From 36041784857d47597efb205de5d53754068520f5 Mon Sep 17 00:00:00 2001 From: Rohan Modi Date: Mon, 26 Feb 2024 11:10:13 -0500 Subject: [PATCH] Added abstract functions for LM and distmod --- llments/lm/distmod.py | 95 +++++++++++++++++++++++++++++++++++++++++++ llments/lm/lm.py | 21 ++++++++++ 2 files changed, 116 insertions(+) create mode 100644 llments/lm/distmod.py diff --git a/llments/lm/distmod.py b/llments/lm/distmod.py new file mode 100644 index 0000000..40c8068 --- /dev/null +++ b/llments/lm/distmod.py @@ -0,0 +1,95 @@ +from llments.lm.lm import LanguageModel + + +class DistributionModifier: + def fit( + self, + base_model: LanguageModel, + target: LanguageModel, + task_description: str | None = None, + ) -> LanguageModel: + """Fit a language model to match another language model's probability distribution. + + Args: + base_model (LanguageModel): The language model to be fitted. + target (LanguageModel): The target language model whose probability distribution the base model should match. + task_description (str | None, optional): A task description providing additional context about the fitting process. Defaults to None. + + Returns: + LanguageModel: The fitted language model. + """ + base_model.fit(target, task_description) + return base_model + + def prompt(self, base_model: LanguageModel, prompt_text: str) -> LanguageModel: + """Modify the base model's distribution using a textual prompt. + + Args: + base_model (LanguageModel): The language model to be modified. + prompt_text (str): The textual prompt to influence the model's output. + + Returns: + LanguageModel: The modified language model. + """ + # Prompting implementation + # Integrate prompt_text into base_model generation process + return base_model + + def reinforcement_learning( + self, base_model: LanguageModel, reward_function + ) -> LanguageModel: + """Apply reinforcement learning to modify a model based on the provided reward function. + + Args: + base_model (LanguageModel): The language model to be modified. + reward_function (_type_): The reward function for the reinforcement learning process. + + Returns: + LanguageModel: The modified language model. + """ + # Reinforcement Learning implementation + return base_model + + def retrieval_augmented_generation( + self, base_model: LanguageModel, data + ) -> LanguageModel: + """Apply retrieval-augmented generation over a dataset to enhance the model's generation. + + Args: + base_model (LanguageModel): The language model to be enhanced. + data (_type_): The dataset to be used for retrieval-augmented generation. + + Returns: + LanguageModel: The enhanced language model. + """ + # RAG implementation + return base_model + + def ensemble( + self, models: list[LanguageModel], weights: list[float] + ) -> LanguageModel: + """Combine several models into one by ensembling their outputs based on specified weights. + + Args: + models (list[LanguageModel]): A list of language models to be ensembled. + weights (list[float]): A list of weights corresponding to each model. + + Returns: + LanguageModel: A new ensembled language model. + """ + # ensembled_model = LanguageModel() + # Ensembling implementation + return models[0] # Ideally return the ensembled model + + def filter(self, base_model: LanguageModel, filtering_rule) -> LanguageModel: + """Filter down the model's space according to a filtering rule. + + Args: + base_model (LanguageModel): The language model to be filtered. + filtering_rule (_type_): A rule or criteria to filter the model's space. + + Returns: + LanguageModel: The filtered language model. + """ + # Filtering implementation + return base_model diff --git a/llments/lm/lm.py b/llments/lm/lm.py index ead0ebb..160f715 100644 --- a/llments/lm/lm.py +++ b/llments/lm/lm.py @@ -26,3 +26,24 @@ def fit( The fitted language model. """ ... + + @abc.abstractmethod + def calculcate_probability(self, output: str) -> float: + """Calculate the probability of an output given the language model. + + Args: + output (str): The output sequence for which the probability is calculated. + + Returns: + float: The probability of output x given the language model. + """ + ... + + @abc.abstractmethod + def sample(self) -> str: + """Sample an output given the language model. + + Returns: + str: A sampled output sequence from the language model. + """ + ...