-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMerging_Datasets.R
46 lines (38 loc) · 1.52 KB
/
Merging_Datasets.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
### Prepare Data for Merging
##1. Load Data
library(janitor)
library(tidyverse)
library(dplyr)
# Load Stock Market Data of Pharmaceutical Companies
stock_market <- read_excel("Stock_Market_Compiled.xlsx")
# Load Daily Pharmaceutical Sales
daily_sales <- read_csv("salesdaily.csv")
## 2. Prepare Data and Merge
# Average all pharmaceutical companies' stock values by date
stock_market_by_date <-
stock_market %>%
clean_names() %>%
group_by(date) %>%
summarise_if(.predicate = function(x) is.numeric(x),
.funs = funs(mean="mean")) %>%
mutate(date = as.Date(date))
# Reformat date to match stock market data for merging
daily_sales_date <-
daily_sales %>%
clean_names() %>%
separate(datum, c("month", "date", "year"), "/") %>%
mutate(datum = paste(year, month, date, sep = "-"),
datum = as.Date(datum)) %>%
filter(!(year=="2019")) %>% # Include only 2014-2019 data
select(c(datum, m01ab:weekday_name)) %>%
rename("date" = datum)
# Merge all columns of stock market data and daily sales
daily_sales_stock <- full_join(daily_sales_date, stock_market_by_date, by = c("date"))
# Write data to share with teammates
write.csv(daily_sales_stock, "daily_sales_stock.csv", row.names = F)
### 3. Prepare Merged Data
dss_renamed <-
daily_sales_stock %>%
rename_at(.vars = 2:9, ~c("Med4RheumArth","Med4OstArth", "Aspirin",
"Ibuprofen", "Med4Tension", "Med4Sleep",
"Meds4Asthma", "Meds4Allergy"))