forked from isi-nlp/LSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultinomial.h
136 lines (117 loc) · 3.13 KB
/
multinomial.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#ifndef MULTINOMIAL_H
#define MULTINOMIAL_H
#include <vector>
#include <set>
#include <cassert>
#include <cmath>
#include <boost/random/uniform_int_distribution.hpp>
#include <boost/random/uniform_real_distribution.hpp>
namespace nplm
{
template <typename Count>
class multinomial {
std::vector<int> J;
std::vector<double> q;
boost::random::uniform_int_distribution<Count> unif_int;
boost::random::uniform_real_distribution<> unif_real;
std::vector<double> m_prob, m_logprob;
public:
multinomial() : unif_real(0.0, 1.0) { }
multinomial(const std::vector<Count> &counts) : unif_real(0.0, 1.0) { estimate(counts); }
void estimate(const std::vector<Count>& counts)
{
int k = counts.size();
Count n = 0;
m_prob.clear();
m_prob.resize(k, 0.0);
m_logprob.clear();
m_logprob.resize(k, 0.0);
for (int i=0; i<k; i++)
n += counts[i];
for (int i=0; i<k; i++)
{
m_prob[i] = static_cast<double>(counts[i]) / n;
m_logprob[i] = std::log(m_prob[i]);
}
setup(m_prob);
}
double prob(int i) const { return m_prob[i]; }
double logprob(int i) const { return m_logprob[i]; }
template <typename Engine>
int sample(Engine &eng) const
{
int m = unif_int(eng);
double p = unif_real(eng);
int s;
if (q[m] > p)
s = m;
else
s = J[m];
assert (s >= 0);
return s;
}
private:
void setup(const std::vector<double>& probs)
{
int k = probs.size();
unif_int = boost::random::uniform_int_distribution<Count>(0, k-1);
J.resize(k, -1);
q.resize(k, 0);
// "small" outcomes (prob < 1/k)
std::set<int> S;
std::set<int>::iterator s_it;
// "large" outcomes (prob >= 1/k)
std::set<int> L;
std::set<int>::iterator l_it;
const double tol = 1e-3;
for (int i=0; i<k; i++)
{
q[i] = k*probs[i];
if (q[i] < 1.0)
{
S.insert(i);
}
else
{
L.insert(i);
}
}
while (S.size() > 0 && L.size() > 0)
{
// choose an arbitrary element s from S and l from L
s_it = S.begin();
int s = *s_it;
l_it = L.begin();
int l = *l_it;
// pair up s and (part of) l as its alias
J[s] = l;
S.erase(s_it);
//q[l] = q[l] - (1.0 - q[s]);
q[l] = q[l] + q[s] - 1.0; // more stable?
// move l from L to S if necessary
if (q[l] < 1.0)
{
S.insert(l);
L.erase(l_it);
}
}
// any remaining elements must have q/n close to 1, so we leave them alone
for (s_it = S.begin(); s_it != S.end(); ++s_it) {
//assert (fabs(q[*s_it] - 1) < tol);
if (std::fabs(q[*s_it] - 1) > tol)
{
std::cerr << "warning: multinomial: probability differs from one by " << std::fabs(q[*s_it]-1) << std::endl;
}
q[*s_it] = 1.0;
}
for (l_it = L.begin(); l_it != L.end(); ++l_it) {
if (std::fabs(q[*l_it] - 1) > tol)
{
std::cerr << "warning: multinomial: probability differs from one by " << std::fabs(q[*l_it]-1) << std::endl;
}
q[*l_it] = 1.0;
}
}
};
} // namespace nplm
#endif