-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresult-compute.c
454 lines (359 loc) · 10.2 KB
/
result-compute.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#include "params.h"
#include "helper.h"
#include <assert.h>
double compute_just_wrtt_X(struct params_t* p, double* X) {
int I = p->I;
int J = p->J;
int C = p->C;
int N = p->N;
double L = p->L;
double K = p->K;
double TT = p->TT;
int i, j, c, n;
double value = 0.0;
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
for (c=0; c<C; c++) {
double vol_c = 0.0;
for (n=0; n<N; n++)
vol_c += p->vol[c*N + n];
value += (vol_c/TT * p->perf[i*J*C + j*C + c] * X[i*J*C + j*C + c]);
}
}
}
return value;
}
double compute_objperf_X(struct params_t* p, double* X) {
// return performance per byte, including phi_ij variables.
int I = p->I;
int J = p->J;
int C = p->C;
int i, j;
double value = 0.0;
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
if (p->cap[i*J + j] >= 0.000001) {
value += (X[I*J*C + i*J + j]/(p->cap[i*J + j] * p->total_links));
}
}
}
value *= SC_PHI;
value += compute_just_wrtt_X(p, X);
return value;
}
double compute_perf_X(struct params_t* p, double* X) {
// return performance per byte, including phi_ij variables.
fprintf(stderr, "compute_perf_X assumes existence of phi_ij variables in the provided solution X\n");
int I = p->I;
int J = p->J;
int C = p->C;
int N = p->N;
double L = p->L;
double K = p->K;
double TT = p->TT;
int i, j, c, n;
double value = 0.0;
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
if (p->cap[i*J+j] >= 0.000001) {
for (c=0; c<C; c++) {
double vol_c = 0.0;
for (n=0; n<N; n++)
vol_c += p->vol[c*N + n];
value += ((vol_c/p->TT) * X[i*J*C + j*C + c] * (SC_PHI * X[I*J*C + i*J + j]/(p->cap[i*J + j])));
}
}
}
}
value += compute_just_wrtt_X(p, X);
return value;
}
double compute_total_price_X(struct params_t* p, double* X) {
// return total cost, including phi_ij variables.
int I = p->I;
int J = p->J;
int C = p->C;
int N = p->N;
double L = p->L;
double K = p->K;
double TT = p->TT;
int i, j, c, n;
double value = 0.0;
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
for (c=0; c<C; c++) {
double vol_c = 0.0;
for (n=0; n<N; n++)
vol_c += p->vol[c*N + n];
value += (vol_c * p->price[i*J + j] * X[i*J*C + j*C + c]);
}
}
}
return value;
}
double compute_price_per_byte_X(struct params_t* p, double* X) {
return compute_total_price_X(p, X)/p->TT;
}
int print_link_utilizations_X(struct params_t* p, double* X) {
int i, j, c, n, I, J, C, N;
I = p->I;
J = p->J;
C = p->C;
N = p->N;
for (i=0; i<I; i++) {
for (j=0; j<p->lnum[i]; j++) {
double load = 0.0;
for (c=0; c<C; c++) {
double vol_c = 0.0;
for (n=0; n<N; n++)
vol_c += p->vol[c*N + n];
load += (vol_c * X[i*J*C + j*C + c]);
}
printf("%d %d %lf\n", i, j, load/p->cap[i*J+j]);
} // for every link
}
return 0;
}
double compute_just_wrtt_alphabeta(struct params_t* p, double* alpha, double* beta) {
int I = p->I;
int J = p->J;
int C = p->C;
int N = p->N;
double L = p->L;
double K = p->K;
double TT = p->TT;
int i, j, c, n;
double value = 0.0;
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
for (c=0; c<C; c++) {
for (n=0; n<N; n++) {
value += (p->vol[c*N + n]/TT * p->perf[i*J*C + j*C + c] * beta[i*J*C + j*C + c] * alpha[i*C*N + c*N + n]);
}
}
}
}
return value;
}
double compute_phi(double y, double cap, double scaling) {
assert(cap >= 0.000001);
double frac = y/cap;
double out;
if (frac < (1.0/3.0))
out = y;
else if (frac < (2.0/3.0))
out = 3*y - (2.0/3.0)*cap;
else if (frac < 0.9)
out = 10*y - (16.0/3.0)*cap;
else if (frac < 1)
out = 70*y - (178.0/3.0)*cap;
else out = 5000*y - (14968.0/3.0)*cap;
return out * scaling / cap;
}
double compute_perf2_alphabeta(struct params_t* p, double* alpha, double* beta) {
int I = p->I;
int J = p->J;
int C = p->C;
int N = p->N;
double L = p->L;
double K = p->K;
double TT = p->TT;
int i, j, c, n;
double value = 0.0;
// Implementation for schemes where routing clearly has the phi_ij in it
// otherwise, beta[IJC + iJ + j] would not exist!
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
if (p->cap[i*J+j] >= 0.000001) {
for (c=0; c<C; c++) {
for (n=0; n<N; n++) {
value += ((p->vol[c*N + n]/p->TT) * beta[i*J*C + j*C + c] * alpha[i*C*N + c*N + n] * (SC_PHI * beta[I*J*C + i*J + j]/(p->cap[i*J + j])));
}
}
}
}
}
value += compute_just_wrtt_alphabeta(p, alpha, beta);
return value;
}
double compute_perf_alphabeta(struct params_t* p, double* alpha, double* beta) {
int I = p->I;
int J = p->J;
int C = p->C;
int N = p->N;
double L = p->L;
double K = p->K;
double TT = p->TT;
int i, j, c, n;
double value = 0.0;
// recomputing phi_ij just to be safe.. and have to do it here
// anyway because some routing schemes don't have these variables now.
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
// determine if legitimate link
if (p->cap[i*J + j] >= 0.000001) {
double vol_cn = 0.0;
for (c=0; c<C; c++) {
for (n=0; n<N; n++) {
vol_cn += (p->vol[c*N + n] * alpha[i*C*N + c*N + n] * beta[i*J*C + j*C + c]);
}
}
value += ((vol_cn/p->TT) * compute_phi(vol_cn, p->cap[i*J + j], SC_PHI));
} // valid link
}
} // every link
// Implementation for schemes where routing clearly has the phi_ij in it
// otherwise, beta[IJC + iJ + j] would not exist!
/* for (i=0; i<I; i++) { */
/* for (j=0; j<J; j++) { */
/* if (p->cap[i*J+j] >= 0.000001) { */
/* for (c=0; c<C; c++) { */
/* for (n=0; n<N; n++) { */
/* value += ((p->vol[c*N + n]/p->TT) * beta[i*J*C + j*C + c] * alpha[i*C*N + c*N + n] * (SC_PHI * beta[I*J*C + i*J + j]/(p->cap[i*J + j]))); */
/* } */
/* } */
/* } */
/* } */
/* } */
value += compute_just_wrtt_alphabeta(p, alpha, beta);
return value;
}
double compute_objperf_alphabeta(struct params_t* p, double* alpha, double* beta) {
int I = p->I;
int J = p->J;
int C = p->C;
int N = p->N;
double L = p->L;
double K = p->K;
double TT = p->TT;
int i, j, c, n;
double value = 0.0;
// recomputing phi_ij just to be safe.. and have to do it here
// anyway because some routing schemes don't have these variables now.
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
// determine if legitimate link
if (p->cap[i*J + j] >= 0.000001) {
double vol_cn = 0.0;
for (c=0; c<C; c++) {
for (n=0; n<N; n++) {
vol_cn += (p->vol[c*N + n] * alpha[i*C*N + c*N + n] * beta[i*J*C + j*C + c]);
}
}
value += (compute_phi(vol_cn, p->cap[i*J + j], SC_PHI) / p->total_links);
} // valid link
}
} // every link
value += compute_just_wrtt_alphabeta(p, alpha, beta);
return value;
}
double compute_total_price_alphabeta(struct params_t* p, double* alpha, double* beta) {
int I = p->I;
int J = p->J;
int C = p->C;
int N = p->N;
double L = p->L;
double K = p->K;
double TT = p->TT;
int i, j, c, n;
double value = 0.0;
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
for (c=0; c<C; c++) {
double vol_c = 0.0;
for (n=0; n<N; n++) {
value += (p->vol[c*N+n] * p->price[i*J + j] * beta[i*J*C + j*C + c] * alpha[i*C*N + c*N + n]);
}
}
}
}
return value;
}
double compute_price_per_byte_alphabeta(struct params_t* p, double* alpha, double* beta) {
return compute_total_price_alphabeta(p, alpha, beta)/p->TT;
}
// Compute "actual" wRTT for entact, given alpha, X, backbone latencies
// and some basic problem information (params_t).
double compute_wrtt_with_backbone(struct params_t* p, double* alpha, double* X, double* blats) {
int i, j, c, n, e;
int I = p->I;
int J = p->J;
int C = p->C;
int N = p->N;
// to store the best performant RTT from i to c.
double* perf = (double*)malloc(I*C*sizeof(double));
// compute perf_ic, the best round trip latencies for
// paths from i to c.
for (i=0; i<I; i++) {
for (c=0; c<C; c++) {
double minlat = 100000;
for (j=0; j<J; j++) {
double curr_perf = p->perf[i*J*C + j*C + c];
if (curr_perf >= 0.000001 && curr_perf < minlat) minlat = curr_perf;
}
perf[i*C + c] = minlat;
}
}
// compute wRTT for this set of paths, using backbone, perf_ic
// and perf_ijc values.
double value = 0.0;
for (i=0; i<I; i++) {
for (e=0; e<I; e++) {
for (j=0; j<J; j++) {
for (c=0; c<C; c++) {
for (n=0; n<N; n++) {
value += (alpha[i*C*N + c*N + n] * (p->vol[c*N + n]/p->TT) * X[e*J*C + j*C + c] * (blats[i*I + e] + (perf[i*C + c]/2.0) + (p->perf[i*J*C + j*C + c]/2.0)));
}
}
}
}
}
return value;
}
double compute_avglats_c(struct params_t p, double* alpha, double* beta, int c) {
int i, j, n;
int I = p.I;
int J = p.J;
int C = p.C;
int N = p.N;
double avglats = 0.0;
double vol_c = 0.0;
for (n=0; n<N; n++) vol_c += p.vol[c*N + n];
//printf("vol_c for client %d is %lf\n", c, vol_c);
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
if (p.cap[i*J + j] >= 0.000001 && p.perf[i*J*C + j*C + c] >= 0.000001) {
for (n=0; n<N; n++) {
avglats += (alpha[i*C*N + c*N + n] * (p.vol[c*N + n]/vol_c) * beta[i*J*C + j*C + c] * (p.perf[i*J*C + j*C + c] + (SC_PHI * beta[I*J*C + i*J + j]/p.cap[i*J + j])));
//printf("alpha_icn %lf beta_ijc %lf phi_ij %lf perf_ijc %lf vol_cn %lf cap_ij %lf\n", alpha[i*C*N + c*N + n], beta[i*J*C + j*C + c], beta[I*J*C + i*J + j], p.perf[i*J*C + j*C + c], p.vol[c*N + n], p.cap[i*J + j]);
}
} // valid link
}
}
if (avglats != avglats) {// NaN test
printf("NaN trouble! client number %d\n", c);
exit(0);
}
return avglats;
}
double compute_avgcost_c(struct params_t p, double* alpha, double* beta, int c) {
int i, j, n;
int I = p.I;
int J = p.J;
int C = p.C;
int N = p.N;
double avgcost = 0.0;
double vol_c = 0.0;
for (n=0; n<N; n++) vol_c += p.vol[c*N + n];
for (i=0; i<I; i++) {
for (j=0; j<J; j++) {
if (p.cap[i*J + j] >= 0.000001 && p.perf[i*J*C + j*C + c] >= 0.000001) {
for (n=0; n<N; n++) {
avgcost += (alpha[i*C*N + c*N + n] * (p.vol[c*N + n]/vol_c) * beta[i*J*C + j*C + c] * p.price[i*J + j]);
}
} // valid link
}
}
double gbs_per_req = 65.8 * 0.000001;
return avgcost / gbs_per_req;
}