forked from mfejzer/tracking_buggy_files
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_utils.py
executable file
·50 lines (35 loc) · 1.28 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Usage: %(scriptName) <feature_files_prefix>
Loads data from each fold for training and testing
Requires results of save_normalized_fold_dataframes.py
"""
from __future__ import print_function
import json
import pandas as pd
import sys
import sys
def eprint(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
def main():
file_prefix = sys.argv[1]
load_data_folds(file_prefix)
def load_fold_number(file_prefix):
with open(file_prefix + '_fold_info', 'r') as f:
fold_info = json.load(f)
fold_number = fold_info['fold_number']
eprint('fold number', fold_number)
return fold_number
def load_data_folds(file_prefix):
fold_number = load_fold_number(file_prefix)
fold_training = {}
fold_testing = {}
for k in range(fold_number + 1):
fold_training[k] = pd.read_pickle(file_prefix + '_normalized_training_fold_' + str(k))
fold_testing[k] = pd.read_pickle(file_prefix + '_normalized_testing_fold_' + str(k))
eprint('fold_training', str(k), 'shape', fold_training[k].shape)
eprint('fold_testing', str(k), 'shape', fold_testing[k].shape)
eprint("data loaded")
return fold_number, fold_testing, fold_training
if __name__ == '__main__':
main()