-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathplot_map.py
executable file
·218 lines (195 loc) · 11.2 KB
/
plot_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import pandas as pd
import numpy as np
import math
import urllib
import io
from PIL import Image
def deg2num(lat_deg, lon_deg, zoom):
lat_rad = math.radians(lat_deg)
n = 2.0 ** zoom
xtile = int((lon_deg + 180.0) / 360.0 * n)
ytile = int((1.0 - math.log(math.tan(lat_rad) + (1 / math.cos(lat_rad))) / math.pi) / 2.0 * n)
return (xtile, ytile)
def num2deg(xtile, ytile, zoom):
n = 2.0 ** zoom
lon_deg = xtile / n * 360.0 - 180.0
lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * ytile / n)))
lat_deg = math.degrees(lat_rad)
return (lat_deg, lon_deg)
def getImageCluster( lon_deg,lat_deg, delta_long, delta_lat,zoom,style,printlog,imgsavepath,apikey = '',access_token = '',styleid = 'cjrewwj3l2dwt2tptkiu09scd'):
'''
apikey - openstreetmap token
access_token - mapbox token
'''
if style == 1:
smurl = r'https://a.tile.thunderforest.com/cycle/{0}/{1}/{2}.png?apikey='+apikey
if style == 2:
smurl = r'https://a.tile.thunderforest.com/transport/{0}/{1}/{2}.png?apikey='+apikey
if style == 3:
smurl = r'https://tile-b.openstreetmap.fr/hot/{0}/{1}/{2}.png'
if style == 4:
smurl = r'https://tiles.wmflabs.org/bw-mapnik/{0}/{1}/{2}.png'
if style == 5:
smurl = r'http://a.tile.stamen.com/toner/{0}/{1}/{2}.png'
if style == 6:
smurl = r'http://c.tile.stamen.com/watercolor/{0}/{1}/{2}.png'
if style == 7:
if styleid == 'dark':
styleid = 'cjetnd20i1vbi2qqxbh0by7p8'
if styleid == 'light':
styleid = 'cjrewwj3l2dwt2tptkiu09scd'
smurl = r'https://api.mapbox.com/styles/v1/ni1o1/'+styleid+r'/tiles/256/{0}/{1}/{2}?&access_token='+access_token
else:
styleid = ''
xmin, ymax =deg2num(lat_deg, lon_deg, zoom)
xmax, ymin =deg2num(lat_deg + delta_lat, lon_deg + delta_long, zoom)
def get_img(smurl,zoom, xtile, ytile,imgsize,imgsavepath):
import os
filename = str(style)+str(styleid)+'-'+str(zoom)+'-'+str(xtile)+'-'+str(ytile)+'-'+str(imgsize)+'.png'
def savefig(filename,tile):
try:
if 'tileimg' in os.listdir(imgsavepath):
if filename in os.listdir(imgsavepath+'tileimg'):
pass
else:
tile.save(imgsavepath+'tileimg\\'+filename)
print('figsaved:'+filename)
else:
os.mkdir(imgsavepath+'tileimg')
except:
pass
def loadfig(filename):
try:
if 'tileimg' in os.listdir(imgsavepath):
if filename in os.listdir(imgsavepath+'tileimg'):
tile = Image.open(imgsavepath+'tileimg\\'+filename)
return tile
else:
return None
else:
os.mkdir(imgsavepath+'tileimg')
return None
except:
return None
tile = loadfig(filename)
if tile is None:
try:
t = 0
while t<10:
try:
imgurl=smurl.format(zoom, xtile, ytile)
#print("Opening: " + imgurl)
imgstr = urllib.request.urlopen(imgurl,timeout = 6).read()
tile = Image.open(io.BytesIO(imgstr))
savefig(filename,tile)
Cluster.paste(tile, box=((xtile-xmin)*imgsize , (ytile-ymin)*imgsize))
t = 10
except:
if printlog:
print('Get map tile failed, retry ',t)
t += 1
except:
print("Couldn't download image")
tile = None
else:
Cluster.paste(tile, box=((xtile-xmin)*imgsize , (ytile-ymin)*imgsize))
imgsize = 256
import threading
threads = []
Cluster = Image.new('RGB',((xmax-xmin+1)*imgsize-1,(ymax-ymin+1)*imgsize-1))
for xtile in range(xmin, xmax+1):
for ytile in range(ymin, ymax+1):
threads.append(threading.Thread(target=get_img,args = (smurl,zoom, xtile, ytile,imgsize,imgsavepath)))
for t in threads:
t.setDaemon(True)
t.start()
for t in threads:
t.join()
threads.clear()
return Cluster
def plot_map(plt,bounds,zoom,style,imgsavepath = 'C:\\',printlog = False,apikey = '',access_token = '',styleid = 'dark'):
'''
bounds -- Set your plotting boundary [lon1,lat1,lon2,lat2] (wgs1984)
zoom -- The zoom level of the map
style -- From 1 to 7 represent different map styles,1-6 is from openstreetmap and 7 is the mapbox
styleid -- if style is set as 7(from mapbox), you can change the styleid here, "dark" or "light" or your own style
imgsavepath -- Path to save the tile map so that you don't have to download again
'''
try:
import os
os.listdir(imgsavepath)
except:
print('imgsavepath do not exist, your tile map will not save')
lon1= bounds[0]
lat1 = bounds[1]
lon2 = bounds[2]
lat2 = bounds[3]
a = getImageCluster(lon1, lat1, lon2-lon1, lat2-lat1, zoom,style,printlog = printlog,imgsavepath = imgsavepath,apikey = apikey,access_token = access_token, styleid = styleid)
x1, y1 =deg2num(lat1, lon1, zoom)
x2, y2 =deg2num(lat2, lon2, zoom)
x1,y1 = num2deg(x1, y1+1, zoom)
x2,y2 = num2deg(x2+1, y2, zoom)
plt.imshow(np.asarray(a),extent = (y1,y2,x1+0.00,x2+0.00))
def plotscale(ax,bounds,textcolor = 'k',textsize = 8,compasssize = 1,accuracy = 'auto',rect=[0.1,0.1],unit = "KM",style = 1):
#栅格化代码
import math
#划定栅格划分范围
lon1 = bounds[0]
lat1 = bounds[1]
lon2 = bounds[2]
lat2 = bounds[3]
latStart = min(lat1, lat2);
lonStart = min(lon1, lon2);
if accuracy == 'auto':
accuracy = (int((lon2-lon1)/0.0003/1000+0.5)*1000)
a,c=rect
b = 1-a
d = 1-c
alon,alat = (b*lon1+a*lon2)/(a+b),(d*lat1+c*lat2)/(c+d)
#计算栅格的经纬度增加量大小▲Lon和▲Lat
deltaLon = accuracy * 360 / (2 * math.pi * 6371004 * math.cos((lat1 + lat2) * math.pi / 360));
#加比例尺
from shapely.geometry import Polygon
import geopandas as gpd
if style == 1:
scale = gpd.GeoDataFrame({'color':[(0,0,0),(1,1,1),(0,0,0),(1,1,1)],'geometry':
[Polygon([(alon,alat),(alon+deltaLon,alat),(alon+deltaLon,alat+deltaLon*0.4),(alon,alat+deltaLon*0.4)]),
Polygon([(alon+deltaLon,alat),(alon+2*deltaLon,alat),(alon+2*deltaLon,alat+deltaLon*0.4),(alon+deltaLon,alat+deltaLon*0.4)]),
Polygon([(alon+2*deltaLon,alat),(alon+4*deltaLon,alat),(alon+4*deltaLon,alat+deltaLon*0.4),(alon+2*deltaLon,alat+deltaLon*0.4)]),
Polygon([(alon+4*deltaLon,alat),(alon+8*deltaLon,alat),(alon+8*deltaLon,alat+deltaLon*0.4),(alon+4*deltaLon,alat+deltaLon*0.4)])
]})
scale.plot(ax = ax,edgecolor= (0,0,0,1),facecolor = scale['color'],lw = 0.6)
if (unit == 'KM')|(unit == 'km'):
ax.annotate(str(int(accuracy/1000)),color = textcolor,size = textsize,xy=(alon+deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(str(int(2*accuracy/1000)),color = textcolor,size = textsize,xy=(alon+2*deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(str(int(4*accuracy/1000)),color = textcolor,size = textsize,xy=(alon+4*deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(str(int(8*accuracy/1000)),color = textcolor,size = textsize,xy=(alon+8*deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(unit,size = textsize,color = textcolor,xy=(alon+8*deltaLon,alat+deltaLon*0.1), xytext=(textsize*2/5,-textsize/5), textcoords='offset points')
if (unit == 'M')|(unit == 'm'):
ax.annotate(str(int(accuracy)),color = textcolor,size = textsize,xy=(alon+deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(str(int(2*accuracy)),color = textcolor,size = textsize,xy=(alon+2*deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(str(int(4*accuracy)),color = textcolor,size = textsize,xy=(alon+4*deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(str(int(8*accuracy)),color = textcolor,size = textsize,xy=(alon+8*deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(unit,size = textsize,color = textcolor,xy=(alon+8*deltaLon,alat+deltaLon*0.1), xytext=(textsize*2/5,-textsize/5), textcoords='offset points')
if style == 2:
scale = gpd.GeoDataFrame({'color':[(0,0,0),(1,1,1)],'geometry':
[Polygon([(alon+deltaLon,alat),(alon+4*deltaLon,alat),(alon+4*deltaLon,alat+deltaLon*0.4),(alon+deltaLon,alat+deltaLon*0.4)]),
Polygon([(alon+4*deltaLon,alat),(alon+8*deltaLon,alat),(alon+8*deltaLon,alat+deltaLon*0.4),(alon+4*deltaLon,alat+deltaLon*0.4)])
]})
scale.plot(ax = ax,edgecolor= (0,0,0,1),facecolor = scale['color'],lw = 0.6)
if (unit == 'KM')|(unit == 'km'):
ax.annotate(str(int(4*accuracy/1000)),color = textcolor,size = textsize,xy=(alon+4*deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(str(int(8*accuracy/1000)),color = textcolor,size = textsize,xy=(alon+8*deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(unit,size = textsize,color = textcolor,xy=(alon+8*deltaLon,alat+deltaLon*0.1), xytext=(textsize*2/5,-textsize/5), textcoords='offset points')
if (unit == 'M')|(unit == 'm'):
ax.annotate(str(int(4*accuracy)),color = textcolor,size = textsize,xy=(alon+4*deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(str(int(8*accuracy)),color = textcolor,size = textsize,xy=(alon+8*deltaLon,alat+deltaLon*0.2), xytext=(-textsize*3/5,textsize/1.5), textcoords='offset points')
ax.annotate(unit,size = textsize,color = textcolor,xy=(alon+8*deltaLon,alat+deltaLon*0.1), xytext=(textsize*2/5,-textsize/5), textcoords='offset points')
#加指北针
deltaLon = compasssize*deltaLon
alon = alon-deltaLon
compass = gpd.GeoDataFrame({'color':[(0,0,0),(1,1,1)],'geometry':
[Polygon([[alon,alat],[alon,alat+deltaLon],[alon+1/2*deltaLon,alat-1/2*deltaLon]]),
Polygon([[alon,alat],[alon,alat+deltaLon],[alon-1/2*deltaLon,alat-1/2*deltaLon]])]})
compass.plot(ax= ax, edgecolor= (0,0,0,1),facecolor = compass['color'],lw = 0.6)
ax.annotate('N',color = textcolor,size = textsize,xy=[alon,alat+deltaLon], xytext=(-textsize*2/5,textsize/2), textcoords='offset points')