-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathns32k.c
1768 lines (1661 loc) · 49.6 KB
/
ns32k.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* ns32k.c -- Assemble on the National Semiconductor 32k series
Copyright (C) 1987 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#define NS32K
/*#define SHOW_NUM 1*/ /* uncomment for debugging */
#include <stdio.h>
#include <ctype.h>
#ifdef USG
#include <string.h>
#else
#include <strings.h>
#endif
#include "ns32k-opcode.h"
#include "as.h"
#include "obstack.h"
#include "frags.h"
#include "struc-symbol.h"
#include "flonum.h"
#include "expr.h"
#include "md.h"
#include "hash.h"
#include "write.h"
#include "symbols.h"
/* Macros */
#define IIF_ENTRIES 13 /* number of entries in iif */
#define PRIVATE_SIZE 256 /* size of my garbage memory */
#define MAX_ARGS 4
#define DEFAULT -1 /* addr_mode returns this value when plain constant or label is encountered */
#define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1) \
iif.iifP[ptr].type= a1; \
iif.iifP[ptr].size= c1; \
iif.iifP[ptr].object= e1; \
iif.iifP[ptr].object_adjust= g1; \
iif.iifP[ptr].pcrel= i1; \
iif.iifP[ptr].pcrel_adjust= k1; \
iif.iifP[ptr].im_disp= m1; \
iif.iifP[ptr].relax_substate= o1; \
iif.iifP[ptr].bit_fixP= q1; \
iif.iifP[ptr].addr_mode= s1; \
iif.iifP[ptr].bsr= u1;
#ifdef SEQUENT_COMPATABILITY
#define LINE_COMMENT_CHARS "|"
#define ABSOLUTE_PREFIX '@'
#define IMMEDIATE_PREFIX '#'
#endif
#ifndef LINE_COMMENT_CHARS
#define LINE_COMMENT_CHARS "#"
#endif
char comment_chars[] = "#";
char line_comment_chars[] = LINE_COMMENT_CHARS;
#if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
#define ABSOLUTE_PREFIX '@' /* One or the other MUST be defined */
#endif
struct addr_mode {
char mode; /* addressing mode of operand (0-31) */
char scaled_mode; /* mode combined with scaled mode */
char scaled_reg; /* register used in scaled+1 (1-8) */
char float_flag; /* set if R0..R7 was F0..F7 ie a floating-point-register */
char am_size; /* estimated max size of general addr-mode parts*/
char im_disp; /* if im_disp==1 we have a displacement */
char pcrel; /* 1 if pcrel, this is really redundant info */
char disp_suffix[2]; /* length of displacement(s), 0=undefined */
char *disp[2]; /* pointer(s) at displacement(s)
or immediates(s) (ascii) */
char index_byte; /* index byte */
};
typedef struct addr_mode addr_modeS;
char *freeptr,*freeptr_static; /* points at some number of free bytes */
struct hash_control *inst_hash_handle;
struct ns32k_opcode *desc; /* pointer at description of instruction */
addr_modeS addr_modeP;
char EXP_CHARS[] = "eE";
char FLT_CHARS[] = "fd"; /* we don't want to support lowercase, do we */
long omagic = OMAGIC;
void md_number_to_disp();
void md_number_to_imm();
segT evaluate_expr();
void fix_new_ns32k();
/* UPPERCASE denotes live names
* when an instruction is built, IIF is used as an intermidiate form to store
* the actual parts of the instruction. A ns32k machine instruction can
* be divided into a couple of sub PARTs. When an instruction is assembled
* the appropriate PART get an assignment. When an IIF has been completed it's
* converted to a FRAGment as specified in AS.H */
/* internal structs */
struct option {
char *pattern;
unsigned long or;
unsigned long and;
};
typedef struct {
int type; /* how to interpret object */
int size; /* Estimated max size of object */
unsigned long object; /* binary data */
int object_adjust; /* number added to object */
int pcrel; /* True if object is pcrel */
int pcrel_adjust; /* It's value reflects the length in bytes from the instruction start to the displacement */
int im_disp; /* True if the object is a displacement */
relax_substateT relax_substate; /* Initial relaxsubstate */
bit_fixS *bit_fixP; /* Pointer at bit_fix struct */
int addr_mode; /* What addrmode do we associate with this iif-entry */
char bsr; /* Sequent hack */
}iif_entryT; /* Internal Instruction Format */
struct int_ins_form {
int instr_size; /* Max size of instruction in bytes. */
iif_entryT iifP[IIF_ENTRIES+1];
};
struct int_ins_form iif;
expressionS exprP;
char *input_line_pointer;
/* description of the PARTs in IIF
*object[n]:
* 0 total length in bytes of entries in iif
* 1 opcode
* 2 index_byte_a
* 3 index_byte_b
* 4 disp_a_1
* 5 disp_a_2
* 6 disp_b_1
* 7 disp_b_2
* 8 imm_a
* 9 imm_b
* 10 implied1
* 11 implied2
*
* For every entry there is a datalength in bytes. This is stored in size[n].
* 0, the objectlength is not explicitly given by the instruction
* and the operand is undefined. This is a case for relaxation.
* Reserve 4 bytes for the final object.
*
* 1, the entry contains one byte
* 2, the entry contains two bytes
* 3, the entry contains three bytes
* 4, the entry contains four bytes
* etc
*
* Furthermore, every entry has a data type identifier in type[n].
*
* 0, the entry is void, ignore it.
* 1, the entry is a binary number.
* 2, the entry is a pointer at an expression.
* Where expression may be as simple as a single '1',
* and as complicated as foo-bar+12,
* foo and bar may be undefined but suffixed by :{b|w|d} to
* control the length of the object.
*
* 3, the entry is a pointer at a bignum struct
*
*
* The low-order-byte coresponds to low physical memory.
* Obviously a FRAGment must be created for each valid disp in PART whose
* datalength is undefined (to bad) .
* The case where just the expression is undefined is less severe and is
* handled by fix. Here the number of bytes in the objectfile is known.
* With this representation we simplify the assembly and separates the
* machine dependent/independent parts in a more clean way (said OE)
*/
struct option opt1[]= /* restore, exit */
{
{ "r0", 0x80, 0xff },
{ "r1", 0x40, 0xff },
{ "r2", 0x20, 0xff },
{ "r3", 0x10, 0xff },
{ "r4", 0x08, 0xff },
{ "r5", 0x04, 0xff },
{ "r6", 0x02, 0xff },
{ "r7", 0x01, 0xff },
{ 0 , 0x00, 0xff }
};
struct option opt2[]= /* save, enter */
{
{ "r0", 0x01, 0xff },
{ "r1", 0x02, 0xff },
{ "r2", 0x04, 0xff },
{ "r3", 0x08, 0xff },
{ "r4", 0x10, 0xff },
{ "r5", 0x20, 0xff },
{ "r6", 0x40, 0xff },
{ "r7", 0x80, 0xff },
{ 0 , 0x00, 0xff }
};
struct option opt3[]= /* setcfg */
{
{ "c", 0x8, 0xff },
{ "m", 0x4, 0xff },
{ "f", 0x2, 0xff },
{ "i", 0x1, 0xff },
{ 0 , 0x0, 0xff }
};
struct option opt4[]= /* cinv */
{
{ "a", 0x4, 0xff },
{ "i", 0x2, 0xff },
{ "d", 0x1, 0xff },
{ 0 , 0x0, 0xff }
};
struct option opt5[]= /* string inst */
{
{ "b", 0x2, 0xff },
{ "u", 0xc, 0xff },
{ "w", 0x4, 0xff },
{ 0 , 0x0, 0xff }
};
struct option opt6[]= /* plain reg ext,cvtp etc */
{
{ "r0", 0x00, 0xff },
{ "r1", 0x01, 0xff },
{ "r2", 0x02, 0xff },
{ "r3", 0x03, 0xff },
{ "r4", 0x04, 0xff },
{ "r5", 0x05, 0xff },
{ "r6", 0x06, 0xff },
{ "r7", 0x07, 0xff },
{ 0 , 0x00, 0xff }
};
#if !defined(NS32032) && !defined(NS32532)
#define NS32032
#endif
struct option cpureg_532[]= /* lpr spr */
{
{ "us", 0x0, 0xff },
{ "dcr", 0x1, 0xff },
{ "bpc", 0x2, 0xff },
{ "dsr", 0x3, 0xff },
{ "car", 0x4, 0xff },
{ "fp", 0x8, 0xff },
{ "sp", 0x9, 0xff },
{ "sb", 0xa, 0xff },
{ "usp", 0xb, 0xff },
{ "cfg", 0xc, 0xff },
{ "psr", 0xd, 0xff },
{ "intbase", 0xe, 0xff },
{ "mod", 0xf, 0xff },
{ 0 , 0x00, 0xff }
};
struct option mmureg_532[]= /* lmr smr */
{
{ "mcr", 0x9, 0xff },
{ "msr", 0xa, 0xff },
{ "tear", 0xb, 0xff },
{ "ptb0", 0xc, 0xff },
{ "ptb1", 0xd, 0xff },
{ "ivar0", 0xe, 0xff },
{ "ivar1", 0xf, 0xff },
{ 0 , 0x0, 0xff }
};
struct option cpureg_032[]= /* lpr spr */
{
{ "upsr", 0x0, 0xff },
{ "fp", 0x8, 0xff },
{ "sp", 0x9, 0xff },
{ "sb", 0xa, 0xff },
{ "psr", 0xd, 0xff },
{ "intbase", 0xe, 0xff },
{ "mod", 0xf, 0xff },
{ 0 , 0x0, 0xff }
};
struct option mmureg_032[]= /* lmr smr */
{
{ "bpr0", 0x0, 0xff },
{ "bpr1", 0x1, 0xff },
{ "pf0", 0x4, 0xff },
{ "pf1", 0x5, 0xff },
{ "sc", 0x8, 0xff },
{ "msr", 0xa, 0xff },
{ "bcnt", 0xb, 0xff },
{ "ptb0", 0xc, 0xff },
{ "ptb1", 0xd, 0xff },
{ "eia", 0xf, 0xff },
{ 0 , 0x0, 0xff }
};
#if defined(NS32532)
struct option *cpureg = cpureg_532;
struct option *mmureg = mmureg_532;
#else
struct option *cpureg = cpureg_032;
struct option *mmureg = mmureg_032;
#endif
const pseudo_typeS md_pseudo_table[]={ /* so far empty */
{ 0, 0, 0 }
};
#define IND(x,y) (((x)<<2)+(y))
/* those are index's to relax groups in md_relax_table
ie it must be multiplied by 4 to point at a group start. Viz IND(x,y)
Se function relax_segment in write.c for more info */
#define BRANCH 1
#define PCREL 2
/* those are index's to entries in a relax group */
#define BYTE 0
#define WORD 1
#define DOUBLE 2
#define UNDEF 3
/* Those limits are calculated from the displacement start in memory.
The ns32k uses the begining of the instruction as displacement base.
This type of displacements could be handled here by moving the limit window
up or down. I choose to use an internal displacement base-adjust as there
are other routines that must consider this. Also, as we have two various
offset-adjusts in the ns32k (acb versus br/brs/jsr/bcond), two set of limits
would have had to be used.
Now we dont have to think about that. */
const relax_typeS md_relax_table[]={
{ 1, 1, 0, 0 },
{ 1, 1, 0, 0 },
{ 1, 1, 0, 0 },
{ 1, 1, 0, 0 },
{ (63), (-64), 1, IND(BRANCH,WORD) },
{ (8192), (-8192), 2, IND(BRANCH,DOUBLE) },
{ 0, 0, 4, 0 },
{ 1, 1, 0, 0 }
};
/* Array used to test if mode contains displacements.
Value is true if mode contains displacement. */
char disp_test[]={ 0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
1,1,1,0,0,1,1,0,
1,1,1,1,1,1,1,1 };
/* Array used to calculate max size of displacements */
char disp_size[]={ 4,1,2,0,4 };
/* Parses a general operand into an addressingmode struct
in: pointer at operand in ascii form
pointer at addr_mode struct for result
the level of recursion. (always 0 or 1)
out: data in addr_mode struct
*/
int addr_mode(operand,addr_modeP,recursive_level)
char *operand;
register addr_modeS *addr_modeP;
int recursive_level;
{
register char *str;
register int i;
register int strl;
register int mode;
int j;
mode = DEFAULT; /* default */
addr_modeP->scaled_mode=0; /* why not */
addr_modeP->scaled_reg=0; /* if 0, not scaled index */
addr_modeP->float_flag=0;
addr_modeP->am_size=0;
addr_modeP->im_disp=0;
addr_modeP->pcrel=0; /* not set in this function */
addr_modeP->disp_suffix[0]=0;
addr_modeP->disp_suffix[1]=0;
addr_modeP->disp[0]=NULL;
addr_modeP->disp[1]=NULL;
str=operand;
if (str[0]==0) {return (0);} /* we don't want this */
strl=strlen(str);
switch (str[0]) {
/* the following three case statements controls the mode-chars
this is the place to ed if you want to change them */
#ifdef ABSOLUTE_PREFIX
case ABSOLUTE_PREFIX:
if (str[strl-1]==']') break;
addr_modeP->mode=21; /* absolute */
addr_modeP->disp[0]=str+1;
return (-1);
#endif
#ifdef IMMEDIATE_PREFIX
case IMMEDIATE_PREFIX:
if (str[strl-1]==']') break;
addr_modeP->mode=20; /* immediate */
addr_modeP->disp[0]=str+1;
return (-1);
#endif
case '.':
if (str[strl-1]!=']') {
switch (str[1]) {
case'-':case'+':
if (str[2]!='\000') {
addr_modeP->mode=27; /* pc-relativ */
addr_modeP->disp[0]=str+2;
return (-1);
}
default:
as_warn("Invalid syntax in PC-relative addressing mode");
return(0);
}
}
break;
case'e':
if (str[strl-1]!=']') {
if((!strncmp(str,"ext(",4)) && strl>7) { /* external */
addr_modeP->disp[0]=str+4;
i=0;
j=2;
do { /* disp[0]'s termination point */
j+=1;
if (str[j]=='(') i++;
if (str[j]==')') i--;
} while (j<strl && i!=0);
if (i!=0 || !(str[j+1]=='-' || str[j+1]=='+') ) {
as_warn("Invalid syntax in External addressing mode");
return(0);
}
str[j]='\000'; /* null terminate disp[0] */
addr_modeP->disp[1]=str+j+2;
addr_modeP->mode=22;
return (-1);
}
}
break;
default:;
}
strl=strlen(str);
switch(strl) {
case 2:
switch (str[0]) {
case'f':addr_modeP->float_flag=1;
case'r':
if (str[1]>='0' && str[1]<'8') {
addr_modeP->mode=str[1]-'0';
return (-1);
}
}
case 3:
if (!strncmp(str,"tos",3)) {
addr_modeP->mode=23; /* TopOfStack */
return (-1);
}
default:;
}
if (strl>4) {
if (str[strl-1]==')') {
if (str[strl-2]==')') {
if (!strncmp(&str[strl-5],"(fp",3)) {
mode=16; /* Memory Relative */
}
if (!strncmp(&str[strl-5],"(sp",3)) {
mode=17;
}
if (!strncmp(&str[strl-5],"(sb",3)) {
mode=18;
}
if (mode!=DEFAULT) { /* memory relative */
addr_modeP->mode=mode;
j=strl-5; /* temp for end of disp[0] */
i=0;
do {
strl-=1;
if (str[strl]==')') i++;
if (str[strl]=='(') i--;
} while (strl>-1 && i!=0);
if (i!=0) {
as_warn("Invalid syntax in Memory Relative addressing mode");
return(0);
}
addr_modeP->disp[1]=str;
addr_modeP->disp[0]=str+strl+1;
str[j]='\000'; /* null terminate disp[0] */
str[strl]='\000'; /* null terminate disp[1] */
return (-1);
}
}
switch (str[strl-3]) {
case'r':case'R':
if (str[strl-2]>='0' && str[strl-2]<'8' && str[strl-4]=='(') {
addr_modeP->mode=str[strl-2]-'0'+8;
addr_modeP->disp[0]=str;
str[strl-4]=0;
return (-1); /* reg rel */
}
default:
if (!strncmp(&str[strl-4],"(fp",3)) {
mode=24;
}
if (!strncmp(&str[strl-4],"(sp",3)) {
mode=25;
}
if (!strncmp(&str[strl-4],"(sb",3)) {
mode=26;
}
if (!strncmp(&str[strl-4],"(pc",3)) {
mode=27;
}
if (mode!=DEFAULT) {
addr_modeP->mode=mode;
addr_modeP->disp[0]=str;
str[strl-4]='\0';
return (-1); /* memory space */
}
}
}
/* no trailing ')' do we have a ']' ? */
if (str[strl-1]==']') {
switch (str[strl-2]) {
case'b':mode=28;break;
case'w':mode=29;break;
case'd':mode=30;break;
case'q':mode=31;break;
default:;
as_warn("Invalid scaled-indexed mode, use (b,w,d,q)");
if (str[strl-3]!=':' || str[strl-6]!='[' ||
str[strl-5]=='r' || str[strl-4]<'0' || str[strl-4]>'7') {
as_warn("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}");
}
} /* scaled index */
{
if (recursive_level>0) {
as_warn("Scaled-indexed addressing mode combined with scaled-index");
return(0);
}
addr_modeP->am_size+=1; /* scaled index byte */
j=str[strl-4]-'0'; /* store temporary */
str[strl-6]='\000'; /* nullterminate for recursive call */
i=addr_mode(str,addr_modeP,1);
if (!i || addr_modeP->mode==20) {
as_warn("Invalid or illegal addressing mode combined with scaled-index");
return(0);
}
addr_modeP->scaled_mode=addr_modeP->mode; /* store the inferior mode */
addr_modeP->mode=mode;
addr_modeP->scaled_reg=j+1;
return (-1);
}
}
}
addr_modeP->mode = DEFAULT; /* default to whatever */
addr_modeP->disp[0]=str;
return (-1);
}
/* ptr points at string
addr_modeP points at struct with result
This routine calls addr_mode to determine the general addr.mode of
the operand. When this is ready it parses the displacements for size
specifying suffixes and determines size of immediate mode via ns32k-opcode.
Also builds index bytes if needed.
*/
int get_addr_mode(ptr,addr_modeP)
char *ptr;
addr_modeS *addr_modeP;
{
int tmp;
addr_mode(ptr,addr_modeP,0);
if (addr_modeP->mode == DEFAULT || addr_modeP->scaled_mode == -1) {
/* resolve ambigious operands, this shouldn't
be necessary if one uses standard NSC operand
syntax. But the sequent compiler doesn't!!!
This finds a proper addressinging mode if it
is implicitly stated. See ns32k-opcode.h */
(void)evaluate_expr(&exprP,ptr); /* this call takes time Sigh! */
if (addr_modeP->mode == DEFAULT) {
if (exprP.X_add_symbol || exprP.X_subtract_symbol) {
addr_modeP->mode=desc->default_model; /* we have a label */
} else {
addr_modeP->mode=desc->default_modec; /* we have a constant */
}
} else {
if (exprP.X_add_symbol || exprP.X_subtract_symbol) {
addr_modeP->scaled_mode=desc->default_model;
} else {
addr_modeP->scaled_mode=desc->default_modec;
}
}
/* must put this mess down in addr_mode to handle the scaled case better */
}
/* It appears as the sequent compiler wants an absolute when we have a
label without @. Constants becomes immediates besides the addr case.
Think it does so with local labels too, not optimum, pcrel is better.
When I have time I will make gas check this and select pcrel when possible
Actually that is trivial.
*/
if (tmp=addr_modeP->scaled_reg) { /* build indexbyte */
tmp--; /* remember regnumber comes incremented for flagpurpose */
tmp|=addr_modeP->scaled_mode<<3;
addr_modeP->index_byte=(char)tmp;
addr_modeP->am_size+=1;
}
if (disp_test[addr_modeP->mode]) { /* there was a displacement, probe for length specifying suffix*/
{
register char c;
register char suffix;
register char suffix_sub;
register int i;
register char *toP;
register char *fromP;
addr_modeP->pcrel=0;
if (disp_test[addr_modeP->mode]) { /* there is a displacement */
if (addr_modeP->mode==27 || addr_modeP->scaled_mode==27) { /* do we have pcrel. mode */
addr_modeP->pcrel=1;
}
addr_modeP->im_disp=1;
for(i=0;i<2;i++) {
suffix_sub=suffix=0;
if (toP=addr_modeP->disp[i]) { /* suffix of expression, the largest size rules */
fromP=toP;
while (c = *fromP++) {
*toP++=c;
if (c==':') {
switch (*fromP) {
case '\0':
as_warn("Premature end of suffix--Defaulting to d");
suffix=4;
continue;
case 'b':suffix_sub=1;break;
case 'w':suffix_sub=2;break;
case 'd':suffix_sub=4;break;
default:
as_warn("Bad suffix after ':' use {b|w|d} Defaulting to d");
suffix=4;
}
fromP++;
toP--; /* So we write over the ':' */
if (suffix<suffix_sub) suffix=suffix_sub;
}
}
*toP='\0'; /* terminate properly */
addr_modeP->disp_suffix[i]=suffix;
addr_modeP->am_size+=suffix ? suffix : 4;
}
}
}
}
} else {
if (addr_modeP->mode==20) { /* look in ns32k_opcode for size */
addr_modeP->disp_suffix[0]=addr_modeP->am_size=desc->im_size;
addr_modeP->im_disp=0;
}
}
return addr_modeP->mode;
}
/* read an optionlist */
void optlist(str,optionP,default_map)
char *str; /* the string to extract options from */
struct option *optionP; /* how to search the string */
unsigned long *default_map; /* default pattern and output */
{
register int i,j,k,strlen1,strlen2;
register char *patternP,*strP;
strlen1=strlen(str);
if (strlen1<1) {
as_fatal("Very short instr to option, ie you can't do it on a NULLstr");
}
for (i=0;optionP[i].pattern!=0;i++) {
strlen2=strlen(optionP[i].pattern);
for (j=0;j<strlen1;j++) {
patternP=optionP[i].pattern;
strP = &str[j];
for (k=0;k<strlen2;k++) {
if (*(strP++)!=*(patternP++)) break;
}
if (k==strlen2) { /* match */
*default_map|=optionP[i].or;
*default_map&=optionP[i].and;
}
}
}
}
/* search struct for symbols
This function is used to get the short integer form of reg names
in the instructions lmr, smr, lpr, spr
return true if str is found in list */
int list_search(str,optionP,default_map)
char *str; /* the string to match */
struct option *optionP; /* list to search */
unsigned long *default_map; /* default pattern and output */
{
register int i;
for (i=0;optionP[i].pattern!=0;i++) {
if (!strncmp(optionP[i].pattern,str,20)) { /* use strncmp to be safe */
*default_map|=optionP[i].or;
*default_map&=optionP[i].and;
return -1;
}
}
as_warn("No such entry in list. (cpu/mmu register)");
return 0;
}
segT evaluate_expr(resultP,ptr)
expressionS *resultP;
char *ptr;
{
register char *tmp_line;
register segT segment;
tmp_line=input_line_pointer;
input_line_pointer=ptr;
segment=expression(&exprP);
input_line_pointer=tmp_line;
return (segment);
}
/* Convert operands to iif-format and adds bitfields to the opcode.
Operands are parsed in such an order that the opcode is updated from
its most significant bit, that is when the operand need to alter the
opcode.
Be carefull not to put to objects in the same iif-slot.
*/
encode_operand(argc,argv,operandsP,suffixP,im_size,opcode_bit_ptr)
int argc;
char **argv;
char *operandsP;
char *suffixP;
char im_size;
char opcode_bit_ptr;
{
register int i,j;
int pcrel,tmp,b,loop,pcrel_adjust;
for(loop=0;loop<argc;loop++) {
i=operandsP[loop<<1]-'1'; /* what operand are we supposed to work on */
if (i>3) as_fatal("Internal error check ns32k-opcode.h");
pcrel=0;
pcrel_adjust=0;
tmp=0;
switch (operandsP[(loop<<1)+1]) {
case 'f': /* operand of sfsr turns out to be a nasty specialcase */
opcode_bit_ptr-=5;
case 'F': /* 32 bit float general form */
case 'L': /* 64 bit float */
case 'Q': /* quad-word */
case 'B': /* byte */
case 'W': /* word */
case 'D': /* double-word */
case 'A': /* double-word gen-address-form ie no regs allowed */
get_addr_mode(argv[i],&addr_modeP);
iif.instr_size+=addr_modeP.am_size;
if (opcode_bit_ptr==desc->opcode_size) b=4; else b=6;
for (j=b;j<(b+2);j++) {
if (addr_modeP.disp[j-b]) {
IIF(j,
2,
addr_modeP.disp_suffix[j-b],
(unsigned long)addr_modeP.disp[j-b],
0,
addr_modeP.pcrel,
iif.instr_size-addr_modeP.am_size, /* this aint used (now) */
addr_modeP.im_disp,
IND(BRANCH,BYTE),
NULL,
addr_modeP.scaled_reg ? addr_modeP.scaled_mode:addr_modeP.mode,
0);
}
}
opcode_bit_ptr-=5;
iif.iifP[1].object|=((long)addr_modeP.mode)<<opcode_bit_ptr;
if (addr_modeP.scaled_reg) {
j=b/2;
IIF(j,1,1, (unsigned long)addr_modeP.index_byte,0,0,0,0,0, NULL,-1,0);
}
break;
case 'b': /* multiple instruction disp */
freeptr++; /* OVE:this is an useful hack */
tmp=(int)sprintf(freeptr,"((%s-1)*%d)\000",argv[i],desc->im_size);
argv[i]=freeptr;
freeptr=(char*)tmp;
pcrel-=1; /* make pcrel 0 inspite of what case 'p': wants */
/* fall thru */
case 'p': /* displacement - pc relative addressing */
pcrel+=1;
/* fall thru */
case 'd': /* displacement */
iif.instr_size+=suffixP[i] ? suffixP[i] : 4;
IIF(12, 2, suffixP[i], (unsigned long)argv[i], 0,
pcrel, pcrel_adjust, 1, IND(BRANCH,BYTE), NULL,-1,0);
break;
case 'H': /* sequent-hack: the linker wants a bit set when bsr */
pcrel=1;
iif.instr_size+=suffixP[i] ? suffixP[i] : 4;
IIF(12, 2, suffixP[i], (unsigned long)argv[i], 0,
pcrel, pcrel_adjust, 1, IND(BRANCH,BYTE), NULL,-1,1);break;
case 'q': /* quick */
opcode_bit_ptr-=4;
IIF(11,2,42,(unsigned long)argv[i],0,0,0,0,0,
bit_fix_new(4,opcode_bit_ptr,-8,7,0,1,0),-1,0);
break;
case 'r': /* register number (3 bits) */
list_search(argv[i],opt6,&tmp);
opcode_bit_ptr-=3;
iif.iifP[1].object|=tmp<<opcode_bit_ptr;
break;
case 'O': /* setcfg instruction optionslist */
optlist(argv[i],opt3,&tmp);
opcode_bit_ptr-=4;
iif.iifP[1].object|=tmp<<15;
break;
case 'C': /* cinv instruction optionslist */
optlist(argv[i],opt4,&tmp);
opcode_bit_ptr-=4;
iif.iifP[1].object|=tmp<<15;/*insert the regtype in opcode */
break;
case 'S': /* stringinstruction optionslist */
optlist(argv[i],opt5,&tmp);
opcode_bit_ptr-=4;
iif.iifP[1].object|=tmp<<15;
break;
case 'u':case 'U': /* registerlist */
IIF(10,1,1,0,0,0,0,0,0,NULL,-1,0);
switch (operandsP[(i<<1)+1]) {
case 'u': /* restore, exit */
optlist(argv[i],opt1,&iif.iifP[10].object);
break;
case 'U': /* save,enter */
optlist(argv[i],opt2,&iif.iifP[10].object);
break;
}
iif.instr_size+=1;
break;
case 'M': /* mmu register */
list_search(argv[i],mmureg,&tmp);
opcode_bit_ptr-=4;
iif.iifP[1].object|=tmp<<opcode_bit_ptr;
break;
case 'P': /* cpu register */
list_search(argv[i],cpureg,&tmp);
opcode_bit_ptr-=4;
iif.iifP[1].object|=tmp<<opcode_bit_ptr;
break;
case 'g': /* inss exts */
iif.instr_size+=1; /* 1 byte is allocated after the opcode */
IIF(10,2,1,
(unsigned long)argv[i], /* i always 2 here */
0,0,0,0,0,
bit_fix_new(3,5,0,7,0,0,0), /* a bit_fix is targeted to the byte */
-1,0);
case 'G':
IIF(11,2,42,
(unsigned long)argv[i], /* i always 3 here */
0,0,0,0,0,
bit_fix_new(5,0,1,32,-1,0,-1),-1,0);
break;
case 'i':
iif.instr_size+=1;
b=2+i; /* put the extension byte after opcode */
IIF(b,2,1,0,0,0,0,0,0,0,-1,0);
default:
as_fatal("Bad opcode-table-option, check in file ns32k-opcode.h");
}
}
}
/* in: instruction line
out: internal structure of instruction
that has been prepared for direct conversion to fragment(s) and
fixes in a systematical fashion
Return-value = recursive_level
*/
/* build iif of one assembly text line */
int parse(line,recursive_level)
char *line;
int recursive_level;
{
register char *lineptr,c,suffix_separator;
register int i;
int argc,arg_type;
char sqr,sep;
char suffix[MAX_ARGS],*argv[MAX_ARGS];/* no more than 4 operands */
if (recursive_level<=0) { /* called from md_assemble */
for (lineptr=line;(*lineptr)!='\0' && (*lineptr)!=' ';lineptr++);
c = *lineptr;
*lineptr='\0';
if (!(desc=(struct ns32k_opcode*)hash_find(inst_hash_handle,line))) {
as_fatal("No such opcode");
}
*lineptr=c;
} else {
lineptr=line;
}
argc=0;
if (*desc->operands) {
if (*lineptr++!='\0') {
sqr='[';
sep=',';
while (*lineptr!='\0') {
if (desc->operands[argc<<1]) {
suffix[argc]=0;
arg_type=desc->operands[(argc<<1)+1];
switch (arg_type) {
case 'd': case 'b': case 'p': case 'H': /* the operand is supposed to be a displacement */
/* Hackwarning: do not forget to update the 4 cases above when editing ns32k-opcode.h */
suffix_separator=':';
break;
default:
suffix_separator='\255'; /* if this char occurs we loose */
}
suffix[argc]=0; /* 0 when no ':' is encountered */
argv[argc]=freeptr;
*freeptr='\0';
while ((c = *lineptr)!='\0' && c!=sep) {
if (c==sqr) {
if (sqr=='[') {
sqr=']';sep='\0';
} else {
sqr='[';sep=',';
}
}
if (c==suffix_separator) { /* ':' - label/suffix separator */
switch (lineptr[1]) {
case 'b':suffix[argc]=1;break;
case 'w':suffix[argc]=2;break;
case 'd':suffix[argc]=4;break;
default: as_warn("Bad suffix, defaulting to d");
suffix[argc]=4;
if (lineptr[1]=='\0' || lineptr[1]==sep) {
lineptr+=1;
continue;
}
}
lineptr+=2;
continue;
}
*freeptr++=c;
lineptr++;
}
*freeptr++='\0';
argc+=1;
if (*lineptr=='\0') continue;
lineptr+=1;
} else {
as_fatal("Too many operands passed to instruction");
}
}
}
}
if (argc!=strlen(desc->operands)/2) {
if (strlen(desc->default_args)) { /* we can apply default, dont goof */
if (parse(desc->default_args,1)!=1) { /* check error in default */
as_fatal("Wrong numbers of operands in default, check ns32k-opcodes.h");
}
} else {
as_fatal("Wrong number of operands");
}
}
for (i=0;i<IIF_ENTRIES;i++) {
iif.iifP[i].type=0; /* mark all entries as void*/
}
/* build opcode iif-entry */
iif.instr_size=desc->opcode_size/8;
IIF(1,1,iif.instr_size,desc->opcode_seed,0,0,0,0,0,0,-1,0);
/* this call encodes operands to iif format */
if (argc) {
encode_operand(argc,
argv,
&desc->operands[0],
&suffix[0],
desc->im_size,
desc->opcode_size);
}
return recursive_level;
}