-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_peft_to_hf.py
85 lines (65 loc) · 2.68 KB
/
convert_peft_to_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import argparse
import os
import torch
import transformers
from peft import PeftModel
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TrainingArguments, logging, set_seed
def get_tokenizer( model_path, model_type ):
tokenizer = AutoTokenizer.from_pretrained(model_path)
if model_type == "llama" or model_type == "gpt-neo":
if tokenizer.eos_token is None:
print("Error: no eos token pre-defined in the vocabulary. You need to add the eos_token and resize the model's embedding accordingly")
assert False
special_tokens ={}
if tokenizer.bos_token is None:
special_tokens["bos_token"] = tokenizer.eos_token
if tokenizer.unk_token is None:
special_tokens["unk_token"] = tokenizer.eos_token
if tokenizer.pad_token is None:
special_tokens["pad_token"] = tokenizer.unk_token
tokenizer.add_special_tokens( special_tokens )
elif model_type == "galactica":
if tokenizer.eos_token is None:
tokenizer.add_special_tokens( {
"bos_token":"<s>",
"eos_token":"</s>",
"pad_token":"<pad>",
"unk_token":"<unk>"
} )
else:
print("Unsupported model type!")
assert False
return tokenizer
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--base_model_path" )
parser.add_argument("--lora_model_path" )
parser.add_argument("--save_model_path" )
parser.add_argument("--model_type")
args = parser.parse_args()
supported_model_types = ["galactica", "llama"]
assert args.model_type in supported_model_types, "Supported model types: %s"%( str(supported_model_types) )
tokenizer = get_tokenizer( args.base_model_path , args.model_type )
base_model = AutoModelForCausalLM.from_pretrained(
args.base_model_path,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map={"": "cpu"},
)
lora_model = PeftModel.from_pretrained(
base_model,
args.lora_model_path,
device_map={"": "cpu"},
torch_dtype=torch.float16,
)
# merge weights - new merging method from peft
lora_model = lora_model.merge_and_unload()
lora_model.train(False)
lora_model_sd = lora_model.state_dict()
deloreanized_sd = {
k.replace("base_model.model.", ""): v
for k, v in lora_model_sd.items()
if "lora" not in k
}
base_model.save_pretrained( args.save_model_path, state_dict=deloreanized_sd )
tokenizer.save_pretrained( args.save_model_path )