-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
0973-k-closest-points-to-origin.kt
105 lines (96 loc) · 3.02 KB
/
0973-k-closest-points-to-origin.kt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/**
Solution using min heap
*/
class Solution {
fun kClosest(points: Array<IntArray>, k: Int): Array<IntArray> {
val minHeap = PriorityQueue<IntArray> { a, b -> a[0] - b[0] }
val result = Array<IntArray>(k) { IntArray(2) { 0 } }
for (point in points) {
minHeap.add(
intArrayOf(
/* distance from (0,0) */ point[0].squared() + point[1].squared(),
/* x coordinate */ point[0],
/* y coordinate */ point[1]
)
)
}
for (i in 0 until k) {
val pointWithDistance = minHeap.poll()
result[i][0] = pointWithDistance[1]
result[i][1] = pointWithDistance[2]
}
return result
}
private fun Int.squared() = this * this
}
/**
Solution using a max Heap
*/
class Solution {
fun kClosest(points: Array<IntArray>, k: Int): Array<IntArray> {
val maxHeap = PriorityQueue<IntArray>{ e1, e2 -> e2[0] - e1[0] }
val res = Array(k){ IntArray(2) }
for(point in points){
val (x,y) = point
val distance = (x * x) + (y * y) // we don't need to sqrt since the actual length is of no use
maxHeap.add(intArrayOf(distance,x,y))
if(maxHeap.size > k) // keep only the K closest distances
maxHeap.poll()
}
for(i in res.indices){
val (d,x,y) = maxHeap.poll()
res[i] = intArrayOf(x,y)
}
return res
}
}
/**
Solution using QuickSelect
*/
class Solution {
fun kClosest(points: Array<IntArray>, k: Int): Array<IntArray> {
if(points.size == k)
return points
val res = Array(k){ IntArray(2) }
quickSelect(0, points.size-1,points,k)
for(i in res.indices){
res[i] = points[i]
}
return res
}
private fun quickSelect(l: Int, r: Int, points: Array<IntArray>, k: Int){
var lPointer = l
for(i in l until r){
if(distance(i, points) <= distance(r,points)){ //r is pivot
swap(i,lPointer,points)
lPointer++
}
}
swap(lPointer,r,points)
if(lPointer > k)
quickSelect(l, lPointer-1, points, k)
else if(lPointer < k)
quickSelect(lPointer+1, r, points, k)
else //lPointer == k
return
}
private fun swap(i: Int, j: Int, points: Array<IntArray>){
val temp = points[i]
points[i] = points[j]
points[j] = temp
}
private fun distance(i: Int, points: Array<IntArray>) = (points[i][0] * points[i][0]) + (points[i][1] * points[i][1])
}
/**
Solution using built in sort function
*/
class Solution {
fun kClosest(points: Array<IntArray>, k: Int): Array<IntArray> {
val sorted = points.sortedBy{ it[0]*it[0] + it[1]*it[1]}
val list = arrayListOf<IntArray>()
for (i in 0..k-1) {
list.add(sorted[i])
}
return list.toTypedArray()
}
}