forked from isi-nlp/LSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerateHiddenVectors.cpp
132 lines (101 loc) · 4.86 KB
/
generateHiddenVectors.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include <tclap/CmdLine.h>
#include <boost/algorithm/string/join.hpp>
#include <boost/lexical_cast.hpp>
#include <fstream>
#include "model.h"
#include "propagator.h"
#include "neuralClasses.h"
#include "param.h"
#include "util.h"
using namespace std;
using namespace boost;
using namespace TCLAP;
using namespace Eigen;
using namespace nplm;
int main (int argc, char *argv[])
{
param myParam;
try {
// program options //
CmdLine cmd("Tests a two-layer neural probabilistic language model.", ' ' , "0.1");
ValueArg<int> num_threads("", "num_threads", "Number of threads. Default: maximum.", false, 0, "int", cmd);
ValueArg<int> minibatch_size("", "minibatch_size", "Minibatch size. Default: 64.", false, 64, "int", cmd);
ValueArg<string> arg_test_file("", "test_file", "Test file (one numberized example per line).", true, "", "string", cmd);
ValueArg<string> arg_model_file("", "model_file", "Model file.", true, "", "string", cmd);
cmd.parse(argc, argv);
myParam.model_file = arg_model_file.getValue();
myParam.test_file = arg_test_file.getValue();
myParam.num_threads = num_threads.getValue();
myParam.minibatch_size = minibatch_size.getValue();
cerr << "Command line: " << endl;
cerr << boost::algorithm::join(vector<string>(argv, argv+argc), " ") << endl;
const string sep(" Value: ");
cerr << arg_model_file.getDescription() << sep << arg_model_file.getValue() << endl;
cerr << arg_test_file.getDescription() << sep << arg_test_file.getValue() << endl;
cerr << num_threads.getDescription() << sep << num_threads.getValue() << endl;
}
catch (TCLAP::ArgException &e)
{
cerr << "error: " << e.error() << " for arg " << e.argId() << endl;
exit(1);
}
myParam.num_threads = setup_threads(myParam.num_threads);
///// Create network and propagator
model nn;
nn.read(myParam.model_file);
myParam.ngram_size = nn.ngram_size;
propagator prop(nn, myParam.minibatch_size);
///// Set param values according to what was read in from model file
myParam.ngram_size = nn.ngram_size;
myParam.input_vocab_size = nn.input_vocab_size;
myParam.output_vocab_size = nn.output_vocab_size;
myParam.num_hidden = nn.num_hidden;
myParam.input_embedding_dimension = nn.input_embedding_dimension;
myParam.output_embedding_dimension = nn.output_embedding_dimension;
///// Read test data
vector<int> test_data_flat;
readDataFile(myParam.test_file, myParam.ngram_size, test_data_flat);
int test_data_size = test_data_flat.size() / myParam.ngram_size;
cerr << "Number of test instances: " << test_data_size << endl;
Map< Matrix<int,Dynamic,Dynamic> > test_data(test_data_flat.data(), myParam.ngram_size, test_data_size);
///// Score test data
int num_batches = (test_data_size-1)/myParam.minibatch_size + 1;
cerr<<"Number of test minibatches: "<<num_batches<<endl;
double log_likelihood = 0.0;
Matrix<double,Dynamic,Dynamic> scores(nn.output_vocab_size, myParam.minibatch_size);
Matrix<double,Dynamic,Dynamic> output_probs(nn.output_vocab_size, myParam.minibatch_size);
for (int batch = 0; batch < num_batches; batch++)
{
int minibatch_start_index = myParam.minibatch_size * batch;
int current_minibatch_size = min(myParam.minibatch_size,
test_data_size - minibatch_start_index);
Matrix<int,Dynamic,Dynamic> minibatch = test_data.middleCols(minibatch_start_index, current_minibatch_size);
prop.fProp(minibatch.topRows(myParam.ngram_size-1));
//NOW TO PRINT OUT THE HIDDEN STATE
for (size_t i =0;i<current_minibatch_size;i++){
cerr<<"Hidden state is ";
for (size_t j=0;j<myParam.output_embedding_dimension-1;j++){
cerr<<prop.second_hidden_activation_node.fProp_matrix(j,i)<<" ";
}
cerr<<prop.second_hidden_activation_node.fProp_matrix(myParam.output_embedding_dimension,i)<<endl;
}
// Do full forward prop through output word embedding layer
prop.output_layer_node.param->fProp(prop.second_hidden_activation_node.fProp_matrix, scores);
//I NEED TO PRINT OUT THE SCORES OF THE OUTPUT WORD. FPROP MATRIX HAS SIZE
//VOCAB_SIZE*MINIBATCH_SIZE
for (size_t i =0;i<current_minibatch_size;i++){
size_t word = minibatch(myParam.ngram_size-1,i);
cerr<<"Output word is "<<word<<" and score for the word is "<<scores(word,i)<<endl;
}
// And softmax and loss
double minibatch_log_likelihood;
SoftmaxLogLoss().fProp(scores.leftCols(current_minibatch_size),
minibatch.row(myParam.ngram_size-1),
output_probs,
minibatch_log_likelihood);
log_likelihood += minibatch_log_likelihood;
/*for (int i=0; i<current_minibatch_size; i++)
cerr << minibatch.block(0,i,myParam.ngram_size,1) << " " << output_probs(minibatch(myParam.ngram_size-1,i),i) << endl;*/
}
cerr << "Test log-likelihood: " << log_likelihood << endl;
}