-
Notifications
You must be signed in to change notification settings - Fork 12
/
assignments.html
310 lines (277 loc) · 13.1 KB
/
assignments.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
<h2>Assignments: in class practice and homework</h2>
For formal requirements go to <a href="logistics.html#assignments">Course logistics</a>.
This course is using GRASS GIS and ArcGIS and dedicated datasets, see
<a href="logistics.html">Course logistics</a> for details.
<h3 id="data_acquisition">1. Explore the provided data set</h3>
<!--
<ul>
<li>Learn how to list data in the provided database, how to find their projection, coordinate system,
spatial extent </li>
<li>Display and query selected raster and vector data in 2D, learn how to list data attributes. </li>
<li>Display elevation data and selected vector data in 3D</li>
</li></ul>
-->
<ul>
<li>Approach:
<a href="grass/data_acquisition.html">GRASS solution</a>,
<a href="arcgis/data_acquisition.html">ArcGIS solution</a>
<!-- <a href="https://youtu.be/xqsnwtlP-2Y">
Getting started with GRASS, screen capture on Mac (36MB)</a>,
<br>Optional: Getting started with GRASS using QGIS (to be added)-->
<li>Homework:
Prepare short paper describing general properties of provided data set
(coordinate system, resolutions, spatial extents, etc.)
<li><a href="faq.html#data_acquisition">Comments/answers to HW questions</a>
</ul>
<h3>2. Geospatial data models and visualization</h3>
<h4 id="data_models">2.A. Geospatial data models</h4>
<!--
<ul>
<li>Resample raster data, evaluate results from different methods
<li>Convert vector (point, line, area) to raster representation
<li>Convert raster to vector representation
</li></ul>
-->
<ul>
<li>Approach:
<a href="grass/data_models.html">GRASS solution</a>,
<a href="arcgis/data_models.html"> ArcGIS solution</a>
<li><a href="faq.html#data_acquisition">Comments/answers to HW questions</a>
</ul>
<h4 id="data_visualization">2.B. Data display and visualization</h4>
<!--
<ul>
<li>Display raster and vector maps with adjusted color tables and symbols,
select suitable color tables for continuous and discrete data, histogram equalized
colors, custom colors for highlighting features </li>
<li>Display labels, grids, scales </li>
<li>Interactively view raster and vector data in 3D space,
adjust lighting to highlight features </li>
<li> Visualize multiple surfaces with cutting planes
<li> Post selected data to Google Maps and Google Earth. </li>
</ul>
-->
<ul>
<li>Approach:
<a href="grass/data_visualization.html">GRASS solution</a>,
<a href="arcgis/data_visualization.html">ArcGIS solution</a>
<li>Screen captures for 3D visualization with 3D view (wxNVIZ) in GRASS GIS 6.4.3RC2 (similar to GRASS GIS 7)
<ul>
<li><a href="https://youtu.be/TRNUJy_ctc0">Visualization in GRASS I: surface</a></li>
<li><a href="https://youtu.be/yaf4Bzv7F-c">Visualization in GRASS II: draping points and lines</a></li>
<li><a href="https://youtu.be/xo_jJHgtbR4">Visualization in GRASS III: cutting planes</a></li>
</ul>
<li>Homework:
Prepare paper on geospatial data models and their conversions
(changing raster resolution, vector data type, raster to vector and vector to raster)
issues, methods, results.
Also describe methods and results for graphical representation
of continuous and discrete geospatial data.
Demonstrate the use of multiple surfaces for visual analysis of
the difference between the bare ground surface and multiple return surface with vegetation.
<li><a href="faq.html#data_visualization">Comments/answers to HW questions</a>
</ul>
<h3>3. Geospatial Analysis</h3>
<h4 id="map_algebra">3.A. Global, zonal and focal operations, map algebra</h4>
<!--
<ul>
<li> compute areas for land use classes</li>
<li> use neighborhood operations to smooth the SRTM data and remove small patches of forest from LU map</li>
<li> compute global and zonal statistics for elevation and land use classes</li>
<li> patch raster maps </li>
<li> analyze differences between NED and SRTM data</li>
<li> derive and apply masks</li>
<li> compute vegetation index</li>
</ul>
-->
<ul>
<li>Approach:
<a href="grass/map_algebra.html">GRASS solution</a>,
<a href="arcgis/map_algebra.html">ArcGIS solution</a>
<li><a href="faq.html#map_algebra">Comments/answers to HW questions</a>
</ul>
<h4 id="buffers_cost">3.B. Buffers, cost surfaces, least cost path</h4>
<!--
<ul>
<li> use buffers around lakes to find developed areas
<li> use buffers along the major roads to find neighborhoods and schools
that may be affected by noise pollution</li>
<li>assume there was an accident at a give site on Hwy 1. Compute cost surface for getting to the site
from any point in the study region using the street map converted to raster. Find which
firestation has the lowest cost to get there and find the shortest path. Find the 2nd and 3rd
closest station and path. Discuss the issue of interchanges.
<li> a child got lost around Lake Wheeler - compute the accessibility map to aid the search</li>
</ul>
-->
<ul>
<li>Approach:
<a href="grass/buffers_cost.html">GRASS solution</a>,
<a href="arcgis/buffers_cost.html">ArcGIS solution</a>
<li>Homework:
Prepare a paper on applications of global and zonal statistics,
neighborhood operations and map algebra for analysis of continuous and discrete geospatial data.
In this paper also explain and demonstrate the use of buffers and cost surfaces
for solving proximity problems. Comment on specific results for the study area and given tasks.
<li><a href="faq.html#buffers_cost">Comments/answers to HW questions</a>
</ul>
<h3>4. Spatial interpolation and approximation</h3>
<h4 id="interpolation_1">4.A. Spatial interpolation and approximation I: methods</h4>
<!--
<ul>
<li>interpolate 2m resolution DEM from random subsample of lidar data using:
(a) voronoi (thiessen) polygons, (b) inverse distance weighted (IDW) average with different parameters,
(c) linear interpolation between contours and on TIN,
(d) natural neighbor interpolation
</li>
<li>design an experiment that will explore impact of IDW interpolation function
parameters on the resulting surface</li>
</ul>
-->
<ul>
<li>Approach:
<a href="grass/interpolation_1.html">GRASS solution</a>,
<a href="arcgis/interpolation_1.html">ArcGIS solution</a>
<li><a href="faq.html#interpolation_1">Comments/answers to HW questions</a>
</ul>
<h4 id="interpolation_2">4.B. Spatial interpolation and approximation II: splines</h4>
<!--
<ul>
<li>interpolate 2m resolution DEM using splines and
demonstrate impact of spline interpolation parameters on the resulting
surface: control level of detail, remove noise, estimate deviations </li>
<li> use crossvaliadtion the compute the predictive error of interpolation
and its spatial distribution</li>
<li>interpolate NC precipitation map without and with influence of topography</li>
<li>explore geostatistics approach to interpolation</li>
<li>interpolate from contours and profiles, use generalization to thin the data
</ul>
-->
<ul>
<li>Approach:
<a href="grass/interpolation_2.html">GRASS solution</a>,
<a href="arcgis/interpolation_2.html">ArcGIS solution</a>
<li>Homework:
Prepare a paper on impact of interpolation method and its parameters on the resulting surface
including the properties of spline interpolation method, its parameters and measures of accuracy.
<li><a href="faq.html#interpolation_2">Comments/answers to HW questions</a>
</ul>
<h3>5. Geomorphometry</h3>
<h4 id="terrain_modeling">5.A. Terrain modeling, working with point clouds</h4>
<!--
<UL>
<LI>analyze bare earth and multiple return lidar data</li>
<LI>create and compare bare earth and terrain surface DEM</li>
<LI>derive contours from DEM</li>
</UL>
-->
<ul>
<li>Approach:
<a href="grass/terrain_modeling.html">GRASS solution</a>,
<a href="arcgis/terrain_modeling.html">ArcGIS solution</a>.
<li>The assignments use standard GIS tools to analyze the point clouds. Updates and links to
specialized lidar data processing tools are provided in GRASS and ArcGIS solution webpages.
<li><a href="faq.html#terrain_modeling">Comments/answers to HW questions</a>
</ul>
<h4 id="terrain_analysis">5.B. Spatial and Temporal Terrain analysis</h4>
<!--
<UL>
<LI>compare slope, aspect and curvatures derived from NED, SRTM, and TIN </li>
<LI>compute slope, aspect and curvatures from lidar point data
using splines with different tension parameters</li>
<LI>derive landforms by combining basic topographic
parameters, discuss impact of neighborhood size</li>
<LI>compute cut and fill volume and change in elevation surface area due to construction</li>
<LI>derive maps characterizing coastal terrain evolution using raster time series analysis</li>
</UL>
-->
<ul>
<li>Approach:
<a href="grass/terrain_analysis.html">GRASS solution</a>,
<a href="arcgis/terrain_analysis.html">ArcGIS solution</a>
<li>Homework:
Prepare a paper on properties of lidar data and on computing topographic parameters from
digital elevation models.
Discuss how the topographic analysis methods and types of DEM influence the result.
Describe results of elevation time series analysis.
<li><a href="faq.html#terrain_analysis">Comments/answers to HW questions</a>
</ul>
<h3 id="viewshed_solar">6. Viewshed, solar potential analysis</h3>
<!--
<UL>
<LI>compute viewshed area from a building on CC and from RBC tower, compare areas,
find visible points of interest, optionally compare the results from SRTM and NED</li>
<LI>compute cast shadows for a given area with a building for 3 different times
on December 22 </li>
<LI>compute summary radiation for summer and winter solstice days in a given area</li>
</UL>
-->
<ul>
<li>Approach:
<a href="grass/viewshed_solar.html">GRASS solution</a>,
<a href="arcgis/viewshed_solar.html">ArcGIS solution</a>
<li>Homework:
Prepare a paper on the results of viewshed computation and solar irradiation mapping.
Note that this is a single assignment paper.
</ul>
<h3>7. Hydrology and modeling geospatial processes</h3>
<h4 id="hydrology">7.A. Flow routing, watershed analysis</h4>
<!--
<UL>
<LI>compute streams and watersheds from NED
D8, SFD with least cost path routing and compare with official stream data</li>
<LI>map DEM depressions and compare them with existing lakes</li>
<LI>compute and compare flow accumulation maps derived by D8, Dinf </li>
<LI>compute DEM with carved stream and show its impact on flow accumulation map </li>
<LI>extract watershed boundaries for a given outlet</li>
<LI>derive flowlines and flow path length using downslope and upslope flowtracing</li>
<LI>compute flooded area from given seed point at given flood level</li>
</UL>
-->
<ul>
<li>Approach:
<a href="grass/hydrology.html">GRASS solution</a>,
<a href="arcgis/hydrology.html">ArcGIS solution</a>
<li><a href="projects.html">Project paper and presentation requirements</a>
</ul>
<h4 id="hydrology_erosion">7.B. Modeling Geospatial Processes: Hydrologic and erosion modeling</h4>
<!--
<P><i>see <a href="../GIS_anal_schedule/index.html"><b>Schedule</b></a>
to find out whether this assignment is optional or mandatory for your course section</i></P>
<UL>
<LI>compute wetness index
<LI>compute and compare erosion topographic factor based on hillslope length and on contributing area </LI>
<LI>derive soil erodibility and land cover maps for different land use alternatives</LI>
<LI>compute erosion, sediment transport and deposition for different land use alternatives</LI>
</UL>
-->
<ul>
<li><a href="resources/erosion_notes.pdf">Brief theoretical background</a>
(equations used to write map algebra expressions)
<li>Approach:
<a href="grass/hydrology_erosion.html">GRASS solution</a>,
<a href="arcgis/hydrology_erosion.html">ArcGIS solution</a>
<li>Optional: process based hydrologic modeling using path sampling method: SIMWE
<li><a href="grass/simwe.html">GRASS solution: SIMWE</a>
<!--
<a href="erosion_notes.pdf">Equations and units for erosion modeling [pdf]</a>
<br><a href="GIS_Anal_Amidtermnotes.ppt">Midterm notes</a>
<br> <a href="GIS_Anal_Ahydroerosion2009c.ppt">Notes (GRASS64, hints) [ppt]</a>-->
<li>Homework:
Prepare a paper where you compare different methods for flowrouting and watershed analysis,
explain and discuss impact of model parameters and land use scenarios on
spatial pattern and magnitude of erosion as simulated by simple GIS-based models.
</ul>
<!--
<hr size="3" NOSHADE>
<P>
<b>Various project related material - NEEDS UPDATE to GRASS6.4.2</b>
<br>
<a href="../GIS_anal_grass/GIS_Anal_grcstransform.html">Reproject data, start a new project </a>
<br>
<a href="../GIS_anal_grass/GIS_Anal_grworkflows.html"> Automate GRASS workflows, process large point clouds </a>
<br>
<a href="../GIS_anal_grass/WorkflowGRASS_09.sh"> Script to run the flowrouting homework on MSWindows
including d.* commands (needs update)</a>
<br> <a href="CLIforWinGRASS.ppt"> Get command line working on MS Windows [ppt]</a>
<br>
-->