-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathmain.js
381 lines (371 loc) · 12 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import { Niivue } from "@niivue/niivue";
import { runInference } from "./brainchop-mainthread.js";
import { inferenceModelsList, brainChopOpts } from "./brainchop-parameters.js";
import { isChrome, localSystemDetails } from "./brainchop-diagnostics.js";
import MyWorker from "./brainchop-webworker.js?worker";
async function main() {
dragMode.onchange = async function () {
nv1.opts.dragMode = this.selectedIndex;
};
drawDrop.onchange = async function () {
if (nv1.volumes.length < 2) {
window.alert("No segmentation open (use the Segmentation pull down)");
drawDrop.selectedIndex = -1;
return;
}
if (!nv1.drawBitmap) {
window.alert("No drawing (hint: use the Draw pull down to select a pen)");
drawDrop.selectedIndex = -1;
return;
}
const mode = parseInt(this.value);
if (mode === 0) {
nv1.drawUndo();
drawDrop.selectedIndex = -1;
return;
}
let img = nv1.volumes[1].img;
let draw = await nv1.saveImage({ filename: "", isSaveDrawing: true });
const niiHdrBytes = 352;
const nvox = draw.length;
if (mode === 1) {
//append
for (let i = 0; i < nvox; i++) if (draw[niiHdrBytes + i] > 0) img[i] = 1;
}
if (mode === 2) {
//delete
for (let i = 0; i < nvox; i++) if (draw[niiHdrBytes + i] > 0) img[i] = 0;
}
nv1.closeDrawing();
nv1.updateGLVolume();
nv1.setDrawingEnabled(false);
penDrop.selectedIndex = -1;
drawDrop.selectedIndex = -1;
};
penDrop.onchange = async function () {
const mode = parseInt(this.value);
nv1.setDrawingEnabled(mode >= 0);
if (mode >= 0) nv1.setPenValue(mode & 7, mode > 7);
};
aboutBtn.onclick = function () {
window.alert(
"Drag and drop NIfTI images. Use pulldown menu to choose brainchop model",
);
};
diagnosticsBtn.onclick = function () {
if (diagnosticsString.length < 1) {
window.alert(
"No diagnostic string generated: run a model to create diagnostics",
);
return;
}
missingLabelStatus = missingLabelStatus.slice(0, -2);
if (missingLabelStatus !== "") {
if (diagnosticsString.includes('Status: OK')) {
diagnosticsString = diagnosticsString.replace('Status: OK', `Status: ${missingLabelStatus}`);
}
}
missingLabelStatus = ""
navigator.clipboard.writeText(diagnosticsString);
window.alert("Diagnostics copied to clipboard\n" + diagnosticsString);
};
opacitySlider0.oninput = function () {
nv1.setOpacity(0, opacitySlider0.value / 255);
nv1.updateGLVolume();
};
opacitySlider1.oninput = function () {
nv1.setOpacity(1, opacitySlider1.value / 255);
};
async function ensureConformed() {
const nii = nv1.volumes[0];
let isConformed =
nii.dims[1] === 256 && nii.dims[2] === 256 && nii.dims[3] === 256;
if (
nii.permRAS[0] !== -1 ||
nii.permRAS[1] !== 3 ||
nii.permRAS[2] !== -2
) {
isConformed = false;
}
if (isConformed) {
return;
}
const nii2 = await nv1.conform(nii, false);
await nv1.removeVolume(nv1.volumes[0]);
await nv1.addVolume(nii2);
}
async function closeAllOverlays() {
while (nv1.volumes.length > 1) {
await nv1.removeVolume(nv1.volumes[1]);
}
}
modelSelect.onchange = async function () {
if (this.selectedIndex < 0) {
modelSelect.selectedIndex = 11;
}
await closeAllOverlays();
await ensureConformed();
const model = inferenceModelsList[this.selectedIndex];
const opts = brainChopOpts;
// opts.rootURL should be the url without the query string
const urlParams = new URL(window.location.href);
// remove the query string
opts.rootURL = urlParams.origin + urlParams.pathname;
const isLocalhost = Boolean(
window.location.hostname === "localhost" ||
// [::1] is the IPv6 localhost address.
window.location.hostname === "[::1]" ||
// 127.0.0.1/8 is considered localhost for IPv4.
window.location.hostname.match(
/^127(?:\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3}$/,
),
);
if (isLocalhost) {
opts.rootURL = location.protocol + "//" + location.host;
}
if (workerCheck.checked) {
if (typeof chopWorker !== "undefined") {
console.log(
"Unable to start new segmentation: previous call has not completed",
);
return;
}
chopWorker = await new MyWorker({ type: "module" });
const hdr = {
datatypeCode: nv1.volumes[0].hdr.datatypeCode,
dims: nv1.volumes[0].hdr.dims,
};
const msg = {
opts,
modelEntry: model,
niftiHeader: hdr,
niftiImage: nv1.volumes[0].img,
};
chopWorker.postMessage(msg);
chopWorker.onmessage = function (event) {
const cmd = event.data.cmd;
if (cmd === "ui") {
if (event.data.modalMessage !== "") {
chopWorker.terminate();
chopWorker = undefined;
}
callbackUI(
event.data.message,
event.data.progressFrac,
event.data.modalMessage,
event.data.statData,
);
}
if (cmd === "img") {
chopWorker.terminate();
chopWorker = undefined;
callbackImg(event.data.img, event.data.opts, event.data.modelEntry);
}
};
} else {
runInference(
opts,
model,
nv1.volumes[0].hdr,
nv1.volumes[0].img,
callbackImg,
callbackUI,
);
}
};
saveImgBtn.onclick = function () {
nv1.volumes[1].saveToDisk("segmentaion.nii.gz");
};
saveSceneBtn.onclick = function () {
nv1.saveDocument("brainchop.nvd");
};
workerCheck.onchange = function () {
modelSelect.onchange();
};
clipCheck.onchange = function () {
if (clipCheck.checked) {
nv1.setClipPlane([0, 0, 90]);
} else {
nv1.setClipPlane([2, 0, 90]);
}
};
function doLoadImage() {
opacitySlider0.oninput();
}
async function fetchJSON(fnm) {
const response = await fetch(fnm);
const js = await response.json();
return js;
}
async function getUniqueValuesAndCounts(uint8Array) {
// Use a Map to count occurrences
const countsMap = new Map();
for (let i = 0; i < uint8Array.length; i++) {
const value = uint8Array[i];
if (countsMap.has(value)) {
countsMap.set(value, countsMap.get(value) + 1);
} else {
countsMap.set(value, 1);
}
}
// Convert the Map to an array of objects
const result = Array.from(countsMap, ([value, count]) => ({
value,
count,
}));
return result;
}
async function createLabeledCounts(uniqueValuesAndCounts, labelStrings) {
if (uniqueValuesAndCounts.length !== labelStrings.length) {
missingLabelStatus = "Failed to Predict Labels - "
console.error(
"Mismatch in lengths: uniqueValuesAndCounts has",
uniqueValuesAndCounts.length,
"items, but labelStrings has",
labelStrings.length,
"items.",
);
}
return labelStrings.map((label, index) => {
// Find the entry matching the current label index
const entry = uniqueValuesAndCounts.find(item => item.value === index);
// If an entry is found, append the count value with 'mm3', otherwise show 'Missing'
const countText = entry ? `${entry.count} mm3` : "Missing";
countText === "Missing"
? missingLabelStatus += `${label}, ` : null;
return `${label} ${countText}`;
});
}
async function callbackImg(img, opts, modelEntry) {
closeAllOverlays();
const overlayVolume = await nv1.volumes[0].clone();
overlayVolume.zeroImage();
overlayVolume.hdr.scl_inter = 0;
overlayVolume.hdr.scl_slope = 1;
overlayVolume.img = new Uint8Array(img);
const roiVolumes = await getUniqueValuesAndCounts(overlayVolume.img);
console.log(roiVolumes);
if (modelEntry.colormapPath) {
const cmap = await fetchJSON(modelEntry.colormapPath);
const newLabels = await createLabeledCounts(roiVolumes, cmap["labels"]);
console.log(newLabels);
overlayVolume.setColormapLabel({
R: cmap["R"],
G: cmap["G"],
B: cmap["B"],
labels: newLabels,
});
// n.b. most models create indexed labels, but those without colormap mask scalar input
overlayVolume.hdr.intent_code = 1002; // NIFTI_INTENT_LABEL
} else {
let colormap = opts.atlasSelectedColorTable.toLowerCase();
const cmaps = nv1.colormaps();
if (!cmaps.includes(colormap)) {
colormap = "actc";
}
overlayVolume.colormap = colormap;
}
overlayVolume.opacity = opacitySlider1.value / 255;
await nv1.addVolume(overlayVolume);
}
async function reportTelemetry(statData) {
if (typeof statData === "string" || statData instanceof String) {
function strToArray(str) {
const list = JSON.parse(str);
const array = [];
for (const key in list) {
array[key] = list[key];
}
return array;
}
statData = strToArray(statData);
}
statData = await localSystemDetails(statData, nv1.gl);
diagnosticsString =
":: Diagnostics can help resolve issues https://github.com/neuroneural/brainchop/issues ::\n";
for (const key in statData) {
diagnosticsString += key + ": " + statData[key] + "\n";
}
}
function callbackUI(
message = "",
progressFrac = -1,
modalMessage = "",
statData = [],
) {
if (message !== "") {
console.log(message);
document.getElementById("location").innerHTML = message;
}
if (isNaN(progressFrac)) {
// memory issue
memstatus.style.color = "red";
memstatus.innerHTML = "Memory Issue";
} else if (progressFrac >= 0) {
modelProgress.value = progressFrac * modelProgress.max;
}
if (modalMessage !== "") {
window.alert(modalMessage);
}
if (Object.keys(statData).length > 0) {
reportTelemetry(statData);
}
}
function handleLocationChange(data) {
document.getElementById("location").innerHTML = data.string
.split(" ")
.map((value) => `<p style="font-size: 14px;margin:0px;">${value}</p>`)
.join("");
}
const defaults = {
backColor: [0.4, 0.4, 0.4, 1],
show3Dcrosshair: true,
onLocationChange: handleLocationChange,
};
let diagnosticsString = "";
let missingLabelStatus = ""
let chopWorker;
const nv1 = new Niivue(defaults);
nv1.attachToCanvas(gl1);
nv1.opts.dragMode = nv1.dragModes.pan;
nv1.opts.multiplanarForceRender = true;
nv1.opts.yoke3Dto2DZoom = true;
nv1.opts.crosshairGap = 11;
nv1.setInterpolation(true);
await nv1.loadVolumes([{ url: "./t1_crop.nii.gz" }]);
for (let i = 0; i < inferenceModelsList.length; i++) {
const option = document.createElement("option");
option.text = inferenceModelsList[i].modelName;
option.value = inferenceModelsList[i].id.toString();
modelSelect.appendChild(option);
}
nv1.onImageLoaded = doLoadImage;
modelSelect.selectedIndex = -1;
drawDrop.selectedIndex = -1;
workerCheck.checked = await isChrome(); // TODO: Safari does not yet support WebGL TFJS webworkers, test FireFox
// uncomment next two lines to automatically run segmentation when web page is loaded
// modelSelect.selectedIndex = 11
// modelSelect.onchange()
// get the query string parameter model.
// if set, select the model from the dropdown list and call the modelSelect.onchange() function
const urlParams = new URLSearchParams(window.location.search);
const modelParam = urlParams.get("model");
if (modelParam) {
// make sure the model index is a number
modelSelect.selectedIndex = Number(modelParam);
modelSelect.onchange();
}
}
async function updateStarCount() {
try {
const response = await fetch(
`https://api.github.com/repos/neuroneural/brainchop`,
);
const data = await response.json();
document.getElementById("star-count").textContent = data.stargazers_count;
} catch (error) {
console.error("Error fetching star count:", error);
}
}
updateStarCount();
main();