forked from isi-nlp/LSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepareNeuralTM.cpp.bak
396 lines (358 loc) · 18.4 KB
/
prepareNeuralTM.cpp.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#include <iostream>
#include <vector>
#include <queue>
#include <boost/unordered_map.hpp>
#include <tclap/CmdLine.h>
#include <boost/algorithm/string/join.hpp>
using namespace std;
using namespace TCLAP;
#include "neuralLM.h" // for vocabulary
#include "util.h"
using namespace boost;
using namespace nplm;
void writeNgrams(const vector<vector<string> > &input_data, const vector<vector<string> > &output_data, int ngram_size, const vocabulary &input_vocab, const vocabulary &output_vocab, bool numberize, bool ngramize, const string &filename)
{
ofstream file(filename.c_str());
if (!file)
{
cerr << "error: could not open " << filename << endl;
exit(1);
}
// check that input and output data have the same number of sentences
if (input_data.size() != output_data.size()) {
cerr << "Error: input and output data files have different number of lines" << endl;
exit(1);
}
// for each input and output line
int lines=input_data.size();
if (numberize) {
for (int i=0; i<lines; i++) {
// convert each line to a set of ngrams
vector<vector<int> > input_ngrams;
vector<int> input_nums;
for (int j=0; j<input_data[i].size(); j++) {
input_nums.push_back(input_vocab.lookup_word(input_data[i][j]));
}
makeNgrams(input_nums, input_ngrams, ngram_size-1);
vector<vector<int> > output_ngrams;
vector<int> output_nums;
for (int j=0; j<output_data[i].size(); j++) {
output_nums.push_back(output_vocab.lookup_word(output_data[i][j]));
}
makeNgrams(output_nums, output_ngrams, 1);
// print out cross product of input and output ngrams
for (int j=0; j < input_ngrams.size(); j++) {
for (int k=0; k < output_ngrams.size(); k++) {
int j_prime;
for (j_prime=0; j_prime < input_ngrams[j].size()-1; j_prime++) {
file << input_ngrams[j][j_prime] << " ";
}
file << input_ngrams[j][j_prime];
int k_prime;
for (k_prime=0; k_prime < output_ngrams[k].size(); k_prime++) {
file << " " << output_ngrams[k][k_prime];
}
file << endl;
}
}
}
}
else {
for (int i=0; i<lines; i++) {
// convert each line to a set of ngrams
vector<vector<string> > input_ngrams;
vector<string> input_words;
for (int j=0; j<input_data[i].size(); j++) {
int unk = input_vocab.lookup_word("<unk>");
// if word is unknown
if (input_vocab.lookup_word(input_data[i][j]) == unk) {
input_words.push_back("<unk>");
}
// if word is known
else {
input_words.push_back(input_data[i][j]);
}
}
makeNgrams(input_words, input_ngrams, ngram_size-1);
vector<vector<string> > output_ngrams;
vector<string> output_words;
for (int j=0; j<output_data[i].size(); j++) {
int unk = output_vocab.lookup_word("<unk>");
// if word is unknown
if (output_vocab.lookup_word(output_data[i][j]) == unk) {
output_words.push_back("<unk>");
}
// if word is known
else {
output_words.push_back(output_data[i][j]);
}
}
makeNgrams(output_words, output_ngrams, 1);
// print out cross product of input and output ngrams
for (int j=0; j < input_ngrams.size(); j++) {
for (int k=0; k < output_ngrams.size(); k++) {
int j_prime;
for (j_prime=0; j_prime < input_ngrams[j].size()-1; j_prime++) {
file << input_ngrams[j][j_prime] << " ";
}
file << input_ngrams[j][j_prime];
int k_prime;
for (k_prime=0; k_prime < output_ngrams[k].size(); k_prime++) {
file << " " << output_ngrams[k][k_prime];
}
file << endl;
}
}
}
}
file.close();
}
int main(int argc, char *argv[])
{
int ngram_size, input_vocab_size, output_vocab_size, validation_size;
bool add_start_stop, numberize, ngramize;
string input_train_text, output_train_text, train_file, input_validation_text, output_validation_text, validation_file, write_input_words_file, write_output_words_file, input_words_file, output_words_file;
try
{
CmdLine cmd("Prepares training data for training a language model.", ' ', "0.1");
// The options are printed in reverse order
ValueArg<bool> arg_ngramize("", "ngramize", "If true, convert lines to ngrams. Default: true.", false, true, "bool", cmd);
ValueArg<bool> arg_numberize("", "numberize", "If true, convert words to numbers. Default: true.", false, true, "bool", cmd);
ValueArg<bool> arg_add_start_stop("", "add_start_stop", "If true, prepend (ngram_size-1) start symbols and postpend 1 stop symbol. Default: true.", false, true, "bool", cmd);
ValueArg<int> arg_input_vocab_size("", "input_vocab_size", "Vocabulary size.", false, -1, "int", cmd);
ValueArg<int> arg_output_vocab_size("", "output_vocab_size", "Vocabulary size.", false, -1, "int", cmd);
ValueArg<string> arg_input_words_file("", "input_words_file", "File specifying words that should be included in vocabulary; all other words will be replaced by <unk>.", false, "", "string", cmd);
ValueArg<string> arg_output_words_file("", "output_words_file", "File specifying words that should be included in vocabulary; all other words will be replaced by <unk>.", false, "", "string", cmd);
ValueArg<int> arg_ngram_size("", "ngram_size", "Size of n-grams.", true, -1, "int", cmd);
ValueArg<string> arg_write_input_words_file("", "write_input_words_file", "Output vocabulary.", false, "", "string", cmd);
ValueArg<string> arg_write_output_words_file("", "write_output_words_file", "Output vocabulary.", false, "", "string", cmd);
ValueArg<int> arg_validation_size("", "validation_size", "How many lines from training data to hold out for validation. Default: 0.", false, 0, "int", cmd);
ValueArg<string> arg_validation_file("", "validation_file", "Output validation data (numberized n-grams).", false, "", "string", cmd);
ValueArg<string> arg_input_validation_text("", "input_validation_text", "Input validation data (tokenized). Overrides --validation_size. Default: none.", false, "", "string", cmd);
ValueArg<string> arg_output_validation_text("", "output_validation_text", "Input validation data (tokenized). Overrides --validation_size. Default: none.", false, "", "string", cmd);
ValueArg<string> arg_train_file("", "train_file", "Output training data (numberized n-grams).", false, "", "string", cmd);
ValueArg<string> arg_input_train_text("", "input_train_text", "Input training data (tokenized).", true, "", "string", cmd);
ValueArg<string> arg_output_train_text("", "output_train_text", "Input training data (tokenized).", true, "", "string", cmd);
cmd.parse(argc, argv);
input_train_text = arg_input_train_text.getValue();
output_train_text = arg_output_train_text.getValue();
train_file = arg_train_file.getValue();
validation_file = arg_validation_file.getValue();
input_validation_text = arg_input_validation_text.getValue();
output_validation_text = arg_output_validation_text.getValue();
input_validation_text = arg_input_validation_text.getValue();
output_validation_text = arg_output_validation_text.getValue();
validation_size = arg_validation_size.getValue();
write_input_words_file = arg_write_input_words_file.getValue();
write_output_words_file = arg_write_output_words_file.getValue();
ngram_size = arg_ngram_size.getValue();
input_vocab_size = arg_input_vocab_size.getValue();
output_vocab_size = arg_output_vocab_size.getValue();
input_words_file = arg_input_words_file.getValue();
output_words_file = arg_output_words_file.getValue();
numberize = arg_numberize.getValue();
ngramize = arg_ngramize.getValue();
add_start_stop = arg_add_start_stop.getValue();
// check command line arguments
// Notes:
// - either --words_file or --vocab_size is required.
// - if --words_file is set,
// - if --vocab_size is not set, it is inferred from the length of the file
// - if --vocab_size is set, it is an error if the vocab file has a different number of lines
// - if --numberize 0 is set and --use_vocab f is not set, then the output model file will not have a vocabulary, and a warning should be printed.
if ((input_words_file == "") && (input_vocab_size == -1)) {
cerr << "Error: either --input_words_file or --input_vocab_size is required." << endl;
exit(1);
}
if ((output_words_file == "") && (output_vocab_size == -1)) {
cerr << "Error: either --output_words_file or --output_vocab_size is required." << endl;
exit(1);
}
// Notes:
// - if --ngramize 0 is set, then
// - if --ngram_size is not set, it is inferred from the training file (different from current)
// - if --ngram_size is set, it is an error if the training file has a different n-gram size
// - if neither --validation_file or --validation_size is set, validation will not be performed.
// - if --numberize 0 is set, then --validation_size cannot be used.
cerr << "Command line: " << endl;
cerr << boost::algorithm::join(vector<string>(argv, argv+argc), " ") << endl;
const string sep(" Value: ");
cerr << arg_input_train_text.getDescription() << sep << arg_input_train_text.getValue() << endl;
cerr << arg_output_train_text.getDescription() << sep << arg_output_train_text.getValue() << endl;
cerr << arg_train_file.getDescription() << sep << arg_train_file.getValue() << endl;
cerr << arg_input_validation_text.getDescription() << sep << arg_input_validation_text.getValue() << endl;
cerr << arg_output_validation_text.getDescription() << sep << arg_output_validation_text.getValue() << endl;
cerr << arg_validation_file.getDescription() << sep << arg_validation_file.getValue() << endl;
cerr << arg_validation_size.getDescription() << sep << arg_validation_size.getValue() << endl;
cerr << arg_write_input_words_file.getDescription() << sep << arg_write_input_words_file.getValue() << endl;
cerr << arg_write_output_words_file.getDescription() << sep << arg_write_output_words_file.getValue() << endl;
cerr << arg_ngram_size.getDescription() << sep << arg_ngram_size.getValue() << endl;
cerr << arg_input_vocab_size.getDescription() << sep << arg_input_vocab_size.getValue() << endl;
cerr << arg_output_vocab_size.getDescription() << sep << arg_output_vocab_size.getValue() << endl;
cerr << arg_input_words_file.getDescription() << sep << arg_input_words_file.getValue() << endl;
cerr << arg_output_words_file.getDescription() << sep << arg_output_words_file.getValue() << endl;
cerr << arg_numberize.getDescription() << sep << arg_numberize.getValue() << endl;
cerr << arg_ngramize.getDescription() << sep << arg_ngramize.getValue() << endl;
cerr << arg_add_start_stop.getDescription() << sep << arg_add_start_stop.getValue() << endl;
}
catch (TCLAP::ArgException &e)
{
cerr << "error: " << e.error() << " for arg " << e.argId() << endl;
exit(1);
}
// Read in input training data and validation data
vector<vector<string> > input_train_data;
readSentFile(input_train_text, input_train_data);
if (add_start_stop) {
for (int i=0; i<input_train_data.size(); i++) {
vector<string> input_train_data_start_stop;
addStartStop<string>(input_train_data[i], input_train_data_start_stop, ngram_size, "<s>", "</s>");
input_train_data[i]=input_train_data_start_stop;
}
}
vector<vector<string> > input_validation_data;
if (input_validation_text != "") {
readSentFile(input_validation_text, input_validation_data);
if (add_start_stop) {
for (int i=0; i<input_validation_data.size(); i++) {
vector<string> input_validation_data_start_stop;
addStartStop<string>(input_validation_data[i], input_validation_data_start_stop, ngram_size, "<s>", "</s>");
input_validation_data[i]=input_validation_data_start_stop;
}
}
}
else if (validation_size > 0)
{
if (validation_size > input_train_data.size())
{
cerr << "error: requested input_validation size is greater than training data size" << endl;
exit(1);
}
input_validation_data.insert(input_validation_data.end(), input_train_data.end()-validation_size, input_train_data.end());
input_train_data.resize(input_train_data.size() - validation_size);
}
// Read in output training data and validation data
vector<vector<string> > output_train_data;
readSentFile(output_train_text, output_train_data);
if (add_start_stop) {
for (int i=0; i<output_train_data.size(); i++) {
vector<string> output_train_data_start_stop;
addStartStop<string>(output_train_data[i], output_train_data_start_stop, 1, "<s>", "</s>");
output_train_data[i]=output_train_data_start_stop;
}
}
vector<vector<string> > output_validation_data;
if (output_validation_text != "") {
readSentFile(output_validation_text, output_validation_data);
if (add_start_stop) {
for (int i=0; i<output_validation_data.size(); i++) {
vector<string> output_validation_data_start_stop;
addStartStop<string>(output_validation_data[i], output_validation_data_start_stop, 1, "<s>", "</s>");
output_validation_data[i]=output_validation_data_start_stop;
}
}
}
else if (validation_size > 0)
{
if (validation_size > output_train_data.size())
{
cerr << "error: requested output_validation size is greater than training data size" << endl;
exit(1);
}
output_validation_data.insert(output_validation_data.end(), output_train_data.end()-validation_size, output_train_data.end());
output_train_data.resize(output_train_data.size() - validation_size);
}
// Construct input vocabulary
vocabulary input_vocab;
int input_start = input_vocab.insert_word("<s>");
int input_stop = input_vocab.insert_word("</s>");
input_vocab.insert_word("<null>");
// read input vocabulary from file
if (input_words_file != "") {
vector<string> words;
readWordsFile(input_words_file,words);
for(vector<string>::iterator it = words.begin(); it != words.end(); ++it) {
input_vocab.insert_word(*it);
}
// was input_vocab_size set? if so, verify that it does not conflict with size of vocabulary read from file
if (input_vocab_size > 0) {
if (input_vocab.size() != input_vocab_size) {
cerr << "Error: size of input_vocabulary file " << input_vocab.size() << " != --input_vocab_size " << input_vocab_size << endl;
}
}
// else, set it to the size of vocabulary read from file
else {
input_vocab_size = input_vocab.size();
}
}
// or construct input vocabulary to contain top <input_vocab_size> most frequent words; all other words replaced by <unk>
else {
unordered_map<string,int> count;
for (int i=0; i<input_train_data.size(); i++) {
for (int j=0; j<input_train_data[i].size(); j++) {
count[input_train_data[i][j]] += 1;
}
}
input_vocab.insert_most_frequent(count, input_vocab_size);
if (input_vocab.size() < input_vocab_size) {
cerr << "warning: fewer than " << input_vocab_size << " types in training data; the unknown word will not be learned" << endl;
}
}
// Construct output vocabulary
vocabulary output_vocab;
int output_start = output_vocab.insert_word("<s>");
int output_stop = output_vocab.insert_word("</s>");
output_vocab.insert_word("<null>");
// read output vocabulary from file
if (output_words_file != "") {
vector<string> words;
readWordsFile(output_words_file,words);
for(vector<string>::iterator it = words.begin(); it != words.end(); ++it) {
output_vocab.insert_word(*it);
}
// was output_vocab_size set? if so, verify that it does not conflict with size of vocabulary read from file
if (output_vocab_size > 0) {
if (output_vocab.size() != output_vocab_size) {
cerr << "Error: size of output_vocabulary file " << output_vocab.size() << " != --output_vocab_size " << output_vocab_size << endl;
}
}
// else, set it to the size of vocabulary read from file
else {
output_vocab_size = output_vocab.size();
}
}
// or construct output vocabulary to contain top <output_vocab_size> most frequent words; all other words replaced by <unk>
else {
unordered_map<string,int> count;
for (int i=0; i<output_train_data.size(); i++) {
for (int j=0; j<output_train_data[i].size(); j++) {
count[output_train_data[i][j]] += 1;
}
}
output_vocab.insert_most_frequent(count, output_vocab_size);
if (output_vocab.size() < output_vocab_size) {
cerr << "warning: fewer than " << output_vocab_size << " types in training data; the unknown word will not be learned" << endl;
}
}
// write input vocabulary to file
if (write_input_words_file != "") {
cerr << "Writing vocabulary to " << write_input_words_file << endl;
writeWordsFile(input_vocab.words(), write_input_words_file);
}
// write output vocabulary to file
if (write_output_words_file != "") {
cerr << "Writing vocabulary to " << write_output_words_file << endl;
writeWordsFile(output_vocab.words(), write_output_words_file);
}
// Write out input and output numberized n-grams
if (train_file != "")
{
cerr << "Writing training data to " << train_file << endl;
writeNgrams(input_train_data, output_train_data, ngram_size, input_vocab, output_vocab, numberize, ngramize, train_file);
}
if (validation_file != "")
{
cerr << "Writing validation data to " << validation_file << endl;
writeNgrams(input_validation_data, output_validation_data, ngram_size, input_vocab, output_vocab, numberize, ngramize, validation_file);
}
}