-
Notifications
You must be signed in to change notification settings - Fork 427
/
predict.py
730 lines (663 loc) · 21.6 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
"""
clone the following repo if haven't
- git clone 'https://github.com/openai/CLIP'
- git clone 'https://github.com/CompVis/taming-transformers'
"""
import sys
import tempfile
import warnings
import numpy as np
from pathlib import Path
import argparse
import torch
from torch import nn, optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from torch.cuda import get_device_properties
from omegaconf import OmegaConf
from torch_optimizer import DiffGrad, AdamP, RAdam
import kornia.augmentation as K
import imageio
from tqdm import tqdm
import cog
from CLIP import clip
from PIL import ImageFile, Image, PngImagePlugin, ImageChops
sys.path.append("taming-transformers")
from taming.models import cond_transformer, vqgan
ImageFile.LOAD_TRUNCATED_IMAGES = True
torch.backends.cudnn.benchmark = False
warnings.filterwarnings("ignore")
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
class ClampWithGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
@staticmethod
def backward(ctx, grad_in):
(input,) = ctx.saved_tensors
return (
grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0),
None,
None,
)
replace_grad = ReplaceGrad.apply
clamp_with_grad = ClampWithGrad.apply
class Predictor(cog.Predictor):
def setup(self):
self.device = torch.device("cuda:0")
# Check for GPU and reduce the default image size if low VRAM
default_image_size = 512 # >8GB VRAM
if not torch.cuda.is_available():
default_image_size = 256 # no GPU found
elif (
get_device_properties(0).total_memory <= 2 ** 33
): # 2 ** 33 = 8,589,934,592 bytes = 8 GB
default_image_size = 318 # <8GB VRAM
self.args = get_args()
self.args.size = [default_image_size, default_image_size]
self.model = load_vqgan_model(
self.args.vqgan_config, self.args.vqgan_checkpoint
).to(self.device)
print("Model loaded!")
jit = True if float(torch.__version__[:3]) < 1.8 else False
self.perceptor = (
clip.load(self.args.clip_model, jit=jit)[0]
.eval()
.requires_grad_(False)
.to(self.device)
)
cut_size = self.perceptor.visual.input_resolution
# choose latest Cutout class as default
self.make_cutouts = MakeCutouts(
cut_size, self.args.cutn, self.args, cut_pow=self.args.cut_pow
)
self.z_min = self.model.quantize.embedding.weight.min(dim=0).values[
None, :, None, None
]
self.z_max = self.model.quantize.embedding.weight.max(dim=0).values[
None, :, None, None
]
print("Using device:", self.device)
print("Optimising using:", self.args.optimiser)
@cog.input(
"image",
type=Path,
default=None,
help="Initial Image, optional. When the image is provided, the prompts will be used to create some 'style transfer' effect",
)
@cog.input(
"prompts",
type=str,
default="A cute, smiling, Nerdy Rodent",
help="Prompts for generating images. Supports multiple prompts separated by pipe | ",
)
@cog.input(
"iterations",
type=int,
default=300,
help="total iterations for generating images. Set to lower iterations when initial image is uploaded",
)
@cog.input(
"display_frequency",
type=int,
default=20,
help="display frequency for intermediate generated images",
)
def predict(self, image, prompts, iterations, display_frequency):
# gumbel is False
e_dim = self.model.quantize.e_dim
n_toks = self.model.quantize.n_e
f = 2 ** (self.model.decoder.num_resolutions - 1)
toksX, toksY = self.args.size[0] // f, self.args.size[1] // f
sideX, sideY = toksX * f, toksY * f
if image is not None:
self.args.init_image = str(image)
self.args.step_size = 0.25
if "http" in self.args.init_image:
img = Image.open(urlopen(self.args.init_image))
else:
img = Image.open(self.args.init_image)
pil_image = img.convert("RGB")
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
pil_tensor = TF.to_tensor(pil_image)
z, *_ = self.model.encode(pil_tensor.to(self.device).unsqueeze(0) * 2 - 1)
else:
one_hot = F.one_hot(
torch.randint(n_toks, [toksY * toksX], device=self.device), n_toks
).float()
# gumbel is False
z = one_hot @ self.model.quantize.embedding.weight
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
z_orig = z.clone()
z.requires_grad_(True)
self.opt = get_opt(self.args.optimiser, self.args.step_size, z)
self.args.display_freq = display_frequency
self.args.max_iterations = iterations
story_phrases = [phrase.strip() for phrase in prompts.split("^")]
# Make a list of all phrases
all_phrases = []
for phrase in story_phrases:
all_phrases.append(phrase.split("|"))
# First phrase
prompts = all_phrases[0]
pMs = []
for prompt in prompts:
txt, weight, stop = split_prompt(prompt)
embed = self.perceptor.encode_text(
clip.tokenize(txt).to(self.device)
).float()
pMs.append(Prompt(embed, weight, stop).to(self.device))
# args.image_prompts is None for now
# args.noise_prompt_seeds, args.noise_prompt_weights None for now
print(f"Using text prompts: {prompts}")
if self.args.init_image:
print(f"Using initial image: {self.args.init_image}")
if self.args.seed is None:
seed = torch.seed()
else:
seed = self.args.seed
torch.manual_seed(seed)
print(f"Using seed: {seed}")
i = 0 # Iteration counter
# j = 0 # Zoom video frame counter
# p = 1 # Phrase counter
# smoother = 0 # Smoother counter
# this_video_frame = 0 # for video styling
out_path = Path(tempfile.mkdtemp()) / "out.png"
# Do it
for i in range(1, self.args.max_iterations + 1):
self.opt.zero_grad(set_to_none=True)
lossAll = ascend_txt(
i, z, self.perceptor, self.args, self.model, self.make_cutouts, pMs
)
if i % self.args.display_freq == 0 and not i == self.args.max_iterations:
yield checkin(i, lossAll, prompts, self.model, z, out_path)
loss = sum(lossAll)
loss.backward()
self.opt.step()
# with torch.no_grad():
with torch.inference_mode():
z.copy_(z.maximum(self.z_min).minimum(self.z_max))
# Ready to stop yet?
if i == self.args.max_iterations:
yield checkin(i, lossAll, prompts, self.model, z, out_path)
@torch.inference_mode()
def checkin(i, losses, prompts, model, z, outpath):
losses_str = ", ".join(f"{loss.item():g}" for loss in losses)
tqdm.write(f"i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}")
out = synth(z, model)
info = PngImagePlugin.PngInfo()
info.add_text("comment", f"{prompts}")
TF.to_pil_image(out[0].cpu()).save(str(outpath), pnginfo=info)
return outpath
def get_args():
vq_parser = argparse.ArgumentParser(description="Image generation using VQGAN+CLIP")
# Add the arguments
vq_parser.add_argument(
"-p", "--prompts", type=str, help="Text prompts", default=None, dest="prompts"
)
vq_parser.add_argument(
"-ip",
"--image_prompts",
type=str,
help="Image prompts / target image",
default=[],
dest="image_prompts",
)
vq_parser.add_argument(
"-i",
"--iterations",
type=int,
help="Number of iterations",
default=500,
dest="max_iterations",
)
vq_parser.add_argument(
"-se",
"--save_every",
type=int,
help="Save image iterations",
default=50,
dest="display_freq",
)
vq_parser.add_argument(
"-s",
"--size",
nargs=2,
type=int,
help="Image size (width height) (default: %(default)s)",
dest="size",
)
vq_parser.add_argument(
"-ii",
"--init_image",
type=str,
help="Initial image",
default=None,
dest="init_image",
)
vq_parser.add_argument(
"-in",
"--init_noise",
type=str,
help="Initial noise image (pixels or gradient)",
default=None,
dest="init_noise",
)
vq_parser.add_argument(
"-iw",
"--init_weight",
type=float,
help="Initial weight",
default=0.0,
dest="init_weight",
)
vq_parser.add_argument(
"-m",
"--clip_model",
type=str,
help="CLIP model (e.g. ViT-B/32, ViT-B/16)",
default="ViT-B/32",
dest="clip_model",
)
vq_parser.add_argument(
"-conf",
"--vqgan_config",
type=str,
help="VQGAN config",
default=f"checkpoints/vqgan_imagenet_f16_16384.yaml",
dest="vqgan_config",
)
vq_parser.add_argument(
"-ckpt",
"--vqgan_checkpoint",
type=str,
help="VQGAN checkpoint",
default=f"checkpoints/vqgan_imagenet_f16_16384.ckpt",
dest="vqgan_checkpoint",
)
vq_parser.add_argument(
"-nps",
"--noise_prompt_seeds",
nargs="*",
type=int,
help="Noise prompt seeds",
default=[],
dest="noise_prompt_seeds",
)
vq_parser.add_argument(
"-npw",
"--noise_prompt_weights",
nargs="*",
type=float,
help="Noise prompt weights",
default=[],
dest="noise_prompt_weights",
)
vq_parser.add_argument(
"-lr",
"--learning_rate",
type=float,
help="Learning rate",
default=0.1,
dest="step_size",
)
vq_parser.add_argument(
"-cutm",
"--cut_method",
type=str,
help="Cut method",
choices=["original", "updated", "nrupdated", "updatedpooling", "latest"],
default="latest",
dest="cut_method",
)
vq_parser.add_argument(
"-cuts", "--num_cuts", type=int, help="Number of cuts", default=32, dest="cutn"
)
vq_parser.add_argument(
"-cutp",
"--cut_power",
type=float,
help="Cut power",
default=1.0,
dest="cut_pow",
)
vq_parser.add_argument(
"-sd", "--seed", type=int, help="Seed", default=None, dest="seed"
)
vq_parser.add_argument(
"-opt",
"--optimiser",
type=str,
help="Optimiser",
choices=[
"Adam",
"AdamW",
"Adagrad",
"Adamax",
"DiffGrad",
"AdamP",
"RAdam",
"RMSprop",
],
default="Adam",
dest="optimiser",
)
vq_parser.add_argument(
"-o",
"--output",
type=str,
help="Output filename",
default="output.png",
dest="output",
)
vq_parser.add_argument(
"-vid",
"--video",
action="store_true",
help="Create video frames?",
dest="make_video",
)
vq_parser.add_argument(
"-zvid",
"--zoom_video",
action="store_true",
help="Create zoom video?",
dest="make_zoom_video",
)
vq_parser.add_argument(
"-zs",
"--zoom_start",
type=int,
help="Zoom start iteration",
default=0,
dest="zoom_start",
)
vq_parser.add_argument(
"-zse",
"--zoom_save_every",
type=int,
help="Save zoom image iterations",
default=10,
dest="zoom_frequency",
)
vq_parser.add_argument(
"-zsc",
"--zoom_scale",
type=float,
help="Zoom scale %",
default=0.99,
dest="zoom_scale",
)
vq_parser.add_argument(
"-zsx",
"--zoom_shift_x",
type=int,
help="Zoom shift x (left/right) amount in pixels",
default=0,
dest="zoom_shift_x",
)
vq_parser.add_argument(
"-zsy",
"--zoom_shift_y",
type=int,
help="Zoom shift y (up/down) amount in pixels",
default=0,
dest="zoom_shift_y",
)
vq_parser.add_argument(
"-cpe",
"--change_prompt_every",
type=int,
help="Prompt change frequency",
default=0,
dest="prompt_frequency",
)
vq_parser.add_argument(
"-vl",
"--video_length",
type=float,
help="Video length in seconds (not interpolated)",
default=10,
dest="video_length",
)
vq_parser.add_argument(
"-ofps",
"--output_video_fps",
type=float,
help="Create an interpolated video (Nvidia GPU only) with this fps (min 10. best set to 30 or 60)",
default=30,
dest="output_video_fps",
)
vq_parser.add_argument(
"-ifps",
"--input_video_fps",
type=float,
help="When creating an interpolated video, use this as the input fps to interpolate from (>0 & <ofps)",
default=15,
dest="input_video_fps",
)
vq_parser.add_argument(
"-d",
"--deterministic",
action="store_true",
help="Enable cudnn.deterministic?",
dest="cudnn_determinism",
)
vq_parser.add_argument(
"-aug",
"--augments",
nargs="+",
action="append",
type=str,
choices=["Ji", "Sh", "Gn", "Pe", "Ro", "Af", "Et", "Ts", "Cr", "Er", "Re"],
help="Enabled augments (latest vut method only)",
default=[["Af", "Pe", "Ji", "Er"]],
dest="augments",
)
vq_parser.add_argument(
"-vsd",
"--video_style_dir",
type=str,
help="Directory with video frames to style",
default=None,
dest="video_style_dir",
)
vq_parser.add_argument(
"-cd",
"--cuda_device",
type=str,
help="Cuda device to use",
default="cuda:0",
dest="cuda_device",
)
# Execute the parse_args() method
args = vq_parser.parse_args("")
return args
def load_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
# config.model.target == 'taming.models.vqgan.VQModel':
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
del model.loss
return model
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, args, cut_pow=1.0):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow # not used with pooling
# Pick your own augments & their order
augment_list = []
for item in args.augments[0]:
if item == "Ji":
augment_list.append(
K.ColorJitter(
brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1, p=0.7
)
)
elif item == "Sh":
augment_list.append(K.RandomSharpness(sharpness=0.3, p=0.5))
elif item == "Gn":
augment_list.append(K.RandomGaussianNoise(mean=0.0, std=1.0, p=0.5))
elif item == "Pe":
augment_list.append(K.RandomPerspective(distortion_scale=0.7, p=0.7))
elif item == "Ro":
augment_list.append(K.RandomRotation(degrees=15, p=0.7))
elif item == "Af":
augment_list.append(
K.RandomAffine(
degrees=15,
translate=0.1,
shear=5,
p=0.7,
padding_mode="zeros",
keepdim=True,
)
) # border, reflection, zeros
elif item == "Et":
augment_list.append(K.RandomElasticTransform(p=0.7))
elif item == "Ts":
augment_list.append(
K.RandomThinPlateSpline(scale=0.8, same_on_batch=True, p=0.7)
)
elif item == "Cr":
augment_list.append(
K.RandomCrop(
size=(self.cut_size, self.cut_size),
pad_if_needed=True,
padding_mode="reflect",
p=0.5,
)
)
elif item == "Er":
augment_list.append(
K.RandomErasing(
scale=(0.1, 0.4),
ratio=(0.3, 1 / 0.3),
same_on_batch=True,
p=0.7,
)
)
elif item == "Re":
augment_list.append(
K.RandomResizedCrop(
size=(self.cut_size, self.cut_size),
scale=(0.1, 1),
ratio=(0.75, 1.333),
cropping_mode="resample",
p=0.5,
)
)
self.augs = nn.Sequential(*augment_list)
self.noise_fac = 0.1
# self.noise_fac = False
# Uncomment if you like seeing the list ;)
# print(augment_list)
# Pooling
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
def forward(self, input):
cutouts = []
for _ in range(self.cutn):
# Use Pooling
cutout = (self.av_pool(input) + self.max_pool(input)) / 2
cutouts.append(cutout)
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def get_opt(opt_name, opt_lr, z):
if opt_name == "Adam":
opt = optim.Adam([z], lr=opt_lr) # LR=0.1 (Default)
elif opt_name == "AdamW":
opt = optim.AdamW([z], lr=opt_lr)
elif opt_name == "Adagrad":
opt = optim.Adagrad([z], lr=opt_lr)
elif opt_name == "Adamax":
opt = optim.Adamax([z], lr=opt_lr)
elif opt_name == "DiffGrad":
opt = DiffGrad(
[z], lr=opt_lr, eps=1e-9, weight_decay=1e-9
) # NR: Playing for reasons
elif opt_name == "AdamP":
opt = AdamP([z], lr=opt_lr)
elif opt_name == "RAdam":
opt = RAdam([z], lr=opt_lr)
elif opt_name == "RMSprop":
opt = optim.RMSprop([z], lr=opt_lr)
else:
print("Unknown optimiser. Are choices broken?")
opt = optim.Adam([z], lr=opt_lr)
return opt
def ascend_txt(i, z, perceptor, args, model, make_cutouts, pMs):
normalize = transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711],
)
out = synth(z, model)
iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
result = []
if args.init_weight:
# result.append(F.mse_loss(z, z_orig) * args.init_weight / 2)
result.append(
F.mse_loss(z, torch.zeros_like(z_orig))
* ((1 / torch.tensor(i * 2 + 1)) * args.init_weight)
/ 2
)
for prompt in pMs:
result.append(prompt(iii))
if args.make_video:
img = np.array(
out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8)
)[:, :, :]
img = np.transpose(img, (1, 2, 0))
imageio.imwrite("steps/" + str(i) + ".png", np.array(img))
return result
def synth(z, model):
# gumbel is False
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(
3, 1
)
return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1)
def vector_quantize(x, codebook):
d = (
x.pow(2).sum(dim=-1, keepdim=True)
+ codebook.pow(2).sum(dim=1)
- 2 * x @ codebook.T
)
indices = d.argmin(-1)
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
return replace_grad(x_q, x)
def split_prompt(prompt):
vals = prompt.rsplit(":", 2)
vals = vals + ["", "1", "-inf"][len(vals) :]
return vals[0], float(vals[1]), float(vals[2])
class Prompt(nn.Module):
def __init__(self, embed, weight=1.0, stop=float("-inf")):
super().__init__()
self.register_buffer("embed", embed)
self.register_buffer("weight", torch.as_tensor(weight))
self.register_buffer("stop", torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return (
self.weight.abs()
* replace_grad(dists, torch.maximum(dists, self.stop)).mean()
)