-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathace_trainer.py
728 lines (575 loc) · 34 KB
/
ace_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
# Copyright © Niantic, Inc. 2022.
import os
os.environ["MKL_NUM_THREADS"] = "1" # noqa: E402
os.environ["NUMEXPR_NUM_THREADS"] = "1" # noqa: E402
os.environ["OMP_NUM_THREADS"] = "1" # noqa: E402
os.environ["OPENBLAS_NUM_THREADS"] = "1" # noqa: E402
import dataset_io
import logging
import random
import time
import numpy as np
import torch
import torchvision.transforms.functional as TF
from torch.cuda.amp import autocast
from torch.utils.data import DataLoader
from torch.utils.data import sampler
from ace_util import get_pixel_grid, to_homogeneous
from ace_loss import ReproLoss
from ace_network import Regressor
from ace_schedule import ScheduleACE
from refine_calibration import CalibrationRefiner
from refine_poses import PoseRefiner
from dataset import CamLocDataset
from ace_visualizer import ACEVisualizer
_logger = logging.getLogger(__name__)
def set_seed(seed):
"""
Seed all sources of randomness.
"""
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
class TrainerACE:
def __init__(self, options):
self.log_file = None
self.options = options
self.device = torch.device('cuda')
_logger.info(f"Using device for training: {self.device}")
self.training_buffer_device = torch.device('cpu') if self.options.training_buffer_cpu else self.device
_logger.info(f"ACE feature buffer device: {self.training_buffer_device}")
# The flag below controls whether to allow TF32 on matmul. This flag defaults to True.
# torch.backends.cuda.matmul.allow_tf32 = False
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
# torch.backends.cudnn.allow_tf32 = False
# Setup randomness for reproducibility.
self.base_seed = self.options.base_seed
_logger.info(f"Setting random seed to {self.base_seed}")
set_seed(self.base_seed)
# Used to generate batch indices.
self.batch_generator = torch.Generator()
self.batch_generator.manual_seed(self.base_seed + 1023)
# Dataloader generator, used to seed individual workers by the dataloader.
self.loader_generator = torch.Generator()
self.loader_generator.manual_seed(self.base_seed + 511)
# Generator used to sample random features (runs on the GPU).
self.sampling_generator = torch.Generator(device=self.device)
self.sampling_generator.manual_seed(self.base_seed + 4095)
# Generator used to permute the feature indices during each training epoch.
self.training_generator = torch.Generator()
self.training_generator.manual_seed(self.base_seed + 8191)
# Initialize iteration and epoch counters.
self.iteration = 0
self.epoch = 0
# Keep track of the training time.
self.training_start = None
# Number of workers for data loading.
self.num_data_loader_workers = self.options.num_data_workers
# Determine whether we will generate ground truth scene coordinate from depth maps.
self.use_depth = (self.options.use_pose_seed >= 0) or (self.options.depth_files is not None)
# Disable multi-threaded data loading in case we have to predict depth maps in the dataset class.
if self.use_depth and self.options.depth_files is None:
_logger.info("Disabling multi-threaded data loading because we cannot run multiple depth inference passes "
"simultaneously.")
self.num_data_loader_workers = 0
# Create dataset.
self.dataset = CamLocDataset(
rgb_files=self.options.rgb_files,
pose_files=self.options.pose_files,
ace_pose_file=self.options.use_ace_pose_file,
ace_pose_file_conf_threshold=self.options.ace_pose_file_conf_threshold,
pose_seed=self.options.use_pose_seed,
depth_files=self.options.depth_files,
use_depth=self.use_depth,
augment=self.options.use_aug,
aug_rotation=self.options.aug_rotation,
aug_scale_max=self.options.aug_scale,
aug_scale_min=1 / self.options.aug_scale,
image_short_size=self.options.image_resolution,
use_half=self.options.use_half,
use_heuristic_focal_length=self.options.use_heuristic_focal_length,
)
if self.options.use_external_focal_length is not None:
self.dataset.set_external_focal_length(self.options.use_external_focal_length)
_logger.info("Loaded training scan from: {} -- {} images, mean: {:.2f} {:.2f} {:.2f}".format(
self.options.rgb_files,
len(self.dataset),
self.dataset.mean_cam_center[0],
self.dataset.mean_cam_center[1],
self.dataset.mean_cam_center[2]))
# Create network using the state dict of the pretrained encoder.
encoder_state_dict = torch.load(self.options.encoder_path, map_location="cpu")
_logger.info(f"Loaded pretrained encoder from: {self.options.encoder_path}")
if self.options.load_weights is None:
self.regressor = Regressor.create_from_encoder(
encoder_state_dict,
mean=self.dataset.mean_cam_center,
num_head_blocks=self.options.num_head_blocks,
use_homogeneous=self.options.use_homogeneous
)
else:
head_state_dict = torch.load(self.options.load_weights, map_location="cpu")
_logger.info(f"Loaded head weights from: {self.options.load_weights}")
# Create regressor.
self.regressor = Regressor.create_from_split_state_dict(encoder_state_dict, head_state_dict)
self.regressor = self.regressor.to(self.device)
self.regressor.train()
# Setup optimization parameters and learning rate scheduler.
self.training_scheduler = ScheduleACE(self.regressor, self.options)
# Generate grid of target reprojection pixel positions.
pixel_grid_2HW = get_pixel_grid(self.regressor.OUTPUT_SUBSAMPLE)
self.pixel_grid_2HW = pixel_grid_2HW.to(self.device)
# print loss every n iterations, and (optionally) write a visualisation frame
self.iterations_output = self.options.iterations_output
# Setup reprojection loss function.
self.repro_loss = ReproLoss(
total_iterations=self.options.iterations,
soft_clamp=self.options.repro_loss_soft_clamp,
soft_clamp_min=self.options.repro_loss_soft_clamp_min,
type=self.options.repro_loss_type,
circle_schedule=(self.options.repro_loss_schedule == 'circle')
)
# Will be filled at the beginning of the training process.
self.training_buffer = None
self.training_buffer_size = self.options.max_training_buffer_size
# Setup pose refinement.
self.pose_refiner = PoseRefiner(dataset=self.dataset, device=self.device, options=self.options)
# Setup calibration refinement.
if self.options.refine_calibration:
self.K_optimizer = CalibrationRefiner(
dataset=self.dataset,
learning_rate=self.options.refine_calibration_lr,
device=self.device
)
else:
self.K_optimizer = None
# Generate video of training process
if self.options.render_visualization:
target_path = self.options.render_target_path
os.makedirs(target_path, exist_ok=True)
state_file = self.options.output_map_file.stem + "_mapping.pkl"
self.ace_visualizer = ACEVisualizer(
target_path,
self.options.render_flipped_portrait,
self.options.render_map_depth_filter,
mapping_vis_error_threshold=self.options.render_map_error_threshold,
mapping_state_file_name=state_file,
marker_size=self.options.render_marker_size)
else:
self.ace_visualizer = None
def train(self):
"""
Main training method.
Fills a feature buffer using the pretrained encoder and subsequently trains a scene coordinate regression head.
"""
if self.ace_visualizer is not None:
# Setup the ACE render pipeline.
self.ace_visualizer.setup_mapping_visualisation(
poses=self.dataset.poses,
frame_count=100,
camera_z_offset=self.options.render_camera_z_offset,
existing_vis_buffer=self.options.use_existing_vis_buffer
)
creating_buffer_time = 0.
training_time = 0.
self.training_start = time.time()
# Create training buffer.
buffer_start_time = time.time()
self.create_training_buffer()
buffer_end_time = time.time()
creating_buffer_time += buffer_end_time - buffer_start_time
_logger.info(f"Filled training buffer in {buffer_end_time - buffer_start_time:.1f}s.")
# Create pose buffer for camera pose refinement.
self.pose_refiner.create_pose_buffer()
_logger.info(f"Created pose buffer for camera pose refinement.")
# Setup a training log - first derive a log file from the map file
base_file_name, _ = os.path.splitext(self.options.output_map_file)
self.log_file = open(base_file_name + '.txt', 'w')
# Train the regression head.
while True:
self.epoch += 1
epoch_start_time = time.time()
continue_training = self.run_epoch()
training_time += time.time() - epoch_start_time
if not continue_training:
break
# Save trained model.
self.save_model()
self.save_poses()
self.log_file.close()
end_time = time.time()
_logger.info(f'Done without errors. '
f'Creating buffer time: {creating_buffer_time:.1f} seconds. '
f'Training time: {training_time:.1f} seconds. '
f'Total time: {end_time - self.training_start:.1f} seconds.')
if self.ace_visualizer is not None:
# Finalize the rendering by animating the fully trained map.
vis_dataset = CamLocDataset(
rgb_files=self.options.rgb_files,
pose_files=self.options.pose_files,
ace_pose_file=self.options.use_ace_pose_file,
ace_pose_file_conf_threshold=self.options.ace_pose_file_conf_threshold,
pose_seed=self.options.use_pose_seed,
augment=False,
image_short_size=self.options.image_resolution,
use_half=self.options.use_half,
use_heuristic_focal_length=self.options.use_heuristic_focal_length,
)
# Set focal length, either from optimizer or use external value, otherwise dataset value will be used
if self.K_optimizer is not None:
vis_dataset.set_external_focal_length(float(self.K_optimizer.get_focal_length()))
elif self.options.use_external_focal_length is not None:
vis_dataset.set_external_focal_length(self.options.use_external_focal_length)
vis_dataset_loader = torch.utils.data.DataLoader(
vis_dataset,
shuffle=False, # Process data in order for a growing effect later when rendering
num_workers=self.num_data_loader_workers,
timeout=60 if self.num_data_loader_workers > 0 else 0)
self.ace_visualizer.finalize_mapping(
self.regressor,
vis_dataset_loader,
self.pose_refiner.get_all_current_poses(),
self.pose_refiner.get_all_original_poses()
)
def create_training_buffer(self):
# Disable benchmarking, since we have variable tensor sizes.
torch.backends.cudnn.benchmark = False
# Sampler.
batch_sampler = sampler.BatchSampler(sampler.RandomSampler(self.dataset, generator=self.batch_generator),
batch_size=1,
drop_last=False)
# Used to seed workers in a reproducible manner.
def seed_worker(worker_id):
# Different seed per epoch. Initial seed is generated by the main process consuming one random number from
# the dataloader generator.
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)
# Batching is handled at the dataset level (the dataset __getitem__ receives a list of indices, because we
# need to rescale all images in the batch to the same size).
training_dataloader = DataLoader(dataset=self.dataset,
sampler=batch_sampler,
batch_size=None,
worker_init_fn=seed_worker,
generator=self.loader_generator,
pin_memory=True,
num_workers=self.num_data_loader_workers,
persistent_workers=self.num_data_loader_workers > 0,
timeout=60 if self.num_data_loader_workers > 0 else 0,
)
_logger.info("Starting creation of the training buffer.")
# Calculate size of the dataset buffer
training_buffer_size = self.options.max_dataset_passes * len(self.dataset) * self.options.samples_per_image
training_buffer_size = min(training_buffer_size, self.options.max_training_buffer_size)
# Create a training buffer that lives either on the GPU or in main memory.
self.training_buffer = {
'features': torch.empty((training_buffer_size, self.regressor.feature_dim),
dtype=(torch.float32, torch.float16)[self.options.use_half], device=self.training_buffer_device),
'target_px': torch.empty((training_buffer_size, 2), dtype=torch.float32, device=self.training_buffer_device),
'aug_poses_inv': torch.empty((training_buffer_size, 3, 4), dtype=torch.float32, device=self.training_buffer_device),
'poses_inv': torch.empty((training_buffer_size, 4, 4), dtype=torch.float32, device=self.training_buffer_device),
'intrinsics': torch.empty((training_buffer_size, 3, 3), dtype=torch.float32, device=self.training_buffer_device),
'intrinsics_inv': torch.empty((training_buffer_size, 3, 3), dtype=torch.float32, device=self.training_buffer_device),
'target_crds': torch.empty((training_buffer_size, 3), dtype=torch.float32, device=self.training_buffer_device),
'pose_idx': torch.empty((training_buffer_size, 1), dtype=torch.int16, device=self.training_buffer_device),
}
# Features are computed in evaluation mode.
self.regressor.eval()
# The encoder is pretrained, so we don't compute any gradient.
with torch.no_grad():
# Iterate until the training buffer is full.
buffer_idx = 0
dataset_passes = 0
while buffer_idx < self.options.max_training_buffer_size and dataset_passes < self.options.max_dataset_passes:
dataset_passes += 1
for image_B1HW, image_mask_B1HW, pose_inv_B44, aug_pose_inv_B44, intrinsics_B33, intrinsics_inv_B33, target_crds_B3HW, _, idx_B in training_dataloader:
# Copy to device.
image_B1HW = image_B1HW.to(self.device, non_blocking=True)
image_mask_B1HW = image_mask_B1HW.to(self.device, non_blocking=True)
aug_pose_inv_B44 = aug_pose_inv_B44.to(self.device, non_blocking=True)
pose_inv_B44 = pose_inv_B44.to(self.device, non_blocking=True)
intrinsics_B33 = intrinsics_B33.to(self.device, non_blocking=True)
intrinsics_inv_B33 = intrinsics_inv_B33.to(self.device, non_blocking=True)
target_crds_B3HW = target_crds_B3HW.to(self.device, non_blocking=True)
idx_B = idx_B.to(self.device, non_blocking=True)
# Compute image features.
with autocast(enabled=self.options.use_half):
features_BCHW = self.regressor.get_features(image_B1HW)
# Dimensions after the network's downsampling.
B, C, H, W = features_BCHW.shape
# The image_mask needs to be downsampled to the actual output resolution and cast to bool.
image_mask_B1HW = TF.resize(image_mask_B1HW, [H, W], interpolation=TF.InterpolationMode.NEAREST)
image_mask_B1HW = image_mask_B1HW.bool()
# If the current mask has no valid pixels, continue.
if image_mask_B1HW.sum() == 0:
continue
# Create a tensor with the pixel coordinates of every feature vector.
pixel_positions_B2HW = self.pixel_grid_2HW[:, :H, :W].clone() # It's 2xHxW (actual H and W) now.
pixel_positions_B2HW = pixel_positions_B2HW[None] # 1x2xHxW
pixel_positions_B2HW = pixel_positions_B2HW.expand(B, 2, H, W) # Bx2xHxW
# Bx4x4 -> Nx3x4 (for each image, repeat pose per feature)
aug_pose_inv = aug_pose_inv_B44[:, :3]
aug_pose_inv = aug_pose_inv.unsqueeze(1).expand(B, H * W, 3, 4).reshape(-1, 3, 4)
# Bx4x4 -> Nx4x4 (for each image, repeat pose per feature)
pose_inv = pose_inv_B44.unsqueeze(1).expand(B, H * W, 4, 4).reshape(-1, 4, 4)
# B -> N (for each image, repeat pose index)
idx_B = idx_B.expand(B, H * W).reshape(-1, 1)
# Bx3x3 -> Nx3x3 (for each image, repeat intrinsics per feature)
intrinsics = intrinsics_B33.unsqueeze(1).expand(B, H * W, 3, 3).reshape(-1, 3, 3)
intrinsics_inv = intrinsics_inv_B33.unsqueeze(1).expand(B, H * W, 3, 3).reshape(-1, 3, 3)
def normalize_shape(tensor_in):
"""Bring tensor from shape BxCxHxW to NxC"""
return tensor_in.transpose(0, 1).flatten(1).transpose(0, 1)
batch_data = {
'features': normalize_shape(features_BCHW),
'target_px': normalize_shape(pixel_positions_B2HW),
'aug_poses_inv': aug_pose_inv,
'poses_inv': pose_inv,
'intrinsics': intrinsics,
'intrinsics_inv': intrinsics_inv,
'target_crds': normalize_shape(target_crds_B3HW),
'pose_idx': idx_B
}
# Turn image mask into sampling weights (all equal).
image_mask_B1HW = image_mask_B1HW.float()
image_mask_N1 = normalize_shape(image_mask_B1HW)
# Over-sample according to image mask.
features_to_select = self.options.samples_per_image * B
features_to_select = min(features_to_select, self.options.max_training_buffer_size - buffer_idx)
# Sample indices uniformly, with replacement.
sample_idxs = torch.multinomial(image_mask_N1.view(-1),
features_to_select,
replacement=True,
generator=self.sampling_generator)
# Select the data to put in the buffer.
for k in batch_data:
batch_data[k] = batch_data[k][sample_idxs]
# Write to training buffer. Start at buffer_idx and end at buffer_offset - 1.
buffer_offset = buffer_idx + features_to_select
for k in batch_data:
# Copy to buffer, if the buffer lives on the GPU the .to() is a noop.
self.training_buffer[k][buffer_idx:buffer_offset] = batch_data[k].to(self.training_buffer_device)
buffer_idx = buffer_offset
if buffer_idx >= self.options.max_training_buffer_size:
break
# clipping training buffer to actual size
self.training_buffer_size = min(buffer_idx, self.options.max_training_buffer_size)
for k in self.training_buffer:
self.training_buffer[k] = self.training_buffer[k][:self.training_buffer_size]
buffer_memory = sum([v.element_size() * v.nelement() for k, v in self.training_buffer.items()])
buffer_memory /= 1024 * 1024 * 1024
_logger.info(f"Created buffer of {buffer_memory:.2f}GB with {dataset_passes} passes over the training data.")
self.regressor.train()
def run_epoch(self):
"""
Run one epoch of training, shuffling the feature buffer and iterating over it.
"""
# check whether training has finished, number of total iterations might have been reduced
if self.iteration >= self.training_scheduler.max_iterations:
return False
# Enable benchmarking since all operations work on the same tensor size.
torch.backends.cudnn.benchmark = True
# Shuffle indices.
random_indices = torch.randperm(self.training_buffer_size, generator=self.training_generator)
# Iterate with mini batches.
for batch_start in range(0, self.training_buffer_size, self.options.batch_size):
batch_end = batch_start + self.options.batch_size
# Drop last batch if not full.
if batch_end > self.training_buffer_size:
continue
# Sample indices.
random_batch_indices = random_indices[batch_start:batch_end]
# Call the training step with the sampled features and relevant metadata.
# If the buffer lives in main memory we also move it to the GPU, otherwise the
# .to() is a no-op.
# .contiguous() is needed to for a faster forward pass through the head later.
# If the buffer was in main memory, .to() already makes the GPU copy contiguous,
# so the .contiguous() is actually a no-op.
self.training_step(
self.training_buffer['features'][random_batch_indices].to(self.device).contiguous(),
self.training_buffer['target_px'][random_batch_indices].to(self.device).contiguous(),
self.training_buffer['aug_poses_inv'][random_batch_indices].to(self.device).contiguous(),
self.training_buffer['poses_inv'][random_batch_indices].to(self.device).contiguous(),
self.training_buffer['intrinsics'][random_batch_indices].to(self.device).contiguous(),
self.training_buffer['intrinsics_inv'][random_batch_indices].to(self.device).contiguous(),
self.training_buffer['target_crds'][random_batch_indices].to(self.device).contiguous(),
self.training_buffer['pose_idx'][random_batch_indices].to(self.device).contiguous()
)
self.iteration += 1
return True
def training_step(self, features_bC, target_px_b2, inv_aug_poses_b34, inv_poses_b44, Ks_b33, invKs_b33,
target_crds_b3, pose_idx):
"""
Run one iteration of training, computing the reprojection error and minimising it.
"""
# check whether to start cooldown
self.training_scheduler.check_and_set_cooldown(self.iteration)
# check whether training has finished, number of total iterations might have been reduced
if self.iteration >= self.training_scheduler.max_iterations:
return
batch_size = features_bC.shape[0]
channels = features_bC.shape[1]
# Reshape to a "fake" BCHW shape, since it's faster to run through the network compared to the original shape.
features_bCHW = features_bC[None, None, ...].view(-1, 16, 32, channels).permute(0, 3, 1, 2)
with autocast(enabled=self.options.use_half):
pred_scene_coords_b3HW = self.regressor.get_scene_coordinates(features_bCHW)
# Back to the original shape. Convert to float32 as well.
pred_scene_coords_b31 = pred_scene_coords_b3HW.permute(0, 2, 3, 1).flatten(0, 2).unsqueeze(-1).float()
# Make 3D points homogeneous so that we can easily matrix-multiply them.
pred_scene_coords_b41 = to_homogeneous(pred_scene_coords_b31)
# Get current estimate of poses.
gt_poses_orig_b44 = self.pose_refiner.get_current_poses(inv_poses_b44, pose_idx.int())
# combine augmentation poses and original camera poses
gt_inv_poses_b34 = torch.bmm(inv_aug_poses_b34, gt_poses_orig_b44)
# Scene coordinates to camera coordinates.
pred_cam_coords_b31 = torch.bmm(gt_inv_poses_b34, pred_scene_coords_b41)
# Project scene coordinates, either using refined or original intrinsics.
if self.K_optimizer is not None:
refined_Ks_scaled_b33 = self.K_optimizer.get_refined_calibration_matrices(Ks_b33)
pred_px_b31 = torch.bmm(refined_Ks_scaled_b33, pred_cam_coords_b31)
else:
pred_px_b31 = torch.bmm(Ks_b33, pred_cam_coords_b31)
# Avoid division by zero.
# Note: negative values are also clamped at +self.options.depth_min. The predicted pixel would be wrong,
# but that's fine since we mask them out later.
pred_px_b31[:, 2].clamp_(min=self.options.depth_min)
# Dehomogenise.
pred_px_b21 = pred_px_b31[:, :2] / pred_px_b31[:, 2, None]
# Measure reprojection error.
reprojection_error_b2 = pred_px_b21.squeeze() - target_px_b2
reprojection_error_b1 = torch.norm(reprojection_error_b2, dim=1, keepdim=True, p=1)
#
# Compute masks used to ignore invalid pixels.
#
# Predicted coordinates behind or close to camera plane.
invalid_min_depth_b1 = pred_cam_coords_b31[:, 2] < self.options.depth_min
# Very large reprojection errors.
invalid_repro_b1 = reprojection_error_b1 > self.options.repro_loss_hard_clamp
# Predicted coordinates beyond max distance.
invalid_max_depth_b1 = pred_cam_coords_b31[:, 2] > self.options.depth_max
# Invalid mask is the union of all these. Valid mask is the opposite.
invalid_mask_b1 = (invalid_min_depth_b1 | invalid_repro_b1 | invalid_max_depth_b1)
if self.use_depth:
# if GT scene coordinates are available, also check whether predictions are already sufficiently close
invalid_target_crds_b1 = (
torch.linalg.norm(target_crds_b3 - pred_scene_coords_b31.squeeze(), dim=1) > 0.1).unsqueeze(1)
# in the previous mask, ignore pixels without GT scene coordinates (all zeros)
target_crds_available_b1 = (target_crds_b3.abs().sum(dim=1) > 0.00001).unsqueeze(1)
invalid_mask_b1 = invalid_mask_b1 | (invalid_target_crds_b1 & target_crds_available_b1)
valid_mask_b1 = ~invalid_mask_b1
if valid_mask_b1.sum() > 0:
# Reprojection error for all valid scene coordinates.
valid_reprojection_error_b1 = reprojection_error_b1[valid_mask_b1]
# Compute the loss for valid predictions.
loss_valid = self.repro_loss.compute(valid_reprojection_error_b1, self.iteration)
batch_inliers = valid_reprojection_error_b1 < self.options.learning_rate_cooldown_trigger_px_threshold
batch_inliers = float(batch_inliers.sum()) / batch_size
else:
loss_valid = 0
batch_inliers = 0
# Handle the invalid predictions
if not self.use_depth:
# generate proxy coordinate targets with constant depth assumption.
pixel_grid_crop_b31 = to_homogeneous(target_px_b2.unsqueeze(2))
target_camera_coords_b31 = self.options.depth_target * torch.bmm(invKs_b33, pixel_grid_crop_b31)
# Compute the distance to target camera coordinates.
invalid_mask_b11 = invalid_mask_b1.unsqueeze(2)
loss_invalid = torch.abs(target_camera_coords_b31 - pred_cam_coords_b31).masked_select(
invalid_mask_b11).sum()
else:
if invalid_mask_b1.sum() > 0:
# ignore pixels without GT scene coordinates (all zeros)
invalid_mask_b1 = invalid_mask_b1 & target_crds_available_b1
loss_invalid = torch.linalg.norm(target_crds_b3 - pred_scene_coords_b31.squeeze(), dim=1)
loss_invalid = loss_invalid[invalid_mask_b1.squeeze()].sum()
else:
loss_invalid = 0
# Final loss is the sum of all 2.
loss = loss_valid + loss_invalid
loss /= batch_size
if torch.any(torch.isnan(loss)):
_logger.error("Aborting because of NaN loss")
exit()
# Set gradient buffers to zero.
self.training_scheduler.zero_grad(set_to_none=True)
self.pose_refiner.zero_grad(set_to_none=True)
if self.K_optimizer is not None:
self.K_optimizer.zero_grad()
# Calculate gradients of loss
self.training_scheduler.backward(loss)
# Parameter steps.
# Update the ACE network weights. Pass batch inliers to potentially go into cooldown.
self.training_scheduler.step(batch_inliers)
if self.iteration > self.options.pose_refinement_wait:
# Only update poses after initial wait period (if set)
self.pose_refiner.step()
if self.K_optimizer is not None:
# Only update calibration if it is being refined
self.K_optimizer.step()
if self.iteration % self.iterations_output == 0:
# Print status.
time_since_start = time.time() - self.training_start
_logger.info(f'Iteration: {self.iteration:6d}|{self.training_scheduler.max_iterations:6d} / '
f'Epoch {self.epoch:03d}, '
f'Loss: {loss:.1f}, '
f'Batch inliers ({self.options.learning_rate_cooldown_trigger_px_threshold}px): '
f'{batch_inliers * 100:.1f}%, '
f'Time: {time_since_start:.0f}s')
# Print statistics about the pose refinement
poses_original = self.pose_refiner.get_all_original_poses()
poses_updated = self.pose_refiner.get_all_current_poses()
pose_pos_distances = torch.linalg.norm(poses_updated[:, :, 3].cpu() - poses_original[:, :, 3].cpu(), dim=1)
_logger.info(f'Poses moved by: '
f'Avg={pose_pos_distances.mean() * 100:.1f}cm, '
f'Min={pose_pos_distances.min() * 100:.1f}cm, '
f'Max={pose_pos_distances.max() * 100:.1f}cm')
# write the main information to the log file
log_str = f"{self.iteration} {time_since_start} {loss} {batch_inliers} " \
f"{pose_pos_distances.mean()} {pose_pos_distances.min()} {pose_pos_distances.max()}"
if self.K_optimizer is not None:
focal_length = float(self.K_optimizer.get_focal_length())
_logger.info(f"Current Focal Length: {focal_length:.1f}")
log_str += f" {focal_length}"
self.log_file.write(log_str + "\n")
if self.ace_visualizer is not None:
vis_scene_coords = pred_scene_coords_b31.detach().cpu().squeeze().numpy()
vis_errors = reprojection_error_b1.detach().cpu().squeeze().numpy()
self.ace_visualizer.render_mapping_frame(vis_scene_coords, vis_errors, poses_updated, poses_original,
self.iteration)
def save_model(self):
"""
Save the trained model to disk.
"""
# NOTE: This would save the whole regressor (encoder weights included) in full precision floats (~30MB).
# torch.save(self.regressor.state_dict(), self.options.output_map_file)
# This saves just the head weights as half-precision floating point numbers for a total of ~4MB, as mentioned
# in the paper. The scene-agnostic encoder weights can then be loaded from the pretrained encoder file.
head_state_dict = self.regressor.heads.state_dict()
for k, v in head_state_dict.items():
head_state_dict[k] = head_state_dict[k].half()
torch.save(head_state_dict, self.options.output_map_file)
_logger.info(f"Saved trained head weights to: {self.options.output_map_file}")
def save_poses(self):
"""
Save the refined poses and focal lengths to disk.
"""
# get current estimate of all poses
output_poses = self.pose_refiner.get_all_current_poses()
# output file
pose_file = self.options.output_map_file.parent / f"poses_{self.options.output_map_file.stem}_preliminary.txt"
with open(pose_file, 'w') as f:
for pose_idx in range(output_poses.shape[0]):
pose_34 = output_poses[pose_idx].cpu().detach().numpy()
# We do not know the confidence of the pose after refinement, so we set it to infinity
confidence = float('inf')
# Get the current focal length estimate for this image
if self.K_optimizer is not None:
focal_length = float(self.K_optimizer.get_focal_length())
else:
# if focal length is not being refined, the dataset contains the correct value for each image
# either from the calibration files or from the heuristic
focal_length = self.dataset.get_focal_length(pose_idx)
# Write to file
dataset_io.write_pose_to_pose_file(f, rgb_file=self.dataset.rgb_files[pose_idx], pose=pose_34,
confidence=confidence, focal_length=focal_length)
_logger.info(f"Saved refined poses to: {pose_file}")