forked from isi-nlp/LSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraphClasses.h
470 lines (420 loc) · 21.2 KB
/
graphClasses.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
//creating the structure of the nn in a graph that will help in performing backpropagation and forward propagation
#pragma once
#include <cstdlib>
#include "neuralClasses.h"
#include <Eigen/Dense>
namespace nplm
{
template <class X>
class Node {
public:
X * param; //what parameter is this
//vector <void *> children;
//vector <void *> parents;
Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic> fProp_matrix;
Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic> bProp_matrix;
int minibatch_size;
public:
Node() : param(NULL), minibatch_size(0) { }
Node(X *input_param, int minibatch_size)
: param(input_param),
minibatch_size(minibatch_size)
{
resize(minibatch_size);
}
void resize(int minibatch_size)
{
this->minibatch_size = minibatch_size;
if (param->n_outputs() != -1)
{
fProp_matrix.setZero(param->n_outputs(), minibatch_size);
}
if (param->n_inputs() != -1)
{
bProp_matrix.setZero(param->n_inputs(), minibatch_size);
}
}
void resize() { resize(minibatch_size); }
/*
void Fprop(Matrix<double,Dynamic,Dynamic> & input,int n_cols)
{
param->fProp(input,fProp_matrix,0,0,n_cols);
}
void Fprop(Matrix<double,1,Dynamic> & input,int n_cols)
{
param->fProp(input,fProp_matrix,0,0,n_cols);
}
*/
//for f prop, just call the fProp node of the particular parameter.
};
class LSTM_node {
int minibatch_size;
public:
//Each LSTM node has a bunch of nodes and temporary data structures
Node<Input_word_embeddings> input_layer_node;
Node<Linear_layer> W_x_to_i_node, W_x_to_f_node, W_x_to_c_node, W_x_to_o_node;
Node<Linear_layer> W_h_to_i_node, W_h_to_f_node, W_h_to_c_node, W_h_to_o_node;
Node<Linear_diagonal_layer> W_c_to_i_node, W_c_to_f_node, W_c_to_o_node;
Node<Hidden_layer> i_t_node,f_t_node,o_t_node,tanh_c_prime_t_node;
Node<Activation_function> tanh_c_t_node;
Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic> h_t,c_t;
Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic> d_Err_t_to_n_d_h_t,
d_Err_t_to_n_d_c_t,
d_Err_t_to_n_d_o_t,
d_Err_t_to_n_d_f_t,
d_Err_t_to_n_d_i_t,
d_Err_t_to_n_d_tanh_c_t,
d_Err_t_to_n_d_tanh_c_prime_t,
d_Err_t_to_n_d_x_t,
i_t_input_matrix,
f_t_input_matrix,
o_t_input_matrix,
tanh_c_prime_t_input_matrix,
tanh_c_t_input_matrix;
Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic> d_Err_t_to_n_d_h_tMinusOne,
d_Err_t_to_n_d_c_tMinusOne;
LSTM_node():
W_x_to_i_node(),
W_x_to_f_node(),
W_x_to_c_node(),
W_x_to_o_node(),
W_h_to_i_node(),
W_h_to_f_node(),
W_h_to_c_node(),
W_h_to_o_node(),
W_c_to_i_node(),
W_c_to_f_node(),
W_c_to_o_node(),
i_t_node(),
f_t_node(),
o_t_node(),
tanh_c_prime_t_node(),
tanh_c_t_node(),
input_layer_node() {}
LSTM_node(model &lstm, int minibatch_size):
W_x_to_i_node(&lstm.W_x_to_i, minibatch_size),
W_x_to_f_node(&lstm.W_x_to_f, minibatch_size),
W_x_to_c_node(&lstm.W_x_to_c, minibatch_size),
W_x_to_o_node(&lstm.W_x_to_o, minibatch_size),
W_h_to_i_node(&lstm.W_h_to_i, minibatch_size),
W_h_to_f_node(&lstm.W_h_to_f, minibatch_size),
W_h_to_c_node(&lstm.W_h_to_c, minibatch_size),
W_h_to_o_node(&lstm.W_h_to_o, minibatch_size),
W_c_to_i_node(&lstm.W_c_to_i, minibatch_size),
W_c_to_f_node(&lstm.W_c_to_f, minibatch_size),
W_c_to_o_node(&lstm.W_c_to_o, minibatch_size),
i_t_node(&lstm.i_t,minibatch_size),
f_t_node(&lstm.f_t,minibatch_size),
o_t_node(&lstm.o_t,minibatch_size),
tanh_c_prime_t_node(&lstm.tanh_c_prime_t,minibatch_size),
tanh_c_t_node(&lstm.tanh_c_t,minibatch_size),
input_layer_node(&lstm.input_layer,minibatch_size)
{
this->minibatch_size = minibatch_size;
}
//Resizing all the parameters
void resize(int minibatch_size){
this->minibatch_size = minibatch_size;
W_x_to_i_node.resize(minibatch_size);
W_x_to_f_node.resize(minibatch_size);
W_x_to_c_node.resize(minibatch_size);
W_x_to_o_node.resize(minibatch_size);
W_h_to_i_node.resize(minibatch_size);
W_h_to_f_node.resize(minibatch_size);
W_h_to_c_node.resize(minibatch_size);
W_h_to_o_node.resize(minibatch_size);
W_c_to_i_node.resize(minibatch_size);
W_c_to_f_node.resize(minibatch_size);
W_c_to_o_node.resize(minibatch_size);
i_t_node.resize(minibatch_size);
f_t_node.resize(minibatch_size);
o_t_node.resize(minibatch_size);
tanh_c_prime_t_node.resize(minibatch_size);
input_layer_node.resize(minibatch_size);
//Resizing all the local node matrices
h_t.resize(W_h_to_i_node.param->n_inputs(),minibatch_size);
c_t.resize(W_c_to_i_node.param->n_inputs(),minibatch_size);
d_Err_t_to_n_d_h_t.resize(W_h_to_i_node.param->n_outputs(),minibatch_size);
d_Err_t_to_n_d_c_t.resize(W_c_to_i_node.param->n_outputs(),minibatch_size);
d_Err_t_to_n_d_o_t.resize(o_t_node.param->n_outputs(),minibatch_size);
d_Err_t_to_n_d_f_t.resize(f_t_node.param->n_outputs(),minibatch_size);
d_Err_t_to_n_d_i_t.resize(i_t_node.param->n_outputs(),minibatch_size);
d_Err_t_to_n_d_tanh_c_t.resize(tanh_c_t_node.param->n_outputs(),minibatch_size);
d_Err_t_to_n_d_tanh_c_prime_t.resize(tanh_c_prime_t_node.param->n_outputs(),minibatch_size);
d_Err_t_to_n_d_x_t.resize(input_layer_node.param->n_outputs(),minibatch_size);
d_Err_t_to_n_d_h_tMinusOne.resize(W_h_to_i_node.param->n_outputs(),minibatch_size);
d_Err_t_to_n_d_c_tMinusOne.resize(W_c_to_i_node.param->n_outputs(),minibatch_size);
i_t_input_matrix.resize(i_t_node.param->n_inputs(),minibatch_size);
f_t_input_matrix.resize(f_t_node.param->n_inputs(),minibatch_size);
o_t_input_matrix.resize(o_t_node.param->n_inputs(),minibatch_size);
tanh_c_prime_t_input_matrix.resize(tanh_c_prime_t_node.param->n_inputs(),minibatch_size);
}
template<typename Derived, typename DerivedCIn, typename DerivedHIn>
void fProp(const MatrixBase<Derived> &data,
const MatrixBase<DerivedCIn> &c_t_minus_one,
// MatrixBase<DerivedOut> const_c_t,
const MatrixBase<DerivedHIn> &h_t_minus_one) {
//const MatrixBase<DerivedOut> const_h_t){
//UNCONST(DerivedOut,const_c_t,c_t);
//UNCONST(DerivedOut,const_h_t,h_t);
//cerr<<"c t -1 is "<<c_t_minus_one<<endl;
//cerr<<"h t -1 is "<<h_t_minus_one<<endl;
//getchar();
//start_timer(0);
//cerr<<"data is "<<data<<endl;
input_layer_node.param->fProp(data, input_layer_node.fProp_matrix);
//current_minibatch_size = data.cols();
//stop_timer(0);
//std::cerr<<"input layer fprop matrix is "<<input_layer_node.fProp_matrix<<endl;
//first_hidden_linear_node.param->fProp(sparse_data,
// first_hidden_linear_node.fProp_matrix);
//How much to scale the input
W_x_to_i_node.param->fProp(input_layer_node.fProp_matrix,W_x_to_i_node.fProp_matrix);
//std::cerr<<"x to i fprop"<<W_x_to_i_node.fProp_matrix<<std::endl;
W_h_to_i_node.param->fProp(h_t_minus_one,W_h_to_i_node.fProp_matrix);
W_c_to_i_node.param->fProp(c_t_minus_one,W_c_to_i_node.fProp_matrix);
//std::cerr<<"c to i fprop"<<W_c_to_i_node.fProp_matrix<<std::endl;
i_t_input_matrix = W_x_to_i_node.fProp_matrix + W_h_to_i_node.fProp_matrix + W_c_to_i_node.fProp_matrix;
//cerr<<"i t input matrix"<<i_t_input_matrix<<endl;
i_t_node.param->fProp(i_t_input_matrix,
i_t_node.fProp_matrix);
//std::cerr<<"i_t node fProp value is "<<i_t_node.fProp_matrix<<std::endl;
//How much to forget
W_x_to_f_node.param->fProp(input_layer_node.fProp_matrix,W_x_to_f_node.fProp_matrix);
W_h_to_f_node.param->fProp(h_t_minus_one,W_h_to_f_node.fProp_matrix);
//std::cerr<<"W_h_to_f_node fprop is "<<W_h_to_f_node.fProp_matrix<<std::endl;
W_c_to_f_node.param->fProp(c_t_minus_one,W_c_to_f_node.fProp_matrix);
//std::cerr<<"W_c_to_f_node fprop is "<<W_c_to_f_node.fProp_matrix<<std::endl;
f_t_input_matrix = W_x_to_f_node.fProp_matrix + W_h_to_f_node.fProp_matrix + W_c_to_f_node.fProp_matrix;
//std::cerr<<" f t node input matrix is "<<f_t_input_matrix<<std::endl;
f_t_node.param->fProp(f_t_input_matrix,
f_t_node.fProp_matrix);
//std::cerr<<"f_t node fProp value is "<<f_t_node.fProp_matrix<<std::endl;
//computing c_prime_t
W_x_to_c_node.param->fProp(input_layer_node.fProp_matrix,W_x_to_c_node.fProp_matrix);
W_h_to_c_node.param->fProp(h_t_minus_one,W_h_to_c_node.fProp_matrix);
tanh_c_prime_t_input_matrix = W_x_to_c_node.fProp_matrix + W_h_to_c_node.fProp_matrix;
tanh_c_prime_t_node.param->fProp(tanh_c_prime_t_input_matrix,
tanh_c_prime_t_node.fProp_matrix);
//std::cerr<<"tanh_c_prime_t_node "<<tanh_c_prime_t_node.fProp_matrix<<std::endl;
//Computing the current cell value
//cerr<<"c_t_minus_one"<<c_t_minus_one<<endl;
//cerr<<c_t_minus_one.rows()<<" "<<c_t_minus_one.cols()<<endl;
c_t.array() = f_t_node.fProp_matrix.array()*c_t_minus_one.array() +
i_t_node.fProp_matrix.array()*tanh_c_prime_t_node.fProp_matrix.array();
//cerr<<"c_t "<<c_t<<endl;
//How much to scale the output
W_x_to_o_node.param->fProp(input_layer_node.fProp_matrix, W_x_to_o_node.fProp_matrix);
W_h_to_o_node.param->fProp(h_t_minus_one,W_h_to_o_node.fProp_matrix);
W_c_to_o_node.param->fProp(c_t,W_c_to_o_node.fProp_matrix);
o_t_input_matrix = W_x_to_o_node.fProp_matrix +
W_h_to_o_node.fProp_matrix +
W_c_to_o_node.fProp_matrix;
//std::cerr<<"o t input matrix is "<<o_t_input_matrix<<std::endl;
o_t_node.param->fProp(o_t_input_matrix,
o_t_node.fProp_matrix);
//std::cerr<<"o_t "<<o_t_node.fProp_matrix<<std::endl;
//computing the hidden layer
tanh_c_t_node.param->fProp(c_t,tanh_c_t_node.fProp_matrix);
//<<"tanh_c_t_node.fProp_matrix is "<<tanh_c_t_node.fProp_matrix<<endl;
h_t.array() = o_t_node.fProp_matrix.array()*tanh_c_t_node.fProp_matrix.array();
//std::cerr<<"h_t "<<h_t<<endl;
//getchar();
}
template<typename DerivedData, typename DerivedHIn, typename DerivedCIn, typename DerivedIn, typename DerivedDCIn, typename DerivedDHIn>
void bProp(const MatrixBase<DerivedData> &data,
//const MatrixBase<DerivedIn> c_t,
const MatrixBase<DerivedHIn> &h_t_minus_one,
const MatrixBase<DerivedCIn> &c_t_minus_one,
const MatrixBase<DerivedIn> &d_Err_t_d_h_t,
const MatrixBase<DerivedDCIn> &d_Err_tPlusOne_to_n_d_c_t,
const MatrixBase<DerivedDHIn> &d_Err_tPlusOne_to_n_d_h_t,
bool gradient_check,
bool norm_clipping) {
Matrix<double,Dynamic,Dynamic> dummy_matrix;
int current_minibatch_size = data.cols();
//cerr<<"h_t_minus_one "<<h_t_minus_one<<endl;
//cerr<<"c_t_minus_one "<<c_t_minus_one<<endl;
//cerr<<"d_Err_tPlusOne_to_n_d_c_t "<<d_Err_tPlusOne_to_n_d_c_t<<endl;
//cerr<<"d_Err_tPlusOne_to_n_d_h_t "<<d_Err_tPlusOne_to_n_d_h_t<<endl;
//cerr<<"c t -1 is "<<c_t_minus_one<<endl;
//UNCONST(DerivedDOut,const_d_Err_t_to_n_d_c_tMinusOne,d_Err_t_to_n_d_c_tMinusOne);
//UNCONST(DerivedDOut,const_d_Err_t_to_n_d_h_tMinusOne,d_Err_t_to_n_d_h_tMinusOne);
//NOTE: d_Err_t_to_n_d_h_t is read as derivative of Error function from time t to n wrt h_t.
//Similarly, d_Err_t_to_n_d_h_t is read as derivative of Error function from time t to n wrt c_t.
//This is a slight abuse of notation. In our case, since we're maximizing log likelihood, we're taking derivatives of the negative of the
//error function, which is the cross entropy.
//Error derivatives for h_t
//cerr<<"d_Err_t_d_h_t "<<d_Err_t_d_h_t<<endl;
//cerr<<"d_Err_tPlusOne_to_n_d_h_t "<<d_Err_tPlusOne_to_n_d_h_t<<endl;
d_Err_t_to_n_d_h_t = d_Err_t_d_h_t + d_Err_tPlusOne_to_n_d_h_t;
//cerr<<"d_Err_t_to_n_d_h_t is "<<d_Err_t_to_n_d_h_t<<endl;
//cerr<<"tanh_c_t_node.fProp_matrix is "<<tanh_c_t_node.fProp_matrix<<endl;
//Error derivativs for o_t
d_Err_t_to_n_d_o_t.array() = d_Err_t_to_n_d_h_t.array()*tanh_c_t_node.fProp_matrix.array();
//cerr<<"d_Err_t_to_n_d_o_t "<<d_Err_t_to_n_d_o_t<<endl;
//cerr<<"O t node fProp matrix is "<<o_t_node.fProp_matrix<<endl;
o_t_node.param->bProp(d_Err_t_to_n_d_o_t,
o_t_node.bProp_matrix,
dummy_matrix,
o_t_node.fProp_matrix);// the third field does not matter. Its a dummy matrix
/*
first_hidden_activation_node.param->bProp(second_hidden_linear_node.bProp_matrix,
first_hidden_activation_node.bProp_matrix,
first_hidden_linear_node.fProp_matrix,
first_hidden_activation_node.fProp_matrix);
*/
//cerr<<"o t node backprop matrix is "<<o_t_node.bProp_matrix<<endl;
//Error derivatives for tanh_c_t
//d_Err_t_to_n_d_tanh_c_t.array() = d_Err_t_d_h_t.array() * o_t_node.fProp_matrix.array();// THIS WAS THE WRONG GRADIENT!!
d_Err_t_to_n_d_tanh_c_t.array() = d_Err_t_to_n_d_h_t.array() * o_t_node.fProp_matrix.array();
//cerr<<"d_Err_t_to_n_d_tanh_c_t "<<d_Err_t_to_n_d_tanh_c_t<<endl;
tanh_c_t_node.param->bProp(d_Err_t_to_n_d_tanh_c_t,
tanh_c_t_node.bProp_matrix,
dummy_matrix,
tanh_c_t_node.fProp_matrix);
//cerr<<"tanh_c_t_node.bProp_matrix "<<tanh_c_t_node.bProp_matrix<<endl;
//Error derivatives for c_t
//cerr<<"o_t_node.bProp_matrix"<<o_t_node.bProp_matrix<<endl;
W_c_to_o_node.param->bProp(o_t_node.bProp_matrix,
W_c_to_o_node.bProp_matrix);
//cerr<<"W_c_to_o_node.bProp_matrix "<<W_c_to_o_node.bProp_matrix<<endl;
d_Err_t_to_n_d_c_t = tanh_c_t_node.bProp_matrix + W_c_to_o_node.bProp_matrix + d_Err_tPlusOne_to_n_d_c_t;
//cerr<<"d_Err_t_to_n_d_c_t "<<d_Err_t_to_n_d_c_t<<endl;
//Error derivatives for f_t
d_Err_t_to_n_d_f_t.array() = d_Err_t_to_n_d_c_t.array()*c_t_minus_one.array();
//cerr<<"d_Err_t_to_n_d_f_t "<<d_Err_t_to_n_d_f_t<<endl;
f_t_node.param->bProp(d_Err_t_to_n_d_f_t,
f_t_node.bProp_matrix,
dummy_matrix,
f_t_node.fProp_matrix);
//cerr<<"f_t_node.bProp_matrix "<<f_t_node.bProp_matrix<<endl;
//Error derivatives for i_t
d_Err_t_to_n_d_i_t.array() = d_Err_t_to_n_d_c_t.array()*tanh_c_prime_t_node.fProp_matrix.array();
//cerr<<"d_Err_t_to_n_d_i_t "<<d_Err_t_to_n_d_i_t<<endl;
i_t_node.param->bProp(d_Err_t_to_n_d_i_t,
i_t_node.bProp_matrix,
dummy_matrix,
i_t_node.fProp_matrix);
//cerr<<" i_t_node.bProp_matrix "<<i_t_node.bProp_matrix<<endl;
//Error derivatives for c_prime_t
d_Err_t_to_n_d_tanh_c_prime_t.array() = d_Err_t_to_n_d_c_t.array()*i_t_node.fProp_matrix.array();
//cerr<<" d_Err_t_to_n_d_tanh_c_prime_t "<<d_Err_t_to_n_d_tanh_c_prime_t<<endl;
//tanh_c_prime_t_node.param->bProp(d_Err_t_to_n_d_tanh_c_prime_t,
// tanh_c_prime_t_node.bProp_matrix);
tanh_c_prime_t_node.param->bProp(d_Err_t_to_n_d_tanh_c_prime_t,
tanh_c_prime_t_node.bProp_matrix,
dummy_matrix,
tanh_c_prime_t_node.fProp_matrix);
//cerr<<"tanh_c_prime_t_node.bProp_matrix "<<tanh_c_prime_t_node.bProp_matrix<<endl;
//Error derivatives for h_t_minus_one
W_h_to_o_node.param->bProp(o_t_node.bProp_matrix,
W_h_to_o_node.bProp_matrix);
W_h_to_f_node.param->bProp(f_t_node.bProp_matrix,
W_h_to_f_node.bProp_matrix);
W_h_to_i_node.param->bProp(i_t_node.bProp_matrix,
W_h_to_i_node.bProp_matrix);
//cerr<<"tanh_c_prime_t_node.bProp_matrix "<<tanh_c_prime_t_node.bProp_matrix<<endl;
W_h_to_c_node.param->bProp(tanh_c_prime_t_node.bProp_matrix,
W_h_to_c_node.bProp_matrix);
d_Err_t_to_n_d_h_tMinusOne = W_h_to_o_node.bProp_matrix +
W_h_to_f_node.bProp_matrix +
W_h_to_i_node.bProp_matrix +
W_h_to_c_node.bProp_matrix;
//cerr<<"d_Err_t_to_n_d_h_tMinusOne "<<d_Err_t_to_n_d_h_tMinusOne<<endl;
//Error derivatives for c_t_minus_one
W_c_to_f_node.param->bProp(f_t_node.bProp_matrix,
W_c_to_f_node.bProp_matrix);
W_c_to_i_node.param->bProp(i_t_node.bProp_matrix,
W_c_to_i_node.bProp_matrix);
d_Err_t_to_n_d_c_tMinusOne = (d_Err_t_to_n_d_c_t.array()*f_t_node.fProp_matrix.array()).matrix()+
W_c_to_f_node.bProp_matrix +
W_c_to_i_node.bProp_matrix;
//cerr<<"d_Err_t_to_n_d_c_tMinusOne "<<d_Err_t_to_n_d_c_tMinusOne<<endl;
//Error derivatives for the input word embeddings
W_x_to_c_node.param->bProp(tanh_c_prime_t_node.bProp_matrix,
W_x_to_c_node.bProp_matrix);
W_x_to_o_node.param->bProp(o_t_node.bProp_matrix,
W_x_to_o_node.bProp_matrix);
W_x_to_f_node.param->bProp(f_t_node.bProp_matrix,
W_x_to_f_node.bProp_matrix);
W_x_to_i_node.param->bProp(i_t_node.bProp_matrix,
W_x_to_i_node.bProp_matrix);
d_Err_t_to_n_d_x_t = W_x_to_c_node.bProp_matrix +
W_x_to_o_node.bProp_matrix +
W_x_to_f_node.bProp_matrix +
W_x_to_i_node.bProp_matrix;
//For stability, the gradient of the inputs of the loss to the LSTM is clipped, that is before applying the tanh and sigmoid
//nonlinearities. This is done if there is no norm clipping
if (!gradient_check && !norm_clipping){
o_t_node.bProp_matrix.leftCols(current_minibatch_size).array() =
o_t_node.bProp_matrix.leftCols(current_minibatch_size).array().unaryExpr(gradClipper());
f_t_node.bProp_matrix.leftCols(current_minibatch_size).array() =
f_t_node.bProp_matrix.leftCols(current_minibatch_size).array().unaryExpr(gradClipper());
i_t_node.bProp_matrix.leftCols(current_minibatch_size).array() =
i_t_node.bProp_matrix.leftCols(current_minibatch_size).array().unaryExpr(gradClipper());
tanh_c_prime_t_node.bProp_matrix.leftCols(current_minibatch_size).array() =
tanh_c_prime_t_node.bProp_matrix.leftCols(current_minibatch_size).array().unaryExpr(gradClipper());
//d_Err_t_to_n_d_x_t.leftCols(current_minibatch_size).array() =
// d_Err_t_to_n_d_x_t.leftCols(current_minibatch_size).array().unaryExpr(gradClipper());
}
//cerr<<"d_Err_t_to_n_d_x_t "<<d_Err_t_to_n_d_x_t<<endl;
//Computing gradients of the paramters
//Derivative of weights out of h_t
//cerr<<"W_h_to_o_node"<<endl;
W_h_to_o_node.param->updateGradient(o_t_node.bProp_matrix.leftCols(current_minibatch_size),
h_t_minus_one.leftCols(current_minibatch_size));
//cerr<<"W_h_to_f_node"<<endl;
W_h_to_f_node.param->updateGradient(f_t_node.bProp_matrix.leftCols(current_minibatch_size),
h_t_minus_one.leftCols(current_minibatch_size));
//cerr<<"W_h_to_i_node"<<endl;
W_h_to_i_node.param->updateGradient(i_t_node.bProp_matrix.leftCols(current_minibatch_size),
h_t_minus_one.leftCols(current_minibatch_size));
//cerr<<"W_h_to_c_node"<<endl;
W_h_to_c_node.param->updateGradient(tanh_c_prime_t_node.bProp_matrix.leftCols(current_minibatch_size),
h_t_minus_one.leftCols(current_minibatch_size));
//Derivative of weights out of c_t and c_t_minus_one
W_c_to_o_node.param->updateGradient(o_t_node.bProp_matrix.leftCols(current_minibatch_size),
this->c_t.leftCols(current_minibatch_size));
W_c_to_i_node.param->updateGradient(i_t_node.bProp_matrix.leftCols(current_minibatch_size),
c_t_minus_one.leftCols(current_minibatch_size));
W_c_to_f_node.param->updateGradient(f_t_node.bProp_matrix.leftCols(current_minibatch_size),
c_t_minus_one.leftCols(current_minibatch_size));
//Derivatives of weights out of x_t
//cerr<<"input_layer_node.fProp_matrix is "<<input_layer_node.fProp_matrix<<endl;
//cerr<<"W_x_to_o_node"<<endl;
W_x_to_o_node.param->updateGradient(o_t_node.bProp_matrix.leftCols(current_minibatch_size),
input_layer_node.fProp_matrix.leftCols(current_minibatch_size));
//cerr<<"W_x_to_i_node"<<endl;
W_x_to_i_node.param->updateGradient(i_t_node.bProp_matrix.leftCols(current_minibatch_size),
input_layer_node.fProp_matrix.leftCols(current_minibatch_size));
//cerr<<"W_x_to_f_node"<<endl;
W_x_to_f_node.param->updateGradient(f_t_node.bProp_matrix.leftCols(current_minibatch_size),
input_layer_node.fProp_matrix.leftCols(current_minibatch_size));
//cerr<<"W_x_to_c_node"<<endl;
W_x_to_c_node.param->updateGradient(tanh_c_prime_t_node.bProp_matrix.leftCols(current_minibatch_size),
input_layer_node.fProp_matrix.leftCols(current_minibatch_size));
/*
//Derivatives of the input embeddings. I THINK THIS IS WRONG!
input_layer_node.param->updateGradient(o_t_node.bProp_matrix +
f_t_node.bProp_matrix +
i_t_node.bProp_matrix +
tanh_c_prime_t_node.bProp_matrix,
data);
*/
// Updating the gradient of the hidden layer biases
o_t_node.param->updateGradient(o_t_node.bProp_matrix.leftCols(current_minibatch_size));
f_t_node.param->updateGradient(f_t_node.bProp_matrix.leftCols(current_minibatch_size));
i_t_node.param->updateGradient(i_t_node.bProp_matrix.leftCols(current_minibatch_size));
tanh_c_prime_t_node.param->updateGradient(tanh_c_prime_t_node.bProp_matrix.leftCols(current_minibatch_size));
//updating gradient of input word embeddings input embeddings
input_layer_node.param->updateGradient(d_Err_t_to_n_d_x_t.leftCols(current_minibatch_size),
data);
}
//For stability, the gradient of the inputs of the loss to the LSTM is clipped, that is before applying the tanh and sigmoid
//nonlinearities
void clipGradient(){}
void resetGradient(){
}
};
} // namespace nplm