-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathNST.py
199 lines (177 loc) · 9.03 KB
/
NST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import cv2 as cv
import numpy as np
import torch
from torchvision import transforms
from torch.autograd import Variable
from torch.optim import LBFGS
import os
from models.definitions.vgg19 import Vgg19
IMAGENET_MEAN_255 = [123.675, 116.28, 103.53]
IMAGENET_STD_NEUTRAL = [1, 1, 1]
def load_image(img_path,target_shape="None"):
'''
Load and resize the image.
'''
if not os.path.exists(img_path):
raise Exception(f'Path not found: {img_path}')
img = cv.imread(img_path)[:, :, ::-1] # convert BGR to RGB when reading
if target_shape is not None:
if isinstance(target_shape, int) and target_shape != -1:
current_height, current_width = img.shape[:2]
new_height = target_shape
new_width = int(current_width * (new_height / current_height))
img = cv.resize(img, (new_width, new_height), interpolation=cv.INTER_CUBIC)
else:
img = cv.resize(img, (target_shape[1], target_shape[0]), interpolation=cv.INTER_CUBIC)
img = img.astype(np.float32)
img /= 255.0
return img
def prepare_img(img_path, target_shape, device):
'''
Normalize the image.
'''
img = load_image(img_path, target_shape=target_shape)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x.mul(255)),
transforms.Normalize(mean=IMAGENET_MEAN_255, std=IMAGENET_STD_NEUTRAL)])
img = transform(img).to(device).unsqueeze(0)
return img
def save_image(img, img_path):
if len(img.shape) == 2:
img = np.stack((img,) * 3, axis=-1)
cv.imwrite(img_path, img[:, :, ::-1]) # convert RGB to BGR while writing
def generate_out_img_name(config):
'''
Generate a name for the output image.
Example: 'c1-s1.jpg'
where c1: content_img_name, and
s1: style_img_name.
'''
prefix = os.path.basename(config['content_img_name']).split('.')[0] + '_' + os.path.basename(config['style_img_name']).split('.')[0]
suffix = f'{config["img_format"][1]}'
return prefix + suffix
def save_and_maybe_display(optimizing_img, dump_path, config, img_id, num_of_iterations):
'''
Save the generated image.
If saving_freq == -1, only the final output image will be saved.
Else, intermediate images can be saved too.
'''
saving_freq = -1
out_img = optimizing_img.squeeze(axis=0).to('cpu').detach().numpy()
out_img = np.moveaxis(out_img, 0, 2)
if img_id == num_of_iterations-1 :
img_format = config['img_format']
out_img_name = str(img_id).zfill(img_format[0]) + img_format[1] if saving_freq != -1 else generate_out_img_name(config)
dump_img = np.copy(out_img)
dump_img += np.array(IMAGENET_MEAN_255).reshape((1, 1, 3))
dump_img = np.clip(dump_img, 0, 255).astype('uint8')
cv.imwrite(os.path.join(dump_path, out_img_name), dump_img[:, :, ::-1])
def prepare_model(device):
'''
Load VGG19 model into local cache.
'''
model = Vgg19(requires_grad=False, show_progress=True)
content_feature_maps_index = model.content_feature_maps_index
style_feature_maps_indices = model.style_feature_maps_indices
layer_names = model.layer_names
content_fms_index_name = (content_feature_maps_index, layer_names[content_feature_maps_index])
style_fms_indices_names = (style_feature_maps_indices, layer_names)
return model.to(device).eval(), content_fms_index_name, style_fms_indices_names
def gram_matrix(x, should_normalize=True):
'''
Generate gram matrices of the representations of content and style images.
'''
(b, ch, h, w) = x.size()
features = x.view(b, ch, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t)
if should_normalize:
gram /= ch * h * w
return gram
def total_variation(y):
'''
Calculate total variation.
'''
return torch.sum(torch.abs(y[:, :, :, :-1] - y[:, :, :, 1:])) + torch.sum(torch.abs(y[:, :, :-1, :] - y[:, :, 1:, :]))
def build_loss(neural_net, optimizing_img, target_representations, content_feature_maps_index, style_feature_maps_indices, config):
'''
Calculate content_loss, style_loss, and total_variation_loss.
'''
target_content_representation = target_representations[0]
target_style_representation = target_representations[1]
current_set_of_feature_maps = neural_net(optimizing_img)
current_content_representation = current_set_of_feature_maps[content_feature_maps_index].squeeze(axis=0)
content_loss = torch.nn.MSELoss(reduction='mean')(target_content_representation, current_content_representation)
style_loss = 0.0
current_style_representation = [gram_matrix(x) for cnt, x in enumerate(current_set_of_feature_maps) if cnt in style_feature_maps_indices]
for gram_gt, gram_hat in zip(target_style_representation, current_style_representation):
style_loss += torch.nn.MSELoss(reduction='sum')(gram_gt[0], gram_hat[0])
style_loss /= len(target_style_representation)
tv_loss = total_variation(optimizing_img)
total_loss = config['content_weight'] * content_loss + config['style_weight'] * style_loss + config['tv_weight'] * tv_loss
return total_loss, content_loss, style_loss, tv_loss
def make_tuning_step(neural_net, optimizer, target_representations, content_feature_maps_index, style_feature_maps_indices, config):
'''
Performs a step in the tuning loop.
(We are tuning only the pixels, not the weights.)
'''
def tuning_step(optimizing_img):
total_loss, content_loss, style_loss, tv_loss = build_loss(neural_net, optimizing_img, target_representations, content_feature_maps_index, style_feature_maps_indices, config)
total_loss.backward()
optimizer.step()
optimizer.zero_grad()
return total_loss, content_loss, style_loss, tv_loss
return tuning_step
def neural_style_transfer(config):
'''
The main Neural Style Transfer method.
'''
content_img_path = os.path.join(config['content_images_dir'], config['content_img_name'])
style_img_path = os.path.join(config['style_images_dir'], config['style_img_name'])
out_dir_name = 'combined_' + os.path.split(content_img_path)[1].split('.')[0] + '_' + os.path.split(style_img_path)[1].split('.')[0]
dump_path = os.path.join(config['output_img_dir'], out_dir_name)
os.makedirs(dump_path, exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
content_img = prepare_img(content_img_path, config['height'], device)
style_img = prepare_img(style_img_path, config['height'], device)
init_img = content_img
optimizing_img = Variable(init_img, requires_grad=True)
neural_net, content_feature_maps_index_name, style_feature_maps_indices_names = prepare_model(device)
print(f'Using VGG19 in the optimization procedure.')
content_img_set_of_feature_maps = neural_net(content_img)
style_img_set_of_feature_maps = neural_net(style_img)
target_content_representation = content_img_set_of_feature_maps[content_feature_maps_index_name[0]].squeeze(axis=0)
target_style_representation = [gram_matrix(x) for cnt, x in enumerate(style_img_set_of_feature_maps) if cnt in style_feature_maps_indices_names[0]]
target_representations = [target_content_representation, target_style_representation]
num_of_iterations = 1000
optimizer = LBFGS((optimizing_img,), max_iter=num_of_iterations, line_search_fn='strong_wolfe')
cnt = 0
def closure():
nonlocal cnt
if torch.is_grad_enabled():
optimizer.zero_grad()
total_loss, content_loss, style_loss, tv_loss = build_loss(neural_net, optimizing_img, target_representations, content_feature_maps_index_name[0], style_feature_maps_indices_names[0], config)
if total_loss.requires_grad:
total_loss.backward()
with torch.no_grad():
print(f'L-BFGS | iteration: {cnt:03}, total loss={total_loss.item():12.4f}, content_loss={config["content_weight"] * content_loss.item():12.4f}, style loss={config["style_weight"] * style_loss.item():12.4f}, tv loss={config["tv_weight"] * tv_loss.item():12.4f}')
save_and_maybe_display(optimizing_img, dump_path, config, cnt, num_of_iterations)
cnt += 1
return total_loss
optimizer.step(closure)
return dump_path
PATH = ''
CONTENT_IMAGE = 'c1.jpg'
STYLE_IMAGE = 's1.jpg'
default_resource_dir = os.path.join(PATH, 'data')
content_images_dir = os.path.join(default_resource_dir, 'content-images')
style_images_dir = os.path.join(default_resource_dir, 'style-images')
output_img_dir = os.path.join(default_resource_dir, 'output-images')
img_format = (4, '.jpg')
optimization_config = {'content_img_name': CONTENT_IMAGE, 'style_img_name': STYLE_IMAGE, 'height': 400, 'content_weight': 100000.0, 'style_weight': 30000.0, 'tv_weight': 1.0}
optimization_config['content_images_dir'] = content_images_dir
optimization_config['style_images_dir'] = style_images_dir
optimization_config['output_img_dir'] = output_img_dir
optimization_config['img_format'] = img_format
results_path = neural_style_transfer(optimization_config)