-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSongSequenceAnalysis.m
232 lines (176 loc) · 8.08 KB
/
SongSequenceAnalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
function [KL2,tau] = SongSequenceAnalysis()
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
%-------------------------------------------------------------------------%
%---------------------- Get Bird ID --------------------------------------%
%-------------------------------------------------------------------------%
birdNum = Get_Bird_Number;
%-------------------------------------------------------------------------%
%---------------------- Syllable Parameters ------------------------------%
%-------------------------------------------------------------------------%
cd('C:\Users\Dr. JT\Documents\DataAnalysis\TF_Birdsong\ParamSpace')
pfName = strcat(birdNum,'_SyllParamSpace.mat');
if ~exist(pfName,'file')
Get_syllable_extraction
else
load(pfName)
end
%-------------------------------------------------------------------------%
%---------------------- Syllable Parameters ------------------------------%
%-------------------------------------------------------------------------%
sapCheck = strcat('C:\Users\Dr. JT\Documents\DataAnalysis\TF_Birdsong\DataSet_Data\',birdNum);
cd(sapCheck)
fileNames = cellstr(ls);
songsDSNs = fileNames(3:end); % songDSNs has PreAll
PreAllName = strcat(birdNum,'_PreALL.mat');
nameIndex = ~strcmp(PreAllName,songsDSNs);
songDSlist = songsDSNs(nameIndex);
% Replace songsDSNs with songListReO
[songListReO , ~] = songDateReorder_v2(songDSlist);
load(PreAllName);
%-------------------------------------------------------------------------%
%---------------------- Defaults -----------------------------------------%
%-------------------------------------------------------------------------%
% featNames = {'Mamp','Mpitch','MFM','MAM','Mentropy','MpitchG','Mfreq','VFM',...
% 'Ventropy','Vpitchg','Vfreq','VAM'};
% numFeats = length(featNames);
numClusts = length(SyllIDS);
durationPreall = PreMetaSet.syldur;
feat2usePreall = PreMetaSet.(FeatureUsed);
% Actual syllables in order contained in SyllIDS variable
syllIndex = zeros(length(SyllPolyIndices{1}),1);
for syI = 1:numClusts
syllIndex = syllIndex + (syI * SyllPolyIndices{syI});
end
%% plot the clutered scatterplot %%%%
xMax = mean(durationPreall) + (std(durationPreall)*2.25);
yTest = mean(feat2usePreall) + (std(feat2usePreall)*2.25);
if sign(mean(yTest)) == -1
yMin = quantile(feat2usePreall,0.01);
yMax = quantile(feat2usePreall,0.99);
else
yMin = 0;
yMax = mean(feat2usePreall) + (std(feat2usePreall)*2.25);
end
figure(1);
Rcolor = linspace(0.9,0,numClusts);
subplot(3,1,[1 2]);
plot(durationPreall(syllIndex == 0),feat2usePreall(syllIndex == 0), 'k.'); hold on;
for clI = 1:numClusts
[GEOM, ~, ~] = polygeom(SyllPolygons.xCords{clI},SyllPolygons.yCords{clI});
xCentroid = GEOM(2);
yCentroid = GEOM(3);
plot(SyllPolygons.xCords{clI},SyllPolygons.yCords{clI}, 'Color', [1 Rcolor(clI) Rcolor(clI)],'LineStyle', '--')
hold on
plot(durationPreall(syllIndex == clI),feat2usePreall(syllIndex == clI), '.', 'Color', [1 Rcolor(clI) Rcolor(clI)]);
text(xCentroid,yCentroid,SyllIDS{clI},'FontSize',18,'FontWeight','bold','BackgroundColor',[1 1 1]);
xlabel('Duration (ms)', 'fontsize', 12);
ylabel(sprintf('%s', FeatureUsed), 'fontsize', 12);
title('Labeled Clusters', 'fontsize', 14);
axis tight;
set(gca, 'XLim', ([0 xMax]), 'YLim', ([-4 yMax]))
end
%% calculate probability for each sequence %%%
% prepare labels for sequence analysis
syllsNoise = 0:numClusts;
allSylls = ['n' , SyllIDS];
syllIDnums = zeros(1,numel(allSylls)^2);
binstart = 1:length(allSylls);
incstart = 0;
for clI = 1:length(allSylls)
binInc = incstart * 10;
syllIDnums(binstart) = (0:numClusts) + binInc;
binstart = binstart + length(allSylls);
incstart = incstart + 1;
end
sylListPermute = [allSylls, fliplr(allSylls)];
sylPermRun = nchoosek(cell2mat(sylListPermute),2);
allPossSylTrans = unique(cellstr(sylPermRun)); % original sbin2
%% Probability of each cluster
syllOccur = histc(syllIndex, syllsNoise);
syllProb = syllOccur/sum(syllOccur); % probability of each cluster
% Identify unique transitions by multiplying each syllable by 10 (except last)
% and then adding that value to the next syllable identity starting with
% the second syllable. index A [1 2 3 4] + index B [2 3 4 5]. This will
% correspond to bin2 identities.
syllIndexTrans = syllIndex(1:end-1)*10 + syllIndex(2:end);
% remove first elements of bouts
wavNumsPreAll = StripWav(PreMetaSet.filename);
syllIndexTrans(diff(wavNumsPreAll.WavNumber) ~= 0) = [];
syllTransOccur = histc(syllIndexTrans, syllIDnums);
syllTransProb = syllTransOccur/sum(syllTransOccur); % probability of each sequence
%% label each note for day 2 to day 12 %%%
numDays = length(songListReO); % number of sessions (before and after surgery)
for dayI = 1:numDays
tempDay = songListReO{dayI};
load(tempDay)
tempSylIndex = zeros(length(songDataset.syldur),1);
for clI = 1:numClusts
tempSylIndex = tempSylIndex + clI *...
inpolygon(songDataset.syldur,...
songDataset.(FeatureUsed),...
SyllPolygons.xCords{clI},...
SyllPolygons.yCords{clI});
end
syllOccur(:,dayI + 1) = histc(tempSylIndex, syllsNoise);
syllProb(:,dayI + 1) = syllOccur(:, dayI + 1) / sum(syllOccur(:, dayI + 1)); % probability of each cluster
tempSylTransIndex = tempSylIndex(1:end-1)*10 + tempSylIndex(2:end);
tempSylTransIndex(diff(songDataset.WavNumber) ~= 0) = []; % remove the boundry points
syllTransOccur(:,dayI + 1) = histc(tempSylTransIndex, syllIDnums);
syllTransProb(:,dayI + 1) = syllTransOccur(:,dayI + 1)/sum(syllTransOccur(:,dayI + 1)); % probability of each sequence
end
%% plot the selected sequencing distribution %%%
if size(syllTransProb,2) > 12
dayIndex = [1 4 8 12];
day = {'day 1', 'day 4', 'day 8', 'day 12'};
numdisDays = length(dayIndex);
% Get max syll trans probability across days of interest greater than 0.05
maxProbIndex = find(max(syllTransProb(:,dayIndex),[],2) > 0.05); % add low probability sequences together
maxSyllProbs = syllTransProb(maxProbIndex, :);
maxSyllProbs = [maxSyllProbs; 1 - sum(maxSyllProbs, 1)];
for ddI = 1:numdisDays
figure(2)
subplot(numdisDays,1,ddI);
bar(1:length(maxProbIndex)+1, maxSyllProbs(:,dayIndex(ddI)));
ylim([0 max(syllTransProb(:)) + 0.1]);
xlim([0.5 length(maxProbIndex) + 1.5]);
set(gca, 'xtick', 0:length(maxProbIndex), 'xticklabel', ' ');
if ddI == numdisDays
set(gca, 'xtick', 1:length(maxProbIndex)+1, 'xticklabel',...
[allPossSylTrans(round(maxProbIndex/2))' 'others'], 'fontsize', 12);
end
set(gca, 'ytick', [0 0.4], 'fontsize', 12);
text(length(maxProbIndex)-1, 0.35, day{ddI}, 'fontsize', 14);
end
end
%% remove the zero effect
syllProb = syllProb + 1e-6;
syllProb = syllProb./(ones(size(syllProb,1),1)*sum(syllProb));
syllTransProb = syllTransProb+ 1e-6;
syllTransProb = syllTransProb./(ones(size(syllTransProb,1),1)*sum(syllTransProb));
%% estimate the KL-distance of the notes recovery %%%
allDays = length(songListReO);
for dayCount = 1:allDays
E(1,dayCount) = sum(syllProb(:,1).*log2(syllProb(:,1)+eps) - syllProb(:,1).*log2(syllProb(:,dayCount)+eps));
E(2,dayCount) = sum(syllTransProb(:,1).*log2(syllTransProb(:,1)+eps) - syllTransProb(:,1).*log2(syllTransProb(:,dayCount)+eps));
end
% KL1 = E(1,:); % K-L distance on discrete clusters
KL2 = E(2,:); % K-L distance on sequences
%% plot the K-L distance on sequence %%%
figure(3);
subplot(2,1,1);
plot(KL2, 'ko-', 'linewidth', 2);
axis([0.5 allDays + 0.5 0 max(KL2+1)]);
title('K-L distance on Sequence', 'fontsize', 12);
ylabel(sprintf('KL-distance from \n day 1 (bits)'), 'fontsize', 10);
xlabel('Session (day)', 'fontsize', 10);
set(gca,'xtick', 0:allDays);
%% calculate the recovery rate for clusters and sequences %%%
% Needs revision 9/1/2013
% 4 is post 1 to end
% allDays - 3 (3 is the total number of pre days)
nKL = E(:,4:end)./(E(:,4)*ones(1,allDays-3));
X = (0:allDays-4)';
Y = log(nKL)';
tau = -1./(inv(X'*X)*X'*Y); % tau(1): clusters, tau(2): sequences
end