-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSarsa.py
230 lines (207 loc) · 6.21 KB
/
Sarsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
import random
import matplotlib.pyplot as plt
POINTS = {'R': [0, 0], 'Y': [0, 4], 'G': [4, 0], 'B': [3, 4]}
IN_TAXI = False
GOAL = None
POSITION = None
PASSENGER = None
NUMBER_OF_MOVES = 0
ACTIONS = ['UP', 'DOWN', 'LEFT', 'RIGHT', 'PICK_UP', 'DROP_OFF']
ITERATION_COUNT = 100000
LEARNING_RATE = 0.1
DISCOUNT_FACTOR = 0.6
EPSILON = 0.1
def setRandomGoal():
global GOAL
GOAL = random.choice(['R', 'G', 'Y', 'B'])
def setRandomPassenger():
global PASSENGER
global POSITION
PASSENGER = random.choice(['R', 'G', 'Y', 'B', 'I'])
if PASSENGER=='i':
IN_TAXI = True
def setRandomPosition():
global POSITION
POSITION = [random.choice([0, 1, 2, 3, 4]), random.choice([0, 1, 2, 3, 4])]
def hitTheWall(action):
global POSITION
if POSITION[0]==1 and POSITION[1]==0 and action=='RIGHT':
return -1
if POSITION[0]==1 and POSITION[1]==1 and action=='RIGHT':
return -1
if POSITION[0]==2 and POSITION[1]==0 and action=='LEFT':
return -1
if POSITION[0]==2 and POSITION[1]==1 and action=='LEFT':
return -1
if POSITION[0]==0 and POSITION[1]==3 and action=='RIGHT':
return -1
if POSITION[0]==0 and POSITION[1]==4 and action=='RIGHT':
return -1
if POSITION[0]==1 and POSITION[1]==3 and action=='LEFT':
return -1
if POSITION[0]==1 and POSITION[1]==4 and action=='LEFT':
return -1
if POSITION[0]==2 and POSITION[1]==3 and action=='RIGHT':
return -1
if POSITION[0]==2 and POSITION[1]==4 and action=='RIGHT':
return -1
if POSITION[0]==3 and POSITION[1]==3 and action=='LEFT':
return -1
if POSITION[0]==3 and POSITION[1]==4 and action=='LEFT':
return -1
if POSITION[0]==0 and action=='LEFT':
return -1
if POSITION[0]==4 and action=='RIGHT':
return -1
if POSITION[1]==0 and action=='UP':
return -1
if POSITION[1]==4 and action=='DOWN':
return -1
return 0
def getRewardValue(action):
global GOAL
global PASSENGER
global POSITION
global IN_TAXI
global NUMBER_OF_MOVES
if not(PASSENGER == 'I'):
if POSITION[0]==POINTS[PASSENGER][0] and POSITION[1]==POINTS[PASSENGER][1] and action=='PICK_UP':
return 1
if not (POSITION[0]==POINTS[PASSENGER][0] and POSITION[1]==POINTS[PASSENGER][1]) and action=='PICK_UP':
return -1
elif (PASSENGER == 'I'):
if action=='PICK_UP':
return -1
if POSITION[0]==GOAL[0] and POSITION[1]==GOAL[1] and action=='DROP_OFF' and IN_TAXI==True:
return 10/NUMBER_OF_MOVES
if action=='DROP_OFF' and not(POSITION[0]==GOAL[0] and POSITION[1]==GOAL[1]) and IN_TAXI==True:
return -1
if action=='DROP_OFF' and IN_TAXI==False:
return -1
else:
return hitTheWall(action)
def createQTable():
Q_table = {}
for i1 in range(0, 5):
for i2 in range(0, 5):
for passenger in ['R', 'G', 'Y', 'B', 'I']:
for goal in ['R', 'G', 'Y', 'B']:
Q_table[(i1, i2, passenger, goal)] = {'UP':0, 'DOWN':0, 'LEFT':0, 'RIGHT':0, 'PICK_UP':0, 'DROP_OFF':0}
return Q_table
def pick_action_based_on_policy(Q_table, curr_state):
global ACTIONS
if random.uniform(0, 1) > EPSILON:
max_q = Q_table[curr_state][ACTIONS[0]]
max_q_action = [ACTIONS[0]]
for a in ACTIONS:
if Q_table[curr_state][a] > max_q:
max_q = Q_table[curr_state][a]
max_q_action = [a]
elif Q_table[curr_state][a] == max_q:
max_q_action.append(a)
return random.choice(max_q_action)
else:
return random.choice(ACTIONS)
def createNextState(action):
global POSITION
global GOAL
global PASSENGER
global IN_TAXI
if not(PASSENGER=='I'):
if POSITION[0]==POINTS[PASSENGER][0] and POSITION[1]==POINTS[PASSENGER][1] and action=='PICK_UP':
IN_TAXI = True
PASSENGER = 'I'
if hitTheWall(action)==0:
if action=='UP':
POSITION[1] -= 1
elif action=='DOWN':
POSITION[1] += 1
if action=='RIGHT':
POSITION[0] += 1
elif action=='LEFT':
POSITION[0] -= 1
return (POSITION[0], POSITION[1], PASSENGER, GOAL)
def pick_best_action_based_on_policy(Q_table, curr_state):
global ACTIONS
max_q = Q_table[curr_state][ACTIONS[0]]
max_q_action = [ACTIONS[0]]
for a in ACTIONS:
if Q_table[curr_state][a] > max_q:
max_q = Q_table[curr_state][a]
max_q_action = [a]
elif Q_table[curr_state][a] == max_q:
max_q_action.append(a)
return random.choice(max_q_action)
def saveTheQTable(Q_table):
f= open("q_table.txt","w")
f.write(str(Q_table))
f.close()
def drawPlot(x, y, plot_title):
plt.plot(x, y)
plt.xlabel('epoch number')
plt.ylabel('reward value')
plt.title(plot_title)
plt.legend()
plt.show()
def trainTheModel():
global POSITION
global GOAL
global PASSENGER
global IN_TAXI
global NUMBER_OF_MOVES
Q_table = createQTable()
plot_x, plot_y = [], []
for n in range(ITERATION_COUNT):
setRandomPosition()
setRandomPassenger()
setRandomGoal()
NUMBER_OF_MOVES = 0
IN_TAXI = False
curr_state = (POSITION[0], POSITION[1], PASSENGER, GOAL)
total_reward = 0
action = pick_action_based_on_policy(Q_table, curr_state)
while not(reachedGoal()):
reward_for_this_action = getRewardValue(action)
total_reward += reward_for_this_action
next_state = createNextState(action)
next_action = pick_action_based_on_policy(Q_table, next_state)
next_action_q = Q_table[next_state][next_action]
NUMBER_OF_MOVES += 1
Q_table[curr_state][action] = (1-LEARNING_RATE) * Q_table[curr_state][action] + LEARNING_RATE*(reward_for_this_action + DISCOUNT_FACTOR * next_action_q)
curr_state = next_state
action = next_action
plot_x.append(n)
plot_y.append(total_reward)
drawPlot(plot_x, plot_y, 'Sarsa')
return Q_table
def reachedGoal():
global GOAL
global PASSENGER
if not PASSENGER=='I':
return POINTS[GOAL][0]==POINTS[PASSENGER][0] and POINTS[GOAL][1]==POINTS[PASSENGER][1]
else:
return POINTS[GOAL][0]==POSITION[0] and POINTS[GOAL][1]==POSITION[1]
def testTheModel(Q_table):
global POSITION
global GOAL
global PASSENGER
global IN_TAXI
global NUMBER_OF_MOVES
NUMBER_OF_MOVES = 0
PASSENGER = 'Y'
GOAL = 'B'
POSITION = [0, 1]
IN_TAXI = False
curr_state = (POSITION[0], POSITION[1], PASSENGER, GOAL)
while not(reachedGoal()):
action = pick_best_action_based_on_policy(Q_table, curr_state)
print('['+str(NUMBER_OF_MOVES)+']:'+str(curr_state)+':[ACTION]:'+str(action))
reward_for_this_action = getRewardValue(action)
next_state = createNextState(action)
NUMBER_OF_MOVES += 1
curr_state = next_state
print('REACHED GOAL!')
def main():
Q_table = trainTheModel()
testTheModel(Q_table)