Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Deduplication keeping latest ingest value #15

Open
craig-shenton opened this issue Sep 21, 2022 · 0 comments
Open

Deduplication keeping latest ingest value #15

craig-shenton opened this issue Sep 21, 2022 · 0 comments
Labels

Comments

@craig-shenton
Copy link
Contributor

Make an R version for RAP

PySpark code example

def dedupe_df(df, col_filter, on_col: str) -> DataFrame:
    # Remove Duplicates
    w = W.partitionBy(col_filter).orderBy(F.desc(on_col))
    df_dedupe = df.withColumn("rank", F.dense_rank().over(w)).filter("rank = 1").drop("rank")
    return df_dedupe

Unit Tests

def test_output_cols_are_unique(spark_session):
    # create dataset
    import_date = ['2022-05-24', '2022-05-25']
    date = ['2016-01-01', '2016-01-01']
    code = ['RWJ', 'RWJ']
    age = ['1', '1']
    zipped = list(zip(import_date, date, code, age))
    input_df = pd.DataFrame(zipped, columns=['import_date', 'date', 'code', 'age'])
    input_df = spark_session.createDataFrame(input_df)
    input_df = input_df.withColumn('unique_check', F.concat(F.col('date'), F.col('code'), F.col('age')))
    # test function
    output_df = utils.dedupe_df(input_df, ['date', 'code', 'age'], 'import_date')
    # assertions
    assert pd.Series(output_df.toPandas()['unique_check']).is_unique == True


def test_output_cols_is_latest_value(spark_session):
    # create dataset
    import_date = ['2022-05-24', '2022-05-25']
    date = ['2016-01-01', '2016-01-01']
    code = ['RWJ', 'RWJ']
    age = ['1', '1']
    zipped = list(zip(import_date, date, code, age))
    input_df = pd.DataFrame(zipped, columns=['import_date', 'date', 'code', 'age'])
    input_df = spark_session.createDataFrame(input_df)
    input_df = input_df.withColumn('unique_check', F.concat(F.col('date'), F.col('code'), F.col('age')))
    # Calculate latetest import date
    latest_value = input_df.agg({'import_date': 'max'})
    # test function
    output_df = utils.dedupe_df(input_df, ['date', 'code', 'age'], 'import_date')
    # assertions
    assert output_df.collect()[0]['import_date'] == latest_value.collect()[0]['max(import_date)']

Reference: https://github.com/craig-shenton/foundry-de-utilities

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
Development

No branches or pull requests

1 participant