-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·446 lines (393 loc) · 25.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import random
from typing import List
import click
import yaml
from operator_generator_strategies.containment_operator_strategies.filter_containment_strategy import \
FilterContainmentGeneratorStrategy
from operator_generator_strategies.containment_operator_strategies.projection_containment_strategy import \
ProjectionContainmentGeneratorStrategy
from operator_generator_strategies.containment_operator_strategies.window_aggregation_containment_strategy import \
WindowAggregationContainmentGeneratorStrategy
from operator_generator_strategies.equivalent_operator_strategies.filter_substitute_map_expression_startegy import \
FilterSubstituteMapExpressionGeneratorStrategy
from operator_generator_strategies.equivalent_operator_strategies.join_equivalent_strategy import \
JoinEquivalentJoinGeneratorStrategy
from operator_generator_strategies.equivalent_operator_strategies.filter_expression_reorder_strategy import \
FilterExpressionReorderGeneratorStrategy
from operator_generator_strategies.equivalent_operator_strategies.filter_operator_reorder_strategy import \
FilterOperatorReorderGeneratorStrategy
from operator_generator_strategies.equivalent_operator_strategies.map_expression_reorder_strategy import \
MapExpressionReorderGeneratorStrategy
from operator_generator_strategies.equivalent_operator_strategies.map_operator_reorder_startegy import \
MapOperatorReorderGeneratorStrategy
from operator_generator_strategies.equivalent_operator_strategies.project_equivalent_strategy import \
ProjectEquivalentProjectGeneratorStrategy
from operator_generator_strategies.equivalent_operator_strategies.aggregation_equivalent_aggregation_strategy import \
AggregationEquivalentAggregationGeneratorStrategy
from operator_generator_strategies.equivalent_operator_strategies.union_equivalent_strategy import \
UnionEquivalentUnionGeneratorStrategy
from query_generator.query import Query
from utils.contracts import Schema
from operator_generator_strategies.distinct_operator_strategies.distinct_filter_strategy import \
DistinctFilterGeneratorStrategy
from query_generator.generator import QueryGenerator
from operator_generator_strategies.distinct_operator_strategies.distinct_map_strategy1 import \
DistinctMapGeneratorStrategy1
from operator_generator_strategies.distinct_operator_strategies.distinct_projection_strategy import \
DistinctProjectionGeneratorStrategy
from operator_generator_strategies.distinct_operator_strategies.distinct_aggregation_strategy import \
DistinctAggregationGeneratorStrategy
from operator_generator_strategies.distinct_operator_strategies.distinct_union_strategy import \
DistinctUnionGeneratorStrategy
from operator_generator_strategies.distinct_operator_strategies.distinct_join_strategy import \
DistinctJoinGeneratorStrategy
@click.command()
@click.option('-cf', '--config-file', help='Location of the configuration file.', type=click.STRING)
def run(config_file):
print("Loading configurations")
file = open(config_file, 'r')
configuration = yaml.load(file, yaml.Loader)
print(configuration)
possibleSources = []
for sourceConf in configuration['sourceList']:
source = Schema(name=sourceConf['streamName'], int_fields=sourceConf['intFields'],
string_fields=sourceConf['stringFields'],
timestamp_fields=sourceConf['timestampFields'], double_fields=sourceConf['doubleFields'],
fieldNameMapping={})
possibleSources.append(source)
generateEquivalentQueries = configuration['generateEquivalentQueries']
numOfDistinctSourcesToUse = configuration['sourcesToUse']
numberOfQueries = configuration['noQueries']
workloadType = configuration['workloadType']
equivalentQueries: List[Query] = []
containmentQueries: List[Query] = []
distinctQueries: List[Query] = []
distinctSourcesUsed: List[Query] = []
if workloadType == "Normal":
if generateEquivalentQueries == "equivalence":
percentageOfRandomQueries = configuration['equivalenceConfig']['percentageOfRandomQueries']
numberOfEquivalentQueryGroups = configuration['equivalenceConfig']['noOfEquivalentQueryGroups']
percentageOfEquivalence = configuration['equivalenceConfig']['percentageOfEquivalence']
numberOfQueriesPerSource = int(numberOfQueries / numOfDistinctSourcesToUse)
numberOfQueriesPerGroup = int(numberOfQueriesPerSource / numberOfEquivalentQueryGroups)
# Iterate over sources
for i in range(numOfDistinctSourcesToUse):
sourcesToUse = []
# Loop till we find a distinct set of sources to generate queries
while len(sourcesToUse) == 0:
numOfSourceToUse = random.randint(1, 2)
sourcesToUse = random.sample(possibleSources, k=numOfSourceToUse)
sourcesToUse.sort(key=lambda x: x.name, reverse=False)
if str(sourcesToUse) not in distinctSourcesUsed:
distinctSourcesUsed.append(str(sourcesToUse))
else:
sourcesToUse = []
baseSource = sourcesToUse[0]
sourcesToUse.remove(baseSource)
for j in range(numberOfEquivalentQueryGroups):
randomQueries = int((numberOfQueriesPerGroup * percentageOfRandomQueries) / 100)
equivalentQueries.extend(getEquivalentQueries(numberOfQueriesPerGroup - randomQueries,
percentageOfEquivalence,
baseSource, sourcesToUse))
distinctQueries.extend(getDistinctQueries(randomQueries, baseSource, sourcesToUse))
# Populate remaining queries
remainingQueries = numberOfQueries - (
numberOfQueriesPerGroup * numOfDistinctSourcesToUse * numberOfEquivalentQueryGroups)
if remainingQueries > 0:
sourcesToUse = []
# Loop till we find a distinct set of sources to generate queries
while len(sourcesToUse) == 0:
numOfSourceToUse = random.randint(1, 2)
sourcesToUse = random.sample(possibleSources, k=numOfSourceToUse)
sourcesToUse.sort(key=lambda x: x.name, reverse=False)
if str(sourcesToUse) not in distinctSourcesUsed:
distinctSourcesUsed.append(str(sourcesToUse))
else:
sourcesToUse = []
baseSource = sourcesToUse[0]
sourcesToUse.remove(baseSource)
for i in range(int(remainingQueries / numberOfQueriesPerGroup)):
equivalentQueries.extend(getEquivalentQueries(numberOfQueriesPerGroup, percentageOfEquivalence,
baseSource, sourcesToUse))
elif generateEquivalentQueries == "distinct":
numberOfDistinctQueriesPerSource = numberOfQueries / numOfDistinctSourcesToUse
for i in range(numOfDistinctSourcesToUse):
numOfSourceToUse = 1
if numOfDistinctSourcesToUse > 1:
numOfSourceToUse = 2
sourcesToUse = []
# Loop till we find a distinct set of sources to generate queries
while len(sourcesToUse) == 0:
sourcesToUse = random.sample(possibleSources, k=numOfSourceToUse)
sourcesToUse.sort(key=lambda x: x.name, reverse=False)
if str(sourcesToUse) not in distinctSourcesUsed:
distinctSourcesUsed.append(str(sourcesToUse))
else:
sourcesToUse = []
baseSource = sourcesToUse[0]
sourcesToUse.remove(baseSource)
distinctQueries.extend(
getDistinctQueries(numberOfDistinctQueriesPerSource, baseSource, sourcesToUse))
elif generateEquivalentQueries == "containment":
percentageOfRandomQueries = configuration['containmentConfig']['percentageOfRandomQueries']
percentageOfEquivalentQueries = configuration['containmentConfig']['percentageOfEquivalentQueries']
noOfContainmentQueryGroups = configuration['containmentConfig']['noOfContainmentQueryGroups']
percentageOfEquivalence = configuration['containmentConfig']['percentageOfEquivalence']
allowMultiContainment = configuration['containmentConfig']['allowMultiContainment']
allowMultiWindowContainment = configuration['containmentConfig']['allowMultipleWindows']
shuffleContainment = configuration['containmentConfig']['shuffleContainment']
numberOfQueriesPerSource = int(numberOfQueries / numOfDistinctSourcesToUse)
numberOfQueriesPerGroup = int(numberOfQueriesPerSource / noOfContainmentQueryGroups)
# Iterate over sources
for i in range(numOfDistinctSourcesToUse):
sourcesToUse = []
# Loop till we find a distinct set of sources to generate queries
while len(sourcesToUse) == 0:
numOfSourceToUse = random.randint(1, 2)
sourcesToUse = random.sample(possibleSources, k=numOfSourceToUse)
sourcesToUse.sort(key=lambda x: x.name, reverse=False)
if str(sourcesToUse) not in distinctSourcesUsed:
distinctSourcesUsed.append(str(sourcesToUse))
else:
sourcesToUse = []
baseSource = sourcesToUse[0]
sourcesToUse.remove(baseSource)
for j in range(noOfContainmentQueryGroups):
randomQueries = int((numberOfQueriesPerGroup * percentageOfRandomQueries) / 100)
numberOfEquivalentQueries = int((numberOfQueriesPerGroup * percentageOfEquivalentQueries) / 100)
containmentQueries.extend(getContainmentQueries(numberOfQueriesPerGroup - randomQueries - numberOfEquivalentQueries,
percentageOfEquivalence, allowMultiContainment, allowMultiWindowContainment, shuffleContainment,
baseSource, sourcesToUse))
distinctQueries.extend(getDistinctQueries(randomQueries, baseSource, sourcesToUse))
equivalentQueries.extend(getEquivalentQueries(numberOfEquivalentQueries, percentageOfEquivalence,
baseSource, sourcesToUse))
# Populate remaining queries
remainingQueries = numberOfQueries - (
numberOfQueriesPerGroup * numOfDistinctSourcesToUse * noOfContainmentQueryGroups)
if remainingQueries > 0:
sourcesToUse = []
# Loop till we find a distinct set of sources to generate queries
while len(sourcesToUse) == 0:
numOfSourceToUse = random.randint(1, 2)
sourcesToUse = random.sample(possibleSources, k=numOfSourceToUse)
sourcesToUse.sort(key=lambda x: x.name, reverse=False)
if str(sourcesToUse) not in distinctSourcesUsed:
distinctSourcesUsed.append(str(sourcesToUse))
else:
sourcesToUse = []
baseSource = sourcesToUse[0]
sourcesToUse.remove(baseSource)
for i in range(int(remainingQueries / numberOfQueriesPerGroup)):
containmentQueries.extend(getContainmentQueries(numberOfQueriesPerGroup, percentageOfEquivalence, allowMultiContainment, allowMultiWindowContainment, shuffleContainment,
baseSource, sourcesToUse))
elif workloadType == "BiasedForHybrid":
numberOfEquivalentQueryGroups = configuration['equivalenceConfig']['noOfEquivalentQueryGroups']
percentageOfEquivalence = configuration['equivalenceConfig']['percentageOfEquivalence']
numberOfGroupsPerSource = int(numberOfEquivalentQueryGroups / numOfDistinctSourcesToUse)
numberOfQueriesPerGroup = int(numberOfQueries / numberOfEquivalentQueryGroups)
# Iterate over sources
for i in range(numOfDistinctSourcesToUse):
sourcesToUse = []
# Loop till we find a distinct set of sources to generate queries
while len(sourcesToUse) == 0:
numOfSourceToUse = random.randint(1, 2)
sourcesToUse = random.sample(possibleSources, k=numOfSourceToUse)
sourcesToUse.sort(key=lambda x: x.name, reverse=False)
if str(sourcesToUse) not in distinctSourcesUsed:
distinctSourcesUsed.append(str(sourcesToUse))
else:
sourcesToUse = []
baseSource = sourcesToUse[0]
sourcesToUse.remove(baseSource)
equivalentQueries.extend(getEquivalentQueriesForHybrid(numberOfGroupsPerSource, numberOfQueriesPerGroup,
percentageOfEquivalence,
baseSource, sourcesToUse))
queries: List[Query] = []
queries.extend(equivalentQueries)
queries.extend(distinctQueries)
queries.extend(containmentQueries)
random.shuffle(queries)
# Write queries into file
with open("example-query.txt", "w+") as f:
for query in queries:
f.write(query.generate_code())
f.write("\n")
def getDistinctQueries(numberOfQueriesToGenerate: int, baseSource: Schema, possibleSources: List[Schema]) -> \
List[Query]:
filter_generator = DistinctFilterGeneratorStrategy(max_number_of_predicates=2)
map_generator = DistinctMapGeneratorStrategy1()
project_generator = DistinctProjectionGeneratorStrategy()
aggregation_generator = DistinctAggregationGeneratorStrategy()
union_generator = DistinctUnionGeneratorStrategy(possibleSources)
join_generator = DistinctJoinGeneratorStrategy(possibleSources)
distinctOperatorGeneratorStrategies = [filter_generator, map_generator, project_generator, union_generator,
join_generator, aggregation_generator]
return QueryGenerator(baseSource, possibleSources, numberOfQueriesToGenerate, [],
distinctOperatorGeneratorStrategies, [], False).generate()
def getEquivalentQueries(numberOfQueriesPerGroup: int, percentageOfEquivalence: int, baseSource: Schema,
possibleSources: List[Schema]) -> List[Query]:
# Initialize instances of each generator strategy
filter_expression_reorder_strategy = FilterExpressionReorderGeneratorStrategy()
filter_operator_reorder_strategy = FilterOperatorReorderGeneratorStrategy()
map_expression_reorder_strategy = MapExpressionReorderGeneratorStrategy()
map_operator_reorder_strategy = MapOperatorReorderGeneratorStrategy()
filter_substitute_map_expression_strategy = FilterSubstituteMapExpressionGeneratorStrategy()
project_equivalent_project_strategy = ProjectEquivalentProjectGeneratorStrategy()
aggregate_equivalent_aggregate_strategy = AggregationEquivalentAggregationGeneratorStrategy()
# Remove the base source from possible sources for binary operator and initialize generator strategies
unionPossible = False
joinPossible = False
if len(possibleSources) > 0 and baseSource.get_numerical_fields().__eq__(possibleSources[0].get_numerical_fields()):
union_equivalent_strategies = UnionEquivalentUnionGeneratorStrategy(possibleSources)
unionPossible = True
elif len(possibleSources) > 0:
join_equivalent_strategies = JoinEquivalentJoinGeneratorStrategy(possibleSources)
joinPossible = True
equivalentOperatorGeneratorStrategies = [
map_expression_reorder_strategy,
map_operator_reorder_strategy,
filter_substitute_map_expression_strategy,
filter_expression_reorder_strategy,
filter_operator_reorder_strategy,
project_equivalent_project_strategy,
aggregate_equivalent_aggregate_strategy
]
filterGenerator = DistinctFilterGeneratorStrategy(max_number_of_predicates=2)
mapGenerator = DistinctMapGeneratorStrategy1()
aggregateGenerator = DistinctAggregationGeneratorStrategy()
projectGenerator = DistinctProjectionGeneratorStrategy()
distinctOperatorGeneratorStrategies = [filterGenerator, mapGenerator, projectGenerator,
mapGenerator, aggregateGenerator]
distinctOperators = 5 - int((5 * percentageOfEquivalence) / 100)
distinctOperatorGenerators = random.sample(distinctOperatorGeneratorStrategies, distinctOperators)
equivalentOperatorGenerators = random.sample(equivalentOperatorGeneratorStrategies, 5 - distinctOperators)
joinPresent = False
if len(possibleSources) >= 1:
unionPresent = False
if random.randint(1, 2) % 2 == 0 and unionPossible:
equivalentOperatorGenerators.append(union_equivalent_strategies)
unionPresent = True
if not unionPresent and joinPossible:
equivalentOperatorGenerators.append(join_equivalent_strategies)
joinPresent = True
if random.randint(1, 5) % 5 == 0 and distinctOperators == 0 and not joinPresent:
equivalentOperatorGenerators.append(aggregate_equivalent_aggregate_strategy)
return QueryGenerator(baseSource, possibleSources, numberOfQueriesPerGroup, equivalentOperatorGenerators,
distinctOperatorGenerators, [], False).generate()
def getContainmentQueries(numberOfQueriesPerGroup: int, percentageOfEquivalence: int, allowMultiContainment: bool, allowMultipleWindows:bool, shuffleContainment: bool, baseSource: Schema,
possibleSources: List[Schema]) -> List[Query]:
# Initialize instances of each generator strategy
filter_expression_reorder_strategy = FilterExpressionReorderGeneratorStrategy()
filter_operator_reorder_strategy = FilterOperatorReorderGeneratorStrategy()
map_expression_reorder_strategy = MapExpressionReorderGeneratorStrategy()
map_operator_reorder_strategy = MapOperatorReorderGeneratorStrategy()
filter_substitute_map_expression_strategy = FilterSubstituteMapExpressionGeneratorStrategy()
project_equivalent_project_strategy = ProjectEquivalentProjectGeneratorStrategy()
aggregate_equivalent_aggregate_strategy = AggregationEquivalentAggregationGeneratorStrategy()
filter_containment_strategy = FilterContainmentGeneratorStrategy()
window_aggregation_containment_strategy = WindowAggregationContainmentGeneratorStrategy()
projection_containment_strategy = ProjectionContainmentGeneratorStrategy()
# Remove the base source from possible sources for binary operator and initialize generator strategies
unionPossible = False
joinPossible = False
if len(possibleSources) > 0 and baseSource.get_numerical_fields().__eq__(possibleSources[0].get_numerical_fields()):
union_equivalent_strategies = UnionEquivalentUnionGeneratorStrategy(possibleSources)
unionPossible = True
elif len(possibleSources) > 0:
join_equivalent_strategies = JoinEquivalentJoinGeneratorStrategy(possibleSources)
joinPossible = True
# add equivalent operator generator strategies
equivalentOperatorGeneratorStrategies = [
map_expression_reorder_strategy,
map_operator_reorder_strategy,
filter_substitute_map_expression_strategy,
filter_expression_reorder_strategy,
filter_operator_reorder_strategy,
project_equivalent_project_strategy
]
# add containment operator generator strategies
containmentOperatorGeneratorStrategies = [
window_aggregation_containment_strategy,
projection_containment_strategy,
filter_containment_strategy
]
filterGenerator = DistinctFilterGeneratorStrategy(max_number_of_predicates=2)
mapGenerator = DistinctMapGeneratorStrategy1()
projectGenerator = DistinctProjectionGeneratorStrategy()
distinctOperatorGeneratorStrategies = [filterGenerator, mapGenerator, projectGenerator,
mapGenerator]
if allowMultipleWindows:
aggregateGenerator = DistinctAggregationGeneratorStrategy()
distinctOperatorGeneratorStrategies.append(aggregateGenerator)
distinctOperators = 5 - int((5 * percentageOfEquivalence) / 100)
distinctOperatorGenerators = random.sample(distinctOperatorGeneratorStrategies, distinctOperators)
equivalentOperatorGenerators = random.sample(equivalentOperatorGeneratorStrategies, 5 - distinctOperators)
containmentOperatorGenerators = random.sample(containmentOperatorGeneratorStrategies, 1)
# add a random number (1-5) of containment operators if multicontainment is allowed
if allowMultiContainment:
numberOfContainments = random.randint(1, 5)
if containmentOperatorGenerators[0] == window_aggregation_containment_strategy and allowMultipleWindows:
numberOfContainments = random.randint(1, 3)
for i in range(numberOfContainments):
containmentOperatorGenerators.append(containmentOperatorGenerators[0])
elif containmentOperatorGenerators[0] != window_aggregation_containment_strategy:
for i in range(numberOfContainments):
containmentOperatorGenerators.append(containmentOperatorGenerators[0])
# add union and join operators if the configuration allows it
if len(possibleSources) >= 1:
unionPresent = False
if random.randint(1, 2) % 2 == 0 and unionPossible:
equivalentOperatorGenerators.append(union_equivalent_strategies)
unionPresent = True
if not unionPresent and joinPossible and not containmentOperatorGenerators[0] == window_aggregation_containment_strategy:
equivalentOperatorGenerators.append(join_equivalent_strategies)
# add aggregate operator if the configuration allows it
if allowMultipleWindows and random.randint(1, 5) % 5 == 0 and distinctOperators == 0:
equivalentOperatorGenerators.append(aggregate_equivalent_aggregate_strategy)
return QueryGenerator(baseSource, possibleSources, numberOfQueriesPerGroup, equivalentOperatorGenerators,
distinctOperatorGenerators, containmentOperatorGenerators, shuffleContainment).generate()
def getEquivalentQueriesForHybrid(numberOfGroupsPerSource: int, numberOfQueriesPerGroup: int,
percentageOfEquivalence: int,
baseSource: Schema,
possibleSources: List[Schema]) -> List[Query]:
# Initialize instances of each generator strategy
filter_expression_reorder_strategy = FilterExpressionReorderGeneratorStrategy()
filter_operator_reorder_strategy = FilterOperatorReorderGeneratorStrategy()
map_expression_reorder_strategy = MapExpressionReorderGeneratorStrategy()
map_operator_reorder_strategy = MapOperatorReorderGeneratorStrategy()
filter_substitute_map_expression_strategy = FilterSubstituteMapExpressionGeneratorStrategy()
project_equivalent_project_strategy = ProjectEquivalentProjectGeneratorStrategy()
aggregate_equivalent_aggregate_strategy = AggregationEquivalentAggregationGeneratorStrategy()
# Remove the base source from possible sources for binary operator and initialize generator strategies
union_equivalent_strategies = UnionEquivalentUnionGeneratorStrategy(possibleSources)
equivalentOperatorGeneratorStrategies = [
map_expression_reorder_strategy,
map_operator_reorder_strategy,
filter_substitute_map_expression_strategy,
filter_expression_reorder_strategy,
filter_operator_reorder_strategy,
project_equivalent_project_strategy
]
filterGenerator = DistinctFilterGeneratorStrategy(max_number_of_predicates=2)
mapGenerator = DistinctMapGeneratorStrategy1()
aggregateGenerator = DistinctAggregationGeneratorStrategy()
projectGenerator = DistinctProjectionGeneratorStrategy()
distinctOperatorGeneratorStrategies = [filterGenerator, mapGenerator, aggregateGenerator, projectGenerator,
mapGenerator]
distinctOperators = 5 - int((5 * percentageOfEquivalence) / 100)
distinctOperatorGenerators = random.sample(distinctOperatorGeneratorStrategies, distinctOperators)
equivalentOperatorGenerators = random.sample(equivalentOperatorGeneratorStrategies, 5)
if random.randint(1, 2) % 2 == 0:
equivalentOperatorGenerators.append(union_equivalent_strategies)
if random.randint(1, 5) % 5 == 0:
equivalentOperatorGenerators.append(aggregate_equivalent_aggregate_strategy)
queries: List[Query] = []
generator = QueryGenerator(baseSource, possibleSources, 1, equivalentOperatorGenerators,
distinctOperatorGenerators)
for i in range(numberOfGroupsPerSource):
temp = generator.generate()
for j in range(numberOfQueriesPerGroup):
queries.extend(temp)
return queries
if __name__ == '__main__':
run()