-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsaikadai6.py
226 lines (165 loc) · 7.95 KB
/
saikadai6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
from sklearn.ensemble import RandomForestRegressor as RFR
from sklearn.ensemble import GradientBoostingRegressor as GBR
from sklearn.neighbors import LocalOutlierFactor
from sklearn.preprocessing import PowerTransformer
# 読み込み数
pd.set_option('display.max_columns', 100)
pd.set_option('display.max_rows', 500)
number = 62500
TestSize = 0.2
r = 6378.137
Pvalue = 2.58
# 信頼区間-> Pvalue
# 90% -> 1.65
# 95% -> 1.96
# 99% -> 2.58
# 99.73% -> 3
# dropoutを適用する賃金帯(境界含む)
lower_limit = 14.1
upper_limit = 60
# データ読み込み
print("loading data")
train_df = pd.read_csv('/Users/hironeko1234/Documents/プログラミング/最終課題1/new-york-city-taxi-fare-prediction 2/train.csv')
train_df = train_df.sample(n=number, random_state=777)
print("loading data")
# 日時の情報を付加
def add_datetime_info(dataset):
dataset['pickup_datetime'] = pd.to_datetime(dataset['pickup_datetime'],format="%Y-%m-%d %H:%M:%S UTC")
dataset['hour'] = dataset.pickup_datetime.dt.hour
dataset['day'] = dataset.pickup_datetime.dt.day
dataset['month'] = dataset.pickup_datetime.dt.month
dataset['weekday'] = dataset.pickup_datetime.dt.weekday
dataset['year'] = dataset.pickup_datetime.dt.year
return dataset.drop(['pickup_datetime'],axis=1)
train_df = add_datetime_info(train_df)
# 直線距離の情報を付加
def calc_distance(dataset, r):
dataset['distance'] = r * np.arccos((np.sin(dataset.pickup_latitude * np.pi/180) * np.sin(dataset.dropoff_latitude * np.pi/180))
+ (np.cos(dataset.pickup_latitude * np.pi/180) * np.cos(dataset.dropoff_latitude * np.pi/180) * np.cos((dataset.dropoff_longitude * np.pi/180) - (dataset.pickup_longitude * np.pi/180))))
dataset.loc[(dataset['pickup_latitude'] == dataset['dropoff_latitude'])&(dataset['pickup_longitude'] == dataset['dropoff_longitude']), 'distance'] = 0.000095
dataset['distance'] = list(dataset['distance'])
return dataset
train_df = calc_distance(train_df, 6378.137)
def is_airport(df):
#KJFK 40.639901, -73.806465 ~ 40.660645, -73.777591
#KEWR 40.687314, -74.187967 ~ 40.697815, -74.176204
df['is_airport'] = False
df.loc[(df.pickup_latitude >= 40.639901) & (df.pickup_latitude <= 40.660645) & (df.pickup_longitude >= -73.806465) & (df.pickup_longitude <= -73.777591),'is_airport'] = True
df.loc[(df.dropoff_latitude >= 40.639901) & (df.dropoff_latitude <= 40.660645) & (df.dropoff_longitude >= -73.806465) & (df.dropoff_longitude <= -73.777591),'is_airport'] = True
df.loc[(df.pickup_latitude >= 40.687314) & (df.pickup_latitude <= 40.697815) & (df.pickup_longitude >= -74.187967) & (df.pickup_longitude <= -74.176204),'is_airport'] = True
df.loc[(df.dropoff_latitude >= 40.687314) & (df.dropoff_latitude <= 40.697815) & (df.dropoff_longitude >= -74.187967) & (df.dropoff_longitude <= -74.176204),'is_airport'] = True
return df
train_df = is_airport(train_df)
train_df = train_df.dropna(how='any')
train_df = train_df.drop(['key'],axis=1)
# box-cox変換
def apply_boxcox_transform_sklearn(df):
# データフレームから 'fare_amount' と 'distance' カラムを抽出
# fare_amount_data = df['fare_amount'].values.reshape(-1, 1)
distance_data = df['distance'].values.reshape(-1, 1)
# PowerTransformer を使用して Box-Cox 変換を適用
transformer = PowerTransformer(method="box-cox", standardize=False) # standardize=False はデータのスケーリングを無効にします
# fare_amount_transformed = transformer.fit_transform(fare_amount_data)
distance_transformed = transformer.fit_transform(distance_data)
# 変換後のデータをデータフレームに戻す
# df['fare_amount'] = fare_amount_transformed
df['distance'] = distance_transformed
return df
train_df = apply_boxcox_transform_sklearn(train_df)
# 欠損値の除去
def cleanup(df):
return df[(df.fare_amount > 0) &
(df.passenger_count > 0) &
(df.passenger_count < 6) &
(df.pickup_longitude > -75) &
(df.pickup_longitude < -72) &
(df.pickup_latitude > 40) &
(df.pickup_latitude < 42) &
(df.dropoff_longitude > -75) &
(df.dropoff_longitude < -72) &
(df.dropoff_latitude > 40) &
(df.dropoff_latitude < 42)]
train_df = cleanup(train_df)
def pred(X, x, Y, y, model='RFR'):
# モデルのトレーニング
model = RFR(n_jobs=-1, random_state=777) # ランダムフォレスト
model.fit(X, Y)
# 回帰
test_pred = model.predict(x)
train_pred = model.predict(X)
# 評価
test_r2 = r2_score(y, test_pred)
train_r2 = r2_score(Y, train_pred)
test_mse = mean_squared_error(y, test_pred)
train_mse = mean_squared_error(Y, train_pred)
test_rmse = np.sqrt(mean_squared_error(y, test_pred))
train_rmse = np.sqrt(mean_squared_error(Y, train_pred))
print("R2 -> test : %.3f train : %.3f" % (test_r2, train_r2))
print("MSE -> test : %.3f train : %.3f" % (test_mse, train_mse))
print("KAGGLE -> test : %.3f train : %.3f" % (test_rmse, train_rmse))
# 変数重要度
feature_importances = pd.DataFrame({
"features": x.columns,
"importances": model.feature_importances_
})
print(feature_importances)
def dropout(df, Pvalue, lower_limit, upper_limit):
df['zscore'] = 0
for i in np.arange(0, 280, 0.1):
if len(df[df.fare_amount == i]) <= 1:
continue
if i >= upper_limit or i <= lower_limit:
continue
mean = df[df.fare_amount == i].distance.mean()
std = df[df.fare_amount == i].distance.std()
df.loc[df['fare_amount'] == i, 'zscore'] = (df[df.fare_amount == i].distance - mean) / std
return df[(df.zscore < Pvalue)].drop(['zscore'],axis=1)
train_df = dropout(train_df, Pvalue, lower_limit, upper_limit)
train_df = is_airport(train_df)
def pred(x_train, x_test, y_train, y_test):
# 学習データと評価データを作成
# #データを標準化
# sc = StandardScaler()
# sc.fit(x_train) #学習用データで標準化
# x_train_std = sc.transform(x_train)
# x_test_std = sc.transform(x_test)
# モデルのトレーニング
# print("fitting...")
model = RFR(n_jobs=-1, random_state=777) # ランダムフォレスト
# model = GBR(random_state=777) # 勾配ブースティング木
# model = MLPR(hidden_layer_sizes=(40,20,10,5), max_iter=1000, random_state=777, verbose=True) # ニューラルネットワーク
# print(model)
model.fit(x_train, y_train)
# print('...complete')
# 回帰
# print("predicting...")
test_pred = model.predict(x_test)
train_pred = model.predict(x_train)
# print("...complete")
# 評価
# 決定係数(R2)
test_r2 = r2_score(y_test, test_pred)
train_r2 = r2_score(y_train, train_pred)
# 二乗平均平方根誤差 (RMSE)
test_mae = mean_squared_error(y_test, test_pred)
train_mae = mean_squared_error(y_train, train_pred)
# 二乗平均平方根誤差 (RMSE)
test_rmse = np.sqrt(mean_squared_error(y_test, test_pred))
train_rmse = np.sqrt(mean_squared_error(y_train, train_pred))
print("R2 -> test : %.3f train : %.3f" % (test_r2, train_r2))
print("RMSE -> test : %.3f train : %.3f" % (test_mae, train_mae))
print("KAGGLE -> test : %.3f train : %.3f" % (test_rmse, train_rmse))
# 変数重要度
feature_importances = pd.DataFrame({
"features": x_test.columns,
"importances": model.feature_importances_
})
print(feature_importances)
x_train, x, y_train, y = train_test_split(train_df.iloc[:, 1:13], train_df.iloc[:, 0],test_size=TestSize, random_state=777)
pred(x_train, x, y_train, y)