NebulaGraph Bench
is a tool to test the NebulaGraph benchmark by using LDBC dataset.
Currently, we use ldbc_snb_datagen v0.3.3. It only support NebulaGraph 2.0+ release.
The main features:
- Generate the LDBC dataset and then import into NebulaGraph.
- Run load test with k6.
⚠️ Please note, the NebulaGraph Importer being used by NebulaGraph Bench is v3.x, the lastest branch of Importer v4.x is not yet supported.
NebulaGraph Bench | NebuaGraph | NebulaGraph Importer | K6 Plugin | ldbc_snb_datagen | NebulaGraph go |
---|---|---|---|---|---|
v0.2 | v2.0.1 | v2.0.0-ga | v0.0.6 | v0.3.3 | v2.0.0-ga |
v1.0.0 | v2.5.0 / v2.5.1 | v2.5.1 | v0.0.7 | v0.3.3 | v2.5.1 |
v1.0.0 | v2.6.0 / v2.6.1 / v2.6.2 | v2.6.0 | v0.0.8 | v0.3.3 | v2.6.0 |
v1.1.0 | v3.0.0 / v3.0.1 | v3.0.0 | v0.0.9 | v0.3.3 | v3.0.0 |
v1.2.0 | v3.1.0 | v3.1.0 | v1.0.0 | v0.3.3 | NONE |
master | nightly | v3.2.0 | v1.1.6 | v0.3.3 | NONE |
sudo yum install -y git \
make \
file \
libev \
libev-devel \
gcc \
wget \
python3 \
python3-devel \
java-1.8.0-openjdk \
maven
sudo apt-get install -y \
git \
wget \
python3-pip \
python \
openjdk-8-jdk \
maven
export JAVA_HOME=/usr/lib/jvm/default-java/
git clone https://github.com/vesoft-inc/nebula-bench.git
cd nebula-bench
pip3 install --user -r requirements.txt
python3 run.py --help
prepare NebulaGraph tools.
./scripts/setup.sh
After compilation, it would put binaries in scripts
folder.
python3 run.py data
It would download the Hadoop automatically, build the datagen jar, and then generate ldbc data.
To import the data more easier, split the file header to a header.csv
file.
The result files in ${PWD}/target/data/test_data/
More information
# generate sf10 ldbc data
python3 run.py data -s 10
# change hadoop options
export HADOOP_CLIENT_OPTS="-Xmx8G"
python3 run.py data -s 100
# or
# only generate, do not split the data
python3 run.py data -og
# split data, no need generate again.
python3 run.py data -os
python3 run.py nebula importer
Render the import config file according to the header files, and then run nebula-importer.
# after prepare the data, you could import the data to any NebulaGraph as you want.
# space is mytest, graph address is 127.0.0.1:9669
python3 run.py nebula importer -s mytest -a 127.0.0.1:9669
# or using dotenv
cp env .env
# vi .env
python3 run.py nebula importer
# dry run, just create the import config file, and you can modify any configuration.
# by default, PARTITION_NUM is 24,REPLICA_FACTOR is 3.
python3 run.py nebula importer --dry-run
Use k6 with xk6-nebula extension.
Scenarios are in nebula_bench/scenarios/
.
# show help
python3 run.py stress run --help
# run all scenarios with 100 virtual users, every scenario lasts 60 seconds.
python3 run.py stress run
# run all scenarios with 10 virtual users, every scenario lasts 3 seconds.
python3 run.py stress run --args='-u 10 -d 3s'
# list all stress test scenarios
python3 run.py stress scenarios
# run go.Go1Step scenarios with 10 virtual users, every scenario lasts 3 seconds.
python3 run.py stress run -scenario go.Go1StepEdge --args='-u 10 -d 3s'
# run go.Go1Step scenarios with special test stage.
# ramping up from 0 to 10 vus in first 10 seconds, then run 10 vus in 30 seconds,
# then ramping up from 10 to 50 vus in 10 seconds.
python3 run.py stress run -scenario go.Go1StepEdge --args='-s 10s:10 -s 30s:10 -s 10s:50'
# use csv output
python3 run.py stress run -scenario go.Go1StepEdge --args='-s 10s:10 -s 30s:10 -s 10s:50 -o csv=test.csv'
for more k6 args, please refer to k6 run help.
scripts/k6 run --help
k6 config file, summary result and outputs are in output
folder. e.g.
# you should install jq to parse json.
# how many checks
jq .metrics.checks output/result_Go1Step.json
# summary latency
jq .metrics.latency output/result_Go1Step.json
# summary error message
awk -F ',' 'NR>1{print $NF}' output/output_Go1Step.csv |sort|uniq -c
or, just review the summary result in stdout. e.g.
✓ IsSucceed
█ setup
█ teardown
checks...............: 100.00% ✓ 113778 ✗ 0
data_received........: 0 B 0 B/s
data_sent............: 0 B 0 B/s
iteration_duration...: min=747.84µs avg=52.76ms med=40.77ms max=1.17s p(90)=98.68ms p(95)=147.15ms p(99)=263.03ms
iterations...........: 113778 1861.550127/s
latency..............: min=462 avg=49182.770298 med=37245 max=1160358 p(90)=93377 p(95)=142304.15 p(99)=258465.89
responseTime.........: min=662 avg=52636.793537 med=40659 max=1177651 p(90)=98556.5 p(95)=147036.15 p(99)=262869.63
rowSize..............: min=0 avg=9.212424 med=3 max=243 p(90)=25 p(95)=40 p(99)=70
vus..................: 100 min=0 max=100
vus_max..............: 100 min=100 max=100
checks
, one check per iteration, verifyisSucceed
by default.data_received
anddata_sent
, used by HTTP requests, useless for NebulaGraph.iteration_duration
, time consuming for every iteration.latency
, time consuming in NebulaGraph server, unit: (us).responseTime
, time consuming in client, unit: (us).rowSize
, response row size.vus
, concurrent virtual users.
In general
iteration_duration = responseTime + (time consuming for read data from csv)
responseTime = latency + (time consuming for network) + (client decode)
As one iteration has one check, it means run 113778
queries.
The unit of latency is us
.
# generate the `report.html` with summary json file in `output/20221109140449` folder.
python3 run.py report export -f output/20221109140449
# export to a new file.
python3 run.py report export -f output/20221109140449 -o new_report.html
# launch a http server with port 5050, and could browser all result in `output` folder.
python3 run.py report serve -p 5050
- The file with
aaa_xxYY_bbb
format, likecomment_hasTag_tag
, should be an edge, and the edge name shoud beXX_YY
. Keep the same format with ldbc_snb_interactive - Otherwise it should be a vertex tag.
- Different entity types might have same ID (e.g. Forum and Post).
LDBC schema
CREATE TAG IF NOT EXISTS `Post`(`imageFile` string,`creationDate` datetime,`locationIP` string,`browserUsed` string,`language` string,`content` string,`length` int);
CREATE TAG IF NOT EXISTS `Tag`(`name` string,`url` string);
CREATE TAG IF NOT EXISTS `Tagclass`(`name` string,`url` string);
CREATE TAG IF NOT EXISTS `Organisation`(`type` string,`name` string,`url` string);
CREATE TAG IF NOT EXISTS `Place`(`name` string,`url` string,`type` string);
CREATE TAG IF NOT EXISTS `Person`(`firstName` string,`lastName` string,`gender` string,`birthday` string,`creationDate` datetime,`locationIP` string,`browserUsed` string);
CREATE TAG IF NOT EXISTS `Forum`(`title` string,`creationDate` datetime);
CREATE TAG IF NOT EXISTS `Comment`(`creationDate` datetime,`locationIP` string,`browserUsed` string,`content` string,`length` int);
CREATE EDGE IF NOT EXISTS `HAS_CREATOR`();
CREATE EDGE IF NOT EXISTS `REPLY_OF`();
CREATE EDGE IF NOT EXISTS `STUDY_AT`(`classYear` int);
CREATE EDGE IF NOT EXISTS `WORK_AT`(`workFrom` int);
CREATE EDGE IF NOT EXISTS `HAS_MODERATOR`();
CREATE EDGE IF NOT EXISTS `LIKES`(`creationDate` datetime);
CREATE EDGE IF NOT EXISTS `HAS_MEMBER`(`joinDate` datetime);
CREATE EDGE IF NOT EXISTS `IS_PART_OF`();
CREATE EDGE IF NOT EXISTS `CONTAINER_OF`();
CREATE EDGE IF NOT EXISTS `HAS_INTEREST`();
CREATE EDGE IF NOT EXISTS `IS_SUBCLASS_OF`();
CREATE EDGE IF NOT EXISTS `HAS_TAG`();
CREATE EDGE IF NOT EXISTS `IS_LOCATED_IN`();
CREATE EDGE IF NOT EXISTS `HAS_TYPE`();
CREATE EDGE IF NOT EXISTS `KNOWS`(`creationDate` datetime);
CREATE TAG INDEX IF NOT EXISTS `person_first_name_idx` on `Person`(firstName(10));
CREATE EDGE INDEX IF NOT EXISTS `like_creationDate_idx` on `LIKES`(creationDate);