-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathValidation.py
121 lines (104 loc) · 4.4 KB
/
Validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from helper import *
import numpy as np
def theils_indicator(actual, simulated):
"""
Summary:
- Calculates the Theil's indicator U for model validation
Arguments:
- actual (list): The observed individual average pedestrian speeds
- simulated (list): The simulated individual average pedestrian speeds
Returns:
- float: Theil's indicator U
"""
actual, simulated = len_equalizer(actual, simulated)
numerator = np.linalg.norm((simulated - actual)) / np.sqrt(len(actual))
denominator = (np.linalg.norm(simulated) / np.sqrt(len(actual))) + (
np.linalg.norm(actual) / np.sqrt(len(actual))
)
return numerator / denominator
if __name__ == "__main__":
# Define Variables
crosswalk_one_parameters = [
[0.107, 1.416, 0.106, 0.367, 5.597],
[0.107, 0.367, 0.107, 0.367, 5.6],
[0.107, 1.416, 0.107, 0.367, 5.6],
[0.122, 1.072, 0.127, 0.322, 5.343],
[0.118, 1.061, 0.115, 0.31, 6.552],
[0.118, 1.052, 0.103, 0.3, 6.377],
]
crosswalk_two_parameters = [
[0.107, 1.416, 0.128, 0.367, 5.6],
[0.1, 2.397, 0.135, 0.677, 5.1],
[0.107, 1.231, 0.113, 0.591, 6.872],
[0.107, 0.578, 0.128, 1.416, 6.0],
[0.135, 1.185, 0.104, 0.493, 6.885],
[0.127, 1.357, 0.291, 0.417, 6.882],
[0.131, 1.175, 0.27, 0.457, 6.556],
[0.107, 1.328, 0.134, 0.586, 6.677],
[0.14, 1.317, 0.273, 0.379, 6.526],
]
crosswalk_combined_parameters = [
[0.107, 0.684, 0.107, 0.367, 5.6],
[0.107, 1.416, 0.107, 0.367, 5.6],
[0.107, 1.061, 0.11, 0.367, 6.752],
[0.157, 1.008, 0.139, 0.35, 6.308],
[0.115, 1.029, 0.115, 0.34, 6.1],
[0.127, 1.027, 0.113, 0.319, 6.126],
]
crosswalk_comparison_parameters = [
[0.400, 2.720, 0.200, 0.400, 3.00],
(0.118, 1.052, 0.103, 0.3, 6.377),
(0.14, 1.317, 0.273, 0.379, 6.526),
(0.115, 1.029, 0.115, 0.34, 6.1),
]
crosswalk_one_actual = np.np.genfromtxt(
"./csv_data/valid_cw_one.csv", delimiter=","
)
crosswalk_two_actual = np.np.genfromtxt(
"./csv_data/valid_cw_two.csv", delimiter=","
)
crosswalk_combined_actual = np.asarray(
sorted(np.concatenate((crosswalk_two_actual, crosswalk_one_actual)))
)
results_dictonary = {}
# Call Functions
Vissim = set_vissim(5, 42, "Intersection.inpx")
time = 900
sm_aura_id = 1
market_market_id = 2
from_west_id = 3
Vissim.Net.PedestrianInputs.ItemByKey(sm_aura_id).SetAttValue("Volume(1)", 675)
Vissim.Net.PedestrianInputs.ItemByKey(market_market_id).SetAttValue(
"Volume(1)", 600
)
Vissim.Net.PedestrianInputs.ItemByKey(from_west_id).SetAttValue("Volume(1)", 75)
Vissim.Net.PedestrianRoutingDecisionsStatic.ItemByKey(
market_market_id
).PedRoutSta.ItemByKey(1).SetAttValue("RelFlow(1)", 560)
Vissim.Net.PedestrianRoutingDecisionsStatic.ItemByKey(
market_market_id
).PedRoutSta.ItemByKey(2).SetAttValue("RelFlow(1)", 40)
# CHANGE CROSSWALK_ONE_PARAMETERS TO OTHER LISTS
for param in crosswalk_comparison_parameters:
set_parameters(Vissim, param)
local_ped_list_one, local_ped_list_two = get_data(Vissim, time)
# Uncomment when validating SM Aura
local_ave_speed_one = get_average(local_ped_list_one, time)
error = rmspe(crosswalk_one_actual, local_ave_speed_one)
theils_index = theils_indicator(crosswalk_one_actual, local_ave_speed_one)
# Uncomment when validating Market Market
# local_ave_speed_two = get_average(local_ped_list_two, time)
# error = rmspe(crosswalk_two_actual, local_ave_speed_two)
# theils_index = theils_indicator(crosswalk_two_actual, local_ave_speed_two)
# Uncomment validating both combined
# local_ave_speed_combined = np.asarray(
# sorted(np.concatenate((get_average(local_ped_list_one, time), get_average(local_ped_list_two, time)))))
# error = rmspe(crosswalk_combined_actual, local_ave_speed_combined)
# theils_index = theils_indicator(crosswalk_combined_actual, local_ave_speed_combined)
key_param = tuple(param)
results_dictonary[key_param] = (theils_index, error)
print(
f"Theil's Index: {round(theils_index, 3)}\nRMSPE value: {round(error, 3)}"
)
for key, value in results_dictonary.items():
print(key, value)