Skip to content

Commit ccd1fff

Browse files
committed
fix memory
1 parent 3c18d8d commit ccd1fff

File tree

1 file changed

+26
-30
lines changed

1 file changed

+26
-30
lines changed

js/brainchop/mainMeshNetFunctions.js

Lines changed: 26 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -4354,6 +4354,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad,
43544354
res.layers[i].dilationRate,
43554355
3); // important for memory use
43564356
}
4357+
43574358
// Log memory usage
43584359
const memoryInfo = tf.memory();
43594360
console.log(`Iteration ${i}:`);
@@ -4362,6 +4363,8 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad,
43624363
console.log(`Bytes In Use: ${memoryInfo.numBytes}`);
43634364
console.log(`Megabytes In Use: ${(memoryInfo.numBytes / 1048576).toFixed(3)} MB`);
43644365
console.log(`Unreliable: ${memoryInfo.unreliable}`);
4366+
4367+
43654368
tf.dispose(curTensor[i-1]);
43664369

43674370
} catch(err) {
@@ -4759,26 +4762,30 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad,
47594762
let timer = window.setInterval(async function() {
47604763

47614764
try {
4762-
if (res.layers[i].activation.getClassName() !== 'linear') {
4765+
// if (res.layers[i].activation.getClassName() !== 'linear') {
47634766
curTensor[i] = res.layers[i].apply( curTensor[i-1]);
4764-
} else {
4767+
// } else {
4768+
4769+
// curTensor[i] = convByOutputChannelAndInputSlicing(curTensor[i-1],
4770+
// res.layers[i].getWeights()[0],
4771+
// res.layers[i].getWeights()[1],
4772+
// res.layers[i].strides,
4773+
// res.layers[i].padding,
4774+
// res.layers[i].dilationRate,
4775+
// 3); // important for memory use
4776+
// }
4777+
4778+
4779+
// // Log memory usage
4780+
// const memoryInfo = tf.memory();
4781+
// console.log(`Iteration ${i}:`);
4782+
// console.log(`Number of Tensors: ${memoryInfo.numTensors}`);
4783+
// console.log(`Number of Data Buffers: ${memoryInfo.numDataBuffers}`);
4784+
// console.log(`Bytes In Use: ${memoryInfo.numBytes}`);
4785+
// console.log(`Megabytes In Use: ${(memoryInfo.numBytes / 1048576).toFixed(3)} MB`);
4786+
// console.log(`Unreliable: ${memoryInfo.unreliable}`);
4787+
47654788

4766-
curTensor[i] = convByOutputChannelAndInputSlicing(curTensor[i-1],
4767-
res.layers[i].getWeights()[0],
4768-
res.layers[i].getWeights()[1],
4769-
res.layers[i].strides,
4770-
res.layers[i].padding,
4771-
res.layers[i].dilationRate,
4772-
3); // important for memory use
4773-
}
4774-
// Log memory usage
4775-
const memoryInfo = tf.memory();
4776-
console.log(`Iteration ${i}:`);
4777-
console.log(`Number of Tensors: ${memoryInfo.numTensors}`);
4778-
console.log(`Number of Data Buffers: ${memoryInfo.numDataBuffers}`);
4779-
console.log(`Bytes In Use: ${memoryInfo.numBytes}`);
4780-
console.log(`Megabytes In Use: ${(memoryInfo.numBytes / 1048576).toFixed(3)} MB`);
4781-
console.log(`Unreliable: ${memoryInfo.unreliable}`);
47824789
tf.dispose(curTensor[i-1]);
47834790

47844791
} catch(err) {
@@ -5952,18 +5959,7 @@ get3dObjectBoundingVolume = async(slices_3d) => {
59525959

59535960
try {
59545961
//-- curTensor[i] = res.layers[i].apply( curTensor[i-1]);
5955-
// if (res.layers[i].activation.getClassName() !== 'linear') {
5956-
curTensor[i] = res.layers[i].apply( curTensor[i-1]);
5957-
// } else {
5958-
5959-
// curTensor[i] = convByOutputChannelAndInputSlicing(curTensor[i-1],
5960-
// res.layers[i].getWeights()[0],
5961-
// res.layers[i].getWeights()[1],
5962-
// res.layers[i].strides,
5963-
// res.layers[i].padding,
5964-
// res.layers[i].dilationRate,
5965-
// 3); // important for memory use
5966-
// }
5962+
curTensor[i] = res.layers[i].apply( curTensor[i-1]);
59675963

59685964
} catch(err) {
59695965

0 commit comments

Comments
 (0)