Skip to content

Latest commit

 

History

History
executable file
·
26 lines (21 loc) · 1.5 KB

README.md

File metadata and controls

executable file
·
26 lines (21 loc) · 1.5 KB

Resource and latency model

model.py implements a resource and latency model to support expert users during the customization of the accelerators available within Faber.

To use the model, please provide the following arguments:

  • Similarity metric (available metrics: cross-correlation, mean-squared error, mutual information, normalized mutual information): -m/--metric {cc, mse, mi, nmi}
  • Number of cores (optional; default: 1): -n/--num_cores NUM_CORES
  • Numer of Processing Elements (PEs) (must be a power of 2): -pe PROCESSING_ELEMENT
  • Input bitwidth (must be a power of 2): -b/--input_bitwidth {8,16,32,64,128,256,512}
  • Input dimension (assuming a squared image DxD, just provide D): -d/--input_dimension INPUT_DIMENSION
  • Caching (optional): -c/--caching
  • URAM usage for caching (optional): -u/--uram
  • Enable HW transform (optional): -t/-transform
  • Interpolation to use if transform is enabled (available interpolations: nearest neighbors, bilinear; default: nearest neighbors): -i/--interpolation {nn, bln}
  • Target platform (available platforms: Ultra96, ZCU104, Alveo u200): -p/--platform {ultra96, zcu104, alveo_u200}

Example

Let's consider the following configuration:

  • Input image: 512x512 8-bit image
  • Similarity metric: 2-core mutual information accelerator with 16 PEs
  • URAM caching
  • Target platform: Alveo u200

To estimate the resource usage and latency of this configuration, run the model as follows:

python3 model.py -m mi -n 2 -pe 16 -b 8 -d 512 -c -u -p alveo_u200