2
}
S12 = g._c2*math.Atan2(salp12, calp12) + g._A4*(B42-g._B41)
}
if arcmode {
a12 = s12_a12
} else {
a12 = sig12 * RAD2DEG
}
return a12, lat2, lon2, azi2, s12, m12, M12, M21, S12
}
type PositionResultStandard struct {
Lat1Deg float64 // Latitude of point 1 [degrees]
Lon1Deg float64 // Longitude of point 1 [degrees]
Azi1Deg float64 // Azimuth of point 1 [degrees]
Lat2Deg float64 // Latitude of point 2 [degrees]
Lon2Deg float64 // Longitude of point 2 [degrees]
Azi2Deg float64 // Azimuth of point 2 [degrees]
DistanceM float64 // Distance from point 1 to point 2 [meters]
}
// PositionStandard finds the position on the line given s12_m [meters]. It uses the
// STANDARD capabilities, and returns a PositionResultStandard struct
func (g GeodesicLine) PositionStandard(s12_m float64) PositionResultStandard {
outmask := STANDARD
_, lat2, lon2, azi2, _, _, _, _, _ := g._gen_position(false, s12_m, outmask)
return PositionResultStandard{
Lat1Deg: g.lat1,
Lon1Deg: g.lon1,
Azi1Deg: g.azi1,
Lat2Deg: lat2,
Lon2Deg: lon2,
Azi2Deg: azi2,
DistanceM: s12_m,
}
}
type PositionResult struct {
Lat1Deg float64 // Latitude of point 1 [degrees]
Lon1Deg float64 // Longitude of point 1 [degrees]
Azi1Deg float64 // Azimuth of point 1 [degrees]
Lat2Deg float64 // Latitude of point 2 [degrees]
Lon2Deg float64 // Longitude of point 2 [degrees]
Azi2Deg float64 // Azimuth of point 2 [degrees]
DistanceM float64 // Distance from point 1 to point 2 [meters]
ArcLengthDeg float64 // Arc length between point 1 and point 2 [degrees]
ReducedLengthM float64 // Reduced length of the geodesic [meters]
M12 float64 // Geodesic scale of point 2 relative to point 1 [dimensionless]
M21 float64 // Geodesic scale of point 1 relative to point 2 [dimensionless]
S12M2 float64 // Area under the geodesic [meters^2]
}
// PositionWithCapabilities finds the position on the line given s12_m [meters]. It uses
// whatever capabilities are handed in. Any results not asked for with the capabilities
// will be math.NaN()
func (g GeodesicLine) PositionWithCapabilities(s12_m float64, capabilities uint64) PositionResult {
a12, lat2, lon2, azi2, s12, m12, M12, M21, S12 := g._gen_position(false, s12_m, capabilities)
outlon1 := g.lon1
if capabilities&LONG_UNROLL != 0 {
outlon1 = ang_normalize(g.lon1)
}
return PositionResult{
Lat1Deg: g.lat1,
Lon1Deg: outlon1,
Azi1Deg: g.azi1,
Lat2Deg: lat2,
Lon2Deg: lon2,
Azi2Deg: azi2,
DistanceM: s12,
ArcLengthDeg: a12,
ReducedLengthM: m12,
M12: M12,
M21: M21,
S12M2: S12,
}
}
// set_arc: specify the position of point 3 in terms of arc length `a13`, the spherical
// arc length from point 1 to point 3 in degrees
func (g *GeodesicLine) set_arc(a13 float64) {
g.a13 = a13
_, _, _, _, g.s13, _, _, _, _ = g._gen_position(true, g.a13, DISTANCE)
}
// set_distance specifies the position of point 3 in terms of distance
func (g *GeodesicLine) set_distance(s13_m float64) {
g.s13 = s13_m
g.a13, _, _, _, _, _, _, _, _ = g._gen_position(false, g.s13, 0)
}