-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtom_speaker.py
99 lines (88 loc) · 4.35 KB
/
tom_speaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from tkinter import image_names
from typing import Tuple
import torch
from torch import nn
from coco_speaker import COCOSpeaker
from tom_listener import TOMListener
from speaker import Speaker
from listener import Listener
from beam_search import beam_search
class TOMSpeaker(nn.Module):
'''
Speaker with a ToM reranking module. Initialized from ppo.py.
'''
def __init__(self, maxlen, vocabsize, sigma, beam_size, tom_weight, use_coco=False,
word_list = None, use_pretrained = False, beam_search = False, loaded_model_paths = None):
super(TOMSpeaker, self).__init__()
self.beam_size = beam_size
self.use_coco = use_coco
if self.use_coco:
self.speaker = COCOSpeaker(max_len=maxlen, vocabulary_size=vocabsize, D_img=2048, word_list=word_list)
self.speaker = torch.jit.script(self.speaker)
else:
self.speaker = Speaker(max_len=maxlen, vocabulary_size=vocabsize)
self.tom_listener = TOMListener(beam_size=beam_size, maxlen=maxlen, use_pretrained=use_pretrained)
# load pretrained speaker if path is given
if loaded_model_paths is not None:
self.speaker.load_state_dict(torch.load(loaded_model_paths[0]))
self.tom_listener.load_state_dict(torch.load(loaded_model_paths[1]))
self.speaker.eval()
self.tom_weight = tom_weight
self.sigma = sigma
self.beam_search = beam_search
def sample(
self, images: torch.FloatTensor, target_ids: torch.LongTensor, batch_size = 4,
actions: torch.LongTensor = None, beam_size = None, include_pred = False
) -> Tuple[
torch.LongTensor, # actions (batch_size, max_len)
torch.FloatTensor, # logprobs (batch_size, max_len)
torch.FloatTensor, # entropy (batch_size, max_len)
torch.FloatTensor, # values (batch_size, max_len)
]:
if beam_size is None:
beam_size = self.beam_size
B = images.size(0)
target_images = images[range(B), target_ids]
if self.use_coco:
speaker_actions, speaker_logp, entropy, values = self.speaker.sample_multiple(target_images, actions, beam_size)
elif self.beam_search:
speaker_actions, speaker_logp, entropy, values = self.speaker.decode_with_beam_search(target_images, self.beam_size)
else:
speaker_actions, speaker_logp, entropy, values = self.speaker.sample_multiple(target_images, actions, beam_size)
# reranking
speaker_ranking = torch.log_softmax(torch.sum(speaker_logp, 2), dim=1)
listener_ranking, pred = self.tom_listener._predict(images, target_ids, speaker_actions, beam_size = beam_size, include_pred = include_pred)
ranking = speaker_ranking + self.tom_weight*listener_ranking
# choosing best or random candidates
best_candidate = torch.argmax(ranking, dim=0)
random_candidate = torch.randint(0, speaker_actions.size(0), (best_candidate.shape[0],)).to(best_candidate.device)
best_mask = (torch.bernoulli(torch.full(best_candidate.shape, self.sigma)).int()).to(best_candidate.device)
rand_mask = (1 - best_mask).to(random_candidate.device)
candidate = best_mask*best_candidate + rand_mask*random_candidate
if include_pred:
pred = pred[candidate, range(B)]
# return action and value
tom_action = speaker_actions[candidate,range(B),:]
tom_logp = speaker_logp[candidate,range(B),:]
tom_entropy = entropy[candidate,range(B),:]
tom_values = values[candidate,range(B),:]
if include_pred:
return(tom_action, tom_logp, tom_entropy, tom_values, pred)
else:
return(tom_action, tom_logp, tom_entropy, tom_values)
def supervised_loss(
self,
images: torch.FloatTensor,
actions: torch.LongTensor,
target_ids: torch.LongTensor,
mask: torch.FloatTensor
) -> torch.FloatTensor:
"""
Compute loss for the supervised training of the model.
"""
_, logprobs, _, _ = self.sample(images, target_ids, actions = actions, beam_size = 1)
return -(logprobs.sum(-1) * mask.float()).mean()
def update_tom_weight(self, new_weight):
self.tom_weight = new_weight
def update_sigma(self, new_sigma):
self.sigma = new_sigma