From 020ac2562934f85c4e80fc8e3aa46e94b34ada8c Mon Sep 17 00:00:00 2001 From: Nees Jan van Eck Date: Mon, 29 Aug 2022 21:58:29 +0200 Subject: [PATCH] Add docs --- docs/.nojekyll | 1 + docs/assets/highlight.css | 64 + docs/assets/icons.css | 1043 ++++++++++++ docs/assets/icons.png | Bin 0 -> 9615 bytes docs/assets/icons@2x.png | Bin 0 -> 28144 bytes docs/assets/main.js | 52 + docs/assets/search.js | 1 + docs/assets/style.css | 1414 +++++++++++++++++ docs/assets/widgets.png | Bin 0 -> 480 bytes docs/assets/widgets@2x.png | Bin 0 -> 855 bytes .../classes/index.CPMClusteringAlgorithm.html | 82 + docs/classes/index.Clustering.html | 72 + docs/classes/index.ComponentsAlgorithm.html | 8 + .../index.FastLocalMovingAlgorithm.html | 153 ++ ...dex.GradientDescentVOSLayoutAlgorithm.html | 177 +++ ...dex.IncrementalCPMClusteringAlgorithm.html | 91 ++ ...index.IterativeCPMClusteringAlgorithm.html | 122 ++ docs/classes/index.Layout.html | 78 + docs/classes/index.LeidenAlgorithm.html | 193 +++ docs/classes/index.LocalMergingAlgorithm.html | 135 ++ docs/classes/index.LouvainAlgorithm.html | 168 ++ docs/classes/index.Network.html | 205 +++ .../index.StandardLocalMovingAlgorithm.html | 117 ++ docs/classes/index.VOSLayoutAlgorithm.html | 72 + docs/classes/run.NetworkAnalysis.html | 5 + docs/classes/run.NetworkClustering.html | 27 + docs/classes/run.NetworkHelper.html | 1 + docs/classes/run.NetworkLayout.html | 32 + docs/classes/utils.Random.html | 17 + docs/enums/run.ClusteringAlgorithms.html | 3 + .../enums/run.ClusteringQualityFunctions.html | 3 + docs/enums/run.LayoutQualityFunctions.html | 3 + docs/enums/run.NormalizationMethods.html | 3 + docs/index.html | 7 + .../interfaces/index.ClusteringAlgorithm.html | 8 + ...ndex.ClusteringParametersWithClusters.html | 6 + .../index.ClusteringParametersWithNNodes.html | 5 + .../index.IncrementalClusteringAlgorithm.html | 16 + ...tConstructorParametersWithCoordinates.html | 6 + ...LayoutConstructorParametersWithNNodes.html | 5 + ...structorParametersWithNNodesAndRandom.html | 8 + .../index.NetworkConstructorParameters.html | 21 + .../index.QualityClusteringAlgorithm.html | 15 + .../index.QualityLayoutAlgorithm.html | 15 + docs/modules.html | 1 + docs/modules/index.html | 8 + docs/modules/run.html | 28 + docs/modules/utils.html | 83 + 48 files changed, 4574 insertions(+) create mode 100644 docs/.nojekyll create mode 100644 docs/assets/highlight.css create mode 100644 docs/assets/icons.css create mode 100644 docs/assets/icons.png create mode 100644 docs/assets/icons@2x.png create mode 100644 docs/assets/main.js create mode 100644 docs/assets/search.js create mode 100644 docs/assets/style.css create mode 100644 docs/assets/widgets.png create mode 100644 docs/assets/widgets@2x.png create mode 100644 docs/classes/index.CPMClusteringAlgorithm.html create mode 100644 docs/classes/index.Clustering.html create mode 100644 docs/classes/index.ComponentsAlgorithm.html create mode 100644 docs/classes/index.FastLocalMovingAlgorithm.html create mode 100644 docs/classes/index.GradientDescentVOSLayoutAlgorithm.html create mode 100644 docs/classes/index.IncrementalCPMClusteringAlgorithm.html create mode 100644 docs/classes/index.IterativeCPMClusteringAlgorithm.html create mode 100644 docs/classes/index.Layout.html create mode 100644 docs/classes/index.LeidenAlgorithm.html create mode 100644 docs/classes/index.LocalMergingAlgorithm.html create mode 100644 docs/classes/index.LouvainAlgorithm.html create mode 100644 docs/classes/index.Network.html create mode 100644 docs/classes/index.StandardLocalMovingAlgorithm.html create mode 100644 docs/classes/index.VOSLayoutAlgorithm.html create mode 100644 docs/classes/run.NetworkAnalysis.html create mode 100644 docs/classes/run.NetworkClustering.html create mode 100644 docs/classes/run.NetworkHelper.html create mode 100644 docs/classes/run.NetworkLayout.html create mode 100644 docs/classes/utils.Random.html create mode 100644 docs/enums/run.ClusteringAlgorithms.html create mode 100644 docs/enums/run.ClusteringQualityFunctions.html create mode 100644 docs/enums/run.LayoutQualityFunctions.html create mode 100644 docs/enums/run.NormalizationMethods.html create mode 100644 docs/index.html create mode 100644 docs/interfaces/index.ClusteringAlgorithm.html create mode 100644 docs/interfaces/index.ClusteringParametersWithClusters.html create mode 100644 docs/interfaces/index.ClusteringParametersWithNNodes.html create mode 100644 docs/interfaces/index.IncrementalClusteringAlgorithm.html create mode 100644 docs/interfaces/index.LayoutConstructorParametersWithCoordinates.html create mode 100644 docs/interfaces/index.LayoutConstructorParametersWithNNodes.html create mode 100644 docs/interfaces/index.LayoutConstructorParametersWithNNodesAndRandom.html create mode 100644 docs/interfaces/index.NetworkConstructorParameters.html create mode 100644 docs/interfaces/index.QualityClusteringAlgorithm.html create mode 100644 docs/interfaces/index.QualityLayoutAlgorithm.html create mode 100644 docs/modules.html create mode 100644 docs/modules/index.html create mode 100644 docs/modules/run.html create mode 100644 docs/modules/utils.html diff --git a/docs/.nojekyll b/docs/.nojekyll new file mode 100644 index 0000000..e2ac661 --- /dev/null +++ b/docs/.nojekyll @@ -0,0 +1 @@ +TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false. \ No newline at end of file diff --git a/docs/assets/highlight.css b/docs/assets/highlight.css new file mode 100644 index 0000000..b1b8926 --- /dev/null +++ b/docs/assets/highlight.css @@ -0,0 +1,64 @@ +:root { + --light-hl-0: #098658; + --dark-hl-0: #B5CEA8; + --light-hl-1: #000000; + --dark-hl-1: #D4D4D4; + --light-hl-2: #001080; + --dark-hl-2: #9CDCFE; + --light-hl-3: #795E26; + --dark-hl-3: #DCDCAA; + --light-hl-4: #A31515; + --dark-hl-4: #CE9178; + --light-hl-5: #CD3131; + --dark-hl-5: #F44747; + --light-code-background: #F5F5F5; + --dark-code-background: #1E1E1E; +} + +@media (prefers-color-scheme: light) { :root { + --hl-0: var(--light-hl-0); + --hl-1: var(--light-hl-1); + --hl-2: var(--light-hl-2); + --hl-3: var(--light-hl-3); + --hl-4: var(--light-hl-4); + --hl-5: var(--light-hl-5); + --code-background: var(--light-code-background); +} } + +@media (prefers-color-scheme: dark) { :root { + --hl-0: var(--dark-hl-0); + --hl-1: var(--dark-hl-1); + --hl-2: var(--dark-hl-2); + --hl-3: var(--dark-hl-3); + --hl-4: var(--dark-hl-4); + --hl-5: var(--dark-hl-5); + --code-background: var(--dark-code-background); +} } + +body.light { + --hl-0: var(--light-hl-0); + --hl-1: var(--light-hl-1); + --hl-2: var(--light-hl-2); + --hl-3: var(--light-hl-3); + --hl-4: var(--light-hl-4); + --hl-5: var(--light-hl-5); + --code-background: var(--light-code-background); +} + +body.dark { + --hl-0: var(--dark-hl-0); + --hl-1: var(--dark-hl-1); + --hl-2: var(--dark-hl-2); + --hl-3: var(--dark-hl-3); + --hl-4: var(--dark-hl-4); + --hl-5: var(--dark-hl-5); + --code-background: var(--dark-code-background); +} + +.hl-0 { color: var(--hl-0); } +.hl-1 { color: var(--hl-1); } +.hl-2 { color: var(--hl-2); } +.hl-3 { color: var(--hl-3); } +.hl-4 { color: var(--hl-4); } +.hl-5 { color: var(--hl-5); } +pre, code { background: var(--code-background); } diff --git a/docs/assets/icons.css b/docs/assets/icons.css new file mode 100644 index 0000000..776a356 --- /dev/null +++ b/docs/assets/icons.css @@ -0,0 +1,1043 @@ +.tsd-kind-icon { + display: block; + position: relative; + padding-left: 20px; + text-indent: -20px; +} +.tsd-kind-icon:before { + content: ""; + display: inline-block; + vertical-align: middle; + width: 17px; + height: 17px; + margin: 0 3px 2px 0; + background-image: url(./icons.png); +} +@media (-webkit-min-device-pixel-ratio: 1.5), (min-resolution: 144dpi) { + .tsd-kind-icon:before { + background-image: url(./icons@2x.png); + background-size: 238px 204px; + } +} + +.tsd-signature.tsd-kind-icon:before { + background-position: 0 -153px; +} + +.tsd-kind-object-literal > .tsd-kind-icon:before { + background-position: 0px -17px; +} +.tsd-kind-object-literal.tsd-is-protected > .tsd-kind-icon:before { + background-position: -17px -17px; +} +.tsd-kind-object-literal.tsd-is-private > .tsd-kind-icon:before { + background-position: -34px -17px; +} + +.tsd-kind-class > .tsd-kind-icon:before { + background-position: 0px -34px; +} +.tsd-kind-class.tsd-is-protected > .tsd-kind-icon:before { + background-position: -17px -34px; +} +.tsd-kind-class.tsd-is-private > .tsd-kind-icon:before { + background-position: -34px -34px; +} + +.tsd-kind-class.tsd-has-type-parameter > .tsd-kind-icon:before { + background-position: 0px -51px; +} +.tsd-kind-class.tsd-has-type-parameter.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -17px -51px; +} +.tsd-kind-class.tsd-has-type-parameter.tsd-is-private > .tsd-kind-icon:before { + background-position: -34px -51px; +} + +.tsd-kind-interface > .tsd-kind-icon:before { + background-position: 0px -68px; +} +.tsd-kind-interface.tsd-is-protected > .tsd-kind-icon:before { + background-position: -17px -68px; +} +.tsd-kind-interface.tsd-is-private > .tsd-kind-icon:before { + background-position: -34px -68px; +} + +.tsd-kind-interface.tsd-has-type-parameter > .tsd-kind-icon:before { + background-position: 0px -85px; +} +.tsd-kind-interface.tsd-has-type-parameter.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -17px -85px; +} +.tsd-kind-interface.tsd-has-type-parameter.tsd-is-private + > .tsd-kind-icon:before { + background-position: -34px -85px; +} + +.tsd-kind-namespace > .tsd-kind-icon:before { + background-position: 0px -102px; +} +.tsd-kind-namespace.tsd-is-protected > .tsd-kind-icon:before { + background-position: -17px -102px; +} +.tsd-kind-namespace.tsd-is-private > .tsd-kind-icon:before { + background-position: -34px -102px; +} + +.tsd-kind-module > .tsd-kind-icon:before { + background-position: 0px -102px; +} +.tsd-kind-module.tsd-is-protected > .tsd-kind-icon:before { + background-position: -17px -102px; +} +.tsd-kind-module.tsd-is-private > .tsd-kind-icon:before { + background-position: -34px -102px; +} + +.tsd-kind-enum > .tsd-kind-icon:before { + background-position: 0px -119px; +} +.tsd-kind-enum.tsd-is-protected > .tsd-kind-icon:before { + background-position: -17px -119px; +} +.tsd-kind-enum.tsd-is-private > .tsd-kind-icon:before { + background-position: -34px -119px; +} + +.tsd-kind-enum-member > .tsd-kind-icon:before { + background-position: 0px -136px; +} +.tsd-kind-enum-member.tsd-is-protected > .tsd-kind-icon:before { + background-position: -17px -136px; +} +.tsd-kind-enum-member.tsd-is-private > .tsd-kind-icon:before { + background-position: -34px -136px; +} + +.tsd-kind-signature > .tsd-kind-icon:before { + background-position: 0px -153px; +} +.tsd-kind-signature.tsd-is-protected > .tsd-kind-icon:before { + background-position: -17px -153px; +} +.tsd-kind-signature.tsd-is-private > .tsd-kind-icon:before { + background-position: -34px -153px; +} + +.tsd-kind-type-alias > .tsd-kind-icon:before { + background-position: 0px -170px; +} +.tsd-kind-type-alias.tsd-is-protected > .tsd-kind-icon:before { + background-position: -17px -170px; +} +.tsd-kind-type-alias.tsd-is-private > .tsd-kind-icon:before { + background-position: -34px -170px; +} + +.tsd-kind-type-alias.tsd-has-type-parameter > .tsd-kind-icon:before { + background-position: 0px -187px; +} +.tsd-kind-type-alias.tsd-has-type-parameter.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -17px -187px; +} +.tsd-kind-type-alias.tsd-has-type-parameter.tsd-is-private + > .tsd-kind-icon:before { + background-position: -34px -187px; +} + +.tsd-kind-variable > .tsd-kind-icon:before { + background-position: -136px -0px; +} +.tsd-kind-variable.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -0px; +} +.tsd-kind-variable.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -0px; +} +.tsd-kind-variable.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -0px; +} +.tsd-kind-variable.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -0px; +} +.tsd-kind-variable.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -0px; +} +.tsd-kind-variable.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -0px; +} +.tsd-kind-variable.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -0px; +} +.tsd-kind-variable.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -0px; +} +.tsd-kind-variable.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -0px; +} +.tsd-kind-variable.tsd-parent-kind-enum.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -0px; +} +.tsd-kind-variable.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -0px; +} +.tsd-kind-variable.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -0px; +} + +.tsd-kind-property > .tsd-kind-icon:before { + background-position: -136px -0px; +} +.tsd-kind-property.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -0px; +} +.tsd-kind-property.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -0px; +} +.tsd-kind-property.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -0px; +} +.tsd-kind-property.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -0px; +} +.tsd-kind-property.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -0px; +} +.tsd-kind-property.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -0px; +} +.tsd-kind-property.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -0px; +} +.tsd-kind-property.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -0px; +} +.tsd-kind-property.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -0px; +} +.tsd-kind-property.tsd-parent-kind-enum.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -0px; +} +.tsd-kind-property.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -0px; +} +.tsd-kind-property.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -0px; +} + +.tsd-kind-get-signature > .tsd-kind-icon:before { + background-position: -136px -17px; +} +.tsd-kind-get-signature.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -17px; +} +.tsd-kind-get-signature.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -17px; +} +.tsd-kind-get-signature.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -17px; +} +.tsd-kind-get-signature.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -17px; +} +.tsd-kind-get-signature.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -17px; +} +.tsd-kind-get-signature.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -17px; +} +.tsd-kind-get-signature.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -17px; +} +.tsd-kind-get-signature.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -17px; +} +.tsd-kind-get-signature.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -17px; +} +.tsd-kind-get-signature.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -17px; +} +.tsd-kind-get-signature.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -17px; +} +.tsd-kind-get-signature.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -17px; +} + +.tsd-kind-set-signature > .tsd-kind-icon:before { + background-position: -136px -34px; +} +.tsd-kind-set-signature.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -34px; +} +.tsd-kind-set-signature.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -34px; +} +.tsd-kind-set-signature.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -34px; +} +.tsd-kind-set-signature.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -34px; +} +.tsd-kind-set-signature.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -34px; +} +.tsd-kind-set-signature.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -34px; +} +.tsd-kind-set-signature.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -34px; +} +.tsd-kind-set-signature.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -34px; +} +.tsd-kind-set-signature.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -34px; +} +.tsd-kind-set-signature.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -34px; +} +.tsd-kind-set-signature.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -34px; +} +.tsd-kind-set-signature.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -34px; +} + +.tsd-kind-accessor > .tsd-kind-icon:before { + background-position: -136px -51px; +} +.tsd-kind-accessor.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -51px; +} +.tsd-kind-accessor.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -51px; +} +.tsd-kind-accessor.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -51px; +} +.tsd-kind-accessor.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -51px; +} +.tsd-kind-accessor.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -51px; +} +.tsd-kind-accessor.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -51px; +} +.tsd-kind-accessor.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -51px; +} +.tsd-kind-accessor.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -51px; +} +.tsd-kind-accessor.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -51px; +} +.tsd-kind-accessor.tsd-parent-kind-enum.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -51px; +} +.tsd-kind-accessor.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -51px; +} +.tsd-kind-accessor.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -51px; +} + +.tsd-kind-function > .tsd-kind-icon:before { + background-position: -136px -68px; +} +.tsd-kind-function.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -68px; +} +.tsd-kind-function.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -68px; +} +.tsd-kind-function.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -68px; +} +.tsd-kind-function.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -68px; +} +.tsd-kind-function.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -68px; +} +.tsd-kind-function.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -68px; +} +.tsd-kind-function.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -68px; +} +.tsd-kind-function.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -68px; +} +.tsd-kind-function.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -68px; +} +.tsd-kind-function.tsd-parent-kind-enum.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -68px; +} +.tsd-kind-function.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -68px; +} +.tsd-kind-function.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -68px; +} + +.tsd-kind-method > .tsd-kind-icon:before { + background-position: -136px -68px; +} +.tsd-kind-method.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -68px; +} +.tsd-kind-method.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -68px; +} +.tsd-kind-method.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -68px; +} +.tsd-kind-method.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -68px; +} +.tsd-kind-method.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -68px; +} +.tsd-kind-method.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -68px; +} +.tsd-kind-method.tsd-parent-kind-class.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -68px; +} +.tsd-kind-method.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -68px; +} +.tsd-kind-method.tsd-parent-kind-enum.tsd-is-protected > .tsd-kind-icon:before { + background-position: -187px -68px; +} +.tsd-kind-method.tsd-parent-kind-enum.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -68px; +} +.tsd-kind-method.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -68px; +} +.tsd-kind-method.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -68px; +} + +.tsd-kind-call-signature > .tsd-kind-icon:before { + background-position: -136px -68px; +} +.tsd-kind-call-signature.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -68px; +} +.tsd-kind-call-signature.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -68px; +} +.tsd-kind-call-signature.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -68px; +} +.tsd-kind-call-signature.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -68px; +} +.tsd-kind-call-signature.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -68px; +} +.tsd-kind-call-signature.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -68px; +} +.tsd-kind-call-signature.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -68px; +} +.tsd-kind-call-signature.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -68px; +} +.tsd-kind-call-signature.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -68px; +} +.tsd-kind-call-signature.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -68px; +} +.tsd-kind-call-signature.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -68px; +} +.tsd-kind-call-signature.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -68px; +} + +.tsd-kind-function.tsd-has-type-parameter > .tsd-kind-icon:before { + background-position: -136px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -153px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-parent-kind-class + > .tsd-kind-icon:before { + background-position: -51px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-parent-kind-enum + > .tsd-kind-icon:before { + background-position: -170px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-parent-kind-interface + > .tsd-kind-icon:before { + background-position: -204px -85px; +} +.tsd-kind-function.tsd-has-type-parameter.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -85px; +} + +.tsd-kind-method.tsd-has-type-parameter > .tsd-kind-icon:before { + background-position: -136px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -153px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-parent-kind-class + > .tsd-kind-icon:before { + background-position: -51px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-parent-kind-enum + > .tsd-kind-icon:before { + background-position: -170px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-parent-kind-interface + > .tsd-kind-icon:before { + background-position: -204px -85px; +} +.tsd-kind-method.tsd-has-type-parameter.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -85px; +} + +.tsd-kind-constructor > .tsd-kind-icon:before { + background-position: -136px -102px; +} +.tsd-kind-constructor.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -102px; +} +.tsd-kind-constructor.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -102px; +} +.tsd-kind-constructor.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -102px; +} +.tsd-kind-constructor.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -102px; +} +.tsd-kind-constructor.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -102px; +} +.tsd-kind-constructor.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -102px; +} +.tsd-kind-constructor.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -102px; +} +.tsd-kind-constructor.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -102px; +} +.tsd-kind-constructor.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -102px; +} +.tsd-kind-constructor.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -102px; +} +.tsd-kind-constructor.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -102px; +} +.tsd-kind-constructor.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -102px; +} + +.tsd-kind-constructor-signature > .tsd-kind-icon:before { + background-position: -136px -102px; +} +.tsd-kind-constructor-signature.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -102px; +} +.tsd-kind-constructor-signature.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -102px; +} +.tsd-kind-constructor-signature.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -102px; +} +.tsd-kind-constructor-signature.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -102px; +} +.tsd-kind-constructor-signature.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -102px; +} +.tsd-kind-constructor-signature.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -102px; +} +.tsd-kind-constructor-signature.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -102px; +} +.tsd-kind-constructor-signature.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -102px; +} +.tsd-kind-constructor-signature.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -102px; +} +.tsd-kind-constructor-signature.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -102px; +} +.tsd-kind-constructor-signature.tsd-parent-kind-interface + > .tsd-kind-icon:before { + background-position: -204px -102px; +} +.tsd-kind-constructor-signature.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -102px; +} + +.tsd-kind-index-signature > .tsd-kind-icon:before { + background-position: -136px -119px; +} +.tsd-kind-index-signature.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -119px; +} +.tsd-kind-index-signature.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -119px; +} +.tsd-kind-index-signature.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -119px; +} +.tsd-kind-index-signature.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -119px; +} +.tsd-kind-index-signature.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -119px; +} +.tsd-kind-index-signature.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -119px; +} +.tsd-kind-index-signature.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -119px; +} +.tsd-kind-index-signature.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -119px; +} +.tsd-kind-index-signature.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -119px; +} +.tsd-kind-index-signature.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -119px; +} +.tsd-kind-index-signature.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -119px; +} +.tsd-kind-index-signature.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -119px; +} + +.tsd-kind-event > .tsd-kind-icon:before { + background-position: -136px -136px; +} +.tsd-kind-event.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -136px; +} +.tsd-kind-event.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -136px; +} +.tsd-kind-event.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -136px; +} +.tsd-kind-event.tsd-parent-kind-class.tsd-is-inherited > .tsd-kind-icon:before { + background-position: -68px -136px; +} +.tsd-kind-event.tsd-parent-kind-class.tsd-is-protected > .tsd-kind-icon:before { + background-position: -85px -136px; +} +.tsd-kind-event.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -136px; +} +.tsd-kind-event.tsd-parent-kind-class.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -136px; +} +.tsd-kind-event.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -136px; +} +.tsd-kind-event.tsd-parent-kind-enum.tsd-is-protected > .tsd-kind-icon:before { + background-position: -187px -136px; +} +.tsd-kind-event.tsd-parent-kind-enum.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -136px; +} +.tsd-kind-event.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -136px; +} +.tsd-kind-event.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -136px; +} + +.tsd-is-static > .tsd-kind-icon:before { + background-position: -136px -153px; +} +.tsd-is-static.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -153px; +} +.tsd-is-static.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -153px; +} +.tsd-is-static.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -153px; +} +.tsd-is-static.tsd-parent-kind-class.tsd-is-inherited > .tsd-kind-icon:before { + background-position: -68px -153px; +} +.tsd-is-static.tsd-parent-kind-class.tsd-is-protected > .tsd-kind-icon:before { + background-position: -85px -153px; +} +.tsd-is-static.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -153px; +} +.tsd-is-static.tsd-parent-kind-class.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -153px; +} +.tsd-is-static.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -153px; +} +.tsd-is-static.tsd-parent-kind-enum.tsd-is-protected > .tsd-kind-icon:before { + background-position: -187px -153px; +} +.tsd-is-static.tsd-parent-kind-enum.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -153px; +} +.tsd-is-static.tsd-parent-kind-interface > .tsd-kind-icon:before { + background-position: -204px -153px; +} +.tsd-is-static.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -153px; +} + +.tsd-is-static.tsd-kind-function > .tsd-kind-icon:before { + background-position: -136px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-parent-kind-interface + > .tsd-kind-icon:before { + background-position: -204px -170px; +} +.tsd-is-static.tsd-kind-function.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -170px; +} + +.tsd-is-static.tsd-kind-method > .tsd-kind-icon:before { + background-position: -136px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-parent-kind-interface + > .tsd-kind-icon:before { + background-position: -204px -170px; +} +.tsd-is-static.tsd-kind-method.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -170px; +} + +.tsd-is-static.tsd-kind-call-signature > .tsd-kind-icon:before { + background-position: -136px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -153px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-parent-kind-class + > .tsd-kind-icon:before { + background-position: -51px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-parent-kind-enum + > .tsd-kind-icon:before { + background-position: -170px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-parent-kind-interface + > .tsd-kind-icon:before { + background-position: -204px -170px; +} +.tsd-is-static.tsd-kind-call-signature.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -170px; +} + +.tsd-is-static.tsd-kind-event > .tsd-kind-icon:before { + background-position: -136px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-is-protected > .tsd-kind-icon:before { + background-position: -153px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-is-private > .tsd-kind-icon:before { + background-position: -119px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-parent-kind-class > .tsd-kind-icon:before { + background-position: -51px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-parent-kind-class.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -68px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-parent-kind-class.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -85px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-parent-kind-class.tsd-is-protected.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -102px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-parent-kind-class.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-parent-kind-enum > .tsd-kind-icon:before { + background-position: -170px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-parent-kind-enum.tsd-is-protected + > .tsd-kind-icon:before { + background-position: -187px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-parent-kind-enum.tsd-is-private + > .tsd-kind-icon:before { + background-position: -119px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-parent-kind-interface + > .tsd-kind-icon:before { + background-position: -204px -187px; +} +.tsd-is-static.tsd-kind-event.tsd-parent-kind-interface.tsd-is-inherited + > .tsd-kind-icon:before { + background-position: -221px -187px; +} diff --git a/docs/assets/icons.png b/docs/assets/icons.png new file mode 100644 index 0000000000000000000000000000000000000000..3836d5fe46e48bbe186116855aae879c23935327 GIT binary patch literal 9615 zcmZ{Kc_36>+`rwViHMAd#!?~-${LfgP1$7)F~(N1WKRsT#$-?;yNq3ylq}iztr1xY z8DtsBI<`UHtDfii{r-60Kg@OSJ?GqW=bZ2NvwY{NzOLpergKbGR8*&KBGn9m;|lQC z2Vwv|y`nSufCHVQijE2uRauuTeKZL;=kiiF^SbTk;N^?*u%}Y7bF;O-aMK0lXm4nb zvU~Kf+x|Kgl@Ro%nu?L%x8-yetd((kCqY|t;-%}@Y3Ez_m(HTRt=ekeUQ2n4-aRvJ zrlKaWct8JSc8Kxl4KHu+3VW1L`9%n~_KC5}g6&tFXqyKT-}R0?EdkYqCmQot47^9Z z6;opqR@7Nq-s|6=e6*0^`}+X1kg>CpuGnbpL7{xFTa|8nymC0{xgx*tI7n4mTKZNA znsd@3eVsV>YhATuv~+5(^Vu4j?)Tn`{x@8ijIA;wdf`+0P3$vnSrcWFXXc{Lx`1Z7 z%-n(BM(owD$7LzqJx)(f^Cusecq>OW z=h6n4YzSVM-V!-DK(sLT`!W~}($=O$9|ie`>_fpH0=1G1tiIFw($?~{5T>`74|p0H z``5=UydE)!CiFvmECW|s^TzG9*7pN|KknkVm3C{fEu30gffX&8iCm? zTFPm6*k%Hog`Q6JGj@dg9Z5nlAc6ApUe>;6xauB0-u!?wMU92jVL|3EcP9gEu5^wH z%tXRy#>HCEs*?KgMf73UcJ!lJ?x<6+)eJ{mEIS|HMDP7(7!(< z@X;?ACT8mncW9*XIaiJPW}Mw@b0W||)!sYnLw)0j4&-rXQgJhnQ2?frg1Nfk&JpmV8F=dDZl)e%#Grs|&0th7_o) z?7hQn<1078qcq?#;)CH=2kBBiGt37EtcXfpTXtHB59dr9=B~jI`yPm-Q?(ys=ajAu zGY;eS^z&WFvztZI3I~}*l}_lI^}6D<&CZ94;|&G9_pMx!C~$~EL4^8`QjT#|tqxxk zhl4CdxppbDiOk!Ht#SVAK4gf6Cr#=U&1sVxZ`y-X zTSi#@wHf(?(Dd6ypNOyshRZ*tneVP^W?y?$ur_!9iD-vY{&Q5(ooX2;`SkUjwEYA~ zwGcylCT4_`MZobm(0v$U(IhfYXxyjNJ@ztpH0sDmfpn|LMp3eM(R4uqKi_q1=D1-d z%GdV<&2+_9k@sc44xhIjqktRA2!Su|vzM0R-@#MK&{RdLoU#$Hc?{{JItvX{hKCtc zQNqZpkfG^@LGJRZM4H_>`F=N;O*+_`>M_ko_XWCgu@}ntqLX8VSeZQ_25Z8|^!d?o z$~}~9|`ZW9d_o<=8&K^~;Cr08b;qgq{(*e*sNt00lO2lZ;m-b<`Rl}=Lr6iQ8+$&br z!RLn{5a}j1Dh^|_1)Q?<;iBSrS0V|c_D@3}mc2d!%tV1VN?BC@clkFdx?HB&9KOTF z)9eHpmUEYsCqx^%JHuNdwY zz9P3oPYuTAXZVY}LRp&2qNl$pbsXL1GJ@wx?@CTO!acs+OFfW_U6?&As-(GJED}RR zO}B+Kxph7aUUm>i3rbPZQGXN}oQq;u`yTnFDAJ*d$4gjEJH!JPyt6V{cOUp*Jbyol zE$8wh)T=vpJOWRbv}HvR(cUSlO}ePIPdJ`J@yp=IC&E6K%r?QfW7F&%p!H~@?%yj5 z&MpiV!hyfukD56A097f!0+ANt`JSB~oLak75oKQN7FH=rQbX#Eak37|4&mqp@S~TA zOo51)xQxX}5NQ(3I_UeR4B;P0Q#x$_lDce78ET`Blo;`Hj*R;b8slZS7Oak(LjDuE z3z?-~-U@vWe*cEOsf^9|duH9};Pe)!=Ky+QQ!jr2VV-jMUH-F>oB>Ds zDJw}jm%V?OT^fu1y`$`yRdaW03L?)6vmInxhAsGrPhWIP8?=speMFf9Inn4^t zs$!88*B~c1A2J6t0~hgK2BJ_Pl23l=oeQQqjI2(4Mcv6U_#9#$PEN|qz36rCZ5$@I zNF1LpRe%ZG4qwuYr7ZdaynrPs?spt;9VbQM$462zbksMVhAOqPunrR7@Nbv#5;VKk zJB7xC?~QXd(e9REiLixHxRGhLcKR#0va}|LMS`AXKGOIGFKQv?=+>zf^ zN5XLjX6^`zh*%1UG_QV1H`@z!HZgC+OT2`+_B( z)J95hk;3C+K4XCswSP}au;fx=47~*$k`RAaYEU-qb03y0#x|&>LAeiXgri5E(!h9k z|9OVt@sk1-4+>0?ELyw|zs`~<95M=%o?Gix$?8z4Gz3Kpw|b>?BcD&s{X)-aXg!GJ zyq&`ZEP{K^u7ActXP$gGnO#F0Sr+QUZe0&d5*Yhw9A?C4(Sx2j3QKAlUpkQz7nji^ z%y8F|W{ypj(T%Bf#Wgyvq4szMo?*U-;3IGBRg1fK9!h-=YRsZ_+t~2!-)=pr;)Vnk zmt95&wMb02toOf`I9>M^Kv3LqKb_-#jauF&cGrWsCnMt?p7*uh zevugda={D04DB#7wR375=1i5}Z9fi3r)!F#7qmX9`SjppE&%8l8bKt+ADRMTWRv21 z4L&PldV8YpHw3b^`p0uWlIm#J&K65-y4lQW0VzZR!4#gfeT{b#fL1e*)Z*Ux}M^}bO%OM7uXip_4! zL@yo@q{utZeVV?3CtXs}i>nI|%26fwuzt0f#96fQ!{=dEX^YKnvIk*D%y9Cin;9R) zi{?)baJhgFs$1$SOZESTpldw2H&FD=v*v@1cA!`|s;avDKHa>Q+uJ8qhy!9%C4&lJSTN4OeydYOm4S?Bj7*e{xRYbU9Xos)R7qZT3dBBD5{ zo+(E3pR{>>)}hFhE+}!yYP0V+CVhyAq+RV{^X`XA3{iXj(ir$k@u|t8ZJ1ZnHq2dd zD$0RHmGJ=!?T5`*T2zOEJ~y}Nsyt7O)%+!0ulRQdsopJJxoznfpusv=2@zLXIq@^& z>0T5k4lzGCG(DnltLIe@6=ZOG@C(dvmYXfh4IhJfMfY8S?KkT znb7~EDE}Yhg$J1LxB7m`L4VMS(+(SXTQvh_mz!x&M3-6Z zFRB*a%_gVEqI^mL5|c%V=l_oi%|~h>gL0SB4QH5uonWd#={KPg6}6ES)zk0~#3^KJ zJq@{iqbHe3gyC))jeQ`W;(u3|q)JxuF24|GMsh%v5>>VY-bok%* z1Yl@(5G2UCK=fQck}pAyWV0n{`ML|rsl_N7vmW|frii__zB;ozrQ7{z)y}M^Sg@m_ z;+?{q3sUZs3WxnBbp~CyyL(TA?C*0KIeDPp7w0$!Ijd+M8#}r~vYW)NB*$mG*7-vH z@s^wK07OMxq>WveCEQFQ*p&2gjD1j%i+#G9z##Th`gew>H5=`RwyfPDg2G%f>x3@c z14Oy}pQK?(i06GWLWu%4cGjDoE-tTEI$`9^E?nLT663vu_>6K1e!N>A-^q&tfl$0& zy&>w~+yUelAa!c@xd8iyt^`B^$cj+}h}0i!40K2Ve1KFCDezBzZO8@=k&r)`TNTJ* zzF4Pim>SYL^=~7kW>EyiVHXNMT2)8l#v^IW!pLB_8ZvVfK&m8QHkjsZ)mvd?o$VYG zX#HiWwWlW>N{D85URJ-d)}_3h73|)X=E(6hFzi#TF{$4aSka4TeY>1a_(RIkFBL#O zE0_FoSQI)}+si51ufAqRHhDU=actTRQl@y#2h}xaDv-A&GP&0Qu9V4ED5aWnX z1E#mRT1QSvL!4~%Ozt84nP{&F>VIm6w2q!EPhh^BF-94$4JhCTcrdbDXA3Q&8mPTh zqdPv|X}??B?bIZPpl}z%(zr<8U-NoXjb*L#xyqHHfpIGAgN$5i(E9#rYPYq_tISC4 z2TDkd*uZ;CIhVI2o!||T)Kz`ER@%rTf-&SfmJFF>;d(RW(B6k!1<)uxHM_1G+9BWe zc)k`gBxYMcztqY5@jccaU)CqQ@^G5TBVx(nNf2}D@);3+{D)GzyT{>%dO6ibggS({N!!=P4=M8J}5R*&fgd(w36z0M0D$ z(SN5a`i%sZ9vmaEjiC4)DF}ix&`?mc-vYwK@+}8Gqzj6r6y)lT|Iqwlpj(LXqvh;- zb>jECiiOZ%&Q7gQg7(ix-?-RE*c(O6NG0F-+VCr;701@%L~fyfHnU<;Vk`m3A2{1MSmpii@G*k?KDq0GdZ)|hd`8OHep z8@6wv_|9NKNpe*sc#?zZ1S#}*qk{k<(I99u6(QT#>wf9w^u9~9_>;2d20T=^g-;b5 ze9x~fHZ-JL=J`hq-;W{2SgN)&m9RsVo=%?`JYp`pxEA_>`18Y>XA$rfWm^pQfG3MQ zxT^I1*({tZz2}+!5$AyNUE*jiYwu_S8v<#qZS4e!bGGBdY`3RkgLMf%Kz8s-;7PF+ z6w#-FwV#)PiKGR79miXmrDyv=ZTjc)j>N=&h4F+#G;unBZhhZz?a*;8@bi5`fV4)O zuU5pCs;tvRzbV@P5%W5xLI4I+w*^KExeVlzP4kNRGp-wi3g$lf-I|(o`JQ|u^XfkP zcik+g-5~2lG*oHfjLCpfNalFwz=4ZY>$Rc-QGpws&tCfFZUuJDL)3et%ap*$Q=-v0 zgLfsn-&%#+wnox~@)6ppx30sK(UJg1dCAvQF&}DkoPI+uX_wH))iaYvWtl}BtVKpU&MN= z0GdENbhdLgIwL-#_phGK;mZRlk4zq8*)akvV5zRX@jFUmvcr#3p99P@4z@m|bz-)^ zbZl8Wt?hR*z(sEZl;2PaILIG#835i@YoZQ@EwrD9IOBl7BpJX(ilLgcd)KCZAzo^b z6Z{|~=H;$D2dD53tejr_jx7^y-zT{SNZpNjn4+wJQX~K#LcrlKOv=D5xk%QXD{tg; z+xh`PvMV*HC*rF?xyjK5@KsMl5*w`r@wL#r13uFpso~#^oYIFc^&gGNS825eqFttU2_sG%_ z;X8VXD#Ol4X&$2B_Z$*&-)ZIUXf9I%mOOXJ3O%GbGpJfl+9(jY^fF_(b!Gt{{HAA3 zusUOCPDHYT@&*H~7a050c7r-_CaFACp$BXx)5==@fC11Gn|n~~+u@6N-}lvdyl3&6 z<#c_zm0Xp1F!8o2OBbFfgzzC4vno}9XEf40dGaVo;jiwiazo8hZ~iPVD(re=5k;H| zotm286$6nnTeIw>1FY$Ri|t{Lp?o(Fg3g_>|y~Z+16tvyLc@r?t9g7 zBuXyVuu9bC#q`?@OFIhgS)6v^XP@H0ukl2X!RPMsg%`YHMGad z4{VsgxaprFss3X%HbZablb6IdaNdbISVWp7yQXPPn=s7?J9qLEH{4>XAv8}%h&TDg zs()1sh}4at3nL3^%q!?P9BbW80e*ZwU63}CV7pt}gVu;~V6c$9p+*wfhw!zeE-z|V z=k{Ksec2)$Hu&?pRh;*TPk0T$Fc~^oAoBT4q?-Q}Y&3DluXeoMQ0LesTk}pVlf5(I z$dl8;zA0&=L&z*F*H>W7IeiPhTo@P0VTB~vyC2Bm7lCN}t7@NNlKFSHGKkh?z_qij zoYju!#D4b28cdslLdIM5Cmqe&!v^IcRr=qq^?l+P^n@6}fh@)IS81hx)SPAY7osk0)^ulqC1F*{hBNQl+Y}b>XjVXnS_Cc!L zIZ@Jq#mp^E&fKT~t4DM_^S17R@YJ@`(7;zv1mz_Y=~q*Gdg#*yXGxotY=#F|lvhPM zjlE)VHS=8=)njE^c7M|ZiBqARx>9Ib!y91$70iC8jPi$c+ysP}5Q3s`ti&1sx>~oG zI^>^1onS%G`mtq&)cZ15dZ{X^#MOfatyH0I=l%Q)n z7*@kZtC_3?=J_}?_G@?F?UK<0_AhYFclyrS-PkfYhAeVHcF z16x+quy10*2V$A%p_|@C(vlf}j3uY83h(#TSr$(;^8(I={_=YQQWmA9-IlwJv>tQm z=vN-I{TO7X`;qBxwb5w$91YLV?ZD5}pddq(7IdMCH zi>`qAn|#FITi!L5;K!(tYm9r416}Wof}P8~?R9I9Gp(?VA;uQg19MO47*gS7fH*&jBO!+ zA*<^BMccHjJIvGHguBb4a`X z3aZw#!c&Xr8&szD1+gu&;vYfoWo>0Pxfr2%m34tC33fmRbzWF9I_Pqb9nNK@N##9_ z7K)v)des!^owH`MoXY_O?|;^9;comiPx0e78xhnnVvTYt+t+cU1rn_>gaFJsL-iPn)?<9P9cF#4)7q&v+d&6|3G@s-AcJy+m zE&u*GUaMK|x|4GmT(CgBICk`2BP@3rqtjKIRD#uBy}y*d;<>`?W&mGsG;i*_}V&^tlP`%;=g39@jxP z+3lrtg*!i6N;irOpUfKcd;iDl5a`<#kr8RwFm9=^m+ouwwjcXmTB}w5V#9IF^&Bl$ zr1$Ly#cQ<3u86>am9}pk&i%nxu(W&s@>qEDtn_xVtH-_EiQ}iAK4Ssfsdn&L9t=)d z`XOQN7*J)g$Jrtq0=-yeLnHg*23LxYA7$cxz^Yc)I6E-!;{LQwu_wfGw4&MYy7{n< z@{g0Hf)N5gAJKQ1Z&HGPn9x9B7U(m(9K&=+LHAc_D{YdMBZs~x)u1Y8|Oq!`C4(3_9<&$ddi6>R$Nsz z*ti?=jA-Sr_97V}feo+}Lq3-cfpgWR;PLI8s{ve9@?e;2o}0MpquOucipz^DrT}QH z*(<{nLb4h9799hx4&%I8KPj}xcQ}llgcaG1!nRb(PP?m)=CzA4v%6>oOe96H9 zv4mUhw`>V$29k?)$Co>qIqq(~3w4jJ;Hv5(RxjB-j_iEhlF;&|DDC|I8IcT>Vn;RY zhtw5mT0ygXAu=M%{^;GqYuYIMu4H;Mj--5CL}|zMEhOum_o51Y7i|D>$XmUFoe;@1 z%GsTUsKgF4w%-Cr3lg#~h)8;Lk%WQTLBS8r*sE{YBUDw4HU#o}E)8pVIEfWv&14?U z-+Za${OFm=>IA358en)nB5Iaqxw&Xi*ty@uDOX8o2c0tq0^sX>ZXD+Hn|;KY!Omm1 z^%wgf&Zy9Azd?vmU`~zuOOA0{TZ*mAC!_>|avcN83F#c+sFn_6tGo!v?95IUR2bL$ zlO(OlhszqAgy)mNt8PRulC#6u^SL#z-O&@{=_!AzBZ>T4ROorj%fx$A;u8u>saum0ha7p zeHRX-z)PW*@v9bruyAtVI@)PhaEs5kp`xyxTQ`U9$Whwz#z$=U$V|&0w@EfCUS!Ob zACSTE{VeC-0V~ZCpkKq~P4CLgdOeBy>vB+0ZxIt_Cp4aa%vI#LS^K}ui07WNo}5r0 zagMHmq-jqTf-OD<kAvu_ob1mUP%1jxeKqB!1&-)_hP{p74hHE%WM!atyx68j5b zSqwh8aKo|NIOL<2_eiX+iOsRP`{MUt{0iQetB*SL!F_8)_;0f$iJ4(o__4KWuvy_! z8TZ{dTb*rL6VmuN-yl2Z>0glL84u^jAH^DQl}VRI=x0CnuF*|;|My-5aPI;>(mo+m z`nyEOe&k$RG11$vEdDPG7^raBCw|#C*4#pIUoZJNx?4|ZC{)l>+jaSiiJ`GBKf}l) zUk1>%A61hqy!KvfRsM^|u6vwbH5WpfH(I5AdpBAg%rar%zW}nccGxfgRV4&v`tEoGyBq!uz^f zVqWEtxn%j&+Q2Fi$rL)H`M_HExP+?mFyN^){c{JXs{IM}f}p>7lfD zLZ;s)%6a(Ow@`(jP}k~pn@!dv6JhJkZf5UoumHv`g-tcCs)w* z#0sc%t9@Li{p}f*$vg$UiQ*RGZUr=ykDIaxRDU_(QfcURuYrpX*7IQcS$(Buw%VW7 zxaffDgn{-=K@iEh)LlPc3MPzc+qM^>RXr6Y8ASnP&dr6fqmwYILTpmh$E%{Iz%Qz( NZmR35l_G4O{0}dcmS_L~ literal 0 HcmV?d00001 diff --git a/docs/assets/icons@2x.png b/docs/assets/icons@2x.png new file mode 100644 index 0000000000000000000000000000000000000000..5a209e2f6d7f915cc9cb6fe7a4264c8be4db87b0 GIT binary patch literal 28144 zcmeFZcUTka`>%_-5TzIqq$xo`r3nZ`iiBRG(z{ZnN$)K|ii-3S5u{fmRRNLEoAh2n z@4X|01dtAA(50@mzH5K?{+)CF+}EWTz2eMdW-{;n-p}WG1C$hCWW;pD1Ox#ad~k9g4`y4!oVfq@3c(iW~uhy*`T7_0aH7`>`EnYuXVq#+YC==3#rnNM4TqqzM zpi2Elr!3hl!ZdK#y0bV+yVc8rwFEtAX3=QlvJ&e-EsBp)Q`0yKXbNuf-yYw7kh0CD z|Flk1UuHgvoR+*QR0ee&IDUfUzE7*`A=P$6nC;BPI@VJs|F#`Xc>X!`<6%M7XXNok zw^unt1h0m>-&2{GiIGsByulr92XZRrazZs&&M3jJintF7A}cE^uW4zt_r81yHt1I! z6-_gmO@78G3$})kfyhR0^qk?zev_%4R$qSjQI3MAg0)9EM#TOAD=_tf(*)S$7yiiR z&5v>wk3Bn**iD9S_I#2%^vi(^O+gpv2i^A);6^AcH%VC>0nH8|O!jN*L<#RtT z@aF9HMNu*d(BdiZq(LBO%(qsjSot+ZXQd{zLYh#CvOrK(?#u+|XYRylqcXOLk=m!) zBp`~~1dg7kF(Q#m)I8ZHMOD5%m&U)5jGOW@7+sm1N+O~^j*zRG;e4x@OteV=T4yo9 zSG`^0j^S)ZYp2DT>}AR|n$S)4FPI#8#(R~;Y**AZ9`&yqT;p`rks7Nhz;)dn-TgXU zw!^Bo@W6|jfp@}ijsSEFo#x3LnG;`o_yXK@2KuG8cTv&K@=dU?_PK*6=YU9!Ix8l;<_!y*Qc2phVpLM}&t|CuHBv&{M$K?VXtTabi(7kUMwV zl!>5cDNNqK6`Br*B~EcVh#5Z!FgiJZBN5nzpC7?UdAc+&AT0ivd;DA2$@YXMPK6=< z+#U~?*!R0i`3uu|#zDrRRN&j-j>ZOu#h-n#7WO^)@0> zCT6a$LGWwFLcPfN=(3#6`*UIS%uIT=LIXV-RbGE&!!+8)q~dkx`l{aKCe1`{J<5&< zlhRo;JX-UC>5)X;mwR+W96`@&ucHp$jIb~B_w_=mH>In?BLume!Wta=`ca+&7~pek zBVD?f5{nelCaje~EtZn+g3%5GJF}R_b`q}IH$Iom2IRD$^h*R)Cid8Q5~4Dzm!P&Q z<`iI)4wA#l@TwjPL)*9k5Vc!!;`9;bf?HRMm86wi9LI8A%*NGep3g11H{aP)>%l2Q zRMMQU!*0J$hJI5Qs3b=6?}qR7O;BU%Yzufc*ZKBV`}ro7zm=C?OY6Vlabc^r6r7P> z?1c^jD{e4n*Ou441V=Pd1eE8utX@)G5gq72HQAXLZ4l2wKd@yIYC+s) z-mu`E`kj=B!)a^B;pecv4W5oh>_tpj>^NU8L*eH4EhcOxQ|);$x(z(Yb5^tudSptV z%8z{(h@_t`chWkvFX=r!p~Vjhf1AdM>uGK05$1fyLb5D7m0!MUKW=JTZv)bXz9~*F z$yP@U3UE0=$;yjWr8b7C(1^oNDMZVxYYeMtL}ZnvQDkm>S0)=r_ugabEZ}AJ<<_Fu z{I^KKIz+V8K|pK811W5r##z8^S*2fr9Ln zlRG?Zzz8;xu9VSE8s+=(!^TGi1P2hC7%7MUqF=cZqFBtJNW9BROV ziv0cjsUmVvsU^X!`1UivK|dy+fSG$3YH8W0`q${`)taBT9jV{Hfh|&RIaJVvqRIFh zC*Rmvl&3*;XcMiJZ-+Mvfe0xN4N?AvJeABnNdgs(BYb!fK5<1)5UvM!Tz4_aojmUX z#Ymoh)m%fN(>6|#*RP~Lxt1?5);w}yT_lftje3sidO&MxNgcMg9@S+>M%s~y)0i`8 zT_+7LrZ~d<7V^K^C^~ast~@nM04^c5dw*&660^p%^R>n4xzd&jo)Y@ z1r=F09>jFOr%wsj^a3;>N!{rvf(qpkAdWM*5IYCsuwNwoJh7;9I$#`T6-NUIEKsiS;OylQ(XY zQtCiR1dyEGJV=~|zaFOEveB&szAVx*wsyuY?hiBGWR{h0!D zv;G`;F9cnib*YxugasrI^%uy@i)>BvC4V8@! zwy5#iHC#Qar(i0EPA3CuMQbaKy4m$CLjLSNwJs!13b%h{&x7479bv{SjC&3?SO&)3 z6q4nRRP(zOfw-mQrmx@Z64~o}GNXa9YCE$vD-(CLseaF%6HH+WZz4 zbRiJ~zAtA6*i9;z!+zZ?9~V0Lr66|Ae;}U1e#6D^hMhB6XJNHZi{t>DgU&jb=#rPK z@s04Hr_SOr%UCRY_SdDuSw^D*Rzre~4PCqgc)DBYam}@G^TxsTqX%w-yWtYU-Q2IX-a2Z4Kz_-yIe`m;x2bY1F?XZoIH=`uW{$R)ICXxqU$- zG#M6s!fDZwUOA_cs|PXe1T@XN3^UdYyR*t}943A1dTvXp!=%8c%)(s)5y@OJ@@%1a ztlq}Uvhfo3^ZO>ZO|NKfu37JMRRmXfJ_*VOBVnxFFmbq!zc%A+R+w|={11?sJpmca zCeCi;;-*yO)ywzKxa#q?E%@U-+LGH4{=2|reRd-Kz*Ps1$u6sPFO>{K9^k2Y!@=h7rZt472^BCU& z|0MZmbh1HlC3#bcjoX#m73R?H>6oW=45{gu0$S>j`v?``ch#0kGur}QbO_gO3XrB- zS4pz-Yrnqqt-k_LE-&~ox9gd#^n&HE%Z~grM;N@Das8-#U304PA$v*rj36j~qQzYN zsX>8?%q9DhpxrWR@M>30YI^WUDh4bcn+*bYn;~zt_g`$3{#G+=lBmWE;j}5e&vlDa zjsdE(Xg^o(Z|3$Tx>~-q5NrZ}^$y0eMd|h`7Y4OWkgF0(Cu&CfJV03AKfzSGBhMU4bqd4kc`qE!CH4Q^FdOCtUHaZW3R&>S}$! zhk=OYL~3fch$-?wa0)OEkynDzJR=vc^vuUQ$hF(>E(q3{7{4uhC^f@bzHUZT>k%%R zsekA}E`OlGE(x+lP1smp0;Ba7{C$F=@Pp~i$AsJkc)x+3Vf9xQB=aSN>D!T;Y5iU~39#6yoQuj6Bj%kdYC z`72YjnSoF_A)d#@S`|;~F|6TOn%b{4?MWJC4uG&NK=D zqd0rU$A@62MtWD$=Gg>TgO6)b6Vf41#Au&Zq<@p1RG!t}NG8kv#>%{bHuCdAeIao2 zkWX{dyO`XCdv`FlK?jS{48~Uaz;oD6PtoFF0u6HBTHCHh<)5wP<r?9UIw%{psu)`l~*PK0?1^oH}d{D_wF{En-ejdBHTK|(*2$K?xVkG zwYXl8^HAjVOqKQj0f6s~O`)Slp+alXd8@#4Iw?pHys|MW1|l%ipCPeN)|fLB$Dc(9s}LNw@?8G{ zU>U(Vid5}ltIy~zNv>o09)rC()g8O`<5~!qF*Z_?L;+2Sy!WSv=}|67mnOPb!A*2; z^f>okkk+f3+9?Tg&6NBMX%;BtB3Ds#(PZ6E4`X0e`~amc=9QGw3J-$!nw6)l1A8;m zFdl>D?g@J3P-41+3N`R32d*Hq0GWj!{3n&rVA)dpcB+|5`XZFFZI1bKA7d;-x=0wt zy;$6nvCJ$_&JDjWa%`LQYq&(6LqBP7G_+`+4$|qk7IlS4wK{qnP-3!yFO%_fw(8(Q(#|htD?ECEYPeT&anf%0GjGQC<0)vR3x=4pq`@gX z{0?*O(e3p_zu@N9G2O%!F8j&|FRhF(c@BWMxZTpdW0xv^K!`2L39%+Hs0#R>a@n-J#u*kF6~?DIhPrUi@$pR0tS?5wF%PE z(-eYCc#{7tVRzd>j~xO&LBPK62xxwmxrdd{N6!G1hfD0H?fV)_B^PBIm|@~CZXnpdaM=<+?&D8Md^RL00JfP zK|cm@`4bB6muuN!Zck2>k+wh^8kM73#1(%6#^TG;42H{?eTC(h^zB32g{Skc%t3Dn zcHX3$TQhR}n9xXCd$?igvlBH@ZU~p4OO*Gf=$@=w?9vYs)!RYa9V@}xVt8Sr4y_!< zGjn5?gnlSKhqS-YW^o#@NScez6I3x{ zv>meTLLYSK!pa+|kqQI8rWST7_)jL~mqQ}Ou*!V2U-g|ZR+pB%Z@w|HnZrV~uY*w?_gMhSp+4fY?hMmdNXYD(iruAlj0&qga8nQ1=c#y* zgYc@oWp>=|LQ+s})zQ5kv*UF?QMJ2|FN1CzjX$x&TwGJ!4VjOiZxVDVz#r28{^WRn z{o1SYRs*^Nt9(ZX`wad=44v--X~h#aROW$yKE=n-VWRfhI&wn|_X6(` z_WPK(bt4Q8gxJ=b%BW_nNj&h;H;2z`{vi`~)tCBk(zGYBp?f;(Ua+^@+rKm53ld9S zPP#A^Wv7>F7c36IAp7(%S716|mr9fnL?n&Q*?OcmX7>@shP*98yVXmJ{1{z!s;@_D zt0}M~j-0t@?)wY>a9PxzCVtBiTKiS1<;-&hv5CHiv=8d$IOnl?aI_>zR3eW}l*}`T zd7%jWK1w(iqAjU37u~dz-4@O^=PWhD7_yL+z1;-hnPx|je;QFR?I_x6McEg|;`Zuf z_}_7>V@hb=%%^H&>8W{N&Ud5bKD%p(B6#&l@nN^wOdQizb`@g}g1c|qGqGr^c>a1w z|5;G!BbS8(8#mlqM+re6&;L0Ba$evPxRGW!koG@-z@*c+8&^U^7Q+0jgUtgB$)Bh)OGD5oa(ju zL&w{}@q-4qVXtvRtXul%gWH0DxXe$&?MN>z2jh1!ElU%a2;fz@xaTyfs`lnr<` zLv5teGAw`KJIh))Wg8JzoRNMyP>X1rhr)=#Y8O6Nf7>}xLS8!@+&6k0h#H>Nn{`&~ z<h^0MI*wtWWT)UGMw#$-to|sCF?yXL$;_=8T>RsAI7ks*W{$R-UI&M5a3{Gda?9J z3PeWSws3vp1$(`F*+<1X7B6hG<6u)lqr|?N&1Up;Si*MeoRFeRNGZa1=`C?4ZaPvJ zuHL9EQ^d$jd1pu9n6iBgWPMtJyxmfJGQf{a*eag-%E@KZ$^*2_&F#h|LL)2_l*QS9(#5T>)&wtE8a=@FF+vG8N zk>*kU^97;}tRP6EGf5HKhlr6@^Nb7N1`_>QnnYF9-8tncspx59kcfE)TtFun#cCjn zEU2;}6Xu~xx+Bv+O;tKLcuo?~kQbcPghcWdz4-^H!wQOhQukRZRMRk>kfMa~V;A;p zSqpR3D87(4X}j4Awfr<~7h4dgK)pzpZf{bn z^yt`yH4+85n%*$3rL0fWi>l^4|J{Qess(a2+0W-O>gl%xIaVi`l9N3Nq}{$Q?o$#6 zP(6};On20~O*x}!V+=9YO)zz4yeTv@_04tEzA@Muc((5aTR+rHpa6@RymHX{a%Ss{ z+ZVey@TSCpCZq6G3WNWPfd3Z(|HlaUnQ37#)!hnd5VH}%lQbK+^qVrFox87bV{eTd zMjY@0wT+?ndYzV$vST&K{gWpow&Zbq;%=a$(B%@MLh@v!P|L4U zgM9JBN_Gb)g+}3@K$8-*b+GGuC&@6v)Fomd?4){kVQ)620*%U<8saNfLM+ndN~1z> zV$;~rU}Fc&M@|;i!@q(ZqbHdoB(EYYOs>u5jd5A-M`}}pr;g+_B5o2kj-|Pa zF8qc!e5d+kUV>;ih=57(*r24g=6@)>+c%LfGLw_-Bbm7r_`az+tag}5rqG&jrg(-W~CJFkaxZTf@_Ofx@ zzxqF#<4|HKKBpc&B9R1r8t{!k_=WNfzbR?aogs939=bT|!c4N>91ai-wsc4|JdG9y zGpB1A4i1ueuSS{R3h}0^YLpx`pB;Ok2-R5 zZzHya))4+|xc0QJ*&1>3;@0$RcgE3M_rt55cZ9<51j!pV&i`8js3v%e$CG{I{X+yj zruhC$iN%UA-Y%u_?FQq!rBg;{`8h`ZCg^bG&OC=733*%4cUW`DPGqp|OgNy?)-Lky zuY7>yw$@M~Jl&X?9MI2RqOdsWZwzFd6{P)UF5-=GVh z;$}}BvAUMs#V{T@TweGxI7dhuIzFqotm&oQreos6)^Nt1G4l8ce%&u1F<%WFM9t;W zBAEtq#1FS}e7Gq{9nzJ-0@1fhx^+w)&5)h+@I@?kv+h4xs>`xqTMB()kR)QH0W6ODL=b|ea)CmcTzPItT=KH66{L4@p}bW9=F z=+(cM#QUgiq$M^X08=_kUPU7sf!8j#4rN7NO0#TX0-;8=ySO&T7v$C}*`++cHZu0; zRv+{Je*j9;z>+TGv1i76Qc^1lu^>XXp&w}t;MzI_nTpY_m?O?J|UF!?x>j)zIZZ*}uTg|S?56^~@P4iEAwq#7&c^D#OmVAeT^&ib{UcAER@k$$X; zQdR$NNz=G^;6|aY!VuP>0e2>_I^ymyjmC*~Oj(aU>lb7XxoNc&mR~HbdffiYw#m3DLJ)nb-vczmSGI=PaP=yOJ4mrW01pSsP02=(ym z!R+#8VFsL>Puje-hBZZ0gY`?oFt44R6Z--pJ~w8q7te$W<+z`WB)mKtrOR>%f~{*2 z8>hh;3|%NPQq8-xDbWw`*n5*Ni7GB0zr7D?q`b1s^a4*X%Jk>EYA*r$va{t*S$Wk8 zL^lqaL9$a?PVadKA#e`-ocbsFKC1awpXsVmMxs^Fnz9Tb*6tD1sa`;k~@OqRo@ub(|hVwu)j^O#EQmIetE!ma(-|!O<`ZRqJb<$^dia$W5ARK;F@n)=G zXY|L|OhQ88G?ay6&;=(qqYF;O$NJ7x1?PPHYJC`UButfql;CF9^Z@N$9e`rgvKY7- zzkY{r^gSjplQ4S;+v7}YOOB)q;im)xJ8Tb}^>Fe{+E{o<&QW1zc~g`vO5=ii`UUW? zZp)~%d!YRLs1P5Gsp1zs3gc8)u&mU&?P*XcG+Tr-__K7L+$}7WQfV_Ngi(tq_9feK zK+m&sYg9Dt?NYYIX6$uOy3OW4i<~fWv+Cf(7LSO2Cy{IK;1#Y8C_5@I{l+TY*=I|v zB849$N`$Qn3)Wezrk#N{(Sj^ujO*o{#sa4oD_O8zmLim4B{5HQWLd}YpB(b z4G-q~15C`KQcuBSO|^7AHPTM2RneHT?`cv7UxhiJ{_{;Q;kGe05x5xg&K3|_>$pD_a&U>aXaI13$(JL50d8Z5nu7>Swu zA*$V;mYnn2)kI5c`a29y*`L60#8U8YzlVb^NVbZO*AIlUcC6{g-vYStoB)oYa(>HrRpU$_+Fu$?E^-+?mgq9i+l>lZ?b zT6(Rs*ytr2RlqzPAC<(}aFaO~EuqFiP9Nk%5YV?9#t-?A=4jtCuRhpfZRc5{uXo+q z=LI8vUYPpMT}NAmAiT1T|Lra-gEjft1a;1k`{Oe~KvJy%Wz~FR@vzsl)Hj`G)zsap zD0(^YuCzHguv&0Ryn%gl!eek+ywQej&`(Qef(ql7EcAYQoG}tAUY=Ns0uhUO05V)*ND z@*NLrHqhR{%JlU-nMJbBbn#Q$0gDOt;1glG|M6dhX@zoq#PRvcMk<`}n-dBYPlDbf zY2&o+<&J4^>4Q557tWSxa)1M;mS}X$!JFe6+N_0AI?erp9CdjDGuyvnelpc04y2u#n8-PU5wo6P&9?ZpnONA+t}Ucy z&nD(V>H%M8avRC7jdV$uW8n|L5W6kw7|(e8$j>_ZLqe`6y!1fWM}{tJ3t7HmzB894QuSOpNj=&WDT3e5Or0)3wFwasb4%9_M@6)K z&l3J-@<{!8U7lZ%P!XZsO|ejU04NSjBEBESP4Ff6+T}!&pxTCxBG{W z{I$5gyC-P##k--2l=5r77AsRg@o4?Q7zqe%7Y9-kbSnK|KDcKK;nZqb@o$i(QzUtW z4FlkIku@T67|OO;)}XWaHSwT$i->~}#O|Bld^q?M%%`d*s2x9BKP zZo$OD?q27J1NAg#Nd(Fn?4I|PbI>nwdR&!F6YOHC^L#n$QG{zQGnjL8QL{~TyS%sy zMT%4c%BbJPXL6?WNg|O1-c<>qUm^=RW`+5)eH2jAI{T^M6-_natW57V(D?*MKT4n;I#vjkQ1Y~X{0hj4% zF}qYRzy8zJX(%d$`X$XgPvDafqM65Qw_;|~(JO*m8-*q1ir0~W4cd`@#KX3_GEp5t z5?rPAGz%$L?%(5dRFgw~R^|tdxXDGF>^=J2drvtC0;nBNt)$2d+>6A}c}i_~ef`fu zywIKq{Tp+H@09h2i{+Dn7?p7~8D%gZ+<(bq<1f|tL;Qy~w3}O7WX))3Ej+(psj!1- zrlt&tNKU|u?sySN{!ByuYY@P5bL5@7&Uld^k~iLzJaP7WDAI|JZrsHHT>hmAC?xw& zC!c!IBNTzL7K;wAXR3vVTe1i(oYdqoy3H0Zw{@>?*4UcFaMCNHwib2efs0(Ync=2q zwM72#(Cn=nv2ablw^j({)fdng^E-(uP|5UD8@CzqpKlZ^=HH}?5{kmM7vLAoAatc; zwH5KZJkkdhh8C1p5+HZgC}LE+Xu}KIn7|*#?;j-8^-VaZ5jOW{JA#*;g5p`(xTiDd zKkPnW*IU@QEsE%-JWbaZU2+aF3<-bfklBU}TCC{E-~c1suP&!}=v`e&X_xF{wro+L zcgxt?1af+ArOGprbI<(>!E99@GkN&7?#q=uz{(bMN@|0qqxcTr07b2;i>k6W8Za(r zOGe?77{mF3SVV_<+hIDRNdbE)(lSDJU|Bf|swOh*8)pQ6AizER8M>1xnN1+Qcqhg$ z&ak{6PD5v75^-mAcvoOH6*!9Hkzpt)*#Ip_vNoGk)^|nj*9+w7+7R(=j4q>aw<4Wc z=nBx)kd4$ER29&>bnknJ`n4)pOczJMPJ! z0)p$AgO&S=`T1(PYN?P}4cSJ%&R?iNexQp^N$*`-AbTP7WfZIW#P4d}}S2|=#O7ke0mzh*aEWQE)y!|#~iGCKXe zpzrFFL$pk!^d8pUI(IfGO<%TTQHsrDXLDNnMC6*d0wT9m7x6Ft7V=_OlTqkuj{x>p z;1kpB_NxE04RdYk)Y!laqUU=rfZJ$T5)`7`QV?5(Ltg_xlECcjtEa{J!@6Brx);>b zl?P)xrifEIfWi;~!Hgrq*7bz~i3BH#^2_mOIb$vnOz3yqef|S?NrX2~aMzcrlIGhJ zJ57YYnbrjk0gMXNJsZ;3!GV3+U0eN7l{dNPN>2^D{M%{F_n#@Jh)M2G9pb6tlT&F# zzc){OFWO&LCDH1cNMGR@X9VA+vt>EiQ|#sD{Y6sIh0eE(T5g#Bhn{L{CgdEL#dtrL zC>~e(BtwcN6QdM$0h>v5cu{@BvleO1d{z*-w8N(k$wHP$AXwvfT1)EL-?E&6nLdTq zFA@*HmwLR__b301zkRRgd(MeG6hCvppG6OwFv=2NKQVx_rQX$Z3q-DFDcOMHtbuC2 zb}=nSGqv$BlXjj(ahhid7ECVPglKaK;z#;LgZZ+OisWYuKBPX7xpErFk*@EYkKqg2 ze61oYkPXBN#&}jK`c6OUoF{pGlCOmyvi0VbqIH)+GaMDJ>Eg{$20?GwP~=nbph7n3wT-iS@IWTjG!q<-}5nJdNKFs75SDJ`2N60FM#00h+c!NU0ufy*_DlHj73t z5%X`Hqe$xxtHUL9%+{FK#XTYqf1a`&Lh=``4pOX3cy239FO^N zfStakz4XYa-?AppcGY?%Pj@WYmLvxBlKhq06UyFTy`Dj|YO2D`3uG#B$$f7PEjp~U zN;XAx*Xx;j?A}%@n)?=Uw67Bf^MPlLUonDdnT0whr^OXyCbtVRp^N&tL4I{~Dg4l+ zvxK9}?_3)Y$>n?i!054VsQ<#MMZ=Q@luen-sz=N_VC}l?`zNJtA`krH?K@>?REBq0S+(}^2UlFWDqHi30Pa~uu05d$T+-JrcJV1?aXOg(}Rs zl`@li5%>|PHxJjZT#h6)u5#ukqU%dvk;$HYi|x;L7naNA&)c1zj7(iIm+BYA&tK7r zwW0zwzaX`x0|CVQVi4}J(N#ScVIBUXBSyY%CN{!aH)SJ(GEwpFU}-yF{d#w05hL=m zqA}!Sf^U&%EPmu~34)ZMEMWZ|Z{ zf+Da%zhehlo-wY?=x^Nensm)O!dR`~B96^wloNE6>dRY#u#pQB(ftm&2{0{aPw);3 zLS~XJegtuFdsZ#-4}Yw<2z1ya*ZublDU*Ut>&i)(l$<$AW-E7gWuf>Kh>nR@=~Jgg zYVeI|2kH%1E@)ScwTRMO*HTWJ!AcdT*o-xoiH_PF%JHNE29RfRx{{W~Mn)HwZeR53 z{~74suQ)4?@;WN79bIYU3yi%hNhnxTu7in4w>kOLA9 z^_cPfyxl`BO^Jaqzdl`|Ez%y3HTE#{dbqX?j$5k&zQxN?z*CZw+vAZV-WEk=-9oI^ zi>;EFv9pBIbUMsM{{@)yaWwa#nUxs`jEZa5y%dJ~ZYpxpbwF;r5KM9NBrtI6bS49Z z{7GcMaXGAxDfXDD;60Li!JF~fHPwUU&ynr@B*@3ChF52>+Zzj(2PL6C2Mor0xpcaX zJz8ihH2PY@>!))WZIW^vV%K*vW$Xw?vcF2|dP9n=qCP9;7B^IZhW=jxJ&T%Ztkc=ADNzA zsx*6uOG(O5$(&<*ti|J7dW)DtZjKZ4%;`A)POZf?A4Jh3X-N5M*8W<2T>+@m+RM zso4=f_o0cfhnM$+auk~mI=kVgHZ;l-+V`UB8DLApLi~fqxxCu82ZpTHwuvkJ zMaL0c$(fK#3^%@^>W3#TVHR`5ZG3y0Clb5K47#1K#yLmQyhW_55~ZZn&H*`)Kcz#xCRQCFdlucHx%dY1wZPf=tL$KK^-_TTkBlg%SX#-AMe8 zDRJaA`0SE_!0FPPn@x{0rimZQd9k+}88MLx`S?6fu6=l1Y@h3fs<=&*q;z=urTS=C zK%}u|(8k5e&Y-zSmoYb|zD$^cY}p6(t?!f9J6m?2>Tc-Xy34Rp*Ug6P;_=3oS~ z%u;Q7%I5MiGqZ{d!-pEl{0|+1NTm+haNN1M^6$Gh!|V@!B;}D{h3pn(C{xBk%}#IR zO1TK6*^j5|!U4^zB>Fw$Ab?>qDPT1M^Jx#~^C&2cPdIB_0;KSVNk9r$##HLTSD_Z& zz)jE%*Gj)7d9uVMl=+HdJ8%e}9%lwaY;_kEvV>UsLHx;mMC@f3lzq5Iv&y8{w)@Z#?E z$bXT?tyF)?<3bugVVY6(e@Vg`2i>|)$^m~$WioLwW}oXXZ}=w;=N0{LOx0{9*as^Bb{)>T@3m+vEip|GPIJDHTEO0j?I58}) z3~@%Q(7?0uCeHM#BsO=kytmWFVcmtD#HF#V$&{e5iF)nW6D|+WjJvd;&5ukcPLykI zL)z_SO#T-IEgtk{E$oT_$8EEJI%wS_Y2C(F)`01pzGC)%N-d}qrB@+6yelt`_?uuN zPMGYZCo678{Kdb+IPo{#IN(js1Ummj@!l19H8oPMb}r|M+d{D&z2T^r|!8rbRwlE=7j zz{QM`99y%o-F!wvWl#jR$l|ML^ohwPPlBQ~Vi{{yBOjvrhl~uf zK5Vk45;70o*YhtM&7#Sc2dfA3wZq@0ZZ6N~v6zg&MzJl<$ZNrwqf-$TiT@#W`2x6Mt;TiS4huyA5^}YIPTFF^l19VciDe9QgSuo770l zz$Fvs?0FY@_UtE2YE##{%dGmgZHHfzsU_`V*H`P4*F`ul(sYs9Jq*h6rbk1>eD34Z{2K;_cLbZ46halLc ze2%NUKU&GA!WwUqG&=coFm>87tCT*F4xGxo74O@5Y3xJVE!8F_1FP%~BdC2FS9Isf zXuW-CnGh!{^D*Drcrxc3Y`W9=5ZVYqn-rEs?8_&q}IoEx+VFS zRga(VCYV$<=Zq#wk?;b+las#o#HsNw*`FGFDeA^*xQuB(cE3~CcEUYt6MjgdL|p=P z2+pPgOZ0Zk#7FPiJV}Wb={;89-U46uTu_QI1&b)P=+se1|88_^!5Um>o)Nj!lfI}_ zA{$}3*734@W4yItj?m zLJCa$`Rn$L_lRPSglt!uro*Wg-e^WHi@NW8q5zxYdq%ULx=%RZ(Ry~zKFHmgD!x8n_+?xj`!7VyZLb@!Ht zcyvx*=Ox|L<#!iwxI;b}HqA-#(_&c7eI; zh0-~Nl>BWL;lGfbd$~ThM~0`;bnAxA&t^Bg46A9F67?ijVTmmSHXl37dKJH@X%pJ( zv;J34-$9e2BLwPjbgdS-#g6)O&a!wuZ-4?=C;(W1fb*oq3F7!&Q;TDT{dSIuAJ0r( zTYW}1z5Y^?(IYRkcvPK{&UNZ!DTD2NG^^l4v6pZ*x!@0~FW+zs*VWLZvD5?b&529v zzAIr#Blpmqud6Eze&qzM(zwET6WE`YFdmz$)SiInkY`uE9 z2W8d!Z|P-BLFnbp3rcnGlI9P_{}G(V#2CJpq^&-OF7u(-e@`ex!`4!J7AZxIWjne$ z*}p)Oo)D;<^YCfczySXZ)mxzJ%Trh$e@@Xs6YI$UjQXTpMM3=OD}yJh-k2t_G}69%^Fr!Z2HQA5*4M*x@spn| zrheG^IKj0ez3X@*QK}PLKen)$lLlOFZ8tSxuEOsfZ4ZBRv~f7a=7}eY0qYvDhVUkw zZOeCWJKZrO(yrm9v!+wYKhPp+8sVTN>nKBQt1)2z7ZTr41?oJxD3UIFa*^`;bD2FhRFQI1$)e-S7>YM&OE5M83i$Yg1gC4XbSB(3HY$XeKc0w~r|t-}85eyvq znGOcAFmP`I@uNFB6D-U3R7zi&HI?4$T$XBCYp7jyF2hIU++&75Z}~Yj0lG(o!Q{%x zle@H4z=iwQ^%fFV}$@P%l|Q*S||Fc=aU(OuYN7&dFa}V3Nc7J*3pGRNHysT zpl1qYqD}+z4udN>1yr0@uF3~3%~hGND|wBbU_IaPN$MmzOSBa(DV?!lmqJAFWhao7 z6XK-N{+v`HO%=al&V4z}>Sa|@+Qf8!nk9bZMS#vdzl+RDih{^-@~-07nqb7URdH*R+DD=7!&A9Oi{-a*?F%R^?_>z|&W zHQ+4C_b)3pp#^K(qJHO8s1UDOMw^aDYOOebgZD{HMbGVDVk$+=PF2;lVmdaX96DD( z2>^x9360&?xbJ=C?ww+GUzY7mi#yf$i@Zi^^Y}?DA8FLB1O|#d@$jX3gICv(QdzlV&8dxsHV(c+LsK>QTvzU6_ zYb0#5dCxZ%c~~}R7+|_=M1NiJ;GL(M6jlh!W$wT&BZz#^;TRxOvOoC5av{aK*jUdB zEJTT7g$OLq7j%VOxq7lBmjswrMs{Cq4i_QLuY?I-R*l_PX%)WEauEF6LE{{cM%g#Z zY=g9-pHTq4-?B_^ws)ot(CdUT(Q;?3ZgB%&0-LSJk}S~oODd0f;gmE$LNlWC)*SZw zTF2tWUDe>}3GAgFzfUW{@fr-5%+TXNF!#@u3xLK#M@{^pJ@RwHxR(mQv$rbM^u)yF zp7gc4+^-scO=w4GnLoUHm&|*G%B4)zdnT-@sLAXD{t?qVWoK?M#QmO7ZDZYumcROM zT0RXq?@|A$uOb2&0IX>Ab9ty?U)lM3)bo7LPM+d~0IDZ9U)9X4Pt|IhEccrc4$Yqg zxN&t9niz^0H@V{LX*57HW5=4LcVn`mZrtz!m-E4LWa#a&|ZE=ZeR z_be>uWC0uQotqmp(+ySAn|+s`Jh^?c#?)U-^^qVEROY9akEY4F$EfL{d=!)6%BG-- zzxb^*e?e$Rf1Wl1QT?k8F>OCoXwv?=Ung`f@oR`*z|{D)G%5h9(2EXaoVg^$f5Zm< zKZTunJXG!9$1R~Oja|ej${K1yXo$j8_FcA;rjQxV!J)?|Gj8yk6(bnRAXg-|KsQuFvOvU}1Q)$#BKFf7rFv3#c^C6nuM& zOO0Gft$Kq{^uZk+fBQMx4ywF#eZ10jN%@}^6Trc3hCtkr5v?qLPeTBZoa}i>5KfE4m^W45!H&tNIy2!R)_bi2pfs)oyorVbu+nl5 ziVqIJzcjU0;LWSXA>n4vmdvWwz`nJ(vB0=#2PO^BiHo&%ecgXrM@U_;#^7aMCflK* zu?J85J`Tl@CXG@Gz9}c1FQwCP4okOwbBpS37P8a>qfV`z9k+`X5YFPzTfu%UP!6y`Fvr_P9?4V5;X6Bf8{U9#rCkAZ zM&uVB!n66B@`9(+a&}!KKRfCf^oQNN+6$^tHoMIK!>*$7-0ZFr=x>*b-P5X-LgxBY zo2Ug*pNH%q>8qqJmtk=~7g&DYcueN3PcuE3&z~%j0gUYgSS9wn57tV0QdV~{+bxEnx{U^j4&k6Tg_t{mX$_Yq$xe=@q|jc4#`MB^ zJT!tidMB9LT+XqKk3JFN=!_dS0?dknKn##1>;EeT2o)}9LyEIBz=e4SFuw9d_vq)Y znKx|vFBXdWkaNz_)-AYMGNnQ9zLj_f%C}~7N!N>u)Lf+CfEIdIU7czh$QbcAide4T zZQJy*?<2fUv(SP%PV21I_X1kz7G8vO5oI)0xCIvcYt6{A`!}bwQlGSad^&0sE+dig ztCN-J!D2iYgG*FJ2{BPzy1^u&y=FXDd67a8y7BGP|L)Sh_Z*1ci7meUFD~utdnA|k z%FkshXa7&|yHfQ-cZaL9*88w++@nx&uAPsEVL*=wVw{~gi>(snR7!xUfN3m@nIRqe z$bxi@pG5F$L=in`nIEOo82`J5h_9j*7~_4)pr(1ea&G+SOCoJiMKDK#1^!`Tmo zu(KAj$s(@Ez}~eSFWD$y#q zslU<&-b60sArh0MhfMd8Ut(rM_CQZ8FfKQivy3;fi)0|#R9eO4o~zDAw8`&mCJBRl zL+V<9>B#dX+=Ch6E=t$PUla#aJlOiq<<`$o@7t~|m@_8YX~f5JPr8|q*x0k}KKaw) zlj4s{p!Bb0(O2I@&cJP`BT4v(=^IBCC}>G;6Pl`dvTGO(u1uHZFzBch#Oi5#?{oUA zMDhff&?FU9`${$qfOt^aXNUDLXp}!L8o++(*YdqI@rZ`e_9q$WGiZtk%BdwBGNUQLOvKhbHU?bZL0ypyF6t66gl zm;}?$LvW7=cpykxJulrHg1_Tybvk9?!FUgQFW7)ZjiG5RKh5P)A-N+a_IR~*prd%Jub(3dwV#iE zEZRnitmR!zrZDwcFZbI$fi zpQ#2NyF^|ZZxhg}_2{p|uY5RbnD8K6ZJ*(Qw2)?}wekp&yaRA|Qo#DxsS?SeI+jqSMG)is9$_pX3e;QRCk`w z6Eyf}-+>ptnm-5fB$ja02cI*FiDNlWz6!au(Hs}CGqc@Mmic~|=QFFJrG1@1hjtXy z4~e%c+1cVu*QrSvt}^-J7&3CYOFA(;0v#pDtP1!!v4p;BvW*`n{US>q(dX{NUrV`ti>sUd7L3MP0-oP`aRTgYw5brGKhov{JH8&ZnR)OJ2X6Hj z*N%E-g5%w9Tu(o3p@Ox209&F)dqM|)8ypzq@>_T7)U{4lXM#FbS?FxaC!G^bZMM9+ z4tmuQbQP|}fWbv^^L6{ks3C9Ej)`TTPs7Rx%f;*+b8A$!FHS$N0rHb7YlE-;Os=Pr zQ{twGcgc=sfxFbo@AZ<0v(i)mIIN>SayZmhz4f%!>5C|cW!)L%h17s1v)z*m@qbN( zLIG`HP@`-xc!<{bo61SZlQWVZ1OuYl!Sb-gF-ru;V-o?-65R4%f%6Z;4dlCb<*tm4 zT`7ejX`!VvI;>13$7YHQz%+8p7l(Tpo$_JB4f^W={o?Bv;zK3iLCjqj{gvE5lo;fd zHH{q|VzJ(ecLFb~dW44K((lhkhDQ$2inQ@ZcRq7Y>-^*1b>gOVEt)4}ovdHpbt^K@ z|3sf`Dm|bJwcZkK{pP34+PPS-&Y(HzYpQh%%*U0(ohJ^qYv&SPhZse79v3M#nTUb? zTTjUjU*9&)0S1{kUx6pKuPYG_c~z}evFZy5xUz{>?k8wd2OGRLnS6!W@2E;KWyJGkUt&UFTh*2NVjj=kW%jj~V001z!4 z=ACav4hf=_2vC25z)FK{a-HCIF%1b@(>NH^N7$**yWUBYO61yA32R`g-kGrQqT2&s zZ1aW~`>zx~03Uhl@0bL?Vul+mpc)cp64nzfU1rpi*eG&?8WU7Xl4Pf1!!_iKpK_${ zC;xLY0h})InNl8x8hkL6Jpz7odsa%}^mCw|17HWPhf{dC+kQ}x((i~n?<}jL=p9a@ z<9^KPtHyuVYuBL`*B7H;P2iVO8ICwx_P&$c40y;=GC7R)u@F`J-|`;#me&bZ9#xFU zJg^Th!=rFfc{Bw+ujIxWBM>U0T(6i0?6X&W^QWn?a#<*foA?<)RQJ+am_wkw5~pN- z7sfTpB>PChT4dEn1d;2VMl0o-hg^bZeAQZSZ%fT*?fK_jkzO;p1^Kn_+yjstFP#ra zNvx;BrMYSMj?`B;0sS zFuJaW4L~Ou?IWxSIxyrDP0$laaSx}5DtUOzHO?=y^m2JYfcOG)&~ws}entE=bCT7$ z=#rYt?lU1eR^i}WaqU8Z0rKPflqR^`l!q|k(Zo+khOK+ubx;hXEPh&3dhXVaKhK_5 zEWuW;iN*%L+&b5&xM}Dl-pY8w8~S%KsSYAxoEeE0RatjS6)vupzw^Mi4zR4J9^a9vEO zGsL1|=&T;B!-Hc|XANCOT4+&_Am}oQeN;)!5I#Ng%dGfD89Z`xzBJfQ5Uq?0g3AeUS9@IhE|>w~}OV)8>HvkoV#COPN{LT#vk8 zt2Z)j@{a(~lW*kv*4-rOL6sffa^(OAYdJ-0AsgF9gwSQe2wH&X@4yh*TSHt#%TNt1(?*1p$1*$&WoXj%(3D- zcQ5QJ#PkYUg9UjMs?vZCI$TX&{X=JmqECeM2>uCx|CpLx$`!gYuDe(vVX}YRkFG^k zURe>tw{_d=^mg9nvS?KtpkI=2?(iG$tPXR5QosdvzxGoCt z$$I=Gfzpq+2F3?10L^~%hk|tHo!byiu28i+0-PzrVDKCekd-_eW}(>Fp}Ancc191J z%LV{ozGVXd7!U|yD)X?cRj`u12B#u~Q22#>5x;tCwV54R+A8Kzk+(poe&f<5a*v*K zT2oU&Cy_LPGej(sedjw!v3{YylrY}sxYF)>cfp<-T!xEu)CFu&YJe?D)I%N!%*L!8 zEi#ZVi4r-oMksMF`zOoUUiq(+KVL}Vgk4zs|M2{i%LBzJSShuf5=6EJK+gfbJ})q= zG0GhyJ>s|)s`}>jgj5{06DiB8;CT5#UeEFuCDRNU65yFEh+SOUYPR?{idoz^hcctc z&442k_wYk5d(L7ZTKmy)4^n0o##7c6!_jl_B86&KbNSP0;&tq_AS1DeI66n%PR*pX zi2%0k-ZNP@3`AaRb)vJ?W}XEv*Z1a+PPd6tY;c0IY-s0=Iw-*C*soU) zC=bBofdMQRHt;f`m;%bDO+Q@6&hS8dvdDDe(V_H-k2t&!J`FL&9w2#0bHLqd5+>n8)4e;ua%TPUO&4#d!TjvD`IHe+m+wqABkj zoNs5r+GI!s>cQZx77EF%7%V;lk~d43R$%h9**@|sc6SSR>J07Anld(@sT0nyR>Qu_ zPhkc@Fj;M*AKsf3%f|p*H1HyY%3g7T%cCKt?y8k0=-`j0laL`{!mVH11jZ{=3)Zbo z21^05#asw*jiv?Hew&@KV*;teNz-jz?UZ2y0k!l8DBW^9Rj~0!uD>Ft|27Lg;_|N} z*?vvL_xnuig>$EG@^@kLoJ?zdbt0stXU1YVLJO_W zCv!h-*}a>}{Q3SZv`DX6-2%p&B;T>R%A72KsxXP5VK54m2trhI`mBmx(#zV{ zInu6zS{==2l?XBO^i7UsOK?Fk{?ekyEXECjxn| ze`kRpJim|8Q}?3d(XG1>vcoX%zs<(_g-QWYTElLe@&5AL%%^F!{2#PFiop zRz~d(ix56>b@e=g)qGNk>2`{de6Q_WxRCIF*6yQFR#bxy#Qy{EQ~~2n-V>tkL{`UY z&0Rmmuj2DpeT)jObl<7A@des_b`d1V25nwoq~e9M<^f>hHSU>co8g(*{m}-YwofiI z-mkS=3Wl~O+8MFVW{YqX8E6K**_pPc`QNK@m~X8Hg&Kle5qX4L!dd6!IWdLU*Nlkc zGiH(n$H6or(h^BfuCPB&?kP`30z;2(u1 zR+FQfD9dIbldYlRvSLo87bRrF5U656yei7F$Z+uFv&!-!9(3wD{QY)By0oUJmuQ{- zU}FV=;Y7LSZ1uxnRdzVY10dxWlIkcKoJet_HxrwC@n~W6^hFyQekJ5|pV<4XQj zka1?kZLfD%g`ld(`_Jln6>AAWt9jnwML-$NI@O($<9KJ{W`C%l?Zl4-L0J7Mr!-?21u}Dy5k;D zu}!eeZ*3?R;L}9xDghYu?{zNJxF-U5o>7it>+~T~$v2ua{;7P)^J*yJ6~TT02(a@l_L<@JIZo3wOYJ9t9BNNUnvpIZ184_1fah;Vh@r1saB z^4y@`7jq3dxmVlsiow+%)C~5)FovY6v>3pvw$J%t@r@7cp&Ec@j$@T1u-i81-!`X5 z*u0~!^hDZq+7k7};*;b~0?h1x(q(|(>8OIVD1hr(THoGWk=iwDyIPzQf69sA=(J+o zn#EcLV}QPlry2xM(Oe*&QuTxz|DO({_ui&T9ig&XSsUK?V&dy)5>MGnr6uw&*J)SR z4O5d0C2t!+(VG{Y3fFU3G4!F~;z`0^Zy$VT zlJGjGSF&$3BUtfc03n5Fp1KQfb~InA&8`q*1q&GG=||Hzpy6L2H1f*;LpyQht{w?} zDZ2kUk>FaSr)>&iD|Z|7sH6U!z%}z@JhB~OedrN<`}Lfq^UV}Y43>cn?*zZ0AOM2< zpX5w(`QSQaEYTvqHz~=NXHUjQf0o%dBkQfeAN31lR&xxOEgYHTdZp%bVXN280=Ana z^M=FH$n=5rl?&BI)^08Qe_`>YwGkkoEIR+Kv^%~Pb0k^b?3|sA#qp8cs#eTueeM2Q zRw=0&M&6mX$~YF!Y0ZBc@63#c7`f!9BKSXd@Voc{RoLU+XN*d^;RK${8T?=LBS%Bk z&gk{var Ce=Object.create;var ue=Object.defineProperty;var Pe=Object.getOwnPropertyDescriptor;var Oe=Object.getOwnPropertyNames;var Re=Object.getPrototypeOf,_e=Object.prototype.hasOwnProperty;var Me=(t,e)=>()=>(e||t((e={exports:{}}).exports,e),e.exports);var De=(t,e,r,n)=>{if(e&&typeof e=="object"||typeof e=="function")for(let i of Oe(e))!_e.call(t,i)&&i!==r&&ue(t,i,{get:()=>e[i],enumerable:!(n=Pe(e,i))||n.enumerable});return t};var Fe=(t,e,r)=>(r=t!=null?Ce(Re(t)):{},De(e||!t||!t.__esModule?ue(r,"default",{value:t,enumerable:!0}):r,t));var pe=Me((de,fe)=>{(function(){var t=function(e){var r=new t.Builder;return r.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),r.searchPipeline.add(t.stemmer),e.call(r,r),r.build()};t.version="2.3.9";t.utils={},t.utils.warn=function(e){return function(r){e.console&&console.warn&&console.warn(r)}}(this),t.utils.asString=function(e){return e==null?"":e.toString()},t.utils.clone=function(e){if(e==null)return e;for(var r=Object.create(null),n=Object.keys(e),i=0;i0){var h=t.utils.clone(r)||{};h.position=[a,u],h.index=s.length,s.push(new t.Token(n.slice(a,o),h))}a=o+1}}return s},t.tokenizer.separator=/[\s\-]+/;t.Pipeline=function(){this._stack=[]},t.Pipeline.registeredFunctions=Object.create(null),t.Pipeline.registerFunction=function(e,r){r in this.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+r),e.label=r,t.Pipeline.registeredFunctions[e.label]=e},t.Pipeline.warnIfFunctionNotRegistered=function(e){var r=e.label&&e.label in this.registeredFunctions;r||t.utils.warn(`Function is not registered with pipeline. This may cause problems when serialising the index. +`,e)},t.Pipeline.load=function(e){var r=new t.Pipeline;return e.forEach(function(n){var i=t.Pipeline.registeredFunctions[n];if(i)r.add(i);else throw new Error("Cannot load unregistered function: "+n)}),r},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(r){t.Pipeline.warnIfFunctionNotRegistered(r),this._stack.push(r)},this)},t.Pipeline.prototype.after=function(e,r){t.Pipeline.warnIfFunctionNotRegistered(r);var n=this._stack.indexOf(e);if(n==-1)throw new Error("Cannot find existingFn");n=n+1,this._stack.splice(n,0,r)},t.Pipeline.prototype.before=function(e,r){t.Pipeline.warnIfFunctionNotRegistered(r);var n=this._stack.indexOf(e);if(n==-1)throw new Error("Cannot find existingFn");this._stack.splice(n,0,r)},t.Pipeline.prototype.remove=function(e){var r=this._stack.indexOf(e);r!=-1&&this._stack.splice(r,1)},t.Pipeline.prototype.run=function(e){for(var r=this._stack.length,n=0;n1&&(oe&&(n=s),o!=e);)i=n-r,s=r+Math.floor(i/2),o=this.elements[s*2];if(o==e||o>e)return s*2;if(ol?h+=2:a==l&&(r+=n[u+1]*i[h+1],u+=2,h+=2);return r},t.Vector.prototype.similarity=function(e){return this.dot(e)/this.magnitude()||0},t.Vector.prototype.toArray=function(){for(var e=new Array(this.elements.length/2),r=1,n=0;r0){var o=s.str.charAt(0),a;o in s.node.edges?a=s.node.edges[o]:(a=new t.TokenSet,s.node.edges[o]=a),s.str.length==1&&(a.final=!0),i.push({node:a,editsRemaining:s.editsRemaining,str:s.str.slice(1)})}if(s.editsRemaining!=0){if("*"in s.node.edges)var l=s.node.edges["*"];else{var l=new t.TokenSet;s.node.edges["*"]=l}if(s.str.length==0&&(l.final=!0),i.push({node:l,editsRemaining:s.editsRemaining-1,str:s.str}),s.str.length>1&&i.push({node:s.node,editsRemaining:s.editsRemaining-1,str:s.str.slice(1)}),s.str.length==1&&(s.node.final=!0),s.str.length>=1){if("*"in s.node.edges)var u=s.node.edges["*"];else{var u=new t.TokenSet;s.node.edges["*"]=u}s.str.length==1&&(u.final=!0),i.push({node:u,editsRemaining:s.editsRemaining-1,str:s.str.slice(1)})}if(s.str.length>1){var h=s.str.charAt(0),f=s.str.charAt(1),p;f in s.node.edges?p=s.node.edges[f]:(p=new t.TokenSet,s.node.edges[f]=p),s.str.length==1&&(p.final=!0),i.push({node:p,editsRemaining:s.editsRemaining-1,str:h+s.str.slice(2)})}}}return n},t.TokenSet.fromString=function(e){for(var r=new t.TokenSet,n=r,i=0,s=e.length;i=e;r--){var n=this.uncheckedNodes[r],i=n.child.toString();i in this.minimizedNodes?n.parent.edges[n.char]=this.minimizedNodes[i]:(n.child._str=i,this.minimizedNodes[i]=n.child),this.uncheckedNodes.pop()}};t.Index=function(e){this.invertedIndex=e.invertedIndex,this.fieldVectors=e.fieldVectors,this.tokenSet=e.tokenSet,this.fields=e.fields,this.pipeline=e.pipeline},t.Index.prototype.search=function(e){return this.query(function(r){var n=new t.QueryParser(e,r);n.parse()})},t.Index.prototype.query=function(e){for(var r=new t.Query(this.fields),n=Object.create(null),i=Object.create(null),s=Object.create(null),o=Object.create(null),a=Object.create(null),l=0;l1?this._b=1:this._b=e},t.Builder.prototype.k1=function(e){this._k1=e},t.Builder.prototype.add=function(e,r){var n=e[this._ref],i=Object.keys(this._fields);this._documents[n]=r||{},this.documentCount+=1;for(var s=0;s=this.length)return t.QueryLexer.EOS;var e=this.str.charAt(this.pos);return this.pos+=1,e},t.QueryLexer.prototype.width=function(){return this.pos-this.start},t.QueryLexer.prototype.ignore=function(){this.start==this.pos&&(this.pos+=1),this.start=this.pos},t.QueryLexer.prototype.backup=function(){this.pos-=1},t.QueryLexer.prototype.acceptDigitRun=function(){var e,r;do e=this.next(),r=e.charCodeAt(0);while(r>47&&r<58);e!=t.QueryLexer.EOS&&this.backup()},t.QueryLexer.prototype.more=function(){return this.pos1&&(e.backup(),e.emit(t.QueryLexer.TERM)),e.ignore(),e.more())return t.QueryLexer.lexText},t.QueryLexer.lexEditDistance=function(e){return e.ignore(),e.acceptDigitRun(),e.emit(t.QueryLexer.EDIT_DISTANCE),t.QueryLexer.lexText},t.QueryLexer.lexBoost=function(e){return e.ignore(),e.acceptDigitRun(),e.emit(t.QueryLexer.BOOST),t.QueryLexer.lexText},t.QueryLexer.lexEOS=function(e){e.width()>0&&e.emit(t.QueryLexer.TERM)},t.QueryLexer.termSeparator=t.tokenizer.separator,t.QueryLexer.lexText=function(e){for(;;){var r=e.next();if(r==t.QueryLexer.EOS)return t.QueryLexer.lexEOS;if(r.charCodeAt(0)==92){e.escapeCharacter();continue}if(r==":")return t.QueryLexer.lexField;if(r=="~")return e.backup(),e.width()>0&&e.emit(t.QueryLexer.TERM),t.QueryLexer.lexEditDistance;if(r=="^")return e.backup(),e.width()>0&&e.emit(t.QueryLexer.TERM),t.QueryLexer.lexBoost;if(r=="+"&&e.width()===1||r=="-"&&e.width()===1)return e.emit(t.QueryLexer.PRESENCE),t.QueryLexer.lexText;if(r.match(t.QueryLexer.termSeparator))return t.QueryLexer.lexTerm}},t.QueryParser=function(e,r){this.lexer=new t.QueryLexer(e),this.query=r,this.currentClause={},this.lexemeIdx=0},t.QueryParser.prototype.parse=function(){this.lexer.run(),this.lexemes=this.lexer.lexemes;for(var e=t.QueryParser.parseClause;e;)e=e(this);return this.query},t.QueryParser.prototype.peekLexeme=function(){return this.lexemes[this.lexemeIdx]},t.QueryParser.prototype.consumeLexeme=function(){var e=this.peekLexeme();return this.lexemeIdx+=1,e},t.QueryParser.prototype.nextClause=function(){var e=this.currentClause;this.query.clause(e),this.currentClause={}},t.QueryParser.parseClause=function(e){var r=e.peekLexeme();if(r!=null)switch(r.type){case t.QueryLexer.PRESENCE:return t.QueryParser.parsePresence;case t.QueryLexer.FIELD:return t.QueryParser.parseField;case t.QueryLexer.TERM:return t.QueryParser.parseTerm;default:var n="expected either a field or a term, found "+r.type;throw r.str.length>=1&&(n+=" with value '"+r.str+"'"),new t.QueryParseError(n,r.start,r.end)}},t.QueryParser.parsePresence=function(e){var r=e.consumeLexeme();if(r!=null){switch(r.str){case"-":e.currentClause.presence=t.Query.presence.PROHIBITED;break;case"+":e.currentClause.presence=t.Query.presence.REQUIRED;break;default:var n="unrecognised presence operator'"+r.str+"'";throw new t.QueryParseError(n,r.start,r.end)}var i=e.peekLexeme();if(i==null){var n="expecting term or field, found nothing";throw new t.QueryParseError(n,r.start,r.end)}switch(i.type){case t.QueryLexer.FIELD:return t.QueryParser.parseField;case t.QueryLexer.TERM:return t.QueryParser.parseTerm;default:var n="expecting term or field, found '"+i.type+"'";throw new t.QueryParseError(n,i.start,i.end)}}},t.QueryParser.parseField=function(e){var r=e.consumeLexeme();if(r!=null){if(e.query.allFields.indexOf(r.str)==-1){var n=e.query.allFields.map(function(o){return"'"+o+"'"}).join(", "),i="unrecognised field '"+r.str+"', possible fields: "+n;throw new t.QueryParseError(i,r.start,r.end)}e.currentClause.fields=[r.str];var s=e.peekLexeme();if(s==null){var i="expecting term, found nothing";throw new t.QueryParseError(i,r.start,r.end)}switch(s.type){case t.QueryLexer.TERM:return t.QueryParser.parseTerm;default:var i="expecting term, found '"+s.type+"'";throw new t.QueryParseError(i,s.start,s.end)}}},t.QueryParser.parseTerm=function(e){var r=e.consumeLexeme();if(r!=null){e.currentClause.term=r.str.toLowerCase(),r.str.indexOf("*")!=-1&&(e.currentClause.usePipeline=!1);var n=e.peekLexeme();if(n==null){e.nextClause();return}switch(n.type){case t.QueryLexer.TERM:return e.nextClause(),t.QueryParser.parseTerm;case t.QueryLexer.FIELD:return e.nextClause(),t.QueryParser.parseField;case t.QueryLexer.EDIT_DISTANCE:return t.QueryParser.parseEditDistance;case t.QueryLexer.BOOST:return t.QueryParser.parseBoost;case t.QueryLexer.PRESENCE:return e.nextClause(),t.QueryParser.parsePresence;default:var i="Unexpected lexeme type '"+n.type+"'";throw new t.QueryParseError(i,n.start,n.end)}}},t.QueryParser.parseEditDistance=function(e){var r=e.consumeLexeme();if(r!=null){var n=parseInt(r.str,10);if(isNaN(n)){var i="edit distance must be numeric";throw new t.QueryParseError(i,r.start,r.end)}e.currentClause.editDistance=n;var s=e.peekLexeme();if(s==null){e.nextClause();return}switch(s.type){case t.QueryLexer.TERM:return e.nextClause(),t.QueryParser.parseTerm;case t.QueryLexer.FIELD:return e.nextClause(),t.QueryParser.parseField;case t.QueryLexer.EDIT_DISTANCE:return t.QueryParser.parseEditDistance;case t.QueryLexer.BOOST:return t.QueryParser.parseBoost;case t.QueryLexer.PRESENCE:return e.nextClause(),t.QueryParser.parsePresence;default:var i="Unexpected lexeme type '"+s.type+"'";throw new t.QueryParseError(i,s.start,s.end)}}},t.QueryParser.parseBoost=function(e){var r=e.consumeLexeme();if(r!=null){var n=parseInt(r.str,10);if(isNaN(n)){var i="boost must be numeric";throw new t.QueryParseError(i,r.start,r.end)}e.currentClause.boost=n;var s=e.peekLexeme();if(s==null){e.nextClause();return}switch(s.type){case t.QueryLexer.TERM:return e.nextClause(),t.QueryParser.parseTerm;case t.QueryLexer.FIELD:return e.nextClause(),t.QueryParser.parseField;case t.QueryLexer.EDIT_DISTANCE:return t.QueryParser.parseEditDistance;case t.QueryLexer.BOOST:return t.QueryParser.parseBoost;case t.QueryLexer.PRESENCE:return e.nextClause(),t.QueryParser.parsePresence;default:var i="Unexpected lexeme type '"+s.type+"'";throw new t.QueryParseError(i,s.start,s.end)}}},function(e,r){typeof define=="function"&&define.amd?define(r):typeof de=="object"?fe.exports=r():e.lunr=r()}(this,function(){return t})})()});var ce=[];function N(t,e){ce.push({selector:e,constructor:t})}var Y=class{constructor(){this.createComponents(document.body)}createComponents(e){ce.forEach(r=>{e.querySelectorAll(r.selector).forEach(n=>{n.dataset.hasInstance||(new r.constructor({el:n}),n.dataset.hasInstance=String(!0))})})}};var k=class{constructor(e){this.el=e.el}};var J=class{constructor(){this.listeners={}}addEventListener(e,r){e in this.listeners||(this.listeners[e]=[]),this.listeners[e].push(r)}removeEventListener(e,r){if(!(e in this.listeners))return;let n=this.listeners[e];for(let i=0,s=n.length;i{let r=Date.now();return(...n)=>{r+e-Date.now()<0&&(t(...n),r=Date.now())}};var ie=class extends J{constructor(){super();this.scrollTop=0;this.lastY=0;this.width=0;this.height=0;this.showToolbar=!0;this.toolbar=document.querySelector(".tsd-page-toolbar"),this.secondaryNav=document.querySelector(".tsd-navigation.secondary"),window.addEventListener("scroll",ne(()=>this.onScroll(),10)),window.addEventListener("resize",ne(()=>this.onResize(),10)),this.onResize(),this.onScroll()}triggerResize(){let r=new CustomEvent("resize",{detail:{width:this.width,height:this.height}});this.dispatchEvent(r)}onResize(){this.width=window.innerWidth||0,this.height=window.innerHeight||0;let r=new CustomEvent("resize",{detail:{width:this.width,height:this.height}});this.dispatchEvent(r)}onScroll(){this.scrollTop=window.scrollY||0;let r=new CustomEvent("scroll",{detail:{scrollTop:this.scrollTop}});this.dispatchEvent(r),this.hideShowToolbar()}hideShowToolbar(){var n;let r=this.showToolbar;this.showToolbar=this.lastY>=this.scrollTop||this.scrollTop<=0,r!==this.showToolbar&&(this.toolbar.classList.toggle("tsd-page-toolbar--hide"),(n=this.secondaryNav)==null||n.classList.toggle("tsd-navigation--toolbar-hide")),this.lastY=this.scrollTop}},Q=ie;Q.instance=new ie;var X=class extends k{constructor(r){super(r);this.anchors=[];this.index=-1;Q.instance.addEventListener("resize",()=>this.onResize()),Q.instance.addEventListener("scroll",n=>this.onScroll(n)),this.createAnchors()}createAnchors(){let r=window.location.href;r.indexOf("#")!=-1&&(r=r.substr(0,r.indexOf("#"))),this.el.querySelectorAll("a").forEach(n=>{let i=n.href;if(i.indexOf("#")==-1||i.substr(0,r.length)!=r)return;let s=i.substr(i.indexOf("#")+1),o=document.querySelector("a.tsd-anchor[name="+s+"]"),a=n.parentNode;!o||!a||this.anchors.push({link:a,anchor:o,position:0})}),this.onResize()}onResize(){let r;for(let i=0,s=this.anchors.length;ii.position-s.position);let n=new CustomEvent("scroll",{detail:{scrollTop:Q.instance.scrollTop}});this.onScroll(n)}onScroll(r){let n=r.detail.scrollTop+5,i=this.anchors,s=i.length-1,o=this.index;for(;o>-1&&i[o].position>n;)o-=1;for(;o-1&&this.anchors[this.index].link.classList.remove("focus"),this.index=o,this.index>-1&&this.anchors[this.index].link.classList.add("focus"))}};var he=(t,e=100)=>{let r;return(...n)=>{clearTimeout(r),r=setTimeout(()=>t(n),e)}};var ge=Fe(pe());function ye(){let t=document.getElementById("tsd-search");if(!t)return;let e=document.getElementById("search-script");t.classList.add("loading"),e&&(e.addEventListener("error",()=>{t.classList.remove("loading"),t.classList.add("failure")}),e.addEventListener("load",()=>{t.classList.remove("loading"),t.classList.add("ready")}),window.searchData&&t.classList.remove("loading"));let r=document.querySelector("#tsd-search input"),n=document.querySelector("#tsd-search .results");if(!r||!n)throw new Error("The input field or the result list wrapper was not found");let i=!1;n.addEventListener("mousedown",()=>i=!0),n.addEventListener("mouseup",()=>{i=!1,t.classList.remove("has-focus")}),r.addEventListener("focus",()=>t.classList.add("has-focus")),r.addEventListener("blur",()=>{i||(i=!1,t.classList.remove("has-focus"))});let s={base:t.dataset.base+"/"};Ae(t,n,r,s)}function Ae(t,e,r,n){r.addEventListener("input",he(()=>{He(t,e,r,n)},200));let i=!1;r.addEventListener("keydown",s=>{i=!0,s.key=="Enter"?ze(e,r):s.key=="Escape"?r.blur():s.key=="ArrowUp"?me(e,-1):s.key==="ArrowDown"?me(e,1):i=!1}),r.addEventListener("keypress",s=>{i&&s.preventDefault()}),document.body.addEventListener("keydown",s=>{s.altKey||s.ctrlKey||s.metaKey||!r.matches(":focus")&&s.key==="/"&&(r.focus(),s.preventDefault())})}function Ve(t,e){t.index||window.searchData&&(e.classList.remove("loading"),e.classList.add("ready"),t.data=window.searchData,t.index=ge.Index.load(window.searchData.index))}function He(t,e,r,n){var o,a;if(Ve(n,t),!n.index||!n.data)return;e.textContent="";let i=r.value.trim(),s=i?n.index.search(`*${i}*`):[];for(let l=0;lu.score-l.score);for(let l=0,u=Math.min(10,s.length);l${ve(h.parent,i)}.${f}`);let p=document.createElement("li");p.classList.value=(a=h.classes)!=null?a:"";let E=document.createElement("a");E.href=n.base+h.url,E.classList.add("tsd-kind-icon"),E.innerHTML=f,p.append(E),e.appendChild(p)}}function me(t,e){var n,i;let r=t.querySelector(".current");if(!r)r=t.querySelector(e==1?"li:first-child":"li:last-child"),r&&r.classList.add("current");else{let s=r;if(e===1)do s=(n=s.nextElementSibling)!=null?n:void 0;while(s instanceof HTMLElement&&s.offsetParent==null);else do s=(i=s.previousElementSibling)!=null?i:void 0;while(s instanceof HTMLElement&&s.offsetParent==null);s&&(r.classList.remove("current"),s.classList.add("current"))}}function ze(t,e){let r=t.querySelector(".current");if(r||(r=t.querySelector("li:first-child")),r){let n=r.querySelector("a");n&&(window.location.href=n.href),e.blur()}}function ve(t,e){if(e==="")return t;let r=t.toLocaleLowerCase(),n=e.toLocaleLowerCase(),i=[],s=0,o=r.indexOf(n);for(;o!=-1;)i.push(se(t.substring(s,o)),`${se(t.substring(o,o+n.length))}`),s=o+n.length,o=r.indexOf(n,s);return i.push(se(t.substring(s))),i.join("")}var Ne={"&":"&","<":"<",">":">","'":"'",'"':"""};function se(t){return t.replace(/[&<>"'"]/g,e=>Ne[e])}var oe=class{constructor(e,r){this.signature=e,this.description=r}addClass(e){return this.signature.classList.add(e),this.description.classList.add(e),this}removeClass(e){return this.signature.classList.remove(e),this.description.classList.remove(e),this}},Z=class extends k{constructor(r){super(r);this.groups=[];this.index=-1;this.createGroups(),this.container&&(this.el.classList.add("active"),Array.from(this.el.children).forEach(n=>{n.addEventListener("touchstart",i=>this.onClick(i)),n.addEventListener("click",i=>this.onClick(i))}),this.container.classList.add("active"),this.setIndex(0))}setIndex(r){if(r<0&&(r=0),r>this.groups.length-1&&(r=this.groups.length-1),this.index==r)return;let n=this.groups[r];if(this.index>-1){let i=this.groups[this.index];i.removeClass("current").addClass("fade-out"),n.addClass("current"),n.addClass("fade-in"),Q.instance.triggerResize(),setTimeout(()=>{i.removeClass("fade-out"),n.removeClass("fade-in")},300)}else n.addClass("current"),Q.instance.triggerResize();this.index=r}createGroups(){let r=this.el.children;if(r.length<2)return;this.container=this.el.nextElementSibling;let n=this.container.children;this.groups=[];for(let i=0;i{n.signature===r.currentTarget&&this.setIndex(i)})}};var C="mousedown",Le="mousemove",_="mouseup",K={x:0,y:0},xe=!1,ae=!1,je=!1,A=!1,Ee=/Android|webOS|iPhone|iPad|iPod|BlackBerry|IEMobile|Opera Mini/i.test(navigator.userAgent);document.documentElement.classList.add(Ee?"is-mobile":"not-mobile");Ee&&"ontouchstart"in document.documentElement&&(je=!0,C="touchstart",Le="touchmove",_="touchend");document.addEventListener(C,t=>{ae=!0,A=!1;let e=C=="touchstart"?t.targetTouches[0]:t;K.y=e.pageY||0,K.x=e.pageX||0});document.addEventListener(Le,t=>{if(!!ae&&!A){let e=C=="touchstart"?t.targetTouches[0]:t,r=K.x-(e.pageX||0),n=K.y-(e.pageY||0);A=Math.sqrt(r*r+n*n)>10}});document.addEventListener(_,()=>{ae=!1});document.addEventListener("click",t=>{xe&&(t.preventDefault(),t.stopImmediatePropagation(),xe=!1)});var ee=class extends k{constructor(r){super(r);this.className=this.el.dataset.toggle||"",this.el.addEventListener(_,n=>this.onPointerUp(n)),this.el.addEventListener("click",n=>n.preventDefault()),document.addEventListener(C,n=>this.onDocumentPointerDown(n)),document.addEventListener(_,n=>this.onDocumentPointerUp(n))}setActive(r){if(this.active==r)return;this.active=r,document.documentElement.classList.toggle("has-"+this.className,r),this.el.classList.toggle("active",r);let n=(this.active?"to-has-":"from-has-")+this.className;document.documentElement.classList.add(n),setTimeout(()=>document.documentElement.classList.remove(n),500)}onPointerUp(r){A||(this.setActive(!0),r.preventDefault())}onDocumentPointerDown(r){if(this.active){if(r.target.closest(".col-menu, .tsd-filter-group"))return;this.setActive(!1)}}onDocumentPointerUp(r){if(!A&&this.active&&r.target.closest(".col-menu")){let n=r.target.closest("a");if(n){let i=window.location.href;i.indexOf("#")!=-1&&(i=i.substr(0,i.indexOf("#"))),n.href.substr(0,i.length)==i&&setTimeout(()=>this.setActive(!1),250)}}}};var te=class{constructor(e,r){this.key=e,this.value=r,this.defaultValue=r,this.initialize(),window.localStorage[this.key]&&this.setValue(this.fromLocalStorage(window.localStorage[this.key]))}initialize(){}setValue(e){if(this.value==e)return;let r=this.value;this.value=e,window.localStorage[this.key]=this.toLocalStorage(e),this.handleValueChange(r,e)}},re=class extends te{initialize(){let r=document.querySelector("#tsd-filter-"+this.key);!r||(this.checkbox=r,this.checkbox.addEventListener("change",()=>{this.setValue(this.checkbox.checked)}))}handleValueChange(r,n){!this.checkbox||(this.checkbox.checked=this.value,document.documentElement.classList.toggle("toggle-"+this.key,this.value!=this.defaultValue))}fromLocalStorage(r){return r=="true"}toLocalStorage(r){return r?"true":"false"}},le=class extends te{initialize(){document.documentElement.classList.add("toggle-"+this.key+this.value);let r=document.querySelector("#tsd-filter-"+this.key);if(!r)return;this.select=r;let n=()=>{this.select.classList.add("active")},i=()=>{this.select.classList.remove("active")};this.select.addEventListener(C,n),this.select.addEventListener("mouseover",n),this.select.addEventListener("mouseleave",i),this.select.querySelectorAll("li").forEach(s=>{s.addEventListener(_,o=>{r.classList.remove("active"),this.setValue(o.target.dataset.value||"")})}),document.addEventListener(C,s=>{this.select.contains(s.target)||this.select.classList.remove("active")})}handleValueChange(r,n){this.select.querySelectorAll("li.selected").forEach(o=>{o.classList.remove("selected")});let i=this.select.querySelector('li[data-value="'+n+'"]'),s=this.select.querySelector(".tsd-select-label");i&&s&&(i.classList.add("selected"),s.textContent=i.textContent),document.documentElement.classList.remove("toggle-"+r),document.documentElement.classList.add("toggle-"+n)}fromLocalStorage(r){return r}toLocalStorage(r){return r}},j=class extends k{constructor(r){super(r);this.optionVisibility=new le("visibility","private"),this.optionInherited=new re("inherited",!0),this.optionExternals=new re("externals",!0)}static isSupported(){try{return typeof window.localStorage!="undefined"}catch{return!1}}};function we(t){let e=localStorage.getItem("tsd-theme")||"os";t.value=e,be(e),t.addEventListener("change",()=>{localStorage.setItem("tsd-theme",t.value),be(t.value)})}function be(t){switch(t){case"os":document.body.classList.remove("light","dark");break;case"light":document.body.classList.remove("dark"),document.body.classList.add("light");break;case"dark":document.body.classList.remove("light"),document.body.classList.add("dark");break}}ye();N(X,".menu-highlight");N(Z,".tsd-signatures");N(ee,"a[data-toggle]");j.isSupported()?N(j,"#tsd-filter"):document.documentElement.classList.add("no-filter");var Te=document.getElementById("theme");Te&&we(Te);var Be=new Y;Object.defineProperty(window,"app",{value:Be});})(); +/*! + * lunr.Builder + * Copyright (C) 2020 Oliver Nightingale + */ +/*! + * lunr.Index + * Copyright (C) 2020 Oliver Nightingale + */ +/*! + * lunr.Pipeline + * Copyright (C) 2020 Oliver Nightingale + */ +/*! + * lunr.Set + * Copyright (C) 2020 Oliver Nightingale + */ +/*! + * lunr.TokenSet + * Copyright (C) 2020 Oliver Nightingale + */ +/*! + * lunr.Vector + * Copyright (C) 2020 Oliver Nightingale + */ +/*! + * lunr.stemmer + * Copyright (C) 2020 Oliver Nightingale + * Includes code from - http://tartarus.org/~martin/PorterStemmer/js.txt + */ +/*! + * lunr.stopWordFilter + * Copyright (C) 2020 Oliver Nightingale + */ +/*! + * lunr.tokenizer + * Copyright (C) 2020 Oliver Nightingale + */ +/*! + * lunr.trimmer + * Copyright (C) 2020 Oliver Nightingale + */ +/*! + * lunr.utils + * Copyright (C) 2020 Oliver Nightingale + */ +/** + * lunr - http://lunrjs.com - A bit like Solr, but much smaller and not as bright - 2.3.9 + * Copyright (C) 2020 Oliver Nightingale + * @license MIT + */ diff --git a/docs/assets/search.js b/docs/assets/search.js new file mode 100644 index 0000000..8357c64 --- /dev/null +++ b/docs/assets/search.js @@ -0,0 +1 @@ +window.searchData = JSON.parse("{\"kinds\":{\"2\":\"Module\",\"8\":\"Enumeration\",\"16\":\"Enumeration Member\",\"64\":\"Function\",\"128\":\"Class\",\"256\":\"Interface\",\"512\":\"Constructor\",\"1024\":\"Property\",\"2048\":\"Method\",\"65536\":\"Type literal\",\"4194304\":\"Type alias\"},\"rows\":[{\"id\":0,\"kind\":2,\"name\":\"index\",\"url\":\"modules/index.html\",\"classes\":\"tsd-kind-module\"},{\"id\":1,\"kind\":2,\"name\":\"run\",\"url\":\"modules/run.html\",\"classes\":\"tsd-kind-module\"},{\"id\":2,\"kind\":2,\"name\":\"utils\",\"url\":\"modules/utils.html\",\"classes\":\"tsd-kind-module\"},{\"id\":3,\"kind\":128,\"name\":\"Clustering\",\"url\":\"classes/index.Clustering.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":4,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.Clustering.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":5,\"kind\":1024,\"name\":\"clusters\",\"url\":\"classes/index.Clustering.html#clusters\",\"classes\":\"tsd-kind-property tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":6,\"kind\":1024,\"name\":\"nClusters\",\"url\":\"classes/index.Clustering.html#nClusters\",\"classes\":\"tsd-kind-property tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":7,\"kind\":1024,\"name\":\"nNodes\",\"url\":\"classes/index.Clustering.html#nNodes\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.Clustering\"},{\"id\":8,\"kind\":2048,\"name\":\"initializeBasedOnNNodes\",\"url\":\"classes/index.Clustering.html#initializeBasedOnNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":9,\"kind\":2048,\"name\":\"initializeBasedOnClusters\",\"url\":\"classes/index.Clustering.html#initializeBasedOnClusters\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":10,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.Clustering.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":11,\"kind\":2048,\"name\":\"getNNodes\",\"url\":\"classes/index.Clustering.html#getNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":12,\"kind\":2048,\"name\":\"getNClusters\",\"url\":\"classes/index.Clustering.html#getNClusters\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":13,\"kind\":2048,\"name\":\"getClusters\",\"url\":\"classes/index.Clustering.html#getClusters\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":14,\"kind\":2048,\"name\":\"getCluster\",\"url\":\"classes/index.Clustering.html#getCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":15,\"kind\":2048,\"name\":\"getNNodesPerCluster\",\"url\":\"classes/index.Clustering.html#getNNodesPerCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":16,\"kind\":2048,\"name\":\"getNodesPerCluster\",\"url\":\"classes/index.Clustering.html#getNodesPerCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":17,\"kind\":2048,\"name\":\"setCluster\",\"url\":\"classes/index.Clustering.html#setCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":18,\"kind\":2048,\"name\":\"initSingletonClusters\",\"url\":\"classes/index.Clustering.html#initSingletonClusters\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":19,\"kind\":2048,\"name\":\"removeEmptyClusters\",\"url\":\"classes/index.Clustering.html#removeEmptyClusters\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":20,\"kind\":2048,\"name\":\"orderClustersByNNodes\",\"url\":\"classes/index.Clustering.html#orderClustersByNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":21,\"kind\":2048,\"name\":\"orderClustersByWeight\",\"url\":\"classes/index.Clustering.html#orderClustersByWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":22,\"kind\":2048,\"name\":\"mergeClusters\",\"url\":\"classes/index.Clustering.html#mergeClusters\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Clustering\"},{\"id\":23,\"kind\":2048,\"name\":\"initSingletonClustersHelper\",\"url\":\"classes/index.Clustering.html#initSingletonClustersHelper\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-private\",\"parent\":\"index.Clustering\"},{\"id\":24,\"kind\":256,\"name\":\"ClusteringParametersWithClusters\",\"url\":\"interfaces/index.ClusteringParametersWithClusters.html\",\"classes\":\"tsd-kind-interface tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":25,\"kind\":1024,\"name\":\"clusters\",\"url\":\"interfaces/index.ClusteringParametersWithClusters.html#clusters\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.ClusteringParametersWithClusters\"},{\"id\":26,\"kind\":256,\"name\":\"ClusteringParametersWithNNodes\",\"url\":\"interfaces/index.ClusteringParametersWithNNodes.html\",\"classes\":\"tsd-kind-interface tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":27,\"kind\":1024,\"name\":\"nNodes\",\"url\":\"interfaces/index.ClusteringParametersWithNNodes.html#nNodes\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.ClusteringParametersWithNNodes\"},{\"id\":28,\"kind\":256,\"name\":\"ClusteringAlgorithm\",\"url\":\"interfaces/index.ClusteringAlgorithm.html\",\"classes\":\"tsd-kind-interface tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":29,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"interfaces/index.ClusteringAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-interface\",\"parent\":\"index.ClusteringAlgorithm\"},{\"id\":30,\"kind\":128,\"name\":\"CPMClusteringAlgorithm\",\"url\":\"classes/index.CPMClusteringAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":31,\"kind\":1024,\"name\":\"DEFAULT_RESOLUTION\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#DEFAULT_RESOLUTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":32,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":33,\"kind\":1024,\"name\":\"resolution\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#resolution\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":34,\"kind\":2048,\"name\":\"initializeBasedOnResolution\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#initializeBasedOnResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":35,\"kind\":2048,\"name\":\"getResolution\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#getResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":36,\"kind\":2048,\"name\":\"setResolution\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#setResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":37,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":38,\"kind\":2048,\"name\":\"removeCluster\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#removeCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":39,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnNNodes\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#removeSmallClustersBasedOnNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":40,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnWeight\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#removeSmallClustersBasedOnWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":41,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":42,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"classes/index.CPMClusteringAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.CPMClusteringAlgorithm\"},{\"id\":43,\"kind\":128,\"name\":\"ComponentsAlgorithm\",\"url\":\"classes/index.ComponentsAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":44,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.ComponentsAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class\",\"parent\":\"index.ComponentsAlgorithm\"},{\"id\":45,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"classes/index.ComponentsAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.ComponentsAlgorithm\"},{\"id\":46,\"kind\":128,\"name\":\"FastLocalMovingAlgorithm\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":47,\"kind\":1024,\"name\":\"DEFAULT_N_ITERATIONS\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#DEFAULT_N_ITERATIONS\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":48,\"kind\":1024,\"name\":\"DEFAULT_RESOLUTION\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#DEFAULT_RESOLUTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":49,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":50,\"kind\":1024,\"name\":\"random\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#random\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":51,\"kind\":2048,\"name\":\"initializeBasedOnRandom\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#initializeBasedOnRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":52,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndNIterationsAndRandom\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#initializeBasedOnResolutionAndNIterationsAndRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":53,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":54,\"kind\":2048,\"name\":\"improveClusteringOneIteration\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#improveClusteringOneIteration\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite tsd-is-protected\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":55,\"kind\":1024,\"name\":\"nIterations\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#nIterations\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":56,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndNIterations\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#initializeBasedOnResolutionAndNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":57,\"kind\":2048,\"name\":\"getNIterations\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#getNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":58,\"kind\":2048,\"name\":\"setNIterations\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#setNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":59,\"kind\":2048,\"name\":\"improveClustering\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#improveClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":60,\"kind\":2048,\"name\":\"initializeBasedOnResolution\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#initializeBasedOnResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":61,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":62,\"kind\":1024,\"name\":\"resolution\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#resolution\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":63,\"kind\":2048,\"name\":\"getResolution\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#getResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":64,\"kind\":2048,\"name\":\"setResolution\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#setResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":65,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":66,\"kind\":2048,\"name\":\"removeCluster\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#removeCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":67,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnNNodes\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#removeSmallClustersBasedOnNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":68,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnWeight\",\"url\":\"classes/index.FastLocalMovingAlgorithm.html#removeSmallClustersBasedOnWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.FastLocalMovingAlgorithm\"},{\"id\":69,\"kind\":128,\"name\":\"GradientDescentVOSLayoutAlgorithm\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":70,\"kind\":1024,\"name\":\"DEFAULT_MAX_N_ITERATIONS\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#DEFAULT_MAX_N_ITERATIONS\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":71,\"kind\":1024,\"name\":\"DEFAULT_INITIAL_STEP_SIZE\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#DEFAULT_INITIAL_STEP_SIZE\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":72,\"kind\":1024,\"name\":\"DEFAULT_MIN_STEP_SIZE\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#DEFAULT_MIN_STEP_SIZE\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":73,\"kind\":1024,\"name\":\"DEFAULT_STEP_SIZE_REDUCTION\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#DEFAULT_STEP_SIZE_REDUCTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":74,\"kind\":1024,\"name\":\"DEFAULT_REQUIRED_N_QUALITY_VALUE_IMPROVEMENTS\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#DEFAULT_REQUIRED_N_QUALITY_VALUE_IMPROVEMENTS\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":75,\"kind\":1024,\"name\":\"DEFAULT_ATTRACTION\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#DEFAULT_ATTRACTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":76,\"kind\":1024,\"name\":\"DEFAULT_REPULSION\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#DEFAULT_REPULSION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":77,\"kind\":1024,\"name\":\"DEFAULT_EDGE_WEIGHT_INCREMENT\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#DEFAULT_EDGE_WEIGHT_INCREMENT\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":78,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":79,\"kind\":1024,\"name\":\"maxNIterations\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#maxNIterations\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":80,\"kind\":1024,\"name\":\"initialStepSize\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#initialStepSize\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":81,\"kind\":1024,\"name\":\"minStepSize\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#minStepSize\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":82,\"kind\":1024,\"name\":\"stepSizeReduction\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#stepSizeReduction\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":83,\"kind\":1024,\"name\":\"requiredNQualityValueImprovements\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#requiredNQualityValueImprovements\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":84,\"kind\":1024,\"name\":\"random\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#random\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":85,\"kind\":2048,\"name\":\"initializeBasedOnRandom\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#initializeBasedOnRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":86,\"kind\":2048,\"name\":\"initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrementAndRandom\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrementAndRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":87,\"kind\":2048,\"name\":\"initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrementAndMaxNIterationsAndInitialStepSizeAndMinStepSizeAndStepSizeReductionAndRequiredNQualityValueImprovementsAndRandom\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrementAndMaxNIterationsAndInitialStepSizeAndMinStepSizeAndStepSizeReductionAndRequiredNQualityValueImprovementsAndRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":88,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":89,\"kind\":2048,\"name\":\"getMaxNIterations\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#getMaxNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":90,\"kind\":2048,\"name\":\"getInitialStepSize\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#getInitialStepSize\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":91,\"kind\":2048,\"name\":\"getMinStepSize\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#getMinStepSize\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":92,\"kind\":2048,\"name\":\"getStepSizeReduction\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#getStepSizeReduction\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":93,\"kind\":2048,\"name\":\"getRequiredNQualityValueImprovements\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#getRequiredNQualityValueImprovements\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":94,\"kind\":2048,\"name\":\"setMaxNIterations\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#setMaxNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":95,\"kind\":2048,\"name\":\"setInitialStepSize\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#setInitialStepSize\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":96,\"kind\":2048,\"name\":\"setMinStepSize\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#setMinStepSize\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":97,\"kind\":2048,\"name\":\"setStepSizeReduction\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#setStepSizeReduction\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":98,\"kind\":2048,\"name\":\"setRequiredNQualityValueImprovements\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#setRequiredNQualityValueImprovements\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":99,\"kind\":2048,\"name\":\"findLayout\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#findLayout\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":100,\"kind\":2048,\"name\":\"improveLayout\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#improveLayout\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":101,\"kind\":1024,\"name\":\"attraction\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#attraction\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":102,\"kind\":1024,\"name\":\"repulsion\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#repulsion\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":103,\"kind\":1024,\"name\":\"edgeWeightIncrement\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#edgeWeightIncrement\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":104,\"kind\":2048,\"name\":\"initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrement\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrement\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":105,\"kind\":2048,\"name\":\"getAttraction\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#getAttraction\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":106,\"kind\":2048,\"name\":\"getRepulsion\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#getRepulsion\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":107,\"kind\":2048,\"name\":\"getEdgeWeightIncrement\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#getEdgeWeightIncrement\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":108,\"kind\":2048,\"name\":\"setAttraction\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#setAttraction\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":109,\"kind\":2048,\"name\":\"setRepulsion\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#setRepulsion\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":110,\"kind\":2048,\"name\":\"setEdgeWeightIncrement\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#setEdgeWeightIncrement\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":111,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"classes/index.GradientDescentVOSLayoutAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.GradientDescentVOSLayoutAlgorithm\"},{\"id\":112,\"kind\":256,\"name\":\"IncrementalClusteringAlgorithm\",\"url\":\"interfaces/index.IncrementalClusteringAlgorithm.html\",\"classes\":\"tsd-kind-interface tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":113,\"kind\":2048,\"name\":\"improveClustering\",\"url\":\"interfaces/index.IncrementalClusteringAlgorithm.html#improveClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-interface\",\"parent\":\"index.IncrementalClusteringAlgorithm\"},{\"id\":114,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"interfaces/index.IncrementalClusteringAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-interface tsd-is-inherited\",\"parent\":\"index.IncrementalClusteringAlgorithm\"},{\"id\":115,\"kind\":128,\"name\":\"IncrementalCPMClusteringAlgorithm\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":116,\"kind\":1024,\"name\":\"DEFAULT_RESOLUTION\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#DEFAULT_RESOLUTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":117,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":118,\"kind\":2048,\"name\":\"initializeBasedOnResolution\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#initializeBasedOnResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":119,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":120,\"kind\":2048,\"name\":\"improveClustering\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#improveClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":121,\"kind\":1024,\"name\":\"resolution\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#resolution\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":122,\"kind\":2048,\"name\":\"getResolution\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#getResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":123,\"kind\":2048,\"name\":\"setResolution\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#setResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":124,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":125,\"kind\":2048,\"name\":\"removeCluster\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#removeCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":126,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnNNodes\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#removeSmallClustersBasedOnNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":127,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnWeight\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#removeSmallClustersBasedOnWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":128,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.IncrementalCPMClusteringAlgorithm.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IncrementalCPMClusteringAlgorithm\"},{\"id\":129,\"kind\":128,\"name\":\"IterativeCPMClusteringAlgorithm\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":130,\"kind\":1024,\"name\":\"DEFAULT_N_ITERATIONS\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#DEFAULT_N_ITERATIONS\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":131,\"kind\":1024,\"name\":\"DEFAULT_RESOLUTION\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#DEFAULT_RESOLUTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":132,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":133,\"kind\":1024,\"name\":\"nIterations\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#nIterations\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":134,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndNIterations\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#initializeBasedOnResolutionAndNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":135,\"kind\":2048,\"name\":\"getNIterations\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#getNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":136,\"kind\":2048,\"name\":\"setNIterations\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#setNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":137,\"kind\":2048,\"name\":\"improveClustering\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#improveClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":138,\"kind\":2048,\"name\":\"improveClusteringOneIteration\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#improveClusteringOneIteration\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":139,\"kind\":2048,\"name\":\"initializeBasedOnResolution\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#initializeBasedOnResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":140,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":141,\"kind\":1024,\"name\":\"resolution\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#resolution\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":142,\"kind\":2048,\"name\":\"getResolution\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#getResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":143,\"kind\":2048,\"name\":\"setResolution\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#setResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":144,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":145,\"kind\":2048,\"name\":\"removeCluster\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#removeCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":146,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnNNodes\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#removeSmallClustersBasedOnNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":147,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnWeight\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#removeSmallClustersBasedOnWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":148,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.IterativeCPMClusteringAlgorithm.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.IterativeCPMClusteringAlgorithm\"},{\"id\":149,\"kind\":128,\"name\":\"Layout\",\"url\":\"classes/index.Layout.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":150,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.Layout.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":151,\"kind\":1024,\"name\":\"coordinates\",\"url\":\"classes/index.Layout.html#coordinates\",\"classes\":\"tsd-kind-property tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":152,\"kind\":1024,\"name\":\"nNodes\",\"url\":\"classes/index.Layout.html#nNodes\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.Layout\"},{\"id\":153,\"kind\":2048,\"name\":\"initializeBasedOnNNodes\",\"url\":\"classes/index.Layout.html#initializeBasedOnNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":154,\"kind\":2048,\"name\":\"initializeBasedOnNNodesAndRandom\",\"url\":\"classes/index.Layout.html#initializeBasedOnNNodesAndRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":155,\"kind\":2048,\"name\":\"initializeBasedOnCoordinates\",\"url\":\"classes/index.Layout.html#initializeBasedOnCoordinates\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":156,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.Layout.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":157,\"kind\":2048,\"name\":\"getNNodes\",\"url\":\"classes/index.Layout.html#getNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":158,\"kind\":2048,\"name\":\"getCoordinates\",\"url\":\"classes/index.Layout.html#getCoordinates\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":159,\"kind\":2048,\"name\":\"getCoordinatesNode\",\"url\":\"classes/index.Layout.html#getCoordinatesNode\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":160,\"kind\":2048,\"name\":\"getMinCoordinates\",\"url\":\"classes/index.Layout.html#getMinCoordinates\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":161,\"kind\":2048,\"name\":\"getMaxCoordinates\",\"url\":\"classes/index.Layout.html#getMaxCoordinates\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":162,\"kind\":2048,\"name\":\"getAverageDistance\",\"url\":\"classes/index.Layout.html#getAverageDistance\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":163,\"kind\":2048,\"name\":\"setCoordinates\",\"url\":\"classes/index.Layout.html#setCoordinates\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":164,\"kind\":2048,\"name\":\"initRandomCoordinates\",\"url\":\"classes/index.Layout.html#initRandomCoordinates\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":165,\"kind\":2048,\"name\":\"standardize\",\"url\":\"classes/index.Layout.html#standardize\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":166,\"kind\":2048,\"name\":\"rotate\",\"url\":\"classes/index.Layout.html#rotate\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":167,\"kind\":2048,\"name\":\"flip\",\"url\":\"classes/index.Layout.html#flip\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Layout\"},{\"id\":168,\"kind\":2048,\"name\":\"initRandomCoordinatesHelper\",\"url\":\"classes/index.Layout.html#initRandomCoordinatesHelper\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-private\",\"parent\":\"index.Layout\"},{\"id\":169,\"kind\":256,\"name\":\"LayoutConstructorParametersWithCoordinates\",\"url\":\"interfaces/index.LayoutConstructorParametersWithCoordinates.html\",\"classes\":\"tsd-kind-interface tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":170,\"kind\":1024,\"name\":\"coordinates\",\"url\":\"interfaces/index.LayoutConstructorParametersWithCoordinates.html#coordinates\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.LayoutConstructorParametersWithCoordinates\"},{\"id\":171,\"kind\":256,\"name\":\"LayoutConstructorParametersWithNNodes\",\"url\":\"interfaces/index.LayoutConstructorParametersWithNNodes.html\",\"classes\":\"tsd-kind-interface tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":172,\"kind\":1024,\"name\":\"nNodes\",\"url\":\"interfaces/index.LayoutConstructorParametersWithNNodes.html#nNodes\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.LayoutConstructorParametersWithNNodes\"},{\"id\":173,\"kind\":256,\"name\":\"LayoutConstructorParametersWithNNodesAndRandom\",\"url\":\"interfaces/index.LayoutConstructorParametersWithNNodesAndRandom.html\",\"classes\":\"tsd-kind-interface tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":174,\"kind\":1024,\"name\":\"nNodes\",\"url\":\"interfaces/index.LayoutConstructorParametersWithNNodesAndRandom.html#nNodes\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.LayoutConstructorParametersWithNNodesAndRandom\"},{\"id\":175,\"kind\":1024,\"name\":\"random\",\"url\":\"interfaces/index.LayoutConstructorParametersWithNNodesAndRandom.html#random\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.LayoutConstructorParametersWithNNodesAndRandom\"},{\"id\":176,\"kind\":128,\"name\":\"LeidenAlgorithm\",\"url\":\"classes/index.LeidenAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":177,\"kind\":1024,\"name\":\"DEFAULT_RANDOMNESS\",\"url\":\"classes/index.LeidenAlgorithm.html#DEFAULT_RANDOMNESS\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":178,\"kind\":1024,\"name\":\"DEFAULT_N_ITERATIONS\",\"url\":\"classes/index.LeidenAlgorithm.html#DEFAULT_N_ITERATIONS\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":179,\"kind\":1024,\"name\":\"DEFAULT_RESOLUTION\",\"url\":\"classes/index.LeidenAlgorithm.html#DEFAULT_RESOLUTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":180,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.LeidenAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":181,\"kind\":1024,\"name\":\"randomness\",\"url\":\"classes/index.LeidenAlgorithm.html#randomness\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":182,\"kind\":1024,\"name\":\"localMovingAlgorithm\",\"url\":\"classes/index.LeidenAlgorithm.html#localMovingAlgorithm\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":183,\"kind\":1024,\"name\":\"random\",\"url\":\"classes/index.LeidenAlgorithm.html#random\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":184,\"kind\":2048,\"name\":\"initializeBasedOnRandom\",\"url\":\"classes/index.LeidenAlgorithm.html#initializeBasedOnRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":185,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndNIterationsAndRandomnessAndRandom\",\"url\":\"classes/index.LeidenAlgorithm.html#initializeBasedOnResolutionAndNIterationsAndRandomnessAndRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":186,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndNIterationsAndRandomnessAndLocalMovingAlgorithmAndRandom\",\"url\":\"classes/index.LeidenAlgorithm.html#initializeBasedOnResolutionAndNIterationsAndRandomnessAndLocalMovingAlgorithmAndRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":187,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.LeidenAlgorithm.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":188,\"kind\":2048,\"name\":\"getRandomness\",\"url\":\"classes/index.LeidenAlgorithm.html#getRandomness\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":189,\"kind\":2048,\"name\":\"getLocalMovingAlgorithm\",\"url\":\"classes/index.LeidenAlgorithm.html#getLocalMovingAlgorithm\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":190,\"kind\":2048,\"name\":\"setResolution\",\"url\":\"classes/index.LeidenAlgorithm.html#setResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":191,\"kind\":2048,\"name\":\"setRandomness\",\"url\":\"classes/index.LeidenAlgorithm.html#setRandomness\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":192,\"kind\":2048,\"name\":\"setLocalMovingAlgorithm\",\"url\":\"classes/index.LeidenAlgorithm.html#setLocalMovingAlgorithm\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":193,\"kind\":2048,\"name\":\"improveClusteringOneIteration\",\"url\":\"classes/index.LeidenAlgorithm.html#improveClusteringOneIteration\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite tsd-is-protected\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":194,\"kind\":1024,\"name\":\"nIterations\",\"url\":\"classes/index.LeidenAlgorithm.html#nIterations\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":195,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndNIterations\",\"url\":\"classes/index.LeidenAlgorithm.html#initializeBasedOnResolutionAndNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":196,\"kind\":2048,\"name\":\"getNIterations\",\"url\":\"classes/index.LeidenAlgorithm.html#getNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":197,\"kind\":2048,\"name\":\"setNIterations\",\"url\":\"classes/index.LeidenAlgorithm.html#setNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":198,\"kind\":2048,\"name\":\"improveClustering\",\"url\":\"classes/index.LeidenAlgorithm.html#improveClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":199,\"kind\":2048,\"name\":\"initializeBasedOnResolution\",\"url\":\"classes/index.LeidenAlgorithm.html#initializeBasedOnResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":200,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"classes/index.LeidenAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":201,\"kind\":1024,\"name\":\"resolution\",\"url\":\"classes/index.LeidenAlgorithm.html#resolution\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":202,\"kind\":2048,\"name\":\"getResolution\",\"url\":\"classes/index.LeidenAlgorithm.html#getResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":203,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"classes/index.LeidenAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":204,\"kind\":2048,\"name\":\"removeCluster\",\"url\":\"classes/index.LeidenAlgorithm.html#removeCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":205,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnNNodes\",\"url\":\"classes/index.LeidenAlgorithm.html#removeSmallClustersBasedOnNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":206,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnWeight\",\"url\":\"classes/index.LeidenAlgorithm.html#removeSmallClustersBasedOnWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LeidenAlgorithm\"},{\"id\":207,\"kind\":128,\"name\":\"LocalMergingAlgorithm\",\"url\":\"classes/index.LocalMergingAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":208,\"kind\":1024,\"name\":\"DEFAULT_RANDOMNESS\",\"url\":\"classes/index.LocalMergingAlgorithm.html#DEFAULT_RANDOMNESS\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":209,\"kind\":1024,\"name\":\"DEFAULT_RESOLUTION\",\"url\":\"classes/index.LocalMergingAlgorithm.html#DEFAULT_RESOLUTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":210,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.LocalMergingAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":211,\"kind\":1024,\"name\":\"randomness\",\"url\":\"classes/index.LocalMergingAlgorithm.html#randomness\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":212,\"kind\":1024,\"name\":\"random\",\"url\":\"classes/index.LocalMergingAlgorithm.html#random\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":213,\"kind\":2048,\"name\":\"initializeBasedOnRandom\",\"url\":\"classes/index.LocalMergingAlgorithm.html#initializeBasedOnRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":214,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndRandomnessAndRandom\",\"url\":\"classes/index.LocalMergingAlgorithm.html#initializeBasedOnResolutionAndRandomnessAndRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":215,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.LocalMergingAlgorithm.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":216,\"kind\":2048,\"name\":\"getRandomness\",\"url\":\"classes/index.LocalMergingAlgorithm.html#getRandomness\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":217,\"kind\":2048,\"name\":\"setRandomness\",\"url\":\"classes/index.LocalMergingAlgorithm.html#setRandomness\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":218,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"classes/index.LocalMergingAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":219,\"kind\":1024,\"name\":\"resolution\",\"url\":\"classes/index.LocalMergingAlgorithm.html#resolution\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":220,\"kind\":2048,\"name\":\"initializeBasedOnResolution\",\"url\":\"classes/index.LocalMergingAlgorithm.html#initializeBasedOnResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":221,\"kind\":2048,\"name\":\"getResolution\",\"url\":\"classes/index.LocalMergingAlgorithm.html#getResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":222,\"kind\":2048,\"name\":\"setResolution\",\"url\":\"classes/index.LocalMergingAlgorithm.html#setResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":223,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"classes/index.LocalMergingAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":224,\"kind\":2048,\"name\":\"removeCluster\",\"url\":\"classes/index.LocalMergingAlgorithm.html#removeCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":225,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnNNodes\",\"url\":\"classes/index.LocalMergingAlgorithm.html#removeSmallClustersBasedOnNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":226,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnWeight\",\"url\":\"classes/index.LocalMergingAlgorithm.html#removeSmallClustersBasedOnWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LocalMergingAlgorithm\"},{\"id\":227,\"kind\":128,\"name\":\"LouvainAlgorithm\",\"url\":\"classes/index.LouvainAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":228,\"kind\":1024,\"name\":\"DEFAULT_N_ITERATIONS\",\"url\":\"classes/index.LouvainAlgorithm.html#DEFAULT_N_ITERATIONS\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":229,\"kind\":1024,\"name\":\"DEFAULT_RESOLUTION\",\"url\":\"classes/index.LouvainAlgorithm.html#DEFAULT_RESOLUTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":230,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.LouvainAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":231,\"kind\":1024,\"name\":\"localMovingAlgorithm\",\"url\":\"classes/index.LouvainAlgorithm.html#localMovingAlgorithm\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":232,\"kind\":2048,\"name\":\"initializeBasedOnRandom\",\"url\":\"classes/index.LouvainAlgorithm.html#initializeBasedOnRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":233,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndNIterationsAndRandom\",\"url\":\"classes/index.LouvainAlgorithm.html#initializeBasedOnResolutionAndNIterationsAndRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":234,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndNIterationsAndLocalMovingAlgorithm\",\"url\":\"classes/index.LouvainAlgorithm.html#initializeBasedOnResolutionAndNIterationsAndLocalMovingAlgorithm\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":235,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.LouvainAlgorithm.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":236,\"kind\":2048,\"name\":\"getLocalMovingAlgorithm\",\"url\":\"classes/index.LouvainAlgorithm.html#getLocalMovingAlgorithm\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":237,\"kind\":2048,\"name\":\"setResolution\",\"url\":\"classes/index.LouvainAlgorithm.html#setResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":238,\"kind\":2048,\"name\":\"setLocalMovingAlgorithm\",\"url\":\"classes/index.LouvainAlgorithm.html#setLocalMovingAlgorithm\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":239,\"kind\":2048,\"name\":\"improveClusteringOneIteration\",\"url\":\"classes/index.LouvainAlgorithm.html#improveClusteringOneIteration\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite tsd-is-protected\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":240,\"kind\":1024,\"name\":\"nIterations\",\"url\":\"classes/index.LouvainAlgorithm.html#nIterations\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":241,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndNIterations\",\"url\":\"classes/index.LouvainAlgorithm.html#initializeBasedOnResolutionAndNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":242,\"kind\":2048,\"name\":\"getNIterations\",\"url\":\"classes/index.LouvainAlgorithm.html#getNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":243,\"kind\":2048,\"name\":\"setNIterations\",\"url\":\"classes/index.LouvainAlgorithm.html#setNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":244,\"kind\":2048,\"name\":\"improveClustering\",\"url\":\"classes/index.LouvainAlgorithm.html#improveClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":245,\"kind\":2048,\"name\":\"initializeBasedOnResolution\",\"url\":\"classes/index.LouvainAlgorithm.html#initializeBasedOnResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":246,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"classes/index.LouvainAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":247,\"kind\":1024,\"name\":\"resolution\",\"url\":\"classes/index.LouvainAlgorithm.html#resolution\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":248,\"kind\":2048,\"name\":\"getResolution\",\"url\":\"classes/index.LouvainAlgorithm.html#getResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":249,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"classes/index.LouvainAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":250,\"kind\":2048,\"name\":\"removeCluster\",\"url\":\"classes/index.LouvainAlgorithm.html#removeCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":251,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnNNodes\",\"url\":\"classes/index.LouvainAlgorithm.html#removeSmallClustersBasedOnNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":252,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnWeight\",\"url\":\"classes/index.LouvainAlgorithm.html#removeSmallClustersBasedOnWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.LouvainAlgorithm\"},{\"id\":253,\"kind\":128,\"name\":\"Network\",\"url\":\"classes/index.Network.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":254,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.Network.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":255,\"kind\":1024,\"name\":\"nNodes\",\"url\":\"classes/index.Network.html#nNodes\",\"classes\":\"tsd-kind-property tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":256,\"kind\":1024,\"name\":\"nodeWeights\",\"url\":\"classes/index.Network.html#nodeWeights\",\"classes\":\"tsd-kind-property tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":257,\"kind\":1024,\"name\":\"firstNeighborIndices\",\"url\":\"classes/index.Network.html#firstNeighborIndices\",\"classes\":\"tsd-kind-property tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":258,\"kind\":1024,\"name\":\"neighbors\",\"url\":\"classes/index.Network.html#neighbors\",\"classes\":\"tsd-kind-property tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":259,\"kind\":1024,\"name\":\"edgeWeights\",\"url\":\"classes/index.Network.html#edgeWeights\",\"classes\":\"tsd-kind-property tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":260,\"kind\":1024,\"name\":\"totalEdgeWeightSelfLinks\",\"url\":\"classes/index.Network.html#totalEdgeWeightSelfLinks\",\"classes\":\"tsd-kind-property tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":261,\"kind\":1024,\"name\":\"nEdges\",\"url\":\"classes/index.Network.html#nEdges\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.Network\"},{\"id\":262,\"kind\":2048,\"name\":\"getNNodes\",\"url\":\"classes/index.Network.html#getNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":263,\"kind\":2048,\"name\":\"getTotalNodeWeight\",\"url\":\"classes/index.Network.html#getTotalNodeWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":264,\"kind\":2048,\"name\":\"getNodeWeights\",\"url\":\"classes/index.Network.html#getNodeWeights\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":265,\"kind\":2048,\"name\":\"getNodeWeight\",\"url\":\"classes/index.Network.html#getNodeWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":266,\"kind\":2048,\"name\":\"getNEdges\",\"url\":\"classes/index.Network.html#getNEdges\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":267,\"kind\":2048,\"name\":\"getNNeighborsPerNode\",\"url\":\"classes/index.Network.html#getNNeighborsPerNode\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":268,\"kind\":2048,\"name\":\"getNNeighbors\",\"url\":\"classes/index.Network.html#getNNeighbors\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":269,\"kind\":2048,\"name\":\"getEdges\",\"url\":\"classes/index.Network.html#getEdges\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":270,\"kind\":2048,\"name\":\"getNeighborsPerNode\",\"url\":\"classes/index.Network.html#getNeighborsPerNode\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":271,\"kind\":2048,\"name\":\"getNeighbors\",\"url\":\"classes/index.Network.html#getNeighbors\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":272,\"kind\":2048,\"name\":\"getTotalEdgeWeightPerNode\",\"url\":\"classes/index.Network.html#getTotalEdgeWeightPerNode\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":273,\"kind\":2048,\"name\":\"getTotalEdgeWeight\",\"url\":\"classes/index.Network.html#getTotalEdgeWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":274,\"kind\":2048,\"name\":\"getEdgeWeightsPerNode\",\"url\":\"classes/index.Network.html#getEdgeWeightsPerNode\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":275,\"kind\":2048,\"name\":\"getEdgeWeights\",\"url\":\"classes/index.Network.html#getEdgeWeights\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":276,\"kind\":2048,\"name\":\"getTotalEdgeWeightSelfLinks\",\"url\":\"classes/index.Network.html#getTotalEdgeWeightSelfLinks\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":277,\"kind\":2048,\"name\":\"createNetworkWithoutNodeWeights\",\"url\":\"classes/index.Network.html#createNetworkWithoutNodeWeights\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":278,\"kind\":2048,\"name\":\"createNetworkWithoutEdgeWeights\",\"url\":\"classes/index.Network.html#createNetworkWithoutEdgeWeights\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":279,\"kind\":2048,\"name\":\"createNetworkWithoutNodeAndEdgeWeights\",\"url\":\"classes/index.Network.html#createNetworkWithoutNodeAndEdgeWeights\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":280,\"kind\":2048,\"name\":\"createNormalizedNetworkUsingAssociationStrength\",\"url\":\"classes/index.Network.html#createNormalizedNetworkUsingAssociationStrength\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":281,\"kind\":2048,\"name\":\"createNormalizedNetworkUsingFractionalization\",\"url\":\"classes/index.Network.html#createNormalizedNetworkUsingFractionalization\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":282,\"kind\":2048,\"name\":\"createPrunedNetwork\",\"url\":\"classes/index.Network.html#createPrunedNetwork\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":283,\"kind\":2048,\"name\":\"createSubnetworkForNodes1\",\"url\":\"classes/index.Network.html#createSubnetworkForNodes1\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":284,\"kind\":2048,\"name\":\"createSubnetworkForNodes2\",\"url\":\"classes/index.Network.html#createSubnetworkForNodes2\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":285,\"kind\":2048,\"name\":\"createSubnetworkForCluster\",\"url\":\"classes/index.Network.html#createSubnetworkForCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":286,\"kind\":2048,\"name\":\"createSubnetworks\",\"url\":\"classes/index.Network.html#createSubnetworks\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":287,\"kind\":2048,\"name\":\"createSubnetworkLargestComponent\",\"url\":\"classes/index.Network.html#createSubnetworkLargestComponent\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":288,\"kind\":2048,\"name\":\"createReducedNetwork\",\"url\":\"classes/index.Network.html#createReducedNetwork\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":289,\"kind\":2048,\"name\":\"identifyComponents\",\"url\":\"classes/index.Network.html#identifyComponents\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.Network\"},{\"id\":290,\"kind\":2048,\"name\":\"checkIntegrity\",\"url\":\"classes/index.Network.html#checkIntegrity\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-private\",\"parent\":\"index.Network\"},{\"id\":291,\"kind\":2048,\"name\":\"initializeNetworkBasedOnEdges\",\"url\":\"classes/index.Network.html#initializeNetworkBasedOnEdges\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-private\",\"parent\":\"index.Network\"},{\"id\":292,\"kind\":2048,\"name\":\"initializeNetworkBasedOnNeighbors\",\"url\":\"classes/index.Network.html#initializeNetworkBasedOnNeighbors\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-private\",\"parent\":\"index.Network\"},{\"id\":293,\"kind\":2048,\"name\":\"getTotalEdgeWeightPerNodeHelper\",\"url\":\"classes/index.Network.html#getTotalEdgeWeightPerNodeHelper\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-private\",\"parent\":\"index.Network\"},{\"id\":294,\"kind\":2048,\"name\":\"getRandomNumber\",\"url\":\"classes/index.Network.html#getRandomNumber\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-private\",\"parent\":\"index.Network\"},{\"id\":295,\"kind\":2048,\"name\":\"createSubnetwork\",\"url\":\"classes/index.Network.html#createSubnetwork\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-private\",\"parent\":\"index.Network\"},{\"id\":296,\"kind\":2048,\"name\":\"sortEdges\",\"url\":\"classes/index.Network.html#sortEdges\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-private\",\"parent\":\"index.Network\"},{\"id\":297,\"kind\":256,\"name\":\"NetworkConstructorParameters\",\"url\":\"interfaces/index.NetworkConstructorParameters.html\",\"classes\":\"tsd-kind-interface tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":298,\"kind\":1024,\"name\":\"nNodes\",\"url\":\"interfaces/index.NetworkConstructorParameters.html#nNodes\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.NetworkConstructorParameters\"},{\"id\":299,\"kind\":1024,\"name\":\"setNodeWeightsToTotalEdgeWeights\",\"url\":\"interfaces/index.NetworkConstructorParameters.html#setNodeWeightsToTotalEdgeWeights\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.NetworkConstructorParameters\"},{\"id\":300,\"kind\":1024,\"name\":\"nodeWeights\",\"url\":\"interfaces/index.NetworkConstructorParameters.html#nodeWeights\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.NetworkConstructorParameters\"},{\"id\":301,\"kind\":1024,\"name\":\"edges\",\"url\":\"interfaces/index.NetworkConstructorParameters.html#edges\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.NetworkConstructorParameters\"},{\"id\":302,\"kind\":1024,\"name\":\"firstNeighborIndices\",\"url\":\"interfaces/index.NetworkConstructorParameters.html#firstNeighborIndices\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.NetworkConstructorParameters\"},{\"id\":303,\"kind\":1024,\"name\":\"neighbors\",\"url\":\"interfaces/index.NetworkConstructorParameters.html#neighbors\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.NetworkConstructorParameters\"},{\"id\":304,\"kind\":1024,\"name\":\"edgeWeights\",\"url\":\"interfaces/index.NetworkConstructorParameters.html#edgeWeights\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.NetworkConstructorParameters\"},{\"id\":305,\"kind\":1024,\"name\":\"sortedEdges\",\"url\":\"interfaces/index.NetworkConstructorParameters.html#sortedEdges\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.NetworkConstructorParameters\"},{\"id\":306,\"kind\":1024,\"name\":\"checkIntegrity\",\"url\":\"interfaces/index.NetworkConstructorParameters.html#checkIntegrity\",\"classes\":\"tsd-kind-property tsd-parent-kind-interface\",\"parent\":\"index.NetworkConstructorParameters\"},{\"id\":307,\"kind\":256,\"name\":\"QualityClusteringAlgorithm\",\"url\":\"interfaces/index.QualityClusteringAlgorithm.html\",\"classes\":\"tsd-kind-interface tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":308,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"interfaces/index.QualityClusteringAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-interface\",\"parent\":\"index.QualityClusteringAlgorithm\"},{\"id\":309,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"interfaces/index.QualityClusteringAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-interface tsd-is-inherited\",\"parent\":\"index.QualityClusteringAlgorithm\"},{\"id\":310,\"kind\":256,\"name\":\"QualityLayoutAlgorithm\",\"url\":\"interfaces/index.QualityLayoutAlgorithm.html\",\"classes\":\"tsd-kind-interface tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":311,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"interfaces/index.QualityLayoutAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-interface\",\"parent\":\"index.QualityLayoutAlgorithm\"},{\"id\":312,\"kind\":2048,\"name\":\"findLayout\",\"url\":\"interfaces/index.QualityLayoutAlgorithm.html#findLayout\",\"classes\":\"tsd-kind-method tsd-parent-kind-interface tsd-is-inherited\",\"parent\":\"index.QualityLayoutAlgorithm\"},{\"id\":313,\"kind\":128,\"name\":\"StandardLocalMovingAlgorithm\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":314,\"kind\":1024,\"name\":\"DEFAULT_RESOLUTION\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#DEFAULT_RESOLUTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-static\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":315,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":316,\"kind\":1024,\"name\":\"random\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#random\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":317,\"kind\":2048,\"name\":\"initializeBasedOnRandom\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#initializeBasedOnRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":318,\"kind\":2048,\"name\":\"initializeBasedOnResolutionAndRandom\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#initializeBasedOnResolutionAndRandom\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":319,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":320,\"kind\":2048,\"name\":\"improveClustering\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#improveClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":321,\"kind\":2048,\"name\":\"initializeBasedOnResolution\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#initializeBasedOnResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":322,\"kind\":2048,\"name\":\"findClustering\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#findClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":323,\"kind\":1024,\"name\":\"resolution\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#resolution\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":324,\"kind\":2048,\"name\":\"getResolution\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#getResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":325,\"kind\":2048,\"name\":\"setResolution\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#setResolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":326,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":327,\"kind\":2048,\"name\":\"removeCluster\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#removeCluster\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":328,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnNNodes\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#removeSmallClustersBasedOnNNodes\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":329,\"kind\":2048,\"name\":\"removeSmallClustersBasedOnWeight\",\"url\":\"classes/index.StandardLocalMovingAlgorithm.html#removeSmallClustersBasedOnWeight\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"index.StandardLocalMovingAlgorithm\"},{\"id\":330,\"kind\":128,\"name\":\"VOSLayoutAlgorithm\",\"url\":\"classes/index.VOSLayoutAlgorithm.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"index\"},{\"id\":331,\"kind\":1024,\"name\":\"DEFAULT_ATTRACTION\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#DEFAULT_ATTRACTION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":332,\"kind\":1024,\"name\":\"DEFAULT_REPULSION\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#DEFAULT_REPULSION\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":333,\"kind\":1024,\"name\":\"DEFAULT_EDGE_WEIGHT_INCREMENT\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#DEFAULT_EDGE_WEIGHT_INCREMENT\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-static\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":334,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":335,\"kind\":1024,\"name\":\"attraction\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#attraction\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":336,\"kind\":1024,\"name\":\"repulsion\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#repulsion\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":337,\"kind\":1024,\"name\":\"edgeWeightIncrement\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#edgeWeightIncrement\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":338,\"kind\":2048,\"name\":\"initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrement\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrement\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":339,\"kind\":2048,\"name\":\"getAttraction\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#getAttraction\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":340,\"kind\":2048,\"name\":\"getRepulsion\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#getRepulsion\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":341,\"kind\":2048,\"name\":\"getEdgeWeightIncrement\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#getEdgeWeightIncrement\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":342,\"kind\":2048,\"name\":\"setAttraction\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#setAttraction\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":343,\"kind\":2048,\"name\":\"setRepulsion\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#setRepulsion\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":344,\"kind\":2048,\"name\":\"setEdgeWeightIncrement\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#setEdgeWeightIncrement\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":345,\"kind\":2048,\"name\":\"calcQuality\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#calcQuality\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":346,\"kind\":2048,\"name\":\"clone\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#clone\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":347,\"kind\":2048,\"name\":\"findLayout\",\"url\":\"classes/index.VOSLayoutAlgorithm.html#findLayout\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"index.VOSLayoutAlgorithm\"},{\"id\":348,\"kind\":128,\"name\":\"NetworkAnalysis\",\"url\":\"classes/run.NetworkAnalysis.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"run\"},{\"id\":349,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/run.NetworkAnalysis.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class\",\"parent\":\"run.NetworkAnalysis\"},{\"id\":350,\"kind\":1024,\"name\":\"_networkHelper\",\"url\":\"classes/run.NetworkAnalysis.html#_networkHelper\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-protected\",\"parent\":\"run.NetworkAnalysis\"},{\"id\":351,\"kind\":2048,\"name\":\"data\",\"url\":\"classes/run.NetworkAnalysis.html#data\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkAnalysis\"},{\"id\":352,\"kind\":2048,\"name\":\"run\",\"url\":\"classes/run.NetworkAnalysis.html#run\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkAnalysis\"},{\"id\":353,\"kind\":128,\"name\":\"NetworkClustering\",\"url\":\"classes/run.NetworkClustering.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"run\"},{\"id\":354,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/run.NetworkClustering.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"run.NetworkClustering\"},{\"id\":355,\"kind\":1024,\"name\":\"_useModularity\",\"url\":\"classes/run.NetworkClustering.html#_useModularity\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkClustering\"},{\"id\":356,\"kind\":1024,\"name\":\"_normalization\",\"url\":\"classes/run.NetworkClustering.html#_normalization\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkClustering\"},{\"id\":357,\"kind\":1024,\"name\":\"_resolution\",\"url\":\"classes/run.NetworkClustering.html#_resolution\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkClustering\"},{\"id\":358,\"kind\":1024,\"name\":\"_minClusterSize\",\"url\":\"classes/run.NetworkClustering.html#_minClusterSize\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkClustering\"},{\"id\":359,\"kind\":1024,\"name\":\"_useLouvain\",\"url\":\"classes/run.NetworkClustering.html#_useLouvain\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkClustering\"},{\"id\":360,\"kind\":1024,\"name\":\"_nRandomStarts\",\"url\":\"classes/run.NetworkClustering.html#_nRandomStarts\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkClustering\"},{\"id\":361,\"kind\":1024,\"name\":\"_nIterations\",\"url\":\"classes/run.NetworkClustering.html#_nIterations\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkClustering\"},{\"id\":362,\"kind\":1024,\"name\":\"_randomness\",\"url\":\"classes/run.NetworkClustering.html#_randomness\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkClustering\"},{\"id\":363,\"kind\":1024,\"name\":\"_useSeed\",\"url\":\"classes/run.NetworkClustering.html#_useSeed\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkClustering\"},{\"id\":364,\"kind\":1024,\"name\":\"_seed\",\"url\":\"classes/run.NetworkClustering.html#_seed\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkClustering\"},{\"id\":365,\"kind\":2048,\"name\":\"qualityFunction\",\"url\":\"classes/run.NetworkClustering.html#qualityFunction\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkClustering\"},{\"id\":366,\"kind\":2048,\"name\":\"normalization\",\"url\":\"classes/run.NetworkClustering.html#normalization\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkClustering\"},{\"id\":367,\"kind\":2048,\"name\":\"resolution\",\"url\":\"classes/run.NetworkClustering.html#resolution\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkClustering\"},{\"id\":368,\"kind\":2048,\"name\":\"minClusterSize\",\"url\":\"classes/run.NetworkClustering.html#minClusterSize\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkClustering\"},{\"id\":369,\"kind\":2048,\"name\":\"algorithm\",\"url\":\"classes/run.NetworkClustering.html#algorithm\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkClustering\"},{\"id\":370,\"kind\":2048,\"name\":\"randomStarts\",\"url\":\"classes/run.NetworkClustering.html#randomStarts\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkClustering\"},{\"id\":371,\"kind\":2048,\"name\":\"iterations\",\"url\":\"classes/run.NetworkClustering.html#iterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkClustering\"},{\"id\":372,\"kind\":2048,\"name\":\"randomness\",\"url\":\"classes/run.NetworkClustering.html#randomness\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkClustering\"},{\"id\":373,\"kind\":2048,\"name\":\"seed\",\"url\":\"classes/run.NetworkClustering.html#seed\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkClustering\"},{\"id\":374,\"kind\":2048,\"name\":\"run\",\"url\":\"classes/run.NetworkClustering.html#run\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"run.NetworkClustering\"},{\"id\":375,\"kind\":1024,\"name\":\"_networkHelper\",\"url\":\"classes/run.NetworkClustering.html#_networkHelper\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"run.NetworkClustering\"},{\"id\":376,\"kind\":2048,\"name\":\"data\",\"url\":\"classes/run.NetworkClustering.html#data\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"run.NetworkClustering\"},{\"id\":377,\"kind\":8,\"name\":\"ClusteringQualityFunctions\",\"url\":\"enums/run.ClusteringQualityFunctions.html\",\"classes\":\"tsd-kind-enum tsd-parent-kind-module\",\"parent\":\"run\"},{\"id\":378,\"kind\":16,\"name\":\"CPM\",\"url\":\"enums/run.ClusteringQualityFunctions.html#CPM\",\"classes\":\"tsd-kind-enum-member tsd-parent-kind-enum\",\"parent\":\"run.ClusteringQualityFunctions\"},{\"id\":379,\"kind\":16,\"name\":\"Modularity\",\"url\":\"enums/run.ClusteringQualityFunctions.html#Modularity\",\"classes\":\"tsd-kind-enum-member tsd-parent-kind-enum\",\"parent\":\"run.ClusteringQualityFunctions\"},{\"id\":380,\"kind\":8,\"name\":\"ClusteringAlgorithms\",\"url\":\"enums/run.ClusteringAlgorithms.html\",\"classes\":\"tsd-kind-enum tsd-parent-kind-module\",\"parent\":\"run\"},{\"id\":381,\"kind\":16,\"name\":\"Leiden\",\"url\":\"enums/run.ClusteringAlgorithms.html#Leiden\",\"classes\":\"tsd-kind-enum-member tsd-parent-kind-enum\",\"parent\":\"run.ClusteringAlgorithms\"},{\"id\":382,\"kind\":16,\"name\":\"Louvain\",\"url\":\"enums/run.ClusteringAlgorithms.html#Louvain\",\"classes\":\"tsd-kind-enum-member tsd-parent-kind-enum\",\"parent\":\"run.ClusteringAlgorithms\"},{\"id\":383,\"kind\":128,\"name\":\"NetworkLayout\",\"url\":\"classes/run.NetworkLayout.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"run\"},{\"id\":384,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/run.NetworkLayout.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"run.NetworkLayout\"},{\"id\":385,\"kind\":1024,\"name\":\"_useLinLog\",\"url\":\"classes/run.NetworkLayout.html#_useLinLog\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":386,\"kind\":1024,\"name\":\"_normalization\",\"url\":\"classes/run.NetworkLayout.html#_normalization\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":387,\"kind\":1024,\"name\":\"_attraction\",\"url\":\"classes/run.NetworkLayout.html#_attraction\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":388,\"kind\":1024,\"name\":\"_repulsion\",\"url\":\"classes/run.NetworkLayout.html#_repulsion\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":389,\"kind\":1024,\"name\":\"_nRandomStarts\",\"url\":\"classes/run.NetworkLayout.html#_nRandomStarts\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":390,\"kind\":1024,\"name\":\"_maxNIterations\",\"url\":\"classes/run.NetworkLayout.html#_maxNIterations\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":391,\"kind\":1024,\"name\":\"_initialStepSize\",\"url\":\"classes/run.NetworkLayout.html#_initialStepSize\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":392,\"kind\":1024,\"name\":\"_minStepSize\",\"url\":\"classes/run.NetworkLayout.html#_minStepSize\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":393,\"kind\":1024,\"name\":\"_stepSizeReduction\",\"url\":\"classes/run.NetworkLayout.html#_stepSizeReduction\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":394,\"kind\":1024,\"name\":\"_requiredNQualityValueImprovements\",\"url\":\"classes/run.NetworkLayout.html#_requiredNQualityValueImprovements\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":395,\"kind\":1024,\"name\":\"_seed\",\"url\":\"classes/run.NetworkLayout.html#_seed\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":396,\"kind\":1024,\"name\":\"_useSeed\",\"url\":\"classes/run.NetworkLayout.html#_useSeed\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":397,\"kind\":1024,\"name\":\"_edgeWeightIncrementUnconnectedNodes\",\"url\":\"classes/run.NetworkLayout.html#_edgeWeightIncrementUnconnectedNodes\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkLayout\"},{\"id\":398,\"kind\":2048,\"name\":\"qualityFunction\",\"url\":\"classes/run.NetworkLayout.html#qualityFunction\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":399,\"kind\":2048,\"name\":\"normalization\",\"url\":\"classes/run.NetworkLayout.html#normalization\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":400,\"kind\":2048,\"name\":\"attraction\",\"url\":\"classes/run.NetworkLayout.html#attraction\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":401,\"kind\":2048,\"name\":\"maxNIterations\",\"url\":\"classes/run.NetworkLayout.html#maxNIterations\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":402,\"kind\":2048,\"name\":\"initialStepSize\",\"url\":\"classes/run.NetworkLayout.html#initialStepSize\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":403,\"kind\":2048,\"name\":\"minStepSize\",\"url\":\"classes/run.NetworkLayout.html#minStepSize\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":404,\"kind\":2048,\"name\":\"stepSizeReduction\",\"url\":\"classes/run.NetworkLayout.html#stepSizeReduction\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":405,\"kind\":2048,\"name\":\"requiredNQualityValueImprovements\",\"url\":\"classes/run.NetworkLayout.html#requiredNQualityValueImprovements\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":406,\"kind\":2048,\"name\":\"repulsion\",\"url\":\"classes/run.NetworkLayout.html#repulsion\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":407,\"kind\":2048,\"name\":\"randomStarts\",\"url\":\"classes/run.NetworkLayout.html#randomStarts\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":408,\"kind\":2048,\"name\":\"seed\",\"url\":\"classes/run.NetworkLayout.html#seed\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkLayout\"},{\"id\":409,\"kind\":2048,\"name\":\"run\",\"url\":\"classes/run.NetworkLayout.html#run\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-overwrite\",\"parent\":\"run.NetworkLayout\"},{\"id\":410,\"kind\":1024,\"name\":\"_networkHelper\",\"url\":\"classes/run.NetworkLayout.html#_networkHelper\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-inherited tsd-is-protected\",\"parent\":\"run.NetworkLayout\"},{\"id\":411,\"kind\":2048,\"name\":\"data\",\"url\":\"classes/run.NetworkLayout.html#data\",\"classes\":\"tsd-kind-method tsd-parent-kind-class tsd-is-inherited\",\"parent\":\"run.NetworkLayout\"},{\"id\":412,\"kind\":8,\"name\":\"LayoutQualityFunctions\",\"url\":\"enums/run.LayoutQualityFunctions.html\",\"classes\":\"tsd-kind-enum tsd-parent-kind-module\",\"parent\":\"run\"},{\"id\":413,\"kind\":16,\"name\":\"VOS\",\"url\":\"enums/run.LayoutQualityFunctions.html#VOS\",\"classes\":\"tsd-kind-enum-member tsd-parent-kind-enum\",\"parent\":\"run.LayoutQualityFunctions\"},{\"id\":414,\"kind\":16,\"name\":\"LinLog\",\"url\":\"enums/run.LayoutQualityFunctions.html#LinLog\",\"classes\":\"tsd-kind-enum-member tsd-parent-kind-enum\",\"parent\":\"run.LayoutQualityFunctions\"},{\"id\":415,\"kind\":128,\"name\":\"NetworkHelper\",\"url\":\"classes/run.NetworkHelper.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"run\"},{\"id\":416,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/run.NetworkHelper.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class\",\"parent\":\"run.NetworkHelper\"},{\"id\":417,\"kind\":1024,\"name\":\"_nodes\",\"url\":\"classes/run.NetworkHelper.html#_nodes\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkHelper\"},{\"id\":418,\"kind\":1024,\"name\":\"_network\",\"url\":\"classes/run.NetworkHelper.html#_network\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkHelper\"},{\"id\":419,\"kind\":1024,\"name\":\"_initialClustering\",\"url\":\"classes/run.NetworkHelper.html#_initialClustering\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkHelper\"},{\"id\":420,\"kind\":1024,\"name\":\"_initialLayout\",\"url\":\"classes/run.NetworkHelper.html#_initialLayout\",\"classes\":\"tsd-kind-property tsd-parent-kind-class tsd-is-private\",\"parent\":\"run.NetworkHelper\"},{\"id\":421,\"kind\":2048,\"name\":\"getNetwork\",\"url\":\"classes/run.NetworkHelper.html#getNetwork\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkHelper\"},{\"id\":422,\"kind\":2048,\"name\":\"getInitialClustering\",\"url\":\"classes/run.NetworkHelper.html#getInitialClustering\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkHelper\"},{\"id\":423,\"kind\":2048,\"name\":\"getInitialLayout\",\"url\":\"classes/run.NetworkHelper.html#getInitialLayout\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkHelper\"},{\"id\":424,\"kind\":2048,\"name\":\"setClusters\",\"url\":\"classes/run.NetworkHelper.html#setClusters\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkHelper\"},{\"id\":425,\"kind\":2048,\"name\":\"setCoordinates\",\"url\":\"classes/run.NetworkHelper.html#setCoordinates\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"run.NetworkHelper\"},{\"id\":426,\"kind\":8,\"name\":\"NormalizationMethods\",\"url\":\"enums/run.NormalizationMethods.html\",\"classes\":\"tsd-kind-enum tsd-parent-kind-module\",\"parent\":\"run\"},{\"id\":427,\"kind\":16,\"name\":\"NoNormalization\",\"url\":\"enums/run.NormalizationMethods.html#NoNormalization\",\"classes\":\"tsd-kind-enum-member tsd-parent-kind-enum\",\"parent\":\"run.NormalizationMethods\"},{\"id\":428,\"kind\":16,\"name\":\"AssociationStrength\",\"url\":\"enums/run.NormalizationMethods.html#AssociationStrength\",\"classes\":\"tsd-kind-enum-member tsd-parent-kind-enum\",\"parent\":\"run.NormalizationMethods\"},{\"id\":429,\"kind\":16,\"name\":\"Fractionalization\",\"url\":\"enums/run.NormalizationMethods.html#Fractionalization\",\"classes\":\"tsd-kind-enum-member tsd-parent-kind-enum\",\"parent\":\"run.NormalizationMethods\"},{\"id\":430,\"kind\":4194304,\"name\":\"Node\",\"url\":\"modules/run.html#Node\",\"classes\":\"tsd-kind-type-alias tsd-parent-kind-module\",\"parent\":\"run\"},{\"id\":431,\"kind\":65536,\"name\":\"__type\",\"url\":\"modules/run.html#Node.__type\",\"classes\":\"tsd-kind-type-literal tsd-parent-kind-type-alias\",\"parent\":\"run.Node\"},{\"id\":432,\"kind\":1024,\"name\":\"id\",\"url\":\"modules/run.html#Node.__type.id\",\"classes\":\"tsd-kind-property tsd-parent-kind-type-literal\",\"parent\":\"run.Node.__type\"},{\"id\":433,\"kind\":1024,\"name\":\"x\",\"url\":\"modules/run.html#Node.__type.x\",\"classes\":\"tsd-kind-property tsd-parent-kind-type-literal\",\"parent\":\"run.Node.__type\"},{\"id\":434,\"kind\":1024,\"name\":\"y\",\"url\":\"modules/run.html#Node.__type.y\",\"classes\":\"tsd-kind-property tsd-parent-kind-type-literal\",\"parent\":\"run.Node.__type\"},{\"id\":435,\"kind\":1024,\"name\":\"cluster\",\"url\":\"modules/run.html#Node.__type.cluster\",\"classes\":\"tsd-kind-property tsd-parent-kind-type-literal\",\"parent\":\"run.Node.__type\"},{\"id\":436,\"kind\":4194304,\"name\":\"Link\",\"url\":\"modules/run.html#Link\",\"classes\":\"tsd-kind-type-alias tsd-parent-kind-module\",\"parent\":\"run\"},{\"id\":437,\"kind\":65536,\"name\":\"__type\",\"url\":\"modules/run.html#Link.__type-1\",\"classes\":\"tsd-kind-type-literal tsd-parent-kind-type-alias\",\"parent\":\"run.Link\"},{\"id\":438,\"kind\":1024,\"name\":\"node1\",\"url\":\"modules/run.html#Link.__type-1.node1\",\"classes\":\"tsd-kind-property tsd-parent-kind-type-literal\",\"parent\":\"run.Link.__type\"},{\"id\":439,\"kind\":1024,\"name\":\"node2\",\"url\":\"modules/run.html#Link.__type-1.node2\",\"classes\":\"tsd-kind-property tsd-parent-kind-type-literal\",\"parent\":\"run.Link.__type\"},{\"id\":440,\"kind\":1024,\"name\":\"weight\",\"url\":\"modules/run.html#Link.__type-1.weight\",\"classes\":\"tsd-kind-property tsd-parent-kind-type-literal\",\"parent\":\"run.Link.__type\"},{\"id\":441,\"kind\":128,\"name\":\"Random\",\"url\":\"classes/utils.Random.html\",\"classes\":\"tsd-kind-class tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":442,\"kind\":512,\"name\":\"constructor\",\"url\":\"classes/utils.Random.html#constructor\",\"classes\":\"tsd-kind-constructor tsd-parent-kind-class\",\"parent\":\"utils.Random\"},{\"id\":443,\"kind\":2048,\"name\":\"nextDouble\",\"url\":\"classes/utils.Random.html#nextDouble\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"utils.Random\"},{\"id\":444,\"kind\":2048,\"name\":\"nextInt\",\"url\":\"classes/utils.Random.html#nextInt\",\"classes\":\"tsd-kind-method tsd-parent-kind-class\",\"parent\":\"utils.Random\"},{\"id\":445,\"kind\":64,\"name\":\"calcSum\",\"url\":\"modules/utils.html#calcSum\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":446,\"kind\":64,\"name\":\"calcSumWithinRange\",\"url\":\"modules/utils.html#calcSumWithinRange\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":447,\"kind\":64,\"name\":\"calcAverage\",\"url\":\"modules/utils.html#calcAverage\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":448,\"kind\":64,\"name\":\"calcMedian\",\"url\":\"modules/utils.html#calcMedian\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":449,\"kind\":64,\"name\":\"calcMinimum\",\"url\":\"modules/utils.html#calcMinimum\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":450,\"kind\":64,\"name\":\"calcMaximum\",\"url\":\"modules/utils.html#calcMaximum\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":451,\"kind\":64,\"name\":\"createDoubleArrayOfRandomNumbers\",\"url\":\"modules/utils.html#createDoubleArrayOfRandomNumbers\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":452,\"kind\":64,\"name\":\"generateRandomPermutation\",\"url\":\"modules/utils.html#generateRandomPermutation\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":453,\"kind\":64,\"name\":\"binarySearch\",\"url\":\"modules/utils.html#binarySearch\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":454,\"kind\":64,\"name\":\"fastExp\",\"url\":\"modules/utils.html#fastExp\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"},{\"id\":455,\"kind\":64,\"name\":\"fastPow\",\"url\":\"modules/utils.html#fastPow\",\"classes\":\"tsd-kind-function tsd-parent-kind-module\",\"parent\":\"utils\"}],\"index\":{\"version\":\"2.3.9\",\"fields\":[\"name\",\"parent\"],\"fieldVectors\":[[\"name/0\",[0,28.86]],[\"parent/0\",[]],[\"name/1\",[1,34.505]],[\"parent/1\",[]],[\"name/2\",[2,35.22]],[\"parent/2\",[]],[\"name/3\",[3,57.192]],[\"parent/3\",[0,2.878]],[\"name/4\",[4,31.543]],[\"parent/4\",[5,3.096]],[\"name/5\",[6,52.084]],[\"parent/5\",[5,3.096]],[\"name/6\",[7,57.192]],[\"parent/6\",[5,3.096]],[\"name/7\",[8,41.098]],[\"parent/7\",[5,3.096]],[\"name/8\",[9,52.084]],[\"parent/8\",[5,3.096]],[\"name/9\",[10,57.192]],[\"parent/9\",[5,3.096]],[\"name/10\",[11,35.99]],[\"parent/10\",[5,3.096]],[\"name/11\",[12,48.719]],[\"parent/11\",[5,3.096]],[\"name/12\",[13,57.192]],[\"parent/12\",[5,3.096]],[\"name/13\",[14,57.192]],[\"parent/13\",[5,3.096]],[\"name/14\",[15,57.192]],[\"parent/14\",[5,3.096]],[\"name/15\",[16,57.192]],[\"parent/15\",[5,3.096]],[\"name/16\",[17,57.192]],[\"parent/16\",[5,3.096]],[\"name/17\",[18,57.192]],[\"parent/17\",[5,3.096]],[\"name/18\",[19,57.192]],[\"parent/18\",[5,3.096]],[\"name/19\",[20,57.192]],[\"parent/19\",[5,3.096]],[\"name/20\",[21,57.192]],[\"parent/20\",[5,3.096]],[\"name/21\",[22,57.192]],[\"parent/21\",[5,3.096]],[\"name/22\",[23,57.192]],[\"parent/22\",[5,3.096]],[\"name/23\",[24,57.192]],[\"parent/23\",[5,3.096]],[\"name/24\",[25,57.192]],[\"parent/24\",[0,2.878]],[\"name/25\",[6,52.084]],[\"parent/25\",[26,5.704]],[\"name/26\",[27,57.192]],[\"parent/26\",[0,2.878]],[\"name/27\",[8,41.098]],[\"parent/27\",[28,5.704]],[\"name/28\",[29,57.192]],[\"parent/28\",[0,2.878]],[\"name/29\",[30,35.99]],[\"parent/29\",[31,5.704]],[\"name/30\",[32,57.192]],[\"parent/30\",[0,2.878]],[\"name/31\",[33,39.846]],[\"parent/31\",[34,3.589]],[\"name/32\",[4,31.543]],[\"parent/32\",[34,3.589]],[\"name/33\",[35,38.734]],[\"parent/33\",[34,3.589]],[\"name/34\",[36,39.846]],[\"parent/34\",[34,3.589]],[\"name/35\",[37,39.846]],[\"parent/35\",[34,3.589]],[\"name/36\",[38,39.846]],[\"parent/36\",[34,3.589]],[\"name/37\",[39,35.99]],[\"parent/37\",[34,3.589]],[\"name/38\",[40,39.846]],[\"parent/38\",[34,3.589]],[\"name/39\",[41,39.846]],[\"parent/39\",[34,3.589]],[\"name/40\",[42,39.846]],[\"parent/40\",[34,3.589]],[\"name/41\",[11,35.99]],[\"parent/41\",[34,3.589]],[\"name/42\",[30,35.99]],[\"parent/42\",[34,3.589]],[\"name/43\",[43,57.192]],[\"parent/43\",[0,2.878]],[\"name/44\",[4,31.543]],[\"parent/44\",[44,5.194]],[\"name/45\",[30,35.99]],[\"parent/45\",[44,5.194]],[\"name/46\",[45,57.192]],[\"parent/46\",[0,2.878]],[\"name/47\",[46,46.206]],[\"parent/47\",[47,3.003]],[\"name/48\",[33,39.846]],[\"parent/48\",[47,3.003]],[\"name/49\",[4,31.543]],[\"parent/49\",[47,3.003]],[\"name/50\",[48,41.098]],[\"parent/50\",[47,3.003]],[\"name/51\",[49,42.529]],[\"parent/51\",[47,3.003]],[\"name/52\",[50,52.084]],[\"parent/52\",[47,3.003]],[\"name/53\",[11,35.99]],[\"parent/53\",[47,3.003]],[\"name/54\",[51,46.206]],[\"parent/54\",[47,3.003]],[\"name/55\",[52,46.206]],[\"parent/55\",[47,3.003]],[\"name/56\",[53,46.206]],[\"parent/56\",[47,3.003]],[\"name/57\",[54,46.206]],[\"parent/57\",[47,3.003]],[\"name/58\",[55,46.206]],[\"parent/58\",[47,3.003]],[\"name/59\",[56,41.098]],[\"parent/59\",[47,3.003]],[\"name/60\",[36,39.846]],[\"parent/60\",[47,3.003]],[\"name/61\",[30,35.99]],[\"parent/61\",[47,3.003]],[\"name/62\",[35,38.734]],[\"parent/62\",[47,3.003]],[\"name/63\",[37,39.846]],[\"parent/63\",[47,3.003]],[\"name/64\",[38,39.846]],[\"parent/64\",[47,3.003]],[\"name/65\",[39,35.99]],[\"parent/65\",[47,3.003]],[\"name/66\",[40,39.846]],[\"parent/66\",[47,3.003]],[\"name/67\",[41,39.846]],[\"parent/67\",[47,3.003]],[\"name/68\",[42,39.846]],[\"parent/68\",[47,3.003]],[\"name/69\",[57,57.192]],[\"parent/69\",[0,2.878]],[\"name/70\",[58,57.192]],[\"parent/70\",[59,2.369]],[\"name/71\",[60,57.192]],[\"parent/71\",[59,2.369]],[\"name/72\",[61,57.192]],[\"parent/72\",[59,2.369]],[\"name/73\",[62,57.192]],[\"parent/73\",[59,2.369]],[\"name/74\",[63,57.192]],[\"parent/74\",[59,2.369]],[\"name/75\",[64,52.084]],[\"parent/75\",[59,2.369]],[\"name/76\",[65,52.084]],[\"parent/76\",[59,2.369]],[\"name/77\",[66,52.084]],[\"parent/77\",[59,2.369]],[\"name/78\",[4,31.543]],[\"parent/78\",[59,2.369]],[\"name/79\",[67,52.084]],[\"parent/79\",[59,2.369]],[\"name/80\",[68,52.084]],[\"parent/80\",[59,2.369]],[\"name/81\",[69,52.084]],[\"parent/81\",[59,2.369]],[\"name/82\",[70,52.084]],[\"parent/82\",[59,2.369]],[\"name/83\",[71,52.084]],[\"parent/83\",[59,2.369]],[\"name/84\",[48,41.098]],[\"parent/84\",[59,2.369]],[\"name/85\",[49,42.529]],[\"parent/85\",[59,2.369]],[\"name/86\",[72,57.192]],[\"parent/86\",[59,2.369]],[\"name/87\",[73,57.192]],[\"parent/87\",[59,2.369]],[\"name/88\",[11,35.99]],[\"parent/88\",[59,2.369]],[\"name/89\",[74,57.192]],[\"parent/89\",[59,2.369]],[\"name/90\",[75,57.192]],[\"parent/90\",[59,2.369]],[\"name/91\",[76,57.192]],[\"parent/91\",[59,2.369]],[\"name/92\",[77,57.192]],[\"parent/92\",[59,2.369]],[\"name/93\",[78,57.192]],[\"parent/93\",[59,2.369]],[\"name/94\",[79,57.192]],[\"parent/94\",[59,2.369]],[\"name/95\",[80,57.192]],[\"parent/95\",[59,2.369]],[\"name/96\",[81,57.192]],[\"parent/96\",[59,2.369]],[\"name/97\",[82,57.192]],[\"parent/97\",[59,2.369]],[\"name/98\",[83,57.192]],[\"parent/98\",[59,2.369]],[\"name/99\",[84,48.719]],[\"parent/99\",[59,2.369]],[\"name/100\",[85,57.192]],[\"parent/100\",[59,2.369]],[\"name/101\",[86,48.719]],[\"parent/101\",[59,2.369]],[\"name/102\",[87,48.719]],[\"parent/102\",[59,2.369]],[\"name/103\",[88,52.084]],[\"parent/103\",[59,2.369]],[\"name/104\",[89,52.084]],[\"parent/104\",[59,2.369]],[\"name/105\",[90,52.084]],[\"parent/105\",[59,2.369]],[\"name/106\",[91,52.084]],[\"parent/106\",[59,2.369]],[\"name/107\",[92,52.084]],[\"parent/107\",[59,2.369]],[\"name/108\",[93,52.084]],[\"parent/108\",[59,2.369]],[\"name/109\",[94,52.084]],[\"parent/109\",[59,2.369]],[\"name/110\",[95,52.084]],[\"parent/110\",[59,2.369]],[\"name/111\",[39,35.99]],[\"parent/111\",[59,2.369]],[\"name/112\",[96,57.192]],[\"parent/112\",[0,2.878]],[\"name/113\",[56,41.098]],[\"parent/113\",[97,5.194]],[\"name/114\",[30,35.99]],[\"parent/114\",[97,5.194]],[\"name/115\",[98,57.192]],[\"parent/115\",[0,2.878]],[\"name/116\",[33,39.846]],[\"parent/116\",[99,3.512]],[\"name/117\",[4,31.543]],[\"parent/117\",[99,3.512]],[\"name/118\",[36,39.846]],[\"parent/118\",[99,3.512]],[\"name/119\",[30,35.99]],[\"parent/119\",[99,3.512]],[\"name/120\",[56,41.098]],[\"parent/120\",[99,3.512]],[\"name/121\",[35,38.734]],[\"parent/121\",[99,3.512]],[\"name/122\",[37,39.846]],[\"parent/122\",[99,3.512]],[\"name/123\",[38,39.846]],[\"parent/123\",[99,3.512]],[\"name/124\",[39,35.99]],[\"parent/124\",[99,3.512]],[\"name/125\",[40,39.846]],[\"parent/125\",[99,3.512]],[\"name/126\",[41,39.846]],[\"parent/126\",[99,3.512]],[\"name/127\",[42,39.846]],[\"parent/127\",[99,3.512]],[\"name/128\",[11,35.99]],[\"parent/128\",[99,3.512]],[\"name/129\",[100,57.192]],[\"parent/129\",[0,2.878]],[\"name/130\",[46,46.206]],[\"parent/130\",[101,3.146]],[\"name/131\",[33,39.846]],[\"parent/131\",[101,3.146]],[\"name/132\",[4,31.543]],[\"parent/132\",[101,3.146]],[\"name/133\",[52,46.206]],[\"parent/133\",[101,3.146]],[\"name/134\",[53,46.206]],[\"parent/134\",[101,3.146]],[\"name/135\",[54,46.206]],[\"parent/135\",[101,3.146]],[\"name/136\",[55,46.206]],[\"parent/136\",[101,3.146]],[\"name/137\",[56,41.098]],[\"parent/137\",[101,3.146]],[\"name/138\",[51,46.206]],[\"parent/138\",[101,3.146]],[\"name/139\",[36,39.846]],[\"parent/139\",[101,3.146]],[\"name/140\",[30,35.99]],[\"parent/140\",[101,3.146]],[\"name/141\",[35,38.734]],[\"parent/141\",[101,3.146]],[\"name/142\",[37,39.846]],[\"parent/142\",[101,3.146]],[\"name/143\",[38,39.846]],[\"parent/143\",[101,3.146]],[\"name/144\",[39,35.99]],[\"parent/144\",[101,3.146]],[\"name/145\",[40,39.846]],[\"parent/145\",[101,3.146]],[\"name/146\",[41,39.846]],[\"parent/146\",[101,3.146]],[\"name/147\",[42,39.846]],[\"parent/147\",[101,3.146]],[\"name/148\",[11,35.99]],[\"parent/148\",[101,3.146]],[\"name/149\",[102,57.192]],[\"parent/149\",[0,2.878]],[\"name/150\",[4,31.543]],[\"parent/150\",[103,3.146]],[\"name/151\",[104,52.084]],[\"parent/151\",[103,3.146]],[\"name/152\",[8,41.098]],[\"parent/152\",[103,3.146]],[\"name/153\",[9,52.084]],[\"parent/153\",[103,3.146]],[\"name/154\",[105,57.192]],[\"parent/154\",[103,3.146]],[\"name/155\",[106,57.192]],[\"parent/155\",[103,3.146]],[\"name/156\",[11,35.99]],[\"parent/156\",[103,3.146]],[\"name/157\",[12,48.719]],[\"parent/157\",[103,3.146]],[\"name/158\",[107,57.192]],[\"parent/158\",[103,3.146]],[\"name/159\",[108,57.192]],[\"parent/159\",[103,3.146]],[\"name/160\",[109,57.192]],[\"parent/160\",[103,3.146]],[\"name/161\",[110,57.192]],[\"parent/161\",[103,3.146]],[\"name/162\",[111,57.192]],[\"parent/162\",[103,3.146]],[\"name/163\",[112,52.084]],[\"parent/163\",[103,3.146]],[\"name/164\",[113,57.192]],[\"parent/164\",[103,3.146]],[\"name/165\",[114,57.192]],[\"parent/165\",[103,3.146]],[\"name/166\",[115,57.192]],[\"parent/166\",[103,3.146]],[\"name/167\",[116,57.192]],[\"parent/167\",[103,3.146]],[\"name/168\",[117,57.192]],[\"parent/168\",[103,3.146]],[\"name/169\",[118,57.192]],[\"parent/169\",[0,2.878]],[\"name/170\",[104,52.084]],[\"parent/170\",[119,5.704]],[\"name/171\",[120,57.192]],[\"parent/171\",[0,2.878]],[\"name/172\",[8,41.098]],[\"parent/172\",[121,5.704]],[\"name/173\",[122,57.192]],[\"parent/173\",[0,2.878]],[\"name/174\",[8,41.098]],[\"parent/174\",[123,5.194]],[\"name/175\",[48,41.098]],[\"parent/175\",[123,5.194]],[\"name/176\",[124,57.192]],[\"parent/176\",[0,2.878]],[\"name/177\",[125,52.084]],[\"parent/177\",[126,2.7]],[\"name/178\",[46,46.206]],[\"parent/178\",[126,2.7]],[\"name/179\",[33,39.846]],[\"parent/179\",[126,2.7]],[\"name/180\",[4,31.543]],[\"parent/180\",[126,2.7]],[\"name/181\",[127,48.719]],[\"parent/181\",[126,2.7]],[\"name/182\",[128,52.084]],[\"parent/182\",[126,2.7]],[\"name/183\",[48,41.098]],[\"parent/183\",[126,2.7]],[\"name/184\",[49,42.529]],[\"parent/184\",[126,2.7]],[\"name/185\",[129,57.192]],[\"parent/185\",[126,2.7]],[\"name/186\",[130,57.192]],[\"parent/186\",[126,2.7]],[\"name/187\",[11,35.99]],[\"parent/187\",[126,2.7]],[\"name/188\",[131,52.084]],[\"parent/188\",[126,2.7]],[\"name/189\",[132,52.084]],[\"parent/189\",[126,2.7]],[\"name/190\",[38,39.846]],[\"parent/190\",[126,2.7]],[\"name/191\",[133,52.084]],[\"parent/191\",[126,2.7]],[\"name/192\",[134,52.084]],[\"parent/192\",[126,2.7]],[\"name/193\",[51,46.206]],[\"parent/193\",[126,2.7]],[\"name/194\",[52,46.206]],[\"parent/194\",[126,2.7]],[\"name/195\",[53,46.206]],[\"parent/195\",[126,2.7]],[\"name/196\",[54,46.206]],[\"parent/196\",[126,2.7]],[\"name/197\",[55,46.206]],[\"parent/197\",[126,2.7]],[\"name/198\",[56,41.098]],[\"parent/198\",[126,2.7]],[\"name/199\",[36,39.846]],[\"parent/199\",[126,2.7]],[\"name/200\",[30,35.99]],[\"parent/200\",[126,2.7]],[\"name/201\",[35,38.734]],[\"parent/201\",[126,2.7]],[\"name/202\",[37,39.846]],[\"parent/202\",[126,2.7]],[\"name/203\",[39,35.99]],[\"parent/203\",[126,2.7]],[\"name/204\",[40,39.846]],[\"parent/204\",[126,2.7]],[\"name/205\",[41,39.846]],[\"parent/205\",[126,2.7]],[\"name/206\",[42,39.846]],[\"parent/206\",[126,2.7]],[\"name/207\",[135,57.192]],[\"parent/207\",[0,2.878]],[\"name/208\",[125,52.084]],[\"parent/208\",[136,3.146]],[\"name/209\",[33,39.846]],[\"parent/209\",[136,3.146]],[\"name/210\",[4,31.543]],[\"parent/210\",[136,3.146]],[\"name/211\",[127,48.719]],[\"parent/211\",[136,3.146]],[\"name/212\",[48,41.098]],[\"parent/212\",[136,3.146]],[\"name/213\",[49,42.529]],[\"parent/213\",[136,3.146]],[\"name/214\",[137,57.192]],[\"parent/214\",[136,3.146]],[\"name/215\",[11,35.99]],[\"parent/215\",[136,3.146]],[\"name/216\",[131,52.084]],[\"parent/216\",[136,3.146]],[\"name/217\",[133,52.084]],[\"parent/217\",[136,3.146]],[\"name/218\",[30,35.99]],[\"parent/218\",[136,3.146]],[\"name/219\",[35,38.734]],[\"parent/219\",[136,3.146]],[\"name/220\",[36,39.846]],[\"parent/220\",[136,3.146]],[\"name/221\",[37,39.846]],[\"parent/221\",[136,3.146]],[\"name/222\",[38,39.846]],[\"parent/222\",[136,3.146]],[\"name/223\",[39,35.99]],[\"parent/223\",[136,3.146]],[\"name/224\",[40,39.846]],[\"parent/224\",[136,3.146]],[\"name/225\",[41,39.846]],[\"parent/225\",[136,3.146]],[\"name/226\",[42,39.846]],[\"parent/226\",[136,3.146]],[\"name/227\",[138,57.192]],[\"parent/227\",[0,2.878]],[\"name/228\",[46,46.206]],[\"parent/228\",[139,2.878]],[\"name/229\",[33,39.846]],[\"parent/229\",[139,2.878]],[\"name/230\",[4,31.543]],[\"parent/230\",[139,2.878]],[\"name/231\",[128,52.084]],[\"parent/231\",[139,2.878]],[\"name/232\",[49,42.529]],[\"parent/232\",[139,2.878]],[\"name/233\",[50,52.084]],[\"parent/233\",[139,2.878]],[\"name/234\",[140,57.192]],[\"parent/234\",[139,2.878]],[\"name/235\",[11,35.99]],[\"parent/235\",[139,2.878]],[\"name/236\",[132,52.084]],[\"parent/236\",[139,2.878]],[\"name/237\",[38,39.846]],[\"parent/237\",[139,2.878]],[\"name/238\",[134,52.084]],[\"parent/238\",[139,2.878]],[\"name/239\",[51,46.206]],[\"parent/239\",[139,2.878]],[\"name/240\",[52,46.206]],[\"parent/240\",[139,2.878]],[\"name/241\",[53,46.206]],[\"parent/241\",[139,2.878]],[\"name/242\",[54,46.206]],[\"parent/242\",[139,2.878]],[\"name/243\",[55,46.206]],[\"parent/243\",[139,2.878]],[\"name/244\",[56,41.098]],[\"parent/244\",[139,2.878]],[\"name/245\",[36,39.846]],[\"parent/245\",[139,2.878]],[\"name/246\",[30,35.99]],[\"parent/246\",[139,2.878]],[\"name/247\",[35,38.734]],[\"parent/247\",[139,2.878]],[\"name/248\",[37,39.846]],[\"parent/248\",[139,2.878]],[\"name/249\",[39,35.99]],[\"parent/249\",[139,2.878]],[\"name/250\",[40,39.846]],[\"parent/250\",[139,2.878]],[\"name/251\",[41,39.846]],[\"parent/251\",[139,2.878]],[\"name/252\",[42,39.846]],[\"parent/252\",[139,2.878]],[\"name/253\",[141,57.192]],[\"parent/253\",[0,2.878]],[\"name/254\",[4,31.543]],[\"parent/254\",[142,2.346]],[\"name/255\",[8,41.098]],[\"parent/255\",[142,2.346]],[\"name/256\",[143,52.084]],[\"parent/256\",[142,2.346]],[\"name/257\",[144,52.084]],[\"parent/257\",[142,2.346]],[\"name/258\",[145,52.084]],[\"parent/258\",[142,2.346]],[\"name/259\",[146,52.084]],[\"parent/259\",[142,2.346]],[\"name/260\",[147,57.192]],[\"parent/260\",[142,2.346]],[\"name/261\",[148,57.192]],[\"parent/261\",[142,2.346]],[\"name/262\",[12,48.719]],[\"parent/262\",[142,2.346]],[\"name/263\",[149,57.192]],[\"parent/263\",[142,2.346]],[\"name/264\",[150,57.192]],[\"parent/264\",[142,2.346]],[\"name/265\",[151,57.192]],[\"parent/265\",[142,2.346]],[\"name/266\",[152,57.192]],[\"parent/266\",[142,2.346]],[\"name/267\",[153,57.192]],[\"parent/267\",[142,2.346]],[\"name/268\",[154,57.192]],[\"parent/268\",[142,2.346]],[\"name/269\",[155,57.192]],[\"parent/269\",[142,2.346]],[\"name/270\",[156,57.192]],[\"parent/270\",[142,2.346]],[\"name/271\",[157,57.192]],[\"parent/271\",[142,2.346]],[\"name/272\",[158,57.192]],[\"parent/272\",[142,2.346]],[\"name/273\",[159,57.192]],[\"parent/273\",[142,2.346]],[\"name/274\",[160,57.192]],[\"parent/274\",[142,2.346]],[\"name/275\",[161,57.192]],[\"parent/275\",[142,2.346]],[\"name/276\",[162,57.192]],[\"parent/276\",[142,2.346]],[\"name/277\",[163,57.192]],[\"parent/277\",[142,2.346]],[\"name/278\",[164,57.192]],[\"parent/278\",[142,2.346]],[\"name/279\",[165,57.192]],[\"parent/279\",[142,2.346]],[\"name/280\",[166,57.192]],[\"parent/280\",[142,2.346]],[\"name/281\",[167,57.192]],[\"parent/281\",[142,2.346]],[\"name/282\",[168,57.192]],[\"parent/282\",[142,2.346]],[\"name/283\",[169,57.192]],[\"parent/283\",[142,2.346]],[\"name/284\",[170,57.192]],[\"parent/284\",[142,2.346]],[\"name/285\",[171,57.192]],[\"parent/285\",[142,2.346]],[\"name/286\",[172,57.192]],[\"parent/286\",[142,2.346]],[\"name/287\",[173,57.192]],[\"parent/287\",[142,2.346]],[\"name/288\",[174,57.192]],[\"parent/288\",[142,2.346]],[\"name/289\",[175,57.192]],[\"parent/289\",[142,2.346]],[\"name/290\",[176,52.084]],[\"parent/290\",[142,2.346]],[\"name/291\",[177,57.192]],[\"parent/291\",[142,2.346]],[\"name/292\",[178,57.192]],[\"parent/292\",[142,2.346]],[\"name/293\",[179,57.192]],[\"parent/293\",[142,2.346]],[\"name/294\",[180,57.192]],[\"parent/294\",[142,2.346]],[\"name/295\",[181,57.192]],[\"parent/295\",[142,2.346]],[\"name/296\",[182,57.192]],[\"parent/296\",[142,2.346]],[\"name/297\",[183,57.192]],[\"parent/297\",[0,2.878]],[\"name/298\",[8,41.098]],[\"parent/298\",[184,3.863]],[\"name/299\",[185,57.192]],[\"parent/299\",[184,3.863]],[\"name/300\",[143,52.084]],[\"parent/300\",[184,3.863]],[\"name/301\",[186,57.192]],[\"parent/301\",[184,3.863]],[\"name/302\",[144,52.084]],[\"parent/302\",[184,3.863]],[\"name/303\",[145,52.084]],[\"parent/303\",[184,3.863]],[\"name/304\",[146,52.084]],[\"parent/304\",[184,3.863]],[\"name/305\",[187,57.192]],[\"parent/305\",[184,3.863]],[\"name/306\",[176,52.084]],[\"parent/306\",[184,3.863]],[\"name/307\",[188,57.192]],[\"parent/307\",[0,2.878]],[\"name/308\",[39,35.99]],[\"parent/308\",[189,5.194]],[\"name/309\",[30,35.99]],[\"parent/309\",[189,5.194]],[\"name/310\",[190,57.192]],[\"parent/310\",[0,2.878]],[\"name/311\",[39,35.99]],[\"parent/311\",[191,5.194]],[\"name/312\",[84,48.719]],[\"parent/312\",[191,5.194]],[\"name/313\",[192,57.192]],[\"parent/313\",[0,2.878]],[\"name/314\",[33,39.846]],[\"parent/314\",[193,3.312]],[\"name/315\",[4,31.543]],[\"parent/315\",[193,3.312]],[\"name/316\",[48,41.098]],[\"parent/316\",[193,3.312]],[\"name/317\",[49,42.529]],[\"parent/317\",[193,3.312]],[\"name/318\",[194,57.192]],[\"parent/318\",[193,3.312]],[\"name/319\",[11,35.99]],[\"parent/319\",[193,3.312]],[\"name/320\",[56,41.098]],[\"parent/320\",[193,3.312]],[\"name/321\",[36,39.846]],[\"parent/321\",[193,3.312]],[\"name/322\",[30,35.99]],[\"parent/322\",[193,3.312]],[\"name/323\",[35,38.734]],[\"parent/323\",[193,3.312]],[\"name/324\",[37,39.846]],[\"parent/324\",[193,3.312]],[\"name/325\",[38,39.846]],[\"parent/325\",[193,3.312]],[\"name/326\",[39,35.99]],[\"parent/326\",[193,3.312]],[\"name/327\",[40,39.846]],[\"parent/327\",[193,3.312]],[\"name/328\",[41,39.846]],[\"parent/328\",[193,3.312]],[\"name/329\",[42,39.846]],[\"parent/329\",[193,3.312]],[\"name/330\",[195,57.192]],[\"parent/330\",[0,2.878]],[\"name/331\",[64,52.084]],[\"parent/331\",[196,3.254]],[\"name/332\",[65,52.084]],[\"parent/332\",[196,3.254]],[\"name/333\",[66,52.084]],[\"parent/333\",[196,3.254]],[\"name/334\",[4,31.543]],[\"parent/334\",[196,3.254]],[\"name/335\",[86,48.719]],[\"parent/335\",[196,3.254]],[\"name/336\",[87,48.719]],[\"parent/336\",[196,3.254]],[\"name/337\",[88,52.084]],[\"parent/337\",[196,3.254]],[\"name/338\",[89,52.084]],[\"parent/338\",[196,3.254]],[\"name/339\",[90,52.084]],[\"parent/339\",[196,3.254]],[\"name/340\",[91,52.084]],[\"parent/340\",[196,3.254]],[\"name/341\",[92,52.084]],[\"parent/341\",[196,3.254]],[\"name/342\",[93,52.084]],[\"parent/342\",[196,3.254]],[\"name/343\",[94,52.084]],[\"parent/343\",[196,3.254]],[\"name/344\",[95,52.084]],[\"parent/344\",[196,3.254]],[\"name/345\",[39,35.99]],[\"parent/345\",[196,3.254]],[\"name/346\",[11,35.99]],[\"parent/346\",[196,3.254]],[\"name/347\",[84,48.719]],[\"parent/347\",[196,3.254]],[\"name/348\",[197,57.192]],[\"parent/348\",[1,3.441]],[\"name/349\",[4,31.543]],[\"parent/349\",[198,4.608]],[\"name/350\",[199,48.719]],[\"parent/350\",[198,4.608]],[\"name/351\",[200,48.719]],[\"parent/351\",[198,4.608]],[\"name/352\",[1,34.505]],[\"parent/352\",[198,4.608]],[\"name/353\",[201,57.192]],[\"parent/353\",[1,3.441]],[\"name/354\",[4,31.543]],[\"parent/354\",[202,2.96]],[\"name/355\",[203,57.192]],[\"parent/355\",[202,2.96]],[\"name/356\",[204,52.084]],[\"parent/356\",[202,2.96]],[\"name/357\",[205,57.192]],[\"parent/357\",[202,2.96]],[\"name/358\",[206,57.192]],[\"parent/358\",[202,2.96]],[\"name/359\",[207,57.192]],[\"parent/359\",[202,2.96]],[\"name/360\",[208,52.084]],[\"parent/360\",[202,2.96]],[\"name/361\",[209,57.192]],[\"parent/361\",[202,2.96]],[\"name/362\",[210,57.192]],[\"parent/362\",[202,2.96]],[\"name/363\",[211,52.084]],[\"parent/363\",[202,2.96]],[\"name/364\",[212,52.084]],[\"parent/364\",[202,2.96]],[\"name/365\",[213,52.084]],[\"parent/365\",[202,2.96]],[\"name/366\",[214,52.084]],[\"parent/366\",[202,2.96]],[\"name/367\",[35,38.734]],[\"parent/367\",[202,2.96]],[\"name/368\",[215,57.192]],[\"parent/368\",[202,2.96]],[\"name/369\",[216,57.192]],[\"parent/369\",[202,2.96]],[\"name/370\",[217,52.084]],[\"parent/370\",[202,2.96]],[\"name/371\",[218,57.192]],[\"parent/371\",[202,2.96]],[\"name/372\",[127,48.719]],[\"parent/372\",[202,2.96]],[\"name/373\",[219,52.084]],[\"parent/373\",[202,2.96]],[\"name/374\",[1,34.505]],[\"parent/374\",[202,2.96]],[\"name/375\",[199,48.719]],[\"parent/375\",[202,2.96]],[\"name/376\",[200,48.719]],[\"parent/376\",[202,2.96]],[\"name/377\",[220,57.192]],[\"parent/377\",[1,3.441]],[\"name/378\",[221,57.192]],[\"parent/378\",[222,5.194]],[\"name/379\",[223,57.192]],[\"parent/379\",[222,5.194]],[\"name/380\",[224,57.192]],[\"parent/380\",[1,3.441]],[\"name/381\",[225,57.192]],[\"parent/381\",[226,5.194]],[\"name/382\",[227,57.192]],[\"parent/382\",[226,5.194]],[\"name/383\",[228,57.192]],[\"parent/383\",[1,3.441]],[\"name/384\",[4,31.543]],[\"parent/384\",[229,2.767]],[\"name/385\",[230,57.192]],[\"parent/385\",[229,2.767]],[\"name/386\",[204,52.084]],[\"parent/386\",[229,2.767]],[\"name/387\",[231,57.192]],[\"parent/387\",[229,2.767]],[\"name/388\",[232,57.192]],[\"parent/388\",[229,2.767]],[\"name/389\",[208,52.084]],[\"parent/389\",[229,2.767]],[\"name/390\",[233,57.192]],[\"parent/390\",[229,2.767]],[\"name/391\",[234,57.192]],[\"parent/391\",[229,2.767]],[\"name/392\",[235,57.192]],[\"parent/392\",[229,2.767]],[\"name/393\",[236,57.192]],[\"parent/393\",[229,2.767]],[\"name/394\",[237,57.192]],[\"parent/394\",[229,2.767]],[\"name/395\",[212,52.084]],[\"parent/395\",[229,2.767]],[\"name/396\",[211,52.084]],[\"parent/396\",[229,2.767]],[\"name/397\",[238,57.192]],[\"parent/397\",[229,2.767]],[\"name/398\",[213,52.084]],[\"parent/398\",[229,2.767]],[\"name/399\",[214,52.084]],[\"parent/399\",[229,2.767]],[\"name/400\",[86,48.719]],[\"parent/400\",[229,2.767]],[\"name/401\",[67,52.084]],[\"parent/401\",[229,2.767]],[\"name/402\",[68,52.084]],[\"parent/402\",[229,2.767]],[\"name/403\",[69,52.084]],[\"parent/403\",[229,2.767]],[\"name/404\",[70,52.084]],[\"parent/404\",[229,2.767]],[\"name/405\",[71,52.084]],[\"parent/405\",[229,2.767]],[\"name/406\",[87,48.719]],[\"parent/406\",[229,2.767]],[\"name/407\",[217,52.084]],[\"parent/407\",[229,2.767]],[\"name/408\",[219,52.084]],[\"parent/408\",[229,2.767]],[\"name/409\",[1,34.505]],[\"parent/409\",[229,2.767]],[\"name/410\",[199,48.719]],[\"parent/410\",[229,2.767]],[\"name/411\",[200,48.719]],[\"parent/411\",[229,2.767]],[\"name/412\",[239,57.192]],[\"parent/412\",[1,3.441]],[\"name/413\",[240,57.192]],[\"parent/413\",[241,5.194]],[\"name/414\",[242,57.192]],[\"parent/414\",[241,5.194]],[\"name/415\",[243,57.192]],[\"parent/415\",[1,3.441]],[\"name/416\",[4,31.543]],[\"parent/416\",[244,3.763]],[\"name/417\",[245,57.192]],[\"parent/417\",[244,3.763]],[\"name/418\",[246,57.192]],[\"parent/418\",[244,3.763]],[\"name/419\",[247,57.192]],[\"parent/419\",[244,3.763]],[\"name/420\",[248,57.192]],[\"parent/420\",[244,3.763]],[\"name/421\",[249,57.192]],[\"parent/421\",[244,3.763]],[\"name/422\",[250,57.192]],[\"parent/422\",[244,3.763]],[\"name/423\",[251,57.192]],[\"parent/423\",[244,3.763]],[\"name/424\",[252,57.192]],[\"parent/424\",[244,3.763]],[\"name/425\",[112,52.084]],[\"parent/425\",[244,3.763]],[\"name/426\",[253,57.192]],[\"parent/426\",[1,3.441]],[\"name/427\",[254,57.192]],[\"parent/427\",[255,4.859]],[\"name/428\",[256,57.192]],[\"parent/428\",[255,4.859]],[\"name/429\",[257,57.192]],[\"parent/429\",[255,4.859]],[\"name/430\",[258,57.192]],[\"parent/430\",[1,3.441]],[\"name/431\",[259,52.084]],[\"parent/431\",[260,5.704]],[\"name/432\",[261,57.192]],[\"parent/432\",[262,4.608]],[\"name/433\",[263,57.192]],[\"parent/433\",[262,4.608]],[\"name/434\",[264,57.192]],[\"parent/434\",[262,4.608]],[\"name/435\",[265,57.192]],[\"parent/435\",[262,4.608]],[\"name/436\",[266,57.192]],[\"parent/436\",[1,3.441]],[\"name/437\",[259,52.084]],[\"parent/437\",[267,5.704]],[\"name/438\",[268,57.192]],[\"parent/438\",[269,4.859]],[\"name/439\",[270,57.192]],[\"parent/439\",[269,4.859]],[\"name/440\",[271,57.192]],[\"parent/440\",[269,4.859]],[\"name/441\",[48,41.098]],[\"parent/441\",[2,3.512]],[\"name/442\",[4,31.543]],[\"parent/442\",[272,4.859]],[\"name/443\",[273,57.192]],[\"parent/443\",[272,4.859]],[\"name/444\",[274,57.192]],[\"parent/444\",[272,4.859]],[\"name/445\",[275,57.192]],[\"parent/445\",[2,3.512]],[\"name/446\",[276,57.192]],[\"parent/446\",[2,3.512]],[\"name/447\",[277,57.192]],[\"parent/447\",[2,3.512]],[\"name/448\",[278,57.192]],[\"parent/448\",[2,3.512]],[\"name/449\",[279,57.192]],[\"parent/449\",[2,3.512]],[\"name/450\",[280,57.192]],[\"parent/450\",[2,3.512]],[\"name/451\",[281,57.192]],[\"parent/451\",[2,3.512]],[\"name/452\",[282,57.192]],[\"parent/452\",[2,3.512]],[\"name/453\",[283,57.192]],[\"parent/453\",[2,3.512]],[\"name/454\",[284,57.192]],[\"parent/454\",[2,3.512]],[\"name/455\",[285,57.192]],[\"parent/455\",[2,3.512]]],\"invertedIndex\":[[\"__type\",{\"_index\":259,\"name\":{\"431\":{},\"437\":{}},\"parent\":{}}],[\"_attraction\",{\"_index\":231,\"name\":{\"387\":{}},\"parent\":{}}],[\"_edgeweightincrementunconnectednodes\",{\"_index\":238,\"name\":{\"397\":{}},\"parent\":{}}],[\"_initialclustering\",{\"_index\":247,\"name\":{\"419\":{}},\"parent\":{}}],[\"_initiallayout\",{\"_index\":248,\"name\":{\"420\":{}},\"parent\":{}}],[\"_initialstepsize\",{\"_index\":234,\"name\":{\"391\":{}},\"parent\":{}}],[\"_maxniterations\",{\"_index\":233,\"name\":{\"390\":{}},\"parent\":{}}],[\"_minclustersize\",{\"_index\":206,\"name\":{\"358\":{}},\"parent\":{}}],[\"_minstepsize\",{\"_index\":235,\"name\":{\"392\":{}},\"parent\":{}}],[\"_network\",{\"_index\":246,\"name\":{\"418\":{}},\"parent\":{}}],[\"_networkhelper\",{\"_index\":199,\"name\":{\"350\":{},\"375\":{},\"410\":{}},\"parent\":{}}],[\"_niterations\",{\"_index\":209,\"name\":{\"361\":{}},\"parent\":{}}],[\"_nodes\",{\"_index\":245,\"name\":{\"417\":{}},\"parent\":{}}],[\"_normalization\",{\"_index\":204,\"name\":{\"356\":{},\"386\":{}},\"parent\":{}}],[\"_nrandomstarts\",{\"_index\":208,\"name\":{\"360\":{},\"389\":{}},\"parent\":{}}],[\"_randomness\",{\"_index\":210,\"name\":{\"362\":{}},\"parent\":{}}],[\"_repulsion\",{\"_index\":232,\"name\":{\"388\":{}},\"parent\":{}}],[\"_requirednqualityvalueimprovements\",{\"_index\":237,\"name\":{\"394\":{}},\"parent\":{}}],[\"_resolution\",{\"_index\":205,\"name\":{\"357\":{}},\"parent\":{}}],[\"_seed\",{\"_index\":212,\"name\":{\"364\":{},\"395\":{}},\"parent\":{}}],[\"_stepsizereduction\",{\"_index\":236,\"name\":{\"393\":{}},\"parent\":{}}],[\"_uselinlog\",{\"_index\":230,\"name\":{\"385\":{}},\"parent\":{}}],[\"_uselouvain\",{\"_index\":207,\"name\":{\"359\":{}},\"parent\":{}}],[\"_usemodularity\",{\"_index\":203,\"name\":{\"355\":{}},\"parent\":{}}],[\"_useseed\",{\"_index\":211,\"name\":{\"363\":{},\"396\":{}},\"parent\":{}}],[\"algorithm\",{\"_index\":216,\"name\":{\"369\":{}},\"parent\":{}}],[\"associationstrength\",{\"_index\":256,\"name\":{\"428\":{}},\"parent\":{}}],[\"attraction\",{\"_index\":86,\"name\":{\"101\":{},\"335\":{},\"400\":{}},\"parent\":{}}],[\"binarysearch\",{\"_index\":283,\"name\":{\"453\":{}},\"parent\":{}}],[\"calcaverage\",{\"_index\":277,\"name\":{\"447\":{}},\"parent\":{}}],[\"calcmaximum\",{\"_index\":280,\"name\":{\"450\":{}},\"parent\":{}}],[\"calcmedian\",{\"_index\":278,\"name\":{\"448\":{}},\"parent\":{}}],[\"calcminimum\",{\"_index\":279,\"name\":{\"449\":{}},\"parent\":{}}],[\"calcquality\",{\"_index\":39,\"name\":{\"37\":{},\"65\":{},\"111\":{},\"124\":{},\"144\":{},\"203\":{},\"223\":{},\"249\":{},\"308\":{},\"311\":{},\"326\":{},\"345\":{}},\"parent\":{}}],[\"calcsum\",{\"_index\":275,\"name\":{\"445\":{}},\"parent\":{}}],[\"calcsumwithinrange\",{\"_index\":276,\"name\":{\"446\":{}},\"parent\":{}}],[\"checkintegrity\",{\"_index\":176,\"name\":{\"290\":{},\"306\":{}},\"parent\":{}}],[\"clone\",{\"_index\":11,\"name\":{\"10\":{},\"41\":{},\"53\":{},\"88\":{},\"128\":{},\"148\":{},\"156\":{},\"187\":{},\"215\":{},\"235\":{},\"319\":{},\"346\":{}},\"parent\":{}}],[\"cluster\",{\"_index\":265,\"name\":{\"435\":{}},\"parent\":{}}],[\"clustering\",{\"_index\":3,\"name\":{\"3\":{}},\"parent\":{}}],[\"clusteringalgorithm\",{\"_index\":29,\"name\":{\"28\":{}},\"parent\":{}}],[\"clusteringalgorithms\",{\"_index\":224,\"name\":{\"380\":{}},\"parent\":{}}],[\"clusteringparameterswithclusters\",{\"_index\":25,\"name\":{\"24\":{}},\"parent\":{}}],[\"clusteringparameterswithnnodes\",{\"_index\":27,\"name\":{\"26\":{}},\"parent\":{}}],[\"clusteringqualityfunctions\",{\"_index\":220,\"name\":{\"377\":{}},\"parent\":{}}],[\"clusters\",{\"_index\":6,\"name\":{\"5\":{},\"25\":{}},\"parent\":{}}],[\"componentsalgorithm\",{\"_index\":43,\"name\":{\"43\":{}},\"parent\":{}}],[\"constructor\",{\"_index\":4,\"name\":{\"4\":{},\"32\":{},\"44\":{},\"49\":{},\"78\":{},\"117\":{},\"132\":{},\"150\":{},\"180\":{},\"210\":{},\"230\":{},\"254\":{},\"315\":{},\"334\":{},\"349\":{},\"354\":{},\"384\":{},\"416\":{},\"442\":{}},\"parent\":{}}],[\"coordinates\",{\"_index\":104,\"name\":{\"151\":{},\"170\":{}},\"parent\":{}}],[\"cpm\",{\"_index\":221,\"name\":{\"378\":{}},\"parent\":{}}],[\"cpmclusteringalgorithm\",{\"_index\":32,\"name\":{\"30\":{}},\"parent\":{}}],[\"createdoublearrayofrandomnumbers\",{\"_index\":281,\"name\":{\"451\":{}},\"parent\":{}}],[\"createnetworkwithoutedgeweights\",{\"_index\":164,\"name\":{\"278\":{}},\"parent\":{}}],[\"createnetworkwithoutnodeandedgeweights\",{\"_index\":165,\"name\":{\"279\":{}},\"parent\":{}}],[\"createnetworkwithoutnodeweights\",{\"_index\":163,\"name\":{\"277\":{}},\"parent\":{}}],[\"createnormalizednetworkusingassociationstrength\",{\"_index\":166,\"name\":{\"280\":{}},\"parent\":{}}],[\"createnormalizednetworkusingfractionalization\",{\"_index\":167,\"name\":{\"281\":{}},\"parent\":{}}],[\"createprunednetwork\",{\"_index\":168,\"name\":{\"282\":{}},\"parent\":{}}],[\"createreducednetwork\",{\"_index\":174,\"name\":{\"288\":{}},\"parent\":{}}],[\"createsubnetwork\",{\"_index\":181,\"name\":{\"295\":{}},\"parent\":{}}],[\"createsubnetworkforcluster\",{\"_index\":171,\"name\":{\"285\":{}},\"parent\":{}}],[\"createsubnetworkfornodes1\",{\"_index\":169,\"name\":{\"283\":{}},\"parent\":{}}],[\"createsubnetworkfornodes2\",{\"_index\":170,\"name\":{\"284\":{}},\"parent\":{}}],[\"createsubnetworklargestcomponent\",{\"_index\":173,\"name\":{\"287\":{}},\"parent\":{}}],[\"createsubnetworks\",{\"_index\":172,\"name\":{\"286\":{}},\"parent\":{}}],[\"data\",{\"_index\":200,\"name\":{\"351\":{},\"376\":{},\"411\":{}},\"parent\":{}}],[\"default_attraction\",{\"_index\":64,\"name\":{\"75\":{},\"331\":{}},\"parent\":{}}],[\"default_edge_weight_increment\",{\"_index\":66,\"name\":{\"77\":{},\"333\":{}},\"parent\":{}}],[\"default_initial_step_size\",{\"_index\":60,\"name\":{\"71\":{}},\"parent\":{}}],[\"default_max_n_iterations\",{\"_index\":58,\"name\":{\"70\":{}},\"parent\":{}}],[\"default_min_step_size\",{\"_index\":61,\"name\":{\"72\":{}},\"parent\":{}}],[\"default_n_iterations\",{\"_index\":46,\"name\":{\"47\":{},\"130\":{},\"178\":{},\"228\":{}},\"parent\":{}}],[\"default_randomness\",{\"_index\":125,\"name\":{\"177\":{},\"208\":{}},\"parent\":{}}],[\"default_repulsion\",{\"_index\":65,\"name\":{\"76\":{},\"332\":{}},\"parent\":{}}],[\"default_required_n_quality_value_improvements\",{\"_index\":63,\"name\":{\"74\":{}},\"parent\":{}}],[\"default_resolution\",{\"_index\":33,\"name\":{\"31\":{},\"48\":{},\"116\":{},\"131\":{},\"179\":{},\"209\":{},\"229\":{},\"314\":{}},\"parent\":{}}],[\"default_step_size_reduction\",{\"_index\":62,\"name\":{\"73\":{}},\"parent\":{}}],[\"edges\",{\"_index\":186,\"name\":{\"301\":{}},\"parent\":{}}],[\"edgeweightincrement\",{\"_index\":88,\"name\":{\"103\":{},\"337\":{}},\"parent\":{}}],[\"edgeweights\",{\"_index\":146,\"name\":{\"259\":{},\"304\":{}},\"parent\":{}}],[\"fastexp\",{\"_index\":284,\"name\":{\"454\":{}},\"parent\":{}}],[\"fastlocalmovingalgorithm\",{\"_index\":45,\"name\":{\"46\":{}},\"parent\":{}}],[\"fastpow\",{\"_index\":285,\"name\":{\"455\":{}},\"parent\":{}}],[\"findclustering\",{\"_index\":30,\"name\":{\"29\":{},\"42\":{},\"45\":{},\"61\":{},\"114\":{},\"119\":{},\"140\":{},\"200\":{},\"218\":{},\"246\":{},\"309\":{},\"322\":{}},\"parent\":{}}],[\"findlayout\",{\"_index\":84,\"name\":{\"99\":{},\"312\":{},\"347\":{}},\"parent\":{}}],[\"firstneighborindices\",{\"_index\":144,\"name\":{\"257\":{},\"302\":{}},\"parent\":{}}],[\"flip\",{\"_index\":116,\"name\":{\"167\":{}},\"parent\":{}}],[\"fractionalization\",{\"_index\":257,\"name\":{\"429\":{}},\"parent\":{}}],[\"generaterandompermutation\",{\"_index\":282,\"name\":{\"452\":{}},\"parent\":{}}],[\"getattraction\",{\"_index\":90,\"name\":{\"105\":{},\"339\":{}},\"parent\":{}}],[\"getaveragedistance\",{\"_index\":111,\"name\":{\"162\":{}},\"parent\":{}}],[\"getcluster\",{\"_index\":15,\"name\":{\"14\":{}},\"parent\":{}}],[\"getclusters\",{\"_index\":14,\"name\":{\"13\":{}},\"parent\":{}}],[\"getcoordinates\",{\"_index\":107,\"name\":{\"158\":{}},\"parent\":{}}],[\"getcoordinatesnode\",{\"_index\":108,\"name\":{\"159\":{}},\"parent\":{}}],[\"getedges\",{\"_index\":155,\"name\":{\"269\":{}},\"parent\":{}}],[\"getedgeweightincrement\",{\"_index\":92,\"name\":{\"107\":{},\"341\":{}},\"parent\":{}}],[\"getedgeweights\",{\"_index\":161,\"name\":{\"275\":{}},\"parent\":{}}],[\"getedgeweightspernode\",{\"_index\":160,\"name\":{\"274\":{}},\"parent\":{}}],[\"getinitialclustering\",{\"_index\":250,\"name\":{\"422\":{}},\"parent\":{}}],[\"getinitiallayout\",{\"_index\":251,\"name\":{\"423\":{}},\"parent\":{}}],[\"getinitialstepsize\",{\"_index\":75,\"name\":{\"90\":{}},\"parent\":{}}],[\"getlocalmovingalgorithm\",{\"_index\":132,\"name\":{\"189\":{},\"236\":{}},\"parent\":{}}],[\"getmaxcoordinates\",{\"_index\":110,\"name\":{\"161\":{}},\"parent\":{}}],[\"getmaxniterations\",{\"_index\":74,\"name\":{\"89\":{}},\"parent\":{}}],[\"getmincoordinates\",{\"_index\":109,\"name\":{\"160\":{}},\"parent\":{}}],[\"getminstepsize\",{\"_index\":76,\"name\":{\"91\":{}},\"parent\":{}}],[\"getnclusters\",{\"_index\":13,\"name\":{\"12\":{}},\"parent\":{}}],[\"getnedges\",{\"_index\":152,\"name\":{\"266\":{}},\"parent\":{}}],[\"getneighbors\",{\"_index\":157,\"name\":{\"271\":{}},\"parent\":{}}],[\"getneighborspernode\",{\"_index\":156,\"name\":{\"270\":{}},\"parent\":{}}],[\"getnetwork\",{\"_index\":249,\"name\":{\"421\":{}},\"parent\":{}}],[\"getniterations\",{\"_index\":54,\"name\":{\"57\":{},\"135\":{},\"196\":{},\"242\":{}},\"parent\":{}}],[\"getnneighbors\",{\"_index\":154,\"name\":{\"268\":{}},\"parent\":{}}],[\"getnneighborspernode\",{\"_index\":153,\"name\":{\"267\":{}},\"parent\":{}}],[\"getnnodes\",{\"_index\":12,\"name\":{\"11\":{},\"157\":{},\"262\":{}},\"parent\":{}}],[\"getnnodespercluster\",{\"_index\":16,\"name\":{\"15\":{}},\"parent\":{}}],[\"getnodespercluster\",{\"_index\":17,\"name\":{\"16\":{}},\"parent\":{}}],[\"getnodeweight\",{\"_index\":151,\"name\":{\"265\":{}},\"parent\":{}}],[\"getnodeweights\",{\"_index\":150,\"name\":{\"264\":{}},\"parent\":{}}],[\"getrandomness\",{\"_index\":131,\"name\":{\"188\":{},\"216\":{}},\"parent\":{}}],[\"getrandomnumber\",{\"_index\":180,\"name\":{\"294\":{}},\"parent\":{}}],[\"getrepulsion\",{\"_index\":91,\"name\":{\"106\":{},\"340\":{}},\"parent\":{}}],[\"getrequirednqualityvalueimprovements\",{\"_index\":78,\"name\":{\"93\":{}},\"parent\":{}}],[\"getresolution\",{\"_index\":37,\"name\":{\"35\":{},\"63\":{},\"122\":{},\"142\":{},\"202\":{},\"221\":{},\"248\":{},\"324\":{}},\"parent\":{}}],[\"getstepsizereduction\",{\"_index\":77,\"name\":{\"92\":{}},\"parent\":{}}],[\"gettotaledgeweight\",{\"_index\":159,\"name\":{\"273\":{}},\"parent\":{}}],[\"gettotaledgeweightpernode\",{\"_index\":158,\"name\":{\"272\":{}},\"parent\":{}}],[\"gettotaledgeweightpernodehelper\",{\"_index\":179,\"name\":{\"293\":{}},\"parent\":{}}],[\"gettotaledgeweightselflinks\",{\"_index\":162,\"name\":{\"276\":{}},\"parent\":{}}],[\"gettotalnodeweight\",{\"_index\":149,\"name\":{\"263\":{}},\"parent\":{}}],[\"gradientdescentvoslayoutalgorithm\",{\"_index\":57,\"name\":{\"69\":{}},\"parent\":{}}],[\"id\",{\"_index\":261,\"name\":{\"432\":{}},\"parent\":{}}],[\"identifycomponents\",{\"_index\":175,\"name\":{\"289\":{}},\"parent\":{}}],[\"improveclustering\",{\"_index\":56,\"name\":{\"59\":{},\"113\":{},\"120\":{},\"137\":{},\"198\":{},\"244\":{},\"320\":{}},\"parent\":{}}],[\"improveclusteringoneiteration\",{\"_index\":51,\"name\":{\"54\":{},\"138\":{},\"193\":{},\"239\":{}},\"parent\":{}}],[\"improvelayout\",{\"_index\":85,\"name\":{\"100\":{}},\"parent\":{}}],[\"incrementalclusteringalgorithm\",{\"_index\":96,\"name\":{\"112\":{}},\"parent\":{}}],[\"incrementalcpmclusteringalgorithm\",{\"_index\":98,\"name\":{\"115\":{}},\"parent\":{}}],[\"index\",{\"_index\":0,\"name\":{\"0\":{}},\"parent\":{\"3\":{},\"24\":{},\"26\":{},\"28\":{},\"30\":{},\"43\":{},\"46\":{},\"69\":{},\"112\":{},\"115\":{},\"129\":{},\"149\":{},\"169\":{},\"171\":{},\"173\":{},\"176\":{},\"207\":{},\"227\":{},\"253\":{},\"297\":{},\"307\":{},\"310\":{},\"313\":{},\"330\":{}}}],[\"index.clustering\",{\"_index\":5,\"name\":{},\"parent\":{\"4\":{},\"5\":{},\"6\":{},\"7\":{},\"8\":{},\"9\":{},\"10\":{},\"11\":{},\"12\":{},\"13\":{},\"14\":{},\"15\":{},\"16\":{},\"17\":{},\"18\":{},\"19\":{},\"20\":{},\"21\":{},\"22\":{},\"23\":{}}}],[\"index.clusteringalgorithm\",{\"_index\":31,\"name\":{},\"parent\":{\"29\":{}}}],[\"index.clusteringparameterswithclusters\",{\"_index\":26,\"name\":{},\"parent\":{\"25\":{}}}],[\"index.clusteringparameterswithnnodes\",{\"_index\":28,\"name\":{},\"parent\":{\"27\":{}}}],[\"index.componentsalgorithm\",{\"_index\":44,\"name\":{},\"parent\":{\"44\":{},\"45\":{}}}],[\"index.cpmclusteringalgorithm\",{\"_index\":34,\"name\":{},\"parent\":{\"31\":{},\"32\":{},\"33\":{},\"34\":{},\"35\":{},\"36\":{},\"37\":{},\"38\":{},\"39\":{},\"40\":{},\"41\":{},\"42\":{}}}],[\"index.fastlocalmovingalgorithm\",{\"_index\":47,\"name\":{},\"parent\":{\"47\":{},\"48\":{},\"49\":{},\"50\":{},\"51\":{},\"52\":{},\"53\":{},\"54\":{},\"55\":{},\"56\":{},\"57\":{},\"58\":{},\"59\":{},\"60\":{},\"61\":{},\"62\":{},\"63\":{},\"64\":{},\"65\":{},\"66\":{},\"67\":{},\"68\":{}}}],[\"index.gradientdescentvoslayoutalgorithm\",{\"_index\":59,\"name\":{},\"parent\":{\"70\":{},\"71\":{},\"72\":{},\"73\":{},\"74\":{},\"75\":{},\"76\":{},\"77\":{},\"78\":{},\"79\":{},\"80\":{},\"81\":{},\"82\":{},\"83\":{},\"84\":{},\"85\":{},\"86\":{},\"87\":{},\"88\":{},\"89\":{},\"90\":{},\"91\":{},\"92\":{},\"93\":{},\"94\":{},\"95\":{},\"96\":{},\"97\":{},\"98\":{},\"99\":{},\"100\":{},\"101\":{},\"102\":{},\"103\":{},\"104\":{},\"105\":{},\"106\":{},\"107\":{},\"108\":{},\"109\":{},\"110\":{},\"111\":{}}}],[\"index.incrementalclusteringalgorithm\",{\"_index\":97,\"name\":{},\"parent\":{\"113\":{},\"114\":{}}}],[\"index.incrementalcpmclusteringalgorithm\",{\"_index\":99,\"name\":{},\"parent\":{\"116\":{},\"117\":{},\"118\":{},\"119\":{},\"120\":{},\"121\":{},\"122\":{},\"123\":{},\"124\":{},\"125\":{},\"126\":{},\"127\":{},\"128\":{}}}],[\"index.iterativecpmclusteringalgorithm\",{\"_index\":101,\"name\":{},\"parent\":{\"130\":{},\"131\":{},\"132\":{},\"133\":{},\"134\":{},\"135\":{},\"136\":{},\"137\":{},\"138\":{},\"139\":{},\"140\":{},\"141\":{},\"142\":{},\"143\":{},\"144\":{},\"145\":{},\"146\":{},\"147\":{},\"148\":{}}}],[\"index.layout\",{\"_index\":103,\"name\":{},\"parent\":{\"150\":{},\"151\":{},\"152\":{},\"153\":{},\"154\":{},\"155\":{},\"156\":{},\"157\":{},\"158\":{},\"159\":{},\"160\":{},\"161\":{},\"162\":{},\"163\":{},\"164\":{},\"165\":{},\"166\":{},\"167\":{},\"168\":{}}}],[\"index.layoutconstructorparameterswithcoordinates\",{\"_index\":119,\"name\":{},\"parent\":{\"170\":{}}}],[\"index.layoutconstructorparameterswithnnodes\",{\"_index\":121,\"name\":{},\"parent\":{\"172\":{}}}],[\"index.layoutconstructorparameterswithnnodesandrandom\",{\"_index\":123,\"name\":{},\"parent\":{\"174\":{},\"175\":{}}}],[\"index.leidenalgorithm\",{\"_index\":126,\"name\":{},\"parent\":{\"177\":{},\"178\":{},\"179\":{},\"180\":{},\"181\":{},\"182\":{},\"183\":{},\"184\":{},\"185\":{},\"186\":{},\"187\":{},\"188\":{},\"189\":{},\"190\":{},\"191\":{},\"192\":{},\"193\":{},\"194\":{},\"195\":{},\"196\":{},\"197\":{},\"198\":{},\"199\":{},\"200\":{},\"201\":{},\"202\":{},\"203\":{},\"204\":{},\"205\":{},\"206\":{}}}],[\"index.localmergingalgorithm\",{\"_index\":136,\"name\":{},\"parent\":{\"208\":{},\"209\":{},\"210\":{},\"211\":{},\"212\":{},\"213\":{},\"214\":{},\"215\":{},\"216\":{},\"217\":{},\"218\":{},\"219\":{},\"220\":{},\"221\":{},\"222\":{},\"223\":{},\"224\":{},\"225\":{},\"226\":{}}}],[\"index.louvainalgorithm\",{\"_index\":139,\"name\":{},\"parent\":{\"228\":{},\"229\":{},\"230\":{},\"231\":{},\"232\":{},\"233\":{},\"234\":{},\"235\":{},\"236\":{},\"237\":{},\"238\":{},\"239\":{},\"240\":{},\"241\":{},\"242\":{},\"243\":{},\"244\":{},\"245\":{},\"246\":{},\"247\":{},\"248\":{},\"249\":{},\"250\":{},\"251\":{},\"252\":{}}}],[\"index.network\",{\"_index\":142,\"name\":{},\"parent\":{\"254\":{},\"255\":{},\"256\":{},\"257\":{},\"258\":{},\"259\":{},\"260\":{},\"261\":{},\"262\":{},\"263\":{},\"264\":{},\"265\":{},\"266\":{},\"267\":{},\"268\":{},\"269\":{},\"270\":{},\"271\":{},\"272\":{},\"273\":{},\"274\":{},\"275\":{},\"276\":{},\"277\":{},\"278\":{},\"279\":{},\"280\":{},\"281\":{},\"282\":{},\"283\":{},\"284\":{},\"285\":{},\"286\":{},\"287\":{},\"288\":{},\"289\":{},\"290\":{},\"291\":{},\"292\":{},\"293\":{},\"294\":{},\"295\":{},\"296\":{}}}],[\"index.networkconstructorparameters\",{\"_index\":184,\"name\":{},\"parent\":{\"298\":{},\"299\":{},\"300\":{},\"301\":{},\"302\":{},\"303\":{},\"304\":{},\"305\":{},\"306\":{}}}],[\"index.qualityclusteringalgorithm\",{\"_index\":189,\"name\":{},\"parent\":{\"308\":{},\"309\":{}}}],[\"index.qualitylayoutalgorithm\",{\"_index\":191,\"name\":{},\"parent\":{\"311\":{},\"312\":{}}}],[\"index.standardlocalmovingalgorithm\",{\"_index\":193,\"name\":{},\"parent\":{\"314\":{},\"315\":{},\"316\":{},\"317\":{},\"318\":{},\"319\":{},\"320\":{},\"321\":{},\"322\":{},\"323\":{},\"324\":{},\"325\":{},\"326\":{},\"327\":{},\"328\":{},\"329\":{}}}],[\"index.voslayoutalgorithm\",{\"_index\":196,\"name\":{},\"parent\":{\"331\":{},\"332\":{},\"333\":{},\"334\":{},\"335\":{},\"336\":{},\"337\":{},\"338\":{},\"339\":{},\"340\":{},\"341\":{},\"342\":{},\"343\":{},\"344\":{},\"345\":{},\"346\":{},\"347\":{}}}],[\"initializebasedonattractionandrepulsionandedgeweightincrement\",{\"_index\":89,\"name\":{\"104\":{},\"338\":{}},\"parent\":{}}],[\"initializebasedonattractionandrepulsionandedgeweightincrementandmaxniterationsandinitialstepsizeandminstepsizeandstepsizereductionandrequirednqualityvalueimprovementsandrandom\",{\"_index\":73,\"name\":{\"87\":{}},\"parent\":{}}],[\"initializebasedonattractionandrepulsionandedgeweightincrementandrandom\",{\"_index\":72,\"name\":{\"86\":{}},\"parent\":{}}],[\"initializebasedonclusters\",{\"_index\":10,\"name\":{\"9\":{}},\"parent\":{}}],[\"initializebasedoncoordinates\",{\"_index\":106,\"name\":{\"155\":{}},\"parent\":{}}],[\"initializebasedonnnodes\",{\"_index\":9,\"name\":{\"8\":{},\"153\":{}},\"parent\":{}}],[\"initializebasedonnnodesandrandom\",{\"_index\":105,\"name\":{\"154\":{}},\"parent\":{}}],[\"initializebasedonrandom\",{\"_index\":49,\"name\":{\"51\":{},\"85\":{},\"184\":{},\"213\":{},\"232\":{},\"317\":{}},\"parent\":{}}],[\"initializebasedonresolution\",{\"_index\":36,\"name\":{\"34\":{},\"60\":{},\"118\":{},\"139\":{},\"199\":{},\"220\":{},\"245\":{},\"321\":{}},\"parent\":{}}],[\"initializebasedonresolutionandniterations\",{\"_index\":53,\"name\":{\"56\":{},\"134\":{},\"195\":{},\"241\":{}},\"parent\":{}}],[\"initializebasedonresolutionandniterationsandlocalmovingalgorithm\",{\"_index\":140,\"name\":{\"234\":{}},\"parent\":{}}],[\"initializebasedonresolutionandniterationsandrandom\",{\"_index\":50,\"name\":{\"52\":{},\"233\":{}},\"parent\":{}}],[\"initializebasedonresolutionandniterationsandrandomnessandlocalmovingalgorithmandrandom\",{\"_index\":130,\"name\":{\"186\":{}},\"parent\":{}}],[\"initializebasedonresolutionandniterationsandrandomnessandrandom\",{\"_index\":129,\"name\":{\"185\":{}},\"parent\":{}}],[\"initializebasedonresolutionandrandom\",{\"_index\":194,\"name\":{\"318\":{}},\"parent\":{}}],[\"initializebasedonresolutionandrandomnessandrandom\",{\"_index\":137,\"name\":{\"214\":{}},\"parent\":{}}],[\"initializenetworkbasedonedges\",{\"_index\":177,\"name\":{\"291\":{}},\"parent\":{}}],[\"initializenetworkbasedonneighbors\",{\"_index\":178,\"name\":{\"292\":{}},\"parent\":{}}],[\"initialstepsize\",{\"_index\":68,\"name\":{\"80\":{},\"402\":{}},\"parent\":{}}],[\"initrandomcoordinates\",{\"_index\":113,\"name\":{\"164\":{}},\"parent\":{}}],[\"initrandomcoordinateshelper\",{\"_index\":117,\"name\":{\"168\":{}},\"parent\":{}}],[\"initsingletonclusters\",{\"_index\":19,\"name\":{\"18\":{}},\"parent\":{}}],[\"initsingletonclustershelper\",{\"_index\":24,\"name\":{\"23\":{}},\"parent\":{}}],[\"iterations\",{\"_index\":218,\"name\":{\"371\":{}},\"parent\":{}}],[\"iterativecpmclusteringalgorithm\",{\"_index\":100,\"name\":{\"129\":{}},\"parent\":{}}],[\"layout\",{\"_index\":102,\"name\":{\"149\":{}},\"parent\":{}}],[\"layoutconstructorparameterswithcoordinates\",{\"_index\":118,\"name\":{\"169\":{}},\"parent\":{}}],[\"layoutconstructorparameterswithnnodes\",{\"_index\":120,\"name\":{\"171\":{}},\"parent\":{}}],[\"layoutconstructorparameterswithnnodesandrandom\",{\"_index\":122,\"name\":{\"173\":{}},\"parent\":{}}],[\"layoutqualityfunctions\",{\"_index\":239,\"name\":{\"412\":{}},\"parent\":{}}],[\"leiden\",{\"_index\":225,\"name\":{\"381\":{}},\"parent\":{}}],[\"leidenalgorithm\",{\"_index\":124,\"name\":{\"176\":{}},\"parent\":{}}],[\"link\",{\"_index\":266,\"name\":{\"436\":{}},\"parent\":{}}],[\"linlog\",{\"_index\":242,\"name\":{\"414\":{}},\"parent\":{}}],[\"localmergingalgorithm\",{\"_index\":135,\"name\":{\"207\":{}},\"parent\":{}}],[\"localmovingalgorithm\",{\"_index\":128,\"name\":{\"182\":{},\"231\":{}},\"parent\":{}}],[\"louvain\",{\"_index\":227,\"name\":{\"382\":{}},\"parent\":{}}],[\"louvainalgorithm\",{\"_index\":138,\"name\":{\"227\":{}},\"parent\":{}}],[\"maxniterations\",{\"_index\":67,\"name\":{\"79\":{},\"401\":{}},\"parent\":{}}],[\"mergeclusters\",{\"_index\":23,\"name\":{\"22\":{}},\"parent\":{}}],[\"minclustersize\",{\"_index\":215,\"name\":{\"368\":{}},\"parent\":{}}],[\"minstepsize\",{\"_index\":69,\"name\":{\"81\":{},\"403\":{}},\"parent\":{}}],[\"modularity\",{\"_index\":223,\"name\":{\"379\":{}},\"parent\":{}}],[\"nclusters\",{\"_index\":7,\"name\":{\"6\":{}},\"parent\":{}}],[\"nedges\",{\"_index\":148,\"name\":{\"261\":{}},\"parent\":{}}],[\"neighbors\",{\"_index\":145,\"name\":{\"258\":{},\"303\":{}},\"parent\":{}}],[\"network\",{\"_index\":141,\"name\":{\"253\":{}},\"parent\":{}}],[\"networkanalysis\",{\"_index\":197,\"name\":{\"348\":{}},\"parent\":{}}],[\"networkclustering\",{\"_index\":201,\"name\":{\"353\":{}},\"parent\":{}}],[\"networkconstructorparameters\",{\"_index\":183,\"name\":{\"297\":{}},\"parent\":{}}],[\"networkhelper\",{\"_index\":243,\"name\":{\"415\":{}},\"parent\":{}}],[\"networklayout\",{\"_index\":228,\"name\":{\"383\":{}},\"parent\":{}}],[\"nextdouble\",{\"_index\":273,\"name\":{\"443\":{}},\"parent\":{}}],[\"nextint\",{\"_index\":274,\"name\":{\"444\":{}},\"parent\":{}}],[\"niterations\",{\"_index\":52,\"name\":{\"55\":{},\"133\":{},\"194\":{},\"240\":{}},\"parent\":{}}],[\"nnodes\",{\"_index\":8,\"name\":{\"7\":{},\"27\":{},\"152\":{},\"172\":{},\"174\":{},\"255\":{},\"298\":{}},\"parent\":{}}],[\"node\",{\"_index\":258,\"name\":{\"430\":{}},\"parent\":{}}],[\"node1\",{\"_index\":268,\"name\":{\"438\":{}},\"parent\":{}}],[\"node2\",{\"_index\":270,\"name\":{\"439\":{}},\"parent\":{}}],[\"nodeweights\",{\"_index\":143,\"name\":{\"256\":{},\"300\":{}},\"parent\":{}}],[\"nonormalization\",{\"_index\":254,\"name\":{\"427\":{}},\"parent\":{}}],[\"normalization\",{\"_index\":214,\"name\":{\"366\":{},\"399\":{}},\"parent\":{}}],[\"normalizationmethods\",{\"_index\":253,\"name\":{\"426\":{}},\"parent\":{}}],[\"orderclustersbynnodes\",{\"_index\":21,\"name\":{\"20\":{}},\"parent\":{}}],[\"orderclustersbyweight\",{\"_index\":22,\"name\":{\"21\":{}},\"parent\":{}}],[\"qualityclusteringalgorithm\",{\"_index\":188,\"name\":{\"307\":{}},\"parent\":{}}],[\"qualityfunction\",{\"_index\":213,\"name\":{\"365\":{},\"398\":{}},\"parent\":{}}],[\"qualitylayoutalgorithm\",{\"_index\":190,\"name\":{\"310\":{}},\"parent\":{}}],[\"random\",{\"_index\":48,\"name\":{\"50\":{},\"84\":{},\"175\":{},\"183\":{},\"212\":{},\"316\":{},\"441\":{}},\"parent\":{}}],[\"randomness\",{\"_index\":127,\"name\":{\"181\":{},\"211\":{},\"372\":{}},\"parent\":{}}],[\"randomstarts\",{\"_index\":217,\"name\":{\"370\":{},\"407\":{}},\"parent\":{}}],[\"removecluster\",{\"_index\":40,\"name\":{\"38\":{},\"66\":{},\"125\":{},\"145\":{},\"204\":{},\"224\":{},\"250\":{},\"327\":{}},\"parent\":{}}],[\"removeemptyclusters\",{\"_index\":20,\"name\":{\"19\":{}},\"parent\":{}}],[\"removesmallclustersbasedonnnodes\",{\"_index\":41,\"name\":{\"39\":{},\"67\":{},\"126\":{},\"146\":{},\"205\":{},\"225\":{},\"251\":{},\"328\":{}},\"parent\":{}}],[\"removesmallclustersbasedonweight\",{\"_index\":42,\"name\":{\"40\":{},\"68\":{},\"127\":{},\"147\":{},\"206\":{},\"226\":{},\"252\":{},\"329\":{}},\"parent\":{}}],[\"repulsion\",{\"_index\":87,\"name\":{\"102\":{},\"336\":{},\"406\":{}},\"parent\":{}}],[\"requirednqualityvalueimprovements\",{\"_index\":71,\"name\":{\"83\":{},\"405\":{}},\"parent\":{}}],[\"resolution\",{\"_index\":35,\"name\":{\"33\":{},\"62\":{},\"121\":{},\"141\":{},\"201\":{},\"219\":{},\"247\":{},\"323\":{},\"367\":{}},\"parent\":{}}],[\"rotate\",{\"_index\":115,\"name\":{\"166\":{}},\"parent\":{}}],[\"run\",{\"_index\":1,\"name\":{\"1\":{},\"352\":{},\"374\":{},\"409\":{}},\"parent\":{\"348\":{},\"353\":{},\"377\":{},\"380\":{},\"383\":{},\"412\":{},\"415\":{},\"426\":{},\"430\":{},\"436\":{}}}],[\"run.clusteringalgorithms\",{\"_index\":226,\"name\":{},\"parent\":{\"381\":{},\"382\":{}}}],[\"run.clusteringqualityfunctions\",{\"_index\":222,\"name\":{},\"parent\":{\"378\":{},\"379\":{}}}],[\"run.layoutqualityfunctions\",{\"_index\":241,\"name\":{},\"parent\":{\"413\":{},\"414\":{}}}],[\"run.link\",{\"_index\":267,\"name\":{},\"parent\":{\"437\":{}}}],[\"run.link.__type\",{\"_index\":269,\"name\":{},\"parent\":{\"438\":{},\"439\":{},\"440\":{}}}],[\"run.networkanalysis\",{\"_index\":198,\"name\":{},\"parent\":{\"349\":{},\"350\":{},\"351\":{},\"352\":{}}}],[\"run.networkclustering\",{\"_index\":202,\"name\":{},\"parent\":{\"354\":{},\"355\":{},\"356\":{},\"357\":{},\"358\":{},\"359\":{},\"360\":{},\"361\":{},\"362\":{},\"363\":{},\"364\":{},\"365\":{},\"366\":{},\"367\":{},\"368\":{},\"369\":{},\"370\":{},\"371\":{},\"372\":{},\"373\":{},\"374\":{},\"375\":{},\"376\":{}}}],[\"run.networkhelper\",{\"_index\":244,\"name\":{},\"parent\":{\"416\":{},\"417\":{},\"418\":{},\"419\":{},\"420\":{},\"421\":{},\"422\":{},\"423\":{},\"424\":{},\"425\":{}}}],[\"run.networklayout\",{\"_index\":229,\"name\":{},\"parent\":{\"384\":{},\"385\":{},\"386\":{},\"387\":{},\"388\":{},\"389\":{},\"390\":{},\"391\":{},\"392\":{},\"393\":{},\"394\":{},\"395\":{},\"396\":{},\"397\":{},\"398\":{},\"399\":{},\"400\":{},\"401\":{},\"402\":{},\"403\":{},\"404\":{},\"405\":{},\"406\":{},\"407\":{},\"408\":{},\"409\":{},\"410\":{},\"411\":{}}}],[\"run.node\",{\"_index\":260,\"name\":{},\"parent\":{\"431\":{}}}],[\"run.node.__type\",{\"_index\":262,\"name\":{},\"parent\":{\"432\":{},\"433\":{},\"434\":{},\"435\":{}}}],[\"run.normalizationmethods\",{\"_index\":255,\"name\":{},\"parent\":{\"427\":{},\"428\":{},\"429\":{}}}],[\"seed\",{\"_index\":219,\"name\":{\"373\":{},\"408\":{}},\"parent\":{}}],[\"setattraction\",{\"_index\":93,\"name\":{\"108\":{},\"342\":{}},\"parent\":{}}],[\"setcluster\",{\"_index\":18,\"name\":{\"17\":{}},\"parent\":{}}],[\"setclusters\",{\"_index\":252,\"name\":{\"424\":{}},\"parent\":{}}],[\"setcoordinates\",{\"_index\":112,\"name\":{\"163\":{},\"425\":{}},\"parent\":{}}],[\"setedgeweightincrement\",{\"_index\":95,\"name\":{\"110\":{},\"344\":{}},\"parent\":{}}],[\"setinitialstepsize\",{\"_index\":80,\"name\":{\"95\":{}},\"parent\":{}}],[\"setlocalmovingalgorithm\",{\"_index\":134,\"name\":{\"192\":{},\"238\":{}},\"parent\":{}}],[\"setmaxniterations\",{\"_index\":79,\"name\":{\"94\":{}},\"parent\":{}}],[\"setminstepsize\",{\"_index\":81,\"name\":{\"96\":{}},\"parent\":{}}],[\"setniterations\",{\"_index\":55,\"name\":{\"58\":{},\"136\":{},\"197\":{},\"243\":{}},\"parent\":{}}],[\"setnodeweightstototaledgeweights\",{\"_index\":185,\"name\":{\"299\":{}},\"parent\":{}}],[\"setrandomness\",{\"_index\":133,\"name\":{\"191\":{},\"217\":{}},\"parent\":{}}],[\"setrepulsion\",{\"_index\":94,\"name\":{\"109\":{},\"343\":{}},\"parent\":{}}],[\"setrequirednqualityvalueimprovements\",{\"_index\":83,\"name\":{\"98\":{}},\"parent\":{}}],[\"setresolution\",{\"_index\":38,\"name\":{\"36\":{},\"64\":{},\"123\":{},\"143\":{},\"190\":{},\"222\":{},\"237\":{},\"325\":{}},\"parent\":{}}],[\"setstepsizereduction\",{\"_index\":82,\"name\":{\"97\":{}},\"parent\":{}}],[\"sortededges\",{\"_index\":187,\"name\":{\"305\":{}},\"parent\":{}}],[\"sortedges\",{\"_index\":182,\"name\":{\"296\":{}},\"parent\":{}}],[\"standardize\",{\"_index\":114,\"name\":{\"165\":{}},\"parent\":{}}],[\"standardlocalmovingalgorithm\",{\"_index\":192,\"name\":{\"313\":{}},\"parent\":{}}],[\"stepsizereduction\",{\"_index\":70,\"name\":{\"82\":{},\"404\":{}},\"parent\":{}}],[\"totaledgeweightselflinks\",{\"_index\":147,\"name\":{\"260\":{}},\"parent\":{}}],[\"utils\",{\"_index\":2,\"name\":{\"2\":{}},\"parent\":{\"441\":{},\"445\":{},\"446\":{},\"447\":{},\"448\":{},\"449\":{},\"450\":{},\"451\":{},\"452\":{},\"453\":{},\"454\":{},\"455\":{}}}],[\"utils.random\",{\"_index\":272,\"name\":{},\"parent\":{\"442\":{},\"443\":{},\"444\":{}}}],[\"vos\",{\"_index\":240,\"name\":{\"413\":{}},\"parent\":{}}],[\"voslayoutalgorithm\",{\"_index\":195,\"name\":{\"330\":{}},\"parent\":{}}],[\"weight\",{\"_index\":271,\"name\":{\"440\":{}},\"parent\":{}}],[\"x\",{\"_index\":263,\"name\":{\"433\":{}},\"parent\":{}}],[\"y\",{\"_index\":264,\"name\":{\"434\":{}},\"parent\":{}}]],\"pipeline\":[]}}"); \ No newline at end of file diff --git a/docs/assets/style.css b/docs/assets/style.css new file mode 100644 index 0000000..6127b27 --- /dev/null +++ b/docs/assets/style.css @@ -0,0 +1,1414 @@ +@import url("./icons.css"); + +:root { + /* Light */ + --light-color-background: #fcfcfc; + --light-color-secondary-background: #fff; + --light-color-text: #222; + --light-color-text-aside: #707070; + --light-color-link: #4da6ff; + --light-color-menu-divider: #eee; + --light-color-menu-divider-focus: #000; + --light-color-menu-label: #707070; + --light-color-panel: var(--light-color-secondary-background); + --light-color-panel-divider: #eee; + --light-color-comment-tag: #707070; + --light-color-comment-tag-text: #fff; + --light-color-ts: #9600ff; + --light-color-ts-interface: #647f1b; + --light-color-ts-enum: #937210; + --light-color-ts-class: #0672de; + --light-color-ts-private: #707070; + --light-color-toolbar: #fff; + --light-color-toolbar-text: #333; + --light-icon-filter: invert(0); + --light-external-icon: url("data:image/svg+xml;utf8,"); + + /* Dark */ + --dark-color-background: #36393f; + --dark-color-secondary-background: #2f3136; + --dark-color-text: #ffffff; + --dark-color-text-aside: #e6e4e4; + --dark-color-link: #00aff4; + --dark-color-menu-divider: #eee; + --dark-color-menu-divider-focus: #000; + --dark-color-menu-label: #707070; + --dark-color-panel: var(--dark-color-secondary-background); + --dark-color-panel-divider: #818181; + --dark-color-comment-tag: #dcddde; + --dark-color-comment-tag-text: #2f3136; + --dark-color-ts: #c97dff; + --dark-color-ts-interface: #9cbe3c; + --dark-color-ts-enum: #d6ab29; + --dark-color-ts-class: #3695f3; + --dark-color-ts-private: #e2e2e2; + --dark-color-toolbar: #34373c; + --dark-color-toolbar-text: #ffffff; + --dark-icon-filter: invert(1); + --dark-external-icon: url("data:image/svg+xml;utf8,"); +} + +@media (prefers-color-scheme: light) { + :root { + --color-background: var(--light-color-background); + --color-secondary-background: var(--light-color-secondary-background); + --color-text: var(--light-color-text); + --color-text-aside: var(--light-color-text-aside); + --color-link: var(--light-color-link); + --color-menu-divider: var(--light-color-menu-divider); + --color-menu-divider-focus: var(--light-color-menu-divider-focus); + --color-menu-label: var(--light-color-menu-label); + --color-panel: var(--light-color-panel); + --color-panel-divider: var(--light-color-panel-divider); + --color-comment-tag: var(--light-color-comment-tag); + --color-comment-tag-text: var(--light-color-comment-tag-text); + --color-ts: var(--light-color-ts); + --color-ts-interface: var(--light-color-ts-interface); + --color-ts-enum: var(--light-color-ts-enum); + --color-ts-class: var(--light-color-ts-class); + --color-ts-private: var(--light-color-ts-private); + --color-toolbar: var(--light-color-toolbar); + --color-toolbar-text: var(--light-color-toolbar-text); + --icon-filter: var(--light-icon-filter); + --external-icon: var(--light-external-icon); + } +} + +@media (prefers-color-scheme: dark) { + :root { + --color-background: var(--dark-color-background); + --color-secondary-background: var(--dark-color-secondary-background); + --color-text: var(--dark-color-text); + --color-text-aside: var(--dark-color-text-aside); + --color-link: var(--dark-color-link); + --color-menu-divider: var(--dark-color-menu-divider); + --color-menu-divider-focus: var(--dark-color-menu-divider-focus); + --color-menu-label: var(--dark-color-menu-label); + --color-panel: var(--dark-color-panel); + --color-panel-divider: var(--dark-color-panel-divider); + --color-comment-tag: var(--dark-color-comment-tag); + --color-comment-tag-text: var(--dark-color-comment-tag-text); + --color-ts: var(--dark-color-ts); + --color-ts-interface: var(--dark-color-ts-interface); + --color-ts-enum: var(--dark-color-ts-enum); + --color-ts-class: var(--dark-color-ts-class); + --color-ts-private: var(--dark-color-ts-private); + --color-toolbar: var(--dark-color-toolbar); + --color-toolbar-text: var(--dark-color-toolbar-text); + --icon-filter: var(--dark-icon-filter); + --external-icon: var(--dark-external-icon); + } +} + +body { + margin: 0; +} + +body.light { + --color-background: var(--light-color-background); + --color-secondary-background: var(--light-color-secondary-background); + --color-text: var(--light-color-text); + --color-text-aside: var(--light-color-text-aside); + --color-link: var(--light-color-link); + --color-menu-divider: var(--light-color-menu-divider); + --color-menu-divider-focus: var(--light-color-menu-divider-focus); + --color-menu-label: var(--light-color-menu-label); + --color-panel: var(--light-color-panel); + --color-panel-divider: var(--light-color-panel-divider); + --color-comment-tag: var(--light-color-comment-tag); + --color-comment-tag-text: var(--light-color-comment-tag-text); + --color-ts: var(--light-color-ts); + --color-ts-interface: var(--light-color-ts-interface); + --color-ts-enum: var(--light-color-ts-enum); + --color-ts-class: var(--light-color-ts-class); + --color-ts-private: var(--light-color-ts-private); + --color-toolbar: var(--light-color-toolbar); + --color-toolbar-text: var(--light-color-toolbar-text); + --icon-filter: var(--light-icon-filter); + --external-icon: var(--light-external-icon); +} + +body.dark { + --color-background: var(--dark-color-background); + --color-secondary-background: var(--dark-color-secondary-background); + --color-text: var(--dark-color-text); + --color-text-aside: var(--dark-color-text-aside); + --color-link: var(--dark-color-link); + --color-menu-divider: var(--dark-color-menu-divider); + --color-menu-divider-focus: var(--dark-color-menu-divider-focus); + --color-menu-label: var(--dark-color-menu-label); + --color-panel: var(--dark-color-panel); + --color-panel-divider: var(--dark-color-panel-divider); + --color-comment-tag: var(--dark-color-comment-tag); + --color-comment-tag-text: var(--dark-color-comment-tag-text); + --color-ts: var(--dark-color-ts); + --color-ts-interface: var(--dark-color-ts-interface); + --color-ts-enum: var(--dark-color-ts-enum); + --color-ts-class: var(--dark-color-ts-class); + --color-ts-private: var(--dark-color-ts-private); + --color-toolbar: var(--dark-color-toolbar); + --color-toolbar-text: var(--dark-color-toolbar-text); + --icon-filter: var(--dark-icon-filter); + --external-icon: var(--dark-external-icon); +} + +h1, +h2, +h3, +h4, +h5, +h6 { + line-height: 1.2; +} + +h1 { + font-size: 2em; + margin: 0.67em 0; +} + +h2 { + font-size: 1.5em; + margin: 0.83em 0; +} + +h3 { + font-size: 1.17em; + margin: 1em 0; +} + +h4, +.tsd-index-panel h3 { + font-size: 1em; + margin: 1.33em 0; +} + +h5 { + font-size: 0.83em; + margin: 1.67em 0; +} + +h6 { + font-size: 0.67em; + margin: 2.33em 0; +} + +pre { + white-space: pre; + white-space: pre-wrap; + word-wrap: break-word; +} + +dl, +menu, +ol, +ul { + margin: 1em 0; +} + +dd { + margin: 0 0 0 40px; +} + +.container { + max-width: 1200px; + margin: 0 auto; + padding: 0 40px; +} +@media (max-width: 640px) { + .container { + padding: 0 20px; + } +} + +.container-main { + padding-bottom: 200px; +} + +.row { + display: flex; + position: relative; + margin: 0 -10px; +} +.row:after { + visibility: hidden; + display: block; + content: ""; + clear: both; + height: 0; +} + +.col-4, +.col-8 { + box-sizing: border-box; + float: left; + padding: 0 10px; +} + +.col-4 { + width: 33.3333333333%; +} +.col-8 { + width: 66.6666666667%; +} + +ul.tsd-descriptions > li > :first-child, +.tsd-panel > :first-child, +.col-8 > :first-child, +.col-4 > :first-child, +ul.tsd-descriptions > li > :first-child > :first-child, +.tsd-panel > :first-child > :first-child, +.col-8 > :first-child > :first-child, +.col-4 > :first-child > :first-child, +ul.tsd-descriptions > li > :first-child > :first-child > :first-child, +.tsd-panel > :first-child > :first-child > :first-child, +.col-8 > :first-child > :first-child > :first-child, +.col-4 > :first-child > :first-child > :first-child { + margin-top: 0; +} +ul.tsd-descriptions > li > :last-child, +.tsd-panel > :last-child, +.col-8 > :last-child, +.col-4 > :last-child, +ul.tsd-descriptions > li > :last-child > :last-child, +.tsd-panel > :last-child > :last-child, +.col-8 > :last-child > :last-child, +.col-4 > :last-child > :last-child, +ul.tsd-descriptions > li > :last-child > :last-child > :last-child, +.tsd-panel > :last-child > :last-child > :last-child, +.col-8 > :last-child > :last-child > :last-child, +.col-4 > :last-child > :last-child > :last-child { + margin-bottom: 0; +} + +@keyframes fade-in { + from { + opacity: 0; + } + to { + opacity: 1; + } +} +@keyframes fade-out { + from { + opacity: 1; + visibility: visible; + } + to { + opacity: 0; + } +} +@keyframes fade-in-delayed { + 0% { + opacity: 0; + } + 33% { + opacity: 0; + } + 100% { + opacity: 1; + } +} +@keyframes fade-out-delayed { + 0% { + opacity: 1; + visibility: visible; + } + 66% { + opacity: 0; + } + 100% { + opacity: 0; + } +} +@keyframes shift-to-left { + from { + transform: translate(0, 0); + } + to { + transform: translate(-25%, 0); + } +} +@keyframes unshift-to-left { + from { + transform: translate(-25%, 0); + } + to { + transform: translate(0, 0); + } +} +@keyframes pop-in-from-right { + from { + transform: translate(100%, 0); + } + to { + transform: translate(0, 0); + } +} +@keyframes pop-out-to-right { + from { + transform: translate(0, 0); + visibility: visible; + } + to { + transform: translate(100%, 0); + } +} +body { + background: var(--color-background); + font-family: "Segoe UI", sans-serif; + font-size: 16px; + color: var(--color-text); +} + +a { + color: var(--color-link); + text-decoration: none; +} +a:hover { + text-decoration: underline; +} +a.external[target="_blank"] { + background-image: var(--external-icon); + background-position: top 3px right; + background-repeat: no-repeat; + padding-right: 13px; +} + +code, +pre { + font-family: Menlo, Monaco, Consolas, "Courier New", monospace; + padding: 0.2em; + margin: 0; + font-size: 14px; +} + +pre { + padding: 10px; +} +pre code { + padding: 0; + font-size: 100%; +} + +blockquote { + margin: 1em 0; + padding-left: 1em; + border-left: 4px solid gray; +} + +.tsd-typography { + line-height: 1.333em; +} +.tsd-typography ul { + list-style: square; + padding: 0 0 0 20px; + margin: 0; +} +.tsd-typography h4, +.tsd-typography .tsd-index-panel h3, +.tsd-index-panel .tsd-typography h3, +.tsd-typography h5, +.tsd-typography h6 { + font-size: 1em; + margin: 0; +} +.tsd-typography h5, +.tsd-typography h6 { + font-weight: normal; +} +.tsd-typography p, +.tsd-typography ul, +.tsd-typography ol { + margin: 1em 0; +} + +@media (min-width: 901px) and (max-width: 1024px) { + html .col-content { + width: 72%; + } + html .col-menu { + width: 28%; + } + html .tsd-navigation { + padding-left: 10px; + } +} +@media (max-width: 900px) { + html .col-content { + float: none; + width: 100%; + } + html .col-menu { + position: fixed !important; + overflow: auto; + -webkit-overflow-scrolling: touch; + z-index: 1024; + top: 0 !important; + bottom: 0 !important; + left: auto !important; + right: 0 !important; + width: 100%; + padding: 20px 20px 0 0; + max-width: 450px; + visibility: hidden; + background-color: var(--color-panel); + transform: translate(100%, 0); + } + html .col-menu > *:last-child { + padding-bottom: 20px; + } + html .overlay { + content: ""; + display: block; + position: fixed; + z-index: 1023; + top: 0; + left: 0; + right: 0; + bottom: 0; + background-color: rgba(0, 0, 0, 0.75); + visibility: hidden; + } + + .to-has-menu .overlay { + animation: fade-in 0.4s; + } + + .to-has-menu :is(header, footer, .col-content) { + animation: shift-to-left 0.4s; + } + + .to-has-menu .col-menu { + animation: pop-in-from-right 0.4s; + } + + .from-has-menu .overlay { + animation: fade-out 0.4s; + } + + .from-has-menu :is(header, footer, .col-content) { + animation: unshift-to-left 0.4s; + } + + .from-has-menu .col-menu { + animation: pop-out-to-right 0.4s; + } + + .has-menu body { + overflow: hidden; + } + .has-menu .overlay { + visibility: visible; + } + .has-menu :is(header, footer, .col-content) { + transform: translate(-25%, 0); + } + .has-menu .col-menu { + visibility: visible; + transform: translate(0, 0); + display: grid; + grid-template-rows: auto 1fr; + max-height: 100vh; + } + .has-menu .tsd-navigation { + max-height: 100%; + } +} + +.tsd-page-title { + padding: 70px 0 20px 0; + margin: 0 0 40px 0; + background: var(--color-panel); + box-shadow: 0 0 5px rgba(0, 0, 0, 0.35); +} +.tsd-page-title h1 { + margin: 0; +} + +.tsd-breadcrumb { + margin: 0; + padding: 0; + color: var(--color-text-aside); +} +.tsd-breadcrumb a { + color: var(--color-text-aside); + text-decoration: none; +} +.tsd-breadcrumb a:hover { + text-decoration: underline; +} +.tsd-breadcrumb li { + display: inline; +} +.tsd-breadcrumb li:after { + content: " / "; +} + +dl.tsd-comment-tags { + overflow: hidden; +} +dl.tsd-comment-tags dt { + float: left; + padding: 1px 5px; + margin: 0 10px 0 0; + border-radius: 4px; + border: 1px solid var(--color-comment-tag); + color: var(--color-comment-tag); + font-size: 0.8em; + font-weight: normal; +} +dl.tsd-comment-tags dd { + margin: 0 0 10px 0; +} +dl.tsd-comment-tags dd:before, +dl.tsd-comment-tags dd:after { + display: table; + content: " "; +} +dl.tsd-comment-tags dd pre, +dl.tsd-comment-tags dd:after { + clear: both; +} +dl.tsd-comment-tags p { + margin: 0; +} + +.tsd-panel.tsd-comment .lead { + font-size: 1.1em; + line-height: 1.333em; + margin-bottom: 2em; +} +.tsd-panel.tsd-comment .lead:last-child { + margin-bottom: 0; +} + +.toggle-protected .tsd-is-private { + display: none; +} + +.toggle-public .tsd-is-private, +.toggle-public .tsd-is-protected, +.toggle-public .tsd-is-private-protected { + display: none; +} + +.toggle-inherited .tsd-is-inherited { + display: none; +} + +.toggle-externals .tsd-is-external { + display: none; +} + +#tsd-filter { + position: relative; + display: inline-block; + height: 40px; + vertical-align: bottom; +} +.no-filter #tsd-filter { + display: none; +} +#tsd-filter .tsd-filter-group { + display: inline-block; + height: 40px; + vertical-align: bottom; + white-space: nowrap; +} +#tsd-filter input { + display: none; +} +@media (max-width: 900px) { + #tsd-filter .tsd-filter-group { + display: block; + position: absolute; + top: 40px; + right: 20px; + height: auto; + background-color: var(--color-panel); + visibility: hidden; + transform: translate(50%, 0); + box-shadow: 0 0 4px rgba(0, 0, 0, 0.25); + } + .has-options #tsd-filter .tsd-filter-group { + visibility: visible; + } + .to-has-options #tsd-filter .tsd-filter-group { + animation: fade-in 0.2s; + } + .from-has-options #tsd-filter .tsd-filter-group { + animation: fade-out 0.2s; + } + #tsd-filter label, + #tsd-filter .tsd-select { + display: block; + padding-right: 20px; + } +} + +footer { + border-top: 1px solid var(--color-panel-divider); + background-color: var(--color-panel); +} +footer:after { + content: ""; + display: table; +} +footer.with-border-bottom { + border-bottom: 1px solid var(--color-panel-divider); +} +footer .tsd-legend-group { + font-size: 0; +} +footer .tsd-legend { + display: inline-block; + width: 25%; + padding: 0; + font-size: 16px; + list-style: none; + line-height: 1.333em; + vertical-align: top; +} +@media (max-width: 900px) { + footer .tsd-legend { + width: 50%; + } +} + +.tsd-hierarchy { + list-style: square; + padding: 0 0 0 20px; + margin: 0; +} +.tsd-hierarchy .target { + font-weight: bold; +} + +.tsd-index-panel .tsd-index-content { + margin-bottom: -30px !important; +} +.tsd-index-panel .tsd-index-section { + margin-bottom: 30px !important; +} +.tsd-index-panel h3 { + margin: 0 -20px 10px -20px; + padding: 0 20px 10px 20px; + border-bottom: 1px solid var(--color-panel-divider); +} +.tsd-index-panel ul.tsd-index-list { + -webkit-column-count: 3; + -moz-column-count: 3; + -ms-column-count: 3; + -o-column-count: 3; + column-count: 3; + -webkit-column-gap: 20px; + -moz-column-gap: 20px; + -ms-column-gap: 20px; + -o-column-gap: 20px; + column-gap: 20px; + padding: 0; + list-style: none; + line-height: 1.333em; +} +@media (max-width: 900px) { + .tsd-index-panel ul.tsd-index-list { + -webkit-column-count: 1; + -moz-column-count: 1; + -ms-column-count: 1; + -o-column-count: 1; + column-count: 1; + } +} +@media (min-width: 901px) and (max-width: 1024px) { + .tsd-index-panel ul.tsd-index-list { + -webkit-column-count: 2; + -moz-column-count: 2; + -ms-column-count: 2; + -o-column-count: 2; + column-count: 2; + } +} +.tsd-index-panel ul.tsd-index-list li { + -webkit-page-break-inside: avoid; + -moz-page-break-inside: avoid; + -ms-page-break-inside: avoid; + -o-page-break-inside: avoid; + page-break-inside: avoid; +} +.tsd-index-panel a, +.tsd-index-panel .tsd-parent-kind-module a { + color: var(--color-ts); +} +.tsd-index-panel .tsd-parent-kind-interface a { + color: var(--color-ts-interface); +} +.tsd-index-panel .tsd-parent-kind-enum a { + color: var(--color-ts-enum); +} +.tsd-index-panel .tsd-parent-kind-class a { + color: var(--color-ts-class); +} +.tsd-index-panel .tsd-kind-module a { + color: var(--color-ts); +} +.tsd-index-panel .tsd-kind-interface a { + color: var(--color-ts-interface); +} +.tsd-index-panel .tsd-kind-enum a { + color: var(--color-ts-enum); +} +.tsd-index-panel .tsd-kind-class a { + color: var(--color-ts-class); +} +.tsd-index-panel .tsd-is-private a { + color: var(--color-ts-private); +} + +.tsd-flag { + display: inline-block; + padding: 0.25em 0.4em; + border-radius: 4px; + color: var(--color-comment-tag-text); + background-color: var(--color-comment-tag); + text-indent: 0; + font-size: 75%; + line-height: 1; + font-weight: normal; +} + +.tsd-anchor { + position: absolute; + top: -100px; +} + +.tsd-member { + position: relative; +} +.tsd-member .tsd-anchor + h3 { + margin-top: 0; + margin-bottom: 0; + border-bottom: none; +} +.tsd-member [data-tsd-kind] { + color: var(--color-ts); +} +.tsd-member [data-tsd-kind="Interface"] { + color: var(--color-ts-interface); +} +.tsd-member [data-tsd-kind="Enum"] { + color: var(--color-ts-enum); +} +.tsd-member [data-tsd-kind="Class"] { + color: var(--color-ts-class); +} +.tsd-member [data-tsd-kind="Private"] { + color: var(--color-ts-private); +} + +.tsd-navigation { + margin: 0 0 0 40px; +} +.tsd-navigation a { + display: block; + padding-top: 2px; + padding-bottom: 2px; + border-left: 2px solid transparent; + color: var(--color-text); + text-decoration: none; + transition: border-left-color 0.1s; +} +.tsd-navigation a:hover { + text-decoration: underline; +} +.tsd-navigation ul { + margin: 0; + padding: 0; + list-style: none; +} +.tsd-navigation li { + padding: 0; +} + +.tsd-navigation.primary { + padding-bottom: 40px; +} +.tsd-navigation.primary a { + display: block; + padding-top: 6px; + padding-bottom: 6px; +} +.tsd-navigation.primary ul li a { + padding-left: 5px; +} +.tsd-navigation.primary ul li li a { + padding-left: 25px; +} +.tsd-navigation.primary ul li li li a { + padding-left: 45px; +} +.tsd-navigation.primary ul li li li li a { + padding-left: 65px; +} +.tsd-navigation.primary ul li li li li li a { + padding-left: 85px; +} +.tsd-navigation.primary ul li li li li li li a { + padding-left: 105px; +} +.tsd-navigation.primary > ul { + border-bottom: 1px solid var(--color-panel-divider); +} +.tsd-navigation.primary li { + border-top: 1px solid var(--color-panel-divider); +} +.tsd-navigation.primary li.current > a { + font-weight: bold; +} +.tsd-navigation.primary li.label span { + display: block; + padding: 20px 0 6px 5px; + color: var(--color-menu-label); +} +.tsd-navigation.primary li.globals + li > span, +.tsd-navigation.primary li.globals + li > a { + padding-top: 20px; +} + +.tsd-navigation.secondary { + max-height: calc(100vh - 1rem - 40px); + overflow: auto; + position: sticky; + top: calc(0.5rem + 40px); + transition: 0.3s; +} +.tsd-navigation.secondary.tsd-navigation--toolbar-hide { + max-height: calc(100vh - 1rem); + top: 0.5rem; +} +.tsd-navigation.secondary ul { + transition: opacity 0.2s; +} +.tsd-navigation.secondary ul li a { + padding-left: 25px; +} +.tsd-navigation.secondary ul li li a { + padding-left: 45px; +} +.tsd-navigation.secondary ul li li li a { + padding-left: 65px; +} +.tsd-navigation.secondary ul li li li li a { + padding-left: 85px; +} +.tsd-navigation.secondary ul li li li li li a { + padding-left: 105px; +} +.tsd-navigation.secondary ul li li li li li li a { + padding-left: 125px; +} +.tsd-navigation.secondary ul.current a { + border-left-color: var(--color-panel-divider); +} +.tsd-navigation.secondary li.focus > a, +.tsd-navigation.secondary ul.current li.focus > a { + border-left-color: var(--color-menu-divider-focus); +} +.tsd-navigation.secondary li.current { + margin-top: 20px; + margin-bottom: 20px; + border-left-color: var(--color-panel-divider); +} +.tsd-navigation.secondary li.current > a { + font-weight: bold; +} + +@media (min-width: 901px) { + .menu-sticky-wrap { + position: static; + } +} + +.tsd-panel { + margin: 20px 0; + padding: 20px; + background-color: var(--color-panel); + box-shadow: 0 0 4px rgba(0, 0, 0, 0.25); +} +.tsd-panel:empty { + display: none; +} +.tsd-panel > h1, +.tsd-panel > h2, +.tsd-panel > h3 { + margin: 1.5em -20px 10px -20px; + padding: 0 20px 10px 20px; + border-bottom: 1px solid var(--color-panel-divider); +} +.tsd-panel > h1.tsd-before-signature, +.tsd-panel > h2.tsd-before-signature, +.tsd-panel > h3.tsd-before-signature { + margin-bottom: 0; + border-bottom: 0; +} +.tsd-panel table { + display: block; + width: 100%; + overflow: auto; + margin-top: 10px; + word-break: normal; + word-break: keep-all; + border-collapse: collapse; +} +.tsd-panel table th { + font-weight: bold; +} +.tsd-panel table th, +.tsd-panel table td { + padding: 6px 13px; + border: 1px solid var(--color-panel-divider); +} +.tsd-panel table tr { + background: var(--color-background); +} +.tsd-panel table tr:nth-child(even) { + background: var(--color-secondary-background); +} + +.tsd-panel-group { + margin: 60px 0; +} +.tsd-panel-group > h1, +.tsd-panel-group > h2, +.tsd-panel-group > h3 { + padding-left: 20px; + padding-right: 20px; +} + +#tsd-search { + transition: background-color 0.2s; +} +#tsd-search .title { + position: relative; + z-index: 2; +} +#tsd-search .field { + position: absolute; + left: 0; + top: 0; + right: 40px; + height: 40px; +} +#tsd-search .field input { + box-sizing: border-box; + position: relative; + top: -50px; + z-index: 1; + width: 100%; + padding: 0 10px; + opacity: 0; + outline: 0; + border: 0; + background: transparent; + color: var(--color-text); +} +#tsd-search .field label { + position: absolute; + overflow: hidden; + right: -40px; +} +#tsd-search .field input, +#tsd-search .title { + transition: opacity 0.2s; +} +#tsd-search .results { + position: absolute; + visibility: hidden; + top: 40px; + width: 100%; + margin: 0; + padding: 0; + list-style: none; + box-shadow: 0 0 4px rgba(0, 0, 0, 0.25); +} +#tsd-search .results li { + padding: 0 10px; + background-color: var(--color-background); +} +#tsd-search .results li:nth-child(even) { + background-color: var(--color-panel); +} +#tsd-search .results li.state { + display: none; +} +#tsd-search .results li.current, +#tsd-search .results li:hover { + background-color: var(--color-panel-divider); +} +#tsd-search .results a { + display: block; +} +#tsd-search .results a:before { + top: 10px; +} +#tsd-search .results span.parent { + color: var(--color-text-aside); + font-weight: normal; +} +#tsd-search.has-focus { + background-color: var(--color-panel-divider); +} +#tsd-search.has-focus .field input { + top: 0; + opacity: 1; +} +#tsd-search.has-focus .title { + z-index: 0; + opacity: 0; +} +#tsd-search.has-focus .results { + visibility: visible; +} +#tsd-search.loading .results li.state.loading { + display: block; +} +#tsd-search.failure .results li.state.failure { + display: block; +} + +.tsd-signature { + margin: 0 0 1em 0; + padding: 10px; + border: 1px solid var(--color-panel-divider); + font-family: Menlo, Monaco, Consolas, "Courier New", monospace; + font-size: 14px; + overflow-x: auto; +} +.tsd-signature.tsd-kind-icon { + padding-left: 30px; +} +.tsd-signature.tsd-kind-icon:before { + top: 10px; + left: 10px; +} +.tsd-panel > .tsd-signature { + margin-left: -20px; + margin-right: -20px; + border-width: 1px 0; +} +.tsd-panel > .tsd-signature.tsd-kind-icon { + padding-left: 40px; +} +.tsd-panel > .tsd-signature.tsd-kind-icon:before { + left: 20px; +} + +.tsd-signature-symbol { + color: var(--color-text-aside); + font-weight: normal; +} + +.tsd-signature-type { + font-style: italic; + font-weight: normal; +} + +.tsd-signatures { + padding: 0; + margin: 0 0 1em 0; + border: 1px solid var(--color-panel-divider); +} +.tsd-signatures .tsd-signature { + margin: 0; + border-width: 1px 0 0 0; + transition: background-color 0.1s; +} +.tsd-signatures .tsd-signature:first-child { + border-top-width: 0; +} +.tsd-signatures .tsd-signature.current { + background-color: var(--color-panel-divider); +} +.tsd-signatures.active > .tsd-signature { + cursor: pointer; +} +.tsd-panel > .tsd-signatures { + margin-left: -20px; + margin-right: -20px; + border-width: 1px 0; +} +.tsd-panel > .tsd-signatures .tsd-signature.tsd-kind-icon { + padding-left: 40px; +} +.tsd-panel > .tsd-signatures .tsd-signature.tsd-kind-icon:before { + left: 20px; +} +.tsd-panel > a.anchor + .tsd-signatures { + border-top-width: 0; + margin-top: -20px; +} + +ul.tsd-descriptions { + position: relative; + overflow: hidden; + padding: 0; + list-style: none; +} +ul.tsd-descriptions.active > .tsd-description { + display: none; +} +ul.tsd-descriptions.active > .tsd-description.current { + display: block; +} +ul.tsd-descriptions.active > .tsd-description.fade-in { + animation: fade-in-delayed 0.3s; +} +ul.tsd-descriptions.active > .tsd-description.fade-out { + animation: fade-out-delayed 0.3s; + position: absolute; + display: block; + top: 0; + left: 0; + right: 0; + opacity: 0; + visibility: hidden; +} +ul.tsd-descriptions h4, +ul.tsd-descriptions .tsd-index-panel h3, +.tsd-index-panel ul.tsd-descriptions h3 { + font-size: 16px; + margin: 1em 0 0.5em 0; +} + +ul.tsd-parameters, +ul.tsd-type-parameters { + list-style: square; + margin: 0; + padding-left: 20px; +} +ul.tsd-parameters > li.tsd-parameter-signature, +ul.tsd-type-parameters > li.tsd-parameter-signature { + list-style: none; + margin-left: -20px; +} +ul.tsd-parameters h5, +ul.tsd-type-parameters h5 { + font-size: 16px; + margin: 1em 0 0.5em 0; +} +ul.tsd-parameters .tsd-comment, +ul.tsd-type-parameters .tsd-comment { + margin-top: -0.5em; +} + +.tsd-sources { + font-size: 14px; + color: var(--color-text-aside); + margin: 0 0 1em 0; +} +.tsd-sources a { + color: var(--color-text-aside); + text-decoration: underline; +} +.tsd-sources ul, +.tsd-sources p { + margin: 0 !important; +} +.tsd-sources ul { + list-style: none; + padding: 0; +} + +.tsd-page-toolbar { + position: fixed; + z-index: 1; + top: 0; + left: 0; + width: 100%; + height: 40px; + color: var(--color-toolbar-text); + background: var(--color-toolbar); + border-bottom: 1px solid var(--color-panel-divider); + transition: transform 0.3s linear; +} +.tsd-page-toolbar a { + color: var(--color-toolbar-text); + text-decoration: none; +} +.tsd-page-toolbar a.title { + font-weight: bold; +} +.tsd-page-toolbar a.title:hover { + text-decoration: underline; +} +.tsd-page-toolbar .table-wrap { + display: table; + width: 100%; + height: 40px; +} +.tsd-page-toolbar .table-cell { + display: table-cell; + position: relative; + white-space: nowrap; + line-height: 40px; +} +.tsd-page-toolbar .table-cell:first-child { + width: 100%; +} + +.tsd-page-toolbar--hide { + transform: translateY(-100%); +} + +.tsd-select .tsd-select-list li:before, +.tsd-select .tsd-select-label:before, +.tsd-widget:before { + content: ""; + display: inline-block; + width: 40px; + height: 40px; + margin: 0 -8px 0 0; + background-image: url(./widgets.png); + background-repeat: no-repeat; + text-indent: -1024px; + vertical-align: bottom; + filter: var(--icon-filter); +} +@media (-webkit-min-device-pixel-ratio: 1.5), (min-resolution: 144dpi) { + .tsd-select .tsd-select-list li:before, + .tsd-select .tsd-select-label:before, + .tsd-widget:before { + background-image: url(./widgets@2x.png); + background-size: 320px 40px; + } +} + +.tsd-widget { + display: inline-block; + overflow: hidden; + opacity: 0.8; + height: 40px; + transition: opacity 0.1s, background-color 0.2s; + vertical-align: bottom; + cursor: pointer; +} +.tsd-widget:hover { + opacity: 0.9; +} +.tsd-widget.active { + opacity: 1; + background-color: var(--color-panel-divider); +} +.tsd-widget.no-caption { + width: 40px; +} +.tsd-widget.no-caption:before { + margin: 0; +} +.tsd-widget.search:before { + background-position: 0 0; +} +.tsd-widget.menu:before { + background-position: -40px 0; +} +.tsd-widget.options:before { + background-position: -80px 0; +} +.tsd-widget.options, +.tsd-widget.menu { + display: none; +} +@media (max-width: 900px) { + .tsd-widget.options, + .tsd-widget.menu { + display: inline-block; + } +} +input[type="checkbox"] + .tsd-widget:before { + background-position: -120px 0; +} +input[type="checkbox"]:checked + .tsd-widget:before { + background-position: -160px 0; +} + +.tsd-select { + position: relative; + display: inline-block; + height: 40px; + transition: opacity 0.1s, background-color 0.2s; + vertical-align: bottom; + cursor: pointer; +} +.tsd-select .tsd-select-label { + opacity: 0.6; + transition: opacity 0.2s; +} +.tsd-select .tsd-select-label:before { + background-position: -240px 0; +} +.tsd-select.active .tsd-select-label { + opacity: 0.8; +} +.tsd-select.active .tsd-select-list { + visibility: visible; + opacity: 1; + transition-delay: 0s; +} +.tsd-select .tsd-select-list { + position: absolute; + visibility: hidden; + top: 40px; + left: 0; + margin: 0; + padding: 0; + opacity: 0; + list-style: none; + box-shadow: 0 0 4px rgba(0, 0, 0, 0.25); + transition: visibility 0s 0.2s, opacity 0.2s; +} +.tsd-select .tsd-select-list li { + padding: 0 20px 0 0; + background-color: var(--color-background); +} +.tsd-select .tsd-select-list li:before { + background-position: 40px 0; +} +.tsd-select .tsd-select-list li:nth-child(even) { + background-color: var(--color-panel); +} +.tsd-select .tsd-select-list li:hover { + background-color: var(--color-panel-divider); +} +.tsd-select .tsd-select-list li.selected:before { + background-position: -200px 0; +} +@media (max-width: 900px) { + .tsd-select .tsd-select-list { + top: 0; + left: auto; + right: 100%; + margin-right: -5px; + } + .tsd-select .tsd-select-label:before { + background-position: -280px 0; + } +} + +img { + max-width: 100%; +} + +.tsd-anchor-icon { + margin-left: 10px; + vertical-align: middle; + color: var(--color-text); +} + +.tsd-anchor-icon svg { + width: 1em; + height: 1em; + visibility: hidden; +} + +.tsd-anchor-link:hover > .tsd-anchor-icon svg { + visibility: visible; +} diff --git a/docs/assets/widgets.png b/docs/assets/widgets.png new file mode 100644 index 0000000000000000000000000000000000000000..c7380532ac1b45400620011c37c4dcb7aec27a4c GIT binary patch literal 480 zcmeAS@N?(olHy`uVBq!ia0y~yU~~YoH8@y+q^jrZML>b&o-U3d6^w6h1+IPUz|;DW zIZ;96kdsD>Qv^q=09&hp0GpEni<1IR%gvP3v%OR9*{MuRTKWHZyIbuBt)Ci`cU_&% z1T+i^Y)o{%281-<3TpPAUTzw5v;RY=>1rvxmPl96#kYc9hX!6V^nB|ad#(S+)}?8C zr_H+lT3B#So$T=?$(w3-{rbQ4R<@nsf$}$hwSO)A$8&`(j+wQf=Jwhb0`CvhR5DCf z^OgI)KQemrUFPH+UynC$Y~QHG%DbTVh-Skz{enNU)cV_hPu~{TD7TPZl>0&K>iuE| z7AYn$7)Jrb9GE&SfQW4q&G*@N|4cHI`VakFa5-C!ov&XD)J(qp$rJJ*9e z-sHv}#g*T7Cv048d1v~BEAzM5FztAse#q78WWC^BUCzQ U&wLp6h6BX&boFyt=akR{0G%$)mH+?% literal 0 HcmV?d00001 diff --git a/docs/assets/widgets@2x.png b/docs/assets/widgets@2x.png new file mode 100644 index 0000000000000000000000000000000000000000..4bbbd57272f3b28f47527d4951ad10f950b8ad43 GIT binary patch literal 855 zcmeAS@N?(olHy`uVBq!ia0y~yU}^xe12~w0Jcmn z@(X6T|9^jgLcx21{)7exgY)a>N6m2F0<`Rqr;B4q1>>88jUdw-7W`c)zLE*mq8W2H z-<&Jl_Hco5BuC5n@AbF5GD82~-e8-v=#zCyUX0F-o}8pPfAv`!GN$ff+TL<~@kgt} z62eO?_|&+>xBmM$@p|z`tIKEdpPf8%qI>4r7@jn<=eta*{3~?g(zz{Ke9zc-G^gr? z-7foa?LcS!hmbwzru}ICvbWLlW8;+l-}!^=c32!^nV`+`C*;0-*Y%l94pC;Cb3GXz zzSf%a!{gVr{Y_lVuUj+a)*Ca+!-Hu%xmP&&X-2CuANY8^i{D7Kg6qzP zXz_ps9+lN8ESH{K4`yu&b~I>N9xGlE&;2u*b?+Go!AhN?m-bxlLvtC#MzDF2kFzfHJ1W7ybqdefSqVhbOykd*Yi%EDuhs z4wF{ft^bv2+DDnKb8gj1FuvcV`M}luS>lO<^)8x>y1#R;a=-ZKwWTQQb)ioBbi;zh zD!f5V)8581to1LL7c9!l^PSC$NBPYif!_vAZhmL4)v4U)4UsrLYiH_9rmQDd?)(e5 z^pcH>qvBg*i0dus2r*mp4;zKvu=P#s-ti;2obl`NjjwoYd>e(oo#j_uyRb<7Pv^If zzZ|mGHmV)8^tbO%^>eqMw(@7(&3g{jEp-Najo7V75xI_ZHK*FA`elF{r5}E*d7+j_R literal 0 HcmV?d00001 diff --git a/docs/classes/index.CPMClusteringAlgorithm.html b/docs/classes/index.CPMClusteringAlgorithm.html new file mode 100644 index 0000000..824cde1 --- /dev/null +++ b/docs/classes/index.CPMClusteringAlgorithm.html @@ -0,0 +1,82 @@ +CPMClusteringAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Class CPMClusteringAlgorithm Abstract

+

Abstract base class for clustering algorithms that use the CPM quality +function.

+

Hierarchy

Implements

Index

Properties

DEFAULT_RESOLUTION: number = 1
+

Default resolution parameter.

+
resolution: number
+

Resolution parameter.

+

Constructors

Methods

  • initializeBasedOnResolution(resolution: number): void
  • +

    Initializes a CPM clustering algorithm with a specified resolution +parameter.

    +

    Parameters

    • resolution: number
      +

      Resolution parameter

      +

    Returns void

  • getResolution(): number
  • setResolution(resolution: number): void
  • +

    Calculates the quality of a clustering using the CPM quality function.

    +

    The CPM quality function is given by

    +
    1 / (2 * m) * sum(d(c[i], c[j]) * (a[i][j] - resolution * n[i] *
    n[j])), +
    +

    where a[i][j] is the weight of the edge between nodes i and j, +n[i] is the weight of node i, m is the total edge weight, and +resolution is the resolutionparameter. The function d(c[i], c[j]) +equals 1 if nodes i and j belong to the same cluster and 0 otherwise. +The sum is taken over all pairs of nodes i and j.

    +

    Modularity can be expressed in terms of CPM by setting n[i] equal to +the total weight of the edges between node i and its neighbors and by +rescaling the resolution parameter by 2 * m.

    +

    Parameters

    Returns number

    Quality of the clustering

    +
  • +

    Removes a cluster from a clustering by merging the cluster with another +cluster. If a cluster has no connections with other clusters, it cannot +be removed.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • cluster: number
      +

      Cluster to be removed

      +

    Returns number

    Cluster with which the cluster to be removed has been merged, or + -1 if the cluster could not be removed

    +
  • removeSmallClustersBasedOnNNodes(network: Network, clustering: Clustering, minNNodesPerCluster: number): boolean
  • +

    Removes small clusters from a clustering. Clusters are merged until each +cluster contains at least a certain minimum number of nodes.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • minNNodesPerCluster: number
      +

      Minimum number of nodes per cluster

      +

    Returns boolean

    Boolean indicating whether any clusters have been removed

    +
  • removeSmallClustersBasedOnWeight(network: Network, clustering: Clustering, minClusterWeight: number): boolean
  • +

    Removes small clusters from a clustering. Clusters are merged until each +cluster has at least a certain minimum total node weight.

    +

    The total node weight of a cluster equals the sum of the weights of the +nodes belonging to the cluster.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • minClusterWeight: number
      +

      Minimum total node weight of a cluster

      +

    Returns boolean

    Boolean indicating whether any clusters have been removed

    +

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Protected property
  • Static property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.Clustering.html b/docs/classes/index.Clustering.html new file mode 100644 index 0000000..f40a6d5 --- /dev/null +++ b/docs/classes/index.Clustering.html @@ -0,0 +1,72 @@ +Clustering | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Clustering of the nodes in a network.

+

Each node belongs to exactly one cluster.

+

Hierarchy

  • Clustering

Index

Properties

clusters: number[]
+

Cluster of each node.

+
nClusters: number
+

Number of clusters.

+
nNodes: number
+

Number of nodes.

+

Constructors

Methods

  • initializeBasedOnNNodes(nNodes: number): void
  • +

    Initializes a singleton clustering for a specified number of nodes.

    +

    Parameters

    • nNodes: number
      +

      Number of nodes

      +

    Returns void

  • initializeBasedOnClusters(clusters: number[]): void
  • +

    Initializes a clustering using a specified cluster for each node.

    +

    Parameters

    • clusters: number[]
      +

      Cluster of each node

      +

    Returns void

  • getNNodes(): number
  • +

    Returns the number of nodes.

    +

    Returns number

    Number of nodes

    +
  • getNClusters(): number
  • +

    Returns the number of clusters.

    +

    Returns number

    Number of clusters

    +
  • getClusters(): number[]
  • +

    Returns the cluster of each node.

    +

    Returns number[]

    Cluster of each node

    +
  • getCluster(node: number): number
  • +

    Returns the cluster of a node.

    +

    Parameters

    • node: number
      +

      Node

      +

    Returns number

    Cluster

    +
  • getNNodesPerCluster(): number[]
  • +

    Returns the number of nodes per cluster.

    +

    Returns number[]

    Number of nodes per cluster

    +
  • getNodesPerCluster(): number[][]
  • +

    Returns a list of nodes per cluster.

    +

    Returns number[][]

    List of nodes per cluster

    +
  • setCluster(node: number, cluster: number): void
  • +

    Assigns a node to a cluster.

    +

    Parameters

    • node: number
      +

      Node

      +
    • cluster: number
      +

      Cluster

      +

    Returns void

  • initSingletonClusters(): void
  • +

    Initializes a singleton clustering.

    +

    Each node i is assigned to a cluster i.

    +

    Returns void

  • removeEmptyClusters(): void
  • +

    Removes empty clusters.

    +

    Clusters are relabeled to follow a strictly consecutive numbering +0, ..., nClusters - 1.

    +

    Returns void

  • orderClustersByNNodes(): void
  • orderClustersByWeight(nodeWeights: number[]): void
  • +

    Orders the clusters in decreasing order of their total node weight.

    +

    The total node weight of a cluster equals the sum of the weights of the +nodes belonging to the cluster.

    +
    see

    orderClustersByNNodes

    +

    Parameters

    • nodeWeights: number[]
      +

      Node weights

      +

    Returns void

  • +

    Merges the clusters based on a clustering of the clusters.

    +

    Parameters

    • clustering: Clustering
      +

      Clustering of the clusters

      +

    Returns void

  • initSingletonClustersHelper(): void

Legend

  • Class
  • Constructor
  • Property
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Protected property
  • Private method

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.ComponentsAlgorithm.html b/docs/classes/index.ComponentsAlgorithm.html new file mode 100644 index 0000000..d39f38a --- /dev/null +++ b/docs/classes/index.ComponentsAlgorithm.html @@ -0,0 +1,8 @@ +ComponentsAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Algorithm for finding the connected components of a network.

+

Hierarchy

  • ComponentsAlgorithm

Implements

Index

Constructors

Methods

Constructors

Methods

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.FastLocalMovingAlgorithm.html b/docs/classes/index.FastLocalMovingAlgorithm.html new file mode 100644 index 0000000..1fc07be --- /dev/null +++ b/docs/classes/index.FastLocalMovingAlgorithm.html @@ -0,0 +1,153 @@ +FastLocalMovingAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Fast local moving algorithm.

+

The fast local moving algorithm first adds all nodes in a network to a +queue. It then removes a node from the queue. The node is moved to the +cluster that results in the largest increase in the quality function. If the +current cluster assignment of the node is already optimal, the node is not +moved. If the node is moved to a different cluster, the neighbors of the +node that do not belong to the node's new cluster and that are not yet in +the queue are added to the queue. The algorithm continues removing nodes +from the queue until the queue is empty.

+

The fast local moving algorithm provides a fast variant of the StandardLocalMovingAlgorithm.

+

Hierarchy

Index

Properties

DEFAULT_RESOLUTION: number = 1
+

Default resolution parameter.

+
DEFAULT_N_ITERATIONS: number = 1
+

Default number of iterations.

+
resolution: number
+

Resolution parameter.

+
random: Random
+

Random number generator.

+
nIterations: number
+

Number of iterations.

+

Methods

  • getResolution(): number
  • setResolution(resolution: number): void
  • +

    Calculates the quality of a clustering using the CPM quality function.

    +

    The CPM quality function is given by

    +
    1 / (2 * m) * sum(d(c[i], c[j]) * (a[i][j] - resolution * n[i] *
    n[j])), +
    +

    where a[i][j] is the weight of the edge between nodes i and j, +n[i] is the weight of node i, m is the total edge weight, and +resolution is the resolutionparameter. The function d(c[i], c[j]) +equals 1 if nodes i and j belong to the same cluster and 0 otherwise. +The sum is taken over all pairs of nodes i and j.

    +

    Modularity can be expressed in terms of CPM by setting n[i] equal to +the total weight of the edges between node i and its neighbors and by +rescaling the resolution parameter by 2 * m.

    +

    Parameters

    Returns number

    Quality of the clustering

    +
  • +

    Removes a cluster from a clustering by merging the cluster with another +cluster. If a cluster has no connections with other clusters, it cannot +be removed.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • cluster: number
      +

      Cluster to be removed

      +

    Returns number

    Cluster with which the cluster to be removed has been merged, or + -1 if the cluster could not be removed

    +
  • removeSmallClustersBasedOnNNodes(network: Network, clustering: Clustering, minNNodesPerCluster: number): boolean
  • removeSmallClustersBasedOnWeight(network: Network, clustering: Clustering, minClusterWeight: number): boolean
  • +

    Removes small clusters from a clustering. Clusters are merged until each +cluster has at least a certain minimum total node weight.

    +

    The total node weight of a cluster equals the sum of the weights of the +nodes belonging to the cluster.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • minClusterWeight: number
      +

      Minimum total node weight of a cluster

      +

    Returns boolean

    Boolean indicating whether any clusters have been removed

    +
  • initializeBasedOnRandom(random: Random): void
  • initializeBasedOnResolutionAndNIterationsAndRandom(resolution: number, nIterations: number, random: Random): void
  • +

    Initializes a fast local merging algorithm for a specified resolution +parameter and number of iterations.

    +

    Parameters

    • resolution: number
      +

      Resolution parameter

      +
    • nIterations: number
      +

      Number of iterations

      +
    • random: Random
      +

      Random number generator

      +

    Returns void

  • initializeBasedOnResolution(resolution: number): void
  • initializeBasedOnResolutionAndNIterations(resolution: number, nIterations: number): void
  • getNIterations(): number
  • setNIterations(nIterations: number): void
  • +

    Improves a clustering by performing one iteration of the fast local +moving algorithm.

    +

    The fast local moving algorithm first adds all nodes in a network to a +queue. It then removes a node from the queue. The node is moved to the +cluster that results in the largest increase in the quality function. If +the current cluster assignment of the node is already optimal, the node +is not moved. If the node is moved to a different cluster, the neighbors +of the node that do not belong to the node's new cluster and that are +not yet in the queue are added to the queue. The algorithm continues +removing nodes from the queue until the queue is empty.

    +

    Parameters

    Returns boolean

    Boolean indicating whether the clustering has been improved

    +

Constructors

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Protected property
  • Protected method
  • Enumeration
  • Interface
  • Inherited method

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.GradientDescentVOSLayoutAlgorithm.html b/docs/classes/index.GradientDescentVOSLayoutAlgorithm.html new file mode 100644 index 0000000..034a2f4 --- /dev/null +++ b/docs/classes/index.GradientDescentVOSLayoutAlgorithm.html @@ -0,0 +1,177 @@ +GradientDescentVOSLayoutAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Class GradientDescentVOSLayoutAlgorithm

+

Gradient descent VOS layout algorithm.

+

Hierarchy

Index

Properties

DEFAULT_ATTRACTION: number = 2
+

Default attraction parameter.

+
DEFAULT_REPULSION: number = 1
+

Default repulsion parameter.

+
DEFAULT_EDGE_WEIGHT_INCREMENT: number = 0
+

Default edge weight increment parameter.

+
DEFAULT_MAX_N_ITERATIONS: number = 1000
+

Default maximum number of iterations.

+
DEFAULT_INITIAL_STEP_SIZE: number = 1
+

Default initial step size.

+
DEFAULT_MIN_STEP_SIZE: number = 0.001
+

Default minimum step size.

+
DEFAULT_STEP_SIZE_REDUCTION: number = 0.75
+

Default step size reduction.

+
DEFAULT_REQUIRED_N_QUALITY_VALUE_IMPROVEMENTS: number = 5
+

Default required number of quality value improvements.

+
attraction: number
+

Attraction parameter.

+
repulsion: number
+

Repulsion parameter.

+
edgeWeightIncrement: number
+

Edge weight increment parameter.

+
maxNIterations: number
+

Maximum number of iterations.

+
initialStepSize: number
+

Initial step size.

+
minStepSize: number
+

Minimum step size.

+
stepSizeReduction: number
+

Step size reduction.

+
requiredNQualityValueImprovements: number
+

Required number of quality value improvements.

+
random: Random
+

Random number generator.

+

Methods

  • initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrement(attraction: number, repulsion: number, edgeWeightIncrement: number): void
  • getAttraction(): number
  • getRepulsion(): number
  • getEdgeWeightIncrement(): number
  • setAttraction(attraction: number): void
  • setRepulsion(repulsion: number): void
  • setEdgeWeightIncrement(edgeWeightIncrement: number): void
  • +

    Calculates the quality of a layout using the VOS quality function.

    +

    The VOS quality function is given by

    +
    1 / attraction * sum(a[i][j] * d(x[i], x[j]) ^
    attraction) - 1 / repulsion * sum(d(x[i], x[j]) ^
    repulsion), +
    +

    where a[i][j] is the weight of the edge between nodes i and j and +x[i] = (x[i][1], x[i][2]) are the coordinates of node i. The function +d(x[i], x[j]) is the Euclidean distance between nodes i and j. The +sum is taken over all pairs of nodes i and j with j < i. The +attraction parameter must be greater than the repulsion parameter. The +lower the value of the VOS quality function, the higher the quality of the +layout.

    +

    Parameters

    Returns number

    Quality of the layout

    +
  • initializeBasedOnRandom(random: Random): void
  • initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrementAndRandom(attraction: number, repulsion: number, edgeWeightIncrement: number, random: Random): void
  • +

    Initializes a gradient descent VOS layout algorithm for a specified +attraction parameter, repulsion parameter, and edge weight increment +parameter.

    +

    Parameters

    • attraction: number
      +

      Attraction parameter

      +
    • repulsion: number
      +

      Repulsion parameter

      +
    • edgeWeightIncrement: number
      +

      Edge weight increment parameter

      +
    • random: Random
      +

      Random number generator

      +

    Returns void

  • initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrementAndMaxNIterationsAndInitialStepSizeAndMinStepSizeAndStepSizeReductionAndRequiredNQualityValueImprovementsAndRandom(attraction: number, repulsion: number, edgeWeightIncrement: number, maxNIterations: number, initialStepSize: number, minStepSize: number, stepSizeReduction: number, requiredNQualityValueImprovements: number, random: Random): void
  • +

    Initializes a gradient descent VOS layout algorithm for a specified +attraction parameter, repulsion parameter, edge weight increment +parameter, maximum number of iterations, initial step size, minimum step +size, step size reduction, and required number of quality value +improvements.

    +

    Parameters

    • attraction: number
      +

      Attraction parameter

      +
    • repulsion: number
      +

      Repulsion parameter

      +
    • edgeWeightIncrement: number
      +

      Edge weight increment parameter

      +
    • maxNIterations: number
      +

      Maximum number of iterations

      +
    • initialStepSize: number
      +

      Initial step size

      +
    • minStepSize: number
      +

      Minimum step size

      +
    • stepSizeReduction: number
      +

      Step size reduction

      +
    • requiredNQualityValueImprovements: number
      +

      Required number of quality value + improvements

      +
    • random: Random
      +

      Random number generator

      +

    Returns void

  • getMaxNIterations(): number
  • getInitialStepSize(): number
  • getMinStepSize(): number
  • getStepSizeReduction(): number
  • getRequiredNQualityValueImprovements(): number
  • setMaxNIterations(maxNIterations: number): void
  • setInitialStepSize(initialStepSize: number): void
  • setMinStepSize(minStepSize: number): void
  • setStepSizeReduction(stepSizeReduction: number): void
  • setRequiredNQualityValueImprovements(requiredNQualityValueImprovements: number): void
  • +

    Sets the required number of quality value improvements.

    +

    Parameters

    • requiredNQualityValueImprovements: number
      +

      Required number of quality value + improvements

      +

    Returns void

Constructors

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Inherited method
  • Protected property
  • Static property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.IncrementalCPMClusteringAlgorithm.html b/docs/classes/index.IncrementalCPMClusteringAlgorithm.html new file mode 100644 index 0000000..b70f8a4 --- /dev/null +++ b/docs/classes/index.IncrementalCPMClusteringAlgorithm.html @@ -0,0 +1,91 @@ +IncrementalCPMClusteringAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Class IncrementalCPMClusteringAlgorithm Abstract

+

Abstract base class for incremental clustering algorithms that use the CPM +quality function.

+

Hierarchy

Implements

Index

Properties

DEFAULT_RESOLUTION: number = 1
+

Default resolution parameter.

+
resolution: number
+

Resolution parameter.

+

Methods

  • getResolution(): number
  • setResolution(resolution: number): void
  • +

    Calculates the quality of a clustering using the CPM quality function.

    +

    The CPM quality function is given by

    +
    1 / (2 * m) * sum(d(c[i], c[j]) * (a[i][j] - resolution * n[i] *
    n[j])), +
    +

    where a[i][j] is the weight of the edge between nodes i and j, +n[i] is the weight of node i, m is the total edge weight, and +resolution is the resolutionparameter. The function d(c[i], c[j]) +equals 1 if nodes i and j belong to the same cluster and 0 otherwise. +The sum is taken over all pairs of nodes i and j.

    +

    Modularity can be expressed in terms of CPM by setting n[i] equal to +the total weight of the edges between node i and its neighbors and by +rescaling the resolution parameter by 2 * m.

    +

    Parameters

    Returns number

    Quality of the clustering

    +
  • +

    Removes a cluster from a clustering by merging the cluster with another +cluster. If a cluster has no connections with other clusters, it cannot +be removed.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • cluster: number
      +

      Cluster to be removed

      +

    Returns number

    Cluster with which the cluster to be removed has been merged, or + -1 if the cluster could not be removed

    +
  • removeSmallClustersBasedOnNNodes(network: Network, clustering: Clustering, minNNodesPerCluster: number): boolean
  • removeSmallClustersBasedOnWeight(network: Network, clustering: Clustering, minClusterWeight: number): boolean
  • +

    Removes small clusters from a clustering. Clusters are merged until each +cluster has at least a certain minimum total node weight.

    +

    The total node weight of a cluster equals the sum of the weights of the +nodes belonging to the cluster.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • minClusterWeight: number
      +

      Minimum total node weight of a cluster

      +

    Returns boolean

    Boolean indicating whether any clusters have been removed

    +
  • initializeBasedOnResolution(resolution: number): void

Constructors

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Inherited method

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.IterativeCPMClusteringAlgorithm.html b/docs/classes/index.IterativeCPMClusteringAlgorithm.html new file mode 100644 index 0000000..aba4eab --- /dev/null +++ b/docs/classes/index.IterativeCPMClusteringAlgorithm.html @@ -0,0 +1,122 @@ +IterativeCPMClusteringAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Class IterativeCPMClusteringAlgorithm Abstract

+

Abstract base class for iterative clustering algorithms that use the CPM +quality function.

+

Hierarchy

Index

Properties

DEFAULT_RESOLUTION: number = 1
+

Default resolution parameter.

+
DEFAULT_N_ITERATIONS: number = 1
+

Default number of iterations.

+
resolution: number
+

Resolution parameter.

+
nIterations: number
+

Number of iterations.

+

Methods

  • getResolution(): number
  • setResolution(resolution: number): void
  • +

    Calculates the quality of a clustering using the CPM quality function.

    +

    The CPM quality function is given by

    +
    1 / (2 * m) * sum(d(c[i], c[j]) * (a[i][j] - resolution * n[i] *
    n[j])), +
    +

    where a[i][j] is the weight of the edge between nodes i and j, +n[i] is the weight of node i, m is the total edge weight, and +resolution is the resolutionparameter. The function d(c[i], c[j]) +equals 1 if nodes i and j belong to the same cluster and 0 otherwise. +The sum is taken over all pairs of nodes i and j.

    +

    Modularity can be expressed in terms of CPM by setting n[i] equal to +the total weight of the edges between node i and its neighbors and by +rescaling the resolution parameter by 2 * m.

    +

    Parameters

    Returns number

    Quality of the clustering

    +
  • +

    Removes a cluster from a clustering by merging the cluster with another +cluster. If a cluster has no connections with other clusters, it cannot +be removed.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • cluster: number
      +

      Cluster to be removed

      +

    Returns number

    Cluster with which the cluster to be removed has been merged, or + -1 if the cluster could not be removed

    +
  • removeSmallClustersBasedOnNNodes(network: Network, clustering: Clustering, minNNodesPerCluster: number): boolean
  • removeSmallClustersBasedOnWeight(network: Network, clustering: Clustering, minClusterWeight: number): boolean
  • +

    Removes small clusters from a clustering. Clusters are merged until each +cluster has at least a certain minimum total node weight.

    +

    The total node weight of a cluster equals the sum of the weights of the +nodes belonging to the cluster.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • minClusterWeight: number
      +

      Minimum total node weight of a cluster

      +

    Returns boolean

    Boolean indicating whether any clusters have been removed

    +
  • initializeBasedOnResolution(resolution: number): void
  • initializeBasedOnResolutionAndNIterations(resolution: number, nIterations: number): void
  • +

    Initializes an iterative CPM clustering algorithm with a specified +resolution parameter and number of iterations.

    +

    Parameters

    • resolution: number
      +

      Resolution parameter

      +
    • nIterations: number
      +

      Number of iterations

      +

    Returns void

  • getNIterations(): number
  • setNIterations(nIterations: number): void
  • +

    Improves a clustering by performing one iteration of an iterative +clustering algorithm.

    +

    Parameters

    Returns boolean

    Boolean indicating whether the clustering has been improved

    +

Constructors

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Protected property
  • Protected method
  • Enumeration
  • Interface
  • Inherited method
  • Static property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.Layout.html b/docs/classes/index.Layout.html new file mode 100644 index 0000000..ece2eef --- /dev/null +++ b/docs/classes/index.Layout.html @@ -0,0 +1,78 @@ +Layout | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Layout of the nodes in a network.

+

Hierarchy

  • Layout

Index

Properties

coordinates: number[][]
+

Coordinates of each node.

+
nNodes: number
+

Number of nodes.

+

Constructors

Methods

  • initializeBasedOnNNodes(nNodes: number): void
  • +

    Initializes a random layout for a specified number of nodes.

    +

    Parameters

    • nNodes: number
      +

      Number of nodes

      +

    Returns void

  • initializeBasedOnNNodesAndRandom(nNodes: number, random: Random): void
  • +

    Initializes a random layout for a specified number of nodes.

    +

    Parameters

    • nNodes: number
      +

      Number of nodes

      +
    • random: Random
      +

      Random number generator

      +

    Returns void

  • initializeBasedOnCoordinates(coordinates: number[][]): void
  • +

    Initializes a layout using specified coordinates for each node.

    +

    Parameters

    • coordinates: number[][]
      +

      Coordinates of each node

      +

    Returns void

  • getNNodes(): number
  • +

    Returns the number of nodes.

    +

    Returns number

    Number of nodes

    +
  • getCoordinates(): number[][]
  • +

    Returns the coordinates of each node.

    +

    Returns number[][]

    Coordinates of each node

    +
  • getCoordinatesNode(node: number): number[]
  • +

    Returns the coordinates of a node.

    +

    Parameters

    • node: number
      +

      Node

      +

    Returns number[]

    Coordinates

    +
  • getMinCoordinates(): number[]
  • +

    Returns the minimum of the coordinates of all node.

    +

    Returns number[]

    Minimum coordinates

    +
  • getMaxCoordinates(): number[]
  • +

    Returns the maximum of the coordinates of all node.

    +

    Returns number[]

    Maximum coordinates

    +
  • getAverageDistance(): number
  • +

    Returns the average distance between all pairs of nodes.

    +

    Returns number

    Average distance

    +
  • setCoordinates(node: number, coordinates: number[]): void
  • +

    Positions a node at coordinates.

    +

    Parameters

    • node: number
      +

      Node

      +
    • coordinates: number[]
      +

      Coordinates

      +

    Returns void

  • initRandomCoordinates(random?: Random): void
  • +

    Initializes a random layout.

    +

    Each node is positioned at random coordinates.

    +

    Parameters

    • random: Random = ...
      +

      Random number generator

      +

    Returns void

  • standardize(standardizeDistances: boolean): void
  • +

    Standardizes a layout.

    +

    Standardization involves translation, rotation, reflection, and +optionally dilation. The layout is translated so that it is centered at +the origin. The layout is rotated so that the variance in the horizontal +dimension is maximized. The layout is reflected so that in both the +horizontal and the vertical dimension the median of the coordinates is +non-positive. If standardizeDistances = true, the layout is dilated so +that the average distance between nodes equals one.

    +

    Parameters

    • standardizeDistances: boolean
      +

      Standardize distances

      +

    Returns void

  • rotate(angle: number): void
  • +

    Rotates a layout.

    +

    Parameters

    • angle: number
      +

      Angle

      +

    Returns void

  • flip(dimension: number): void
  • +

    Flips a layout.

    +

    Parameters

    • dimension: number
      +

      Dimension

      +

    Returns void

  • initRandomCoordinatesHelper(random: Random): void

Legend

  • Class
  • Constructor
  • Property
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Protected property
  • Private method

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.LeidenAlgorithm.html b/docs/classes/index.LeidenAlgorithm.html new file mode 100644 index 0000000..6df9df0 --- /dev/null +++ b/docs/classes/index.LeidenAlgorithm.html @@ -0,0 +1,193 @@ +LeidenAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Leiden algorithm.

+

The Leiden algorithm consists of three phases:

+
    +
  1. local moving of nodes between clusters,
  2. +
  3. refinement of the clusters,
  4. +
  5. aggregation of the network based on the refined clusters, using the +non-refined clusters to create an initial clustering for the aggregate +network.
  6. +
+ +

These phases are repeated until no further improvements can be made. By +default, local moving of nodes is performed using the FastLocalMovingAlgorithm.

+

Hierarchy

Index

Properties

DEFAULT_RESOLUTION: number = 1
+

Default resolution parameter.

+
DEFAULT_N_ITERATIONS: number = 1
+

Default number of iterations.

+
DEFAULT_RANDOMNESS: number = LocalMergingAlgorithm.DEFAULT_RANDOMNESS
+

Default randomness parameter.

+
resolution: number
+

Resolution parameter.

+
nIterations: number
+

Number of iterations.

+
randomness: number
+

Randomness parameter.

+
localMovingAlgorithm: IncrementalCPMClusteringAlgorithm
+

Local moving algorithm.

+
random: Random
+

Random number generator.

+

Methods

  • getResolution(): number
  • +

    Calculates the quality of a clustering using the CPM quality function.

    +

    The CPM quality function is given by

    +
    1 / (2 * m) * sum(d(c[i], c[j]) * (a[i][j] - resolution * n[i] *
    n[j])), +
    +

    where a[i][j] is the weight of the edge between nodes i and j, +n[i] is the weight of node i, m is the total edge weight, and +resolution is the resolutionparameter. The function d(c[i], c[j]) +equals 1 if nodes i and j belong to the same cluster and 0 otherwise. +The sum is taken over all pairs of nodes i and j.

    +

    Modularity can be expressed in terms of CPM by setting n[i] equal to +the total weight of the edges between node i and its neighbors and by +rescaling the resolution parameter by 2 * m.

    +

    Parameters

    Returns number

    Quality of the clustering

    +
  • +

    Removes a cluster from a clustering by merging the cluster with another +cluster. If a cluster has no connections with other clusters, it cannot +be removed.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • cluster: number
      +

      Cluster to be removed

      +

    Returns number

    Cluster with which the cluster to be removed has been merged, or + -1 if the cluster could not be removed

    +
  • removeSmallClustersBasedOnNNodes(network: Network, clustering: Clustering, minNNodesPerCluster: number): boolean
  • removeSmallClustersBasedOnWeight(network: Network, clustering: Clustering, minClusterWeight: number): boolean
  • +

    Removes small clusters from a clustering. Clusters are merged until each +cluster has at least a certain minimum total node weight.

    +

    The total node weight of a cluster equals the sum of the weights of the +nodes belonging to the cluster.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • minClusterWeight: number
      +

      Minimum total node weight of a cluster

      +

    Returns boolean

    Boolean indicating whether any clusters have been removed

    +
  • initializeBasedOnResolution(resolution: number): void
  • initializeBasedOnResolutionAndNIterations(resolution: number, nIterations: number): void
  • getNIterations(): number
  • setNIterations(nIterations: number): void
  • initializeBasedOnRandom(random: Random): void
  • initializeBasedOnResolutionAndNIterationsAndRandomnessAndRandom(resolution: number, nIterations: number, randomness: number, random: Random): void
  • +

    Initializes a Leiden algorithm for a specified resolution parameter, +number of iterations, and randomness parameter.

    +

    Parameters

    • resolution: number
      +

      Resolution parameter

      +
    • nIterations: number
      +

      Number of iterations

      +
    • randomness: number
      +

      Randomness parameter

      +
    • random: Random
      +

      Random number generator

      +

    Returns void

  • initializeBasedOnResolutionAndNIterationsAndRandomnessAndLocalMovingAlgorithmAndRandom(resolution: number, nIterations: number, randomness: number, localMovingAlgorithm: IncrementalCPMClusteringAlgorithm, random: Random): void
  • +

    Initializes a Leiden algorithm for a specified resolution parameter, +number of iterations, randomness parameter, and local moving algorithm.

    +

    Parameters

    • resolution: number
      +

      Resolution parameter

      +
    • nIterations: number
      +

      Number of iterations

      +
    • randomness: number
      +

      Randomness parameter

      +
    • localMovingAlgorithm: IncrementalCPMClusteringAlgorithm
      +

      Local moving algorithm

      +
    • random: Random
      +

      Random number generator

      +

    Returns void

  • getRandomness(): number
  • setResolution(resolution: number): void
  • setRandomness(randomness: number): void
  • +

    Sets the randomness parameter.

    +

    Parameters

    • randomness: number
      +

      Randomness parameter

      +

    Returns void

  • +

    Improves a clustering by performing one iteration of the Leiden +algorithm.

    +

    The Leiden algorithm consists of three phases:

    +
      +
    1. local moving of nodes between clusters,
    2. +
    3. refinement of the clusters,
    4. +
    5. aggregation of the network based on the refined clusters, using the +non-refined clusters to create an initial clustering for the aggregate +network.
    6. +
    + +

    These phases are repeated until no further improvements can be made.

    +

    Parameters

    Returns boolean

    Boolean indicating whether the clustering has been improved

    +

Constructors

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Protected property
  • Protected method
  • Enumeration
  • Interface
  • Inherited method
  • Static property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.LocalMergingAlgorithm.html b/docs/classes/index.LocalMergingAlgorithm.html new file mode 100644 index 0000000..213fbeb --- /dev/null +++ b/docs/classes/index.LocalMergingAlgorithm.html @@ -0,0 +1,135 @@ +LocalMergingAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Local merging algorithm.

+

The local merging algorithm starts from a singleton partition. It performs a +single iteration over the nodes in a network. Each node belonging to a +singleton cluster is considered for merging with another cluster. This +cluster is chosen randomly from all clusters that do not result in a +decrease in the quality function. The larger the increase in the quality +function, the more likely a cluster is to be chosen. The strength of this +effect is determined by the randomness parameter. The higher the value of +the randomness parameter, the stronger the randomness in the choice of a +cluster. The lower the value of the randomness parameter, the more likely +the cluster resulting in the largest increase in the quality function is to +be chosen. A node is merged with a cluster only if both are sufficiently +well connected to the rest of the network.

+

The local merging algorithm is used in the cluster refinement phase of the +LeidenAlgorithm.

+

Hierarchy

Index

Properties

DEFAULT_RESOLUTION: number = 1
+

Default resolution parameter.

+
DEFAULT_RANDOMNESS: number = 1e-2
+

Default randomness parameter.

+
resolution: number
+

Resolution parameter.

+
randomness: number
+

Randomness parameter.

+
random: Random
+

Random number generator.

+

Methods

  • initializeBasedOnResolution(resolution: number): void
  • getResolution(): number
  • setResolution(resolution: number): void
  • +

    Calculates the quality of a clustering using the CPM quality function.

    +

    The CPM quality function is given by

    +
    1 / (2 * m) * sum(d(c[i], c[j]) * (a[i][j] - resolution * n[i] *
    n[j])), +
    +

    where a[i][j] is the weight of the edge between nodes i and j, +n[i] is the weight of node i, m is the total edge weight, and +resolution is the resolutionparameter. The function d(c[i], c[j]) +equals 1 if nodes i and j belong to the same cluster and 0 otherwise. +The sum is taken over all pairs of nodes i and j.

    +

    Modularity can be expressed in terms of CPM by setting n[i] equal to +the total weight of the edges between node i and its neighbors and by +rescaling the resolution parameter by 2 * m.

    +

    Parameters

    Returns number

    Quality of the clustering

    +
  • +

    Removes a cluster from a clustering by merging the cluster with another +cluster. If a cluster has no connections with other clusters, it cannot +be removed.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • cluster: number
      +

      Cluster to be removed

      +

    Returns number

    Cluster with which the cluster to be removed has been merged, or + -1 if the cluster could not be removed

    +
  • removeSmallClustersBasedOnNNodes(network: Network, clustering: Clustering, minNNodesPerCluster: number): boolean
  • removeSmallClustersBasedOnWeight(network: Network, clustering: Clustering, minClusterWeight: number): boolean
  • +

    Removes small clusters from a clustering. Clusters are merged until each +cluster has at least a certain minimum total node weight.

    +

    The total node weight of a cluster equals the sum of the weights of the +nodes belonging to the cluster.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • minClusterWeight: number
      +

      Minimum total node weight of a cluster

      +

    Returns boolean

    Boolean indicating whether any clusters have been removed

    +
  • initializeBasedOnRandom(random: Random): void
  • initializeBasedOnResolutionAndRandomnessAndRandom(resolution: number, randomness: number, random: Random): void
  • +

    Initializes a local merging algorithm for a specified resolution +parameter and randomness parameter.

    +

    Parameters

    • resolution: number
      +

      Resolution parameter

      +
    • randomness: number
      +

      Randomness parameter

      +
    • random: Random
      +

      Random number generator

      +

    Returns void

  • getRandomness(): number
  • setRandomness(randomness: number): void
  • +

    Finds a clustering of the nodes in a network using the local merging +algorithm.

    +

    The local merging algorithm starts from a singleton partition. It +performs a single iteration over the nodes in a network. Each node +belonging to a singleton cluster is considered for merging with another +cluster. This cluster is chosen randomly from all clusters that do not +result in a decrease in the quality function. The larger the increase in +the quality function, the more likely a cluster is to be chosen. The +strength of this effect is determined by the randomness parameter. The +higher the value of the randomness parameter, the stronger the +randomness in the choice of a cluster. The lower the value of the +randomness parameter, the more likely the cluster resulting in the +largest increase in the quality function is to be chosen. A node is +merged with a cluster only if both are sufficiently well connected to +the rest of the network.

    +

    Parameters

    Returns Clustering

    Clustering

    +

Constructors

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Inherited method
  • Protected property
  • Static property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.LouvainAlgorithm.html b/docs/classes/index.LouvainAlgorithm.html new file mode 100644 index 0000000..bdd5b10 --- /dev/null +++ b/docs/classes/index.LouvainAlgorithm.html @@ -0,0 +1,168 @@ +LouvainAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Louvain algorithm.

+

The Louvain algorithm consists of two phases:

+
    +
  1. local moving of nodes between clusters,
  2. +
  3. aggregation of the network based on the clusters.
  4. +
+ +

These phases are repeated until no further improvements can be made. By +default, local moving of nodes is performed using the StandardLocalMovingAlgorithm.

+

Hierarchy

Index

Properties

DEFAULT_RESOLUTION: number = 1
+

Default resolution parameter.

+
DEFAULT_N_ITERATIONS: number = 1
+

Default number of iterations.

+
resolution: number
+

Resolution parameter.

+
nIterations: number
+

Number of iterations.

+
localMovingAlgorithm: IncrementalCPMClusteringAlgorithm
+

Local moving algorithm.

+

Methods

  • getResolution(): number
  • +

    Calculates the quality of a clustering using the CPM quality function.

    +

    The CPM quality function is given by

    +
    1 / (2 * m) * sum(d(c[i], c[j]) * (a[i][j] - resolution * n[i] *
    n[j])), +
    +

    where a[i][j] is the weight of the edge between nodes i and j, +n[i] is the weight of node i, m is the total edge weight, and +resolution is the resolutionparameter. The function d(c[i], c[j]) +equals 1 if nodes i and j belong to the same cluster and 0 otherwise. +The sum is taken over all pairs of nodes i and j.

    +

    Modularity can be expressed in terms of CPM by setting n[i] equal to +the total weight of the edges between node i and its neighbors and by +rescaling the resolution parameter by 2 * m.

    +

    Parameters

    Returns number

    Quality of the clustering

    +
  • +

    Removes a cluster from a clustering by merging the cluster with another +cluster. If a cluster has no connections with other clusters, it cannot +be removed.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • cluster: number
      +

      Cluster to be removed

      +

    Returns number

    Cluster with which the cluster to be removed has been merged, or + -1 if the cluster could not be removed

    +
  • removeSmallClustersBasedOnNNodes(network: Network, clustering: Clustering, minNNodesPerCluster: number): boolean
  • removeSmallClustersBasedOnWeight(network: Network, clustering: Clustering, minClusterWeight: number): boolean
  • +

    Removes small clusters from a clustering. Clusters are merged until each +cluster has at least a certain minimum total node weight.

    +

    The total node weight of a cluster equals the sum of the weights of the +nodes belonging to the cluster.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • minClusterWeight: number
      +

      Minimum total node weight of a cluster

      +

    Returns boolean

    Boolean indicating whether any clusters have been removed

    +
  • initializeBasedOnResolution(resolution: number): void
  • initializeBasedOnResolutionAndNIterations(resolution: number, nIterations: number): void
  • getNIterations(): number
  • setNIterations(nIterations: number): void
  • initializeBasedOnRandom(random: Random): void
  • initializeBasedOnResolutionAndNIterationsAndRandom(resolution: number, nIterations: number, random: Random): void
  • +

    Initializes a Louvain algorithm for a specified resolution parameter and +number of iterations.

    +

    Parameters

    • resolution: number
      +

      Resolution parameter

      +
    • nIterations: number
      +

      Number of iterations

      +
    • random: Random
      +

      Random number generator

      +

    Returns void

  • initializeBasedOnResolutionAndNIterationsAndLocalMovingAlgorithm(resolution: number, nIterations: number, localMovingAlgorithm: IncrementalCPMClusteringAlgorithm): void
  • +

    Initializes a Louvain algorithm for a specified resolution parameter, +number of iterations, and local moving algorithm.

    +

    Parameters

    • resolution: number
      +

      Resolution parameter

      +
    • nIterations: number
      +

      Number of iterations

      +
    • localMovingAlgorithm: IncrementalCPMClusteringAlgorithm
      +

      Local moving algorithm

      +

    Returns void

  • setResolution(resolution: number): void
  • +

    Improves a clustering by performing one iteration of the Louvain +algorithm.

    +

    The Louvain algorithm consists of two phases:

    +
      +
    1. local moving of nodes between clusters,
    2. +
    3. aggregation of the network based on the clusters.
    4. +
    + +

    These phases are repeated until no further improvements can be made.

    +

    Parameters

    Returns boolean

    Boolean indicating whether the clustering has been improved

    +

Constructors

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Protected property
  • Protected method
  • Enumeration
  • Interface
  • Inherited method

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.Network.html b/docs/classes/index.Network.html new file mode 100644 index 0000000..2831e29 --- /dev/null +++ b/docs/classes/index.Network.html @@ -0,0 +1,205 @@ +Network | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Network.

+

Weighted nodes and weighted edges are supported. Directed edges are not +supported.

+

Network objects are immutable.

+

The adjacency matrix of the network is stored in a sparse compressed format.

+

Hierarchy

  • Network

Index

Properties

nNodes: number
+

Number of nodes.

+
nodeWeights: number[]
+

Node weights.

+
firstNeighborIndices: number[]
+

Index of the first neighbor of each node in the neighbors array.

+

The neighbors of node i are given by +neighbors[firstNeighborIndices[i]], ..., neighbors[firstNeighborIndices[i + 1] - 1].

+
neighbors: number[]
+

Neighbors of each node.

+
edgeWeights: number[]
+

Edge weights.

+
totalEdgeWeightSelfLinks: number
+

Total edge weight of self links.

+
nEdges: number
+

Number of edges.

+

Each edge is counted twice, once in each direction.

+

Constructors

Methods

  • getNNodes(): number
  • +

    Returns the number of nodes.

    +

    Returns number

    Number of nodes

    +
  • getTotalNodeWeight(): number
  • +

    Returns the total node weight.

    +

    Returns number

    Total node weight

    +
  • getNodeWeights(): number[]
  • +

    Returns the weight of each node.

    +

    Returns number[]

    Weight of each node

    +
  • getNodeWeight(node: number): number
  • +

    Returns the weight of a node.

    +

    Parameters

    • node: number
      +

      Node

      +

    Returns number

    Weight

    +
  • getNEdges(): number
  • +

    Returns the number of edges.

    +

    Each edge is counted only once, even though an edge runs in two +directions. This means that the number of edges returned by +getEdges equals twice the number of edges returned by +getNEdges.

    +

    Returns number

    Number of edges

    +
  • getNNeighborsPerNode(): number[]
  • +

    Returns the number of neighbors per node.

    +

    Returns number[]

    Number of neighbors per node

    +
  • getNNeighbors(node: number): number
  • +

    Returns the number of neighbors of a node.

    +

    Parameters

    • node: number
      +

      Node

      +

    Returns number

    Number of neighbors

    +
  • getEdges(): number[][]
  • +

    Returns the list of edges.

    +

    Each edge is included twice, once in each direction. This means that the +number of edges returned by getEdges equals twice the number of +edges returned by getNEdges.

    +

    The list of edges is returned in a two-dimensional array edges. +Edge i connects nodes edges[0][i] and edges[1][i].

    +

    Returns number[][]

    List of edges

    +
  • getNeighborsPerNode(): number[][]
  • +

    Returns a list of neighbors per node.

    +

    Returns number[][]

    List of neighbors per node

    +
  • getNeighbors(node: number): number[]
  • +

    Returns the list of neighbors of a node.

    +

    Parameters

    • node: number
      +

      Node

      +

    Returns number[]

    List of neighbors

    +
  • getTotalEdgeWeightPerNode(): number[]
  • +

    Returns the total edge weight per node. The total edge weight of a node +equals the sum of the weights of the edges between the node and its +neighbors.

    +

    Returns number[]

    Total edge weight per node

    +
  • getTotalEdgeWeight(node?: number): number
  • +

    Returns the total edge weight.

    +

    Each edge is considered only once, even though an edge runs in two +directions. This means that the sum of the edge weights returned by +getEdgeWeights equals twice the total edge weight returned by +getTotalEdgeWeight.

    +

    Edge weights of self links are not included.

    +

    Parameters

    • Optional node: number
      +

      Node

      +

    Returns number

    Total edge weight

    +
  • getEdgeWeightsPerNode(): number[][]
  • +

    Returns a list of edge weights per node. These are the weights of the +edges between a node and its neighbors.

    +

    Returns number[][]

    List of edge weights per node

    +
  • getEdgeWeights(node?: number): number[]
  • +

    Returns the list of edge weights of a node. These are the weights of the +edges between the node and its neighbors.

    +

    Parameters

    • Optional node: number
      +

      Node

      +

    Returns number[]

    List of edge weights

    +
  • getTotalEdgeWeightSelfLinks(): number
  • +

    Returns the total edge weight of self links.

    +

    Returns number

    Total edge weight of self links

    +
  • createNetworkWithoutNodeWeights(): Network
  • +

    Creates a copy of the network, but without node weights.

    +

    Each node is assigned a weight of 1.

    +

    Returns Network

    Network without node weights

    +
  • createNetworkWithoutEdgeWeights(): Network
  • +

    Creates a copy of the network, but without edge weights.

    +

    Each edge is assigned a weight of 1.

    +

    Returns Network

    Network without edge weights

    +
  • createNetworkWithoutNodeAndEdgeWeights(): Network
  • +

    Creates a copy of the network, but without node and edge weights.

    +

    Each node is assigned a weight of 1, and each edge is assigned a weight +of 1.

    +

    Returns Network

    Network without node and edge weights

    +
  • createNormalizedNetworkUsingAssociationStrength(): Network
  • +

    Creates a copy of the network in which the edge weights have been +normalized using the association strength.

    +

    The normalized weight a'[i][j] of the edge between nodes i and j is +given by

    +
    a'[i][j] = a[i][j] / (n[i] * n[j] / (2 * m)),
    +
    +

    where a[i][j] is the non-normalized weight of the edge between nodes i +and j, n[i] is the weight of node i, and m is half the total node +weight.

    +

    If each node's weight equals the total weight of the edges between the +node and its neighbors, the edge weights are normalized by dividing them +by the expected edge weights in the random configuration model.

    +

    The node weights are set to 1.

    +

    Returns Network

    Normalized network

    +
  • createNormalizedNetworkUsingFractionalization(): Network
  • +

    Creates a copy of the network in which the edge weights have been +normalized using fractionalization.

    +

    The normalized weight a'[i][j] of the edge between nodes i and j is +given by

    +
    a'[i][j] = a[i][j] * (n / n[i] + n / n[j]) / 2,
    +
    +

    where a[i][j] is the non-normalized weight of the edge between nodes i +and j, n[i] is the weight of node i, and n is the number of nodes.

    +

    The node weights are set to 1.

    +

    Returns Network

    Normalized network

    +
  • +

    Creates a copy of the network that has been pruned in order to have a +specified maximum number of edges.

    +

    Only the edges with the highest weights are retained in the pruned +network. In case of ties, the edges to be retained are selected +randomly.

    +

    Parameters

    • maxNEdges: number
      +

      Maximum number of edges

      +
    • random: Random = ...
      +

      Random number generator

      +

    Returns Network

    Pruned network

    +
  • createSubnetworkForNodes1(nodes: number[]): Network
  • +

    Creates an induced subnetwork for specified nodes.

    +

    Parameters

    • nodes: number[]
      +

      Nodes

      +

    Returns Network

    Subnetwork

    +
  • createSubnetworkForNodes2(nodesInSubnetwork: boolean[]): Network
  • +

    Creates an induced subnetwork for specified nodes.

    +

    Parameters

    • nodesInSubnetwork: boolean[]
      +

      Indicates the nodes to be included in the + subnetwork.

      +

    Returns Network

    Subnetwork

    +
  • +

    Creates an induced subnetwork for a specified cluster in a clustering.

    +

    If subnetworks need to be created for all clusters in a clustering, it +is more efficient to use createSubnetworks.

    +

    Parameters

    • clustering: Clustering
      +

      Clustering

      +
    • cluster: number
      +

      Cluster

      +

    Returns Network

    Subnetwork

    +
  • +

    Creates induced subnetworks for the clusters in a clustering.

    +

    Parameters

    Returns Network[]

    Subnetworks

    +
  • createSubnetworkLargestComponent(): Network
  • +

    Creates an induced subnetwork of the largest connected component.

    +

    Returns Network

    Subnetwork

    +
  • +

    Creates a reduced (or aggregate) network based on a clustering.

    +

    Each node in the reduced network corresponds to a cluster of nodes in +the original network. The weight of a node in the reduced network equals +the sum of the weights of the nodes in the corresponding cluster in the +original network. The weight of an edge between two nodes in the reduced +network equals the sum of the weights of the edges between the nodes in +the two corresponding clusters in the original network.

    +

    Parameters

    Returns Network

    Reduced network

    +
  • +

    Identifies the connected components of the network.

    +

    Returns Clustering

    Connected components

    +
  • checkIntegrity(): void
  • +

    Checks the integrity of the network.

    +

    It is checked whether:

    +
      +
    • variables have a correct value,
    • +
    • arrays have a correct length,
    • +
    • edges are sorted correctly,
    • +
    • edges are stored in both directions.
    • +
    + +

    An exception is thrown if the integrity of the network is violated.

    +
    throws

    An illegal argument was provided in the construction of the network.

    +

    Returns void

  • initializeNetworkBasedOnEdges(nNodes: number, nodeWeights: undefined | number[], setNodeWeightsToTotalEdgeWeights: undefined | boolean, edges: number[][], edgeWeights: undefined | number[], sortedEdges: undefined | boolean, checkIntegrity: undefined | boolean): void
  • Parameters

    • nNodes: number
    • nodeWeights: undefined | number[]
    • setNodeWeightsToTotalEdgeWeights: undefined | boolean
    • edges: number[][]
    • edgeWeights: undefined | number[]
    • sortedEdges: undefined | boolean
    • checkIntegrity: undefined | boolean

    Returns void

  • initializeNetworkBasedOnNeighbors(nNodes: number, nodeWeights: undefined | number[], setNodeWeightsToTotalEdgeWeights: undefined | boolean, firstNeighborIndices: number[], neighbors: number[], edgeWeights: undefined | number[], checkIntegrity: undefined | boolean): void
  • Parameters

    • nNodes: number
    • nodeWeights: undefined | number[]
    • setNodeWeightsToTotalEdgeWeights: undefined | boolean
    • firstNeighborIndices: number[]
    • neighbors: number[]
    • edgeWeights: undefined | number[]
    • checkIntegrity: undefined | boolean

    Returns void

  • getTotalEdgeWeightPerNodeHelper(): number[]
  • getRandomNumber(node1: number, node2: number, randomNumbers: number[]): number
  • Parameters

    • node1: number
    • node2: number
    • randomNumbers: number[]

    Returns number

  • createSubnetwork(clustering: Clustering, cluster: number, nodes: number[], subnetworkNodes: number[], subnetworkNeighbors: number[], subnetworkEdgeWeights: number[]): Network
  • Parameters

    • clustering: Clustering
    • cluster: number
    • nodes: number[]
    • subnetworkNodes: number[]
    • subnetworkNeighbors: number[]
    • subnetworkEdgeWeights: number[]

    Returns Network

  • sortEdges(edges: number[][], edgeWeights?: number[]): void
  • Parameters

    • edges: number[][]
    • Optional edgeWeights: number[]

    Returns void

Legend

  • Class
  • Constructor
  • Property
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Protected property
  • Private method

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.StandardLocalMovingAlgorithm.html b/docs/classes/index.StandardLocalMovingAlgorithm.html new file mode 100644 index 0000000..51a9927 --- /dev/null +++ b/docs/classes/index.StandardLocalMovingAlgorithm.html @@ -0,0 +1,117 @@ +StandardLocalMovingAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Class StandardLocalMovingAlgorithm

+

Standard local moving algorithm.

+

The standard local moving algorithm iterates over the nodes in a network. A +node is moved to the cluster that results in the largest increase in the +quality function. If the current cluster assignment of the node is already +optimal, the node is not moved. The algorithm continues iterating over the +nodes in a network until no more nodes can be moved.

+

A fast variant of the standard local moving algorithm is provided by the +FastLocalMovingAlgorithm.

+

Hierarchy

Index

Properties

DEFAULT_RESOLUTION: number = 1
+

Default resolution parameter.

+
resolution: number
+

Resolution parameter.

+
random: Random
+

Random number generator.

+

Methods

  • getResolution(): number
  • setResolution(resolution: number): void
  • +

    Calculates the quality of a clustering using the CPM quality function.

    +

    The CPM quality function is given by

    +
    1 / (2 * m) * sum(d(c[i], c[j]) * (a[i][j] - resolution * n[i] *
    n[j])), +
    +

    where a[i][j] is the weight of the edge between nodes i and j, +n[i] is the weight of node i, m is the total edge weight, and +resolution is the resolutionparameter. The function d(c[i], c[j]) +equals 1 if nodes i and j belong to the same cluster and 0 otherwise. +The sum is taken over all pairs of nodes i and j.

    +

    Modularity can be expressed in terms of CPM by setting n[i] equal to +the total weight of the edges between node i and its neighbors and by +rescaling the resolution parameter by 2 * m.

    +

    Parameters

    Returns number

    Quality of the clustering

    +
  • +

    Removes a cluster from a clustering by merging the cluster with another +cluster. If a cluster has no connections with other clusters, it cannot +be removed.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • cluster: number
      +

      Cluster to be removed

      +

    Returns number

    Cluster with which the cluster to be removed has been merged, or + -1 if the cluster could not be removed

    +
  • removeSmallClustersBasedOnNNodes(network: Network, clustering: Clustering, minNNodesPerCluster: number): boolean
  • removeSmallClustersBasedOnWeight(network: Network, clustering: Clustering, minClusterWeight: number): boolean
  • +

    Removes small clusters from a clustering. Clusters are merged until each +cluster has at least a certain minimum total node weight.

    +

    The total node weight of a cluster equals the sum of the weights of the +nodes belonging to the cluster.

    +

    Parameters

    • network: Network
      +

      Network

      +
    • clustering: Clustering
      +

      Clustering

      +
    • minClusterWeight: number
      +

      Minimum total node weight of a cluster

      +

    Returns boolean

    Boolean indicating whether any clusters have been removed

    +
  • initializeBasedOnResolution(resolution: number): void
  • initializeBasedOnRandom(random: Random): void
  • initializeBasedOnResolutionAndRandom(resolution: number, random: Random): void
  • +

    Initializes a standard local merging algorithm for a specified resolution +parameter.

    +

    Parameters

    • resolution: number
      +

      Resolution parameter

      +
    • random: Random
      +

      Random number generator

      +

    Returns void

  • +

    Improves a clustering of the nodes in a network using the standard local +moving algorithm.

    +

    The standard local moving algorithm iterates over the nodes in a +network. A node is moved to the cluster that results in the largest +increase in the quality function. If the current cluster assignment of +the node is already optimal, the node is not moved. The algorithm +continues iterating over the nodes in a network until no more nodes can +be moved.

    +

    Parameters

    Returns boolean

    Boolean indicating whether the clustering has been improved

    +

Constructors

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Inherited method
  • Protected property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/index.VOSLayoutAlgorithm.html b/docs/classes/index.VOSLayoutAlgorithm.html new file mode 100644 index 0000000..aef5996 --- /dev/null +++ b/docs/classes/index.VOSLayoutAlgorithm.html @@ -0,0 +1,72 @@ +VOSLayoutAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Class VOSLayoutAlgorithm Abstract

+

Abstract base class for layout algorithms that use the VOS quality function.

+

Hierarchy

Implements

Index

Properties

DEFAULT_ATTRACTION: number = 2
+

Default attraction parameter.

+
DEFAULT_REPULSION: number = 1
+

Default repulsion parameter.

+
DEFAULT_EDGE_WEIGHT_INCREMENT: number = 0
+

Default edge weight increment parameter.

+
attraction: number
+

Attraction parameter.

+
repulsion: number
+

Repulsion parameter.

+
edgeWeightIncrement: number
+

Edge weight increment parameter.

+

Constructors

Methods

  • initializeBasedOnAttractionAndRepulsionAndEdgeWeightIncrement(attraction: number, repulsion: number, edgeWeightIncrement: number): void
  • +

    Initializes a VOS layout algorithm with a specified attraction parameter, +repulsion parameter, and edge weight increment parameter.

    +

    Parameters

    • attraction: number
      +

      Attraction parameter

      +
    • repulsion: number
      +

      Repulsion parameter

      +
    • edgeWeightIncrement: number
      +

      Edge weight increment parameter

      +

    Returns void

  • getAttraction(): number
  • getRepulsion(): number
  • getEdgeWeightIncrement(): number
  • +

    Returns the edge weight increment parameter.

    +

    Returns number

    Edge weight increment parameter

    +
  • setAttraction(attraction: number): void
  • +

    Sets the attraction parameter.

    +

    Parameters

    • attraction: number
      +

      Attraction parameter

      +

    Returns void

  • setRepulsion(repulsion: number): void
  • +

    Sets the repulsion parameter.

    +

    Parameters

    • repulsion: number
      +

      Repulsion parameter

      +

    Returns void

  • setEdgeWeightIncrement(edgeWeightIncrement: number): void
  • +

    Sets the edge weight increment parameter.

    +

    Parameters

    • edgeWeightIncrement: number
      +

      Edge weight increment parameter

      +

    Returns void

  • +

    Calculates the quality of a layout using the VOS quality function.

    +

    The VOS quality function is given by

    +
    1 / attraction * sum(a[i][j] * d(x[i], x[j]) ^
    attraction) - 1 / repulsion * sum(d(x[i], x[j]) ^
    repulsion), +
    +

    where a[i][j] is the weight of the edge between nodes i and j and +x[i] = (x[i][1], x[i][2]) are the coordinates of node i. The function +d(x[i], x[j]) is the Euclidean distance between nodes i and j. The +sum is taken over all pairs of nodes i and j with j < i. The +attraction parameter must be greater than the repulsion parameter. The +lower the value of the VOS quality function, the higher the quality of the +layout.

    +

    Parameters

    Returns number

    Quality of the layout

    +

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Protected property
  • Static property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/run.NetworkAnalysis.html b/docs/classes/run.NetworkAnalysis.html new file mode 100644 index 0000000..0f8c9f4 --- /dev/null +++ b/docs/classes/run.NetworkAnalysis.html @@ -0,0 +1,5 @@ +NetworkAnalysis | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Class NetworkAnalysis Abstract

Hierarchy

Index

Constructors

Methods

Properties

Constructors

Methods

  • run(): void

Properties

_networkHelper: undefined | NetworkHelper

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Protected property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/run.NetworkClustering.html b/docs/classes/run.NetworkClustering.html new file mode 100644 index 0000000..46978f0 --- /dev/null +++ b/docs/classes/run.NetworkClustering.html @@ -0,0 +1,27 @@ +NetworkClustering | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Class for running the Leiden and Louvain algorithms for network clustering.

+

Hierarchy

Index

Constructors

Methods

  • +

    Quality function to be optimized. Either the CPM (constant Potts model) or +the modularity quality function can be used.

    +

    Parameters

    • value: "CPM" | "Modularity"

    Returns NetworkClustering

  • normalization(value: "NoNormalization" | "AssociationStrength" | "Fractionalization"): NetworkClustering
  • run(): void

Properties

_networkHelper: undefined | NetworkHelper
_useModularity: boolean = false
_normalization: NormalizationMethods = NormalizationMethods.NoNormalization
_resolution: number = CPMClusteringAlgorithm.DEFAULT_RESOLUTION
_minClusterSize: number = 1
_useLouvain: boolean = false
_nRandomStarts: number = 1
_nIterations: number = 10
_randomness: number = LeidenAlgorithm.DEFAULT_RANDOMNESS
_useSeed: boolean = false
_seed: number = 0

Legend

  • Function
  • Type alias
  • Class
  • Method
  • Inherited constructor
  • Inherited method
  • Enumeration
  • Interface
  • Private property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/run.NetworkHelper.html b/docs/classes/run.NetworkHelper.html new file mode 100644 index 0000000..fcf2f33 --- /dev/null +++ b/docs/classes/run.NetworkHelper.html @@ -0,0 +1 @@ +NetworkHelper | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Hierarchy

  • NetworkHelper

Index

Constructors

Methods

  • getInitialLayout(): undefined | Layout
  • setClusters(clusters: number[]): void
  • setCoordinates(coordinates: number[][]): void

Properties

_nodes: Node[]
_network: Network
_initialClustering: undefined | Clustering
_initialLayout: undefined | Layout

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface
  • Private property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/run.NetworkLayout.html b/docs/classes/run.NetworkLayout.html new file mode 100644 index 0000000..2ad3fe7 --- /dev/null +++ b/docs/classes/run.NetworkLayout.html @@ -0,0 +1,32 @@ +NetworkLayout | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Class for running the gradient descent VOS layout algorithm for network +layout.

+

Hierarchy

Index

Constructors

Methods

  • +

    Quality function to be optimized. Either the VOS (visualization of +similarities) or the LinLog quality function can be used.

    +

    Parameters

    • value: "VOS" | "LinLog"

    Returns NetworkLayout

  • normalization(value: "NoNormalization" | "AssociationStrength" | "Fractionalization"): NetworkLayout
  • +

    Method for normalizing edge weights in the VOS quality function.

    +

    Parameters

    • value: "NoNormalization" | "AssociationStrength" | "Fractionalization"

    Returns NetworkLayout

  • run(): void

Properties

_networkHelper: undefined | NetworkHelper
_useLinLog: boolean = false
_normalization: NormalizationMethods = NormalizationMethods.NoNormalization
_attraction: number = GradientDescentVOSLayoutAlgorithm.DEFAULT_ATTRACTION
_repulsion: number = GradientDescentVOSLayoutAlgorithm.DEFAULT_REPULSION
_nRandomStarts: number = 1
_maxNIterations: number = GradientDescentVOSLayoutAlgorithm.DEFAULT_MAX_N_ITERATIONS
_initialStepSize: number = GradientDescentVOSLayoutAlgorithm.DEFAULT_INITIAL_STEP_SIZE
_minStepSize: number = GradientDescentVOSLayoutAlgorithm.DEFAULT_MIN_STEP_SIZE
_stepSizeReduction: number = GradientDescentVOSLayoutAlgorithm.DEFAULT_STEP_SIZE_REDUCTION
_requiredNQualityValueImprovements: number = GradientDescentVOSLayoutAlgorithm.DEFAULT_REQUIRED_N_QUALITY_VALUE_IMPROVEMENTS
_seed: number = 0
_useSeed: boolean = false
_edgeWeightIncrementUnconnectedNodes: number = 0.01

Legend

  • Function
  • Type alias
  • Class
  • Method
  • Inherited constructor
  • Inherited method
  • Enumeration
  • Interface
  • Private property

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/classes/utils.Random.html b/docs/classes/utils.Random.html new file mode 100644 index 0000000..ff25360 --- /dev/null +++ b/docs/classes/utils.Random.html @@ -0,0 +1,17 @@ +Random | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

An almost complete implementation in JS of the java.util.Random class +from J2SE, designed to so far as possible produce the same output +sequences as the Java original when supplied with the same seed. +See https://www.npmjs.com/package/java-random for more +information.

+

Hierarchy

  • Random

Index

Constructors

Methods

Constructors

  • new Random(seed?: number): Random

Methods

  • nextDouble(): number
  • +

    Returns a pseudorandom double value between 0.0 and 1.0.

    +

    Returns number

    Pseudorandom double value between 0.0 and 1.0

    +
  • nextInt(bound?: number): number
  • +

    Returns a pseudorandom int value (between zero and the specified upper bound).

    +

    Parameters

    • Optional bound: number
      +

      Upper bound (exclusive)

      +

    Returns number

    Pseudorandom int value (between zero and the specified upper bound)

    +

Legend

  • Class
  • Constructor
  • Method
  • Function
  • Type alias
  • Enumeration
  • Interface

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/enums/run.ClusteringAlgorithms.html b/docs/enums/run.ClusteringAlgorithms.html new file mode 100644 index 0000000..ea91b8b --- /dev/null +++ b/docs/enums/run.ClusteringAlgorithms.html @@ -0,0 +1,3 @@ +ClusteringAlgorithms | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Enumeration ClusteringAlgorithms

+

Clustering algorithms.

+

Index

Enumeration Members

Enumeration Members

Leiden: "Leiden"
Louvain: "Louvain"

Legend

  • Function
  • Type alias
  • Enumeration
  • Interface
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/enums/run.ClusteringQualityFunctions.html b/docs/enums/run.ClusteringQualityFunctions.html new file mode 100644 index 0000000..baa943b --- /dev/null +++ b/docs/enums/run.ClusteringQualityFunctions.html @@ -0,0 +1,3 @@ +ClusteringQualityFunctions | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Enumeration ClusteringQualityFunctions

+

Clustering quality functions.

+

Index

Enumeration Members

Enumeration Members

CPM: "CPM"
Modularity: "Modularity"

Legend

  • Function
  • Type alias
  • Enumeration
  • Interface
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/enums/run.LayoutQualityFunctions.html b/docs/enums/run.LayoutQualityFunctions.html new file mode 100644 index 0000000..0a89481 --- /dev/null +++ b/docs/enums/run.LayoutQualityFunctions.html @@ -0,0 +1,3 @@ +LayoutQualityFunctions | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Enumeration LayoutQualityFunctions

+

Layout quality functions.

+

Index

Enumeration Members

Enumeration Members

VOS: "VOS"
LinLog: "LinLog"

Legend

  • Function
  • Type alias
  • Enumeration
  • Interface
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/enums/run.NormalizationMethods.html b/docs/enums/run.NormalizationMethods.html new file mode 100644 index 0000000..d6cd90a --- /dev/null +++ b/docs/enums/run.NormalizationMethods.html @@ -0,0 +1,3 @@ +NormalizationMethods | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Enumeration NormalizationMethods

+

Normalization methods.

+

Index

Enumeration Members

NoNormalization: "No normalization"
AssociationStrength: "Association strength"
Fractionalization: "Fractionalization"

Legend

  • Function
  • Type alias
  • Enumeration
  • Interface
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/index.html b/docs/index.html new file mode 100644 index 0000000..b051517 --- /dev/null +++ b/docs/index.html @@ -0,0 +1,7 @@ +networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

networkanalysis-ts

+ +

networkanalysis-ts

+
+

This package is a TypeScript port of the networkanalysis package written in Java. The package provides algorithms and data structures for network analysis. Currently, the package focuses on clustering (or community detection) and layout (or mapping) of networks. In particular, the package contains an implementation of the Leiden algorithm and the Louvain algorithm for network clustering and the VOS technique for network layout. Only undirected networks are supported.

+

The networkanalysis-ts package was developed by Nees Jan van Eck at the Centre for Science and Technology Studies (CWTS) at Leiden University and benefited from contributions by Olya Stukova and Nikita Rokotyan from Interacta. The networkanalysis package written in Java on which networkanalysis-ts is based was developed by Vincent Traag, Nees Jan van Eck, and Ludo Waltman.

+

Legend

  • Function
  • Type alias
  • Enumeration
  • Interface
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/interfaces/index.ClusteringAlgorithm.html b/docs/interfaces/index.ClusteringAlgorithm.html new file mode 100644 index 0000000..33a7377 --- /dev/null +++ b/docs/interfaces/index.ClusteringAlgorithm.html @@ -0,0 +1,8 @@ +ClusteringAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Interface ClusteringAlgorithm

+

Interface for clustering algorithms.

+

Hierarchy

Implemented by

Index

Methods

Legend

  • Function
  • Type alias
  • Interface
  • Method
  • Enumeration
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/interfaces/index.ClusteringParametersWithClusters.html b/docs/interfaces/index.ClusteringParametersWithClusters.html new file mode 100644 index 0000000..eb024ad --- /dev/null +++ b/docs/interfaces/index.ClusteringParametersWithClusters.html @@ -0,0 +1,6 @@ +ClusteringParametersWithClusters | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Interface ClusteringParametersWithClusters

+

Interface for specifying the cluster for each node when constructing a +clustering.

+

Hierarchy

  • ClusteringParametersWithClusters

Index

Properties

Properties

clusters: number[]
+

Cluster of each node.

+

Legend

  • Function
  • Type alias
  • Interface
  • Property
  • Enumeration
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/interfaces/index.ClusteringParametersWithNNodes.html b/docs/interfaces/index.ClusteringParametersWithNNodes.html new file mode 100644 index 0000000..bdad477 --- /dev/null +++ b/docs/interfaces/index.ClusteringParametersWithNNodes.html @@ -0,0 +1,5 @@ +ClusteringParametersWithNNodes | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Interface ClusteringParametersWithNNodes

+

Interface for specifying the number of nodes when constructing a clustering.

+

Hierarchy

  • ClusteringParametersWithNNodes

Index

Properties

Properties

nNodes: number
+

Number of nodes.

+

Legend

  • Function
  • Type alias
  • Interface
  • Property
  • Enumeration
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/interfaces/index.IncrementalClusteringAlgorithm.html b/docs/interfaces/index.IncrementalClusteringAlgorithm.html new file mode 100644 index 0000000..8932f21 --- /dev/null +++ b/docs/interfaces/index.IncrementalClusteringAlgorithm.html @@ -0,0 +1,16 @@ +IncrementalClusteringAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Interface IncrementalClusteringAlgorithm

+

Interface for clustering algorithms that are able to improve an existing +clustering.

+

Hierarchy

Implemented by

Index

Methods

Legend

  • Function
  • Type alias
  • Interface
  • Method
  • Enumeration
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/interfaces/index.LayoutConstructorParametersWithCoordinates.html b/docs/interfaces/index.LayoutConstructorParametersWithCoordinates.html new file mode 100644 index 0000000..5a007f4 --- /dev/null +++ b/docs/interfaces/index.LayoutConstructorParametersWithCoordinates.html @@ -0,0 +1,6 @@ +LayoutConstructorParametersWithCoordinates | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Interface LayoutConstructorParametersWithCoordinates

+

Interface for specifying the coordinates for each node when constructing a +layout.

+

Hierarchy

  • LayoutConstructorParametersWithCoordinates

Index

Properties

Properties

coordinates: number[][]
+

Coordinates of each node.

+

Legend

  • Function
  • Type alias
  • Interface
  • Property
  • Enumeration
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/interfaces/index.LayoutConstructorParametersWithNNodes.html b/docs/interfaces/index.LayoutConstructorParametersWithNNodes.html new file mode 100644 index 0000000..8e0b31c --- /dev/null +++ b/docs/interfaces/index.LayoutConstructorParametersWithNNodes.html @@ -0,0 +1,5 @@ +LayoutConstructorParametersWithNNodes | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Interface LayoutConstructorParametersWithNNodes

+

Interface for specifying the number of nodes when constructing a layout.

+

Hierarchy

  • LayoutConstructorParametersWithNNodes

Index

Properties

Properties

nNodes: number
+

Number of nodes.

+

Legend

  • Function
  • Type alias
  • Interface
  • Property
  • Enumeration
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/interfaces/index.LayoutConstructorParametersWithNNodesAndRandom.html b/docs/interfaces/index.LayoutConstructorParametersWithNNodesAndRandom.html new file mode 100644 index 0000000..07aa177 --- /dev/null +++ b/docs/interfaces/index.LayoutConstructorParametersWithNNodesAndRandom.html @@ -0,0 +1,8 @@ +LayoutConstructorParametersWithNNodesAndRandom | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Interface LayoutConstructorParametersWithNNodesAndRandom

+

Interface for specifying the number of nodes and the random number generator +when constructing a layout.

+

Hierarchy

  • LayoutConstructorParametersWithNNodesAndRandom

Index

Properties

Properties

nNodes: number
+

Number of nodes.

+
random: Random
+

Random number generator.

+

Legend

  • Function
  • Type alias
  • Interface
  • Property
  • Enumeration
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/interfaces/index.NetworkConstructorParameters.html b/docs/interfaces/index.NetworkConstructorParameters.html new file mode 100644 index 0000000..b6abefb --- /dev/null +++ b/docs/interfaces/index.NetworkConstructorParameters.html @@ -0,0 +1,21 @@ +NetworkConstructorParameters | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Interface NetworkConstructorParameters

+

Interface for specifying parameters when constructing a network.

+

Hierarchy

  • NetworkConstructorParameters

Index

Properties

nNodes?: number
+

Number of nodes.

+
setNodeWeightsToTotalEdgeWeights?: boolean
+

Indicates whether to set node weights equal to total edge weights.

+
nodeWeights?: number[]
+

Node weights.

+
edges?: number[][]
+

Edge list.

+
firstNeighborIndices?: number[]
+

Index of the first neighbor of each node.

+
neighbors?: number[]
+

Neighbor list.

+
edgeWeights?: number[]
+

Edge weights.

+
sortedEdges?: boolean
+

Indicates whether the edge list is sorted.

+
checkIntegrity?: boolean
+

Indicates whether to check the integrity of the network.

+

Legend

  • Function
  • Type alias
  • Interface
  • Property
  • Enumeration
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/interfaces/index.QualityClusteringAlgorithm.html b/docs/interfaces/index.QualityClusteringAlgorithm.html new file mode 100644 index 0000000..cb25f97 --- /dev/null +++ b/docs/interfaces/index.QualityClusteringAlgorithm.html @@ -0,0 +1,15 @@ +QualityClusteringAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Interface QualityClusteringAlgorithm

+

Interface for clustering algorithms that use a quality function.

+

Hierarchy

Implemented by

Index

Methods

Legend

  • Function
  • Type alias
  • Interface
  • Method
  • Enumeration
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/interfaces/index.QualityLayoutAlgorithm.html b/docs/interfaces/index.QualityLayoutAlgorithm.html new file mode 100644 index 0000000..841825f --- /dev/null +++ b/docs/interfaces/index.QualityLayoutAlgorithm.html @@ -0,0 +1,15 @@ +QualityLayoutAlgorithm | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Interface QualityLayoutAlgorithm

+

Interface for layout algorithms that use a quality function.

+

Hierarchy

  • default
    • QualityLayoutAlgorithm

Implemented by

Index

Methods

  • +

    Finds a layout of the nodes in a network.

    +

    Parameters

    Returns Layout

    Layout

    +

Legend

  • Function
  • Type alias
  • Interface
  • Method
  • Enumeration
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/modules.html b/docs/modules.html new file mode 100644 index 0000000..2963b69 --- /dev/null +++ b/docs/modules.html @@ -0,0 +1 @@ +networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

networkanalysis-ts

Legend

  • Function
  • Type alias
  • Enumeration
  • Interface
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/modules/index.html b/docs/modules/index.html new file mode 100644 index 0000000..9cd6ae7 --- /dev/null +++ b/docs/modules/index.html @@ -0,0 +1,8 @@ +index | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu

Legend

  • Function
  • Type alias
  • Enumeration
  • Interface
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/modules/run.html b/docs/modules/run.html new file mode 100644 index 0000000..3be1c43 --- /dev/null +++ b/docs/modules/run.html @@ -0,0 +1,28 @@ +run | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Provides classes and types for running network analysis algorithms.

+

Index

Type Aliases

Node: { id: string | number; x?: number; y?: number; cluster?: number }
+

A node in a network.

+

Type declaration

  • id: string | number
    +

    ID of a node.

    +
  • Optional x?: number
    +

    Horizontal coordinate of a node. If the coordinates of a node are specified +before running the layout algorithm, they will be used in the initial +layout.

    +
  • Optional y?: number
    +

    Vertical coordinate of a node. If the coordinates of a node are specified +before running the layout algorithm, they will be used in the initial +layout.

    +
  • Optional cluster?: number
    +

    Cluster to which a node belongs. A cluster is represented by a integer. If +the cluster of a node is specified before running the clustering algorithm, +it will be used in the initial clustering.

    +
Link: { node1: Node; node2: Node; weight?: number }
+

A link in a network.

+

Type declaration

  • node1: Node
    +

    ID of a source node.

    +
  • node2: Node
    +

    ID of a target node.

    +
  • Optional weight?: number
    +

    Weight of the link between a source node and a target node. The weight is a +non-negative number.

    +

Legend

  • Function
  • Type alias
  • Enumeration
  • Interface
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file diff --git a/docs/modules/utils.html b/docs/modules/utils.html new file mode 100644 index 0000000..d90dfa5 --- /dev/null +++ b/docs/modules/utils.html @@ -0,0 +1,83 @@ +utils | networkanalysis-ts
Options
All
  • Public
  • Public/Protected
  • All
Menu
+

Provides miscellaneous utility functions.

+

Index

Functions

  • calcSum(values: number[]): number
  • +

    Calculates the sum of the values in an array.

    +

    Parameters

    • values: number[]
      +

      Values

      +

    Returns number

    Sum of values

    +
  • calcSumWithinRange(values: number[], beginIndex: number, endIndex: number): number
  • +

    Calculates the sum of the values in an array, considering only array +elements within a specified range.

    +

    The sum is calculated over the elements values[beginIndex], ..., values[endIndex - 1].

    +

    Parameters

    • values: number[]
      +

      Values

      +
    • beginIndex: number
      +

      Begin index

      +
    • endIndex: number
      +

      End index

      +

    Returns number

    Sum of values

    +
  • calcAverage(values: number[]): number
  • +

    Calculates the average of the values in an array.

    +

    Parameters

    • values: number[]
      +

      Values

      +

    Returns number

    Average value

    +
  • calcMedian(values: number[]): number
  • +

    Calculates the median of the values in an array.

    +

    Parameters

    • values: number[]
      +

      Values

      +

    Returns number

    Median value

    +
  • calcMinimum(values: number[]): number
  • +

    Calculates the minimum of the values in an array.

    +

    Parameters

    • values: number[]
      +

      Values

      +

    Returns number

    Minimum value

    +
  • calcMaximum(values: number[]): number
  • +

    Calculates the maximum of the values in an array.

    +

    Parameters

    • values: number[]
      +

      Values

      +

    Returns number

    Maximum value

    +
  • createDoubleArrayOfRandomNumbers(nElements: number, random?: Random): number[]
  • +

    Creates a double array of random numbers.

    +

    Parameters

    • nElements: number
      +

      Number of elements

      +
    • random: Random = ...
      +

      Random number generator

      +

    Returns number[]

    Array of random numbers

    +
  • generateRandomPermutation(nElements: number, random?: Random): number[]
  • +

    Generates a random permutation.

    +

    A random permutation is generated of the integers0, ..., nElements - 1.

    +

    Parameters

    • nElements: number
      +

      Number of elements

      +
    • random: Random = ...
      +

      Random number generator

      +

    Returns number[]

    Random permutation

    +
  • binarySearch(sortedValues: number[], fromIndex: number, toIndex: number, key: number): number
  • +

    Searches a range of the specified array of numbers for the specified value +using the binary search algorithm. The array must be sorted prior to making +this call. If it is not sorted, the results are undefined. If the range +contains multiple elements with the specified value, there is no guarantee +which one will be found.

    +

    Parameters

    • sortedValues: number[]
      +

      Array to be searched (must be sorted)

      +
    • fromIndex: number
      +

      Index of the first element (inclusive) to be searched

      +
    • toIndex: number
      +

      Index of the last element (exclusive) to be searched

      +
    • key: number
      +

      Value to be searched for

      +

    Returns number

    Index at which the key was found, or -n-1 if it was not found, + where n is the index of the first value higher than key or length if + there is no such value.

    +
  • fastExp(exponent: number): number
  • +

    Calculates exp(exponent) using a fast implementation.

    +

    Parameters

    • exponent: number
      +

      Exponent

      +

    Returns number

    exp(exponent)

    +
  • fastPow(base: number, exponent: number): number
  • +

    Calculates base ^ exponent using a fast implementation.

    +

    Parameters

    • base: number
      +

      Base

      +
    • exponent: number
      +

      Exponent

      +

    Returns number

    base ^ exponent

    +

Legend

  • Function
  • Type alias
  • Enumeration
  • Interface
  • Class

Settings

Theme

Generated using TypeDoc

\ No newline at end of file