-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathres_net
498 lines (498 loc) · 18.7 KB
/
res_net
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
digraph {
graph [size="64.05,64.05"]
node [align=left fontname=monospace fontsize=10 height=0.2 ranksep=0.1 shape=box style=filled]
139834042841344 [label="
(32, 2)" fillcolor=darkolivegreen1]
139834042966224 [label=AddmmBackward0]
139834042969488 -> 139834042966224
139832751723920 [label="classifier.6.bias
(2)" fillcolor=lightblue]
139832751723920 -> 139834042969488
139834042969488 [label=AccumulateGrad]
139834042969440 -> 139834042966224
139834042969440 [label=ReluBackward0]
139834042966512 -> 139834042969440
139834042966512 [label=AddmmBackward0]
139834042969776 -> 139834042966512
139832751725120 [label="classifier.4.bias
(2048)" fillcolor=lightblue]
139832751725120 -> 139834042969776
139834042969776 [label=AccumulateGrad]
139834042968864 -> 139834042966512
139834042968864 [label=MulBackward0]
139834042966560 -> 139834042968864
139834042966560 [label=ReluBackward0]
139834042966464 -> 139834042966560
139834042966464 [label=AddmmBackward0]
139834042969680 -> 139834042966464
139832751724480 [label="classifier.1.bias
(2048)" fillcolor=lightblue]
139832751724480 -> 139834042969680
139834042969680 [label=AccumulateGrad]
139834042966608 -> 139834042966464
139834042966608 [label=MulBackward0]
139834042967328 -> 139834042966608
139834042967328 [label=ViewBackward0]
139834042969968 -> 139834042967328
139834042969968 [label=AvgPool2DBackward0]
139834042966800 -> 139834042969968
139834042966800 [label=ReluBackward0]
139834042968384 -> 139834042966800
139834042968384 [label=AddBackward0]
139834042968672 -> 139834042968384
139834042968672 [label=NativeBatchNormBackward0]
139834042969872 -> 139834042968672
139834042969872 [label=ConvolutionBackward0]
139834042967472 -> 139834042969872
139834042967472 [label=ReluBackward0]
139834042966176 -> 139834042967472
139834042966176 [label=NativeBatchNormBackward0]
139834042969920 -> 139834042966176
139834042969920 [label=ConvolutionBackward0]
139834042969248 -> 139834042969920
139834042969248 [label=ReluBackward0]
139834042966080 -> 139834042969248
139834042966080 [label=AddBackward0]
139834042969536 -> 139834042966080
139834042969536 [label=NativeBatchNormBackward0]
139834042969200 -> 139834042969536
139834042969200 [label=ConvolutionBackward0]
139834042996336 -> 139834042969200
139834042996336 [label=ReluBackward0]
139832751686464 -> 139834042996336
139832751686464 [label=NativeBatchNormBackward0]
139832751686656 -> 139832751686464
139832751686656 [label=ConvolutionBackward0]
139832751688480 -> 139832751686656
139832751688480 [label=ReluBackward0]
139832751688816 -> 139832751688480
139832751688816 [label=AddBackward0]
139832751689392 -> 139832751688816
139832751689392 [label=NativeBatchNormBackward0]
139832751687568 -> 139832751689392
139832751687568 [label=ConvolutionBackward0]
139832751687328 -> 139832751687568
139832751687328 [label=ReluBackward0]
139832751687616 -> 139832751687328
139832751687616 [label=NativeBatchNormBackward0]
139832751689440 -> 139832751687616
139832751689440 [label=ConvolutionBackward0]
139832751685840 -> 139832751689440
139832751685840 [label=ReluBackward0]
139832639652240 -> 139832751685840
139832639652240 [label=AddBackward0]
139832639655024 -> 139832639652240
139832639655024 [label=NativeBatchNormBackward0]
139832639655264 -> 139832639655024
139832639655264 [label=ConvolutionBackward0]
139832639654592 -> 139832639655264
139832639654592 [label=ReluBackward0]
139832639652624 -> 139832639654592
139832639652624 [label=NativeBatchNormBackward0]
139832639652480 -> 139832639652624
139832639652480 [label=ConvolutionBackward0]
139832639652960 -> 139832639652480
139832639652960 [label=ReluBackward0]
139832639652816 -> 139832639652960
139832639652816 [label=AddBackward0]
139832639653392 -> 139832639652816
139832639653392 [label=NativeBatchNormBackward0]
139832639652432 -> 139832639653392
139832639652432 [label=ConvolutionBackward0]
139832639654832 -> 139832639652432
139832639654832 [label=ReluBackward0]
139832639655456 -> 139832639654832
139832639655456 [label=NativeBatchNormBackward0]
139832639653584 -> 139832639655456
139832639653584 [label=ConvolutionBackward0]
139832639654928 -> 139832639653584
139832639654928 [label=ReluBackward0]
139832639654544 -> 139832639654928
139832639654544 [label=AddBackward0]
139832639654688 -> 139832639654544
139832639654688 [label=NativeBatchNormBackward0]
139832639655072 -> 139832639654688
139832639655072 [label=ConvolutionBackward0]
139832639654016 -> 139832639655072
139832639654016 [label=ReluBackward0]
139832639652336 -> 139832639654016
139832639652336 [label=NativeBatchNormBackward0]
139832639654304 -> 139832639652336
139832639654304 [label=ConvolutionBackward0]
139832639651904 -> 139832639654304
139832639651904 [label=ReluBackward0]
139832639654208 -> 139832639651904
139832639654208 [label=AddBackward0]
139832639654160 -> 139832639654208
139832639654160 [label=NativeBatchNormBackward0]
139832639654496 -> 139832639654160
139832639654496 [label=ConvolutionBackward0]
139832639655696 -> 139832639654496
139832639655696 [label=ReluBackward0]
139832639653488 -> 139832639655696
139832639653488 [label=NativeBatchNormBackward0]
139834042838224 -> 139832639653488
139834042838224 [label=ConvolutionBackward0]
139832639654112 -> 139834042838224
139832639654112 [label=ReluBackward0]
139834042838368 -> 139832639654112
139834042838368 [label=AddBackward0]
139834042838560 -> 139834042838368
139834042838560 [label=NativeBatchNormBackward0]
139834042838080 -> 139834042838560
139834042838080 [label=ConvolutionBackward0]
139834042837024 -> 139834042838080
139834042837024 [label=ReluBackward0]
139834042837600 -> 139834042837024
139834042837600 [label=NativeBatchNormBackward0]
139834042837168 -> 139834042837600
139834042837168 [label=ConvolutionBackward0]
139834042838608 -> 139834042837168
139834042838608 [label=ReluBackward0]
139834042836304 -> 139834042838608
139834042836304 [label=NativeBatchNormBackward0]
139834042835200 -> 139834042836304
139834042835200 [label=ConvolutionBackward0]
139834042836928 -> 139834042835200
139832639616320 [label="conv1.weight
(64, 3, 3, 3)" fillcolor=lightblue]
139832639616320 -> 139834042836928
139834042836928 [label=AccumulateGrad]
139834042836832 -> 139834042836304
139832639617120 [label="bn1.weight
(64)" fillcolor=lightblue]
139832639617120 -> 139834042836832
139834042836832 [label=AccumulateGrad]
139834042835632 -> 139834042836304
139832639617040 [label="bn1.bias
(64)" fillcolor=lightblue]
139832639617040 -> 139834042835632
139834042835632 [label=AccumulateGrad]
139834042835728 -> 139834042837168
139832639617600 [label="layer1.0.conv1.weight
(64, 64, 3, 3)" fillcolor=lightblue]
139832639617600 -> 139834042835728
139834042835728 [label=AccumulateGrad]
139834042836784 -> 139834042837600
139832639615920 [label="layer1.0.bn1.weight
(64)" fillcolor=lightblue]
139832639615920 -> 139834042836784
139834042836784 [label=AccumulateGrad]
139834042837216 -> 139834042837600
139832639618160 [label="layer1.0.bn1.bias
(64)" fillcolor=lightblue]
139832639618160 -> 139834042837216
139834042837216 [label=AccumulateGrad]
139834042837408 -> 139834042838080
139832639618000 [label="layer1.0.conv2.weight
(64, 64, 3, 3)" fillcolor=lightblue]
139832639618000 -> 139834042837408
139834042837408 [label=AccumulateGrad]
139834042838656 -> 139834042838560
139832639618240 [label="layer1.0.bn2.weight
(64)" fillcolor=lightblue]
139832639618240 -> 139834042838656
139834042838656 [label=AccumulateGrad]
139834042835296 -> 139834042838560
139832639618320 [label="layer1.0.bn2.bias
(64)" fillcolor=lightblue]
139832639618320 -> 139834042835296
139834042835296 [label=AccumulateGrad]
139834042838608 -> 139834042838368
139834042838320 -> 139834042838224
139834042981408 [label="layer1.1.conv1.weight
(64, 64, 3, 3)" fillcolor=lightblue]
139834042981408 -> 139834042838320
139834042838320 [label=AccumulateGrad]
139834042838512 -> 139832639653488
139834042981488 [label="layer1.1.bn1.weight
(64)" fillcolor=lightblue]
139834042981488 -> 139834042838512
139834042838512 [label=AccumulateGrad]
139834042838800 -> 139832639653488
139834042980608 [label="layer1.1.bn1.bias
(64)" fillcolor=lightblue]
139834042980608 -> 139834042838800
139834042838800 [label=AccumulateGrad]
139832639654880 -> 139832639654496
139834042981648 [label="layer1.1.conv2.weight
(64, 64, 3, 3)" fillcolor=lightblue]
139834042981648 -> 139832639654880
139832639654880 [label=AccumulateGrad]
139832639654352 -> 139832639654160
139834042980848 [label="layer1.1.bn2.weight
(64)" fillcolor=lightblue]
139834042980848 -> 139832639654352
139832639654352 [label=AccumulateGrad]
139832639652768 -> 139832639654160
139834042981568 [label="layer1.1.bn2.bias
(64)" fillcolor=lightblue]
139834042981568 -> 139832639652768
139832639652768 [label=AccumulateGrad]
139832639654112 -> 139832639654208
139832639653056 -> 139832639654304
139834042978448 [label="layer2.0.conv1.weight
(128, 64, 3, 3)" fillcolor=lightblue]
139834042978448 -> 139832639653056
139832639653056 [label=AccumulateGrad]
139832639653296 -> 139832639652336
139832818565344 [label="layer2.0.bn1.weight
(128)" fillcolor=lightblue]
139832818565344 -> 139832639653296
139832639653296 [label=AccumulateGrad]
139832639654784 -> 139832639652336
139832751696288 [label="layer2.0.bn1.bias
(128)" fillcolor=lightblue]
139832751696288 -> 139832639654784
139832639654784 [label=AccumulateGrad]
139832639652000 -> 139832639655072
139832639547968 [label="layer2.0.conv2.weight
(128, 128, 3, 3)" fillcolor=lightblue]
139832639547968 -> 139832639652000
139832639652000 [label=AccumulateGrad]
139832639652720 -> 139832639654688
139832639547728 [label="layer2.0.bn2.weight
(128)" fillcolor=lightblue]
139832639547728 -> 139832639652720
139832639652720 [label=AccumulateGrad]
139832639652912 -> 139832639654688
139832639547648 [label="layer2.0.bn2.bias
(128)" fillcolor=lightblue]
139832639547648 -> 139832639652912
139832639652912 [label=AccumulateGrad]
139832639654736 -> 139832639654544
139832639654736 [label=NativeBatchNormBackward0]
139832639652528 -> 139832639654736
139832639652528 [label=ConvolutionBackward0]
139832639651904 -> 139832639652528
139832639653728 -> 139832639652528
139832639548528 [label="layer2.0.shortcut.0.weight
(128, 64, 1, 1)" fillcolor=lightblue]
139832639548528 -> 139832639653728
139832639653728 [label=AccumulateGrad]
139832639652048 -> 139832639654736
139834042991056 [label="layer2.0.shortcut.1.weight
(128)" fillcolor=lightblue]
139834042991056 -> 139832639652048
139832639652048 [label=AccumulateGrad]
139832639652864 -> 139832639654736
139834042990976 [label="layer2.0.shortcut.1.bias
(128)" fillcolor=lightblue]
139834042990976 -> 139832639652864
139832639652864 [label=AccumulateGrad]
139832639653104 -> 139832639653584
139834042994496 [label="layer2.1.conv1.weight
(128, 128, 3, 3)" fillcolor=lightblue]
139834042994496 -> 139832639653104
139832639653104 [label=AccumulateGrad]
139832639653632 -> 139832639655456
139834042992096 [label="layer2.1.bn1.weight
(128)" fillcolor=lightblue]
139834042992096 -> 139832639653632
139832639653632 [label=AccumulateGrad]
139832639654640 -> 139832639655456
139834042992736 [label="layer2.1.bn1.bias
(128)" fillcolor=lightblue]
139834042992736 -> 139832639654640
139832639654640 [label=AccumulateGrad]
139832639653440 -> 139832639652432
139834043076672 [label="layer2.1.conv2.weight
(128, 128, 3, 3)" fillcolor=lightblue]
139834043076672 -> 139832639653440
139832639653440 [label=AccumulateGrad]
139832639653248 -> 139832639653392
139834043079632 [label="layer2.1.bn2.weight
(128)" fillcolor=lightblue]
139834043079632 -> 139832639653248
139832639653248 [label=AccumulateGrad]
139832639655216 -> 139832639653392
139834043079072 [label="layer2.1.bn2.bias
(128)" fillcolor=lightblue]
139834043079072 -> 139832639655216
139832639655216 [label=AccumulateGrad]
139832639654928 -> 139832639652816
139832639653680 -> 139832639652480
139834043080112 [label="layer3.0.conv1.weight
(256, 128, 3, 3)" fillcolor=lightblue]
139834043080112 -> 139832639653680
139832639653680 [label=AccumulateGrad]
139832639652672 -> 139832639652624
139834043079472 [label="layer3.0.bn1.weight
(256)" fillcolor=lightblue]
139834043079472 -> 139832639652672
139832639652672 [label=AccumulateGrad]
139832639654256 -> 139832639652624
139834043080352 [label="layer3.0.bn1.bias
(256)" fillcolor=lightblue]
139834043080352 -> 139832639654256
139832639654256 [label=AccumulateGrad]
139832639652144 -> 139832639655264
139834043078592 [label="layer3.0.conv2.weight
(256, 256, 3, 3)" fillcolor=lightblue]
139834043078592 -> 139832639652144
139832639652144 [label=AccumulateGrad]
139832639653776 -> 139832639655024
139834043078032 [label="layer3.0.bn2.weight
(256)" fillcolor=lightblue]
139834043078032 -> 139832639653776
139832639653776 [label=AccumulateGrad]
139832639655408 -> 139832639655024
139834043077312 [label="layer3.0.bn2.bias
(256)" fillcolor=lightblue]
139834043077312 -> 139832639655408
139832639655408 [label=AccumulateGrad]
139832639652096 -> 139832639652240
139832639652096 [label=NativeBatchNormBackward0]
139832639653200 -> 139832639652096
139832639653200 [label=ConvolutionBackward0]
139832639652960 -> 139832639653200
139832639655312 -> 139832639653200
139834043111520 [label="layer3.0.shortcut.0.weight
(256, 128, 1, 1)" fillcolor=lightblue]
139834043111520 -> 139832639655312
139832639655312 [label=AccumulateGrad]
139832639652192 -> 139832639652096
139834043110800 [label="layer3.0.shortcut.1.weight
(256)" fillcolor=lightblue]
139834043110800 -> 139832639652192
139832639652192 [label=AccumulateGrad]
139832639651952 -> 139832639652096
139834043109680 [label="layer3.0.shortcut.1.bias
(256)" fillcolor=lightblue]
139834043109680 -> 139832639651952
139832639651952 [label=AccumulateGrad]
139832751689344 -> 139832751689440
139834043110480 [label="layer3.1.conv1.weight
(256, 256, 3, 3)" fillcolor=lightblue]
139834043110480 -> 139832751689344
139832751689344 [label=AccumulateGrad]
139832751687184 -> 139832751687616
139834043112240 [label="layer3.1.bn1.weight
(256)" fillcolor=lightblue]
139834043112240 -> 139832751687184
139832751687184 [label=AccumulateGrad]
139832751689680 -> 139832751687616
139834043112480 [label="layer3.1.bn1.bias
(256)" fillcolor=lightblue]
139834043112480 -> 139832751689680
139832751689680 [label=AccumulateGrad]
139832751686608 -> 139832751687568
139834043551072 [label="layer3.1.conv2.weight
(256, 256, 3, 3)" fillcolor=lightblue]
139834043551072 -> 139832751686608
139832751686608 [label=AccumulateGrad]
139832751687232 -> 139832751689392
139834043551312 [label="layer3.1.bn2.weight
(256)" fillcolor=lightblue]
139834043551312 -> 139832751687232
139832751687232 [label=AccumulateGrad]
139832751685936 -> 139832751689392
139834043550672 [label="layer3.1.bn2.bias
(256)" fillcolor=lightblue]
139834043550672 -> 139832751685936
139832751685936 [label=AccumulateGrad]
139832751685840 -> 139832751688816
139832751688048 -> 139832751686656
139834043112320 [label="layer4.0.conv1.weight
(512, 256, 3, 3)" fillcolor=lightblue]
139834043112320 -> 139832751688048
139832751688048 [label=AccumulateGrad]
139832751685696 -> 139832751686464
139834043113040 [label="layer4.0.bn1.weight
(512)" fillcolor=lightblue]
139834043113040 -> 139832751685696
139832751685696 [label=AccumulateGrad]
139832751689248 -> 139832751686464
139834043113280 [label="layer4.0.bn1.bias
(512)" fillcolor=lightblue]
139834043113280 -> 139832751689248
139832751689248 [label=AccumulateGrad]
139834042968960 -> 139834042969200
139832751697488 [label="layer4.0.conv2.weight
(512, 512, 3, 3)" fillcolor=lightblue]
139832751697488 -> 139834042968960
139834042968960 [label=AccumulateGrad]
139834042966656 -> 139834042969536
139834043077232 [label="layer4.0.bn2.weight
(512)" fillcolor=lightblue]
139834043077232 -> 139834042966656
139834042966656 [label=AccumulateGrad]
139834042968240 -> 139834042969536
139834043078832 [label="layer4.0.bn2.bias
(512)" fillcolor=lightblue]
139834043078832 -> 139834042968240
139834042968240 [label=AccumulateGrad]
139834042966752 -> 139834042966080
139834042966752 [label=NativeBatchNormBackward0]
139834042966128 -> 139834042966752
139834042966128 [label=ConvolutionBackward0]
139832751688480 -> 139834042966128
139832751686224 -> 139834042966128
139834042742640 [label="layer4.0.shortcut.0.weight
(512, 256, 1, 1)" fillcolor=lightblue]
139834042742640 -> 139832751686224
139832751686224 [label=AccumulateGrad]
139832751688288 -> 139834042966752
139834042742720 [label="layer4.0.shortcut.1.weight
(512)" fillcolor=lightblue]
139834042742720 -> 139832751688288
139832751688288 [label=AccumulateGrad]
139832751686320 -> 139834042966752
139834042741280 [label="layer4.0.shortcut.1.bias
(512)" fillcolor=lightblue]
139834042741280 -> 139832751686320
139832751686320 [label=AccumulateGrad]
139834042966416 -> 139834042969920
139834042744480 [label="layer4.1.conv1.weight
(512, 512, 3, 3)" fillcolor=lightblue]
139834042744480 -> 139834042966416
139834042966416 [label=AccumulateGrad]
139834042969728 -> 139834042966176
139834042741120 [label="layer4.1.bn1.weight
(512)" fillcolor=lightblue]
139834042741120 -> 139834042969728
139834042969728 [label=AccumulateGrad]
139834042967280 -> 139834042966176
139834042741360 [label="layer4.1.bn1.bias
(512)" fillcolor=lightblue]
139834042741360 -> 139834042967280
139834042967280 [label=AccumulateGrad]
139834042966704 -> 139834042969872
139834042741840 [label="layer4.1.conv2.weight
(512, 512, 3, 3)" fillcolor=lightblue]
139834042741840 -> 139834042966704
139834042966704 [label=AccumulateGrad]
139834042969104 -> 139834042968672
139834042742160 [label="layer4.1.bn2.weight
(512)" fillcolor=lightblue]
139834042742160 -> 139834042969104
139834042969104 [label=AccumulateGrad]
139834042970016 -> 139834042968672
139834042742400 [label="layer4.1.bn2.bias
(512)" fillcolor=lightblue]
139834042742400 -> 139834042970016
139834042970016 [label=AccumulateGrad]
139834042969248 -> 139834042968384
139834042967376 -> 139834042966464
139834042967376 [label=TBackward0]
139834042967040 -> 139834042967376
139834042742080 [label="classifier.1.weight
(2048, 25088)" fillcolor=lightblue]
139834042742080 -> 139834042967040
139834042967040 [label=AccumulateGrad]
139834042967184 -> 139834042966512
139834042967184 [label=TBackward0]
139834042967136 -> 139834042967184
139832751725760 [label="classifier.4.weight
(2048, 2048)" fillcolor=lightblue]
139832751725760 -> 139834042967136
139834042967136 [label=AccumulateGrad]
139834042967088 -> 139834042966224
139834042967088 [label=TBackward0]
139834042968528 -> 139834042967088
139832751724560 [label="classifier.6.weight
(2, 2048)" fillcolor=lightblue]
139832751724560 -> 139834042968528
139834042968528 [label=AccumulateGrad]
139834042966224 -> 139834042841344
}