forked from IBM/DLaaS-Getting-StartedTutorial
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmmain.py
205 lines (172 loc) · 6.37 KB
/
mmain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import models
import inspect
from torch.autograd import Variable
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-l', action='store_true',
help='lists all available models')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument('--cifar_path',
default='./cifar10',
type=str, help='path to cifar tar.gz')
parser.add_argument('--checkpoint_path', default='.',
type=str, help='checkpoint path')
parser.add_argument('--epochs', default=10, type=int, help='no of epochs')
parser.add_argument('--model', default='vgg16', type=str,
help='Model type: vgg16,...')
if not len(sys.argv) > 1:
parser.print_help()
exit(0)
# else:
args = parser.parse_args()
print(args)
if args.l:
for name, obj in inspect.getmembers(models): # what do I do here?
if inspect.isclass(obj) and not name == 'VGG':
print(name, ' (', obj, ')')
if inspect.isfunction(obj) and name[0].isupper():
print(name, ' (', obj, ')')
if name == 'VGG':
for vgg in models.vgg_cfg.keys():
print(vgg, ' ( config in ', obj, ')')
exit(0)
# else:
input_data_folder = args.cifar_path
model_path = args.checkpoint_path
model_file = lambda x: os.path.join(model_path, "chkpt_" + str(x) + ".pt")
use_cuda = torch.cuda.is_available()
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root=input_data_folder, train=True,
download=False,
transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root=input_data_folder, train=False,
download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False,
num_workers=2)
classes = (
'plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship',
'truck')
# Model
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load(model_path)
net = checkpoint['net']
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
else:
print('==> Building model..')
model_name = args.model # type: str
if model_name.startswith('VGG') or model_name.startswith('vgg'):
net = models.VGG(model_name.upper())
else:
net = getattr(models, model_name)()
# net = VGG('VGG19')
# net = ResNet18()
# net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
# net = MobileNetV2()
# net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()
criterion = nn.CrossEntropyLoss()
if use_cuda:
net.cuda()
net = torch.nn.DataParallel(net,
device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
criterion = criterion.cuda()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9,
weight_decay=5e-4)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
print(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss / (batch_idx + 1), 100. * correct / total,
correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
print(batch_idx, len(testloader),
'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss / (batch_idx + 1), 100. * correct / total,
correct, total))
# Save checkpoint.
acc = 100. * correct / total
if acc > best_acc:
print('Saving..')
state = {
'net': net.module if use_cuda else net,
'acc': acc,
'epoch': epoch,
}
# if not os.path.isdir('checkpoint'):
# os.mkdir('checkpoint')
torch.save(state, model_file(str(epoch) + '_' + str(acc)))
best_acc = acc
for epoch in range(start_epoch, start_epoch + args.epochs):
train(epoch)
test(epoch)