-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassifier.py
250 lines (170 loc) · 6.73 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
import torchvision
import torchvision.transforms as transforms
from copy import deepcopy
from EntropySGD import EntropySGD
import matplotlib.pyplot as plt
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
batch_size = 128
trainset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=0)
testset = torchvision.datasets.MNIST(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=0)
classes = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9')
########################################################################
# Let us show some of the training images, for fun.
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)), cmap='gray')
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
########################################################################
# 2. Define a Neural Network
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28 * 28, 1024)
self.fc2 = nn.Linear(1024, 1024)
self.fc3 = nn.Linear(1024, 10)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
net.to(device)
########################################################################
# 3. Define a Loss function and optimizer
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Let's use a Classification Cross-Entropy loss
criterion = nn.CrossEntropyLoss()
########################################################################
# 4. Train the network
# ^^^^^^^^^^^^^^^^^^^^
#
# This is when things start to get interesting.
# We simply have to loop over our data iterator, and feed the inputs to the
# network and optimize.
def eval():
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
inputs, labels = data[0].to(device), data[1].to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return correct/total
L=20
optimizer_to_run = "sgd"
errors = list()
errors.append(1-eval())
if optimizer_to_run == "entropy-sgd":
print("Running Entropy-SGD optimizer")
optimizer = EntropySGD(net.parameters(), momentum=0.9, nesterov=True)
for epoch in range(5): # loop over the dataset multiple times
dataiter = iter(trainloader)
def closure():
data = dataiter.next()
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
return loss
for step in range(len(dataiter)//L):
optimizer.step(closure)
err = 1-eval()
errors.append(err)
print("epoch done", epoch)
elif optimizer_to_run == "sgd":
print("Running SGD optimizer")
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9, nesterov=True)
for epoch in range(5): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
err = 1 - eval()
errors.append(err)
print("epoch done", epoch)
print('Finished Training')
print("errors:", errors)
plt.plot([err*100 for err in errors])
plt.xlabel('epoch')
plt.ylabel('error')
plt.show()
########################################################################
# Let's quickly save our trained model:
PATH = './mnist_net.pth'
torch.save(net.state_dict(), PATH)
########################################################################
# 5. Test the network on the test data
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
net = Net()
net.load_state_dict(torch.load(PATH))
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * (1-errors[-1])))
# what are the classes that performed well, and the classes that did
# not perform well:
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
del dataiter