-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathrefine_calibration.py
60 lines (44 loc) · 2.29 KB
/
refine_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
from torch import optim
import numpy as np
class CalibrationRefiner:
"""
Handles refinement of per-image calibration information during ACE training.
"""
def __init__(self, dataset, learning_rate, device):
# check whether focal length are all identical, we only support one focal length for all images
focal_lengths = [dataset.get_focal_length(i) for i in range(len(dataset))]
if not np.allclose(focal_lengths, focal_lengths[0]):
raise ValueError("All images must have the same focal length for calibration refinement")
# initialise intrinsics
self.focal_length_init = focal_lengths[0]
# this is the main learnable parameter, it is a relative scale factor to the focal length
self.global_f = torch.zeros(1)
self.global_f = self.global_f.to(device)
self.global_f = self.global_f.detach().requires_grad_()
# initialise optimizer
self.optimizer = optim.AdamW([self.global_f], lr=learning_rate)
def get_focal_length(self):
"""
Get the current estimate of the focal length.
"""
return (1 + self.global_f) * self.focal_length_init
def get_refined_calibration_matrices(self, Ks_b33):
"""
Get the refined calibration matrices, based on the initial calibration matrices and the refined focal length.
@param Ks_b33: initial calibration matrices, shape (B, 3, 3)
"""
# set current estimate of focal length in the original image scale
refined_Ks_22 = torch.eye(2, 2).cuda() * self.get_focal_length()
refined_Ks_b22 = refined_Ks_22.unsqueeze(0).expand(Ks_b33.shape[0], -1, -1)
# scale the refined intrinsics by the augmentation scale factor, inferred from the initial calibration matrices
aug_scales = Ks_b33[:, 0, 0] / self.focal_length_init
refined_Ks_scaled_b22 = refined_Ks_b22 * aug_scales.detach()[:, None, None]
# overwrite the focal length in the original calibration matrices with the refined focal length
refined_Ks_scaled_b33 = Ks_b33.clone().detach()
refined_Ks_scaled_b33[:, :2, :2] = refined_Ks_scaled_b22
return refined_Ks_scaled_b33
def zero_grad(self):
self.optimizer.zero_grad()
def step(self):
self.optimizer.step()