From 05bbe55f3930e5bdf5f963539d2de160fe4bd0ef Mon Sep 17 00:00:00 2001 From: Nicholas Clark Date: Thu, 27 Jul 2023 20:39:07 +1000 Subject: [PATCH] update pkgdown site --- docs/pkgdown.yml | 2 +- docs/reference/Rplot001.png | Bin 72586 -> 73247 bytes docs/reference/Rplot002.png | Bin 48364 -> 53916 bytes docs/reference/figures/README-beta_fc-1.png | Bin 17213 -> 17053 bytes docs/reference/figures/README-beta_sim-1.png | Bin 22037 -> 22253 bytes .../figures/README-unnamed-chunk-10-1.png | Bin 24257 -> 21590 bytes .../figures/README-unnamed-chunk-14-1.png | Bin 9483 -> 10062 bytes .../figures/README-unnamed-chunk-15-1.png | Bin 15835 -> 23375 bytes .../figures/README-unnamed-chunk-19-1.png | Bin 8065 -> 8125 bytes .../figures/README-unnamed-chunk-20-1.png | Bin 10378 -> 10622 bytes .../figures/README-unnamed-chunk-21-1.png | Bin 9912 -> 9913 bytes .../figures/README-unnamed-chunk-22-1.png | Bin 7329 -> 7001 bytes .../figures/README-unnamed-chunk-23-1.png | Bin 9718 -> 9414 bytes .../figures/README-unnamed-chunk-25-1.png | Bin 15909 -> 15903 bytes .../figures/README-unnamed-chunk-26-1.png | Bin 24397 -> 23567 bytes .../figures/README-unnamed-chunk-27-1.png | Bin 8376 -> 8523 bytes .../figures/README-unnamed-chunk-28-1.png | Bin 19954 -> 32647 bytes .../figures/README-unnamed-chunk-28-2.png | Bin 25216 -> 27144 bytes .../figures/README-unnamed-chunk-29-1.png | Bin 15152 -> 15240 bytes .../figures/README-unnamed-chunk-30-1.png | Bin 13581 -> 13452 bytes .../figures/README-unnamed-chunk-31-1.png | Bin 22398 -> 22258 bytes .../figures/README-unnamed-chunk-32-1.png | Bin 8294 -> 6732 bytes .../figures/README-unnamed-chunk-33-1.png | Bin 8882 -> 8457 bytes .../figures/README-unnamed-chunk-34-1.png | Bin 10991 -> 11048 bytes .../figures/README-unnamed-chunk-35-1.png | Bin 9955 -> 10365 bytes .../figures/README-unnamed-chunk-36-1.png | Bin 14546 -> 14805 bytes .../figures/README-unnamed-chunk-37-1.png | Bin 18792 -> 18842 bytes .../figures/README-unnamed-chunk-39-1.png | Bin 10788 -> 10770 bytes .../figures/README-unnamed-chunk-39-2.png | Bin 7591 -> 7599 bytes .../figures/README-unnamed-chunk-39-3.png | Bin 10545 -> 10549 bytes .../figures/README-unnamed-chunk-54-1.png | Bin 16122 -> 16113 bytes .../figures/README-unnamed-chunk-9-1.png | Bin 10074 -> 9736 bytes docs/reference/formula.mvgam.html | 97 ++++++++ docs/reference/get_mvgam_priors.html | 14 +- docs/reference/index.html | 15 ++ docs/reference/model.frame.mvgam.html | 102 ++++++++ docs/reference/mvgam_families.html | 2 +- docs/reference/mvgam_marginaleffects.html | 233 ++++++++++++++++++ docs/reference/predict.mvgam.html | 29 ++- docs/reference/series_to_mvgam.html | 92 +++---- docs/reference/sim_mvgam-1.png | Bin 150549 -> 150465 bytes docs/reference/sim_mvgam-2.png | Bin 103285 -> 112150 bytes docs/reference/sim_mvgam.html | 4 +- docs/search.json | 2 +- docs/sitemap.xml | 9 + 45 files changed, 537 insertions(+), 64 deletions(-) create mode 100644 docs/reference/formula.mvgam.html create mode 100644 docs/reference/model.frame.mvgam.html create mode 100644 docs/reference/mvgam_marginaleffects.html diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml index a31a4680..7af517ff 100644 --- a/docs/pkgdown.yml +++ b/docs/pkgdown.yml @@ -2,7 +2,7 @@ pandoc: 3.1.1 pkgdown: 2.0.7 pkgdown_sha: ~ articles: {} -last_built: 2023-07-03T06:19Z +last_built: 2023-07-27T10:37Z urls: reference: https://nicholasjclark.github.io/mvgam/reference article: https://nicholasjclark.github.io/mvgam/articles diff --git a/docs/reference/Rplot001.png b/docs/reference/Rplot001.png index 47aac67d4acfff867dcdb7393dbf23f27a125b42..f366d2f7e1d0e6f78bc427858f7fb9a4befeaed5 100644 GIT binary patch literal 73247 zcmeEtg;!Mn7wyc@-Q9>W^cM+1S_A|nhVJg}h5-RV2~oNwrAr!y5d@?`x|^Z9^Id;$ zz5n9fwcxT?3+8h__jAtKXYYNYRF&ljaA|QtAP~Vjc^Mc81YZ94g^daPCU6{)2;4Bu z6y;=qJ8)gUX$b~yI4<(K?jR5z>Ax@V--Vz%5QrJ{PDV<@Cu6V8JHb%bbNT-DB_e~p zgj_+lV0s~?u*KHJ+}vRe-3e*_^3?!p_~pekTK5_pYYwlIZEb_MTP8g&)s;H*S9g9Y z*g=xOV{C+g0OYz%15N(WX z-lz@#|GxoSuvxf;;b3AyFg!{y4mY>=A&l8nw&2>(2DRfEpmT%Ue`2CWZ20Z}fOsMD z%N3po${5*NHzRxv9Q-XK2u;vvvr)WktyCoF5R8kYK5F*eHO9)o7y`G;n+zU2sY+TR zNPw3cI7{*TTv8ZnAbtn=eov|gw&&k>z`Sc87Ske|xOC zmp6mHhZgh+sd=J~o|I~}afbHD=#wTX8KlD%%n@?VvFXT!>k>Ry;{`TyXx|uWpw|OS zNQ|ENy93L=hgucIvvN!u)xNtDTQ)?BA-R{GmgC^wWvI7~tPf0~O&PC3UYCIH^7SsI zA>W(m{*cHpOCZZY&d#ruTR=SZ{~m|19G)F)bKNE^_~GtAwZ|Vfa&e?++(Addz*&t3 zU1%`os1%v*yz@zr3iHS~#Fm-p?mv_I@<$94>GDT`ItSr@>q^XUhW>;EJ$&D|+?>Wg zxz+OA^J=)@sW>{d)%s<|{kd*k1;;5Oj$}a50v`O%#r=Mgfc_Bw*L$xkEyEnyJY90G zcG^KMGcj^rIRtw;*Hy9wXE zAKRX9@eXLKd|O*Qa#A`vAEE@(p1ftvB9e!;h~FJ`J}ljzsrbYC#{G=rHe)6G54kLC zY__~3K7I^#yyg<11Dm(;NY=W($a;NgsQ%`S+0L0Q+H}+66cEi?gDUdSV2?H)=~}+Y zC%^oPzgj(an$xtYFt>8pD=>3Ca*l0Dww6A?W^j*#Eqd|Yf?oH`Me=|AkY zq7$OTZ!m5Aw(cz^iJ5iV3}`)p39>Zw@Fu!seVb@)Np`j*jlp84UOv zvQUY4u>r@Q+wT$^+V3UyeP{X?pA{(Kvb3Hf3h6e^w#N+P<=NN^_KXhgo74{YuMI1O zmoHC6iH+c+qoYBgNhT5vi&Jj3({-~4M|GOT4#swKF@4L+%OEL6bFa3_4c~!N*`Ojh zxnKo9Mk+>sPQQ&A>tL6*N|aS(m)YESKR0xvF#51*Y~5S^L7ol=x`8**kEN0=-Udz7 zic~MHgGo8`&n8IeNJmy-I^B&It5-i2nw&q@s5ENBLV6o=i#}Y%Xq?RQ`eaeDo2>24 z)TYBi7Hm&SDURN+-afRU`$h+`kzOC4BeK$eu_uajOnJ2-Jb^ua=Hq(R!5jVln)vTL zV}3%e&x*9lRnX3O@!`xsHGPC>7%uf(z0j`c5yR7VJ@68nbR-pI2@~Tr-oL(4Z{ zlOWIfE8IEYi5fjqHrWPO0YBpSz&rb<`*!K^x2*OMtS5Pi+AuVR_1~w8UP4q9 zp%Q3!$UlGncnZbXrX9x0um-!_@;GkDL&G&+{0u$G@M|+K-WOt35x=(3z;>-nIO(tQ zf^Zh_7bFDZv|4e+RyK)c1l}DpIZ%E+qZfVQEq;|_K4q72do#847ZIagx^TKr6m&El zMHGAm7WBz)NN}T*La_!cEqOdyeytXC=z|e(cXj+{WMt%W{tsepZ7mZi4z>INH_t-d z|AC}C#ltQZ$HObc4C}VHlfs>+cDK)4Q|P|u<*hj}g9CKA^vI|tx3+Aq7Jg5yUZo|T z&RdJ0DjGk;Js$rpD9XC2m^eshVtQ1ASD;~)%o!bpJ_l7~iU?TKLL~(2doD%Ox>hr& zqhcb7&FD%hF07)%5M&#dvD(P{`+EsUfTM@UPv^SZ=89WG5aLk6{cLO0T{@DalNaG1 z^4=d?q{qR)!QVg7uRfttz4Yniv7Hk(bmKFahcqhSJ+LyoS=S7LCrED*vZaR$ri`oU zo*N#C_6=2JV7Eb1os!WD7SxakD+C) znaJjWUY+}SWb)W*{MZ!V!+;sY}Ral5$I6Zes5Gy10e01{BNHfi?`RAglA zi79>kx4;q9v_BVjh&V(zzy0=3fr=;8vhMG3S^-RPd-B8%M{b}DXq$kr^?G?7-5gVR~gH?MyQQ(57<6V~_Wu{T{!D6Qpr)vt(USVMgF3AL$!xuX*pK$ES=E zOV##NUUhwmFRk@LbhOGRVa+kprf=fl6ZA)#IaQkz3IvdJn4O|El`pG zEBu5SUh;lTZd$HN4cZcS0f9;lC?(yB11HnIfB$aGKu>Q_a^ccwC~?HN+$k4Je;rLM z4WV%Q8!GO(qj3oweTt>aPQGv~5D*r;lxLY8+K)#>Jr6f4ALY1%Z|B@USx(pKp(9JQ zw9l&$UaPa2;xu!w@xu}!V(oxMR;vT~gU8W~o#1s?l$o}KI_=MLM6Fe8i; zI#cvkwe>0Yg*MRn_BN*j=XIMoc@^<0R>0EZHHKC=u8*cr8SIl>IPvqjq)ZCw{O+Ef z+u5W#a(_8FIh5Vdah=3X-nYlym5M+Lf)18WFgQWyv>b2cMeUBL|9Hv2IKWl^@Ijw091`x1LNo+6=~vQ$ zV%^?WCfFCL1oKFu7TfBHb8)|H?{a`OiVBU$olpYl)xN+g8umIcASB1t6ctFOC zZ*f$r)&O%3K~jmNk7bfz{8#n1UC1BTzp2P#VPQS4|BfP445I4u%(ldEdch*oPP`gL z)w+xkUf-3NxYt4+FQ1Qv#V!_ZeH{pELe-z_Q2&mWI z^f3&&AqSKjLh!m<6PV?h6f@oI~QTS_KgJVe|gBt8R-P29i5*V1j<6c*+~}`|q|wBj@6%D{YS2i=X7> zhLsHm5>qu=Pun*XlfQz_&0Hs-u+pbxp&P!7n#{voCq`mS>r=&3A5b>s-E}J~ErI|% zNroIe-_nP|nJ|KAb;g>rr6cb_bM=ntWWCg}aAy-jpU<1QpsAg2ISRmpi|{?_}uN{?N3s zB|3Z?w)W~!$K*7D*o+07WiCZTKybeW#IHp8>a0IVQNdTLZHc3R9M*@Alx9qP9X7|+ z&hS0=JfK~SN{EWvIjLV-p~+0>r+Vcj1bFm-M$TH#U2l-xR7HW_TwTGMa7_0nISZIV zZTv7DC~LQ(>8=FCsavj9l%LSRhwC@iU#VZ&AYw2W9X;O?4*)*$BmIy^&>iN{yPOX> zNhcpCuUZ)ZfN+cAA}TMN7y@5Ht`HIe&J#XA_9ncSoI;}Up$r8uIWj>|}ZaI9>)W1mSuJU-kq zu*f`Uy_J&q_r@pgTy({<+dmSpweNn12NPYrU-rg6L5PC`Vkwj+m)K}PoxDcV2wtT( z%^@T%Jd$~%DX9$s%Isg=9E~yeG%;m8bfuWdjcS_;HH-5TMsEh9aYpLwr(8t8RfFec z*9s}B65L`p_I!kf=488a0dsar(*fi34|F61}t(XCDEW^shdW3%AS zOHOvN_AH#8?DEr=W5mF=k7U0tovR|5&=+Nyk#V3(5Q6Gz$v$8a9e#Lw+PUfu5+eRN zf|qd6{uopg_#O9m+F@vxX=3kjVsCHxN{o3WU&krtR;h}LdAFH^n4bq{lCqGA6K?nW z5ik(1^ioN%$%2H>&D8-*+2&HE%wGs8FEsM=6Y6~XH_=_OSr*~VOYg@FY%_O_Oq$!? zwH)613;w15E8;S@(I6@={(9%Ub<(EB@7%7`Jozl}#N50^mqn|96f4rImTHbt1$A>< za3=aJ%Wnq^wX9KNA55~=gsO0?>?|*{Y-6GE0LlKP8-gW20YE<5Ks_Ap+^OZJ>|kJe zOn$z2t^B*rzVgE$wB0Fh^soD%wCUWxy>OEX&Oo|7fI}fDZ#4TPyS!%)??EiTt9?sr z(J=;`EeL)5LN=^J9t1Cyh@@11mwa9OytdZTF{PYW4IGD^jgwf}?~)}&SZ39wqZ%c+ z%Yw9}6@-FJ6n7D()E`Z?;Nir^pdg3p`^}arZo}pT5G&{1YeQ=(MJNi(^^X3R^9N$H z0?7Q6uoMz$wt@sw7yQm?GFdgJFyVa9<@$c-Is+$~pINAIB9)zjzZthLIq90{VG5?j zIpupvT&Ru>Y3$UQ`f{*pT1q3)mfE(DBr!QudwL7ux1msK6KSn$Fa8&%Sych1j!**~ zi5?cBLY`;)?R-~Ux_hQREP7fcGFI+`$|FS|AI%dd!NUR5{Be2O}Glp<% zZNvV)I0Y-yS2F1g>qK`X`sBpj^^yxZr@<6~x>j>I@k>tP)F09}RQP*8P^Vn>ixpZ= zK&bYI^V_Vek&og*`+GC`v!xCEBF%Wrqcb?FpV&y>f{I2Pw|&_E}EJF!Eb?B1rTV>=$ytj388uLuco-{<(curLN1gl%Ie zmrvR!_UHS582gbDozzNrpZ$1RXf1wGeaWryqDYIgzG9|!e^T_s>?8%pjh-?*j-;`5^YI*{7)uFs1k8K!=gH&MboRscE|2)hpX~Bgk>mnC0g8MJ3qAyKM;zO?u^n0`zXNuB zD=A$B;_x|m_4w)$voFH*ZkDwrg3^N!fDcD{fA@bev6pk!Bk5sp6;cynxWlJL<%_}i zTGl}Rk$6%tAP;5OcsAFWSq`T%A6%dE%%}q4W;uRV4Z8Q80Xx+;{rz#zH7FgTBl6zs z_M(5E1GcbW4NeR1sJNS+=H9+#^Y@D^7}Ig=vW*bGY+AZMdA)dysBAmUY)@mN^WXNI zGN^1I|7NXAf?aZq!%`6w6I1@SbXXZ`NrL1b1Zw-OkQl^^HYVqo zG$)JZvszXPGi^-7<>0?9h9U8q+~3#7kuWvYShDj-;{!mf5gy;ad z)4-9Vi#xdi{QIvh6*9W30yKSoQ=Zb&*WrNP=w>=|d$G>}31%w@7?alenNXvm+cg>= zAMfMutU7$E=Tw&Y+B$lS?*h3_bP?4j81qicosFcWP^XafA6XJ?3ow% zx4ZCa6TMbJs5<+3M&NopQ}CJLp3QRW!%&)O)Wp7je za6>J@%!vvcEI+&hYq9Dy!Q?FlvB=GD#$)`Y%5BR0sca4ASc7IH=96>{2PZ8?xIRor z>PViF$B&aI7SfSgmUPgKrwO2j1@bkZZ>{uUoaT*Qyr5sMclVW!beDX!b3h`!UXV~e z4hObD2<;K~mGTJ3l?YXmy>2;@jKd|+vmVB}N%^D^Dk~>d51u;bXU=QyVfB(4AC;P1yc z(O$)V`vwC(Hlt;?qQxPHrNCe^yr7lk9Rwpj9wr!0T#-;ifiZ|lyzIGJ-&bj_%hhzo z)&I7)vXs5?2= zPQD$Yf0d48MOGNL(8B9xSEcb*G)f`JG%k;t;&ma?DE@stt|PBKYzJ0*H@-W^Rajr9 zY5t{Om65G{yDV?q+1pU^xL`ESgq*-q8(o_S(~LJbytR3??o~T}BX~pL(zOi80pV+w zYlKAJPOVqzIT0R6Ln>ibwAi87hMhTOW0NFMecqd^Y%AbZ1JV;EQBw2)JA1) z7lX@Y%9F#+R|~tE>Q$vyqSk6h$<*$Oa3RjYw`Od{#x}>qYSK4v-Z0VA(`RJsKLl*n z_g5}C)I%x_`t5wHMEiF@f6lScjJ?DE!vlC1G0<@=p$f%=b2SQa%lH}PMn07FR^ggi zl0Uu9EH#>FS)+8x|2pb9Yg8;@Z0pU0pk$i?g8Qafm%G7Y+@2p@@?qCFc+EO^_4yBp z%lX5~yD^@jMCG`7#pK)N`eN|zGY=Q82|LtB1j?UV{N!V>j~#_^KbK`&ZcZ@WD;xv#EVQ6x=BD6s z8}At-2trW-3jAAQGlO#dQS7U$<24dbcb-kJ*Wdu{X`FX4aJ&IbQwFrGw@{Zc{)Pbw z_>|26Zk3~YYKG|iAFQ|j0ZZ+P?((-8vUz08NeUAnzQDj_P=?(EP?%7pY^H)tBbWF2 z2{kko87V1O_DE9cpP%+Vde(=i)!C@w&3Z13gl2u~CXSMk#%o5KW}wxTjHhU7 z&FRNxu|phw#C%8i1G=`lL<{t0e39uH|0{!|pI9%@FzyUt3M+G7m{t^3>Xns$cS>BN8cUb^c*JoHY2X z-RQds+?CU!E$!@JMU@OEBG4aVsUK(zYmddjEBK=CrU=p+8iNDR1@s^ON^g5^87%c2H$ zJhAjozBNsrjanelSs#4o6l$wK+MbK0=T&;U;chVaPrhgw;> z%bPN6*;3%caMXG6JO9W-t@9IbmhnCkGTcmlLPVjk8VrLL>iI>7>oF997%cNQz4lzd zdv>00uTOw#gTyR5_;Cr*3BWlm58*9Z!DH&w3&MR5b-cGMrfD2M? z6MxR2pg`j|Fz_?0+^9Ax0XALo%r(g4r~P-^qKUs66^F9l;kML1SySQ=1O-F9h<<^% z;!^;F)&tw_xgik!>>JcvPCH=$+(6QiQ2et^ggdYYcP#{mqOVT5Ul zQyU{jBpc~V&}eLIs*fODJ=-2jm54Joiwvjy_ow`{dfa7#-T4VzU_tymA^;8iC-K6H z7}rG#o5a2$CvZuHCPIphH1!EG!c=42*(Ht`(#bo7CJ$9a*0{^Bw3(!BMjzhNKrLr@ zqk$h(Qeg<2E1n0|w%d=vI=_kNeQtLU@$ZKnlZ{)rVt%_DfN7#|=NFqH;ze5e zqX|)SHepg93&JO@>mBJZjoda;twE7&->!8;7H}*oMQNjS;P0uBm!bjvth6!p>l$4d^BO`gi;NCy zN@~^DUs?~*=aky3_f}ToR>;7hGrsGQ&fR7i*FC}H$?eyJ%G2<%w^A02N~|*e(hRLaF>TEj1p5ssws5~juXBwz;ULzkpYoH<}u@vfgy*)BBXzX zH;$bv8V?(~LKv%7GC}S%*aZNRCl_~GvsmuCf4SR+0>{_6hW)Mbs+{*@duUaqnqtjgu!&UU$H3= zWT0J$I^zMH$LFS;z);~DDzX<>Urnh^rxHKHj}2SA1PB>LZHiBgB_LYAh!|d@(Ud4F z*K;;rzWsk*fX!5ceo`Ps!Ewb%*8&zTRl%OK5m!RBY4IRaLn&xw0 z?L=i4qNhVNnvZM$lT;K^9lTA8J@fvF9y;Y^L`RARFr6YHj<7$_U7@9e;-f$b4C1&R z6!y_j=IeC$^MY2a7o|UOG%D5=&>OK*gadCp5|~v4h^Uh+pE?TgY@$C&e=R_IQ_oy5 zZ{5IQGAF2dvRgtwp=7*7{j&xmDKo3uzK&j!GqtsK2?ZhEZhwzIe;uodEfufV&lnfV@>?0n>XIjj!7V~pHqPG+ep9ISWQQ1P$-fttFxR9G(RlXE>U4_}4|Rp8MNsAlUc9v>0ZJZx7p-)EGb0*S1gKJ5G3n?M%X6kZ%sNyc3A~NtB2xAJQb1 zF3bO_TuE%!%%vS5%h0fdyV+d_K@ecGc-6x+WfQk=3l1kCj7DDkt2)hJqqOfX1er&NIYq_=BX+Y5UAq4_je}HK*d>% zxxH-4ZLwnxh!Hz=WWgy4mHgW%P0FiD$p!17+6b>uFsEw{9i zwHnQ)R6lDX^)FLQsr7Y`;S^CavS6h#dUz6sSh3N^w==J?TQPiRgPtdLqK2G5eV)r(BQrWV(3AMk4}cRQ{hg7l##EqYJW2dyY)jos}dWmvOoH)G*IQSYQ} zulDd`8yzL_kYP{U{PQ(|Pxxl|@y<%O_-B$ndmDFJKi3a{>Y1pxztt!CTU=4`xmu&- zDV^BurQ+(bJ0P{hf`8N`mB)LxY0!e?Jv@DZm{>Zs8MnKfonVikna&$~^JaULC-{2M z_+j|*`fmDoO``GZAuHwQd$~~Yfm`sNLP28tjuyMoZM~_L9ABzInZ|m}^x$U3*9L%? zjCud89bxGSNjdhp@*jduvRd8JRpJf%V+5@KiFaj@k-}E{3KP`CD>;>pOv0lLmA9l+ zMLv1*qzO=%j)5+Ys*cO33V%a1OY_kh^e<(FpAMhOBGn(}pRMU63791Iv$+Yg_FACj zxEvVRx6#RHA_9718M4mdXQ^?y;T+NF8OXl zW4Iv)Ey@RBlPUY<2MCLkB&T2QNgN zDN5!dqMuB^KAP=AiIxE!O{zNi+WOM{!mapaY5PrxeVv(97mcCIL?<@Aj8C$ur5F;I6>he=NV#$E~+8Z4&y+HJ&SaI{F=`XZt-C zs|4S~X|{d1fHrEHPuR@?iCuDdu1=47q}g_T3h!?UuX%N|$mE@`s~8adVW&h%Zr=?+ zUT8BTeXzXDUB<#Jlq1%~4dT&#g>UJy;SWZMNgY{~jB-ix%DnS*5!t4!gz|7Un$y4l zy%*PKAMTGdammcs^VqJTk_qM{oj$4F+h3{vi`M4$1RpelywVxLw zVN-qD0vDd%y|^i(sV+wUU_(x&;&a{m2Kb2r`%L;nDb%zqdf$N z;Mxl?>J8OT5jkocF>3B_Fr&lJArui92sPW^Yy0srl3%o6gk7x<9Irhw4p^fbES6(3 zEMpb{U9YT6>22`&8$Y=5)Oy+juMgvfwa|BxJvj>HM%>sN2O;tzz(;?2U11QV0CoPs zX2}|leM-y~`eKF)y+F8q?zHveY(pX}wr+#;;vKY8xZ#s2weHfTy8^Q{{NSiTmGUeU z5`E(Iv!yD5Wpa_tOe#O2O*%5w1>Heci#n&iwwN))s}8pzXCvLpH3L@M4`^yysc?JU z-)7Yu5vC5+rJ81`_>#g&fG(s}%-_?sxK=;L$tu5x+8R1@5 zkAs<0m609dq+zEyN_NA)Vqz+#$%z)KLti^aR7)*$4a>d2GPN_gG;y~et?Fqk;$e&F zi{%f==BfBZi0${^B5e75cQiC6cRx>7CnfeJoirfMJC&5hu?$#_#?QlW>5=TogS{`U z4{G}?0qCA_JK2CRZu;)*gT7a67qAlGQ){4Xv~>Xv?=N?Sn{t=K5Y_pN+0uwRpz-l1B5B9s&WDIddO82*>hOcPYj0UDw|pW>~n&3N}^Xt z&v^ACNS7{)a1OG?JkOWEA>uT-m;O$ENo!gk&R!yvdV~Ii^j9q>Yy2NJ1k;N(U5t5j zm)&z=BAq2yy)NNrS%DYtuTN3l%}L>Ix;!Zn=q}3-w-UZv6P5Ku?K_&^kV=}X2N`Csv#r_yw{pO?Q)pCby~w{O4LV!8|QIjDTtG415Ff;$yy%@rCffnIIYyvUYV zV#g8|6TDEM@$hXi#n=<16@~-3{MQSFK`bREmN`hdR@fT7S#3jTud9sQW$ZGr9PTUx z>m#%j76=KmP5TZxkj5|#x0OEC_o;)L7-Jvn*$i583tw1E zK#A}HWf*^C-*?fqu2ou}ya46<5|pa+jFTeOiiRr5HjN8!_VS)}-~wudy}>vPDktHU z0wysePQx!-J-*a zXN-8E--{w5i~uVhKSyE^-2S;Tb+tTtj=!CSMdhLIcd&G=2H#HC>O%S9{%jo;@lNfNLGH1e8=-Un~-7`!pEh4^s`^AoNROH{H93KLI@&u8$>0p5vJ zx)txLCr>Ue=uLTvJhXvizSNRr+^Rd>^S;ndMIvx3J@}X^j_1p%4kj%c8d~{M-{t++ z=K8nlG_$h>;ZIETJ$; zs*UeC)60Pb(Yi5H8L)xoRNEUrg`ni1^yegvdks3z+2pO(=)>x;Rw&$c`C_4(nxezL zgun|ebHE)rKo|M_bnl!VOFJ z(f#HXp2~0hu?o~=z+X;FIKkLnT;!7swAu^@-mUO#D3=w;l)8JR-s1lH$#RvQauLe6 zeXPDUv_=omLqeaeRGU}pT#_9Ic~3PgULulT0qqx}4Axhv0DY_%llbeJLCQHdvRX7Q zp!|cxg*rmtLvx~P@>py1jb5$aysSAM`eKd?Iz3s(8Ep)^B!B7|nDy9)!b;AOCDyVF zklSY|NK#7p5#m< z1g!%qJI&`&PV%Y=d72zv@vLasyyP(A;_B*ZIzCcI&D=>PHe8@siCRxuxjOm>(X7#Z zHD-QVFb~+q@yqJ5tIUD?=|Nos*2j{JnDG-n_(>eQWW7Sg!28A0W?EY}1G<_~41R-bAzz_N(T{8gDO7A`ioNRZ;ylmUvg;`@7f zzaaS`r~VLcm7S+imy?jwXW7!m9fb-fj!3B4U`>~R06Ewihqm^ytJ=Irc2+Cg79V6e z#&13TumFlkFpLRcT=Hz=+A)@^JXNuC15>(Qy zx68ji441fnT#V0E=N_I}v=?-4-fpsTrBD29_l)%YOIi$QF*zZyd=0` z@EUTJL;-$vanw21!Taa@@^m%$@-V9jg$g=gaRQHe_~9bUr&>NrJYGM}a3)e;eP^n% zc=iG1do9m8imqzt9a#udPCrhKIzK0Q|14G1v#-k9igKXo67Ufx_Q%B@K&sLQKY-#r znzOd{^3^zD*;!7#8Y_FcU+qMCFYoEnu)OR9$dK}E&(s&(_mzfgHmP%k*xS)RSLQqe5q+CM*ZLb>H_JyW}SeZK`;S zqX4LJ)8Ca6*(Fd+skV1qTpUkI?d}gJxlyGE8}8@eJz0Pp*7S79+vaB%x`9ZM#QT5E z%J`E@!~{N^YpC45eNZ&7p1!O10wy1zmcEY<_m)V!-CmI{ zv)x|RHZMorH&W;Y@*HL%el-A)lYI@_;G+eMB>Dj#p! z^obZm{5dLk(v*xsk^LSA9LB=9yhr8|7dW6XempDwS&&|Z{>#*#T@Hq4Woy1?3xPt) zZ9~`2!ME0wB69whwW+^;B@jc3wD1ax`BJ58O7XURl?X863b^EAm;D*9zdesb#%w?o zp#=I9c|z*Ny}Ujzf7g`>H?PTVB%7eqKYzhn!&w?{43axHQ}*;$`L7fn4)Bttzx8Kk zJtxXOLMYJ*>IjxCk?j}=eJ*3XjvsSc#FX%a6WRgU*#cNG`%l@{TB;VAFUWF9irWUw z^OPy@qsf$A2uz8sf+oWCX%+$g9~o~Ul5=7^a$LiG+{S>1)+$H;UjfTiiqWY`TC16v zY9Q@%&_7|H)0q1s{*JjZv2+GV{3YN@w`^f7VwzAJIn~1o31!wJ?6LW6-~2qwV`4 zr;th_P3{*<4`vQt>DZ+d`RIVBlflT?eHQ2-07PKX=kIQu#?4_s{(MBDy@&S|DDtqV ziufnr(tj|%>S%wQWqLfG`4;?m8Jt@ZVcGFFHQvFC^*e56*k#+;#U4%*$@Noe@N@Xk zhMWJKPVrr#W|L0MYcHjbP^Diz#7}n84qjp0i7#&;Ti~~F9^#)u{=<411DTl;&{C}6 z=`jI(%W{yz5~59tSBN(lJ;N$qfvW-HnWyv)8jL;-Ex1dVvibebo0_Y^uGvZA0?>Go z3VYtW=ZhDDjs@Xg|Q*HKVl5DA>4E-CS2Tw{ABTMJUMwPnBr2_Zx3T?AMe+cn4 z!0g%;GP9fIlrjp}W73gwd81ns0D&m+751rWVJ!dypPw=X%_uqvW53y{)JdqsE>)eq zj=V{;c+VOGo8{AIY$Gf<%9l&ZF&hmKegq&xjzpo3hW*V?+fs!{8nlDb2mcxV)C6-! zmlvJ+`LgWXnBKGPfUNlS;JY6_7!<$(l9`}k+~AXiH3|b>{ENA+{qYyp^Rz)L(l3|u z?kc^}vi7`ly1hzlB|jKv&<#Vo-Tg29KUeZ3Dn@SeK&+{Y#yp$!eo;}dz zZ17^~Lwg)@^2-`G&6q6318kP(x96Ma-$18P%TfuVx`pc~isx0lA~3PJ3N3LYM+fW4tbRp)P8Df_{|72?qqx)Dsxz#yhT zd>3(e3nX#kT;X6s9~?c%yx`-@4}F>SiUpIMy%k#CRS*l+k$aI}>RNTdK!yj5cP3XO zc1&O@u0;Qt@1MvTPfu75K|uWZ^&v?{ZT`#sr00{Ah(pIO^O6R~q|iZqcF``?-fTSq?;@Rzyj4;?eL zN}}iE&bo=X#|DHwuG~E$5ZCQsX6#8VE=p}P86If+{;>X(r}lb;k#bNAz4em$Vc_A~ zL~rlM3_mf>0^N8i8buQ=@JpWE4X;{8+$#p83K{lcC7M5c3FEw>feBNvbJl$^pGB;9(4u%A>VbJtEOl zv}eX@%1%ZdDsp*HASf228bWirg-iF^qPc}BCd^iTqXtJwc)|_>Ap7rsvAJKEuUi0= z`JDUKmqR^DbL0D+T;ETh7ywgFp)G>qOBSk)?T-6Rzq-P;X`SOfrYurG;1SJ5vp~?K zxEaB#A7X>SIX$kgJJAJ;o`TsuMHYwXi^#d6i(m{P}7 z=8sRol|#l_S{h75vV86Lg#3P)3V{oGJMobeMq4&G>XTu#TAC~eP_w1(9-_909+q#% z1DPx|E%@BY!&BwSZRx;@Q2XjwLb4oPPVQH^XNE$!Re-q3hMYJIkmLWa=@i5Up)8#2p611|yhu;QoCo6*t#9VWYZ^VxsD2Gog z90Ge4r(F-*+%Dtp(>4`YqgFG+3f>mkB;ANf~5wfA|Ctag2Kp7eW2SJ!zn_^A6t4#iN3}y#^@5LGCgowwxq=Y3M2list zFz>drf|so6nHqV`w19CZGf!hcCKp+@+K0`;8t*U(s`~WS{dS|3XQ}_w!Yg?Na=QrDpx@XNTrvO$$xxMyMO;2N8_0@(S0OCPGbDCr2du7soi|K15 zS}=yo3Y`>fB`r94dvE>i<3{_PVyJDE3wmoAmA&xwd7#8h{eFhYFu*M^L?ee)aL^G#EM8@QSJX`HBP%G@mQXP=mA4|)=z`S|weHerev{wj=M_@vNkVPh?_U_dYjMR20w;z~VQS(pYe)MRNpG9^b(Tk~fRuy7c^YGOmKJ5GTNIfVA={3f#yz9QIHIR=QX=Fv9%XAc$z z6f@4h*WP#X264@dy+kt+qLo&lVdU8mOqU_UQT?SV)WLU>PDF7u*>Z66>L*0l9uTW< zqb=N&AC&o%(;)-Tvjg}PRCE6$Q=8bflM1ifm9_YLssviP!CR0tW81t5zPI>R*i|cM0jeeqz#J6NGm)59u+01sTpMOA=RM5-UC{AnqUl z-1s%X*h#gEs;3d79;yI+#NG+=RnNe{sC zsW(I`ini3FKkxt-TOg>~BTdHH86zit*ce5~1x(E1h31|lStiyW%%00kw~ErnB$eA~ zf>J^tNk7<4U$D&hK92Bx@A-dTfO{salz@XK3;p#~&mXui$#%}ykpDrn)1MYN{Mazn zIQwKcf~Py8FnXCK>RXdHqxA(5Kb-Cu!qT*}o)5Ai|9tv7Cqak#9&m23guS4NAko_( zBF>l70GU;%7!RXJBBYutow1RruUDJD>5^T?So3MIF+Oi`M|sPzkw(J}g&e1L{{y`w zy{=Cq|8sd z?5C36|I$|un#d(}(ZsHHTtu{_O#Q%2N;cm1bx-S&3EeSIDFpPvPia=C+B;GD9D;v4 z&71zlGP(qXNH`Z~#sW=g)DyW_QT*~VDzj=GX@wbR*bCZ-<3?gu&0-C}Yc>HKFJ`WS zvY6;-hj^Gcp#dW;?adafE*X_~@<5qs|H@-)WaiCB!h3fg@uE>?(zr2?g=92iGcU%c zcE8OC;hNmuQoL>gd85!2Ps4_>jMN#h6qn(YC!M7D%uJMKF)>L8o`ChCfvl8YZtR{Ttw=Ub!iv@t<51E_p`f!wlN|1e&x?{FeYx{PGbw zx3ri(S8YxU!Qc%0agBK78L&Ci_&+pVWmJ@Hw4DJ2q)WO{N5`W2jsX!- z1Vp-XsG(DO1OX}OmQbX-8}9SnyDmRiEEYfB;XThe&)H}1eZHAIj*~96LF0sp;yNCS z?;q-D5US^YADo%-8dqv}qJebs+6Vb8oDMFy_`akH>lDvg@3x?$D_{5Z-=12BfQIrB z9E|5EeO0lmi_t37H5f1e5x@YF8E~HUa9Y0BVDmayJE#I2=#iY<=ORsxkG>)P2~kJy z>Gck&Z~zQ${aa3=>@V)+J2O~tTf^RWWr$%sa*Zo{KSb@RTK^Eh=jA>`+YJ zzf^Gv9;nKB9b6XAs95nD-B8)U$ecjz=qO~+(*00kmX30&zI637g`T(k zfHwxROLoFheBF?YVuJhvS8^?+S_h|#m#4EczuKn0nJ!ELFKgXEngi${U>1Vu6lKcq z^+lucTG4X>i*3~!-g7^^n65bMHhJEjZSvYS%U=^Ynf4)zYnHF!(OTb^7C3J>FNTt? z5?n=B$$cMPR;hF7fP}%?SEo z@rk-6hJgJo(Q@Zkg8E1Gm*t4bEsw1U*XH)q`HszNr}`_*ik1o-*Snu_(-jL+C=fF? z6K(vsyrQC_9J=+f>2D|-^!D1*=a+8x{={crV8HrC^`=nY&vxhM;SAY-Ui7{~z=VXz zDPFA||HHz1TV6I|XgEhu<+?RNzrapX%|SKJQD(~Y!xrACp{|~GNXTOJ*1l)`WSCld z<>oRAb&U690|R&#d^+9oj`e78UY{CtWm7 z{Lyhrcv)O}^|#0q+!Xb3%^#2S&^uBVv6z0;?&xe8t)1#f#_nH#O67?Anb&Xrgk#l- zwUj$se0EZa13?zLkK{_Ee@h*>c-&rdnq)L{IcS^pNcM5Y%~pxiT*v)2q(t@&agH`} zmrV9I6M{B1EzQtpu(y0N;iklU4nZf@ZnvmnRU7Jtl8tOc8)dgb!kQe%R}cpdJ*@AE z02~;_Y`*)Y`^S$Tb3HREe}#-+#&25j+5ai*jUTLi#a^+`mVq8j0o*NCP}6WrRJ!Iu zVr=PbgOhVXT?s{wo{gbzP}`i9I`$}bnE5l%Du+MSp#|b3W);V2$fz zM1XTV;gc$WyMe1mtcR>w*uH#77;W5C#A(B_h#+Ncuw+% zVW?sOXz5}>2hvHR#rqbLYLdBJ*oU z?s}yG_V%Sj%@xhT^A+e9F&-ytQgI3M0iZJT3#6Gt=B7IK0MANUd`J>*v& zwP-M*zRH_3OQHC%Jx@^%lUOdJq(^!(r5YyT?_rB{WG$-H<@y>53CfzBWRj*I7hH>k0&WJC4EgIhI}XA>8puC%sK zL0rYThO3`btxukvpp$Zl+(_N8bE~To{>OE9`48ug*ev74b4aq5hXCcjDca4i{(fO; z=W*6l&cx4KgOYIF9T`@WMhAqXprCi4r{~Ee_#mboRuJP)h#avb>mZX3XZxLb$XIut z(M+q~>??%pB-a_~NBr%yKhxMWN(-~uKdoGAW<4NT>msZI_Pi6Lj#}QVq^8_A_5=AC z*zG1e+hUeI318o%!TQnUxZDT;(^88C5J=|fmg3g^+CsfioeeZOkxrewI}-jUc9^IS ziRp_M3VvM!o!s^9#>!q1$H}cfWkH?uT9c;{%p@rS7Vu+doGiJPn^Is$35v`YZk%t8BcV)neZr zmE7gB+$@M%##e4%s6qg-e}HsOfX)|~zc_UAizH4fx`5OS?v8Z16%VZI!Y%#3L{UeS zr>AV-%uj9eqaY`)j&Qwd z7{{c3L3%97EZ0X*Ly7P-weY;U&s@B)@U$vO!XOiB7GM^PC{!rA6NmNp^IN+3`1t+w zjEtKHxmGi4aHp*VFyUuwu0jm%w6-q=*qDAWU^7Y5UrS)Di6-`|!*yILlQ|L%A!^*T zqi^|{4V62_Icj2>DjdRj^B(b+wkIfj^tpewj0@{$K%1Z-&w>J7J~BscSq-Cg?~b9! z8yx%Dh9f!H*$*XV8<|ZNwi<&(Y7;})W9}gv;=IV+(q%m(E$nLi3)>uL0JoFa&6J%} z{ozklttb$n`mkib8@d0}En`s=Nkr8rpPRD!HC1(uHE4H<+W&H(yO5&&z(*rP_;9hW zug~n~HtYAbv9E5tfVw;t3xAp@4w691#C0-YU`S$U&NMh#pYJWuK}xQKT=}SsvK=;W zsx3SG)?&mmaLf}l< zwFfO>`EKNXILjlK7>6WTdlmf6ZMX5}rachTjFx|f8BFKPp&YbM7kd^Ojo!fZ)V|Zu z&~U31N~*%PHKELd*M(V%d-PZ?d^sC4*i?woWbYf5PVb7fwrOzv99Hw2m;J-rE2(5B zdF3v5`WRe*e#(jF%#R(G(~{URs;Lv)WIVBB@nb+^(K{WoK||9*C_i}#%AQddFMnG1 zdN|R%9FI_o-+izdCbSmt;N%0xVg2Q(2i2l>!(P)SJ`4vYOmeTWneaVE@AO*H;5|EB zFJ8O=RcjVm>DCp~55|8QpFe-TF&`T6a7OS!zHpKmmcU-c9SWtlK!5v7Yz2C!4|!?- zz#^n~%+ozjKham>NeXk0j*Xq}>FF_*1YfwCfO6~){~JT+1DUkq`LML9nV!9G=5ima z-C}d`$e*@QyOIL$m0Z#IbFZtge8j^A!*T}33GuOJm%kt+T$b1nb^O6J)t=6F)X^3M z-(K+XjlD`zW|D3(-QUu~?y8#JFK$L%v zzt^bmrxm&NHDA$wo}Fu?O*>z%ngyS!NFIJ9?F+iz8%=$&R8s~y$f)a|i^$T$G4_Gz z_I6Lzf+T>Tom`s!tS%F;%8CUQAC7AO0Dwe9)NkyL&}|%e=g3IFlKZg4wM+2rwprf! zF&~C6QLqukSb8-G zaIj!X%!|ye1h6`XxhwD?7;c+@p5kX?{`md-w>9pabL}iTXN>^ioj(3WYrOIk#x?l( zW)3LH;_!Jp^Lg*-pK2q{>(bFw5(Q#hnU1<|85`%Z2P~GCzYn9`Clmd>hu)2f(|WQ@ z3BrGmjPOZ2d7sU0XPkX0xv!|kQ(pWMlXN(MPe3hcwsq z`I3z=?54LrF(FN3n~l5F+0b48;hOobWHQ_=@4CP3bJbBXXTs|WHRhqvO4=gx)LT$d zHb|3le~eXi8bKrZfFDoZ4vf-?OXP1|9H%il3P0p)^VmXR@56pqTPos4n{|<_Z_X9$ z``Pbsr=C=j2Q!uKPYDFmunJ@i+Mwt5oc?X?wf~`(ta;<#hKrSCeM(LLmMvQY4MWCU z>9J|quv>({1vehPnyr68B2N6aGngeqj{r+`d#ff1W|I~bMJ~N`;5u=evDA7QI5S>r z&I-||d*m=b2Mx%YUU3jnZyfdgc6?A%{~*HzvuK+%*c`!wGs7V*45alv9C@U7=}(~j3K z5z$*ebem;}Qht`aQ?3W4R9nkZ1h30z&|!Rh{B6mD_2^7dFHU7Q{`8@NsklIsN>5nH z1^N)&eCiiFKaHkgNrD+AwP6D-R^=$lEu(@gY2J~uCkNJd7<5ku>2nkW7B{VbFvDd3 zG=L*2#Xv_FL{r+-Bb@LPN+IYXi3uWKKQ`3{ncz;a3=BuE*;rZcUL%>ULkko5-qO1I zkFzo)9BZ(~iwx8ZIv#X=JtdVLOr=`3;_+d6&7J{0*gB<$==pp^|F-Lmv;0q}{qTE> zgfS0A`iG9m882?-~`t{@tVZ}nDuygX_51X3hZxq zU%1F8|K=I)_D_Ysp`3(skh?tK%{$v*WgV#5+Fm}F4R-y4@=6Uj`0m#0MvqbDbd5^$ zptI-V`ZBn>!9e9_CvmfNjPGUAV9jj4=_hZ74E2ldY34GeN!5R{E2AuuPg79E<)CSH zZtgfwA}yI65=4aYVWrm~%8bLhTMnhpGtIq-KaAaV5Hk~OB#SF!{In$j-Bd4iCB#<6 z!Obz#f~)Vf`yRD&Y5_DdH8quAnl-*phF{+$S6iQ`y!{t64g#(#KI-b~?E=ArhUMht zX=>;_0H5{rhp5&jN+y*+vunQgRlN3Pj^BjT%Lzu!+ok+D{rQ7xecTY~?NZk{JnT_)Y|_c1&fn@K^-Fk6kEp?+2PG46x< zF_(HE{-E(_C47oT(B=9Io25X=$$dOsXdXgW9y3v@legbD{USf2xS+bm{hi-%P1yso z=Ya(@bP;dn5}tk@x;yw#`Cz6sB*etW>+e7Je&{x9Qg4dH-oaBYx>L}7jk`?3 z!{U|wAQgK7*!3i7S?Fz?7n3mqdpSspxuevpXCQX3IZZgU25PRD zu`-kw9wW#UCL|lwejHgJ;D#Ht&2VRn)SBUzO%xF1^q^U$D8WIY z*`?ZQFJJpSA8U4MGTJ;+r>6gD1m?z0qh(6*o1z%>w$q#b=%jLNsCt)z3R}+mfn@Nd|2?@YM3{1kk;(&z4k}v0 zB;Efh1p{qA4SZ=cW%MKCS<_Ew`bq3_x+C{qB;SV@XnzzB_dYY|1 zQdoNF`@6dNU2Ig6wFzVgxN4o}W!Mkz>^OSQ4+({kGU=zKx&Nb9;L7zi8T#bic=w9{ z0~2Ii>$bj5S>tauKhS?-@s0W-+IomtRRsK&T^%v#u&bYH z`;gIqGZ8xX^l6eYVoVNul)>(U#S;>A@G?3UBj@sa>;!+fG*@a^fJMN^6$u4p+?Xmc`tqWM$DqNc_i+dJ|~yj>Te*jf(eEr7P!lQ_y3gnKJ9Y zE=Zt1L_9Mb|HOc?>+R{G%t2a_#9Ze|Jy=tg%o^400a53a2l|4qeO4@IseVD~@9daA zxi__z+n(?3pYP1bI624El9KMnIJuy|v+%;45pKNQc;tCGQNkU%{gsoPDb6l*YX;mN z9So+d)2pUlfI{W4B}pP7ku*LYk1pUnGdKZX1?E|976q;#q|EP z2Jd*^9sJpizV!Ru-K}(H?}Rf~!}TPKE~4o|Lq~ai2QYtI1zIxYi>mng{@rcHhGfj0 zcPt4MvNWga3M#+B&v7Wv-KT);=y3k+72vR2I@d7xxR(WuQ+^#z)Lx=^HDvRf>ZA_& zI^4;!2&S;Pfe2z@@v-s`n7wXYzidyqJ2svHcd`$9QP7t}l9(4a|2=N4F*i)^I4Bg*<`XseQh_dQrHZm&L({*YyNWL=H}L zov!Xd|LV7Qo4CdlZ|2PnJc=tkGzspV&0pRW9sxmEroES)g~i|cTC6-kO* zIwTI?b==Oo{B&<>EH|ivA-)>?GYdDnm7p{mtvNmQ-SwU;pQh84;7Dw0db;<%YNDQq zKV2*5j~-`*cWV#SOjC6 zib?}sJi308b$D$f5t4ywT-_F#0GlW*GV|E+$X@vYW|gd2f1me@0yT<^iahorOCsEt z9;MF8qWS)fFWbSUD(eetM04*HNvbLpYKlO3$MbIt*H>n|PNIPt$p_+yIOWX1p(4rC z--nH@tIsq=Q%BWOl@V*F^@Pn8G$KIaNaKIDR}a}Dl&E7w+>HGD_b*;`x_opG99(=Cm+3g=V>pn zM(?`}OsZZwyArWw_LNVTWQa8`@mDleUjf?#;*IgQr#;{}h%?C8#9Wky-NcfQ0IHzp|<|IW@C% z10hvKhpH)alEMjgQsX6cI4H2)UnK1d%o>ZKi!k7ZT)nsWXb1)H-|=j_q!lF}FsZ1z zEVDKUk|}x@uWB)W)`6xW;&=3K8JzI#_e6@{FoH?ncallB819z;cI&+lSW=WqQ(to@ zYjm=_GFnnzxQmPZy)BS#pJZBVUQG~uy4@go-cX*3kX_R7@r=OF5r5&)9fSp1EVPSL z|9|j>#6(RWBn#p%u1KrXgirFPs|sAX6pUMW1p_>y1iu{y_jh z#P(kY-3S~J8WNQznkCa!dC(s7r9v1-2xxNzg&JpF8d*wTP3*9=@87HLXGtubO)9sl z6sk=pi^@h02`&0sq8IBY)f*{a{_dI9NMoKxp zWHNx%ZG@AAS8130gyJ$?(Z40t#gwg_ZwoP zzgJS%LbA?Y-H>Yv&ve;Od{r~lU7Yx9I4~dtA>*HIf37HW>LhpK7QK7;&J2V=dFSS@ zEH*x><8#f6$r)^8A>3sjQ4Yw{_*d>!H#kfU?>I{~Joyi>4_dAUBdwaV&eA(B{|N=1 zB3JUC`F=Np4#4_}Cf_luqFYf$s6^l+pGz^sb_SqNck2>d9OoP$W8>CIE{4v|=+X7X zy~|vuuNS8+MF@t2hXZ`)_V4zjL^k=)Z-P`iQ(-e1#1`*z@+vHKF7jb_q^87jQSAAit02xD&z?2>5voO_FhNRyy(`|~zn5qr;_CSC! z`2(xk`9@s$T$9I>`Gyek2NOo8^^dlYLuzI+)1SkM)EXBSF~6{rVduWZXajzQ9|g=# z#WQRoS2y22=}j3XjmRb8VxUUJ5I)^?c^Vc2D~abM!+rtKI#bJ=^*rQ1=ZI;-ak zNJ?#^r%$EMCwq)F6`Nvry`;4wTp#Xmo8zp&sMjoYW|@0htDGc7(YCY+mOH0d2GTA_w**g9k%Du5A6**~!h&SWK#7}S^bn=$<>NxmodPeYk;axG)vlvQz z)a{mOw3|H>cze18{RVQ^#>!;8zfN&=9hp1|+&OfAWp^0d+duvnfzWjS;_evw+y9b1l=3VgzS4nn{QsSg6cJ|jgWc-|CxFu(g4uGL))D7t-rMSJme$VN8<4kS@VQ>uTxeH+W;# zctSBUN&wH==Ca!?8!1RD7(3-JS&o8aC?l95A2MU8mGr`v56Ql|aXxia-Kh8}&{?Ht z&#m$_PCuYFC$`=k^AC6LcV*Uf2yJG~+2mo!BuN+|Uoo4I_+jg_aO`lRr?QcfnjH0% z<7&ToQn*4Bj#3hiFyIUkCp(L3mTqyg40i`5S3w?GLWW88GzY_(V&{yd?}!I#(qxbb z1*E%3;F8N@KB^matX%3U|8SxrsD1t1qiL8}Laz-F<8b{f&ncC5B$|TSH z25LBA{T5C(Hk8Y#r>0EMUs4y#+K2=T?qIRW(ybI-wW2nEsWvdF@{-W*F6B88pcxO4 z6*jLNjZC8+RHb{4_1RE{##KOd%K$s>rM#^Y2ZLeDl0?8+U8uGBPnX8p9F%2w!%?rc z{xJ=rY6N`;)^FM|?za5bZUDTkFgFw!UlE|x5jvuElbsPEX}~-2+j`}_e^ix|_iuls zL&ZyW=5y1wN-w>UE2ihzyh1|fMzH>+vC4QlN^EH9ix;f@LenRY7i2^{w#yr@1Tzv; zRIK=@M&H(xG1MDk%l$hsMNUR3OJqkxS@-f-XYHMN>-JIFHC4RuT#44&6^|P*QL?I) z1h`Ve)8@T|fnhXC1_m>ztWNwZDwIn-n9SQ*L0T19$~#t?E+jJ?z2(h%1rW6Xt?B#M z%6sl=_`*WG=G6E0(u;jooDkENUC7051HSo__~hj_-RYsuA1Go2@oaL)0BOMqcATX z#B2rChcQOdR#_W3v1L|3wXWt;Dj#ZA{P4V;cYB(M-QirGln4u^p^Mv!+51G4SH~}q z_<%Ba^(kA1XIkoh&@%%tf+(!NIGx*NX2$}0W`;5a6fllo6<9YHZGDDxxUrkH{0_Ze zSGk!;W?wMm8gf% zuZmx9aKJA?BYm^9cz~I--+G)G`jOE?q#z+$jx`_iGF?p@UGjms9Y^I4QU9~4FI;xK zPFu5$`;oJ(nZw!28(O*j1_EgI?P86(^FrVX@uHc$zTi9;gN_;>isZ6z&X2=TvaU5D z_+|^7S^}Kg63agjEOe7j(|g_IDZZalKuL6UDMaSt=zk0}9XfR2F+UzxXEjRhdWJkf znuV%Z&u;F}BouffE@PV<7ls%w6ED{%nbmDY2yB=Yh^=hnFNrJJ=m51@v) zr$agL7nqdXNV0!m4*voo<=X75ro-)QuMIugtOQ%Y-}07x`!9tFvcXC04YShiWm2NL z9wcpG!QpdG02)j15Mc1p6eL)(UQMsE_Kwe>ZA{od1imh;dR*jyA%P?)NG>e=iI2zV zA0XASojUx(LGW@9OUl=1Wuj#0$H8`^;io`(c@(SmNR-6{jz!TUx2XAs+x_j#^T{fQ zKk$38gXHQEh6js9_xHsqMo4*~FCU%138VG6WrPvsIqNpV`ZLjUF z#Ed#Co_N2ZEDZJLOU0wV_z?0_;-Eys397In#w+lc!@6?Xo{IUdixM~OVna0go~QqNA_H`Pv-mG%^#Eh+2mts( z1Nb4t2{hie5ZU2vETvNHX$sj4oGw>$bKeVwq4lrtJ70cuY{1t{)%s_4+r>#WW?*a# zZRZ7nLaj?9(w}2*1X}mWBp6PmX(JR6d`-egxjBj|1Lo&90`@#Y-nJbFXUx6stsFta zWS+YI^3$e|EUKqu3bF&DC8g0YDFNoY+hG4#nRVEVprfoX4UxcSC{1%?p8>kBi~M@A z$dze1Bhc_BSVq-6e=qw+-prD_j;o>d1hK^BxOC?gM0au3WI@g##Tm>!Py;X6Y@EUF zh*;#q4%-#25o&QrA0$-B(u`GT-gdQqrmp(={x-_2_2BOInlR*`hbA`UIQGs?MwvrA z)6hi^Ia*q3QZfUsLxj0&Ar3~3&Q55FQ-gSX*pxFJ*}6!t>5XT%Bu$}E*1J=)sHK~z z4&k@RBjA)>Grh@vNR@cXTYqGFBIqz!@Nzn6$`t=U`o~IfVc|JsUskKMP31m7r_6*$ zF;g_6cwXF*;bPEs(c=c4;UZ(h6A*R_67Vzq6|mz-WoH0sXiV>U`U8T?YMXFP70=Be zD|ixQ*ohz8I5~|R&#V?7%)Bml8_VL;j`AE8HrMb8!eu%_N%*$}ZP-nfPjkcP zE{|_bYfGB7Y7Jh$98(nyM%KSF8|MhRrI1I#l$pYPk?M^L?1&qAeZ)@P z|JluY$lPZSGAyhj{(I*F`bjDAvWxWL>`MLBBf{aJJ&$Z}Pk;JiunnY$=H*=CCy26> z#J2uiO}CtJk0^vrV($o}8X03Ip%C_1xtmj0fPMJaFOXX`z;=N1r>tD{aLyFWTsc;c zE0UJ%2L#>06hB1sx=VQ#O_Wn@GUF13gGY~dWQZIop(+x#T;bRe5fO%0_X^3aN|Kd) zyyZ!e_NcVGL&fgOi50PEg)ZKa@~9<7?9VKF6tX92rj*f3kKU9w$8_pGa-p28{+1bX z@ZC(`e}m}_8_7i`!T8dhH{ryn!0^ z$VJnvHV48MK{ox6yioK~_S6=T0DJ;o{ieikHpG?aJ346y5U z_*ZfpEJoLbugla9eJczoo+{ z7F`6QZE34oTbJN2n!Vt$ZL^NLV^rv~H2=hEFzY{t>?$M9H`pZI4(GM}$>5Vd`pU^$bc}%ekZU9(Bw$(62S-)T>;^if(tR3%a8bniTpZve)sEnwuUPPiJrja|!uu_g zoS37ao`>+jz~RXk>FF=Dy|Y$%mF>B?75a-M$m!n-yKD-d*LxQTD#DhEqh@Jc@-Ep( ztz8uLmA?^q7BwP>=1lWz2~z%Np1%!MR4gGSu(!;OelPg2QzYE2I*9V@43Z4~!G5=A zqPz?wJ#2ab>UaobQ!WrPoCo)vx93Qwhz}Ir`->(rh_Mf!SXg*aHKtt9#F1mXc=Lp? zc4Le{?!$oc^eV}Rlw+UHO>E|wmW8G-ljX+?${i|N%IO`Fg*fa6YJi!d)otekENQWJ z3(ANH_ubj%e66Zq*e?fdpv}zYiN6+e&*S4@4dQKM=yrNYtxx{;_M9K@#ITvJ+H`T* zGFhv?h8b-rXi7@J*IXzox6#&38ZJN^+us-2lYYQ&xfp zWF+vY{r<$fyfJ^@NAAB?`E>J$xgo=B@;NLH!?j#A9TYx&lxVvhHy;9o=K4Xi?0os zfHpnicwM%>L#%UJs-_l8Jy06OwIAmW|Fs3UPfVs);VT!3_NI~_?Ee`yuF+!1h@-_+ zv4wwuDHHy@YB%GXW|E0RJ&w;^+*9myp^UImpFQa|4mWEHdDs1X7sdRfh!I;iBL)2z zK3?(S!-c2BjaQe)=#bRAyO!E?K|jc8Q`0s)%xT_}^AQ-{`bkLYXJzgE{d@K+GhnX& zgugA|Oj}g{0 z^cZi1FRc!e#kvczt2b15=`mVUCJAnPgwbB9RR9szBPqlcElf%1UsuC1tV>EFN|Mjh z{PMpnB5dvr^B($eB6Mk+HtMnVpz9<}jz2?A3!`)x-#G?q$Vo0+5wVs;`XhuzVsLvP zQGzPFMWmy=UL`7r!_uf>G>juVR{oNegQDn%N!HO&pk(*_84t@Mm9+xypavlSPR=9_ z;dtUuQ+{!nsr&j|YtOSp?(O=omXk}xdCEQo5Y`P&=e_qyt6)V%j&IrM+ixkUk4_$u zMvBMmYJIP4C`UO`MyS@B4Z0g2o`mYdP zSF>gq#sjLAPcbWcVx?u?1>1&>j+hpoUagUE4fJEkjHLgxN-%##bb_uQ!*Y6gr*si5 zF`h?uB6< zmJ^u(CL+LpszCV(Lrzmojkfaaw4uQ)KJPt{SkanqtffEf8ku-Mj9z&X##sB-Ghyn8 z?@f7xwZZDhaULs|uES~@U!fm;twYRG?^pE2NRgfyzJpn>yLyAR+-Eg&v$ZP_1RYM1 z4S~M0foVz#G)s(Ptp1!8;g-{ZB25mv#0Dq+uZ;`d>F>5S{u8(a0w*DfG?Oy6U&Oe|4__T? zHI~aU@4>qOm8h90k864qBMBDskcsugZwM{?&9@0x!q>{COZQAi) zV*rH|>3_~5OI}?>1TbTccqPMDGfMzZ7!w8_-l{27b7%eiywc2>HUmlA+Q~DGaigDMJ+g6@ zo?y_YZUyBP5P0Nu-E)X+$$4R%N6!wSUwErHpx~#3AIv9^WJEo;Ag-H zbHicoX*heo?f_Ojuew#O8XT9=OFbLfq{2@mScRWMDiwx^+S3FqMWoanUUOPPBwEOX zBB<1=xR9;l&xt>}v}~<$U<;6w=47~366G;Z4aRm4xn+nroUWlW+SQAn?Bpfzv4q=Q zB8gdoi)uN}{A$CpPQ6SfwU&*hq3FUT2_zR&H^UGFSpNypv9)~|l>Hk8ks&Go{r3u{ z7u-?M0n++1gpfw$%8z3;r?3c@Cb|dA6}8w4pshCJvrQgFaZY8mt;REs214N8P8=F( zRHHAa{L$Kgd%k$8*r{LiR+rdt+#@>r!yDn;%0C%*O+(X;uf190$KE!{!>#y47!iRi z2kE4wq(XBN5~DtuJc*B81zTRVS+Pra)k)$Gf?YP;e8#6((cSWhe+k2t6qClsWK#k) z$OyBAJ|kIq6n=adcyFZD)L6d>!Wb#yT7j?uF30+AWXj#{!?kO7bW^-%?A!? zU+W%OX2%}jo){!0@-d&$q#7s6m<$X~e1#RlxqH4}4%raG6O}Ly@>eKU;RCXfS;7EZ zJOWf{ttN$M5o$i33~3D@u_l2QzE@`!I3aoRWeW|X?1+Q*76Y>P8s|^;7P(&`)Y)*~ zdqAAa1+mF)74p%)aFV~X%FSWkVZ12OZd^zz8T#dZ79)1I*NIMe0!c{77l;y%ufJ#n zxfd#Z`Qsr&%ELgjxV7ShptUmU53N=hgQQ#!Zh4kF(0W5Fp}lY+D8PalU3y-s}S z5Rd3bI8tKR$V6s)GCkPNF{P*G#D1pu5CYJpB<|kaasihYfMK)um47pl8Wlq)W+-j6 zWzc(SuSDbplO*+RN^n=G{7g}<+VdZB(y)0!COgq_`iGF=?jO?hw7jG;_>}u;k;c=% z;glX)&6>R7RK$syG4P?T;z8{Ag4BZSc|jbjHJUY63T4+N{w<9N zWkm5Sw%1(#ve?h&mlz;B{!_J(jpF^CHtg$?fJuuU86Suge!L$@Q}mYRsug7nJ3llGV-l+9Uu27^=QicgR)Ty=8ba zMu$-R?_M||%hcVC_*8GR!Pb(+-K@n2b$m`%>fB}uA!?xe-<0su=C$JXgW6cYy>9!Lad9SR8Jj_d}Q`elUM%Q9z43AVq0hrnFcWn`7 zmH6}TKYuDsM$TgQZbHB=;!Jp(DaMUHYQNqU)q#E^cmQ!FM;KfM6j$^!w0POqmqTXN z(#fT@YsE%PZ;}W{Hu7u5>F=VY=AAFz{l~!z>|T)Yil-Kv6Z|6tUPG`B zhPdYW2DP8$nEDDHOIPh3JaDZ~ z>@QJK;Y4dK`Xi$vnTGhiZmKT~%7HpabK^R})+Wovst>a#zcLv}WVVm(j2g-*izY07 zLc~770jJbCBQtYoYWwt!4(V^VNcyBGl()q8$HcywD}VBn;H=m!f?M$eT;}+X_Thc9 zx#(XOTALnLor?^M-~h5(HP?0@B)E1~Am2nJ|6hnxc_6Se!>$m4SB9Fr2Ah2Qj>Ea2+1;36$I|f%h;3h2ZYUUXW1SyQNxsv&0Wg7E3FLooTXPqFX8Itg*Kn**yy{ZEN-^4)tKZoC?i-CO9_e+~tC-*^_5W6}buf38;R`c`s-;ugIddA>;;E{d(ZtCc02y*%T`!NLA zguQ|TArdBgGcbo!`sYr^me~$*-8!3pr18$0YLc(vx2JaTfF3JamIC*;J3X80Gm$s* zTS9w9-H$Y!>Q7#BfJv7(34)Y0RSnVy?o4sU45JmH6KbSMUAzsgKYaxk~a6M z=n(Y3fS;x*_{+fM1Cd2+0^gJWELrc-n|sIv>(1WenqZc`W9IH~BMx0WPQYPvNayBS_A60j=9FY_x4Pn!r<5=2` zEn6eySxeD~Q%ON+0gU4X^Q@(Tt^xM*hhPolyB-(hq`h1iZ-d$rxOTmws~!%zzYg&o zR+MzVl>kGxY;fyQ{BQ4vBJ|38PaJK;*tm{+fb-HHbYcSnu*(}NeY*A5&C|-*EWLCB zTHbpzjAC76cC}N$J?J+r%nfX>&Uf>lOAVKZ?FX8g|8Ufu{C5V`Px6XG59V6_4^{Gk zEI~{^Q#S;29B|)W#V!~=eQE$#E%D@v>ysmPE!RZ?23DSPM$9L8<#Y!Q(9GxDOL;u# z-C&*?v0@+wd=zdCl>(^m^Gnee$ygcj6^8#<`BGJ+fJt+UP{;BEjMPCwi^{2$u|RNU zOV3^C&9%BdsL$^G$F=^7JT-D@o22;kjLMt|8x7XY3{nPh#7jttPX9Lh6#I>h2WsCl z0+Qj`tTop(E{^TczJCsEFta@CM#7Vv`PW}Vm3O_b`-s$kK zqb1XTH>AXL5ESw@mU*f&Uq5<}j-EaX>rOPmy`M|{9Ww+3mReq6urf1sKjd;uo9wi9@7;I&1e9-)V zE&wGKUVjP0O}E+2YUrUGhhuscI+proV-kdbPV^s8o@s=p`Ry^#;X{(xSWRiKf@MR@ ztZ(lmH%QtdcmBJ0{--@TV4B$I{BQ!Gk4F+D0HJ9&{@t7idP7M|=H-Hwo5}xJk3D0s zf7tVroXo5&8-7_@=$C)|ucOmHrtymrwljzBE5AvtFo8(1nz0GQa=HHUw4*8QQJE3< zECR&GU~#WZPI3xJ7$fD_eyWeO!ofqo)<6sLn+oUdIvKiL*IjXor|fV zIT{o2#WY`)rLGazc6Okf1I6L_`OfUI>amX-Uuu13^Qx*#CCP|gJ=nB4|IWLGBIlcv z(R4(g04%&GoXA$t?!Z@k{&g294(C9kTFj6%RIU+V=yY(ky}C9!suA(#8+vy@ApPr7 z%I8nMCb^-SSMG4iBAxd}PnUUaKBa^aS7QsuEX_D1d!owTnZfmo+#Wx(_ZOut|Bl=x zUeU|U!V9JEb;E&VsCVk`aGfpVU{_6RnxK%{qCWo&RU3}+X$sBZTW+?FK|(_-w6tM@)aSp zUSd4l+$I&Kk5Y-4zrc8ka34Hee$6=#ahx8aR-kFr9Z2KZmt)ml5*PHQ%<;KCV>cAC z+H1GKGa8+?pqG4>2wUU{_ienp{dW2LBe--*%@5hY{1?CAp~2?H<~ZO18f@ZSdFV9VK@kud?)+Nvj02Dkak6sxUIshoeNwvH;lu6tJ zS3JB_7%~)8apfw|SM}eVs76VFX8SdJ)wRg*L+L-oKI^}*PTFajhSFbq%=RmHFztbX zt4C14xx(g!+RBQGEVj!97%Z4ogq$Knuogm{9EzHIl1LC=|Ne3o6nc=g4%y(-qsk1+ z%FN`hJf8gzbZ7&pK%Kl`0D-I8TtWM{nb_^UvP>zBQvJt5#e6?QOQllY?7M6Xo1I~v z&+kI@y->|E>>=|`jUuv4mQs+%O{aUZ7YrL-B zvZ%1eFU7-xD>T_NB0I7)J24(i$sR&85+X&JujC}zs!nqZoS2nqkHKkg$$BT>4uLbF@JN1 zf5ZPz#{9}GWV%Jtf9d{$q2piUd=R8BkexR~UC(r3b6BE8Kn zYyLCEWocn+-}vbzFbQn}* zTvFc&&o&GX#^;UJf)CakAUKybVx4;;L}+a+5O?LZN%BDHqQ@-c?nTqgfKMlj!O^LN zb!3-g6J0FmCf0XmV3L?S7(bb{&wX236C(}hm<0ASdIPAZWabfHY1z*%HaO)x@#NXI zDiz>_aj&}1+SwbPi=2;x)t0hB9tro*^2J#Im9mA%{3!wBOWd4R_ZlqO_|^(m+c%4+Og9Cd&jO85HZK*U`tvV|KNhk<_6sQSzUI@p2;I%m zj=Syt3e*D6#5&Zep7>vhRw%w(HC&|gV3U7_b?-l+WuiNXxd4Yq9Y~O0P1`roE5D;L z$RMV>HhCOCA)wIII6b|*mC~@Jfwir=+t(EZkQ(Yds=F5zi+ zsyyonN>VpoHv#gC@cnfqg_2^G-826jgNi~Jy6?mMqpBNv%8)f~)N|RqYwEcg>3px0 zw0_}j>t4Njr?%}aE-T*NrQ>~7tA;OSQ_IqQod$Y^N(1G1xw99_US~Hl&h229EjF5t zOmlq3%d&xzE$oi1|Of1M5z6?Zxv4Tsa2lS`434x7r$$ zOnc@x36`VlgZo+nK9wh?^e7qa^gcxQ%cJ`f_pg{ty;ASN9RdS|YBg*kn!+P>*mqnU zk-UclZr)J~xJu)DZB_Y|1k*v^BzWOS7?u!dz-lalei1;9IQ0&@Gw6$j)9ff!xrrw; zyMEm0VF+*#VapsCtq?`7-+s+pZH2S^_+9(=dji4?sHrw2O2;vs+)E?QMYWwm7C(Em z7B*(doyKuTF_5#9{ZN-~XG~wWE}cFb2Q5o}zS!nSGTddm9r&7rW9Ga$WB@*qQ=shZ z>A6{fmv$R8-!SPd-V#FpwYd@~Gt*B2Ip^Y|JxQv;Fvr6c( z6r|bYF%naxe6luL-IH;*a@6dOyobW~Tv?umk5ba;B)CPAdb4(`$0+L$45nVhxFi?& zr(?`m$K!6Y7gbS)Y|ph5VCWCMh@8KO;LBGXv6J%3dEi~;m2|0U{GAMsp2i*!G`S>n{O7M!!&e_35PHh_! zGq5$=W)KGHj*m4xuX}G8eqoBLpEzAGhHh3>ixE$#Q=2p+3xr2Y4LJY1|Ik8mtty%I z(ZsF~9(x){o3F10roS3`e`Mt0nbMc}$E}kaezBcs?F`5tR`J)BgpVVOr@xi@?6+yu zTF9&ieS;ycqgAl9OMVhdZqx1dWuhYcKd@%rNPO@X9j(Cjk{P9yk@!GX( zTfsSxQn8B|Ke?b`Ium5*jiEm?9`Y`Ih-aDVHlb^G5*(qAh2GcT@E!Iq#l#YQv&DwIS88bn48K?;g-n#b_EGq=vL-_< zc!kUiVYH`WyC>?wEtQ8g0u6qCAgz7oHd-=nE9-IMYjGg6bBZ5ZOnd|}kfe0Y@CoXi zC7&NC#Vn=Sl8WgmZQW<|_%+;Wws}=%u(o&O%y)pSzf8HJtoLNXt$xJFcr@&eav0jM zo}h4*itMx?nP071xL+c$p|)?RJ4>(OF#de$bRSTN^Q{*g>leEfv-*$s^tzPKf#3HX zUPgBh1`=}>PgLi8$14Ov>$!jF(giILI^0oYCrAI%dwjU;M%`x1pZf8*g{4LMuNX5* ztfH<4Uhri*A)x^zRnEBbvSd({-UOV+K`CntR@ryol{VmHREXsSnIk^$ZCRD>c?jpd zQm`&vC0fLa|0X)`kpV`<@-8FB+09LdSx~T4_+!3nu>1HhIy5|Qk(0R8>qw7%lfn!e zl*vmcH|@yQ_$EpW5lX9sc6z$iWp;EObKiW-ApK{gt{3OrI+>tTz(ncckpo}xjZ~i& zUsP-sPAVi9eHb68n4lj03XQcazBJ(*Xl`+h}|V8MWO0z_1q9h0OC;Io-S{a@^-Kj{ITcf%wg&Uh91*p$|fIExp{V|CLN%n8l!_pnyzG=)K&+ zhPK$VyF%!aBL|_pzoTusnVUhOkt9FjRl_{ic62{Zt;t`C>Y=nNcYzQP!PLTuG=?cz4|<)8Yo+(2h8OQ=th6l9r8L$@u){8j}vvGM2iT)S)9N!4om`Q!cXMTD6(U-R}C ztWPxaC?DTWiJ88!)VtW7RX?X^1=*>xf?)PuK-o$)O*q-ugj_Hc$qtcS@(qwGx5bDr z+3j4b%vTExM-mIWRaLfS~9e-=+xkNEQao1hOxj!hoE3}u94iHVgZ zU+MZQEOi7?OEDYB2jU=4=n>Dk4RNhB{A_elaU#c?Rv=-3bIZSB55q4Wwy0Q*ab(_Z zjpf*ho1OdY=4SZz0Zl@J(CE#PiR^t3!!MM$he8Q@1Hvf@k?rjgYQ@++!`@38EP^-l zPA`eD(sKqh%U+CzEBdTQsfM&fZiI(hxt$IDi~A`G9ru>ufKa_wUp!UF{@p=I6ys#) zi6?zEyOjo6C0{lSdoD#%HXlJ*_(Q@^E@a&5Jn~DG>(O(wa8=@ZBL}*lh4*tJO-Ag& z(+D;EMT@yJgrbnVMsoh~O^V*e(BM7Zj;iIMGMkSBQRJ$B4IS<0(l4Wq4r%Li5f7+E z*v$KQ>Ja6ID@tn3B9DelW%fSt7xWL53F8^l^O-&d?90a`kW)qd5L1(tsPdR>gmt-$ zPwtP3 z8Dx0lxa&N8+q}k;z%bWLAee?{AW1h}Mm@R~sc{?CepKw}epI@_EidkCxIXNS0>fLv zsBg2L7l8V@{89Bp@|Zht&Y`e~n9fw%fyQ#jRAB>YHU2u2SXNb%+$C$MGORw3)BPkN z?LaCZ>ni6QrOppQKhCQYTI;NCI%B0gU*C}7Iv-m+?-@#yJaMtgxBl?o$*uD;2T{M) z4RQrET*iL%WfeRzKfmFYW_c=os#JomN<6X7?Wp_?2Y`L6!ncV16rcK-&%Un)4HT(t z_qM63uwCO6V7s(GD}5X7m;(RtWv?jN%8VYf7pOX_FP~73dVVK?n)JErI3gpOc0p8N zOBh|5^C;ii+gCgOi9%;tF7}) zi2c_F)c96XDj|r=F}S_IKQTuSr!emYd_%Kf1wehPxWC!ks}C2(K0=<6UF zRX0e;AK5|1gK;a7!{y~-=Uxb+{+*1ckak~U_sM*3vG?#1p?+fT(=!m8EtLN^EX+ob zEt;vB7GLF7{jAh{YyUeMJ~^~K^)k)#?jx5S$0qv4Z*D_n(*pYahy%&LYR||S|7K*E zz&^aMrJ$s2BXQiYx|3y8<@W5Yq^#sXB<$wd?2FhTJ$88eyh2aN$*9NiGzgiQyf}$c z**%QbB`p&@dFHJn-zT?I4!Uw|A z1&JfHz_7(qIO(~?K@m7b(MayP1mUS2e=~$}9?rNlws9%?{RerVm{vUQ{s3&KS)`Uv zPg=}4;1Z7>p7JgASxYR%oA`;_9^tmw_I?d{P1*E9I?RX0l)-WK7-7Z}w8Yazh%?n_OiH(9X~dJ9{Ficr2}BxW-{++AvQg>(wx_~Y zs!7N(Q$-0vNcxt1X^SUq(+Pm(56&H4oNWwvtm?(1a5*-$9z*EKqd{LD%1kYR?LG6` z#+mh35P>(e{^$D>O6@_sGVNJoQeb#$v*L`qAk`EeSg3Qq^tT(Vu#0PlivuC?VJ8F0 z1Mb5zCBi=JuFh$rqZVE#%D~?@@UKsNO-aU`n68Izqm3^6GlPzKW?B?Zz_>Xs5r*c0 zRFi@jtp={cp|O`1gF0#NYxo0v-wp%F`)!q3x1DGr>?vuP@X(V@f34JSZ;^1xAbdEz zQV;In!Y1!Z%cSga?AaL>6a!y~a-i6Sw%U%5vqE8M|Dmx}5ZJIQwoTf-s=*bvnB7DA z*s4aqo>|!Rw>_?QT;J)I)9*Lvp3G>JtW{cVNT48!IXaQ_{hJg?=?u&g+*#Y*^}l3a zB6try8?AOz9Bp*|>%Sr~DQ7-PT4LH@inVKt%b5g8G^&<93s=Yxh}*eLk;~4&sP?PG zoqJ!=kxpi#_byUf7Ia9bJ;|qj4mMUjslUy!(NKMbDynw#CC{tBc6N#j+*ZFGUqZIB z(=5!Iwd@C!t*wkPkJVd%fq`>mh;6=P7+U#VTIiYH8my0hpYo04EHrCaQz zg&MuBU$P6P&2-dWR$Cop;ok{6hJ#mO)^MTnRC@NfRNl*(x{{b`&vpj95IPS_5Jnr` z7lWTUk-rux88t8)FGgeB2NM$4Vf}z+CvJM9X>>G4bPLoSpo`OjH4 zWu{8AF~qW$%~JT?NLm>+fh6xlcv8vvIW6RYhh4yx+{CW#6|V=QBSQf_$~jbm36Has zwcABl^a5Q9F^OHaunC=`r2lR_bt1@?EcZvG)W{DQ@%H{Y^sCMoX$>< zf@F!w`tzbOIQR;^%u|b4_Vp7%yBx&prmAkMNkjBV@*|WHNY$g(cW{?=*wPAT8L{qs z%+Yr;q`+`{)Em)br~u12psn~7vg|F4er+*mu_10q_NI#(Uu0uS2*hA9i8QI);ewJa z>u2hh2hXxyTv(g9pN=4H&@vxrcTWMAi4`I`X{@v>zY2G%yRh;??;hI^WNyjSiC z&)-7tf(=o{#a)!}#gS~PXKLUI`Nlf&3?FqzdzPb}hAa=7*Aq+&{ZU{@%{w%r!2PyO zI7p*V81>;1)5MF~<@J8l2L`?jX@^GXg7 zjL_HUi}WQ8<7KIL@2%GOxFU`982?=b&T8TQ8^b=FQ@^)nOEJnuNG{>DnQ^Yss;9;; z9~u-edrXxw%fu9K8{_Doenq3#WyNIQ=V2$!yGJJ-_t*T=zg%g2q^c|c4)|*UMcJyz z?m!APq_ULW-8g}~nYiWQVXRNud#x{%nPzKHB&GsE^uzdCW81A4?ySmn=e?uG|E{9G znXs2hAs=tNIP~3B;}4>T2CuyeB~|*Ac>E0x1L`8_T%c)X?N*-f9XCSv8|pCBWPhgk z+-(0%A=HWTrEF(hBpB`5z}6CyCQ>O}%5=VeM&p#&KCR%DFjP9g2$&?V{jN0!hgO6H z`GP-g4x>MVgY`}rZpykLoWH*`Rgb=Z znOFAiC+LfE6N}fa?r`v)$#Y@&E%LCml7N-9PT1K+wds^z!t6-`%S1Y;*~0E07vp;; zpC1maKdUvLAZ4T?%LCg5L7_Aek&jEP*h{4;@V4+bL1t|RLQM@156WofNkLrtn=oZ#_N>x=enB4o#@bLRm%6v1W5&@y{t%BA>+*~yjv9+uXt z|1I^W>8%YtVTJmwj~-NS`4VeRJ0(|UB1pmZ5Kx$^dsX))utleYtXjVV*7FuD#;>kM zOW~LLKL0kaC!30t#+;?g|G*J~Xi;vXSmi0|&L!pmD0sOwf^BBw7TR)AuA3ENKBx>> z1rBadHeeq0GNpg^dgrQiNvIgQ-v|18-rJXIljQW z!=;erHUM6FOz!QE(Pq>5tYy!B1v zWAwX6$4}ZFpW3*JUIMtJh4c1);DhV$6V#rh{oLKNd|irFnRL7B|L^#Md)fn%l!c$Z zsjRM_8X#$$Kn{J>XW?awDW7kqR3*us*?QmD5G*<3EB}uR{6keHbQx}pHWA3w>isjY zX91~DL*I_AK`wUdkzNWt>PSTv9wg#1xzlTdzo2Fi&b9&yl?t~!KMr`*e&O^|b8~a} zeu5ntNd%wIX?z;ZqYFspn-<$}yY3DWC(K!Y{_Rapl$O9<5T3-2_Z`1t;iFXazqkOB z*S@UWy)wHqTH1szpMVZc(z>cN(QZ&UF#*8o2D$ac#UtUpF2xO8MNkC>8^#pS4Xi{6 z1Kg!pcWJYF&M8sfOL&0JDEet@@9nvk8qUz!h>=gVy!Lv%wUDt8_9d;N$Coc6Iob3c z-v_P3oy%km>G-+4JOc129LTpw`K2U}Qly|zVR_qj?VM2k-6|9~{;ed!ln%r^6^-`WGFzGe1r4DYO#&M>%#dm9_Q~b0@|jg>>$SR+@bg$ zIVrD&&Y;aI8DFqC#0Y)&h_C6=AFPzz9#|6(9^UX<8!O2AR=s|cF~GsNo6QC?xUW5dh*?OVMAs44=^>k2v;r#r( zs1A+B9Ysna#X#xKrl$RDkxWf4jT15T93nI6(-T##bZ8y8$y|C^G_nQ@^`ATwY<5bV zK0C2v4cmN~1NjvnAH1_FCZ_wP{^X~2_{Krlab(juQT!=vz`^FN3o>Ku^b_k-V^2z4 z!-%boj&svP`k^n_?ty(=r;uIU_UV)n!{8oqCg0}D{!Eo(G< z%Sw`Jpz1Ruzq)$xA~eGYR_iG4w)Wyn-M`21(7Zm;<(d_Y2TRB}&2%2vk+6~L!??)* zl$)&9$yS5JxTf61W9HGS3-|6>W7HXfSlumuV_tlfos;tvou%kc2=2mL9i@@2S#Q3k z#&>D`+!|G5-INXJI53N_`i?Yd8vP|3=l{HOrR(A7Xi5{a;xSHI(8 z`~HmUd@UlXt{lg*yWBK(wID5f#Nzq!LNLs>BdraW$v2&x90Op?<3Bkr#Eo#{3sQ!V zsi4w6{~l#4GWF9vtDc~c9~S7ya+Uk5UK;VEUs_;bOXar7zPkI{%Jrl7qOZ zTW-NiAFYB{!Y?*Fl6-23y8LezuvYw(WJz$Wd~8vXUvN+mBBDGp2(O=2bo%Nj747Kt zUYtQ73I11F_U+#i;s{Jwwdc7;n3Zcq_RmZA2G{a>J(>bEj+l9;#05Cm*bb|KZSwy5 zP&t3~FQn5HKdsUkD}E6~YIqNpSkz}r#iLowhOq1$vhE>wM<%*=TVjSH@X~uf2MZl{ zQIia(6q{0>^Z^uyVpFmlXRXoe>!#2eBk@a~+s)yGXA;%j{7hCmV)2v~)v4J~p7qhCz!Y_D8E``pEkS6f+pXnA< z(&OVEauCW0lU{Ar)lI7oVOx=}&py^rOJUB~!%&$?Q1%}vky!psJe4kyW? zY?r#}@Yf*W>#VpnEm(nzN`R`SZ^N)-K8lN`>y{uwa1mNbup$`)%kKE7(s%9Gci1I* z`moD#cBX`SD3GguSF@)c#u_~qM)PAZ^eE;_1niGKEl`y3P)<;~wq{feQ{h+-tzyGw zt&zyqoCG?-D*{2mMgD!$_S>9lHs0S#GdnN<(X#DuH>on6zr<)!9XC|xJ7D$t{O|H4KO8+zD>+)d&-RdDA(bnMT_7=|&*F4{^bY?x*aU z`C6wBlZO>Fkxc~5{ET*Y*j76kZe?%TkT4ybxQ{Uf$x5C-akmnOdqAyZe(qYo&3!?wYNT-Xz=BDXbek|0d^lvkj(JYt(26VBYG76 zx><%%5odHrDe+@e@7Cep*pM6!bIDP0n6P-x$*KUS{oS;k08@ThQm%y|2g<3?ll`Zg zevF42jR_L|N+2cUfB)J@8f20mNP^SticGlDPxiSfwOR&n4y~=-hjbis^JBh5v|xsYauD>Skr;grG2Cl`Kkd7 z>w@vJsQ#$YYsMY2`3y8P!)wmh>%+0{Hw^Tu5s=%5%2Q5AV)4TS^Xm2cA>#^nQ^XB) z^RGf8oSqL~`!Zu;!4GMVnFC8kudDqa7F%ekm8yNza?|$PTxDl zB{8!qrg(s>3r46}hx1!D^<5zjT0yGfbCjsnB$x`3t$bdyrcU%jO8yU#XLiXBSR^LD zGi3c6V1`w|3ZAriP0(LrxOBPOmlx~(HdJa3`;hU}_$tCNIZU|0 zmq@64`n=8*JOLXoV{{FQE3WOC^euGaIT%F?$S1o6hOkPE+c01@Obk{0v=fYYm)2CM zSm8T8Ji-n4kIv3+i*Q*Z=qrW&=v;f#stlPI|H^jzMe9vYkY95|78*>?~hY z{K86Ap6#n{;um!y^MxnEbRxT@OAT)+gEn#{dzkIDi}Q&WlX^~F08)qPf-pWTRr(t$88XJi8RrdYSttNFThX<56t*-WS_ zx__;R8sE{oxsTiyoRnxGcL4(|NSaCJXZJ_{?XY_-gfp%!22x&CrQwqklLsHjb&XQ5 z+}|~K*_?ko@gofy(#(^+g2= z$_5(|w3gfOb>%6uu}E506^jBxzi!#gG%bPC%SG-iS{kO${)DmmGdjW}|L1mbC(}`? zd#C=5JLtmCv+2s{^0>Ga+o+>keA1|~dsb0!Shf3z6t(5TH*3+GB8eVe07EKT9jcc*5a#l}K!aD9BhRd?DRo&mR~`z!E`Df0SoIj= z?)BR@f`Xw`)skd<9>5G-XmDe*X=2DSV2V@2l9-naY%&@nH~aMBR&Ut@8ZZ7QIzf{Sc;x`P0Fp!KrhrJ1aM0zAlO@dP05xBU=13`{Y#M{uG#fITq4p)q zr=u@tH06)GR-irkS8FU++Q#uAMa$XovMFb~nQd-3#ogB%ix%V;@x6$qhvfYYLIGT+ z0Wm1Th%IK4TxD`KCLmes#3JL%S&8|N(G3LbXSvD5{11H0V&LgZy!edRr2=N?hvGFu zuY0(hX2irc(|05<664iRGmUArK#B~Sv8vAH@vZs0eb}$}mUTN>qqJl={dVME2Hn^q znQD@r@+B_cz;8&MTxS6egT$`JHxF>o0L=>V8J6p7gZyjND(=JkA}2rq(80H6{6^t@ zD2RNSf447kKTC?Ab+>J6pN_E3A0o~h-4$ta0-p7WVAm3~iNS+sS|n{)^H2vD`U=Pl zbilCKKB2Y-A8dPB*xKyhA6)okN2{OL3DbK&e|Bk%c!X-5FsoDXy#hqd|NU>x;gor( zi$ANhX+J2=*-KXmnq7lsGNt~ko6n@JO0mcgRtfr$|I+FR$Tjws-^BwtpDQPi-|uVt zc;Ay9@j;1NQltu$HPog^c63CPPC4|-UsC!tf}0Ss{C!XL=`y0e)k2M;l^-lDhx z$s|&d93J;4jHofPp|gs?8|@sqPd!Ty5F6aF!^fCp44!DJDQ>bZ5V3x-9^~gDp3H~Z zIF5GkldXe$;=fBLCF~=|{!^Z!$Jt!!Y$~{E*`YoYpdm5oxMs1@0|}4xk6JN94%Tr0 zB2~s;o`Mo4q~9jhUJe7-GzP1w?>`rb60L&H(BlVwIfBjP10 z0!Rt#d#|@%M_I2~%#H`pN;7Th;uM$u=cWnUJx~5;GNj#G`IhoGUyJ_<@c*ir9xPvR z%03}(&MgGJU_~ATNl$Ry0^<`xQo7}c8jaW}+b?-i+=)1shn-*;oI$SQ|9%qx5B}9Q zS#O$|vGi;RddlW$b+uHRs$33SV2tdXZOL{20TrLoeK0qz?)&6#o(*W=?bIeh&g}3( z*0h^0Qx$68Lqd4uXq8?b1aIf#^CMWMGJ0mDY5A1Ez}z*e5Lc5*Dm)s3xKg;2{#Iky zboUt(iP(U+;S=yXIeQ|^>YX>%4k!enCWnn=asmFGlRq+^vCH<1(}hq7K`vfNS@RLt zottEH)xakeUt``WmEnPu935Pnn#aq!0CRz2E^r;SKcp<$Tc%UbP@J06pMvgu7G=3t~aE{5hq(gU)Tc#8Sl3FrMFR(_)OStRHs_qZM$gw)}#%V zr)}(T1Z#g@MEo?}*6{=~TO^Hv?v&M$WK*rH919KjxWf|M)FPDIli8HH172EETB@5t zxR2d~vwOuq|LjeRc`Kk;$1L5s!&NOeo_5JkFyKR_;|D0FBD>92&yrV^HX|Ie`Cl=9 z>JH;LWb{-lyIeze$UpV63-^`dSI=};3;2E}?BI!=K0VE}@2a7XcxlJF9z)hKfmtIE zTyJ1Z!=$?98`+dh2q9xIY+}3VDY)l7smSWG{N%_3&F~xNS2x$6TJ*)Xkc9EDk+(*u zQmm#ghC@Bbw}m!E7Rp;lHq{r!=FeE_S{Y{c3VWcc_5B{YRDABtv~=<^e=hJRcIS_9 zfh}^I6u7BPqDVjke?a)Ae?O5Vl2QH5L*zpU#SrZnY2`Gg>w zdLQXTbTxSagZLwjwKh6ufZstedx&&BtIIpeyF%!Z^iVO8qz3Q#s(+4ILXvmC_b>kq z&InZoEASn_d{kqrtyeC2{y5MD-4T#{p&7@cdTui%4*o}x7f6t=QsZUpM^ww6AdFTz z?c$Z;!b}h$T^(Q9BX6*-?scV;o@=|mn4dN3eynt`=2bz>}{e0DI0{%br7*_VJWA!&?FUh6`f^U1OA}XRUhW{qcH&sa~sApJ8qcrc5v2C-`8t6;)m^SY2h z-|$L+-Tei}O(2+&==sPMkd#BHRVs}RsK^+C7XiD`J_N#$pDd?_r8(~zcs$Srb$)qU46>Kh&H@p zRJEifyk|bO{12Sz)W}C+ux*)&{a}!qr_oKNOc#B$6dDy8J6H z?uxEJz&fxU4JW-nGFl2rtT07N%ZewNmoQszcV2_B-UjuJ5G#$%CW%DZQWw~)Iv10v z@%gHI1y-jk9FtCTs{2D6EZ&wR z1M&(Q716g_(GOW^LWAt_fh->73*K;5^nkJ zWI+7q-lSPT)prICKyV;h;F4!#dZY;`3z#qY_@^UX1LB-3Ale`cwFp71!@MYAig^OD zDEJAfoV^d}zL=t%UheB7k4m9Udn~RtO#3MsP?jur8yLa^CIPTI7hcHqy*oZ$(4vix zF_vTwa;2fc&QC&1I034ax}g`kaWzM7w;<-}WQ9BQZLUL1?>a{q5SmCtr_Dbu4OnDHwN2JSUWtxZbv%`6NK>G&Bx4&;F#0 zWWuBS5(KSk5|QG0fA69C7rN$JTYu5hVgJcHg!4@*KeD5URRfQxypYZhA?I#W4R}hF z=H?1%_~paphYiz7pEVBvITf0!5*}vs@K!j-ADSS176f$8UAt#1s;;MfT%%QUuBFYW zBvAXr(lOwr&EDz5boBF|jyg!17jX%aO&Q%9;GSLT?M1RGiD$V(zcSIx<>woqp9gV) z*1#1QdZnjOPI--d%F_gx@$Psk0C7gnD23mhtD3u@~1y4NW{N{dHUhMSQwUHo* zBdYjEC}vTG6|%g2fHRha_KN;YS0qzzrTJiHlFTf9A)^$FCe&#nLjmMH?qzabxE5$t zZMdCa{L1BmoK4;{R}-ncK~kZvV6kSZo1@ZDlG))4t%>_Fa8*#|xF<<6jR_FwmeT)9 zP6yzEN(dv3hjR(y+d0oW=Fz9&RjfA!pH%61?>Kts%4a=9HlX1`LMT`PS)Qi&E5?q2 zV!kE4>Aesh5&~&8bjR&-Va)1~iSLlS&(U30?(oxy^!%#<z5ZZ2OGGX6bcgfn6KnC7SMcI^ow~`>8oo6mP()fYTnghcdA&b&J zJ$;Cx)1UYEYCu!M|4vS6GD~LTbLX3oMQ>r0n%wF^*b`VSkS39S(bTN(3BNcgRXG{o zFtRFz3yGfl2qh`(T)leVKzP;ZIXezWaQ6KqE9npkdiflU>K0U9J}wU-1pJdJfhiIe z(lV0&#RUjw2w`$E!RC(5%@wz(q=2@#Ls!ZpbpN$vdCLC=0f+U1cz}9}h7Y?o0=`}B zou1z_|2Cii0Luo_QlvuMn^%+iX}PQ@-CzY?C>Z*#`-K0%4ju@kNIW~u%aA0VE`M)A zx_RUzCY3yqHX*p<2YgxU&tqC#Ah#bscHLAJPl7!{S<9Ihghp74F3i8|wy*0Bxj5nJ zkJAvC_g&Ji9s6_<1so+uz*+?oq%zxbB{kuM=Bl-|`H;pS^DtM@#;F)kg83Gs-LzuJ zr^W*`2tKL`C}Q_hmYX*TKs^yC2uXYYo)y9gz;Uwsm4y6=UoA1LDStDT?X$T(g_sn` zr^J84VE`*WaX zsu*6`axWjEv5r!&AoY|&K!pH7C53@|jI@k69kl~-FQ{DVk@s0QSN+FHTr(-YWXZrb zG}Ci~lfUN99%jO*TB9QNNS^}4S(k#nh2qHDgL{tV$5&e$@=?=v~b>EGEt-vj+NqZQqWofUBJJo0_>KR2M!B zhiD!YcwOdJU-k86lYa52l5url+f_l`=RES>Ur68FLf?eSxR0e$zU|P_y&G?hHX*~` zNqXsWi^^hR=NJFQ)v4ZRDn1)v=dJy#>Kqaf5WE&+__js2TL0_5lt`qy@8vA3v|lt) z+SoCgiPm6rxb0r!cJ&VqDtk@3n=a979;>J>fksUT<)WK%T!*jH_rd&!9bQ zZp-N?87*{b^J)Yyp^bE6`qw}g9Q{$Q9kZkrg6pjeRE{m$-XnON7-mO|u`=&8Z|p2D z4VmXTP4K>Ywc;W9Z=ha4>%TE->Rv1=s=&?)Kv%8HOoDYK*t?+inwlpfE!W%kh~1ZzgMA;hMUnU>&NO|h)D+2?;4$k_Jv>_=?f7;R$z7_cvSc!R z>BdRY%hPO62^K&NN&45=FNNNWimE;mO!~8I3N=aTXosm-jeD4NI~Lt5gWtkJhMKJ# z_cPT5K7hT}|2BE=pK%KsY?YmXa<=DF7b6WZkHw@T-{!oFF<6cC9Ns|i0I}VS3rF;g$@DEA@pH97vTOqA6@8TZSMH~KqqeL z$Z$JQyjfG=ZXq@oKYdI$;Q+4P-C!Yf8ZZ5c^6 zm0tE(*nqk(uaWn@-`|%~^Kx+!xd};up&#K;6<@f^X63SgUaUuv%*~W=59rBMHmmkh zSK)@Ym{sX!E@QCa=hDj7kM+sEA&}vH`oD4K*=X}c+c<9J5sIPn-T(=<;(b)t@3nz7 z)!RvkQ;4}ROCKW2Ts)Ym&;Bl5um55erMj5d<7|0S$7xgf6e5L_v{}-vNcCd4kYR8d zP$RMbcgB?RyQ%`~;TENS6*Bu{V(Otl68odw{Wyy6Hg7HCmWU++rS=tKkdG#-KtaU~ z6OdAy{+(p1F`g71&2xJ;{5}<5VLFzINbR_P9@Za%DGhF=Vb0H|gv>NFu>ZQRsBjYk zw3@`t1=Qa9czuOqY5CQb7&vaCO>A7o2Q)9 zdX_Jn%t4={>o)ONK4o^yKyQs)$l)#qQb5Ncr3SvqiC`<*aB&W*Q+QRZ4{p1JNlK_MLAEzebxUA|E>51z=eM4@SrN}?8G3`B_*QzZ@|(Zu`e~J9HRtH(-gLHKK;-meq!L2kOoHpyn(qgv^hoYBH9lFe8sKazx{^czn3@>{M}elv zzLW40UjjLo(onK)z8*KgBDfa#RH?|Z1Or&X$dfmJ)wY-Ob1c17mS*}5eK*|ECSTwM zu6}PHtm;#_EV#~&k6(qP_4U<5-v0f|hf415{#QaU-FCPO)Q^nO)-=fHsf#Zl$!>$U zdHLC5y3)Cq00R!f^x~%G?%dH%sHhs!jWs_{6lLPE@f2k(g@F9Bto^jWDOw;D$tdFe zmvXAHek06v@drbShO#niB0SRimb62Z`WJDF>x@*pwj`XE>hb9AKtGbt(gXervpu9h z9NC#Ez*s3t)avpwPLm{as}heyJ?f-;L9D|Dqf3R*>!VHK;nq%0PVEtLOf+Z4IE7BL zE+l~kojUMx*Z8&O=f1$Jk)jVk{X5Ys*K!>|AH_^DWZ!KhZm>hIySe2 zEJq6Y*^86@wd{Em*yFZs7omBOA$R$nB-eCPsnT4K%ikYtV_QpWvvTczF!(kB|EIP6 z0)1=b%Sga_-`{O{dVAIH+qpD>u&^-LdRvA3K0ueJmY5o(Xxdx!H@^R!?g%kNS`3=X zHw0gt3N@6SwSs?PRp=SOj+1R0B3t`flG zg7DGuLG_cu?B-&~cQ7%tZ#YzVd%`Q7DEYm-OY{C~HyD~V?=Y@!hi`OaXhRlbQ*7_>V>`P5x0$Ixq zXG#NE`Dk;^1%0asWdn|biL&p?vpP*UHaj{2De^SR?ruJtdj-sWM~;Yxuai$K)3_+!=4`_)=Atq2EA`ow)MwMV5yPm(0`6l*jvjaUYKg4 zhdifGFC0O|F?&0c2cC}q8vf9Te{8}C&*9hpMWl^$6k0-p+54-U+~DE780Vt$OY-ZX z(Kf`Utejina?GwHx$2AvW8{r@oq_6Dg-I`icc>r4>~c3T=W;O4*U9GF<_V}s%B2-} z_4s~?+UW~qq2B4NlI(UTww{DNL0egV8)2;8XcO0vI)H;!Fujb3h|pHGImir%Gbz*f zIehD3YDTNkU%6Lpa(6pBM-YnMw@!+-Rg~^E-6%4-4TqP^C6)NKG`~pm))axEy@V<^7Gv$27D88w!kGYBMaq;tenJ30P$HbnfcZ{d??$^}W4T71k5CT<#8CfJe&O`qW@JenR@=-QwuuLxD)fZNHYL zxkm5Y#=1H}?1OySgSBLuc&qh!?wi)_b8!esrEr7}$p8Xoh_v%2Zi03_n%c5M`^&K^ zOV~u%Dy0dWG$D+M*;&xq+Xtp%)?8d%^C6(BABZfEpiD;hif`AEKCTse)Ud!9PKjXu z19Hs#842LJM#%0%?+DI2FGfa2q&Jjb?mURJVS0lq`$%ML)eDw}h}k6pDpZ~lPgrYT zJS^ex(#c{q?#;8#5|?JfKB#e7bVAig%gu0yPrloZc!4YNS0{E5*_Y(~Fgxi+xfR>q zWf#7;1?#n{p~h?dX<#&T`yu`BF(;#323O7w+SyN?Ae4;Y6?c5CLMMy3)N)uPL~A3_X&Ck>?JRd1gl1+=L{cvS2Kd zp1))I4#jL-d|Bi{Ss3p;-2$^twU>uywqr>kHGXQ`K}DRS45q4gZW6}2HGlIUJn+|( zBAYKx06Tz+n9(Y(fX?HKAdB86yoT(A=_{`%p#YMoES^(ZdZsyn(O6(Wj}GcmS^qtF zN*xrW*|uRIk4TssJ*D=MnXjUL#R0xsR>(Wc+)!by1Q$21QGa?U_p`?3e^*HYv21P2 zjm=(g-XW-mmVpN*`(2LPaBJYNkSAxf23y{-r5Ad_FCNqjcet~J=0FgOjhL5jAacZ#&p zm)N!<1OAjo27fIe58%_ykV|eaAGG)^UPQ8d{;Y^*vM;r0{jxaf)aCI=A*eUvW zU7B4Kxznb&hEo>#I+rl@t*m8yI5~4~rim87JF(b7&V7&$4&3-d*XAydPU|mQ zOG`%)(DwZ{d4-LuconsHhidd-j`kh`5Yn);<~~{>-aFU8rf}!CW~?Iw8prA z&Ntgfk>o!OYZ*S(Ge6OQr!&!?@G9VPls9%aEstd>-xOr1do^LURX#d4?#L+cMdi_e z@BDi7&$G*EcS-4Jo##>Nga8D5Qz*|yxR-$9E;$N$Or`XEwrZPr6i(0CT23A(`MSQG(VQd ze*=M?c8y?d%^+xDK?%#ND^(O1AD@hV5|lfjgQ)z-SVo{Z5=bWOM&FZ*LTZkf`;Lev>-!StFBb z%O*FU%H3;&4L9f+8Tkgjf3FFr1aGzp7%OpFF+*(6G>GQ!>VC-r%a)SXaCR>F;DvEs3}$yw~&l`WHG^j26<`7iAHa0LeFM#^wSx9 zi41an{64z?7gs@du>AonpaWU*tkUj_3by+UbD(g5LXC>eWCGK=mt4_b0ivy%5D?7c zH~XK4U7|mxef3iPnEv<~*_Y?144mNL{Hf}}hZ=0BXhHbV?K&^M2U6~_YtLty0g^ON zq^UCpSNNM(p`qdme}^%1|Ki=f!x+*1RPOJvQ)_t&n?gc-7)$7uAu>pX&!BL|t-ZD3 zWJRc5+lf`r%)IOP0yZ6mMl%WW%m01sUfTb=t|}_$PaOv485Y&xEV@Z+AWG%nt^ zxTh_5N7$Vx+o146KZ=KKQ3Zw>wSU_0@^%Yn1#vJa?)jY%)NC1#_n~a&h8eLF5IODF zh@2Y*Kl~;}A6&Toy{irCB3E+PZq|4S2yQ&SUFXf8K#5&jiDhf0s6onXgy@j1_*Br@ z9|#{{)0yM)5e(^d8j1_feT{aD*A;?;gD-8i!}Y0^zF=s$EpP1TTNs071CAyVQ^eb< z&&E2qp3xf+xlX-52>RNZJ9Pv;X58g*===^qjTR( zr>O__%kprf3a-x1wAnXiNu9Tb%M2|b+_YwrAoIv?gh~|)n9LN=pJ__pVPAZt|NmoS z_O(1qJM5ed`nT=IBw-8lNk*E7u$KKvo0TXjr>0`{@#Wc-RcFWznWV?k%;8RA ze-~SLLm^c~53yqIWbaPmjpkZFQ7OV5d-9Hp|kS>EwH$DjLw7C5Bzf!g9mxvI$S*7Duo` z3o$RA!jb?ePKe5uNCCt9CYl@IHuzbGt5xuJ82=x_s0Uo}MKkqo`mA|Ah znzFlr7445#;NCWAJ=pDBX!hDj__8%0`*bG3{>iKEN90m40#rmwO58`iX2Y4IV;;+pm1;id=FyQz1l&?2nEb?QsR+=*IIRKIo0WGjb0|Zg*BM<6vPHXnANbR-#)qzz|&q_=r zMr%uH6`MvFI=#@hFGk&gK9ZFsYn}HUx(=Orr9uPikRV$oMwh$Y1^v*!hrjsJPll+4 z@Z{EFeW+Ta4_pTSyjxuUUfH}RZJwurG2VFf=XJdDU@^!O`M+PA`J$tho!^Izznvb@ zR^-F@$REtKUs$mQ4Fp^o^VF7}zN36ZQ~;6%*}PPk zf{UkCH<%BI-DCnrzRhGScqZL9m7XdS{J~MG3LBGovQOF4TqKpwJ`WH>aR43wNsNfV zgV+nR)YROAxr(Q?Lju!dZ#RJilVg)sze?pvBu}$RAp#r!q%G}8%M(YZRn5l2VAEIa-<-M!>4kVU~9 zlUFQf$Qgg=OD7OvP6BNp3zoU{;R%|Wn+`< z224eAV%*%^IyCfmjY}U5feErM`O^g{^PyXZnW zgC(opYl=e|Y{(|-W+u|Y#F_JR_n2PWba{uHnwT=cD$I>wBuY_aaQ^VgPOe-Mc9lLY zuImaO!NH$2eu&KQCR0U*zVDB`5%0$N213TM=qD4XZ^-cwV6k2Hyb?S9_0->cBxs;k z8q-6Bg0B0^R@=&;e_~AsHJ4b4+0MN<8a?F7r-X>m!a{tse~$32@B-&Jbm%8kk<5>Ot)`y&lv7XQ4WY22BzNUP0W;E~0z6si}lwkX)?$1krY|+uu)RdubGeq8E zb}tLui>`Z*e4CkS`hc8p7G-A2fbSs6;9+u`RNu&u{sVDUNvZYsC;NXn!_}cDZLD!? zG6Za!huSaqruUYqjR8EEA}!M%x(}*BJS?YD6f@C@NY>vNe9}m&3e?6!1;2i49*M*v zSPkr5uU9&4nyZ&j*tTS-e!k0lmK$I38XC=svPGpC5dm;53ld}@8IOb3my~{qTiU!U zcruqpA%L#F_u44oN8l2T8|+y>iikV0!-%&fM+BXaQ1vlh4_>k4vGNIZeeHxvEms{> zwGB42yf8UP3(JYeg`~&fT)T|}EQdyi{I+qWF&Q8nS0M{G#KjhY@y^i1Bqa-phU7PXw z=yl{wY<*JJY?`zg=~3D6}UiAenndGtF+WxlQ@YbK$Ftz)61;12y62Ph`lJ3 z<2hJun2Gxv6B9#9eQuVD_W^wFklG4}A}hRWCQW99Q%fc)%ZWA4b{%aa-UYXj>b6`< zFI$()q8cudQe@{n{l%&gF;T@t1>n+Nc?eEr@mhR@c8p6(Tmz#$S6|l>*qZw7 zYlKixA*=P;4{26?q=7BoXSL1Z;-FK8rD@Hu(ZNA{>6A|v#h?9K=^&+logrX<^b=V& z^V`S8##@xji9$gSB$LJ-#sVQ^V|feIEmV+&H zW69aaNg|j9@S1HtFGjp%xm#)+qbwA>=SIxV%M7zLA z&AFfZNN*jutnYDzQx+?fPdNLO&}}+7>1(Gqlq7uP!Q2Ij>?RzOzNoza;{_-v#Yq7} z(XGWl+OZ(YA$G$yLd%#wa!;(>vR7D(zjw;|x&s%rNfXE7NWRY1=qq5Zm{jl?A0I07 zxnBh9LKWV~<|KJ4rLBypRG@=y)_Bray0I+=gzT(lUW~-cJaf1L;nmL}<%XMuWhF6? z$*-So(i=E2MD7ioa@wJ#tqzN<8n5buHJJStL*+Z_7?YM&;7sgF;rX#ewYx!NLy+fk@8j8>@&G{PXz?&(Z1#IpLv$lD)D*J@m5szjxoV5D=;S1T*mu>eUW^@^{YG`=6q^H*r-7AkT+8>1mUBhlUw$y>;IZ5cjFFqoK zUo19gwOHZ|J55H^Dg4OPfA5ps3@zHIyct=@Yf<#x~y4S(L|4HaoK)$X2;i(iYDuMf?usW<4f#BY~7wVx7zbTN4724PpR9UL5N^l8lLLhY*@v;lMw|7s$38ei>^sVj zEvtVA zsjGV5|6^v)PuR(bb1E0$)9%_uES9SS`Bz(S+wrM(oR*`$86f9Ogc9!#?}s5KMI}_QN@}x-$Xh?3 zTgEN=*WG%scEarYW~O>IEX{<%QES9pgw$5iYD5^M7R?&uqK2M*P>SI-b}wC^xMSx~gXgIHTisod8X64tiKw4l5wJ zLL&RGbfUQBcSDo;FvF2HC9p4sd{MKSo<9lYPCn0F{aj{cU6b`vhg}QP_jw8S{Qd7v zj9H6f`|$$TDJ~Z^+CwHR;s=05b4G!Y&SB^^WzMt2WyuGf!b*u{E}Vpf# z+cih3l4J(VAi|`!>Q=r_Zt^5>YGF|FTW6PhyT|{e9VUfbUCQBoRS3|fRW`Ss-LvM%GmsIK!yj?Ybdv9z6!(c4DH6`?NJQv&T#CnTS1Xbs5#&1AE|0=TI6Rsc~EE)^9q4!3s=DrO>vq3ia z`0zk{T_(v-Q_cbZ@tUVI`pHQUg6P$Okmds!!-34&H4Ym2-BEn0Ty3-66Oc4n9<)wz zwQH4tN^+U$EPZyPQxt@#@I!N;c&<7+MA<0=8Y7}=45pGDKOX-vM8~1)&C-^~X9x-Q2^pXLnN=6q*gC)fI{w!6!WKTnE8k2OhyFDr-v~ zyKt>XIVyR~(GMh2_ z5#X1W1-)W9f$v&{4nWI)U*#9cKlzdVybO2NPHs)#QxVMn>uB37oNe1_#)tC$X)rMm zNNy^)JikXq*|!qsOY4HZap)u07w7pM{`+UvOCP+EGOFgNz=6Hx`d)W7p$@ zwysV)Ksx9<4WMH=1ud|;8uEUgEl#o_UDciQ^1q&K!q1CGV3tT+nN8b7`&y%7on9%5 zrM&IOt!Nz?j}ME-ZR2HQuz*(M5}GOLLVc?2hlN{;BoD6WOE#NU6Hx;hnVFX< z?je{2BGPq+UH7NKmJoi&_(y%-n2df`uEog9OPWZVgSGt@c9@Sy%8yignH|`LQdEQ% z)ht- zM|e84Ez8<@Z4*lY(ZDKS5v(4Py~LfBqmY2MI0Iq}iG4U8)+~FZCK7wheYuIz^pQ9G zy~>Q9-I<%qnC^ZY(hf5Y{PUHw6luqbJ_ssfk`I2;@ZPyzdcQ2^XMjWk%D!0tF2qqo z<0X(!qb3{{2|8$Q8S5yTRZhw%*t%%dIMoJ2=3?|~YCM9Phoam}+k0^wi&M6}-!a@- zfkeAR?Uu=4T;+r6(!Se>034sQ=FtkDtC5)nx#PbQ?SBacM$#ekvLYh;AP+}7g8@zo zHgYa!8w*bzu`7qQ)(<-C{?+o6LE3qnrG_<%Fa_uDaEng zdq11rUx|dh=fFel(CJ2>eGod#aO|#gz(bzvMo5=3=mIEgJ~iXbdZn`^250npgLWxu zFc$puglM83x6q#8;37Hku=YJScS{MpT=-ip5luaST84bnzWborw41sEQsE+vuNZD` zLfbuMVq;9(4B)874Ie0#y8Q!YAS>P7UsWq7A2#w1^v|)#0s4&biFw`3Ol)!2jH&KN zlfsx9Bco#oJJbjqrB-mcMK0XjVk1WSk|UKtu?KNyi!@(#k^$I=FgIfDAK1?3IuMfOikSHKnc^Ur`9RcDg&-ZPO7;+@`|} z4alUskNvOhG>=6uz|yTZ{RS5nT1Fb53zKr{M>&Evn0ZvL&*$!|gP_N`Hp;#6bUb#b z6FKmpeqX!oBj{Te(C??C1D-tISc&oRrt9TW-l+BG%&;Sd*lmO)6|Yq7=HU=hZsFl$ z;@r~0!ou~hU%#??iKOI1Qk|S?iVdKPH{Y|MSDFkU^7Q!|3Or*YWn*w`C|#Q_ls`l2 zP$@_*QqGVYe>)GQ_{6>NTKoPF>0*Vq_WPL|NJ{s*KD%&AR$XL=pS&v#6z)i6VLt3Mbw)^}S>QV)fMoB#f!u$b z6Oe?RtHb+JGp$;`3aBWE8pa$*Yk3phS-hkB^qx7a$tVQ5X!-f;e|^AZ2FW|>cbVAi z0c}t^Sk=JE0}xSJ(CYc4ZW*-NNmOwxCjVx!@Z0PvAB+F;`f}C< zziMk!Ak#pE8_rTHY2tNwq|?Fh09jI%#|~H{oKm;at?rs^SW4Uz25665OMjqLLcv|^ zG+BuawcBI{ox5U%UP!4738F1Eqbl(8!(u4XwT2qLddsJUeS_>*7N9kLlR{UW_Vf%+$o> zm02Yl6&S}k1jrXo;Mm`Mt?Aq=-~5an9pwp{Qy;r$PSU_1e!_y)M+)#_kV;Wojh?GJ z!>_HWzeI#FY4g_FsNSm&xdPE5BwK%iu6z*oh3u5)Yx5Ho{HzLpgGD2+fg+8uMde2{5f?KqwlXZNVNNZ#O$|Q;&vy3DM>8E~={-e9&8` zaf@g+ubow-gp=+^)_|y?ktc)`gstf}w68Sv`!qA-K4rg9ZzxE3rxbNFlMaeS=vdYYiG8Pj;P!xO8!@t31w2jx1J_)g07C<#0N3?x?2V!&(`kf z@Zfg1y5TC`i!48#frH=PwvDql(C6P{*n_eLtLv+3ey!~>of{Uv_c_||uAE|OYpEF> zdg(gh_@LZ!Kq>o6O+Tgtq*d*i32b~mzhlpDI66`BaRPEe0-Nf$f(nMeEvqO2g0gsl zum60TPiZ7`{0kS~cp`yYr)N)-`Vv-GeFp{xu9Q}WG1_#Vxw;j`zBiC{2h)5aA|I<7 z=<(=VH_O^d$XLQ%Buq;UKLThpQ{aLSFvP^6J&}dc6=UMN493Afap!SY=U3-h^1OD! zzn$q-+ff^yYo_J6vkWeNo)u4ER#?=W@)DvED)d|G36oa6!y1~g@KXw#(5f4 zSaSqV*CN;c-z(9*^~9cSk@ZSKQnmM^4$sPZ{v3Q3<}kjA=d})$dg`&pd(byqxP?cw zZ|9niuVKG=Vf$aG#aT~_Cr028TGj+N&#^BWmiAyYk}Zc@RfD{1m8G^#1%5w0zB%Gu z|EVQ{Qa~b^DoNTvE z$+!z9d{~R$t*t+V^yO>EE`(fNSjuMMRPy>C4MF|ATE&^a+1G7)Cuyf6;3_@6@}r)M z3cGVs+9Y30*`b6yYgL!Q@0$n$p==457MB0o@#ZofnpYbBr3{1R2^%qA?e3=B$LJG9 z5wUj+Rd6GQM}+i| z+~>wNAMB^W*j4J)c6{KoaNSZvz&5A$QDlsKD`4Kn4U|? ztj`=i`mr01A5`r$KmtRszd^~#iHjSOxR8L5K2KLJno(yVtIT(qFRxR&*KRhWTy^3J zb^BH+crYs7PYXv{=XjF^utSH_`t%mc!gv`BEL@pi(|>F)ED!)O8I!O<HMC_(Y2sPYHF{|=K8JVz4Gufg+o|rcx~+hWFC5Qy2mWBiMHTWUt4AmzYY1`-+!w_r33CzZwmCZqB5-|({c6n zZ`YS(Wl4dq8ratnCz8yxc3?)exydPZ%@4w#B^ShvUU2koTQ;n1y1&Pxc@MAVn_aa< z@jZw=f8A%r+u<476W|G`qki=q(p-*1`jPfk9j!a*D@fh^I(vDcp)IuyO`xMChuXkf z*you09&bPnQR@(4-C+|5+P=~Ore8dk>0g*|DE?N*-%FpEoj7;k`H%Y}9&0Hdz{$RL z#|t_A%;JH<2`nS!4ayR|&1vlta$=9sM3}o|BH!h=sg#~vQO9ge%7*xfyo6OE3*I*AI4r*xjBsH!> zlE78UVsw+BS2KSVifWu~xgPDpX063lXjuE2Io_6=`aXA}Bi^W?;SqFluK|p;wR&$u z{SHstYBiF%fQr-=5Qg$@)dl$tnj_y6e`K-3g})!pS3M31VP-pPS-tpMEPr&TtIPsy z^2#O|#%{buYt@XrdzxwlY0O|+IXE~#ges4f<7JV%C@`_ZsR8Y0iqMDuny9vlQ}6{^wV4FLuOwFP36kvE5Ev zXXTNZP&pmp0N%qo7&_ru`E?2yefyN=580E&&%N`{4)g! zvbFsXryS&ceMEFmM##v@Y?E*;EB&T^6ESn{r-XI;;s}%@sNreEZBpWvUzX`Pz>b1K zv=9$xKhsF2Pi1fkznsKpL`XtQkUU0%_9Wmz%?B`ZIehCGA9bvj^>eUAe?QxXz6S`z z1-LU{Q18UmneZk`4LN@Zo9BUv3ltMAx|O@r{*#4_x=UR<{N;tqvf4Kp&f*~Q)%`kQ zY^hBQsu7gc3R;EM4x^yQShJ2VBx;y*xLHI(LXQ1*aFE%v^oX1dXdo_9^lV9e-W&Oq zZE{P~`E?I(Z#_ibuq?g>p+1doDbGk!0(PoUpv5Ay-4oTfRIo-(Rur0==HogV+IL?q zIR30RZ6;FZGRVxrz0ah3ZL80;t*Jk-`oh&|Vvgg)W^*Xr5HqZ2WztB)c28#Z_3_d0 z?Q6neh=%-!g$Elrg`T^y}ASV&&N5Lp?+wWxJlQTXny@GqM+=Pf8lK$5zJDGo+ygm7-)Vs4C1X%tfKJ zajX)>(a}#K_4%vk+9cBJUaJ(jtgHd*dFiZL(`zs*$h zetrY3B3NHBw>PU_TS|qvT>WP-IDbdeLgbrH$ZaNOdItN+iE0s-^a^d{#et0 zhXI4Cs%!FRRNzmuh&evU{-iR#sm|kRSvpQ=EfqH*FJ=H$2hp7-A>}{4nPH~_+oHhs zIzRZcbk&K(nN#g4ea}tz9k3ncf*CELcO?ZrypFnL#xzn-sy z1PZ-@11lD-Fm>qe4iB&m3(U&=W#`dsVKDMt5VGIFg$wr3h>L>~s)ABd+2B&@I1~ zpcyBtGg+ZijMeGjKh9J6#{SoJ&+5?T2rlcsx|uedQ8PJc2)Ox_qB?vsvB<&)0(V~3 z$*3S3HS)7(;7HTw);FSTo8G@egHA=d{QcqR>+y6m z+djU^2HaqJrhsRrH(M(xxe+2J@eWonCib{t4igJA|?Zp z3|;`K7B;weC9(^?nb89rM{QLjr+b>eNfrG4=ogOp;<%u&exVt35qn*bWl%`~2eg ze2}75&P!_eF+;FhYu=_mWz3HAYcz>zLhkMG$ua_&TbT55rym==7N^quP~dM9hJkE; zC}uPsDlZ}{8Gaf6gWtT{;acqaEtc_^n(2v| z$IG0~mjjH3+1o$!Mv#c12kd5>@N_WSzOMea)UZHc8&C387e8Eu!dgoEg%&;VG<>Vz zC#Dm6wlY~sui)c%;=%pC5GqQ7Uzo75XIjc~!7K(mI9cGrFXAnD7Sk!0;M0?G=_z8) z&338wzHsw3|5-|?)1Mi&L3G5^)Sq)h1i++SO3ZEu@Ied&9R#Q`=@FE3RKiM8 zI^gsgy;`EHxBA<59Q12y;cte#KzJ0MI?oem(b$G1c2*oF9>bQqbT+Y}2t4mf;R64P zG4Vw@qHC`NY5d6BGqU+k8OeF-+t z=DxiQyPp9HR;PVA19x6sDABqehH|u|^7|{UaclR2s(h;Jb+-@jmyaPK8Ow^jBz`Y6 zbO__BKdg~FF5T95RK5@wP26ROl~k-r{*&6zh8%mAR+*VOwKG6p*J|)**dvpnZBuYv zEDhLzUfETX&il-C#`%ytCL@*9uqKcZj}18U_SFsuAz7Ow0k6Bz8<0*>vr|8T5m9L> zcXj7Es$Eb(WO#adz5=`8s_va$4Ay~xEkq@2Wk)ftzpIG8(e(LeBvX(2$irHo4HoSb zn^e2cvr7~F!Tz*S1@GC}<|D5f+HbnV?1Fgok#`8pGTuNm`--rt|L0r-b~vUGrA4uG zdGMOT50u}134DM#WH~nUo~UoBI}Y8)7hyK^zA)oGKj@c;JVYZNp@UJe<6alh+o{?< zIwj}A_mP9s!)~dWnR1-gKaPWD^(~EXYQbXVHIxM+@N-U z-uD?+0^}PYc`x0hX8fVyD{2;;8=CO!0pjg}lJ6~n`V>Gs7`)&5;+LJvc40obV5Zce zLXfvN$JoM^vAx&9K_||Cg14gGg!cxrFumMPgsivlqx2h#31*Hp`XB3}SD@S0=1Vch zBgjyBRA^alB*5J5E7o~E0oB--EY#~%J5ATO^2dsZon;i~z3KikSG{nsdO|qHps&i% z^z-Bhp2CP|f7U_J75^JUWIqY}Q7%z~KJSH#VDi}?0FegOftMxEm{7Q%I2w26!46l7 zif*#Gd?VL0&Q&6ezy18-e?xZ0p3;gs+DHh5+3JCcqCVSVJwz?kh+1^81e%3k=O7UB zLYP>;x2NYDuzHHIhZiP%G#8{3N%_u#xz388trvrG|v$-Qj5Sn!mQFN!goSX@^ABz@}WP@s$jddz($kj|wPycX+r z03AWz6#o?8pPf5(xZ$lilAerOs-Fo>%q%-3XOeWk!LDF-awDl$VCa}h#*gX*H#al; z_!)UazJ(y8f)0J_Oemd4yIlKcV70Sys5QNV(O2XV;|#anZ95BI#!otYozslF)Cq`V zD(wIM9c%!_h-(2;(g1V`8~^mdmoXrL?hv$^z+i?Bd$a@lf0mb*W5N4`_;Y)yT2D_; z5;!@oAbzoiU&FFZqI1>a>q4vjXNaL+!EE1y!;W4RMT5Hs;aOp4hqvL}Cc+Ky-&j1$ z{a@$bU=Si12gR||%lgL$2bDhjm=ENZHs0`)AlWMuJ){A;p7oy^hndCWf55ZaNyUPm z#6p@g&t@rBk9O>Stqln<3`(=TaNY5E_W)nl!gQK26h8|?G)Pebop8c7g>s8YPMX}- zyoC!l7N3Ft+d>*DW{$7#uw5&2dt96dtuU`Auzpg_C)GiKeU>iJRYl|M5;%DKnkL(- zSQ-(8bFg%W@C}OGQQm^I^LF@9@e>p7_HFLqC9(jpgqH6nm|7u7RP;(x024^0DC}&wfxal+hKe^TwzVOF)2i)nbH1NmrhkXpzn%dfzbP)C~OZF~1@GZ>2 znONzu46IkhXY*&4C3|~LsVWZbHp$uK>-W}c-~~=E{QEo-3cprbl=EFJb+ZPY;4s!*$M4BD~ts8hJZ>8~qhv{Na{ zYNA}n?bMte`ebmf|L9aK9De@%VhslZjN`bhM?~vs^uOlbmqmx_DyZ<(D!FsIBdlFr zT{ZM(bN+F?aaSu=mlvHBGP~0*OXh z+?iLQxCL3xZIy?Jhqdp&N?MD*?q&x^^QR2;8tCKJAD!)|#m9BU2ITGMEA?mndH8Rb zn6_p~UCOpyRTpxU&In*R~N@_ubz2dTwOIx`~KGwN&mcY9~6A4lpI5c{uH}HsBdG!FmcWI zULjZUbVXw|HuL}*<=9L0NiaOd5LTqkYlo+uYfQRXJ{;3M4cWIkOD!lTNUwjkw*+k; zy9<336vT|rEloRfmtizEVE&|s(Df`6ckh?|-6wx9aX4q+sworembMxdNhij4pSGKR zBH~U5N!uHJI4QgMvF_)*75ren3hD+Ou;vIjh#kv7&dM`Pn<>lex} zLB}O!p2I!-TiChBrz|=e^V89u(F=F zI)dckOWz)II)9y%H;V?GdkQ?(dDqXo`=>IeLlPj{ENOcCsHlynVMprue~q0`+lmu* zP8aEoIGJtqGzpVmO2#DMyBI1sK2~|H^{dzeenO5J)evt79u^03D-_b8!^;zlQP5cE z?R2pn)oOhPqHSVkmt#UOAD9_{SmCY924sqAzW=ku53;H~z(9lIccw-C2>RE}_Zf(p zetTch)JX!qy?M(PRXiDrc0-bzOx07o&>W-CH|UjLzkVfA zG@kEYhA9--8n?%hu=8W|R|y_DJ8%6tIXU^t*uY|(MJBk8kR$>!WuJ}bgb%OrzZbx6 zdAG=GbgV+-?VJSaetS;}ut@=Q7iO6D(Xm_FWg<$B1f++w{cWv?EO>x%d>R@vX#ClW zX+ZsE*Y5!_zQmt{WrLbG8S-cxPR*n&0&^Yw=2H&VZjU8iH|^^SfXHaQ(@u`fNm2LO zm@dr8St;dnpzLA^3;6@)AW1=$20ToW!}Od*#36d0;KGA17%A1_a=3y{9( zyQIrMw~xREx?dQZ?R)kLQ~2ZzLS)a*tYC`Dy5;d%mg%Q$(eV30QY|5OyYZGk!usYYbZ#HF&ZwueO zt`q~{%XYTU4Z0pxzCkl8v?tsp`f`SAUm(fdybX){w|ImFUx_zdv(!+7^833YP;d>L zwOP3zI6KQEH@D0^NkmCg3oDW}+>?`=2PV`E%^t#nl^5;Xk#@B)#wE5U6O~-f^=i|p zXy%EF4~*0m%is4z*}`wgyuX`Vyh3 z#lNx&7NGjS} zWc0A3-=2=0Z4u05-mCx9v3u(DAWBht%o}TS1%qPLJ_3H36YL<<EOdH)W68~E09OC=t$a26pR+GzZ@+SRLPZ8!nKoo1W{1jyui zN>KwkIyxc8-~_y@6xE6>jECBDyq#QVEh~d2AM6)pAYBTMfg9&QMo3)vPL6+X&syuY zI4jmow92yj)%AFq_}*mlw(}LIGphp*Rb0dJ3!T-|e=9QsuX@{Ix@T6~b3yJ*#}>VN z$8Ns3hxvqNRkl+P_<8&*1eU_ZA3S}R)Fkux1L`(KM&wJZ0<~0)p2PbD?Yj|!p{Q)# zY|K-K{FJ-G!Y)tmVl>g38cZnDy!Q~FCCPX1CJkMAl&i6MW#$+KfMUeF-mW!LPS9-S(@MtIo|HGqkGA}Oijt5nk@3# zy8Q2m@!X-3%-mOO{6dWmkh<~AdhP(8xaBUWU)bM=QP%|wiyx5+_k7S&5dU$(Y>+Ta zSrawd-9(HXViGRf{2hBIEz~F{fzglmM;Lrj@`oLy=R+1ALGH0E^~F}Pq?<+!B$^G8 zHye1_^4C%*F|~4>c7C@qKIo4?)=5|IY~VcfgLHtnReH+jzQ>R}GqfsaBE@yG6VvsqNQxed2(W#UJGqQ?5ZHaadvqsjGS?7#^65?w=Xb>niJtJM%0X7L z)>MUQH(?dZ#<_=D*C#@Z4wEP1Hk)h?85Ra;$Q6^hjU`=Tc((DY#(Nk&LwFHktnhPZ z@iXs5^A)6nt!DAEqz8rH@Z)Np?}6Ntdo4GdT>2Uxd90=18SvB6B3Rs7AF*6K^ZQAQ zSqJ>9a#B*#*{0Nx<;b$KE9eI)4-S{;`|`UNB$25SM+fIdO}g37XX;Xb@6AYWZA%8S z51s6@ccFwcV*$7WW3z+#jm|w1{fFz278R|LPwUr)5vr-G?i3s?t@S;8>;7Q|e{Fla zwczLe{q&ofw_exQQNk6|^G_dpZQJ1zX{k)gZo+o0pyknJ7so2Bf!Kwyvko8_Fkn5> zWpo+B;?nEJlLkawV|MDGIH>AJd}$#DTYo-n3jpu2&4W34rgWU2ax6c8LiD0XQh4Y7 z1NkL`;fE9_AN@a)G%ig$T}|}a-}5}U?OI8n_nNfaNb1V2**D~jnL_Tw)~yNGmO&SA z+2@N3?r9Lzv;A3?r~kqF6CVBM&W@bMD4)e|j*>0#F$*n@z0*z>*lT+Bo}@)?e%kA% zlxU-FcR}>^>yM*WD@DTjKCa_%tg!jCuaA$$m!vp2R^B17?MV9YEXX`rpnd7|+t;rL z2o>LOGjRzl?ChJSe1)P&rpi@g?j-W%Xn0~3DK$-;JXfy2ob@_2_wwy9 zm1c2!o+?AtbEPk+R)cUj9A57fNVfXXxaVQ7li?WYUeH*T-@JXg+1_TeInFtzQ&pjF zHsdgor-kXY6yG#+lK!CM-~sDEsz+yVPe;OcwHMW`tQPW1YANsnKnwb&EHH=(z07-m z)b%8V4e^cSZr6=4vA9rDo%uR!Y54G)ur zu_RUe5EiD-UQoW-@vqafI(gT%gA-fZ`2vgD(M-sQlp5J9PjVTE74rh*;>8~Zgim*q zQ%~6T19D(Uh^5{VgR2*+p}o7UilUCWEUiZ~Z^avxE)V}T45)6z60aj+q;lK>tf1l( z{1p1<2dk@YAb%RxpdRJ@{n;ZmnD(D-F?Y!158yPf=U1-G4h^(Dyg5`gl}Z2D?{P>c zdtoXEl8+rvwudT{V1x3cU}fbZvJJ?*w>~bYtQ>{T{sGfZml5XLb1zayM@M6sBJ4oF zvY-)N%Dgu_P{RBcc@K4B-&EO@lU%K~Gtom8IE5*ff@ZUlcPSjjnma0&EN2U7SnwTf zj(ZYFxNgZXt4*q*caieQnH-(T1Ttpk$z~y&M?0*t14bxw5 zx=z>y2Opj~@zPn5$>DGkYr_nxvX?P0?wuPr4)Jt-A`skene+0ge|$;PbG<-|%i?L` z;+C~@tC>QDkWz-a;OQzaNJBPd=|m@pAQ(s#?G&(|*NO^pfi`rJog}g>RhgaKN_%@` zh*Hb2CVHGsvlE|wY;DkrSRYbnR})iiWP2-22`t98_QG{pdG$!ZNE=3(Z|~tuJB&}{ z^U{c+3I3Qpdrn9Tz5?jG-}t|76|UKwW*C-)RQQC+80$VzE&z#Wi?Ib~t*sB+WmrTP?P`UQdQQ;V+_!J&2mXw&Zyz;p>5^;OPG)QDmVoO++U4be4%ULs(IhAkF{yAG5X@Ijwj(x+4!9w~#!0}o)M9h4fUw-#F8k1>|;V1mCa8V$z( zH9Tyky2B|hW^|6rQ}L6L?%0AZO{b#L`uepT{A9iJz}A=B6KYg8z@V{jD#E!A_Kl6* z1Qi(ip57Z{9A+Qu%SU z&c|ET`F?fgA-RAeuZm@U&%D7>H~HyNNWW}%JbvQ()p*wDKhNY%?e9Rl2rngQJt~GV zx`!gQS_(dVKl(MH4o?LL)&6s1t*ycC?(RKVZ+aHSZ2?oCB{vh)Lbt^6Iv<`lXAfsP z0j53xH=%?9Qrqu39htA~mTWPi+5_K~T0G6&!);_%gFnCv&wGAOxcdJRcz$Wr4Xk{> zcRot$dv;%dhM9U6IJ*2&3OH#aC0Jy4r+;`U#M;_>kkjr#R@h4lgu;|ciZ>kVonwC< z3oO>0AUrm%0>{?RJvzR>02|)Q+S*NV!Z@LG12Qu+(>4y<1K99pEkUst-DUq3qDK)} zJqqAIV0AK`FI{0AgaJcVE(4%vANa~#+qwv`11s`!bBCmwCkx?=Q&V09!G~S+^jy2! zgv-}MMvqOOd389tMI#wA(+BUYtydw>OhL@0t!7rv1|{1

Z$B$~g~jU2GH8^hxI% zvxitSZ=E&-@7p(|(0VUR!`3m}*~IsRQFxQ`prUeRBcc7Gsk8*hZp#ojEhYFR*?zs^ z0Q5Udgv_(n(Lq4zvk7?KPip*9$d%%wU3_wbg}Sbuo&y~cOGOuYDCJM20)2P>NbBkX z3l|UYVQ+nzoSYnXpKgBp483C$@yE;sRAz$}8P#vggeL;*C>mx!`|9U}aZG@zbUFk3 zDUdQB*2ULtivfIWIYHG!15lHXEM@-4cSCpgUeOdu2w=8^T5evb#8lxA4z4EYDUA$% zHo5A*(Au}m`3JDh+9uwV8+coUqz@0*IGvViLay7LJx`2B<0ulw@4eEz~ck;K=94lH)tf8tab&*4m=2ZUaPav)BNi{ zDs$Ue<|-qM(6t{W^thk5=iy;&lkU?}y`jh`Kn~d@oAUN!Y;3GKJ+7AaZsvI-)O10T za57Br5P}OLu@xaYb7gja2Oya?CEjH6ziHS0iE!Bb7CPXfNB`hqrLyd&ewp53Jsr~E zYSO)A;OpWbsz_Re!~2JEQ102{(Uhw3{Cb+jNI7_Kw^G0g2Su4*EtPtm>vd|a@I*R4 z<>ln$hVJT0H>io>6x%#-eY)wM5&aGrtzWe&BsBD4b$=WubmXraZB9onLSf~#dIEJN zB_$gB5m>CH*ORl3ls5Te=px1EvQ$aoI3hphva2sd@v6#b{- zp1>tD%)<4mjTJsPy|1syJ8M3zZkwAL6)yTkl3#Yll&FE8)%ahx2EDFZ)$;26Mox;q zF=3_1%9O?rjQ_=aS*MGj|2Z!lpk(fLiTLgAiyz?Zq68~llRB=|@^@on&X=nAwrpG% zZfp7Hd--a~Ubt+gbyvexMDuRSJc`s2TI-ltD^E(@S&oMfblRNtp$ygemgW!q8`nQD z5FP;pP|p!HbapY(h2<6(cqiPcov&WOnekC>yp3G^K|oU7Fc3Ntb%P^~x)N-O;QDb- zwmC69k+u>NYQ5Qf;(LPCcM;V{I2?ZSVTdA;NX8{YF)CFe5wrk`<&gk=E%BHG@vC`i z$b|i@oW9-Hq);et3r~jDqCV5=h=8)NtLyUR_LWV3m%lOw6G!&)Dt&Cv+l@k%c}O!R z3t%Lsk-&s8EJChZgwveBS615$59xmzkHuntW)q>LfbBIQcle^hqB7Up-d@HL=tA^B zZ(rL}8Tgb#J}HR9VqeJKoq;)gK212@e8x6g^c+2{NwTz5LjZXLPU_e60YHmxjk6{aa01IvexI(=W?VphWE(d=qt(XYb6 zkF8MKDjf$#?wCFifjd7&)CYOD^{u4Y_ZI3*3(;tHGeV;x9Msla3!R=BBUU`uU z;#6M9{_Mpt`#ORju32>b-*ksJ2Vd4gLjJ0`++YB0}MB=v%=VMxTKo8wQ&RM@N5+SN1 zG*xFa!d>vm{(nJl%M;+6uAjuqxB>;LM<1*iugEJ@H|xirzi;SQquU}!Kx~ThL(3J* z)38`kE38~dvy13i)Qtc#Eb5+bXQUr&J4*}RAIy~eoHPFsRV^Y5lBnrdSn%fNaWTQ6AIY72YjP zvh!CHfpaV$W&M);Zq@^fQCip8`)Fx+qtRI9EBzQfptPxHm>>~@UW_-VhIdE!?nYe+ zuR#1z72B(#ny2Zr8^N{h&}>Oy`T8dXM96_r56EcLXfvac(af}dGgPLj%WaeH4dg8q zHDq*-@Ndme8Ov+kpkCq9y*R5*ZJ2|{T@?$kVlDTWeaw5H4eat?h{v85WQRRRi25L2 z#j45$*l@P3KtS12?+lU1v}u67D2@|cKd2>R2vARUg}{u&4aAO{*Y60K#e0hEoZD7f zm+lsvb9t?sLUX>G_e61Tvi9}*_V{^Fr4!7Q<;M2RjtUuw_(1tWql`%$8ujwcA;@~p z4JxQ&Z}_%Fj@$MG55V1oIt6wT1*&N8o<>^g87r9K|Mh;XXe_lABg;UnXT0G3o^`$O s?C%ls40MiA3&O`5RD=FE@&dDIM0jvbHTAR2QwWHq={aJ>8TW+$0n#kFO#lD@ literal 72586 zcmeEtg;P{**!S+zAc9IaqI8FVq$>i_EYjW5-L*)!NOyyDFAa-`NSEZ2(v5WUo#%V! z{V!f-&KzQ9=bW4Sy6#_H5h_YD__!3fAP@-uqpTDR1Ol)8cVS}!zw!IinFQQ0P2^>y zfIIMY{k|;#xZya;YP*0yc+da4z!Qu9cOVcQ=%duTPoA0k9bTULnqJ%Yx;{DARKxYQ zbID9z3JQONSyn&hI$GhZg)AA|jK}ew`E#gQtvcsDF+2+KZwP^XhGK;#CoWAC6Nxih zO`?AzOnGH?_G(WSVXiwZN}J_Hu=h}lMLqnDLmSraKUyHOwO=3R7V6Qp=Qkq)hvum; z6XAyZ-wjxTW>)LKmo+~4)vEYra5NiF{E)xiW*i%uAX+SM_#o0}W`zPb!~}m1-xd5^ zsCmRxm6>R8OM@)z4{U&Yh$L ze#{MQ;oH8B)g3wCWQb&FAjl)CfvOHzd|ig|Bhmf+Li$*UxMUB1JS%3dA(iQ#YN>8q z#WolC3JMKG1!f)kcVPrC_;sWmWPga&-Sx(Mh9Um>X$A`^(4NxtZm>yq`WZf+aG8u)JIC@^IWn+mxHr{i7`CxCcBmfdqC!Wq8TYi~FA zB{wfY*Wp|%3xq^mqKS6~!Wr-U#g?${0+13Arev>Zlb}p|h1Ms(_~j(C0dH!prtW^0{$5ge#L^pY60-2gIU5Ex*lsSW zY9f*YcO9#o__*0(Ufa2kUb4puRCeMVXa zJ~Mi9#URP$bw3j*etAyNib{UI0zA~nImvsL6;c{G|LWLbx-MFmQ4S})r4N}%&R*8~ zuY)F)!jUg_4MJYf9lNZMXL9)#Wp-c3H&)JX6XEunFkh=P8yNZS;Kqrdz0!1{0~XuF zJ6ZI$+Jw5VNQ*Y{&YlyvK+}Ve>^L1N!G0(esPpaUMGAKoWr+&&G}h}b++H_X+OYr* zF6N?&uP{zwFY<%kx2Xp^b9I0Gfxit2q!@-kYrXZ&4=t3=^0BkD)Czp@`$CmMx+^+1tym$7BjA9}*-mJ*!!qPo0)a*ILp_c_Z)}) zgow2fE9)6a4|bl;2?=fBlhQxYcg@*3_xtz~cVl4>yVpKP_big$pTA=uf1804%^L&z zW8(zDX21F_t1q?QfHQRb-{+~6-`2Qa*Z{B0)NfYDzgR4Xt?F+lUEB<_MJ?g+&m%f^ zl5eMbAP+K`I)$Wx7jDfD>hYA+l~})(m3Cor`q;+cCyWUW0(IKI+S+9^<#N0_YQQy>`HxH~u@YdjZ<-CUdhP zP!RI>#@{`$WW^uFNrstkr@7_9SV7%E_D1FclFG`;{29a2Dof?~am7|nEU%Nz?cQRv z({OGpMkVs{OwE*_t@riiX`Qu27T($K|z!{V0o6HxVvszy_>m3 z4~fPlQ*8nTO)x41>e|tluca%Br-iL5Xmg8y_(%a)U{u@aY+zwuG2`{J;Z0j;T3XX0 zC`@z$(FenjTxOALYa(iXeju&T?y>7r4iIeMSjxlW4@%to+PPkx`3ho?nz=BB>si+I z*gNXCr^{jaaGet;$0E2GcV*3U>V==1Iv6tJ!yYMMnJ2K)14=KR0?i^0+)n0+aLGzE zj~}&;-c?{_Lo7~xHO1w?)$qYlF^_t?^oP^Z>}(DAA0!grbZhh$rIx~Z!0jv?u-KG3 zJgqnARF(KIiZlZpZA+5rpFcya!C3+(o7<1X9gVxVKrB3pbn%@JE#D1GR1E(nvXNv{ zYAhkg^+aG$VWW#;v}@~)CD~@zR(^o|%*}bt>`azWY6g571eydf_tf%Z{=`C| zCVnw{n;>zcntxeZvQz^ULIop%#GNB(HdO6qLK6v-%d?ut7aGPD#hZ0`CzI`evok#Q z?E9BJ1$VK+L>v$bp;-toN`%UJ8FG{PPR>W$S|vgZAS^}6)RaCgiM;8Qv^nu;+Cydt zu)@W~l6LFjZ!-kRq*Z{}IJ-96QaIU;D>XcA)YPm#!=1$MUu~a%-rn+~Uy)ZkkH_D@ zcqJRyfcc=5zqPfXdAQ zgO8^J0-k;y+z@5E!UWO(>^VHOW+~#TPcOFHZv4Pf^z>&4Va7bN=Kec221V;t(HNCAHDMa< zaWu(->Q%mT6;Jv{rl>R9ZX+3w{6OnrVS+^v%=BMedSfRE2@07K0jIdJ@}49$G_IJ`e zNGMH&O~+-6Q4*$0-#^^ngQPh%Gn9*@`i0-P8YQT+-@G%qcJ+R*yI17u>U!s8X}OgG zD!#dGB7w0i^i@XDXhj-d;WnrCOV&2;=d(z^)dv$sOLMUY{E4)QuuA6v7M2Tz=y=%=P$$faN3 zg_1lem)c298wy2C%RhrIJlV%0Q)Kk;K}D7RxtO?Dx<8c&*tax%I2qj-8_SFsGcz<4 znAl<9;)tq^B28H&;gS$0#|YQZ$nL1~$knppS3F(!Xe0b2~KKX!qkP#r0i!^6>uQVb%WrzNpvcP#Sf)W2>~oMFu$~ zYR8VfaPpz0DDmZW5UuZFf3^R4a+PI{-{t;`LM+TOOEJS_NHQ$)ZdQwsPQ$R8=oquN zj$Ii{DM>lDxUi7fTWfE#_Cn#l{t-7<%j^P4X-R zR_X35)+1}l__oN7opmNgUktsWjdVHpO7gwKi?S2}o~Sv_%l)4}GczSw%-8?;UEWuZ zS5;NM&KTq?D1hYtTj^e(YA5ZTS2Y1Y;=u{?QGVi(KX2Z=IYj>g8{o6ozr+zFZI+Xp z3rgT?&(j}!jVo05jroC%o=?=5LDJpKtlvF0ibvN!j#h%^l4h?}yudNO*ec9vH;zk+ zid)+Z-?Q`KpbDdc=vev}D@hRO9E-{?{(JQ(qmE81_~gY49d}z>LCN;2Lxud}Vl1P- z6R$y#XMM*URW-<+Pp%uE{y4EG8Eh^6$Py&cww3+p z`5>}<-7|4ukNXZ=@Ur&nu>Gk4TQc+1`018|0)Y^(#rmnsbW_xv?Nr5{KA5jgV2`$_XWw~%r zV2=xHY*S8WYk*fL-NEub=TRt4zn1b(UfLmF5?pkd+1sr3e0**%s;a8Ub5?Dy@xyvL z7lzdsUAYK#UeSugPO7zfWFJR>aJh&g#+NHZNl5SQgscU?cYVP~l z8|49UeHiTebSZxRhYR%NRf5PcG*HWq13BirG>8|j$k2tb6M4}9U8Sf0DZ?>%6L>p; z9jo3*D|@iqwcPeBu9d{Gkz;8mt}Hx8; ze2@0Eu4lOTGG%4I6&1MM4>Lit-e=nkNgN#a*;9BboxN7!W}D9QzI^rODrkHs#53r8 zDW_`13O!ot9=hT=0TG0M<3=-u*D!P|WWif~eUzZO*tVIj7Ecy*1CX?_^?+to$ftqF z=MzCeTo*Kyy?^yE^q7Yl;HTHZxSn+-CE!dsV|@Y%UqQ*Tk`jD64K-67`sj`J6jJOA zIe#&{t58b&--nBBmw30AN3?E+tc`GyV8V$-@m(FGB-ntHQ6!roS|{U)eE*fgq~4U< zN*v-Yz(@kE{M`MK)Sg2F~Dbzk84=c%)M(eXcKXhf4%aAGVIuaMO!8@-R^S|)je zQ%Y%X10GBzZpXs5?{B*#+#goMmWOfm$3iLTl5;YHzbz;L{m|$wMqaAYtzb5kbz_-| z*VNQMv51{yOK&o>D6!JlUwYA=#e7&xQ1e(cT=W=oTz&VDmLbqWeKso zPH$O|Yxh=dnn)eBy(WhKkr$+VH_0!N-NQfp=BUj=z(d=`?Ie5EOeEIG1Gy0!= zl5ut@TG#4wG`E=oyc@1S<-gd+3_>4Is*(8LW>V}j>XqaEr zbh;&`9i{YZNxFS1dx~GtPUm8ecXn#`_n(>&6DQwNv`Uu@lokUX#d<$klS($X`!2%B zrXv(z0|hLTHnMdd4|^)lvIqB*3~O3c{4kGUq&=)QhkFHsqPj=>Yec}w4jhoP_u z>S7W$&=x}2<$bX~cXM%Z@m8{phGQiT{0QfB@h2X8LIrs^aw8l3mKyQ}lQ7c?{DPC~ zaxpfdxEKeZP}IN=#4g+v)OfF-6H(z^$ytogK;dguAy46|&%ZWOD4bvRfzlmXKh7uj zuD7@tbRO2(TWjR4e7df+`!$k%UhuW!l{b8`%_C)tiOKB}qt4WHWyt=#^qT;ExmG4$ zOO0L#WwpmyL)z#l+00m}S{J%XhmEHH?LpHcVeZkKWdMCnzbyuKa#9S(mR~!3_S4Cp zHuAKc|I3RIUHYOk4kHvo#;HR+y|^+G&%2Virrb5u_`KXW&7RQO$(ffexVe95%k8+s zTYibHFcFIVj2Jqkf-E{|vqK@86YIKTpnZsg&2MWc$CsJoZhj*^r;JokY-R9h4ZN+b zjREPeIGNqVzPAUrNZ$;2iWwAh_-`f)k}SkG;sVFN<2Y7dagnFe1TP4T8m0>P(rV<< zfuIpmWv)KV@xOiI*4*3-%wDh7@pf^1qrp87dyX^Yn{CVL_PSd!ySFJBqNiF0->7IP zFMlVOCad3C2yW=yRZrk%cx|IC*a#~Z;NxFsTlq%LpQrNK#@!4(Z!b|$KvlLVm4d>$ zSY=k+>0iEtydYkPu;7!OsTDhTtzjpUThGyA-~C)uLph?DC|P@YzW zgYeNB#?Rt!%dd%QWJ)pimA|{{cd_E7+Awsj{Dw)ui>=D{zPOtjDa^=QnAIyC?VD2& z9~>OK%QWgB=iG)}3p`;k*!@zxemcQ#$2E3H!`BCSiVoo;;;x6qD@=-l(1Qs_X+=F9 zpLk+6+c6~O1;-?XHY9?W92Y*+KSG2IkINW}{s25aZ0#R8#^w8nV25XYHrCnfbBAme z9E8neks=9*(!)b@O)b{$7b}f;f0;?x7ASs$QrTp=m_Nvoj}Q!RKx{_5zfih;lYH{aIGt@!jlKLchM)s6>Fxj!*rj zmxDzu8J4Uku24o+t#VnD2bQF^>Dn4T)>Eo-8=Hi*JbLMbemVGO?YS19zwN>CnYva| zEcFz?89S~wzWwf8vQY|*F6uT&J-lnTW8!1$w%lQpanNl@lMAhIqqy-1p|D@qMm6{u@8<~cu7SR)$2BF zG%JhiS(>cUfh66$9t2Il?9<18#&@(mspWUCfI$^^%eS#B=HtIB_Vm|Ur!aYRFK5_a zC!DWt1zwt8nnHh4jN~$5V%f;~ko$OzvTe+gc6t7#toF0(n+u~k(T`8b@!Bjxn5(v! zVr_e4B3X$nN*FjI^`B2^4_P#M#uX*Tzy?l1A$fUX2=iyyA|;Xj>trOF3hx~@Er@ZS!9DHlo*{MDoU5PFNCb#us(7p*yKw1o-EJ@AzT+NaTd8Y| zKE?E`4pq6Gn5Mn$@q!2EZeY8LZ04#s*}lOK6pJ2fquDTsUh3yP?cVP02~$(i$(~N_xljU+;drY}PaCk~T952v zG4@-EiV|7q_)r)J(vluao@+7W9+NyCG1nSKXDi)7AEx8aVaQ4(3VzxAs5v2isPkL^ z4}# zonO4Iq7xjLVI@I}I_M(2XHwedES@a%_P$&Ct=7@O1!hLI5{pqZf}(e}`!_HEsh|{c z!KRHvPr$|%%(u9$^#&jqhVH(9?dl?(0GE-fz)Cu;)fCHOmlm^wF7I@cB?<%=sPt#lr{MKZKN_3- z*csGS|L{Hk2m0@lNmPA7K_#fs=fceRZGH#QBuB&Z(h4dFH!rzF>*>S`<-2@4?N3K@ zre5RU@WTim9geg(2y=@o54_9KI?~oj>7_o&3FkmAhz_1$*ph`-!xz^|;3r9&|Ee4B zM)Ilp)U!J#vXSYgY+vhR@Z zvz=l%r<$+oPp;`C3-j|y?^eE%NdjW3I*6Eq>(8tif|uDA4f0d_7PeUEJXe2&5cf(~6x~5yCG^MTI8k=5C=kLVEfC+n z!7vLGr}QbD0X!j1#CbG zG|Auekp)$lI0pcb%a1I4rx?a9A)@=#BJM=+ei*4MAQ#8FeAg!7#K{ zM;au5G&u%Ma$r-y#IUBGK&VpA!|45}1XnAqfAbRmFbR^tfY+skobR5`a^$YWjQ84x z`f~X(qonh)!)LP|9aAaWH{^1bon<|qoQfSQoS&c2k+^163pt2jW$!t*9Ft~L!z9E; zrvMiwZh<0qTsb70>%KX%Z=(AUM{xu(DWNw?!sq>NX&~IEUaR_(w+_uD0n8+OQ}5{= zV#*2+fj>4qeX%@0KcCII=)Qss ze4=7@pEpCAco~8F!4+hNeA80PRO*9u90 zQ=*)c-Sk_@szs*0@F@T%Zim09Sr&g)dY@;MLSqSlRxiWO|Cl9)%SIFbOC4;dfyGOZ zV+P@0VftW>U|E~=H+>LyCMt4|7Na_TYTp*|18P5-4r~!?k|zJ*F_tZc#Hxu9km^~^mU#U ztvMUfi3!;ToD5MN4se!2tQ^RAt%7 zq^k&VWV48A30P4eG2RH&vSI9^rlvNRd|gvsT>LA8tgtXKO;E4Khbrp@{!jog@tX)}1T}X># zr#;OE0?;D%?}Y{EP(hW$I9u}s31_fmu;vup+Mi}gs&3< zD}aEvKawS4$uB?7f6$76gR?E(dK{M@p3W8hozD7k)vWfqzZQNPb#$PDaNENXBRd;V zDTc&{lis(z1iKH;&cO!iLF1oYi%8DCtgDrFfDl%^Q!`CibUNxuXeCQLuLV*<2xH#q zJ5VbzhN!dijxG78B*H}Ql^@Ukl|20AvKPAk&5$!37o(UG#YR#9nj0VY0|?pQ^YhvC zP#Sj&9_crGTT8?XFDavp$wQCC`S{Ytwy#gCJ?{n$?Y&Q;3=2E!c+t%w?GG$xAof^f z2fL8mhp{{}bN$8eF}H>Da;ZnY(e|pX2&S{87fj+tEhJquPcDL=T6&l#P+;QB8q)^Lj2j@)z!v+foHvhQ@<5Q$Qv*>2;s(Lw9lYaE;+X+l+)+d z+U!frMMSWH#cT*Bb8OtG){olA-q*x6q!x>(@g~4Kb={yR`%4c0;)Bqyn(X0$R@26C~o3KlCE(w30)Lt^P^A`Vv0~*i$v; z+ACVbQJbrC#XGuBdleYDop=8zfh=!3fuZtZAewSYwoBhZQ-HFZ zHbL}B=OxE|AX`;xdAy-xey)I`Zaf6Rz9#@sikgKrF=4GzjCP9?n{NVorTjM zqVKeN4i0?U1yBkB0s4iN9JzZp;ww@}#8Ijo<6xbbSP5Ef>UaNMwwfZdtJSc_6Pe3} z$s75A6Q-{6gZU|)GI%`$17C%wP4*^Zy%Uq9EK9wC06PjnDWF(SKqH!}#F#*iLI9@0 zpgaphdT|U6Jv+;WajwT`w%F25r32U}*_DoP_HRq>qTeR7kp;$Fi|IFHSTe)qM1Dk!yxPcKm&wQ|jEAzi{(As)FX%n;Lvy z3%Ge!A7#VlQTI-mFXP{u>VSRtH?fM3D0jNMr%&S~9^|u)o;Ec(q^a)z=tueK1I{=| zrPHk(V;eRg#ZA)l+YB2s$TZZLu1N2s*dnFy12K$+L+s6_2Va_y&qb`3q9WtgrWOD^ zzE@OT%=oY(>`ada4K4)XG||1kV`HJUS{8+q1_C)8hqpz}gUPE#qV`~Kch?4S5z&R0 zSyUDoUe0x`cCJ1F?X#Mvk=Z<{3Mt`Jf1fYm6_zP)~Ey7JJOEg{79#um|qi9 zGVG*sRXpxlyT30DxL?6?pcHk27zrY6+z*E^5VjE)fF}E4Ud$WLLEMmMpnZ825CPsWG3zO%-d{_hck%wAefSiuy-V_@y?IXVK@0E4 zBYmzG6y(2^@vxO+*^a9I8F4_;_Pb?o$b5L%z;8yDo1&MU2wR9xT}%2^gE?6dE*W1& z$9MoO14GkpYxbaUV-8MY(wqPap?_Q!XVC7Y=Gt)RdU=sOrfFP`zG zyeA03PEJwA=+N6xDE7BDTG;>*4-c1acuNqKk52urmbWd!ZB8sJV;zNbexs{Uk2hp7 zUl}6sKaS5X$r0brF2`WTr6=<`?&jK@N7dT-Of>S|NBFy&{3vf5DP$<%CB$BE{HweC z_KoLXbOE2s{{%K!_@BA@(5k)Y9FZ+EHZtjg28(H#{-*?3MsLl>ohgghLua1C&h zzsE|wSz+>wFGps3 zA2?`XXBR64TUr;M9i0N?psILkE8M6aBis|6u8KXl3Q;Fu#C9 z<(zY{>sYz3dXq!WOdivgzK8@*ZJ(W;ti@+$Kqf>lP=zauDU!2U@Sdl|$M=B#g@#7S z$Eeo2|4$iU=*y|8sXZ;(JdX^j(UA8a6}wt#dpszhyth>n}$r1U>K0f z)IVuey?iOizy5*k4Mah|^;P%BHX!mbB6ju_H0v>=-x*NW+DM#wNMqhY62L7k_VH=+ zmf)mSkJ#e`ZgZh$X#8M24cYO`1e1@?;H18O(geclt@FVCob;(jN8nnK;0YCaDh1i`uNp;cr*63tneO-~!0bPMO)r)F4Kx5~1|^s4 zzkbmrkPBTmRv$EQL=_wbbeU^v2GDi-wPA8QJ@_)uEFUdz4Vmz;%FF#}T>}+UrjXf_ z&-4;b-lz7#S@ma{le!A7VHDj;)HOB~)dFjo&} zVPh*tYCk3c83dbBo+_r95Xj-tQI}zgvs6y{O};Ay4;Nnb_h1^_H2H%z!d0mss>qgw zNO2pWwf%tf#kloCeEHro=~H+2D9YU#X(>4IX&BS^uxo$Z6KIsqfNsz zb4KGhlEdg2tyaSfTwQ$Ut=@>6kdU6pOBeh(9%jJHN8a^bw~xSo>^b+aoZMeQTs5^K zZ7PLqAt#rkNoBR^KTm@r!%ffYwX4naf-KT4EId;qlSu{;_6L_2)r<8qho1kU0wfMe zj=wLp%|L4Onvyi#DqUa!?%t)JlK#UGwql?{5eEW z*&cq{GCP}s)c&!{pD#L7Mus+^8sZWKzXDOW}2wK5b&2O2@(b^v04!6wHY0>MI^|%yYtczX0y>$TrB$IHtanPej{ct{s zWPH1b+GBy|8FpByxbJMK>xK@p*ybOW3D2V-i6e(CUq%eiqPYcWY=+~Ky{bhmvr(%) zozOtD#gV}aswg3%xEFSI2Of)`WLbQ`!2jnK3+spR3pzn@@e;T%H$`Iz;YqPz`>G&< zO3XSYTTGrOA+NPj{rS_JoQ|%)^9;eCAz#=^`>CE_nmV52YE{+H_mmA*8-Icqz)OG_ zCFGgnr1wxM3uW#`FBfL+Z8z4QTpRrcBjXp)aMQv|u!L6K&IKwSCXPiHeAPCPCBgy6 zixb~9oMb0*ZPVfh@%t4|a>G=4ASy#@prU`YT$ucLb%sk_Sb_tRHN#? zJlDOou?+Sb)vPPLHN?jpEBAoV4GEwt@})h7B|?_ST*Xg*bNR&A6&tg+y-b?Hy43~0o(ZLK#bZ}~iMr>~8fS!;`^HWAhg%qbjCxM)( ztNy6B-C#pFZHX~Za3xRc*I@E3`YP@t6s9cCMvJH`%T5;U%<=K1^Q%TiFDu1dfB$eY zH%E@HQ9Xwyw&vo2cJlJ*;A6!BH#$PLSdhSMGhS_YOcz4iKO7JTpz+#uQuqJ=qupO4J~Sn)-F3ETN6nzknmu zVKalNj)ptHL$g4DOl3#h=5d=7N8<|f8@AP`7sJrws}I*~Kp+S*Z^qJASLHmSPk&8g z)4zmmmS-_xgK4cwK2zcbI z{t~+di=CRu5mY>#SZX`mo%2W8xlaxYJ{I|m2!3RduzByn4P^ElJ5&4VT&X#@J1U66 zr8|;Ck`x5ZKD#Zi`Qi#$Z=QZ`RpO36MpODRHKk^*s2JxpT24U2&yx18EhlR$-&s7! zQ3#8B>WJM`v(YrpCg!?p#8kEx^+kY=xzNeakb}Gow!kNI$-)AESV10 zC5r`K5CLik-hcx@x$#;0V`4Z+#zg|ve7xTH1QXiT3sxcS=Br*4sHCRPV-V@+>W1M9 zHmc%<;O0p|%C*o3UuF#d;)$jPcD{*#z&d`<_xY9=@XZ35N1e%rI6V6H@GZgK%l&^g zEj}IfQ7xH(8H+RN_E!uV@l%EFIS?*MINX~=s?Op)k-%LCFl|P%EK81%;|emD&_oX# zh-g6A>ATX4geaKcDGh94x@S%I>HFTXesGHZ@BD--rmZl zg%dzWL?^Vd>kSTW3SG~32nG2p=as;1Q1fIW9#0+FjX?S{rl88E#S8S2BN$JL4Qm%? zQ_B`fw~^yqa-q4lDm{Al2gWgtTCJx>#JG4>9C-AMsil@f7cG(gdDWsd(2s&N)Jkj|{Qq>YdA2SbfKXTo_R7y9IE;1t7Y_{7!tjT^ znOE8Zl~!h)Zr=G5c)mC`3?!(y=mo%@`;3|L=ozMm{^h^6qlfE+%LSKLFx7VeX}GwS zq4Am=5jjj1F-%!E5~EA#n?a>OKvF* z&Ml?BtgjJ`2!G8#Gd?*%M^C5uE2ZTk%(aU(4^?HYDCgLL!kxW1YyVYWv)DSzQmi|F zZJPPv4=WM&uQhaN9ys&+$Cu{j2Y}w9ymXV%akCDS#^N%*-PDrD9TxJV`jsh{^v)Q4g6&DDM&+86YYfCJs12P{m*)zi~Z}M zIpV>E^RW*cMh;MW5?rWU>9F84k4fFldbsHjZCg#*i4Ad-|3qif=*)_OXU&4B9=((d zH;D~|UnEB+7vRvB0zjYbcLr{Uyj zPY}AF`q*sOp0Tn~;=g`wCL>e3sAt?Xsg=3I>d|Z(1yZ~A^Y5s#4 zB$FM=K+j(vPfM;v5&Io85e5GfQ_$zhE-mcy%ixuHFHgyGD)FvAX;l2D1b!4ZfpLCvKbls_l9;$1l zyT2oiax(S45CTr+tSWk|YQ_UVm$`MEma=DEtS$#49=vJ$K#+hnh9omcw+f&7cXagE z&!6eEw7v3}i~QCna}WmCrOE>H2(i+z9*Py+(D>H3<5$T|?OTmGkG@_JCt2@4DrFzD z>$y0?&`PjnA|TVE7`7r}{w0p~)*=ftTdYPs;prieK*v<0SAR7N<^D`(6GBtDZjo5- z>Rl&EU2C0vZ;M}C8^4vCXz}DuW%Y_V*|d;=@~#v!Cn1#7*nbNoEl-vx3(B!vY9*hW z!i~7K@PWdqL=Fbp!3IXNgM0 z5ZNi%-d!Q)?FyWdEEc@8_Qb6!A21AzOaNgJZp$prm)E0?bTOO7|1m%-?(6xSDsCl4 za48i$+vKo3*&GOyAE>rL_abrROri9+?5<-UzVF&u_YfmGwsf=@^g!#1F~#tsx=Ltl zp1lge}RQxFPL&Js5*^7zN`m;c0`{ zf)S+=5zf`qW$MgBj_=wI_ig)KMvHjg18TKBMtWi5Eom!49+JC_V2l#vmqpqbWIczb z!UhsG`Fo;7WB<%B1aId&CW;FHdKRhIJH3zy9BMkUsMXf26G>!s@W#-Bnh;ovp2gf< zoYd7y!a|JVoY?Uo?|r9Fe^e}be!az5O5kpGb~dvl9a*O8ZwWmE|Cg{GG68RX>mO(7 zc_yk=rFXln{*-{{De;AzWLMu$9mGlcGAzBBZ3+IeR<*rSgYRiJxnsZ&C*t*!p@+^IF zhI)uQOi0l?EpiX%Ni@3PF(a3OBcRzFfK5OS z`&m3}q-up%2EO>pm1H1~V~z_PeS_Ov#mN=?6&mg=ylBr+BxCU_PilAfZmAV27kB{#qv7O|wdA3fuqGN<{g`U&Hw7s6u!L&aPk7Rvx zpdA(1fVGDH!2^bX5uokvl_%W<+c*7n(w5>x(NYSjh}8ezGc~dE+bELI}|R%zb=ND^1t>nEo>A_tEzDccv{=s{4VVdy`d- z@PNA%co8@n+HJVUQ3!iT|F*NDWOWgmfyZs{+FY(bg;* zXz(*RZEsv5vY7e979SA52RV=#f3M&n`VQME(#vA>+I5}{gZ2F8rha_adN)hF(hmeg zo4bI3*CZ++o9^k8p4r`4^Y*ia@td1NE&VK_1iV01KL8G%3q{MSdQL!jMl zU?0J2bR}>YKTzB*{t^f~AK~wKm|=7FTU?sp(c60zLJSNfAuOuVM$6%vy8azL#FEA) z5WzSNV7du_>1va-;Zi4{;)I8$>J=qK(D-&p?}%c=9WMQ@9V*r{Mjp2`u>?Mu4SD+d zIj|&8TMY_ej9dnpFX*<4={JB$gT004iOO&n<(rbru7Km6QU8mag@dSpqwxY6{LEsK z;bvT|$%a8t>)|Kdx#*L&_#1G5eZ-7NVBApseG>a~zn1gjj99e39AG}B00`q$%d?z2 z0Hd%5F{?Oqsua6Ns{qRy!Z`S_#6c0fLF3SJfDb;I+i!rlv)Ow!2jcNrj3MkK*n;T@ zvD?3wm+vvb1`ID*@7M)`FoC|}>i$_4BE`lg)>KywM+-!nl|ncj?0+>>>~{xYk?K9V zGazk(2}$8<-Jj1uz`DFdUm5v^1`UtmrVidvvTYxAm6Q|yDT+HgV3B1(wpzpfS?7kd z^TF*)>w`O22vqKRP$8v=ZJ4-Fi~U0S<+FCZAAm91mK#zvIXmqxY@nHf$tuunZI{wmr09JFDe7N2g1!u%2+ z&e!ju*WJBv)r?PASs@DeR+hi36YI#s+g_V~u(uszDSq)pDRgkay4z4AG9-T-Qq>3W zwGZ~bnG07}R2ch9q^H1$T0g?BFfrhuv!UZC&C=BhMK#Xs8z*A}RRC`t^d33+a{CpQ5JtzTWQTrXta~UQF9G_&!)TwGF`|R%^sU+n@TFjmBIa|9AK~GA%hA3 zGNKTMuZ!+nPzVnQc9ZHk6r27zG~CtRb2iO2F)7QfDTR-^QK$#PX=9&^u;a46M>I9{ zIaQ>nu6z`G{tN_I*xXmRWVw`b`MK1WT_y0*wl9KPnAYpg=Ab~8-w3<5aa?rf-J4N4 z_lUKja4}!7JDM0Hyb{nfJkB_D@95ebwaJ5_rW{=U|77CY*QiNZpVEqBWK4!M25PBY zyD{lc$lp4ps81}-=dxS%V8sH#oeOd!X=)E)9@X=onq4=NGjRcT-l-$5pw#UH{qOTr zui)m|gU;{jgYTYZi(YpFdK(3Wu+!g^g-b;0-LH=PH!Fz+3kW+Dw~DGl2~O`CIvXov zgQF)da$qAfl+~WN!qe}*B}7S7*FS_11!`A*f+&49aFe9}K6lVS z{bph(eQpM+j|RNuvrI$@sHL_R7sVfsh!H*%DIrN*23*z`Fu9|1C-~CR(xV~vKVBAd z(3_IGsuYMl#u8?G-+h-yCD*pLWb)d`N3uC~Z)PdF=Q~)ImCddJEanNM(S@&{`_sMG z)YSZcG@WH!RPFcm&(O`NNT*7tbe9q$IUwELNJ|f`AfVD9%?L<$hf23J42^VmGtaqy z&*%Tz7YOHyz1RM(bmoSR2-uT#Na?f4?)?Aw?=_uz12GFKDa<%ed(!$y) zzM~q}pWdPyT$+F;ourhSN_N;9A7$}6p9WxxSGRb#f`QQB|>R}DEA36+!1HXDx>sTjeN5{oy5?$u5Xu4l9TT<>e zy1T!BUy%KE+set*?)p6WIeE-uP_c`Nc@)KY%rkLSe|(_3 zSQOWY6x-kA~kee>(@pSd08KO;z~48lq6v?eaLUw!y(Z&dE2KjG}O1oJt} zStzM9(5N|{?bWP#DklfAf^z(PfnY1{UD+7w?;lL}&V0Vw=@GGXyLNe-A^gbaaOj(j zbL9o`f32nKR%fn`yX|0gIBKL^8vJ-$*lTZQ z4GXx9`x|s94?MhCR#1OEOQ-N_bSXquXHn4IO(YRgY^+wfcH3|*Ubo9;tVt-WxOgZm z$5)W9f@w-p8U6br2`(X$mr^`7A>^H`EoH_sV^-%&d<*^ zfed|>+SptcJejmG*nxN^rga}3LwKYvY_Ut6b7o9$mjL>)qN|I(y}dp0dazL?u=_M&PV zU+mhS1HmyPy2f?5$jLe4fR3?$p)G!^H&B&!|A3sGQCvhC!s=5q?#OVIf3P>zByF{$ z{@xre;B*|KJ<#C!2!*0~++iG9)Vmj?D#?{X4LBb;Iw$?n#^=uJas4i`g;w?%oG!hD zG*tO{`-WMOG%=QMK8Cl#-n@CdQwf2y;512?Vk#*iRU}>j167#-I7=hiF8I8*#Eb4l z&0ID#vSwMWoGIz_A%Q*368>Bvc7k){t*@&druy7VAe};%p)(Dd>&$CtQvRLBs9)Bq zSzv%*RfzIm6Md|W%At+D{m+6Z(}}_w+S4#-uGI5GRk73==> zLgEyQo2%=#k?6O{T=yM~?wdF5S$?zN2eQY9Eoppp?mPKG8evEHNz$5$56@QK?-^k~ z29ACyCnNT`OV{Up2#<(J>Q(dKTGiRQ2M4_=NHtV--_HQ$q+Og?IQ|BW2Ug{Eyc*p7 z`}Yg!AL?LH-r>3+2Ujg+vV=nG^dtWG7|Pc86P zVd*$_;~E@dsNM;-KWnCfTup1368s6NA-mF8)^XWXRRM_7RRoihm}JiR_6${X_WARd zQk;wEo1T&w_i3pvxKE2C^0fRSz`xF#y&hf z`<8H`U#oxr&P*?8ZD-A0V9P#w|BNG-%dp}7Yo%)lvJSPaI=w<$-MrckHk+|n!ZIen z!3ca!Sa8Ws4Og^q8apSNBQ}KoxK%Z;GJfMwUKIU8oO}P!;2d6mX3|sl#OyX9WVG&~ z*=Ij3ZG33Gmykdaels@q%d1utYx!yPBY65qIS>|uB~wd@W{Hhu8N@2?bpPOx>3w!4 zds4qynwGt1S)BvTV5(8M zy=T-}?pTJI-}!eKWR&tZUvT5fz01-%-sXqFx1tn z%Q*weaPcTR5)uK>pQxwuti5#msmF(Zy=)s2_ply3YB-7+dgR_2CAW~a7L=yLDZ=YdPRkzr6diQh*$KR$1e z;@t}&IKS>CS*50TYA=8DoBZ!c#9^3YS-r>5Ej0Ogc?s7HoPDCKf9{J*KPqX%L<9Uz zP;)j*FG?b&87eF&ZO3RWMaj2ijS9&x9OpXSPt!*)7^+&6cm;daHq|fKe%{%9SHYQ_ zEPW3Dqp}W9RYC;i%v${KyH(9*%0=t2aBOyWQv%n2HB6NB#IJ9r+i&-S?x(R$?xyM= zG!5`G!ZK9VaF<-E<0}Pk?}Zd&jHfoW62i9{eJzMOjpG3!c&7J0MFN2%6M-R7e@{ji}8XLa`0 z)qnqZr4<+m)pv$6sb$_}niH?jGP<1Ca$0bT7OFQe~{q|NH@T@oP% zNdg2VxNQ7`j@E9J(hSqTmIMF1`F`{f~oS8Iv_|lSgu~>$uEip?6 z46yE5G#thHVqTeyD8N@hioO9I9X*SWqC$t|%%&e1EZkpodY9(8AA9>>f&*jN(b*cm z52}u$Vr$LoV8UKcT^GuVpxSKu zLH&}=#Z(%o2?#Qov5!I5O@n}BUrYWHwKL+>E z+-0ka{T71zp5J;UeZc6cY^VHIe%4^G7P}+T`R``Cnf;4uQL$(zWN8h`_-4Rv;>dWK%rnP|C$Xairj7KGLZzec%y4CC1Rk3wZocH)3Ul zaG=g57v}ENZ295iHVrGdrwiK8Kn3{fB*{ip3D>HJfIN|+ z3=K@V5lf}zpm3Hv{5gKP)1gly$H+IVo}Qr+GFQiF8xZ3-?UWbR694pUc{#f=P=FyU zJ6R!VAeoyEjR|sceWzHYr6kY#-LNdE%x~Z^=}ou2ua!x4vxDqMYwDg2>$!NyxQ@ij zKvt{6rtIp*Z8+N`T6o2R>OruEJ+B%5?$;N}i4DjTYq|W+pmBT$R;$|Dv5YCa#E{Y0 z2P%8Z%8a3ICUhc$QX{i!5xnJfHx>A5ro_*ocje=HMn>pIQC)M|NM*e^R2uU+_4`Ye zW^eA-6{g@knY{CuEns?XD$n%ZQa&P|C3cM|;DM^Z((FF*X^HT`Uqh2dk8QDU`&SQO zLrq*aC3QP{Rqf(Om8xHAg68%X6(gEKE#0h*Oxjv^Mz)f`sZ_ZXM(rPYi!uR`AB=}M zNu2RIO7)$fT8H7BXgos6*-wnOI31sBay_Zj=bxUE2l5}k0JLU5F23_nRhk8D+IRmD zZ<803eA{|*R)vT4l04<479aQKY$oD6(Y&w5OL_T?(o6|EZ|JYf&5yV^|8b#!xQ9J= zR+(~0jecp>ypXX5dOt}O{7MXao}o%d6aw1~C>`n!Pmi%kVZ ztdp3I*0vF zo@_Yt-uK?WbRiuQ4b}#@9jbyJ}W!k`wTljSPU4?~<%Jm9|aL%Wr}>-}6?QL@tC zAO#sx4tm<-b^Ah!tU*q`zP=>Opq*};b~D#XkAh}Ku%2ooXs4*a4Twoh6qi>0qxJd9{Ig4@^PIj%h`Z}=jC zFhL@^m@0+@JwJ8N%juf|SsVqNzpom~<>r&meLjcoEJ9IpsCJ4JNic>7A0okG>*PU zj$u}$)#ADqadzVK}rry#RI}dy7QnYQU|leFmP^7z6LYk|Z{jPPr_yUzo73OOz+!v+!0rhO|`bZ}1+B z8y+0|m#fN*4i<0`{tT|mit$_Mn`b^}pVM&|Xl3jsnbsxBwP0G`U%h%mnS1`7b7Cl9 z0NjG+AHcOa&289l^lbS)cFmuCB5eKY?z1eYd%E z)ai1E^^Wjp*8gJmNi71g&_wup#`(#V{d4OHD814O?~Mv}f2TtD22B#onF7q|DphSg z046p!=|;0Yr4KCR!j^A^W1m!nq9XRaU?E=7U8K?l#v|$UmNvZBud8;RM!(J=df531 zgR+s7In@qLh@4+>7bPr%@2T`!yE*=psKE%m!hRj|^b}hbY6Nxt$vx;Q@{r&U zj|1*6zC*tyI%n}4Tkv3Z^OUzaFI`{HSN31m%(@|)oSl7*_ENp0@l%s=%j;5Yx5Jsf zpqOP<2lsd?A?LgP-(AsCp7*C&-eg(+Cn{n_$zpb5n9D&#{y0~XF#l$ht_luAjJ{g2 z{yR3YYjN;io5{Ag@9GL0;3o>v02FWuK&+K`Yv1u*NZGGpH(lc#D4NI5NnCh#oR7oB zTy2)hed??Gtsy*A@PtF~;u6#HPSyNxFZL}S0#M-dZ~g6og}s}0x8Nvd6jGLZ<=z7q zh@oAa3Ns(mn~X!O`$+ucOImf?-?}e>=;gIi?NZ^h$Wv*hwu6S8Iww@=;q6k~!R2h% zDhAjL^hGTu0GtD&1(#U~qg=)<4fw(wh`SeT#dO%hXHH9X$IAvwO6zU64-+l*e{EB! zw(X^&zBvIqM{;`x2+P`{ODa*-5Z0S zi_&nV5+T?zSV>lxd&}(_&_ZRQkVagY(fMElN;x|z(4lHVq`{~ z{)+J@(5x`SjO<_59St4-~l+2=*U8E$MGlqATh!XiEK}%sHOcAVqsGqW+v>s zu{bwr{}`U9Y6Em!i03EhY~%IBear0}H@TsdCXqvqYwXO9#~!lVOu!*JXqj#n0P+CO^z3#nEjM%8&Zm1fz5M#^oJ0BbJsFiGI{W}z2IH({!Smf z9%}j0T5l=>`mFr#B@=q=*`YN~?ed#D&@DS!__S16MdU_Ew~V{+1&=||=y8DIbj;WT zdq9wmXamK6WmeSS)fHdeZk7K^h!bGpEZAHar_dDjB9xE@j=#1xvbgGdamBs-mh}&R z(jVnua#YM3dB;?0fp45PW%Qg=b7k8Dnj&0Hk29_pTr~fTgmOY-1hA~PMsskQ@)Ut| zopMQx_sfaphJbBZsR+BKX2H;IFfDh;{=JTpoi}BSv)`}F?FoB4pqOuMGjyK>%(V5+ z#X1~8TM9RScfBk2-mt!F(BHt_NyRF(ks8+jhB-Y3q8}swjkPmF74q%z**k{Lhwbfc z0ygQPUao6DRi#EeF`EumuIUhGJF$t=ND)pvI=jrR>uVo$Lq%TG<-ls1{bf#u*I>XV zK7&8&dI;3~ZZMVaU}9pzB@=88mK+I&`XR&o(@Rw) zP0-b}VOUHn#)pm3oLA9JuZ7DLI+f{FNcGLg)8xk4gusNn^ENDc*1V-ou{-hFa#7S% zSw}F4GQ&Rz*5CI~RhZ!RVQo%;fg^gb^K~_kpuCe=Ft}OX`1)z&y?n&qeATaBFJ8xM z6!JrhjbiULt!=jY6~%a{;KOcH8ILmT;e?kDv}x_c9v+r+bA6+uWilv&Ml!fUan{<& z9=75F@9vkbVybNEDKR3>)z#FyW-}5T<0!ZqEt@N%Hx!*R3(5jZz{#YvATWH2nPtO`rWOZUiw0d2;VVWNPAx3e@jv5-|8I?;}N>U+4r^K#Y zDm4#Rd0#CRls?TxlL+EOknn+IH5TgTye4~qrWPy_)beaM7J)l5l92tE%M0G1nQG5;rc=x_~Sl3J(tq209_R zQvOE%p3xRCxH>9L^p=9Fu>)d>B)^v*26^=v8ddWG9#G$quSZoOaftB!JaY3E#dHiEg^L68Yd)2 z_c!3PJ?7Kw-S*7QStbCT!=&M8$X!jsQheQrq^vhdKxT%mzrs|>a~}%FDbQ+pdFff>A?SW8Nr<;& zn5>9VcC&GXS>rDZS>+J0K?m~Djy^_hn-yDSiMV&GRQF_~9gV|#L4;ufQA7ZZG_zG| zZj&dA4KuTqHt3U;Rnl|ZIZ<^rHy?MUe*W=ZAI70Orz|b$QT!<1U(&@nw{_4ZD zS2jnoALUGyalW>2g(;S){dB5$2XKueNDOP8{8WPi<0P>lE!rN9jah2{tpp8{QuKTz zC#)YgX3&$s=JM`|nm8KI`(;3bL?pbjlC)#z%wt4Yuji6kaR_&SXTDCz7I}ds-QP0? z(FKg>g5*eiwokmAT#v2JQ&VpNytTDTnSYVzO%8WLQ@tCphs^DNDkfnN;q=XPfq54vmu>^^$&y}yUtCrfh!Gr%cDDOclRGQb|qgb_hw||rw~vx zg;i~-xNjaVw<9tMK#xj|$GWDD1aEC)V`LtEwr06Yy6}Q?b8`2W3IWAJZa~d<){%<- z+X;CGxKTho90y=de<}(fi;VZG;e249waa3;Ou0u5cN*af`1UOU7PempcgCWw)h8e( zCgT_YFIq%G9GV%4++`McOQ?Hw6~qIMdQ;EnIR@qmq|y_{5DDRPlf?i@clVE2YLTii z82y}z36Nxz8;1^xGbxbtPzam(?XdarzT|D|R~9S6JKQOe_*NyngsfJ)?P(WFQ~gSB==g#3>GDH6N5}6Ny>XvA zvAiEo>{6_?Gx=jJ{vQjFLmNQgFC`ND;*t7fQ$b`L?S0nv8m0JqdI*zfS^_$~m@qlM z+(P5R_55D@Pdvs)zv1PNtzN9P%MPJ2=Zk>9d)Fl@W8Vj(P0hyQdBF%Mv9kwHF=N@5 zlaHxw+4BjMM{i4V zc?hB-B)aSNnbiOK4{nA*iD&AZc)79F5%aXr;1gUH#!_5{*8vw#vX=XZ1K+Q%_DEjjY|PE!{->=0 zsfGw%boKFk6vAkSdFmzFiKwDH7I|a1oJLL2BHIn$@(Uy7TNm9@QiyyU``C}#fn+|j zVox-BAyG;Zc~C;+>kfJzLvWx~Z1k6u#&J)XNf^w3oP5RY)0g$MdqRKQ%LuHfaBGv& zhnQGR4oJmE9aq}tbmXXe-h7$|bZUnbSqBRJM!W%V)Uu)u#c+9l>JuU#+LSrD&rb>M zK{w0$>fhE@@daK$fL)(408VVM(10M<*}|3 zO))6#a+5=uM1?k&^v(f{$sN?+L0d|m2h*p+u?Vza*+wmym=y=teMs^WKG(eev+WW zRWI`h{k6tK7KC_<{u<*5Z=foW6jR*dcQ7SQ0>~uwJA*K3nT}O&;NC z!cH)hA>v+9*&>ehMJIS_fS5Q-&848l;OVP5ef}54HX1`AF6?~cXs*;$d$PtTrf-8B z`|bNfL%h-+`TesGtRHK1o)z8etU+2KG5JKM`cwSS z>W14JAW6wm96RN@BR9eAmD2T#_b{bvo+C3Yl-{wA`$np6z z&-vfDB*~L*p@)f{r5o+x*2~t**(3q!`ecJBPbvT@ujC_=0oirfNAGlP!CCfMY@oGp z8>Oi5QK=`k)@ZNKM>)dXHAq-%ON<4pJ+S6~_^k;A_@a+BC8HfJoSGm79}MKb{xy8P zJvbGEv9X%m&asi@&x`(LJk{CEd{x$0Y<;15awZ42!}_sVBv4X-xl_~^76Q#>X!1Zv zJRpmv2{qsO{hO&IV&Ollbh%E-_CVdMpvx2Jm*yUuj3X!P&0hh*!xxUztP%syhNW>bJ^eVY6LMB;+tiO5C9F;vBHg-I}W#f}c`;C1+b$@t?6@ z*>Ibo6n<2z588M}5xT#5_^pyuSl3>8Xl)5EvN0j+XF5eUzR zEp;%$V8X6c$bYyb1gr0eu7%6W2*L<7 z&%5MW%pbkQ4*&Ipnd?V=JRMCbS`9xZ0=L6VhxWbL+bx!Gs1K{v^TbCWIAALL-M#T5 z7zD|@iNsG7&wggz6fKEdfEx7&4y#{%*648E+I*lb|B$doPzcxGMCGk*nY~!DU-w=? zmG@x}LmxaI*sDu*QX~yL)Q>fPDPJsC`kJOpz95Z^8iXH{=;Y;P+hU{=JYb zzkIgAK2M>m#rgI1Bfi!3d^T+FxdUzD2HZRHBey2{WTbQMp{$J(!U4WcF7bBhFxz^C z$n$JxhCTUMyqrFar>Ak=`+0>YZd0QsFdQ2@jP9}H$!^QvZ&r-3MDeo;+wy-=GUvoz zZYsMDcFGj@aXat)^yE+^;O2~S$2#kYY|2;4QyNLL(Z>9gxE(&eTS$MiH#6fp=n(J@ zgQCDYNNn3e-0hzt4b2Q+>R{=IY!E5jOJz-jO$|kjL!EILnizQpnusj9jhguHehal< zb4s1fSlpUCEIlCC;_g8FKeO6IZqw?)- z8NC}R+vVEXkNd=>nffht&*L+?4R}q`3vd_ej1rd4d>eFAQ&D+3;r#lQ6067TtUM#yJ^?&XJ}1DfB$GpW-TQqNY)b4iYsQz2%ogqQxRf zd8!2pPg<73pj5Dtu(zzIU|ct)%h!t~-GTkaM#Ht;wo|co6mk(2co}?nzj!!hTK2sZ z-5~oK3(id78ur;jyWDV=6LBUgiad2|K~o#fjFcC4yDjfghR zgMTKM|CWo_8Ms^!g}lL%sDKsxX)ss);eKn(r9F&6deoK#J>V`B52_Ggwz3->!m5(Y z%rpg}4TNyjT2bgucw}DtbD`w7fhLKqelj0vSHADx35_X7ScRi2^7qGFQ&If^KQV?_ zlSiia{DC0OE(%jw@3?hj<=#9xXk^xKivIWVsE8IPvCz`$!2T>w@bhXy}@gLu8w^RlzSg(i9C!4a9?AES@HT6 z;S!v!Q3RCuoon*J`Yp`ge@VXor{)YOqkhrN$bNh)`w={;7#yiMqJ?AIai9?^8UZCf z<9Nbu|9aV?5^W7_89oWeCPP%SB#nepd4FOo4;_ywlp`iKu&+fh@NA2(JZS0Gjr)FuPF0^5aOO%*fbe#$PVNs|FrzRH zTRG)?5c$$W*XLK|#wnS~?NUw}%^Ac2Ccx(mQH1s5=_zCBCd}lK=~n*-Jn3eA&YA!d zPD8wKJ-A`xcgu&aW7ih{HiZ^zF%+R_h8cXU%t(UmZ8zEyU97-y)P9qLLF=aK%mPt| z-R-qOOCa9W1Su-wuT+|Wo?6_CEavzTDSRWhkA<@&vYM22i6L0Vjmp$LnB({fFs_2c zSJIW*b~f{E7)D&>zTs&5`h??~@2m7)3+@JwG1qdiZ!@IAw1a>o*c3pJ_+o*o`$|o)3xGv*e@T6o!3GEZ5Ezo`~HGb*8Fi0rstMMG6+*$pH=R4$Mt}R{1 z`arTmex@Gnhvnei#vF!?%nxWnQ9H6Yxn5KX8o}KlrjWb1`LcB(AET6vXn^vC0N!gb zDoj_6CV3lu1i}fnguO1KB^o5>CE0(8ob{5fo%a7Cb;s82MwRsf*xp_KT<}5-t-Hm% zrMrQ~wO_VgC39IhAv3XUIXS+gu_!Bd-WorgP)b`ZNh*iGh|2Xh^Qa+Y1MmgXk}ypF zjF*uuiw%W2rz{os!8JJJ$+y6-Kg&<@&ETfIboP>q@p51Gr_nDKhv07_zD*E6eTFyTo0jo|8N#R>@W z@e%q$>pKtkYy(R{()2FrY2zA*tNSEtmAU*^0c(UoxQrrLJ-768Q+C;bCFE=>sH%g z${b;5Znh2x7Z|aaBE1-*a*J>B28xS|C4}aMW2r>(7X<2Z6 z#lbe9+Q1thC>d+9l#pwv(#pyo@cci$C`r9#$nX4CZR=7Q+l+ia;L2>3$8v3NHZ;lV zQ5{lvmcx}gGLo2X@ipdb-VOO!3k8Kt z<00wcU#|U#pji)R1vFY;$}abJjcbty?FzBfU*8S6&!?ojD`&Mg)_IZ8OYuIY^_eVQ z^!X=HZWq&fl9*ksf~>=D{QA`szSkkWwUz3RPF}^AS{L7!tyfuhZpP4=yA{QhLhymO z|L}JW%8N1v4PKlW0@Dt4{vJ*juU5oQZ&FC6ZgVPBi+gh#S{!{-~m-wdokIb4S$obRD zB&QATy4On;c zX$Bkv;d1x&uaC#Nfks2;_ZyWx#1=`H+U0t$bQs;WX-PnES-Ur zaB9__z!msL4k-<_g7G)4*=8(u}$q2H@|44r|krIrM5 zkYJNycnQC~osI@%po81t-|*jquRy$v;ZV~a)zEp=lh80G^zY~FMQ7)0x%N%tUDR)* z6O+09dwJUq6T`DuT8TNVDbdLt$^Sm<=1hIy?k#ca8VxopY5Y!fLe&>K>hF-=1SO~E zD`a+`gRPL9V(~9Ep~#yGV}FW-z{R?KA|=gf1|4dk_HbZ=df)T04MorEs!ufC0)=6Y}9G z+dQ1mp!9Q2D79F?%_(pmj#*sS(n7|n0$ec1()dkXh*LT^)J#ot!h;u@%Yg(YW}DBJ zIR-3)R29imLP8h+A|=n#ZGsLq1ABi?p4>lBIkee|#TVJYARnY_nLdV?cG3^F!t4|} z=JsovAHjnjUp<<@`PCDQ-(dhpeGv0vLey{@x9Fk?oH=DqLmCJN#k$OK>Bs1C#G)>0 z90Wk*^|eM=LX~>?bU8qW`{(G?_sN^7JP06`lnnv@(FuODx(ZRZVtI8-YI~s78X_o5 z@CytL_O+gX-OHm3Dhca_LrZlB62b9j4X?z#8h}Ma`?-^-MA+_$?4Tlorv?F*b>IVM zCiIAwqI}MavVxhywK%aH7v#>Ux+P1CkN zRgw>no2s(k&K3i%)N1ctu$IMk+Q+l5Ixi)Ue-S@O!IXAyK+V~dmn|r8apLKw0a!c% zjVmiyXIpONaJ&wS0@eEw<)Y4`Y8T-%-3TsMf^wB}$p#{OC_2hec=- z5BtHlY@Oe=-0I(kO=EpG-M483uUPPcgbWQSr8V)|)^<;o8`Df9;hRwSTMG-Jszf}* zCtO1n$uXDu6O;QR=8Kk#S}D}dWlQ8ra$Ai}i=!Ay#ik<^n~3FcrWcY=FTiRfv!K=d z>&6_VOr9(GV+4XIv;GSm?T^N`*!GssR>;p;!e$BINmb-CI1|f0Q1Xq>%#f$v{&yV5 z^w5!wx8F8LZr>E9W@(4X&pI+^Ky)tlG!i4}$qD_J&_K|4zLwz1Suws9fAaFBL^s7U zv${|fYK_j<1{5KsZ1twvF=MTwx}1rHljCJ^L<9tCO&u^ZRjXO^6NYQK1GaHk-pf<> zj8&C{4Ewe(_#3laeAi`@3H#xM1Qi3I@z*cWFXze0%)q=d(^T%ce3~QZCx8k((~_y= zK0nh|CdQRO`$ieg5W6-5gslqG+B-Y90ogo)b!+N@bH91~2bPzY>li0lq8>i|$9mh; zeHgmDINWTbyRF22#%faHt0{a~cl?dtz1TzsV0F!rlOk8Y#KCv|+qt-t8; z=iCtP(JaobZ>g1X33#x`HUeFis@ti6%Y}N^?J-0XqzrtvBVV)|o!j?sbS}ui%M}5J zW7B!&NUwKFB5Vl53JwQ3rBAy}@v#1H4fWRW6{6e2Myb0$OCK)yvicIbd)k-F%a{z8 zYiIQglrXl0t+C3nx#(V8Q;_~;ZJaOo! z^j~`sa5Bx;I;c`QWm>H-fw%nAZ!*a=w+5G?EaQG*>7F}w_eS<3XR$80#s;du97nZP z|A(%|C(JlnyY#JbocGhJxWZu38_!~|()|DJB%4OV#DtZu_r7Bx?p1oMVP9bV=kue` z+H0RQ2L}>)g&o%0(W1+QG(QG2QPS-1+d|Z(Gn+$Dyi&F3^u3 z?mwX-hODtV`qo#Ki(Wv$`S9TGEniK7i^}YI4aNkxO$l<>~o1G zg?G2JKcfe3d{}>8GPeosDHeA8spr{eFtkIa!I|P4@B3dShT=G1O0}LP$SRI}NhfL& zq_o;@I^dMi1if&Em-z54lXvvJ*_-2B^oFL2gHs&Cq{Bc!<_#?cyfT z-%By!P4qL&Q-j5>%aOWg&$sU_8oY5NfT-gPt}@lGOy&u)rMrRIGBTI*{u~20bRERF z0wV^AFnyTPqn=~opWignz#rg6lBy(%?hMk%=1QsH#0*)Ne75FF;y&FP0dLEDNH5h& zQ|#MGWG{CqD`$=pPUqtrwciIxWf0<|hJPmNi1;pZntChBmk63GWk1sM@r?3$na^JQ zkU13E*u1skeKJmtmdhfFgYz5%%r%W$)7`oM7X}?tx6xVbkXFNTyqg}{#2;mxv*qAK zG!AZ0>>^ljF3@L+_D-}fJeSUmP`BGcZO2RL?S~1dxyJ86g=0GCe`GB;pji@<*z5Yf z;a@g1L=(z2QUjIUh=_PRS}^<}zUt^fr)3rYzw}q<+H?6RNsdu&)2CqH*|OshgBGm~bG>7?FtBrJ zAvQxK_SBL@4xBoBPA!{0RwUE~vDs_gkKf{lm;z?JO6#cTHMzXii44WvH$H;^rxZ!V zN_)G<_E^&}oDt+~R9LOtnI%l&%0>L>)JqLNfT+67KH=D6;~aItf9oKr^$zFnx2UT9 zA05}DuZS_hNJ=MqFaeAl=Haw`J(aU@bHgKTZMv+@7mQ4Ut}5gwEct^I@18SFm&dX# z0mYYK0N(Ck9(`B}Nfb*?kl!@;1ksOzg3C@>Z>eK3*z>h73*fGKB0=um%t zrDEk))r0*R73C<1ZlvFpZA=I0I;6&gfD?}08hyW8ave)1sc1@=wsg^xGyb*H{mJpGjrKZ1Xc;Cij0#bdcD&0x>Z1oqkH=!}2g zk&~0pa3lQV*Mw2Ot2p=^cF@50EI+VAr_RpKc7Oc%@%Yh^W0420>1j8iv{i>I^+;2A z$c|K(t6Z{rn(W6Y#jm<&dW6zS6kqz`=N6xKA_)YNl23uILcx{hOi^Xb|a&rblg+-&k z84Vv`)*YEBAu_Kmkgk;S9`r}|yl_K<;=4&OtbBv)VK*qC8)FsZJmg5;rn818tJD8U zYfB~xgNh7PiGsbq8Ik~e+%1vGWyn;DAG36NtX~}QMlO8u;{G$iAKa~-l%Q}gg*%-A zMi@0sqHFWLnDlS_()RMCf)EZ6OLpD*b`E?%z(S-45|o5;R)?PT4qK972U647my~{` zAzwbDTAKOv=gWEz-3SGW@cei8@Vc9`qP$ zOwRWFbQ(~2LJc(LM8Er2?fI`HY^zWY5#_3%&a!4Z|d^nFx`@>8cFS3NPb>TN|Z z=)I*{sDsQT#5*BrlVNF&H@x;Ozm?A63L4WshDss@Qq80GwFK;UJW3@ipvLJv=p}Wv zoQ03HJ|AN&XlqEpp1D2x1Mp8x(VjVqoh2u+5D-7vy>zcBo5_xy?eUrSH z#yvbl_#Fk=fpL?&Rn*DZ;l1(p0GKBw!@sOC(#@R)l&~8YgLyw316BEti$?U5o_g8~ zc)F{(66crLH*(>aDKbX6HkYDRXxN_wG&fec0rXP*HEmsj&UW5oLHmx{|GnNUYw(f# zl@QPjdMm@ePz0YFccv8A3ix9PJe0y>Y!aIh0hDxv`YISttX?eu3O;1DZ9141Htn&H`oklz_wKq3FjovacQtJG& z*|2{&OG=81WNm_5k+mIg1YtY}WGiZ-NE55nP&(t%5akyOrbo%(9LIE-AAi-N`$+_b zL4v6=l0WM;oVr{=nKI%%ghm&Ul=q~l688^wsmT(qR^?AAF|5yd{@Hl`8cL~;WdDIb zB#7k7L}UE`d~tzK_M<05=lJDc~nI#P>F!BB{f`~T1t)aKSD;fuBeFtG2 zSeTy?p3^fP?$LN{=Kr0CfDdj*4CclW)*UT*H5>7+LV%=A0nX`nkcI^=NQtUiJ8pJm zoxFuR-``5`rS3Ofd7l$_nGy5fQSnmOIyONUHtb2zSF#_!bG|0wPv1IDE%k38rNU%b zxWF^ul*^cTXJ55bUHu0Dk)3D*$F(Fc=6j)fZ|=OFxPec%hbZ$pEq%yQasm})(}Hqk z1C~+(q-mA|4z{%jT9@>%qO*?Z9nCEz4z>md2k#>$I{U5J z!~gzu0KhPQIpnEt?9jj_Vzl4Q`_DltKtP=gqZL?Y7fYAJaqR`zmDL)mD__nRO}gDQ zQo*^ySQI60nGoVXbvoX}$%c|rN)IO#a}4+*0%r#adA(LUt+?g%4+0E{c`1c9g z*XoM`F6odSS4V&>uMpVHzUc^xfu;7(*4?9#F#LM4tefO{KT~P(ss|JX3@?A=WAz1a z0!!9UWcjg)>6}B*-XwYNKPwohiCJH-1Stc0=|B&D!Dx+|DJSZlYLH$qBR_D{obS?R zdXmEHl8=6LlgNGAxaO>LecK%WK;=hUeuXd*y&v;# zSzGr}!7=9_AuLW>DNseL*klCCm2*tHV~?`Se~c^hk)rqcpHZxxSujN#eU}J-N*Io zw#CdG@?LA!y1K^Og$n%A19??jr0SI%yCT@8IgQbXgj(U)yy2Z43~5*YJ9gt0Tm~Y@ zYYh)Md|73Q$dM}+uWYd1AHlt|LVLf1g||bk0E+|BXUvYO67-wH7wA(K<_-W@O(F?& zmF&=t0y`ebHr)I;6(M0zYfS+w;IQKFJ>|>maMC{fdpdet!=;NG&0Hm$KF>*MfpZy&HzJ~(v3w* zD~Q4GK)os@@7>>*F-slMuOpFa za-^0p?OPKY11;Nq9_KqvbPD1dzxP0P{skRogQsotEhK$lxh00LU%ZK@XD=0Fm2f9D zQD@AR7A-9^vg&MU$p?~!NDbE$;GxV+f6e*e_x9l3pGEKLmf-w8^%Ov zODRi!l>L&}XAJM|``nLMlW`v_;Py<&ki-)RKQ(}Ey29C}f6Ml1(9GUPAD*+73)Q5C z0OI$3i*^sS#HII{k_@Ye#Wt#(XWD{?u7SE;O&y`Dkhp~}YDLZhNRbuZeEsy%r%=ff zIv3YVpTDY;r#N@+f+mPA~36_*K+YNzE)<(%A^ahxm)#VYID0;it z&Q9CT zS6Xy}b_?5c?P;IvN^&LfU>g~^OD%xHKMxGwoVl=p4Y`xRe=()d9~(PzO;Awt3Bcto z|C}BzWWPCnDng!o|kWLm+LDX>e(*d)6a*IUy+WvkA-i#m6lz*8T}zw zO_QRYe0_*Mct~4wZHn1-(jcUW_s3&Fi+}b>2%u~;@EYX7AG?ofi7rFj8sJ@ks_tS~ zim!8jc)(Wk@hS<%!i)gXYCI=g&ekoa`CQ0=`q)#M*3-ic3VYNwk4VFDi$F6s>>rHs zO2l00I_fm&PC4?I3~%DSob7bZ+7ahzy@=5j>-K~+TJIhVRL3Vesl)(d-!TgDEDf_4*S^1hwcgx7L;;fT+FP>#E62mCLP@#({&*lg3=bZ+;rw zl#BfgA?4?kkMhCURJ25T?N+m;Y|59p<25k|r`&S^`zB*^SKkrMSR&!e#&nzlpBdkB$;UyC>fI*!pcAy*&&`ih1{7RZSG^&= zzP^u9dY4U5?h;2dClMYIZzFd?-^4Cl7vof%ASplTm)C~==I7@KwqdJ|f1v_S_#(=& zJjUBe-^R&R1ei_ANxm+~x^pNroEr%-PBe}Nv^qYQ)RQrx@u?$U(G+Tt3Z)tgKNwr%vX-3q-&K+jgA8ssZ`s$0IbvGgD=jR6r`(x2l zJwV@QA$-vFphric`PV`16;mn7+Wh?Gff$Js{~52&*B+-wS;`d$cLt6K_i_e*4Grxz zs29!|+2lf5!}iC|7Vm{8%X4s`rB)b0ZE4nD#zB;Q8V-f5HXk$P^<21g)u$;GJlknx zdhy2H`Y=xQ>qX2?7|r|d*lh}C(Nu`36sgCHpZaWmr_G)YwFE72MDqh9jeCpJ=E<#~ zxdo1&QPD#@r=mq|-R4dke!9`8ym#EtY`h=@#Md-(V+L&2vxX zGKpj~A`wnp+kNMiONdw=qOy12iWwHnCVRLf)3S2|c&!%hcRcYM#%q%epsbY4%z3GQ z$OaQI0?bE-{~{_ju2Mza<8gl|TgJ5%v0L13g?m_XTaI;jLi)K(Vt47@*_lv<9TiQ3 z- zN_HYD#vXiW4jm<$`DXXjuIkyMp`hLAG?3vsyC#0w#knXm|9(!iasO>*Z3k7E4WP2ebQko{H}%mcuvwOm>Zo1ULOr>64ROz@ zF=L_vIXXXFUXQ$5n*f92R)U@-DpkEIx#hlS zDenI04E8`>^V#H_v;Fvef5Qo}9z`{w8mi?~!cQEo66_qn%0*tj@rr|+n3a?B$%|64 zcN6_~@i++>&#eP=f`NcwEg~;whvq5ahE=;A)G;^P8S*3_=oVvcb8S1(Q0Ic2R|jMJ>p-^CiA>YgzpC z4tM36vBlO{$PCN3si7gCO<>1$fKsmkt6IUwda_w)^Jk5{ao^?8`JwY4SM-}~Oxr9JYVT6@>^ z@eh~o<>+vfN+wgP1T3||K5lG8va@GOyYIbe4G#~`+H3K!c_M{?I}fu;S%rO9klScR z*OrS@AuCKMZJuD)+^DnB(tZthKmdDI^EZX1U!i3&YWvr>#@qYZXFG(e;~_T2IU zvHlg3a|?I2Ym!ngysF}7`+YA`C)KZoIg_ZGd8}&m*mv*MdLHM)t1yImh0$`N7InwM zGN{&H<11X!)I?|Tc9)|{lL2zCIrGP*8tz*VXd1kVoxR$v*j$(~`mVT9qD7}y-f?L2 zgntCSO#|X{6YqITt{Nke6l*MCNz+I#quCjDAv0omliMLiV!eK?)VbN=R$`Ir(+SOd zWSL5BjhTztE$nsc{j3sXAWC9syea4)ur$kR!H*f5U072yF{APN9;=Np!hwN{3x=T5 zR_Y2no!KH7sNcxE==WDjbaa~Q&5d8x1+02!1Rw{{Ax!=TdwcH|KG2}*NMU=DQ_fWL z0%Pknm0>jMHtme)dM?*Q<= zh5oyofZ#4jWfb`c&QRX4!^F5iPsr!DOjU?{!{&1rURc{)^r(L#yyK3b=eUDC29`|obtT|uw9*z+ARP*RqhY}0TJjKnLKtrqBS_TcUAG=m z;pbSgwTFDws~?zR=s=_~Kv z64EV8dtVtitB|9L3iE%O&Ux@ch2-*w6s~izPL@ToOIoYeA|emhM*ma-WwV3P=~P@R zzF;))p5Sc@gmzIB6~)bW9vgo85%I;;XD%4?ftfqXF-ow;B|ODI$eV^4lXsImL|H^y z!l+PRFw=8U{f6!b95E6%8qR%1Dx4N;OhtuJ!!?$pQWeRkfrS#Sj!1RXWdczY1U^|a zbo47Jlp^_2RTXQ@+|*qAh_g|+isf~B@&Zd?uWXC`Ot66{STw1qzY6Jk0f94RkUyH*DPY71HM5WU1cpl?_E#% zDpY5A(;%Z!b$&Vr;Vt)#bkb-raf&i zOrKef2z8!q4heHEb`g2re9&$*MBdE~CJDz{IpUQ*FuBZ7UVD0MHkhb>gPAg_Xw<0F zCo4@ee~6$i$l&HI)arWsrp=Rr3*D^1@%Wj8W<_WFyme&Ht<4#lT9M0%a7Jt=jmq^z zIoPSNj*fcMXq-(k7cR_ws%|d}qI!Iih?A)yav*kdYh2wrkK0f_N@%egsGI+d^MIa6 zDYrHA7J1%pH%@(G3o5-wvzuLSDXQ4%ECU=j8^y9v!ZLF`BIz8)qNZ=*?tDeo0=sd8 zvb1Ag2~X!0Z899$-`_8|@afw63a~6@pSO#h-m4?*Pj0;&7yBY%UkY*A2zlz$T~cLJ zUaEo5P%n(X?;9c%2!d*)L5-CJLfJ+CjK%Q{P`*&mrkB>H_r1i@y_43LE0*t<0f%xx zE*w({X)r&Xk5^q?WewbJ9efmaVRrQA&jv(da%J))TtG`J4XD7(D;&v4*{JSGZkp&gznre@9r@8M*6=3t0K1Lnyw|(MZ#AaAVE$t(?iPH_GdYGzD!zUIX15Oe3PJVQvGCW9<7eRM~WyW>K2E7e@RO0MzR zl}<0!gQl~MCFL`M1;Z424e4(_6vy@2e=5+W8Gdv3FOab0h$<}PL%bKkF;_+@f^0Sk zOF8yfEvBz9&c}RB-=d@I%8kprzt_4QKbOlWWv-H`rf3t|8J#h>fvL95wt$N1MZN^J zYb7vsjB7*DfA!R(sz&vp`|k?NV<0E&a>G^cv|`7GcU{a%&2_^cF3QkT*Fyu`dGNO4 zoTZ@y?4=E&k%_a8_uE-}4cb$c!a~!Qot6H|gyll5`})Qo2|ct5Onr2{tv8A)a^A~0 zC@6kX6F3PR3b1wA{y&e*rtzQ7PPodDcCsImugSDpZl^2mze}*thOVg~UR77G z%C_zMYk-U_pS>bt)wcRm;upk z7MqZn&hmi{hJz_&qI$;~k34^t`}60+Czl4S)4GUl)C(_}_6R%`N;Ho!(~!XGF_n9p z%;g}9Do^+h6ALtHQ#l%BlwwU(XmN@@Gszl+{ma8cJ! zn!(cFpsUhhW4|V&->Mexa+DTxkP6sJmOvK%Jik5Cx#rKIiRypgdS*`v1G;}>V=+>G z)U(8TN?Bn_?h21WFV4>v)CGrX9kfRXTw2$k)R~rcn}XMPqPjhPFt?J|DSjw^Cp|iL zcx#M&>Gl$yw1fzV7_i{3w@4pz@}eCE;3XO|>3zsoe}j6~>F`SfeHXgDebc7G=az-Z zGA}nbHn>PLXGcbSvo0*lPU0418D@I5UCy$QCd-5#^}@S0z1pC*xAuq4gN){ff{9Yt z2T-BJ?)Mq3f#D{a-G;lRP6L@?q^ydejko0`=lSS7rUR*gY7Hk8)c+N<3_RGJj%uW7 zqr8!z4dQEGxehvarTy8UC^?BMr@5Vt{cmJx=>`~FkK(r6fI(uI?CI&Frm-&?cfT$)6B;7=`P1(R3;EZ z9nnX^yE1BK&kw``27*EZh8ku=TD{VXPO%@m79cPa8eyOFVE#RF{>z>1)q(n>)f3Sk z<8Z>SzXSponJRj;X5L^?ZX;ytBNx|*DpjjdFR&o}TeT#80NT}MQMg+?{Wcco`B|vF zD=v;f$L(DuAKQLJLB!5s9r}j{CK?g1`W6K*j{9z|EuBDQ-p>+7dpJcD_AI#R1@4`1 zoh#a6rdFB13LJ+yQJ*PdC4kO)kPFYEcb#?2xJS%U>Vm8V%v@JAsiy9AszszTAr&cs z)h$OgH#hr8zpJPZUGRWaFYixYTuFcAxw&nn7_t-t2idUgG-?p*uHROOsTF~-zsZee z#9Gzp3~Cah%=wEruF5d3KcCsEM(bPaEAD;03%v8ZhK3-Kx{AG*<&Cs(7C}p!-WIl+ z)lGBWPKEYj&?57c$M7 zpr^jLYQ7zjMNw7bvD4%61?@}1tE|LL_QOHaJY#MZZA~DkUG1`kO(}#TjPBpREjJ_d zmMjroW5rZnQ&v~GS3I+)qhM~J&X)G<1FROlh^vGz3*+N5Gu2kB-BF=9Q8FV9dgiy) z)oh3d8a?SkR>Fz12$57qt?NG)y>G`Z6eJSO5H~^t(n6+c{>~*uS!FMPDE<|dvg<$c zfg?UfN^t{HHCjf}9j<~mQ7G_rz_Q_muHnw8{HIf=4?0<;++%+FSzua7 z8Qk5qYRtkyQ0W6wQj+%?QBk#S-`=mTJbGD-aDzMy8P&&DnTMV6x# zM>LseUpMKTtA<5ftSV#CR*9)$G_^ljb?u>4|L~t_MMcG|+Q^^~V%FQ()5+5iX-E6V z-HYFr<*59hKX3FbS*VSun_o1%Eu%es?9#G7kCqTIYBT$qQByu{`v*^?A>l6Xa>fX{%7jwG;5jO(x6REKX)PW% zb~$1mNaBU?pk5@8X%FjYw6Or54zl&#jqXr$>SLS-EHt0grqEiX|5$~0kjQ70;nR1a zrY{*US||_A{rwMyn?p`Q-*9AqBoSpbDIR5A&>wz_mkz(M*e8%E8Kzr6g;7ryW|~Gs zdAmjpUS=FsoBK~^(~>0L3Cnc6MHzL^#P4~yZRP*23xEXJW`&-!ks#Va@b(}$tVm^K zJCt9#@02b)^LsnXW2#sAO%AqXAmK*6m8mqz2v>2_=_BSpz72|8Fkd5egovU7QGr#WnxyHO1{ZNsUW40Ka8K6N`%YabA zCz~18LtJ42KrsG(?TsB(sH>=%x!?#rHE9~OdvVuJc*s7{cpH=~GT|g%_);$ zi`Fgn;PHIrvki{WB?t3n@apSFu@Cs5_jYOv(Wj&H*ev2rnBSc0$tGlm=G2J>3r7L% zi@W$WY;t^Sk^SJNs}N^1tmew${TXm@HhXMN)@-T8Eu<6u1>Eru+gGz=B_5XbHxA@7p$2fU%=67v2q(5F|LjVuA?{nH{vTDWL_XRHxn!`)kA(oc-eRjG( z-rkyBTYzBFoaXA`59#Mt4Ack>oN)8SjTLZpvJtEqBYrxPS{}#9d&G_5Md;SpLw?1% z#d(9}xSzYTWS`nlA8Oh8JN|jI^`cC9$cgf1a4Xe$NXnk5yt&VtY>r-i-J_ByqGlEu ziL*qEJi?H87Cq_m3f>Jcw+@rCZDZ3Cyh0h@-)KlKGSD`>J(K8-YOcH|E+QWZ_bTy4 z|A<_W4W$aO4Sm~QA~XFw%g~Eo4}bzdZIgd=SdTOrB%8YU1qaKhQ~{M$<D)IhJk0vB=g2rR|sEXQnQ4Jfv;Y% z={=|#-LccI53F7KEmL6^JsDu-x?YF+^M_nTHj(mpQHC|PKSiaJot>1WHUq~K97jaE zKDL8O3f+lL;g~sH%Bpr!vnoMfKAL82+c^{j-f~JASQ0`JdsZhkg)5tzN{L$eVN{1x z>eDjaZtXBnnZcGv^eXIA1x_Wt#Tj?{Hlp8q0hs+h>Nb0~X?Z#LIC zcKX$5#Fo$3Xw}?2Q_)=X43g+8Qu6HVj0_~%7N&VLAC);PX0m%~c6ofM@VfkFDL?NR z?3B9*OEa!G?NFdNlO91!)8L<9mwW-4aaXj~=j>#Y#$F#tzr(=6#`gBX)k`#y4?<;L znTZ9o@+fQ>hA!TS4LUdnnX_IcjE{4YJHbhNeloPR1N!ob)R@PWeM{JCV;)9vX*lG%ROc z5aPf4`=W-W@B%2ul@^JbJRcLMz(AAHz8ZcbL$w^eT@%c5<1)}XtDc#Ojv#BF+fD+< zykBT)%;@n~iC0hfhPY{8-}m!*@Y~=@)8*;It5sav#rl(G!sC_>M6!m3dIIyOOfo= zHe;n|tWtdRsri|y#?Lg42;3)n6+yy6RGgECM^KM&`tGK8=^|=pQ z3Mc!7adKuU*_&I^q)7MxjGGXz0dwcsvB+^@)H8{9pAx7fGl=W)K{+&d1yU_eBFHeW>#cb`>CLU++ex>fI z#lO;!lJbSj9S6eJ_sJ4v<9wKTIcYsQXoi!sieg{W%nwq|&w{r#nU z&J|dWPm1qe-8UZjXX8%DFj-t~d7ZK$7&wl5@3%E$R=)5DEp_OH?zW$gC^rTJ)|Zj- z^5=12W9h@6SS)34;_Om?e-ROFKHR0y>(r)%AX58uK)=WM_ra_htn4hdfK{~khRB>psSthMV;6U)$2H!BxYu7f$VGM}Wz*Sltgdq6lQ3)S z=X+NWou`$9z{~pWiHi+oTd|vCt7k~S@jd~RADd0H^hGkjb#j3DdQpj8Gh}b5$3j7a zk3es)702GAj=DF(_PoOA>stu%YNFFCe_*GogNUHZ0cO z-oGqZzwi;=Qd9(9PRsB@50~(8jEh!iLP^O;@RX&Qnbo!50299$WKHPUKsP!+2#reI zhT<78gxbWMQeq`Qm=2_??5@f%wv2iD=lR6r{2{&!t&4?MQ#RJ0cXnFNCI>QK{QY_6 z(xfVv(GO1TRKCG1g%^^}CaDx@@hWbx`q7yv%X1%NcAGU!eFP|&7tXOGo$l@8<&onA_}62_Spk3M8sj& z!)2Z>yqZaRoBz+HNF9A4#=xL1c!}3aqV(|*fV@e`$avb5mmwB~gn&;fzYi!s1EAd; zZx7lNTRW1~Om%bk$9d5`K|+i~-WYILLXUD?u#sl3FGohz+5@zD4=KTiyS6L*l>x1O z-?$*>fFI#6;?*CDx1n4<-HiJU_pu zqY@mxVXkC8P#^z@J~Hv@t}uDAtrXL|k$OODNtQw-#*eJafjQC`yo9{?iveW--KHE| z(fx4^KO&qx_91=b$QAIPH5C!YZ8Fd3w_)5ew$0oD!tNU7=sbz_`T1X-&?y3Hx8t=3 zd)3+Gx{aO+YLxgHQS8atxa-fX7OG(M=u0Dq2cZs^j?8#UpB5OSL^=C|P?%N5*pnBS2wqdRH>Z?sa=ddF5xnFPI>Zma1K^MH z(&37u;?5aza>^XAFrKQ&{p8obfqd!_)z4`FPHSw1w zP(Il65kFaQUVPhBdX_Z`U6FDTf3;=p zCAcqp#h@AcN1^z97uip!TH=69X+DiS&{Tx>#D8xkIi1D8@KUu5U47E3R&J((7iu47 z(bsle>exl__NFqV`xQB_Y@WqjFQreObHZzTIuvk&7IUf4I+Ddf{VR^J0$*c= z=Pm?xgPh)+8at2B1zcn6V0!;FJ99j2)jkJy$hyspvD%A0Xn{`GCR9R7i`^dji35tz?)t7FLHlup|0%)G5K8E4xJLiZ_Sm;fO-m;{A8LLM4$W&d1(+i=$%I^ z&9Dwe-qT?aw4rTctoL7w33q?vyl>ZMXJLFTo-Fk1#Q!%`ESoH%WQ^fic6)I+e7_E8 z!H$*bTpt8SJnOI*`_zad?FclwK?y8?|NEKze|^&D@UlCx*M$Y0Cz+=UP3H~rw%vaV zP9LKd{>hl`9)0BPE4x97mkJ1w$ewNu1Q{YdB!p}bx=tE;`A{vp|6Gw=flA@+iQ*A4 zK8%*=r!R~_^t}&P?84}@#ms$5JBWb3)MHCOIG28z@86nQ| zVOE&)DJG(`1;RANwnyiMOTn%;n;^u9U*NYcL75}_Uj5i&dQ?72OfOAicjCCtgRtSr zA~B~8?yS+KkL&|Wi0O?HrcM1&4WA!=bDIZKJwdBRAF0m^4u}8Oq4@vL|DPj(6B1Fm zv@(&sc427A%1UD1boYRsO>*k!vXF8}wTym|fFZgJA}cC={CScqb+ zI-24U5eq`zO9W2bNK8IyW3pbod86NCGqh*NAm}v6;7k;Dmp+olif)_KRAY^%R(ZXx zd!<$1Sr_BrW!A{ORekbqe*kik@eDS#AwOD%V3GHzI}v$JR6V|D=#%;H%!CF*4oN%} z%ZY1g56QRX(VW9fSm`O={7%or$)1hMqM4=1B|}VfM$OcjLAM~j#_&bl zzmNAnnJ*PS{)u@)gY~|#yI1Q{amm!*oAyw!VN2B%_JZqu+u0KjD+8zp!L0Lty&g;D ziTk*QpbgqcGq^DL*8#%sh1$_U(dNv{iI!>9?wD9FQA-os<3jUI5 zRJn27+&TW>>*UJ6nVMstXK+#2VtsEu5Kb<9HAddbc%`iQ)xu?xyR}yf5@C(>BDL=Q z9b&e_TTfu(MNw&l3u>lSeJi3u3Dk`uM!3`HECEeyf7VdZd+)R2rrYuDnNtJcVo1S zs6YuxGT={$u~P4Y___bL(S=JSa}(Lj%${P~HMJdFa!Y4!fo*f!+$U9b=grUM&N9HS z^lY9gN^f;H=82JT+`>BX1Xt&H^?EB9hP4MGH}My-CK`uqct@Jeu*a-6%z7A5h~+Vn znDu6mbDN0k6<6yR2?`YBqrcU>hlqm|{@T=2!E1?q!lWXEnxcq1ub{ zlb0B+sb5L@FxQx;#%nKY`zRHt#(eIo@q`}E4K8x8u@{idqq!f5h-0rqIXj;v5=mnP zY|uOwv|mu1aQhhsRLF6Me2!bVseccw6sx-rpknRY+nzvwA}qh9rA19}vE)LD z1TgXxgb#UvR}*?t-^Hq{k1<};Y^rvQp@2}JhMC-;bkx+r0^l=V=w(4vHMZcji(meU=ZcMa;gZ_TN# zeD<8HmqNAvD(fLGEMyN~(@Y?p%`@?wG%cl^Juy!t^5e|s0_wtVh?q&NMuvsx4&UXN zigqT#1yD09vi&TH@OI<1p|}Oiy4?2NDaq7pcv5RY6nm`19bPOSoqPA9Hz8aFxF1Y5 zP!5}k^ZCt&3qICZ>li0JbxlCSTF!r6vTaOpq72?-ppJ$zQo_Jp#`~4M0+Dprg{xBA zUl26|NssBU&iw2K)loMqL&|+YvZE){N~n(68p3ofDn_%+nyU%1R#>R=BM)2;x7GYqyXLyWJFyM zWh3RBEaD*|VEtsM{9yHYBB&4La~1W>m9Qt5aR|^9bxd3O*jVLXuAl_typ45T@&9ae zb5jy)nvb3d6U3#ku@xFufvSEofNsM;Atje8kR|t!m)?=UQ;crrt~o!nzK)R8_zInr z%-ySb`)}U#~cGr4eGP!{g1>9rs!Zok3aeBrh$SWV6j`b` zcnI4|$~P?oIy=_!R=oqDRdydK)JZwG@9aN|ngAUAsmA1JMJP3Kj&8oz!{x1;jFd8L zHtguptvwGJY?TJ(M_zIl6marFFhSw|&fkZt908ymb15(h*4 zhKiWP2fv^*hs5eZ+QD>hhiU0g*2-LD9}%d0@n?5GL*d1@kp{y$)8-!;9{i-2Okur1 zXX2r|BWgHye~g8OntEzw@&=_5usC(8V5d<0bZyjy#p_9)Ll+DO2rk)GP|7armUCaL zb$S$nk(k{FK^*g-QU_?6G1#2{5KT1&5rU~nY1huWLAmW% z^+GiSV8hH%=yxRY zPLp_U#d_GF^*^`Kzr>S7ETmWMHTNeZ9t_l3ws^Ll{goQ-)#Q~_9Xp#jF zWz@vR(Psqgt`P$uU6SIg6`-;hmT+a#P>+b^7f8)b$ijMRFtgQUy>er=e-N zqpK@cl+9Qlv$hd|jrCJ=*?9J~@I}1Fh)bP)fstDGR)WKZ}753pAuRZKVcae$zz*}1Da0?XiA4n zJ!0yvQw4zN9rpbEyv3Y1zM3i9R5a+_bNv?pL@Wr2p#yjnL^UhWIf-S5+Om7`!JVwK zP;9lrqO=LhwG6)c^khc#8$z+BO2VEpIb|!N`qCh=%#>$)%=BMC+~#*5di|4_jF!=G zR|!~vOS;0aMzR3nZRwL*k3a1$uO;~Mkj4V!J-V2)^9?1KLLO3b|8>ZS=*q9&-mgU5 zJg-s0cg%zY*W|=XeQCzL(hUK36`Q4Y@|{8ZdU*ofF@%FAGwg32ts~L5OULB>^4Gr}T80O%jlIk__dmt7RXJ#VpKF zl@RD4F%lPSg%QB7y`fWl>x=)qP^rg!-gYC?VaC7xfrLv;jyTd{S+#%mKg9r5+#P<%yiLV-%d$lkRNkI=@6=$j6~ zIExQNqsE3zfdY)qBtK%~Hqk7Aq9O2ID5@>pckNk=!vCrZuv?M9??FZS@?`z?FBSU_ zT@NpVScF4zjj3giH)z51^fZg-#j@K!i)HR|fj;BkAVfQce)~GW9OgOGKEPgCGs}3A-~g<_fC>b4 zF4Mj)UUn&I2zmX*ld3d;dE;FpQL{0q!Z-wsHrsuoVRVDfNA*HRk>x#~{+`%)o?F;Cao& zAJ4pWI0Odx#&;I)yTky7KlRqu9*94i+~1m2CT4_|N&R93IU44P9QElveO+f6cl_NC zock@HTO-C7U(NV69ZUEV;p0axeg87jU&v*gAN{jS)=YiW6_UtBP zH4!dVOBrz6JiN%R80}6XFwnaWDVW_1{L>S4?~8S`XCy=ExtNyb25b``{dq`lB%G~; z@GyZ&elEG92bOTodlRL{qax0#Ah}gVwqEz&StSL|sso|}Xc@^2w2{4rx3lRsYmfRH zHXBjOHe+fN376jU@M2fX#BigIl$7f#*B3KCWo6EwQ}>cS15=pR5wb5WBNN2%60li& zPcy-$vmiP*5nw#_6lXn^@i=+Qz`uHOazaN0@Z%Dr=uw`BCCF7QIOGc{ASJY08nl3sGDkfJqGIE~52>rDFu?O8E^M^Rj4|4Z1U(ZlLcR@( z;T%6+XG9+25J9mLtJW3q>#AuTsfu~A;?JC6Ut}KSk+{HO$Bf&ppU9+;)(Sr zqf|QTv(x0{X;j>U8)+X2p%h^0J2NJArhr7E`d!sO|UQpxHo3kBPgM@AI2UtIscClaogS^(kxN zg^jKtq|6j_j+}0kqmoUafP!Qmn|_6zNTDTf6GNYKII?Gv%h&}8m#-Q%e@?KzYvfkT zfId?ZrzihQ^co45A@)@-%o;V`lEh{x3!?V(hyEM@U#W$8#ohpl6GmxGuy^NgR5O;_ za+hR4tYW$XN6Nhy7NCd#jUK`5LQ{bPZ&3$`eoM#+>!88{^MWkc+Z!db1|pUNA8AQn zPAafeDK1@w^)~X#%kvSR;!s!-05Wi<3DO1Jmn96|S0)^?G?%+<10u>_cCiX)szZ>l z^ALs1M;LBINMj35hxH)5XtzmO6)XEZr$3bjaibHJc}$*zN)|WCd!n27+3$gi;3+m) z9tt8t7Hl?3k$nr&*hWae;%JG9Kg7gWiHG}WzvgG6x}v)fy%B7^hr*n()2s1YW_~yp z?6&KBHl_Z`<1^=sDuQVv9j>F0?~@Z+5ZnID8}#H;%PyZkJXP;|iWy~iZ#$}~)B%XK zVp2k&3z?<_%G$H~HEsy&@y~d3haq(XjbJq8n6`~gE-=@yFtaRwpRmVO)k-j(e%sMu z-GD1#63SbFHyiYiz*=QsKSES}*YF%8oQqbH6&K&8T&oumLXmn+cRL03atBQlLzbIQ zrbl0&uf(&4{r*rOk>?t})2&qc9k#)=EnAFqE&_`tqe8!&-ET{YSf_t^C!+k`heu(J zbt%2$mEW&@=nPIO0_g$1s2VYRgcg(&a68##4vs;P4LG)nwW~~?xE^yqkE-TOhvtj3 z?Lso1;0<=s3TKw8tbc3}PZx90jp_8XWL~(TT0!ZifJ$pAMOh+1DjvvXgo+>}?8)4n zHG!#SNCenUf~a9mDp^k2AcHc)KWk8%ULQ|+<2l)WkOXAzIVOu|wNY5BABvNQ=y>uo z&K&enIU9F5T<$=ptHnxa&Z*#Et^Xhg5#Q%RiDUwc-pI;lFiXzm2j7|ijsC&hUnh^< zm$8_AJ_hs1Bfl0ZV;4n=@7w?jc)zh1BcaMz&P&eGreB5tn~rYdMVAIP!#f4|NS1Yh zLq6rqKHt64nbhtMbk?gF>eIL!pC0YQr8TN@!X0n=kz|YCW-{Jv>?q$_;PretU8O5X zxaIk)QXH6QH0p&nb{BpPB4DMlTH;D-LNDXLpB)^ec6Bk8 zp)!Fil}VUsC5(DRHFO85&W1Ra+Nnev7|E2iC0uLUfHC`oqx9s?tKx#D(TEL<&1n5a+;sI2l|tn$ zqLhygP;E_poR61JZaz??p`oSC1EdTLa5gOJ2FF4+c)|R2G4RVl*!MRT4MFzSGI^DxHQt(M~Lu1N(=weIH~GbSSdy15;@f1viSKW8}$vO%CfSg#-2T14-i zJ$RyrM>2?hXg@hDOM!l_-Zjh(X_*W!f=%IYGL)yy5=%J5B>g{}kkngKz|tm$l0Shx z+w^9&sDGncq2BJOn%HBgOG*CHL5kTsZ_yeq-t;F+h>8GRhCKLOgs*1VCw0{Pvrv&* zlrrE*J}V*IX$Vml^!;x9(#s}>ot5=4dqLI%gH`~U15PNt8o2ZK=6p41eM3VFH$YhX z&H3%(#bo0WB(b*L(sFmUj4^@;$6G}eYxCG-#r-K5zW}%nCHV4@>{QNNvSI72;1v1T z;2+lEm98VO+0O#5t4M2!dpn1ERi&adI?1U;p-XWKy%5*g=B7)y%SyIeA$@%JGKp1tEg$1Hux0j17rbCPqRfV_4+CQ%pQzdZTpYiD zaBwkYeG)6Nr@NtbL>4clU<0& z$jS(bV;{1Qk*H(uY=@8$WrxU?z4tmL5s4fel97=;vbW#u{rP?WfF3&ceZQXLdS1`# zB2~2WY4W(JzWoUoW)(9pB?|?}@7sAPi=IM$^Kd3Ypm0?L5XUwI|ER<3;zpd>WDjV5 zCjglMie?Yq^q`Wz_(OFmrCXd7QZ?qsg8QXO2n#7&V)>z?O-qc=0?gS1XpL5is(ucW zNx-XYVgw3y;KkKv#rg)(4^1mOr_Q>d~b8~Fiot#5fh6Nz_{rgka z>{Jsy+uMPM?SDQ2PuE*nfwLhx8xys+D(f$tz@B4b>17>2EDgU(R>}4Q| z-O{>BeXa@+K@%^N(G)m1p;_}@Q?Cn zY5&zvL@q2K$&QR9>ey}6yC1ZW6d2?z^Up?+Bq3sTy`uannA_U^5L^>!U`?KvnooS` ztmuxNZqEZq&$DF2{HJ9{Y1FC0kGj1*uv?#{P}%;M)^v^8e~S$Q=huPizt4(;8PrU8 zqrr)HVoenqL0)}SdR}(*tKmZQRiBX#BN#T!WXR;kLF^pmAVT2p?rm=Z|5ykR2*?Ei zEiVaCU2w82P;ir>1`T>^#%2qR2}e>6`j||-NO5sZyr(@qA8LoIPyb1%MS@O*}x_J)P0I8&5?L*y$YnbhR(316-R zc)aurO49HRAT%y*GgG=0st{VPVDV!K5AxOR$pI4}SDb&Wj7|YXXUi2Rg_;e=+(IwG zW+2Xl^35TKZDQ21b`Z_#caSTCFRvBPlMqk>Pyq;!U7W1$>n;nKpe=M#zO#?1_IVDu z&3CW~$4Msj1Lp9dAT3P_C_1phKwZpE_)f;-ugs+zfbJyNkNb?K6{N-M%=GBs`{F7Cdf!W#-Y-w&p+dVM^gD7Bv4$U`5) zEL+V4wl4Jg7Nu}Aom6&0R+YMHQfHU7hky0_7QLFcmKv8{R5Xj;8ZFKj9m;f86BD0O z^jJhoxtpWA-0-C<{4oXQ5%ZqreqTKHEcAqL?A^e>vrO~Q{8uzyWI5k31>16dtC&H; z4+C{xiO${DrI~Y^%L6l)$0Y(Qip03-LDPD~R@Pxq?drtLif2f z&br@>+V7~2jtrQwOhvQCs-8UZ&r_Iwob5u9Fqr81r{d_wnPESyiZr|wf+zdpf=zLM zuKQxzN$37f?}wlRh07&NxqmA$Ogn1&_56|L z&6_tbo@6RhwTuctYJmvMq`vgE$hz}&iA2$|Xf!Ji>KJLi?`P2^&0pX! zvPM*rdPi@f`lZk-%5xzM;K0T)HB9kZO}RbsIu8PhTrlGn*FOZ1^uqE;v~1=NT6p~J zgFp%nN@f4d)9-INl_M%;H}RpDT-$*>3#a-R?b&DO!dGw7mRgrA4X| zZr^;cVJ(MHx7^SO7otCG5g!rvSr_uI*_;l;!Xzcp=JH|BOz4i>!T4J1kZrSLs`1vuq7_iPTfG?LolV0Qz2Hpk&mR?g=3T5;SV;XjQqCoO z%J$>%PjKWCR{F>uv10w7EWOZ**19?(%*vMKpMlat>MH9=B&<2BiFpw#Gq!NCFkOXTf6+=yELrbP=dL@!9?DVAvavd14>-?MDu0dpQ?xE5oCr zq7<&y%}U98(xAjCc{N-ldg9PIsg5{sJKE25aZX>=pM^`>e~zASBDG@rx+=4sj(@$S zg3u}%PT{rw(Z#Whw9511tg&$NVYJAZ-;^~TAHtkNFMt+>ubB|4y~yZK;`5;pMF#x2 z%QZ0N&CMH-^!RPZ{qJd<9FRmX~!Z91F2-&79sPh1p$$n#+4Tnw=IG1*yH6_sX+`AaU5bjTV}! zinYfO&My=s#_-~vAa}S}YH30L?a78r$aC{{zpXT}XX{|rbg8o7%b@to?Wb{RR2k7j zep|Y0i>i8_Y*5w+y|syHd|(=Q03KXM8D6Eu3}My&wl&1=4ZGxH&q@5c>?sQxy%PGm zN(*Ad=gyl2?-vOrtSYCbDYKW{jr_*izX>LTpV;Nr(lVfJIl~NTwAlJ^(r2`pc9zlU z+dBMmOb?&@J)P2*oQ(CGFRdQ--3Kq3+4)vS8nMp>;hGIC`^2ciKULX+-u=Tt$k9f_ zTZFxU(4?lrOZQ}&^O4SrwMPn}JLN7iJ+2Iq6~t3bxdzu2h8A1tX$2|v){w@M;KS)nx`VCpcxqQA7{O@RXq)E>VwIpZ z6mq6&b6fG5wRN``$c?Yr@IOs}iwtHI93;i&<+QPMY|VJ$lS}1ny`)Zxh-g9m$`lSh zF7oPsa`1&jZcFMFg9+l$6G{1>x-?52g70YsubhlProus6xQBQ z!cD=f7ToJUwfiH{2g$dWTkb$$qizO?xq8;cE;eQ|@R>8wC_#VGFj&v}ujf0lplwVL8zEhu#XKJ$BGdT7ss z?SVa|bnw=L=bPw)U4s~o)M;~02j4DlbcE;2o-}Yuic~!vzh{4^{{1~`xwGvq&VD@; zMp1G)FP=jg$rkH`=R#hDE!Ow}VE)TMy-!;uN}%>FFBR>Pv-V{C-X1Y};nk}TH-5Dm z`R&V;gCh@HG<91zHJ5dJ!kyOlM5m-Z1Hq_dkVGQK2OAR~Fj~{J@_uPU>o-k}{v##P zYV66Gwx5h(fmFleQ}4NGYrh{sPa^u1sQ!K6<|kMvNOE|X9ao5AYc#Egx+nLM!Yp#a zY)z&ZQ-p{pHCf`6=>?5${f%SOc$UoQAE&2ABBd)V&Mf-0cRLo7dGvDEVs;9H<+0%y zeEXWSed*qZM(1lWD139JQS@lb8X{Yddc4Y!Z|0@7v9`$!IkfaYok zQl_OAXVwmvGMkP z`xw7X2CO-2K412Apmh~+{wa3Z>P%{y^NST~mNMFUE($#jlHa?(7lt+poAE9{;B99N z$aCVOHfXc!n|$(!n+o!8`pYKvf9y4)@xUV<^*w#;G13zGYXgS1HZh`j92_fGIr)~s zFN@+WJ2MLE6H5r^Ed^T66_5`@Ugzv%YbwGFF_dVhNkjjj8&l%UneU{qwdxjfw;cy=c8H6J+B2kk6;bK_rp7@>scouaMqk`-_ zKKKT?iww-rnDf!f=|wvJZ`3_9(Kx;0(QBmUE%Q7Pu&gCwPGUchXzodhzT``2dzu6_ zlgJ_QYstR03P;bwM9NUVeyd6@NMul=_4&-l99t>A?ZPeLN;nCq`}sN9TPZH)2)#rE z0~Ndcbxlpp01%j3h0AeK&P=M5iZ7M?-Qv%NsEx-)v$ROl>#x6OX_(3|{Y&5ye41Bz zI^M%VR~dX>8FyXEmB4Bx?U@=f8zK`EgY<|S+Ra|_9}yQCFeZ22yAIy@+dqb`MfMht z)c&GpiZ0|rX}@+Nsg=}}eR~>GQ&jVl9ww)R*K^G#p(mZHSEX(vhKkL3qjIsT$hzC) z%)|e9!|y;PE0Jq>BD7CTK3%k+?m?d5BqX%V)G_5_4HQ3+L*fJaOEkcSY+1j=Ts1w^ z@MDkL^~5B?_pA>wLA5B@yMp0sT{Wgdf!6#`mA(Z`)rNze{2R0K+%-S8{hfp-a(9zP zu5-OhV}1Z9?dnQU857geVKsH3XnF-oI4;fN1pOAT~CT#p+;LPh6|CaMG(} zbWvjc+^K7Y*@M6=h_Q;9)d~E zH+4;ZYskxpZre*(7176{}0%z zlS3JpwpR}BQ#8HjYMqMcDwg+#r3sCFA-@g){*L!nur3<7mBMCX^*lO6h1whc{gZU} zq}5+!h(3$@GEPvgJa3z9;tBf*#JIEVY6_BA3$kw)({y1j&Qrr^cZd`2EJM9AqYCS( z^|cEU%somAYFAAvQ$w}6XMYS2+o8=ZEe~V4i9=y%XOktYtzpjFJ}0h%fQKio)=YVe z8EX5>eJm;G+*z+$0#q;e2Bdn)i$rQC5H@OD z_%=xRC8AHBzu?{b_rUm|=gl)3HxQRP>>O1v8J*Tf|0qKLNO3AM;d28CSpFNqm!~h} zkBfEAC2cu6MG4AVK6H7@)>rwH03BZNk?yHz7T@hMeTy(uPtVdlEuu{ki=bAsFzk>}0i4yYvk{D?<_RXlR|1pOxy;m+Ft%O_NQ8dggGIjR z2q@SWfvsiVm2LgzQtx_l0%6eXhZ9Q`YrM(Fk<2E+W4w#$Au0of-2yNRp$PZ6FHv&9 zAEa4#;0e*jfgz;GJWKsBDwl6X=~ZH33Eq;V(`rdE38w}0tXXE04;|mH4q?Ve!YI02 z!=>Q<&J{-Gf>G$y6w1Jb(Mk)yxi0n#quF4Vh<_Vva;YFoJ#8`pr!qr&COrEJ9ZctP zrg|s!EqaS;q=;7fDJa?dOIWG^cGdGHRGSEidj^a~teQz;lKGbj%ib0M-G#nu{LA9* z3`*bMpRr%gUp$&VXb4V|b(;&frcUDEoE3-1&L7D`N)6J9h)so_;3%$|J`Qmqy)O9I z7DM32_3qRytv_U(9qFu0 zm^;aQv9HYuq`X!~7_1tTcDB@WPxK&SA9QkEXSOba;{t-i??3mq&N=iT$(E6B&XboL zNMt|m?XQ!H*tZoEyNc|E)ilsx{3GbBOUNbJ(f#erviIEQm)FR9{y}m%m>kVD3>ex~ zZRl{4*3v7lorYGj$=s4{=Z~yuAD1SLyYr#C_@c+O9yp{MUQ=3leCUiNhqeD77k~x& zD8gF&*&B97=W%2tGpb=(7{0mhi^> zg;j(vk3U=*aendLZ@U2lhEA4Y)MAJ}J&0T?9VC89NYaAfQ}i!i7b9^27-d48^hP*= z9edzji-GSIVDp>w9@nhswjJ%C*EX2L1U~NbUCG%NXEJh$M;h0u?p5BL&$r0?*%-mB zXfY7RHUDn>a4DQx7HkgNBvOwUyzy1mhBrebU!zMQ1qlA~_P-$wPA0j<7KEX8wF-t| z*%@}@Vhx_cioV!F6E%BG^{U92rdTf(1r8bwe)o)GgXG%gYIm`9`3?n-wx! zV&G4eu6Q@KzW`?eXZ~Az3Qn^*U_-g29p#^USG-%HH<@<8{ z%LXRJMb)b^`2*T56^F&=JBqUArUFGc+9u~WB z!WVIr1s&%j$iT$JX$bpW^7)Xxww8*b_!B$+#iXPiH>+CeIf6Y;#Zsr$RcXgLLeZp5 zI}cg3iJ&*6Pgz;rGfPb`7iCIaH)$LWGd7$OWS|SSuq~-lrJqPbFcc)2jVvLq_kfn6 z?r*}2kWW!j&ZIKsIsRF=xcQ^|QJ)?~4`6t`vY4&*04bGQj%Iu3uui~%rsQVR9t-4m z0WVaf%3spC{OjUiz~9zk3a~G&5D3amobz7URkdX;1R~cKEY71{@oSOG%;IkgrZ{~9 zW2xFQyX8AVCidjtmVcfJsR+ObiOtFxs*vzzW<|I!l&@)Y)tQ#d0-emQUK;NQE7DRx z;s5UNt2b)|cD5H%(ZlqfaEuNf*N4HGm$swjN+H>!Ts!xPXkp$bC->3X?s97Utv&0U zEnFffrmyq%#||dNp#=S50XPcPw~;Tc=+H>Pn{&U+8gJ6LmWCIimeU!IHtyMR1r67c zg(pHXySrg%RQeRLF}xW`{L_H)@og?EW!%eyv-{cwq0iF&2IUFRfK^oo0Fu|DJ-SQ} z9&Rf|GFzz-S9kaFTIwvcAdkzkQ(uSF5mxFF{uYM?f6ACP!25`7N%F>!&DJYL#y(ZN z3R%`#_bb1?MHGMT_E>7^HzgzcEb^LI5x0+njxaDbzLLYgE}3y7iXRhb|I>G1_w}2O zgZgJn^1EruDEu}W=p(%(Q`$nWsry3*42=3HjX6G+x7P2(8CP0#o}_F)yY>%B7oq?{v@j7gx9(HW8octh!F)z;1T0uO#ZnmPFMioL@?!F>T8 zjn;?V!P8!7(OYhzk9bvVSUUBOb2My`l=Df!_-J4p5C7iY$uqPb=a;dOCeC%vSw7LWUEtG3sm6I76#^s&_}Ngn-pFTFeLU4IffeSYRAH}xl|ek%OOVt>=9z;4f*3_iM-(`mD#k+~lW z50Es_7YvNp3VYb#TFf;lYsw<@T0u{MIkB5%yG7-@aF|+@WvMhI-MT5Ir1NCpFCVC* zkubwNx$2~v_Gg1xWUIeX^lhPN3f{s8!`*Gx_}9H;u7QeYcq83TUT1tI8^uz+6b`Y= zK~sNbpYFWmQ}pmQ1R)*f0(%#@TFmZX-ro27XC6WJN0g}~flyd)_`VTtE_l1C768la*aZu6$-X#ffu3Ric?HgJ60n(c6E zysGt}$8G&cBWhYL$W<54f0)076E9cX`TkSfNtHMr_$&D66@y=8w1!iAC`G0e5ld<2GfpZ# z%Of`SVwLol$skjTY-p_;(V}_PVVNYrTar55UF`Ph{d6$D5-WrfZI4gPTIxs@zi2UScN&nyMERp)38^n1WXjp+zt-{Q&4EkpeG7Q!O> zOl-WQu-yLC5BN8t=8vdMaTOHBOCRIg1VLYaZZE<7V0DWsj2gVoL0}=(^N$>DYm#UG z`kUfI%!&->mq1eihGCm38UZW?FQ3xFY5RcnV$;vySN zE6Dy?VqiYOeyf@@Kv=!eNt5gItWzBphc`Amn>;<3LCFTomXJ(UMOG)d>s)^*ygqej zuT6f`rvT3*y--3QM)}K06T62#P?fL>uee@7%_Usm*vQD(x?AN&yUyTGhRE7HC1xnALMDYoI&Y83d+=K(W=go*qD3 z8&4*eUL9=2C=Ygh$P7>Jvo%Z57k+fL4X_tZtsqozrn0pk`{s?L9&)R}sWKz9<7Bk5 z!}($lr8nIWiv$wGsVnYsyjC-}5O)w@@;6$yqpYljJ{TVUqBgo&6eKA?=OXl2S;%D~bW;iov1sp5cdCJ$#gZEeh(xHH?u4F5m0m?oHXf}< z2;ypMQkE9}8E3{i6jQF7*Mz0~PM`+i16qK}&D0L=$VtUf4Z$NBrWz)dh$j^8H4qP} z$+WfN3x$QcfJ{MCGtx?jAof7=Dd0B(_h3j!CKvS_{3eVIwxl% zM@;kc^JF}$PxFf7Rj&7VK)^jY7RJ}44O-Io--~-_+@M((-L1l_MdMnMyn$Q8gZ#jt zU(YkOzTZPW9?YElT!Z|xYU=l2WlsGf9qs?GgSAWna=+#4AcxiTcar=hFqm?h7TgF3 zBE^*AhzgR3IZc%!JC`$|gpmQA9AQn_ad%S(mt^7oY1va>8#d}F1G?xvW%6zpeDBwO z7C!rE!Pju%ln?+EA-|k$i)!YZAZ*t{)*3cSPJKzUJE8&9#ElLH_%*XLrI(d;veH;z zMw9EG2k48b*3RM9-ynI{xoPR|d;ooj=M7A`;UnlTF)`$)x7kyw*o4bCV5wZvUGQTr z7t)*BZ%HuZ6~}Yj8|i^Q_YDB_@2dG zvj|a{2!*2|TZ6CB0OasCj8cXT8DVW-1EB`~iUS*RXy^3X+;ir4U{xolI+Qw^Aco+_ z!~iGs?DwhHCCL2ssg*R<`3EZ+FZ!x&6ksCmhf`XdUl3a@;&Pk9cd{tcwV)j2d1l*_nN}J$^^aU6XUV_ie;kIA5$S$qoUUc63#EL3q&b%)(RzN zU!y^D;;L~~EP;U#4@-|ePXv{M^6<5DuO2X{oi0KBGU8ws`u2t=I((5$*7PME-7|@< zY&pqS)=b$lXnlziaTulC;QfFjSCPAS|7}qLV7}08vCn5q8ceWhlswU(_MwH14Fan~ z@`b7H?wXbqYTCQe;;^w@-&hGm&x)V}sd9lzIQ37=bUTgW+T26n{mn;DYBox~twra` z6yXBo(pyU(Albapigz>f?pGYc*hf(KphP~6uC_^g&c#D6TnRciB4$Say z>xPu86`*$gv#;mW!Zw6e#KiY=dV-d~K*A>_mdR6%%Zh(dqE>eq5|$;YBs!P;Uq$ub z3sX>evR9S(MKMTrTYL7ddQ2Ji8Zm1b}bUgsD-@~|C)=&pmd7ay#DfffBGQklqC)`ydPBhsHPVN zUOyt?4ATsMaAxSBrq;~wiu`U)xgvE9tsBb=wMF9EL5@%)t_!#U9$&>sof2;2mfmKc zO!j}zPsF+H8;)%YMu|70s)W(NC_pVItUj1USTjA!>- z?#y!)DeXD;ypfOV9UTx6?m_I2fK89Bv-Z@s1xbs&vBn@@iJb6E?FXsuC~gI-@Fa9k zICWD@3C~zg{=Vz;KJ^F1@mWA^43JE@jTb*7VkgET}Btjlkf zfuTY`&%(k&40aHU#fqWnm0si3{r#J;_ZNeCoz_p|DHB%0uV$RW8`czuE?3Gi)0f!w zos+ufFV6}IswEN0M*X^j9M$}K{=++00?v%}aFqY_HP8Ri85f4x$KI?Jn+lzfBf zW-$EEoPSacrEaR&Ufp+s>=tP=$8WjdsXaFP}L??tBDPL#!mdczBx@f{c3zqmQ#y$9@gLob`ph9Er>#Ljfi#BzFw*>DXK4jVT;8BI0cAmE49N%GuN=d1GEI{v@B(7sJ7QH;VvegN* zlA@&QSdzPRJ?aTsmu;Qb$a+ORw+eLgI)UM&_unO12&mhUQ$2!;cTy*zk)D)H0Dqb; z`_h8%_^W}6n&^}6atj_L!bxL5Tp8Va*qwYU>)prT6^$A8?}N9PqeDVKkEViY2qeI` z)C8h7oI%EL>9h$VJog0^b-M#FI+l_=@Wu$nH}9! z&0BS4oEN@16Wd0i(SUgzU-WgfRGdbO==;MAEzYoIMy33D<&4?X#o(~JRZ(TIDEt-W< z=b$EUpe@U@#>9n^8yta8U3!$-mM^6uyqS#S@n^*0OyC_>Y3Y>`eOc1bAm)fbdy_J= zF&@R)7W07hY9N1nI^8(W9&}Pf1bq+hW>gX+;mm4qZ@vwA(CYNo>%kSx#sQQ05jsP1 zogfGnnV&RjAZ$$Rmik!m2V`=p`(b;HCWa8bD1}Y8zD_#n1WHMyd;4CuFiaQpb`x~B z-agRPKxifs5Ft zQp2>cEi|rqKi>%@C!lJ9<)!DOHu?3?Z2IFM5-|QAuiChUewnj2{63S7D1n^7D!G3H zc`MtHUzi%A zE0c2I#(-S`ucogVf;0}aLUcM-cPu;BKMvf$e~WNd&wN2&81i7nm%|p`5RqoKIU_1a z#&4^Rty?1=|Gwm~(jXupRN^4CCIH{h(DFpGrywZd{FQP<*UGLf3kt-Bu!Bhkg-js%mVhiGJ_PdGlG)5Ne7 z&+XT7H&6Zy6zV#w{qG!7w%a&n1LQBsqcC`KY&DD_Q-;BpRj6Fkr^$VLg|`OR|Ds((3a_E_qZYt>So<0iM_{q^}=l?u8R2e6TX zdM>N%_!3`}sMDc4yiIxuN+5Pv>E}wPfjUMhGZ<_rRA0IL|STXiz)g5 zqiQ3ZoY5-Dy6>^^=p@A?C0Y1qM(_y_?LIee&V~Ly1S;Xn8Nh&e%Woq1M5j{ykbS&a zOkx{Eru(Ic^($D|wbsXidi!8wQkJLBOpU*?xO)lRx?|P|M|;yk8S|4&*L`7%*g9sh zR6KqXxi=TcR%&=9xZ`SpYY?SDk2xu4Jf?{FjQ8)a!vJJ=NzM_SJ1y?1gi%jts@07| zJGJ9G^8BTIIQ9{W7b}h|Uvh^rl^Y1W3PI369Pj1|s*O^^=N}T^NRxNl(O)T#0y9hZb>bocBEP1hq z=B(-Y2W6dMARS3lH%0ju9Zm7#fO{~sR4>0dmMdsVJh7!?&Ge^xmzgdfy&c8m&1KJz zmd&A$`8Y_!cg?_BW#@YA$pGB;rvSr0779<~D?u0_YIX_D`98ov5Pf-on2a=x(Z+if z8z0}uiC;cp;)z_k8vKVxqxa37$G!{eFzj#qW~Th@#rXE4SbXn8+UAP#H9sOCqx3#$ zXAywx3Ivh!O_PzM*XDImjv+Hx=FrKa(d=B2(0Bu92p=knDr znx)=nykil7dWMPusp<=0z4u(cCyj^HF)|#8S6CEC$-seEK+%}2s_;(6y>gyeCF`zb z*>Jn`$7o_|XPR1Mn_#v^RK*p@PQyf=@XuH>UDqTw z#x8GdRptl3+jvrK4~F!BlF}(HB0o*odw8fZ04IN?G$T1LwFyC)?mU>SS!;O%HXCSM zQ_)DtpRU@(Or@`uz4{YYjd3(p)Jo}nM;1oAwTM0~o)XRcpKkf)LE>7cbAD7`N)2D+ zcPi|D)1ka^`sJ21eFW?O>oB`FFqaQ2KjruK&!TkqQRX($q(zu|I6b54aS^onyuidC?-|RLl99(~xc< zv$u$fWTnc<0$Q~wxb-vq_W&j_`@9>0z6Ch%MM*nAeEiZ9%zCc6vDB<3irCoL_C^s= zrRxt>${9Mg*x_vM0%nbO_!oH~?s#|}$s3b{%3Njb9lh^k98r_xL|{^|HBPP8DRfagxh@iW*ZT zXhclIBscQ_)z4s@*Ks?HSZLIVjo0h!{}(3UQB+ZLT_I35U_B-CDrxbDy*>QxF_=Kj z^@D=)=Bk>8MvPJa}fxHrB7YufdTT4CDVBAl74yxR^gtZ z7WQk-ntdV48w7b40!lK@3-yhAAo!=Ed%k}Ci{`U$1RyzQ+KQI-NAU3KW*C&teu4VN zV#r?@gde(6e|0>~M@c; zD18Adk49bI{`87E=~aaiJtlDpLbnM$`EAXJe}a%n!Lz9cnG&x>O%`)}HB9*RtgCOS zAAQYBX1U~s-)j7$>C@&9r_JoYPfu{cR6`Vc=Y|gW33X*ifop)$H+y=HNj{jHqlB~~ zqz|v(uoWv$TYB~CE?Ia+x(QL^wE zdzxa+S9a+_#zC8qlD2}Jqvh&em7;Jzr(S)uTT z>yq4e`@}>yBw1hpxJuP5&?C>5jia=hJa_>OrfAD~@hneQZM8LJRB!3GNv0>= zx3U_8sjkufR7<>}cUeF73v2Vf{3M!cDB5sOlZrNO3h<@R7E`c<@{v;p?MvT>3&)~& zm6cr+>up*)6&_#54zI1LV!EIF)~Ew)gE23n7Lq-uDH)<~yXrjyo=6wSa>JBYN)0%# zq=tR_e3O`}QLe;Xu%*&fJ_p8!E_lKQOBc!puIRC@&xns+sjD6B0_VY?LrUZ$M(=7LDBv@l)^QwN_k3I^ zla6YEgvZnDB=;SAeh?uyLlBcs-hAH3&k(~v?V#kkFMKg4`{C$(=CbUUCyQ};gcnyP z-dOa*M{wx^;iAN!o^lC@!rii9G9RVLEkbG~#~Xg#w|(|2&wmvi$Zcb&-inj%<6X`M*waR+=|FK_QgdSZaeIa8?AWS)gb%vL; zPmxF^_wgtenGV#}?a_OZNDVo);_3dXQ_sz(go6N|t5l^#k*mi~>s3@tVcA3Yq=S1j&MFqGIlQVIdV*#YuFxgaN;+RO%% z{_bdT2iOiE`mj7RHVV2pp;AH;DDd&%E)X;lwh#w3-Tbc=EK)JQ@>P%@x(OR2X*Lq$BAZz_&EPBV}V0M68X1y?{FSEx9-PXrc! zEVnTA5Z&oEY0lYjf?BMjA;(JOH6=Cu*p`J?5pB~+CAKCc&?Wb<3Ju-TU5qX^kKuxOA!on7!5{tGb9puZuqigD2KYM$5OLf)EL(O08 zp4AR+s=&d$qW?RA9Qz3n&VR)=Y&@tv<;o+cZBy-nh>(U~lNbYS;6sjSwZs#`=Vo$w z2yP7htxfaIJ@X1e>N;l$;=!v?jI1(-bK9siWmFyUk=2^`C`2O2 zJs|e*uIJ&@EgG)kcz82g3tRPa^bp8bwC%$tNR%8hNkKd3-1LIm~f^BE0V!gB71!}&n3nj{a+VyU__YD;Fc~RXo*G$IAWn}^P)mXn37Ky!k z2mO<=ZT1j5^Z0Mb+3akDFq_>SNvhdmhyT|5%sxqC+20;cS+#2?{6(H~j|>WNTNY~; z*c-E~M||OCu)^jjZ?zv11#h4INbT6W<$ov*U~!HDbInJgpjCdUo%b&!4VZ#(KPtQt z9PoT;`J>|vIr!SQTdjvhYbRAkm3hpB%QAZOS|ql1R952+DFSxTb+FnfSOowy4RzJH zihMmYrieEs1CH4_OYXIARi4?{*f`tR{rxn(c3@VXgeH>J(2!abwJQ*HSlp#R4;>P< z`vtP1^##gJ@TQ38sT9t(*aHq*FBgUygHKztx|}UexUlJI%rJQIwQLiCfy!xP;=893 zDj25YHvDCFR+}@4%HuB2W~AT`=)xn_d-T-&TfcqjXIB$->}!59O+25x;;b4|&1iaH zaOXM5aOPQM2f<6;4pkW8Us7)Fy1z>(VZn8%h^829d>@0S1A9?kpP01c4DuZ4r0)?i zytxr5h7dj2?urE}dUNYhbaNW)XS0bqL1*)zi`q;@ICr@I`An<3ldiRnh~kUu0^7BN z?-jhu%q+*)dO)|r3MJzN(B#6rQe>(+KO=fGVB_NaR9I76`zw#IzL%N08DWY1M0$oS zL_|dX2k75?V!z%)uZEMEDdWI2RaXSz zcD4|FM0GdYcmIT11VrHR0$N1mnrd2pQZSV!@x{(71|fK|7ZZ8@U!{AtIP>r zl`N=5Z^n@z8A}b6;Jy!uY1WPd8tnu$^@%wRrASCPZzLi*RK96jnAG3V>bY0u?n}tQ z=3$R)y@y}5|4^9pYNZR3?f2*N9Y_%(9&lZ(C%*|gw<06WUx=Yi_{3dyXo3br48DGH zY9s=GjT^MX$YMZ5@e;P9qodn;|L)zAAn%d>ffi@!od zR2ILU2jjdLU$pHcL%!eN{r+ZZ)$5ADdmJnK0HZ*5#uFt6)?^bgW@yVcJlt?Nc4h|p zeBcKqlqtnaf5k}bao_Mhqs8$~s!*5P_pgB83F!yi(sk&55@T;ry@kZ}G@- z&dxxpMg>K|1g`8R7}U%wvTxHGdM(5Gm!M(Pv3)5*I7piv9lx#b%G^U%s|8Gm4a6Dj zKs*<^<4ja_JDD2Ow^RuO9NQmTo)Hkh)A=i#)~TAW#FMi|DVQbK$_9APUfi*RD0NA1x}pmwDL}Ji;O-Hve^d`+Z@+^8qE!X~1kCf^hKz6eunm`=HV33U<5J>>ktqzmvA5AEkH;No!h?fHIxV8@>xL}%O!WRUu8Vp;=j^OI8-V~mkU zuSnspM#AL3HstHqo0k=XwT4DL$YnA=jeS6Bo0^z4RifFgw1dOFf~w!`%o#QBKngL>;rf- z{PQ^tnSr=oe|AB?$ErB(_8u3h`l#F>+FgFI8E0`iYG0t_J^$6dq$t}_?K{3=vGF?emtAzXDB5;%pT|-lIl_TNiattH2r*YRX6X|Ilc$gZ zg3_tzwq#Aj9R_Al$Qwb1Gc)I%+S_k&|C8z_V}!`q6&A`sa=$G|p)&_soM_3yT_;N4 zUQ;ia?#LRn;vJFi=^HWdXx3fEuR;_L*IO>Wk=<;vq2()^Xg&OYrJegf)9oL}Z8I9J z3~A+*<>q#44n^clb4a9v%7~mIGG|R1HY&?$x!p+4xrOBPol}`MVF;a^ZDXP$v57e~ zd_VX1ANW2V-|zd!>v3Jzv~*2T(8ITwcyqFbT-xtfxzyg%Xuk+3)?v{tEu>@ z_2*Wt$^?D~XMNI544@84>ifhexjwCl9(=2qn5f-v&iv`h&62#Y<>T-xvfdCbbx!p= zjEOvP?Ut`py3IjN{w{9Jb5HNB!Qk2b=lJ9H>YQy0I$lu1s6zLSWI*X-| zM#)rG@-R0&l?$zte%L26Usy;LDI>i05IdgHt9J}!>r)RS=FZPYHafdPq#RYj*!efe z8N>9ILIP@e`TE_hc?#{Dk1}f>?|=$lfPFftI+eS&_U8S5C0aQyl%FEM_T$b*jEBr} zpmri_ERIuXsy$$?HZl|`G3Kl#`$Vxjph!#hxsE|Q0Bh?LXw2F9wp&SM-!KKxlWIT; zh|@rviL69HghG;4NgXpRzaq;X#E-9ieHhde85PSyX2vfuK>j~g10tr!>d{}kb>UKH z)RI6?CRo}wpTq2DW*o{ciX9mqxjit<(9{UR2H)upKlR1A>H@J2C*CwX#b8)eYi(R5 zz%iI$tUY68^#^O+$8%kvq}=pk>tAfir@{_o#7J0`d(?d^l|WeZ?0^BxwltE*T89&(Pr8YD zcb&~SIXbc3CH-(BZsMbh(LiU}Sqx1ATiw=H{*^vDAf0a04f16UhE!&LwEC=QHQzoRltE3spI{bEW}^47X%yK0FyyDv0RHefKWsppja0*i0Dl zVFp4*;=a+dl}%T0;U(XvhtmoT&}f~IjNyy4raR`4+W?pP=%n*Wi>79Skkni;a@k<1 zNLFtzTwt?TQL!A9s{6&&$+O(GI%_a!Y>!?L_NYi!`1o@)m>P5!Ta-xdsm8!I#H_vR zWBzod#{M#v^8^g9TX9N`s=s^C>;Trbwv$6k^&a$skapU(Q76mCxj-zwEJORu~#)2K1$a{QDzXw+t~ z?;In2MhJk)%!=tFtb>4WX0u>ou>wbj>9`;J`mE-f%E%A~m1AtMu(|cxO*1n$mlL<_ zCm+50Ygd1Kgb9En`!`r2t)(m1YP_oItTBfjfh{-g+ZR`b^CYINPsKBl)Umaago3`8 zoD??BEEpUd_#~5Y zp6~YbGu$P4$Jy``B7;6Y0#SvKfLv-%PguUD$U}_xIIIO=?2GD%>Dkgu8-Wk_a1O`3 zN|8DZBuO=FCMqAxmJFsqjq{?2F&+0SaHGxE)|tHz9L+}?f+nvOS&}xWG3G`dqvE@E4Kx@Al@XY(Pcx+fTelQ+_PUf?cd;|xqTt2y;EEJgg}e7-SZtnD zDFw}{q0DwHZwR5@1_ip$gl+1Dh7n8rX+eGDtM9Q`DFil4Xe7>t2-Wyuycnuen4W{4 zk~wtfiOPqGsa>Hx-L~xFCO`+1X=%&OL3?8b5jDC+YuwvGoGl*m^z+iv>2Jk=w0bEB zzCYTw z)|Lv$&CR>Kf#@Q99s%@uJ~CDi^`_jkh51;5U!lwcbY~amV7V(9%$tH+$hn9M&G;0v z&QCh%wl+bsGcGZ)b_4nL>7O{90Pu*@chJhGftOMsM1sus{SZ}RI5MshuM&&4q|SEe z;qmm`9zTtP5|O;|6)1fMYq#>uF$8iCoswOnl|_<8ynHBhg~s-@_OC&?gQL*{NBFZ~ zihu592UJC>uD{3b&zvH>f;#&(j)mV&_g8rsx#inbo>YM|b{R=~!IVQ}{D!1M9+w?x ziA?(j_tfTZ>_(4nYbt%j&3*n@YV4Pq>p{KIhoJi)5E-7vVtdhd{vwm@h#UG)PU2l9 z!$ddwMijTjsh&(G>#+mJ#c8CfOCR;U*ee}bcqJvI3Qu|!3749E?ySP57irKTx!;^f z2eN5e%Pxj`-ds^A9GE2nWr1PQ)o!?y}({=61J&^98oHrDe^Q@AOVwLN?ov z8oFD^%rUBKHxn1;O<9u3LqdIi5-?n7Soi4$B@VH%a$qM{b1{cx{?nNJ8(~j$KkrC3 zAHhY?69JX&TZG6V5X+X2)<7v_GW(?P`vX-JD%|Z77--HoFpS|>`RGI1;>7Fk$rZDJ zksnB{kDW08rM_-TvYV3Pf8dX-+#|&^ae3>hc;$pcJUMQNA7{U7DqS*FWVds;>4{~^ z1&r^7s(RTkw~NVc?Hcf)p9cA-)*w@Fs)*5)OBr=0v|uQUEH++4{ z9biXW@Kg4|I!NFp1oS-~G;v})L(ywQ6wPd8sMd)Yim^}sXL2?A7HG;LCrpNY<4DJF z{9DV95+*PcQD>M3tq8IeO3%L^R{k~-V5ss@IuHVU1D_cawLTw*Q(UAM6)uzC8a6`L)7WMyB#sXjAd?9{bd`WC=1DQhx);e8Fyz-9% z5PN9*V$TJbD{?K z&R;}pOt4EQPefJckIBXvcai6l0(nLp_b#*15bgS-eWM4(gi2!xR`W&Xl$}{2LuGLw= diff --git a/docs/reference/Rplot002.png b/docs/reference/Rplot002.png index 186932fc0e97b5e77598a435d87eab241dc4ae11..11d1e806542277a444204772d79cd01cab20931a 100644 GIT binary patch literal 53916 zcmeFZg;!MH8$Nnw=tiUjDN!0kP(T_4DM3KGLAtwRq@)q44fZ&KTnfDc09HUnK~Bg2^G-*=2Wyn+ z`sH)KA*qJ?jJ@hTy^1!tnYCetbpn!|v3AZfH+G!>zn`ADm!1QP@9!q~mertN^5E6M z0lhy4VBCS=JI7l#Df!nfb@ykG3eC={@tbzIHQMU#`AO_22WjZdni-mw?UYOB#l#H{ zx1atQtqj^by$W4#f_<|Pq$kCX`2SzPDQM=81}Ma4`%dYBa%6;QFh#^K*W&C|eL#l9 z1X2x^S&TXbC(HCVy&%3aW=2YyF5+8lKqql2XZ#lAVifH* z^V@C^4p=-=BF3&kDb{YJi|9MfrNQ$EGncN>_GQQ7Sc2UWL8!Cf*M__OZW6SVfXwu- zQ2d_i-(l>`uN*MAb;w<THc z?pQ=vrsN2QqR;O&j`uKys76?3dVchmRFcO@eXVe8aHEa3giF+94gQPf2n{W5MtrUMN{D+U%AM z(;9fqIqk(r_V3>BmsRiYSoFO7?{Cn0;<8`a+orb0<+`D9yXFxwl7!=nhotyD8G@@Q zca#5~BL%a4Uzt?pm!FaKrAyX|(n>X*S@n2_SXu#-Gp^x7L79DGw$ zR8;ftj@I})7}LS4bY8c(?hjGhsQul4kBJ@|T=NWqxjoW&EVN_w?}5;9M%)i_we#L= z5#QY3TcCaK$f{<|*&Fwa^%EWl^w!M80haU(5D|J`dO1q!nHTKHw)^1qA^*o9L_yBt zrVGD^yr-Uz9qC8(2fu@ah%u3x{@=GB$P@m1uVWZTnmG88NB61Z0aS3I$ZOumf5wqY zHo9QwNZ1=kIJ6Bkv=XxX=vW>WmekC$_8vy{m-VJemdxLeV$2TpOSeKmcH{CTj0~N4 zuWM<*;NLSTF@BH;+5DSM=oO!4KPkrLTa6w+Z16OZWTAHHzrSdk;xt7zTzbe)?C}cz zwHzh~X_?O=rm(1a;TPmC&_>Q}Q*J0g0^=eSSy;5#paut#V1|R>8vzY2p`$&Jh(#se zJo^je;^g9YPDgmnCsJpVkN^sDti@^agls{<8qrG;_qt495^AMshu6XUq&kSZ12wL_ zyHzkH`T;krb(bTQZ=5q$YuJw^V}imM-ptkJfWuOJMLE0Fqp=n3&3yK_Lh{yDWSKP- z^`_O+riRK)e)+vWtqbnlgwyx4B}op#ZGi$h=+%LEO-J*X6GX6c_=xRGm0tYhOa%dU z)m{tcBqhPtFdXQ7|z%u!p9K1z=NAMh8iQL+2llku@wfIq@c?EQb}o);lNbBW)>D! zqO{+(?LdbaB&;ov04;b_ZPxM0>Ic@je@|e5+HuY%a`cb%wZR%BTh3WLs`|;B~K+&b?kU=GIjNH1mHSX2LlB?`Q9} z@IK$82W0=};-oIn9ZOt))LUGCIyU&LXS_6!56lS-DbVHDHEpS2AbzW9!=?5=&xU{x zpzHh74b52n@O>S^js*8Xkqv}|4IGRocnQRfdS+P{z}Cd>z>cqVYF-ap2s(qFr$wk0 zS2!pfCFUywKH(0WSN{Zmlw&BE*%A$rrN`}ug40Di5eaYlHIw_Dt){<#}61XbTPBIbP>U`|hflUpU;094p&!62sS|A4Z zavlyoO!+!E^Wys9HU);@-D&mV74Vk~Q$0|DI>l)&(^;zLBa)^6^bBK@kdzeqhFUSN za>j85`3^^zPQavjed9+_qFEk_{2OS3R+Zjm6s19iF7$(T_#F&Q``Pc*yr9h@7N*%S zg8fiG+Ow`8e^uiz;MNL4j^AxF$i>eEf-$R%JK#q$dI6zU60co3S5b}x0M+@G$(-{a zppZ)l+Wzqp!VM3upANv=%eThcuPgJ>6v^BQAkb<*7cp$VTEUXCInV_86 zbYOr_#+v0#>23Bg9JIlb?~MP~^=>W)OUc+)^H9@#P04rnl^^}6stqM;`iNq?JgF~2&mX;h6DQAJ}e@{NGs=A!doS^Irk&kPtwjv+FJ1Tru13gHI$RDlq4;+vYVfW?AZJTj22vL!=Ks z@}JvB=d#1^MM2yrH}PN- zr+&_#|7FVVM6Y#?LBWT@PjLmEBs6eXiJ@=7)gZ9ENB8xYhCJaDzDPmZgNxz_+q)7e zNR@|wAcd@RbuXjATjjC+iL1coyLYmLcMLOVNZjccI;0vTDAvNO3BVPYbLad)Wie8p z0Muyo*PuMKxr@_|fXP$8$`mlv5O}Wc%(FkfozJ`0e=Z}FpI7mi?>>$)HE~_(90CE8 z_{5YXiJeXk{p%NYde{7FY5BT0tLqxgGButYb}{Al{8B#*D~vuOntiFd*?ILl_4a(y zPUbRNpi`ZpR9!=3YlV@Cq;^yLZ8KAGn%Z6mxM7qbAq#jNx)5oftu)~$PwL#PtgM#H z-jo=}D|13r?5_o6<OfVQJ3%eQC?Uj@A@1>V%EDW z`}u9x4a)rb=yLg1`K{$IIgBx+-SeDFwzbBM8Hw0sfRTo)8zZ%cuUW1ZYOZs(em?}} zrGh$5RnIe#Rh-K=C$~?|4@YK?2M6t?TyB*4`=!r^!Y)s{4oGCY4$)oL%Q)u( z9qRa{Qh$5zej6NAo-4!SgHwZ5j{bO##Ay+Qd;)`2{>LbjJASA^D1SsZ@^v zQsTqH^fUyPb+m3QELLN*L;)s*5=iZ?xc5f*$@MSL>{yc|>jGIH$GF4azwhL0cKVJI zGmw=xx%xEj7~6OrTEd2py+u>Er+Rh&`=Bi%!H){qTWo<~V3aF2uAe_!`rVEGbu9}H za^~XsfJZc>kgFBXeO&6)c?K_pUJUOlgj(^mQ7TMZbsoE|tLlI=0IOc)bQEk&@k}>@Iw?1Ur&dv)R7M=6Y^{A#D9bl7iHO1YnzdY#>fHSoP--4S&j5u8V zHdzf-jfGgB?iB1#umQ9JCSm|}_L>lY^$c)FOAqp#H7*Fk%*zZ+y|Zj0DW3ss3K8U{ z6Bo8b$H4%jFLUcyL)zh;>(2r&HpP<2yNP47O}u%K4i=>ThF!1GLB7|4A)D|_;w?*$ zC9)>vBJE8a_m3*vRIx(dzR5TTJn1h0xuPFl*W2er^x^{*dUpX~c6Qp)KU%PtWobCd zYo4osi`GQ;4GYT7?h>--%^;c?4>)>x5nP?0Lu#l*D~YzS)veCZaWqaoZkMrWLPA=7 zHM6L=kKA@PJZ%!JX5M}kBxYlt88^&$MjCm#9CrH({pBa^&1;LQCP#jPuun^jTBv>F^&*4F(% z66XF{Tz2jqAWBDT)G%T#vR$!$GHTZ9E$eo7+VL8VeXhsu{PbexQa;o6hd7za^?V&3 zU*sHtg<-}Wix&g-9&v>mKM?ED?^JBg9VHPK5H)Tm`Itx0N@lxEf-o0Rgv<7jqJF>Y zg#B;GXC0pUsm(d4UV5E~T7!uIaMt+ggZ9bO@CCvH@)xSySE_JqSoZU<8)JCd(8W$A z-h|)pK|bC;45@*eiLknL>YQ$8vl@D0?hPHC(Mep02@eeqU478cL2xI8XgP(*1 zm2^s5(mVdzjRS(Pfe@tcl3@BsIz)ban`^68iw6$5G9qI|Cmt>Gfl-|Kc?UCzX7;B* zrrH|uXHluDb*CFYz-;zFi-0gVZ0dHk)@&cAmMWGjMFR!73JhsBo@3zAWa3zz|oQ_tAN^1_PRJxth?O9yb7x$RfSlw*r;L1k?^CFmuE0zmGl#%=nN}ISP!Bp8?cp zyk_t7L-+Ik#2~OK05`}x>qC4P99Qh{T78@pXE}LEB35C;R!A3?Z^m-Ch0Oro=c1a_ z^WI{;N>RpE1}&l2$Uw9!o(sevV}`hUYZ|I2s`eJbh=`;t{}fgv?NIS$&Z$MUZo8`G!O^?5F5(Z0N5 zNvZD?N&Z7qTI`KIeJC92mRCspF_76`Cvltx$`^Sc&fWV1h04T_DJ-Rpwj{EG%%%(- z#QD2;Q+u0>LOTmt2O*`Q>tqsHJA=^9(2L``(owFguHXRsw(+{Vfo#YwvS6kIX^anY z8DdU!HOu?=kG87E^##_IHeiE?1Xaz13zp=bn43#Rpy;&}_9e`_u2d0^GrI~J*-4RY z!a@`xLu-M;=IA&QvzDTSwTuOI=Io1g=i6PBR2>3bAhu>5((OM_oIJLsx$UaFNW)oi zC>4L~8X?*IN`O=Et0XY_o8PX; zwm2>7bXXYveYRd19D@uWhk0M7DhL{}R1ZsLlF(yjVoJ}jq3IFiBfjHgNUgXGrrfs8 zu`|<^Km=a}Azx*~IdO5?Z0ho9NSOO}A6?aTvh)QVay_G+8P@@jNb+!)8+w>{9&pgE zu0FU0pZw@(VFsU^sZ2`Thyre@4%}kwCU5BuWMKO^H{1A^Igp=UhmTO3$m>UuVx&8a zEG(~q(a}A>5)5}!W%kgS5_8zquJ*7@TsSMgNt4GhwkGWTPl25AfdFJ3-e;hkk;$0n zw0=!YT{N=|4})@a&3}*zDYTu!BX?Q1b9}1;%UZT~F57rdxf05~_G`wBq(_iF(tc(b zw1o}6_*L=4$l3`YulihLC%gl_v3XXNsd^9g=jtkn4~GZ-6)cG^`9^qh#5`77yw=C0 zY|*|VafJ(iR|oQp5dliHwJvCIv)A%fa74zueEITE5f=|4-ilfgY`vBky2O#rRCC*x zp?8`Wf3Y2=XNy)%oR*n&h02WJis?Wrx9&gvtN^{IIL(``&Yu`Cv-NSif8WzI;(rrG zdq6osa3APoJR?2m)8DxE0_55=YFBaR+@7A`JQT|M)8Q7p>eZXkr)tvV@SOZdA>bD5 zygV-ZxjSum-A%TgV;kkj|4w@i-MZ3!>eTq|OL;RM=srg){I(EK_#|?#h@!^hkQh2|~*$6PLdr2l;N7Hz##oFnKB8}qInEd%y z^1&Ya9s8Y(-SzevBWE*?PKAH^M3Irh{EK=#Q&Vb(p*~Zw8d?HP$Byfzd|;}Z)27Ve z>1K;X!P;_XJs5Xd|MJ3L`Nu=sb@!EDYq=VJ#cPK!86$z}?O8}9<)cTPiun)WmEigo zf{U^;RFii2G4M7C%+;Hdp;AN?dUYB_tTA|V9<%@-DjgVg^znk42&_ZmPJc48)Qm($ ziC9TNZbUGzVJ!IrQg@r~y4>5Hen4EnGqX|3HQ;mLjM^Qz^paHk&p!WQL6m5WI|nL_b=I*?!>R6&;u4x6ywVW#An} z*%T9>;LV3jH*TWc9uv*xt(=-Tx(`UCa6!a|tc!D((*V&we?9_zJsvU26Kmb_jCHv{ zSd3Wn3O5GzE)3|5_}Nm`6wkzu46Vw*1N+`hG7;>K!UF^>M5g5%0#L|ZhZ-ck!B-uU z2R*AqS`@X=Uo%4~|KSx!QwWoa{vyx)giHtTsaSqZT*4mrzFPwjq`2bD^?v{pBa9!L z{16>QDH_2VLz27LlAE?97V1?Vc&A{0fAHzU-3%X7zcX+fw;LWK%%rHRSaBx^_tAZo3!})!(UjtR(sVdX2 zVw z!=t~&^+L~89%T2`yR;jTjnp5A+&ft&YF*LGqry}jz`WoVC+|Q;X)#)FrQSH=3*v}oWWH#pp;i$x=YWkLQC8{&(}$1VXEaQ z@q?zRKInAT(n;#wW3zSxS$LyZQbPuwiPL2pq*#RaxYa3<7Naq~Ph*WrTt575-4*A+ z>ikq>ZKh>P6KWz8dUY0kk6w$~M~6tQPjuQRB*GV58H#EJtu&xjC=?wC$((+@E@v=m z%j+vwUar3zS$+I4?Y}{Nzq2kO2O0avGsbA(9S-n|+wU|t?!=p)b+0zknVrd@>v$PGH9Z{0-eP)qYaBXb%2K*#ON*y>mYAs=ofBW9LD4O`PhZaaxm!g7roy z{)^?;U1uxtRevADso$*=!CuwTlYnW~5ltg!AliAg#y;M8dmZL?vsuD|^ACY0Wfd00 zpsOXwz+`GncDzWtCl0YCXv+tE?@V3%L5utG2KHa2a6kH2B8bCWLNxNErND}{vB7R! znjEtMM1c|437HrT)OxlAfJlSG=$9pD5qIIbBqh+tRy_YX^y0T~cR?WhUi5df&P6S$ z4Ma5NY6QfVR`bqZ-)_3lPIm7GwtfMJ2pN-wz3XrtgKAE4*R`neil_kGA`3afa&ARyNVyby{HM>-nhNW z3nO#~Ee$)GU%sev>o_R&AQ<*%zt~1fySo!4qscu;|^Y+c`OE9n6^?$4YCF(OXp_M&Wz1vA` z9^x6#=C<%i;aqXdQR%KeyR?mI06})V|EtSHe4ypmFDh8hD+F;_Th^-{m6FxZZ32eK zR=V2MArO^zzB#}~LXl$T46gAHIHA*s5k8OB?3eN?#_?s{qV9?~s%Uk|+nG!si4 zh%c0#joOY#ZO&|4k&JEy#c339CnmRP5AW>sDiG5OGs@F=PyeCa6(epng`vF?`A2xb zm?O7z)b=D4o~G#LDgZ5AY>&0S40ECFGBPzg5efLaqA0~SbcPkz5F#r7m}7&k18S_S z&k|pf=S$1v;UARGSi-CYM6(8M?SOWpQNjb>zK+wM=uf7*y|!DS@Ou5|0$NM}TO?v< zMc`$;R@ZX??eq5A^dk-w=iTXT1B7~@g#`qu4!6a|Yw+lLeH@xwnsVNPCA%n|LP30o z>bxBWcOc4^TQk(F$P{SY5)PVi40;&62fq?fRi`-Z!?{?IU;P~*sK<*W^?Dy~K~e>9-$ zf2`>|Hm-D$ys$PhuMq^@RuO~MwBOHN-&FAzw}0wB<)Hc2px1?n2&^W~X6}rQwmer- zQzjVY&_MT91wktYY}AO{=j^|#io4S7cEEC+X+`O7gT!}=ijbFE% zQL9093%QKmz_6#K<>n4-CoKM$ch9kYeYln#o{=utJYDI7q>DYAbQ{gQoV67YPiL{F zcG8`*e+YEj3Ri`qYvGcZM=0O=Dx=)`=!y}_0k#}sSl7j}TW1Te^I@Fetwu2GY?6n_jS!9AF@NRYI!q$F8YtjV}`3h3yr z4SKG1J@}7hH7m$u`H<^lIYHDmkV>j~5XW~J;Mde^5z}Y8Yk!*5+U)b%0uW8j@_NHf zvGT51^SAC21vM)iK|9PxoxoYS=7A{l~x(R{CYE>h|VR2^N<< zgt-R^U7K(Ul#j`l@FZ*2i)Rn^dS0BiOkjdjT~iy}XspwcKd;bR)S1=T=BFJcujUM5 zBGC;xuqGe;svrpGQ9!p~dl~Q288)z_Z!*4K+oSx=o8q{?zuTlGwh@Zjwi$-dYy>P3 zIHm1)S?=)oyGIE-oLYPYU?rwAR=ylwA=~mHpj|4|q7DG)9-A%d{J6ty(|Wz2mj<~0 zY=6$8m{OCs6HQ`7_{1PPNo~61;^IH4FlNy>=4}k+KbqT>BVxDpY=$SpM%{^IjyL@R zjNS5Ej^;_*{m*hDEEL7H@^R_&#ig!m9H*up)*IsQcilcvgRGWHJnoZ3<#J3S6#itZGOm_ z$qIB9*KN|kKUe41t-s-Eho8*C$i;Vv_#(M7I62~gQ|TKqV8-86m2>NHEHzn=yE??x zc$q11uVo!fpwcUAB&=pQKVwlpG!$!692ZEuc7TteA!Q=O5+cs&eZ1bTUfIS^PoQN2 zHjHeM2HMsywV*t&CI2c=Mq5_YFZm{$11KK?C(y2=fN1k0hI>(L=|}5bz73a`Gg~nI zGQO%-J44|Gs4Gvw^yUYk8&LuBd-|`mb@n}h@~J8FdA`gcQZhNo=n7X66772TBir%T zs3jukRg(TzqHin7g8sEfj<-?MB*=~7W*B!Pw)=5h@7_uFY1DA6I57i)bY5G)UYRee zb7oaSN*RX`WBI&q-u$DeCAFxRYVWU8!Itg4kEOMTt=1;tp|E#%IX{(IJu$;Es(jM+ zn?tuuhhghiAZ_hG?GMO-ZY?aQlEgYKCM3aB+c0i3ds zC-Q)5^DAzty87a%^L z>-Q7aZtU}X*xGQqOP=9Bg49@}V_j+$l^22_wBV#_mBAeG`9uhu^E*puFvb;aqmY`POcaZ6+zt|N6z4#Pj`*2!r^uqjlJI_4dshO5EiE&tEhTNG!M^ zKVMOQb+zApm}-fhnmYewc@OX1hK#$#@k0D#JxI8bdgpOa*J*lYUck#^Ch_BIBmv@L zzWTE`Hm~dW9Ywp|ZO(j~KCnOdGiX1L4Oe)5JRW3mlkfX4ZHMCdCyR=nPSE|l{JB50 zhkl=SxODNS@Q(cPcv7+i(88|NevGjgJZqK;`nwXlo*T6HrZ>HN0Y~>Y2$?cyKjSff zN&X+80g{XW71%`VNkjJL&t{y8vkKU@yu8$iy+DL0tTFA71f;SDG(L+xsmoez^x6dZ z^=+BX(~jlfas7}PQL5KMh(sI$^7i?o_O1!2r1#5hw)^WIvVUi4spTT!hve>J?t2D54 zUVUvXYN;HJl3SJ)a#L{LIkl)w@k5KR4H8>g{)gKSvDO0Nj*W604HT^QB5&!uAN;8Q z4WdXqeHDo&ZNTdsDH7T8nws>uwPI~Hi)R%xxp+s|Zm2Zb71x2l3MM0F?!kPi6zU#E zz2fS7eq~x>EgvsuWNB%fAZY&6ku_-pZ(Zk==yk{L45nm z6ip0D&oxJyAK03jI{i6jSCOtt0W6+=5q)NMdspUf6#Me^5)d%I9Jb3Cwkk@?e7l*K zi(fiEM$B#FxHp_$B-fyFe&KV_{z%xL8@?uM2^PACm#23hrRtR%90Lpu4FeY!7n6={ zkMzRp31>Y)I{CZ^Y?^6ncWUkal9$-6>er;$p7t{LoOIvk(brMXI!>?H?~n$OyFIXv zZg+4wZSADAN(MH0A)y;~)m>LDQxB2mpmjyIh1{@fN8pc(bPE3`QEAV}WtgR$SS7O?&mZB^@4s zkRh?nm8_ZkN(n=TgzImq!_y2`41@R{x;T)D+f{o1k}rs;y*+u0mbILZLhx@4i(Q)C zUTp3ZC5P6#AO1dOPnOiy-8VL64(_vJKKNoc@vgI3w~lPIV)^RNa>!Yg+ch2_k?sh5 zSAVsk_YQaTkIN`?hocV*5>sJ@otzL2J4zk|lZA9_krL+#xH_T3zDs&e-CI@01VAAx z<|0dYU?KV0lP4)|CS3y7)KC0Z6sU3KICQym0EYD8YlKS)gm1*i_0dy3FS!aLb)x@f zbqAc$u0*v0yMEZM8K(LBHzFHD|Mnoy2U``(B!tRFQN><6q?6}NJNpxq2HR<>%fAOge?R?oNw=Dw`Blhuk!f4@6!*i<{=k^+TS)axB&Ah-$FqWj%eysaNj{G; z3L?DT^TuJ8a?sf*61r%Ra>OA-xv0;XfZ9cu=d*yn*-xjt7S`?c8H2XQt0)zYkQh|8 z+bVA}e;`vNwgmZC|KQqFR+q4#ui_C>%j7J3^M}^2(Xrf}W8~wGV{JL621ckeWN!1T z!K1;#dJ})F+la>siF5ix>{?_loiWmd?$qpa8d*NRS9LIh}wOg&~t2%7|OLbiu@15YKjf$0SDzNOCtWJO=8$vUC`Bo%@p-tnioQZ?4OufZKSt3Q5+Op31mv3Ru=C1dG*`Ae^4W(X;XFTypoZW%CcnfAl$i1Kt^GPY|9c`=h9^e)LNsgqZXokN@#lpLoVx-{ z2z($S6MuBKZa^$-T#61z`M&N30a=#luXrG)_Jz+P4XE&0X3M|W((h`W^i5hwtuJz< z+Se3Xfd99(9nWr#mNXb{!!xGFOdJ`d)K1;K%k&zF>Zz|ZnXo?tG>pl4VTfa%H*b^{ zPPJTrsJG>3kNz=A9q~PW_VZJ-f|j>&s#1Cpx_Q6zl6H%SkavFh^+SbW75IS_q`JW9 zZh5rWa~((X%evr4ks2cLIj^?LgNS@`d$fHd>vhgmU^)VH<|MhC3z^{{Jg^HHq@Z~F zJib69OWv~GXRjKqxsUch_wKG#Q(1K2?_7rBWjuY1tU(!9{|Bm%m`L1>+0R1IhKt6k zn-`9>_K#A>9BBpB@Xly0%-j8+#8P4Gg`qo_hJcc8v=NzTrg7aEUFl$N)g)KC32d=5 zWK}-K^7=e2yPPW8(#Y>6k7-9>ttqU-$VFwk!Uc^Z?15#vNVDh{4EGWb4tm!tf>C$9VcMObZ^l~v(t<7lZ1 zH~fiI$J(oynGf239*iGBb`baV0MQ(B2$&U4`JS_kGaiJ5O$pdbwImeUtCJYK7AoR$ zd~D%qjH(vUV2}Lp^D3B_^#@9cK6+k3q=FyQ>MKVtH+ z0lHtlc+5z)ecQCwTBY)`(7*&Bl%!Y)kIOzfiU0v;1dTB8VZN>D5mMv9on@yqnqOl**{s|;R!Inc0yczJMgc6R0)-DrpXZrTY3*2-sm7-wq5 z1!(j$+&LdpcH|Q0x^6{t7OBRACuC|QUZr*S&G#+OluHOs7s}b5IW@lBc4@=&)GE4z ztbZzlOl0>cYvQkx9pNv>^Y8h~$hAFz*nP$iCVo}bvWU8ei#LrGlA)sTv_cVyZD?~y z2uNOd3Ez_+f1$kTME7-7jNhptWQd5>S>!D{Yx*azuRxHQ8Q~L7`28duIko{0qtt}& z6Pkv*BrYS$p>QFdbR*7p}C;!tzPF-`tZkCjorhw zf$PAWZ+AJZmyTXS>Mu{0aKTbV+z5sysI?k>W--%y^+mh{l!Qrf_e1xjZ?1x+?Vl=J z3t1R8Stwd2-FHv&pD$b`@(yD6uhD+)jpl4mGx;5Gr&9T-NBf=Zg4GmP)5aImi42>n z#`Z}KRl)fr$n4tq(V42(!J-ao8P`wRGs>n zx=6VNX?+~^M1d4wq37XmmEAwiEw09TUtENx#J7~WB|P6Yk{le8Y>Nzm8!^_ImfOZE z;6oImyW5{k6wN{VJmij&Wpe>Qkedmu)r*^25s{OXe>Ax5ldiejL}NS9pLBt3^}VA` zrIa^2v+hV#o2?-V2@ebrvwv!|_n^ka%=5^g+5J}|(8sQ%iiFBuAm6E2qIF8XxSRU1 z$kInM;#=lOhltAsuR4KzAh$Ar5QwnDZQlOA)cgb&R4WsrJ0bB=&+}>OI)V1ubmfhF zGxPR<%n`KFThKj7vek)PW;Ur^d1i3!`S|#_U$KSAEUQq1^wd3|X;i9hScH3pK1ENJ z3XKT|;jiAK6V#WIAyQJ-)%Eyl9`8GPJWzMH#pV>({iLsp&=beThp-&wR|Y(-^T{~( z-Bh{XzZh3TTJ6;oT5_iH@?n(Ww9m_QK5T3|$?^tv&RET8aIC@;Y#ZzhN&V6R5;jjQ zYTZc6g8GLbjk#oubGoGD8={=f1I_b0E?=8vqrQ@dfL@Y=soGz8aBNAiAT0 zg1&B_rTZSCypg}6%kWc%X%P2I>SsmdC=CMj+V%_HudFj9@|(Ad&pi?rqvsYqs7=!z zzaVj}Pnm*?g2K+cWj#ia4(A_oGiwe$r<7fOhr_-waz|cDSWMZ)mzItk05x}H{1`#f z2FkE5BmYbicljm41i&xv;(G$E#b)!~Lq6I+nj35I^?7;L4D*V{#dhrZIXceCAc^t; zod^R|@5{MitO6g>%S)y431ypNBhc`iL=1-#_gkwIQa%P)`5b_~M3_#1SX7fJZO%17q1%4?nZ zW-(|v=wd6g^B4=R#0(1csrhTmAYqRnn4cD%_0})QE*g!TKFrwK?N;d5Aj0+k2$&2) zsmYnI64nEBVMbN7w(p}qSPqVK-Co{0TukNJh6!Xs{yW>T>)K{nKJCmj8L7{#f!GP% z%h5LirJuTV$0_VepX6gEJU-{bpDgl&9h_xMQS{QQFSy{ApnjhJk+5g@d)XU`S4j!& zb*ZaOqT#2svCrmf!cIbqv#;z&Nt zx!l<+5?R=R9=q&(UMUYU6PKEVgFPwZS!z^;;Mcwp)?3 z7|23hnsf%Am*%{p>X$Q!hgQ}Le^w|=8C?4UfPx#f6=Rb}NXw4SGS@dt`E+ouAo&in zFai&rSj2(Rc>@R@-%Ol(2;Vy-pwPhSNzcj>_4W+rw)s(C3F6SLIkfIC9yRg$B^l&K z|Go_EL%4tkEjcbnUE5hULSeBnhxuRtEr7pfmQAp_!xThK0 zJ}cx>r6p%hgR5osPB@w2@FA{R530#no0PdPrH{#$ zEg<*(cj{hih-T9~vmBx&XCmep|Lmb5b8Zb~eZ$qxcvhDJo;8pWI~5Ik<3CmKV*b06 znODWNBzD1o5|@Up*M_aP-Nx|o<4ds&BUGS8)wt6fGj!wvKStsgsMVVD)H?qg_nC6# z5DsebSk4aL%kXtOVv}L&Gtn8^Mq!5;O<$8{{>%0P$@ZAbO;>^zWun@dj2`0nce1UC z=HQlH_)eO#{s@%k{Q-6TFTp%@&(0Ek!pS#s@fie8K%S~HJDOTi%aqWAM2rpYytNg8 za0zQlJ3Jle@4rZ5k?FK${WITSmrTfJMt|?#IX)U;4&C93bImCE@{{lbGXpV%krF|R z36$FGUDwkQ*od+gdVacTezPX}VC{M|D#{PX3lyzJx=e)~Z@~XK&eiox_JBWK*G=H5 zhxIU5IK9pLXaOK0At5-^1s%5akZO>tu(NjJA~)C+#hPATLV#}um}M`u`PE-H6rb)& z#8b|d$wTj8U_{)#yS8Oor0>NyJ5|)qJ58$LR zm-m<7qD8c*fAJYfKHvR9g-{3MwOY&^^=Ug!BG`8^uV=`3<8+x{hUZyzK-w|&^)U!y1s%*=R9+r@A-TfNItU*ZIq&Z`^H&KQsq zz&2gPuT4s)K4iepiBSAF7g9syWKX1o!k6tIMp6C%55H2^`kh1As(VN!OI6iE4OQPlQ_XRp!q#hs88#ZIbqO+;l=)M~O8A9uq#LnoJY(Es zMxiMd+$?7zwa2W~g1&ZqmL0cTRGP7+szR8e=q4a{rE%fNM zcx>Y8 zYU_DB9>%SJg1_$a{Eu&Ieng<@`zfVbq4&BqK3k_>`JC_x`A3Fn_B#Bi^F@T;)?^H8 z>P6slx16uU17btJKM8Db#c2!WG6#D>y#wDkUe{}%w3tvXu1|Db9~r|-pkS=FnksDjwo*bvc|N-Tt* z)S2v`l*KXW@Qn=PRR?ih4zjcSJU!?MBLmO8>?-@X?tR;=dtzE6@{Ivn*|q%4pBj03 zO*i{LS2(=ZE1T{vcu@xoyi08b6v4*c!q)ja9!Nt;vxzR3Rm|~at{ykOgMd-YpV4F> zhZX*PQ(nf`_zn>u3QFOsCadqIH!zgJnRI|j#{u<+R5cLX1BQHH8XX_Z#~D|cMp;;( zR#(3K9BXukm9)oa-&A}_oA7Tbxd>S}#`b)nF$f@5O4id{MX8tIU=4*F^9nDx@zy*? zhI2dIe;IQqz3e2jz?}V+CDihp+8)qMZ#Q%yjs*FipM&%w;a{o*t+ zBbXXI15o0r=uzPqv2u6+mD1F)n?t}7-L)V|-D4j{!0}v~EfN z_{rA&H-I^oM%`MdpkkIF0+F9Ens4Vj3|$g|kn8%;i>4A;+K@XLvwlFpMoNeJ4r1@# z)etIMGUm1YL84#%b@sKBurSif8sk{%Gx?HQ@tLXoYeTkbIwkRH zYa^|PqfwxG0&k3%jkpxT7g-DWY$5<2CK!F?WeJJQ_y0`@n3XBeM<;{&)h>Ki;iuG% zcr`l3Y42e@88%W~>%WIe09#IudVNrlBQf2Ya%29OXrtaG=nYuTv|kfeKBw8{O z>a@HTO+TE%!FeQ+V((@`@u6W0`z@-%BV%Z>7Z+5LWN#^gdR?6V9h8-|9cM0NwXn6e zHuij%9+gWZH4dR1sVBYfvdImePxL?*7%kJvS8^j=HuY3ihA@HKU26R`f#pB`Y;wz2 z)X#kSs`x~ve0&@8Eh2sXX#EW^&#ojneKrHJ3vI|E@D^~t!xeCJR23_~He02{3yK&Z z`R-@#M6B?Pd$#?nt@pr&U|1=cnV*QQe>8u`BwRRkQ_465M zUjn}hdX`Df$O#lv(mtLm(Jpwyb&TUbQ@&)WSn)ux2I_+thw4?k=g2fmzQ+!xu&c99 zM-=E)=uT{-V|&S#TC1dm8;U2B(u72VZm!}4R5UmmYR5KUpA~%KIP-vR^z?vnl8PA;aKJR|^e)fLDsY7X~xi%OLO&fiV9%TY5<~H{MGujedG9eDz*IcBc#;D zLcPo844{h~zEc3EUVns!l4pDF&(%#dOw}gm%8@k8-J)uh;0afOOo!Rrr|-F@{}mR! z@KATU5M_iscUsrk9|y>0eRwXXz6iGJS@ad&F#{&h!~I04x)_&!r>3N@{MzKfRjac- z>

AX-6m2LAgHgY&Y|&MCTBnlSy0<=PNH&a>LyzA!)h}SymiiiUR)NcE6CC>9^!< zAKo-~y6Z_qJY7B%@Rtrg1eOwQtl{46ANN<7;(HlMN^ez!8Jjc*twu7Xns&Z{BHN9oqD zb5ZZQ6iJ(4ThG+RO&(ULnE2o}%Z_ZgTm2FAOc~S*-}8pr zHr_9L#i%}eu=;hB&_KU8FA<|oN+)rVT*W&GxTuTX7g=b?BaXtL4X@cGJX7Q!hSBjN zk>?;^XpTa}4;Wd|!oPo>Oj$1MbJI5Z2#T$coAs)%uV19KloIQUna(aOG+U|1B)Y39 z=y|pCgL&mpX1*=>4>!&+TpR9GI@+DlCNoX`w}G^3tpz&PHYT+h76mjkj%=5vYW|v| zw!yfgmn1Cp8bbyD?7fmsy-W-LMdPYIse(A%9O^_B-p7eEmssV~B*RiyShoqEP+Pv4 zU#luFG@pX&;Cgtxi)*FfiaI}|Rz$$)tlCD18xlte!^nwj0I!@p6|CsQ!`#ewra@46 z6F1V+=ML}T@0o@XaD;(Ai~71GUl<(~G*PHqsH+0=h3AcWI*S{YnADeJ=CJ%T?%M}n zN!ZdmtE+H@W8@0PX2z0^X<%G}$`TFzZo=W@Ki`hmgjoU6IL`F}dDF5Sjj1@~%kkd_-BPYk`{Y%~a)HTEua`oR*$z4y^__mmKyR*CVR2ey)c8Z9Zh zo;%Ntgl?qLxOVQ)x9Gp<^3LfLvGV$g#ay@u4=RK2@A4;GB?Y9n#LE*rOp`D5XfLU* zF2{q^*Nsf{nQwTMxWTT43~8p1>fKNI z!aK1L2y4+}dHo_|s)AMJ=UO#sWmo=huOPL3o&VNWx_v;`Iu|ipG+&#^2j$=D+({px zkaS7QX{n1RAZ>Pz$Mf$Wi{Y^HwY6;%6VR^i_Jqxcch&Bd!i`u)QILd!eCwi<+WP!W z9B6ip723PN%Yn}e3IK+1>#2YJDl93Xm(Z_ zuBJH1RjUex#Q&xq_4+fVuWBkW5=s6@eaP|yBdHR$9rQzKlNaQCQT(#Mcz^rh-141< zmt)`3(xWg@QbTw5_K|9ecFkw@nWnDe_&q9>%O>=Mdtv%alZ-t%jxHKf7N157a?u5b z(yUjO6h_lzPFpk7`t4EXm7;_?{MIvk>3SIyaU(8MX@%^Roo=E@S5B&;dw&zfd1R`K z-3>#HnqsFsJq>YwFFG6Q{PHUn{AgD1??m-PTFP~4|zXF0>p@8#?pi( zBuFY8n#1_rz0r_V#tB;MiQm4NjWk3w;ef|A3<4fJbcqqOokctan_dQPagX@?z(qPa zVKYzfTuT;I>+%X$PD*Rttf@_PYZuYI>n*Q9F(knV zj8G#d+nlX)`cN#ki?1y!eAO)8#HhudZyFfvy~2u>!$wj1FIK%*!?Km1(j6X=NgRm? z@@lqvUj@=G1cx-X4@DLFNoIZ-O?U+w7gVkA4l${P3|5-d7Co8%UQtK=fd={p9=6`# zX_Td!E;KsLhXmOdQ*pR2Cy`K-P;Q2b!9+{x%=} z)BN@6RkS%trIXN)>`t@9wlp5P8s;Q(3Y>tR%4?8&;`g=7$->O?*?bpVIYU53CQ$wX1 z#E9*uFegH?&1JdOYU{Rjj`%wzK;l0k4z&uZg3_1hdrYvcTMCDLR+Hv|Ej;hh<=&7r1y%-ndLl)x zWxdoNW@{uSrZ*m0m}=JG6!C8ClzKRjCo^({xFS0-``FhkUH+YdG{{?z7bN z%!9i>CUuE?mg(6lrK)YF>ak27Fxix}9U&Hg%5tht-7 zZo|h{sKbW!Re6uoi^+=!p3$Ezoc$sXEqq(N>0JH%n0GpQ17E@uVTRwo`+9MubWxI0 zI=i$%Hi|c1ac#I2^mGUgGMSshk)Q*QxQyF~5YWT1sk(cH z(dTDBKq>6(2X3)KzUYsZ&^ z5uZLC)bpYzRqzkn+uNUb6ZX~>XHVX}oJogt*Y4I-a`g91*?3OXNxhXf(cpmWVd&N?yR7@4z zqMaku$7S6k06x5}VBZKujtCAWV`s|muKWCh?=G<6&{dz%(Grgd2;1{}k6#4+ z+h)wX{`D>$ZLcJCd)YF!DVo{j=*p||0l2#a~_91TjkbeL=pDs<&mE+^%Uh~S!zeh($jG-=tINzm}$EE$l z9lToBp4Kj(s!CsB9+OGil33U>WPbXjqBy{MnfoUO?y^?d$27@}F>Pt#2z^tS+lBLQ z=;Y)999Y`gKqp9d*RLAv{g3rFN8X+Lpdmn9trH3OaW8c~^^;Av_DPg}vka4UX`@Wii zKGm0G3DG?pu+W>LZ8xR{N>9i;1;2Cd*M>H2GwHuO)Hwe}s@?-*fVe1TpzB;lEn5OJ z9-t!≀#5O}>029 zqYD42)b?U6kJj=u?MMNv)5t{TAYB#0)^?V8@t0p&$(P|`Pp?m~0DXM{P{}5Wh%vpc z=M(_Mh=vF3?i73}D#$`!hzQ=K{QTzXCHJU5!|}g8@{VlftX(8jYX!VwQ5b=yb|si8 zEqD3EGxU>?fZ%p(@87>P+L25wD{6jtNu;I7bC<{D1uP-KXbFo63T`vuDJ>lWKUhS| zK~}vYpzNmKf85i5=t^hmNL{T2U6Q}c8d|Gq)^_o?vgq%{rDLp2i_;;${9{XusA z*OQ>2i={MYG0$zDKS< z#5X7+u{;bjd!zH*mN^h@aQA%X_fdLNwTC$WhRiPNw$w_`2V7NM{ZdR)G96?O)C&D% zYE9~-SbYUxn;ZP3`*|k|`?>S4<)i9mrR-J~AGrtGyfhfWqn$4nQ7y+`>U|dc(Tx7a z*xkG9>NZT1jF~mT#qO>PhtU2zmN*+gKY0xs$j-N`GyGv!r+p(WC@d^&S`OlOlsqp7 z8N)DA|LW=&XHTk9u!K?+ejf{vNXsj%DsKJR&AH1RYps!ykK*8oeQ-zt4Wt=%aRsTX zzbp7)wYXANUavO-D|!wD>SQN=`}^-7NY>l0k*UMI27bTXr_%0lsbEb8qbDpOBy@5~ zDAOPlbo_{lcz8zcjZU}qd5l#2pqP6W&>XG14K%9MFOxa@z~qwO_*)^2A#6Ym-h}4^ z`<}C7QiTaEG_dVkwHQrIix=a%flb@UrP6rmq!+Uz;ojf0cOrpx%5&i{Ub4`5oxR&z z%#sK$xw8{9Y_y{a%Mjc~n4LHnb<-2`pn@l}#khQxYBEYTdoz}h#n*z3>RPQ;H@#4D zE4021I}+4(X7JIee&OV7U_U4*h|Hqi=ml^~3PUDK@(=!D+Umtcd@d@1K~d9e(Jf-Eng@nkyM-Q87qTXy?se}BhF zWI+u_mx-m-M`GPGmYz6#K&zWO@Z-FpDHX@! z-zTv&>DI>_C(*a<-@|iTbe5mi>NDFh9p@4R(WlnS+uXvJRSuA-kY3(vuPV*|X0PRr z!9E3ifOkUWSFR&f-nb<#EiGFUUP{CUVQg%U!TX8%cCTJz*#TG+KomJq{CxeUNTZEU zc|0el8MZD3Y9b_DZ}C~iJ^+SVnD6O>W@Bg>Ctq99i9V#NuXyQwhTXTuediRA-~lB9?B?WyEh>Zigj;Fc%^H^Ybw!wMm9W zRNr9ilC`zsvc2(F8ghzJ9$SvL7aJSyP3gJ#rA><-8X6kX^rV<(%z2RD%#1u&*4EnP zWu4{+;cAmf((ioMP9a;%wGO$sBdCdJ9kI2*#BTcmJ`GebNdfT+q&yz%{j?*D z=d+6ighAGW^JzHw>k2=@cj4YH*#Zn-(^Kt1kouaykX)=iOB}0XRVMV2I>}c6>Wo@{ z44>4JNZq&~9Q(7aKDae5@|I{mmdOu=9+9{^0Jb8wH=W-ET(|dKLR6=DjE|+^;V*4! zVA3Y7nG&9z|W}}%r@pwxY<{7S5fj2a8)Y8(=W$RdTzrY2w=BzmC=cnnId^_dh zY4Vq8J%Yn3RkMpRU0vSNxoQt(WZIDWY8%|+?_!y_lE-%VDoWxW7o$YQBm&Uhy*o_R zutL;IB$*+bOaS6hY3j(xdsWUi{%-M#Dz)Y|TV3~xTywfa=;cV=wvH}+%?@oASAbbsF8;y|Qsb6N29V>?1N$!?X z{Fgt~NldM*H>v08w}48rsE`P-W)S7aRA1Od0(;%jb_<_i|ko7dp+)zO2!&|B!HQ$fm_o7-3sw8 z3MVhWU_Qh9&Eny^@fzIrx-rkR&x2+&KleA&La1zQP5l;PElbcpX8X@EJbykV0`MLe zQeV%%ernf|&(4=2@y^_Q4N_VrAQVT)WtA{^sESLa!4*dSr{ALQpx;>EfkRPQ$+7wU zph)KU*a{H=E!4^BHK+tA7xPTTUDg{zGd15RPQ3APzCDBfW{jzra3~+}8p5E_T-E}H zfd^thlTX1jk=VP^(wrp?S>X5}wqzAFSo0}Um-AWUoxA4Q?JGtT}+F>Rh zsLIBlq2AcVGLd`Y<7|x586T#T|74$8Y6U&Vj%VSlkVZ^DSac!e%PNOBv}6No98`B| z!r>Wu9h5#@Qc^OCd8ONP8i7Oy09FVaMB)RWRp?fC@ZtH=ZGy5OwE=vsH#n$DRHG# z%i%5@46^@mu3gh2eSBDDKsqRS1pA{NErgod`ZBziQd`sE42R}Ck6PUI{einw;Y4i; zKns%}#=6tc}Q=%Tqno7e9FGy{sssZUY6P^3mJQJ_>-C?HzYS;?>S(=ixj$ z-Dm!EODbiQLkn>cTf1yRMA$6wLLHaM6h zmYUx_BI4p6nQzW*C1X25>}ze^OV+LXn4%Dz{)l?Z<$*5k2XDfUJhETvYrSCOX95TW zKSd+O@pZl{Qvg?rgXS_C&pXbH&|%su16suGSuvZa0%1Fs&?-x| z@+!i9gAK5AZA3rC%XIxd)QJOdQO?;MLc(?I)f`V_fPvWrn0<64{vFcjW$b>VA<{2m zs-^xCU*`fG{(1mSJ?OJ z=2sdN$6d&c#WXWlyj1sTpo5l`ZM52NU3HVzEu)wI%WX@3`_>a~syeFvkjc&^i%@=K zWa%klBBmIs-mq8@POkjPyoBpXLVn`6iG>9=cx%AnGca%5XW4LEZIQfvxQ;ds2w>F` zQ&ZmwBkSrrf%e)SOk4W+7((-sUa(8nKGm&OIPVM3Dy+z|{?X(_Vup^B%~mvd=Rz-H z-j`HDH6J~4PaF;VFi#47_RI!cH8}Y5XUFm@4L2_#l9j5M1zjVf7O;UTzzoKSUOk;0 z3s0C~SJ8;~jVMcIj1nL!$`jVm6w`Vs-lt%ahl!XyBn_YE>}bbap8m%lZdVqDCN z>y<+NF>(LS_QLU*1+OIY!11R36 zc~8V73^EgKD5H=tz6cJg&Z<(2_Q468&8))<_e@Gs+Si4Rje$Y;db(>9_AgLA?H&ax zi&X+basce;Jd`0IceM8>eJJ#DobWOu^M%iI(WeMU&#SdfXA*#LLoFUC``SDeodu^;Hi`ZrL(-g*X0WRolpK~o0MQM0ivU<{GjlKvPV%}Q&XU_Ves9*Q>-y+ zOeQ%xwx+2mfaUwgTD0DAfS>|bc!dGfI}CisEerYcGy0eU)MI{}K6eoI35ZFg=R!EO z@##Pnq8`8bR%;MX%(FErf@>xCeTwG)<^s^vLAfUt5j3u%&3VCSz?crGLN=fi9-h|w zQh6z6Bp7_i0Ic8oaPGr)Z_W=dygje_`PczY7GJq{J7F^+e1wK}ZSG&HgX%4O%pHy+ z*nxQ>22~DtE||&A@g{1{CIhR$m7ygQb-Fc3s4zS-g$qbn3WzcFttR?U$IVU(@xh6W zboO)egF8a6cOD#CVpllaMRbaPA~^M z``$>b>F)_ItX}Qx-p-ES(u30I(@Bu$V&LfolR0Hd>dfB%+&owN;9F9-ypGNYkq(}D zCFOxEyvNs&O5n%iaL+kCD`OBti$Y9Q1&Uj6oCX8fGrxqO22%8Re0b4QmzY=N8>-OXh?m-S>rfqHRg!c3EeHnqLh(CV>m^Y4&T-6|} z{Ke7EI-FG6Z-ZoK!gdQSl7W~h9i0rrZ=erIHF?4#ypL20Pi4I0TpvwL{2gjNF3Q~6 z!d=`q260+dCxu(6sDFPMZ}(g=G?Y`UrA^h>H@FHMA1WuvqI#T}i6SoiPR-4)&wN z+4UhRhrGn7o}HcPzX|UjdCTlE$+joAIVdQpyanh`Ag$9dXe}zv;3}{S8E_b6k)sy* z@8W`0=jD)~H;^O161SY8ryGewC(Q~|Snhqq%Y^`#JiiQb^WLh`s;*yKr(9jn2Y5_@ zha3?8f09|n!?tjdmW$NZ&C=J(!I6F`MJa!mXBv?E`AKkYe z0@-`fymUe_LrJ`Pf=Owqt(9x{xEVCLaXR}aRw-X;DBB42mjOFB&6z)bcU>lf9jEBe%W}PJu-0>7z_{G) z7n!qDj;%;>w4PA=tvqwNIxWe_jix149%t(FSpwvyIWfMlOQW`B)-GfDq2h?*Oa;Wb zed;F(CO%N+4MOqfbBTGIB!xE^%(KT#Q=pT6ODB7?9BRjBE54G!@-vqA`@m3T<;S2O zh^K&v{tpP;xxS+^omlYO3hFWclOp5)@8hgx)nPIal8bxn+sq{+Z7hEG`*j-|VuCgJ zFo1vQ{J@9x`^XlqwR9U!c7P;W|1T3J1Jf%au#1(1|30IJ|NQANWL{AcNPEccCmA39L;1~Q}3fceO9lZEVsM;hb-_^_4e<`WuJ^QNF2ISUOp{;*fi=r zr(rp5Qzyb6Ip?7_pyH(!%UeodEh zd$dMOU<6ouLrhbxb+P#_0?MZ%;p9N1;|LIwGzqXPMoFd{J>6c1@OX+Y^wWv?fGS;X z;G63b9F|wMu`vghh6CmCC9`Qg=zG2x(MoaIeJ~Y_D_+tj20iib+#U)EX{dflD#+Kj zzK6P4VxQa{&$FBBM1+UO;o$vL-w}O1iZt3<2$daQJE}NpSj-Yu9>3h-kUp*o6zESo zXg(d^_GkQE-uVQdYh!WDI{iwUFa9#59T|&v12k{{Inlquf=e{HTa2gA0ANW)c!a@5 zL32#SCcg{q@5gOBU(BbHu`~no#Q-BD$#R!$MrQ(E!Zp>K+6p5VF{NcKvtS3V`3p2M zV6tI}3(;%>F|#*z5#!I-CXb42S-Vh@IZGtCeB9&{!hM}OeRBxv(HuYuUtGyXlF4&b z=i5o+2*)`WX%Y_z2~kyexCP551c!VPp|#4py|s*qV)rch?RPZCEF0Mn?I4X35LBoSdA9aPpnTcPwVx zjLU@+SHhs5EiLO6wb-IWg)#|X(^|JApUm} zOKz7-qanB7b}nRq!Q%we2p;J0a2F`XW)whoH^F+GRQce~@_As#DVjcT1OsCh9%M#N zoVRbC?$e*jfQy6R_Qzr0xwtGbf)A3vP6ydqCqzQ~$V`wJE~|A1>9e9ymYc!0o1DZkA{U<@`B$_)Kny_rGB$^-CBLAck2$7i z0UC)39ZBF&oibjX0=2V74dGIa@0?gZ^1BTLe4kCr8OY1BK1~dL#4^@7EWc7vz+9e- zQCPy6x{VIl2ScWpg47`H~boc7x`@(^L8XwS|V_0p9cvCuV=R zhC^xFol_J?h8OY4D+315l|M2!K?|YnpW9k90gfbmb~XqR$Wo&DC}6eoVdKKmg-JO55fydM+BV&6KqUd^}NMycK`IbAH@`NOY6 zLl1EQlyRz<))KAD>uq3SvMgfefEkYc5~P~SUKT-?=F@VAWo<=c5AR(2oa%poqT=Iq z=-N*jJ@9tXjhM%*S1C<0SMQwxvBF6p!(;0wu(OZ-iX>SX`|(l{l$yT?@FA$Y^z;3Y ztCXDp;9K5XWW~(HnP7o)6Ix#%`u6Pu&pRrx^~6$oW`;AU)`5M8G~APG!=&5%g%LJj z>AXaZeH{c@_SCo$xy6KV1g?L%E2pHG_6pL}ER-W+Qz2m^bw0i1XFvuJHV3#qclK{# z;j)6B1tAcLLaUpbtRO>C@1Z~OwI3AzE>ip)|AS}Dz(VklDdrh5+sV@|$lJL&`E;2$ zZQdnL1QXs@7()-Wgwu}thiT$!ua*{eS$}tduhJo{OuI_T%3>lj!5evj(8!neX@ZIf z7EqV)!tmTz0+E}tZX%l|@=p7J*}>aNJ5y7Ovu)tK5^e6JbDU3hsfsgX*;NnhQqLj4 z5eTuR^DNZF66!nf#ZWjER5w4dsn)2;7In3m3mVML4OSl4_cRhYEh&L0cOChUYEy7& zelGgjZ}~|iFye%F<{m+aTGgz-I4Ca>NEVKo`bfy?BISD&K;0(}UU6?Eb#ynHV*5QK zitCMfrBL*qt4r~?0sI@2FLIxeg^c9&>o;9yI#8)F2Itlva|g~a4-X|k&FY&RQSTWg zETZz|-mfnxuwjxXVk3pHDGgS^VzK7S7h?tnX}G`m`3JlIT0WC)C@9!2E)v7_cGI$V zMzTI!nA+4NvZLOAK6rcWpJ!L)xvQyH#VI62-LImYlp9fWb(LaMP+$QtS)W3|4$}{s z)?Lp!!&M&IQWL8{>XazdU#Rd7&dpx{_9{DdoqC+#=O-yL6outBevY3vqM`;J19&jX zv0rMzZwLuC2@abMLpv}B0T0EWKPUN`o++K4mLZqQeim?^Xo$szY}-2_R*zOC+XuSe z*!sDjteku|TCWul)5HA^8%PO|%tXqaF_pG$B&)X|Hn?(2&}&}+GXUoG@GuFr1!^eR zC^*E=98DSy3%#z5<$Fvwk+&i}%0OSV~!i ztMt>o*5n4D`P~^WScF2_bl3TnK|*B_q*9!o8Qp)Mn2I=+*e@gj(^e})5&h-JwITa6 z+X)^-dL1wN6Dl(kN7mllTvqJc`@t%IW@UYV^3;3(2J(V-r;>y-VSW8c-{1$Dekx!=snq z4-Af^5$QVGxAgt3sUbHD=Oq3 zXfhyd5ENH1_pC7#tdSJ>kZ051(A*szX@Ej2$W4u~RJ1E1sA z0N}9D`-^~PEU%=b`}k0n>iV-bk}HQe0q!)rtl@vz%_+w}DGT=hW8w~(%$ z<a&zOeePq{v^RhT9PJM8r_+M29b~v~~)qSxoEDz_VIbwRuLySyJ zz@`TiMa#f+hT8n1^7{dp?Zp8Xd@?+I9sn@h#-epqCTDl*j#B2d4y9HeGfLK6I-GeV zMmBbyiGc#|Ys%xk*%4IF?#XAjWWC=O*~(4<}H5=~6%O(l`pu_o1F=Hyj3(|(d8O!ufP7`rY!+uSjpCjWXIIl&{y41Nq zCKeH2C7uoX<4tvH@laA4Pc?id^cWnZfr~JdQ89i$6%={wnE_Cvz~dZB4ty&BBkqd6 z{+f7_T_fiF5`cA5_*CKKG1irIp|#Sl2CD|xY`HdA_A35uf$NJ2o^=T-7bIC%r(FU9 zep7pCYLLY8Dk#lkc*H_x`w6w>5p-G=#mrUfs{2y;^bFYbgNzksHO42C!16$_7?+g* z&VbgCYRQWwhcbwi=jK!nR5j{;L2+_3{Vm-`bkP ze~X$D&a$&B0PYPw`p5^j<^7cCF1@gDBPt6>;1-Nqg=_fcJQ%GzpRoI3x34 z{|L@wy}Z8T&oenRHI2g*@)Dnhe9S}9r;{LMS!RPMV(`za2p2OF$LZi4 zb66d4hXO!?${2<^*Eb@vIcg1Z3OkY$TezX^?;VxV`Ahgepxs;@$#bSP!iNjv7N7=0BrBLCJ~R{`zTs;~2^EB}t;zZvj6H4YkYsqKGXb!3 zI^VvbkbGmb{A*$E3@#0?QhOflcx-vDyv0nIE6udHp32T?ax0T+#3Ip2Y}>CKBQBrn zP9wo^d)4nYuY+}|1JAf0i}QtvzUg@ab?&UO&`W;&&q>|P5^yb{ZGWI}z-(a+?;vLH zx$f}E0XB*R)E^aP3eeX@n&Ko>>HVSpmklDB1`swxqKclK+u>463UCa9geg)=$IsqNxV$r+Msk37#^%wu-~Be}L64-QAZ(kv*Vim~|G5%0 zOb*8cq<3s!t zw|q4s#S*aZ5CiHzK8CapTsF`?T$t1X<`dC3k^Y4)>f-qaqzs zGe|5{?m@C$>IHD5+}Vr0tx4ndZ?L5}^92g%P;E_(C46S_UCm#DkX<%!IyNO+}ziryo_Wv4Jp~eJONws;o>vq3SyI{dtD7blS{}u zJ=qO*5QsWO3kzd7YGkAw?B?QtMqwWt0TEJLb1tn{>hG={0r;1yqhVYQ+%)jrM%n3LGiJq@ABCA!*mhmW4nNSgF^~n7^^1yLRPwmH32?i zVfxeaiVa0Oc+Y8fx8>nR7wRw`Q!_e7=A-2EdB4-)WuazcnurMet3WZGx+E;Jd;JS2 z{`@>?z_5TEIyFOiFJOq;oLA+kUjrb?o?O{V`yMrccoGu4QuF&a8itJ-x3_;I5~H@P z0Ilch`f_*oEwjI>7qXi1!l%Lrqcxou2#n6ff)K#hY_?a!&|XEpCQ`}lZk6~~G>x{R z)e=CR6=Q|nxp*{|;lY*_O#xp5U-gHH$;1vG)}JCjh1NIH|F2c$8;pgYDy9+u;e)(X zoI|5qd5OcR`5WVkigmqKqK1cwzc0?u`M}o7;kL5MF8r$p&fp67+d#eIil6v)BUPoY z{W%qT3AG&cDh zO0Ro&cjJbBaQ~ef8+sk!PYj*bV`AtWuyiCWP5e6HMv%kA&U(1B)2K8oui&S&Uky^@ zq~gb_59 z2fRwo+MF6a{2-kw6RwRffFh&Yr@wjRJBoX0?=UDQqfAH^+}C*6953&8!hEoc0{sQ2 z)L?Wam@sFT*p2+z)For?{f4^w6!~|3mRDXnI&UWxhvZNw?RICgYGQl|LPt8l!0uzT zsP;OfjW-YWS>}9Zapb&gPXy@yC1llVb+jMNOlUf*AgL_Wlm7OY+SvFl+lI(^EiT@H zyq)LQ-K~Ia_h@P&I~?j<`BtwHfROt?fv7zHfb~|jLM6n`mp8G_3(Fm+l_qB6U&Sxp z#3haunYkek1<$?Qd)J=FFu&9KX0p%3PlKF{YJ!X49%_eR%9}AH5!YsxK0fuzsB&w? z|7e$;Qz3lseVq0q->Knjpraw(tI+7Lk}bQ@%z0(=h1jG#_R9twm#>R%n3r#@tf<4h zEX;WL?bd5%W(T%?B=VcSR>Jr6Qfeq~aV1uFUw|XbmfKo@9lm-x%MInz(cb5H6E0k6 zagUKF6OjnO(tRM~5UCkTj|U)?`f|0^_RafUwuG<&&S^8CgsZe#W{gupzmv|Q4vtF; zom5Ne<5IF~kxgm;I&t(6pUf|@v(aeZ+(!aMfpkvY)w|7lppAubIDJe{U0x;=9i1*U z^s_TZ_g_-HXb_;a96l$(-^E~_8XxA>c-cgqU!;IOeEG6+mdtt*`)_t&Xo%XcwfyxS z1cUF7NOaT9HSyY;e*T#RbRhqPklfD2X1cvyBNmJL&>;s>o+kSDFA?x*+NIW!RP_5M zV*SzRLDI(yvv&9r5>`EE^TPUi!wNckCohHEt%YaL#*Tb}>AJUt3cpw9cA?6&x`#l=y_b9&$4 z^O9bwWEewg{v@PHtMaDw8%%ups>WZ6FdKdCrup=0a^%>2RsXpeRw5gG$?Lr*jnhn$ z23o`FT&9B^^9Sv+)4Qz6g&kDHcysOap$d(FsYEB=4z|4PlFx5EaX*CzFyp2Zs-?Eq z3K<#cC9O*!V|}0s@4H8iCnPU=_@^c$ueT+hjpro}KA3G`92fLR&2O;*ruH{>zvIo# z>%jHlvH<~OkZ?)VJo9%MKUly)7i(P!A0qIi4uu9PO>~yo1rei17uWuxM>Y`4nBW2}w%s4H=ps?dBQ*u9Ps0JTl6w={ifa{Ub?dNq2t zKuW%|t3br|_xJDLL~x)i2vn2+-QLnJwBtD5Q*)-qf>L zT<^VU!C@{oyd~F53i8PF^UZMbe&8wr-Lv^mA=rDS0mz3^|jyGbP zdk!wD3T%R5kjGCuMnS90Zx266$yEqml$|vbjY2F{q;^3^3{EM z=;bIR2VKJ={%@t%Va99TiHyPcFha4B2_VeAnDdUyjW00oAKKjheGd$*0P$|!)3+;R z#Qh|+3#x%fAI<(F;c-^HqE~?r1nik~?ItFpKyP^HDcv*0p$?_VOft3@=Q$t> zKAs6$APq+(@JSFg12VXh!j*VmFtD|o>CucG5C*?`L@UFO495)y&Pk$l{m4vnskmo9 z%|q`ha%7X{cmY%AYI=}tb>AWNd_Q`+FN~ZA8o3Ns5o8w4R+YZJydQt=T_AALU`99k zW^RrhUf0X$a>FHj|L+9|;A{aKs(xl!<8g1W^4S9pc8jGGcA3iYx=*peB^SeJxOG7eWN2=EyhRZGx;N{|;%5P`H`Ck6LchgIeP(VUfq zB@@Ju{(^+9f){-}d|n=wc*5AulQHTPF7HxK!Ws8sZu-Ik7;!tQ>01}mZ?hSFpJUh7 zgzjaG2(<$21bBsqXiW3!akI9_=P%fd>6hM#SQ_GReuhtOCHZ!=X2XDfcb$`OH#$*M zp9Nl;Y6!XG(yd-Lb#cjBJsb0$cak?4Vk7t~q#SS$qQG@X4P5|EL4Gzj9U(#0DR3_? z@!O)v;v0KsQk|fdHZ|UBap$&-or0|1<>~tAD(1TRDqhvo_{T$8;&Q;h$+5#jp~S<< zLt2e6WfH!>IRuB1FX>p9>B>q2wIT4$*Ab<2%GyZ>b92@E^-K1~l0o_|sMSy9jt#BL zR8S`SrVSbkH(Pm!$R24jHJRtnJrCZ=%!RzK<&z^M6fzwX9Dd-HQE$~2UsuN=wfg)% zE-vs_Atm@9^&1f3Y97^ieCQTrH&9$5If`7*R)o2%`k#O12drPI`B&wi%x>OR>fX?H zJwNc=s|TiYq*>xZfZRq!9r4?ks9|{qW5+<8GAtvwbx(?~KWskDSwtHIlgdo6weIq`SQ^a(h4EB3NQ>+Q+*3 zf-m;V8U1hF>G9Kq;UyDhdb?lxQ_A`5lK`T$q`&l3Tox>{TAJV)fvHwW=nnAR%cG_lAdUVA$83+) zyPz{1%jl>nHuv7ug7KHi%UFem$`XYHo%!RZZ~yK#-3;W~xAF58pJO`JYnQWd>v8Uu zYgxLrj_g-jrv1rvI$VxAqaBPDn(;4l9i$?;gL4Y!4*3bRFpC`x2R|x`3x7s)7Z;jy z{M?0?{O{{EhV1|6>z~mkoY1|S&0B`-t>OS9gEyfgz#EoiKd^1uHP*Tj$gyv0qto24 z|L^_&=S~0re-KOKm4fb8^~o%8Jy#AZt?H$7jJrmd4p~-msmp!l=2q^JQALhm(n=_ry&k0ONLI|1(I`M&qwf8ZVC{^A&zoRf2QS$nOy z)|zuip?w85K7Sk#3c4hX3!aaL8kI#k z$r9wKhX;pydgYc>Q(#7aKBgO0OF+}2ROfZnl~-kPim=F!vJ)Z4$ED9mKfLXpg|0Ln zq$vU~q9(!CG~D5x9U=3ZLChD4l=J85C>aM5G8|3RE>+IosCmyp{2pd^jP$2i6re z+OqYSirlz*z*F(&^s3?*cOA@h$9HPCSEFbvYE6h7%1yufh^#n^^?7S;Q?cIv;3#;7 zdGA2l$C`cf33(<`VFy;WL*uyS;ClRrY>7i_);D3{3C=mLi3@d zl__xM2Cnbawiu@dLDu@Y105Uei= z&dQ%}#h(YCzPH6$Uq7PvWqD6yL8&0SmXGrM=p6hgVKO|(qyFl4}W*SlRm zFkL=-%pPnQ#O1qUq6=#MTem&<&W}b<~hiHQZwU^Aq-HO>pCg@AmxY z-xXaVs*d2#)@zqQfi3NMnNUh1@9e+M*dHKB>j!P6s%66+7XaJ(6E^g-OoMCXJdKq9 zaQ6I>U<5Gtp@~rEQ60D=)+Vps5Zq+uJyZvmkBXJCL_i#1h!7O3%(jmbD6PP>{JjLN zs3C;ta5rg-+g$KU#1>raE)~xVdJwlN$lD$DxjaGTzwgOhghE(Dl!sL*BzDzzxdd3q z>w@R{buMugvEFp{NIivCh036)y(5X$NHq>R+_MP00yd7~zx&#`+~Hs4hgN8qDQeM& zy9~`C&g@Zkcj@=h*SkMJBF|Y(f7#pORytOWgE)hsbgFckhGM#ol8Zu^pMczx(HIO% zelPcP@1KGBzyfV(Downe47|?B_53opbkfI!X^vtQrKxmOpWmQH4!=YFnC^TlMj|uY)TS!Tbr9vHkS^LT3VAM}!Wi2pCG)Krx*)515@6 zO0FWj3B}2!kHMv9V_}MjT*m)C1|wA0lEf$nk9+^$P$it)=`_0g-hWf638vDfOV2(I z`QMirVxhVX14%1P+<%k%2~4iI$wC?O+LWKgBYF?87Vwv0zAtZRoWZh+BurbQ-$L2aCVMUkGo&lb(!!9v77+YztKXliO=#{9}dbnm5;Kz=yJ35wUnp_+b?3R9*d@gU`6X|+?@6siBgE?nrIli$V&c6{~L)Uow z4(<8n)ZSV65wuF$)$X4Roji9ao+qn{B8yaSYfP429Jg2MN5KK9qJ(2uLN%^((Bw)e zAP5bi0loO_se$)yzM>fbtC{;OW6<$yZMhe`ohA7d0&wbWu!S*KG4o}3Kdd(({{~9{ zlsf5TpI;I%S&*>;p>z%q;j+bbi*vc3r^WrZCBf%lem})I!NXuiZ0JNInt#guv0xee zmI4#U8Vl2<_%8Kj`Uy4`ksBz&@&A2-^-jf`NDv=h#e4vhzz%rAPnO5dN3eEo2@QcJ z97f+WO#&iM0Pl*kAXtl<(vWEaSQ%W|bTve|D6n{1vtyt-?I&2y!$nbxx+EwiOmOxc zHIe;_&aL+L_U)*5@0OH3{@(IVNx_?p7skggw=~S7$y*DA@V`6@%(#-SIM%;9z!JRx zQq56JEG+#jOibR?(SRhX9#W@17unVY0j^VF=$V%nc?W@!c$8}(sHmuTEaw~O>$}Sd z2wGGEjC8Edv^4NnzpTAS;inHDF?XZR|8F-MQPa>gu1uUuXZ@=#0Q2Q}YF^3k)d*29 z<151Ux(w!VBb z>q>6sFkg4~BCc6I#Q4Sn*ap>?AU6&5j}F)^nL>cbgSs4G`0?IOJ{oFeUHUqC0=VOIB+V*u6|tp$~+lS(WS` z8S)T)yuGzwT9{1Wq`rJXeuHdjsnoGsL3FrcW09)rsvMXx%3R!%lQ4R63rFmUd6Chg zSd}?Vd8L1Y`et-FjG#TkbG0;-(HQm72yvYrH?y!m(q#E8)n&A)w@sM=*CcgmW2pw1 zfL|6+cgdyydxP!Ml(}$+{&bfYZ4ZlX%CMoqimAgZz<-_W&ED-nw1VeM4+14Kd4u2` zjtl6gD8ef|d4zu&bfv$GUjGzof({MH$$1DBGL z8XL@H?+RSG56N%^j&0P{?KM=_`AYEu%r^ibjL8m7 z40VE-XP}q)!f+M8b=%Xgj1wLXnDoPdFgEi$t@e$&0B*0aqosf$nzVbD=6iy_X%FN# zvfkxEBN4#DTDO3cOqiVc80JP9%^Z{&2!q?+TKt) zX&NL$(ERA|m`-=gk_M~OUW4^#SI@k@^}$^jKEq5QF2Qu4)`JGz@K|(}gD4wHfHL6e zlq&wJJ_Y55MuisI6VXBA8c(p^cThp}atcyXo7@6_{3bp@i+&R|5}=kWjk3t4mNmLV zlF0Ig{*EAATzX5{;b^fxm}K$p1+%tl38+$*Jxv7KNvCdLQu9$q})6`&!H{bxv3!68XuOQ_iZ{sO-N;;;Z;V=jat1pYF8g}k=p zXF(a@>#{znN9Nq&5P)QuDDqzk=Avy&Un zRJ}T}CA`1iGVZFvRNrLK9k1+SSVB(izI!*PUa9%15Wdi>H8nQ7XZ7xS^^i4i=q z%;RgFB29}63cGNeOw~J4>{b&d-P2t5`}zhjHD}84s6MoQ?k`uhC)m4otO>w8Ip3is zKOjENq??6;&+dXo>4UQ46J2|uOs|Y>KSGlIqi$OqC@Re``!l^j4>VfvLYQWFoCG4b zjLRG3zP!8acyPU>R2hF};TzfmQ#ig@m|JVf!&<~L1;Zo_B{u1eQ z+BX$HQXmuz{5Dhx7wjzY%!bG06Rf`A_b;oZB$u|5{4$c??~0F)TDl2mfNO+EA)aQ` z>q;V~QkNvyRlDZKQM)5BFShs(Q@(_%6GxT$NA)1QNlqe9)}o&UQs}l6_xON7ekS8( zae8qnsW@9+bAg+*r;KyyY7QHC+YaL?UfuaTTCykZn7{CVtaa&F*n159{BjGZzl7{rS z73hd&l^vHtlk4oQZeM18uo7lJ9B}I7=_$abwn8JRLt4GLRe40K)FIJCp2YD1UUBUS z{oUJlmcP)Y0J4|SH!r}c2o;#uR%8h}>OZ#`Dan7dF;GEPX1nR!5Kpnn4^yQMcWqM2pYg)yR8TcS&TP}NSRpqJxyqE^w$ zma9!*VBIPGhu7I&izLEG8k3x%&+#T$JBzA0c*AK*tBSdm7*^{IY#gkSU#=TVC|H|ba0=U2DrBamzH*8_?1{h>N952RK0WuUw=C6}N~Qj8%HbXV z$_FAGM#8Dpv**?%t?&wBO5f2JWA3>|1OZ3#8(&r1*|3nL(KY^@&YudjR75bD%6|xe zD14DQsCGhd_V#dAuBl2YdFu4+sEawsja$tTcV|&5UlmjY&hMZAe8*=g|qKTk*(`GuIdTzy=yx z6gOMcKz;l%{j^-M`Fi4tzfk`GRH}@~wU=Q0upzUk%v(&makL-(##A&MSE(YPUb_~#PwLq|P6zsaB z)L)j8?NT!}2<1#T?{S%p5v!rxbN};tdazy4g)tOUJL+*`%PPG9`E4SQPh1yc_2cU# z6BTiUcsifXIla58&00FvtLtP;*Y28$B^B;C+iF`$>iWZy2qv-=aoy7u1DXjbFUoA$ zz1)?U^N44RKLzNBh}fSO`lIz) z!SV7{%+GX^pUDD0~hrqwHSB%Xf zVOWf5iyyNXK+OA_amd)wVwSTZOm>hF>d*$4hZ`E{k#*$QQYvH=S5axmJ~F|2oBO_r zih+U3+cZy2%)C!??~iAZcmyTkz_#~mEg zyFi~ew~Z&S-OQ7aJ?p_P)kqK8^85WOv*PGe#&`!uim$?%CvCz0`Ly>G!)S~_=8l61 zYok^_=s?Eh{;8YJuoJX`k?cP^#e$xcvYgb9pHJSg*J5q=OuG#OEmYr7^`w$GkcR$D z>dy$tLw*3b)B{`(h?u@^61bdv{qAKvuCdmAKE5E&(yM$5VEca`HuB!<0~ zq`u6{H_S*EdO&WujAxG(40}AvgfSyp8*)Tl4Qrl>?{w!YUi8x9j>QJvHh%j_vv&7e z@IYYxzpJZcHva246VjJ#5M6ec%%GnO^}ukmv$Lpj{O4zE&s|234nPvqO?Lli+RMu; zun-7ZKyZYRF6!_YHti_2FP%V(Yf^fwMO~K;nWe(uoah^nIXjw@gCl)>fGz?UR+(wP z2>=Y}KtgWzf?LgnhoH3z=w?_xKvd&umHGo33JR9tO#wjQnm?TsWSgv=9gnOBP>f!I+{|HA!r_sDFB;8N?@9xIkkK?ET5A<0%7ZjmT;#j%Jmn(s!4u)2Vym zBYdK!wL>aPK0~-zL>Lp-1^m76wg~wivj^Z=Vo}O5m%S)nt`HA3k%%SgGUR+7&T z_F;J&$EE^!JN)WCbQ(i#)zwM(eYRkR&g2vkpUws6{V%Cy_yDv~`GfD-=l`b`0523< zy!^vt^dwZ6@s8|!AXNS@1vjG*mFz~-gL3Oew_rp8yn~g=W2u736sy!^*zKJNd<~x} zsv$RnvHg5m2gk-bQvCzO2x((uvkpBG1kl$UWgy3bV-;hb&@1b zbpYz9DBg{O55n>DK50n0GM#*zH-jI-=8<5$B{?D=USkM8pZ`?UK?pMwk7Pa?8(ozM zpGyfghd{i}4PnYBa>~;o@MUcZd|M=^DNqoE1KKN@ZZXjzN*7m030yC62gpM>K{B#W z@$te&%lplzZ@&8IR!Z~uP}j;l+<94#-dGPo)s)AL*0^XPdm3#Syf=NPv=_L0;XE%f z)c2>I;9}A+Iqr7_+$Vm*M?YN`_is-%vUzi%$^^J zmSfxOZ(hVTt&r-M6aYPEnf%Kt;40sHlpsx|muoQ6HT_iY`xl>YLm#-rkGy-5^Pk}s zKUdJDSQlUI1=>g6ql-|WC2*p%1Bot?xv2s)Jd7u?^e!oc0K7ym=1Zv5SJm|_zo!jL zXH!x$0T15Ord$L;1V>Cj_@+O*+tktX<2s-GQ(FtvxFIuzyNu=~HlaVdSGueW??@bO z3-$cUT&-}zQ}9t3Tw+_JdGBXo`W{wWP@B#8d-00HevoNs1VE*xZywN^Am$iz${UyY!p7*Wmw@1K0HJniK=ru(SwOI}`xH)sOFR<3dfF;FI=VwRz6(5A zIPss~#5$Mz*VC7QQ%Q3$R+L#4fdm2X$hGP;YE@`7;o%KZI$cWU=*Y-7VIFBIsYN5sI2F|KGN_sH4SxssFaxQoJ zQi-UAnrQ5^(X0sK67bp*6jeuVhfOuOq`dc2`tGaWbafm=rhoBQXCK~utr*2lnPVqu zRf#NyU7%AnoI^x7O8J9vD?6)|GUc3STN?b)4(q|ep@+Ec6c%;s!jMR%eN4oBzZxp& zg{kUP64J>KH4d@fAWeFxFv)40R4JcxG z%WAx&p_7mDtW3=chXPHhovA5?r>3Sn$ZuVKDp@e$^0VkbkT9L%kQYXEmQ6dD&0jVp zvt^n$9_a!=El4)8bhTeOd~zl4Tt}`2$qF(O*yXy4(V=eou~8R?_y1{&^M+#X{i_gk zOqhckBB+9Jvu*nC!33Uw?ar;h`o$xw8yXs{e(cPv>PY_e=98kzT;QStF*Tb2_dC&4SU{8wtd-}G`)my|w03}!m)_Y0v$r?D zV(S;I^5$5w8~TAF6bwb6Gzj)ML~f9M>g2cT&J;!m5MLH3(4GiX-yriOI#HiX52Lgi z-F6Az12{hxcz^kE2w(#B5!HgR`Mqe*-60H~7p=|ygmrZpY}yWUsnG%#6($O8;iJ=O z_g7PIheJIh62wcu;p(=>=~O$zF8vH<^wPvAGOPTV2cC9OX%TCSn_)lH)8C(?A*+B% zxy>)-~d>4fc_i@;USY5Z$hsn3H}&RCr%ab1_Rl+nBPOu^A|?)z2I_Q9F-re}nCg zReRF(r^%NJ)9S4G1`b1u@!j+Sk0q>tC#Ey00Q_%f00d^0r}Yqt#LxCRrBsVdR23CS z8Pn@d4?3p-jw;l@AwgvE+E5as#eGgE@zSv*=_7b4>Iw=9il0{3K}0_bWpQkIurcb; z0=>PxO*Aq2PhkrcWXkU@k<6I=bQ);smeB3%T|3iTxBF?kz-+InJgpM+Y$=Pwe0Kqh z@PH=&-n}xfy{F>1Z$6h(GaLIU@||T4>KBF^gqUMs*~?94#5jBng`Ogl(Ckab5_NrF z3at0H+S*zQUl7MAYPVM`^|x9VTS{-mdYp6EI|0O)_t6YgEQ4>r+_IpsjetFu&2sKm zUxsSPJt1#@Q0rI4m2V%AF6#$M@%_6?Of-j`x5{-?GV~CaZHkTY=Yaj`ha1HsCzs^< zR%i-kspL4~kQSHN=&~6wW%z@&oKy7-1E4Ga0r~{{DRDW76I!Xh3eg0OMos-QBYcEr zK;UtioKo7adc0yuF1OUT$=K^rG*oan|J=9>&W_gf^n8Fu2(nXtzU>_tKJ%o1gE{GC zx=H_bJn{s|nrtACkH0Sw5jGxn>|~Vt?V!zHL^B3$7d;0=1KH@$h}B*1$7#Nd+SYSpE57d$s0LeCqqM?$OF52+*p;den4d=Xs?Mh& zuNnU#{r2B}EK&NlCTOo#(LPL_$~B{fd()fx0O$;HyKD3=bWgB?3A_tYDN#sKP+{UM zX2jWCJH-gR+8FYj2?&7T%qcI-3Fd2K;kh>vxuI4?DImhZp)ql$os$a6S2A>yJbiis ze$HI9NeQ1y@*7PQvn-G#JZY{ooQn3sAW1>9sk%?4%c_+JCy~ z-dXd}MhV9wwEfa$iPIZK&4t+0^d6pRr!uVzJa!fC_HIN^Z|uE{M>=9(-c0?TJVOdk zu=_Z_veKWz77w?d*hE+RBveyBtZ*qj3qs$Ro?TzKT6dO4Kh~=cBo^anE<-ut+1g+* znq8#hn%rit6U73)hQb%}9pkBIwCsHd6z+Pc;Sv!VF#P_r16gcD>L!tleiH4L8w#7) z`(2w_&edW^Dv#1C$KV26WR{lRQxMk(wMGcY{x?AuDJ#_eu|lC&U0;^e)nm~^Pfx6C<}iBO4No@dVjZj1nuXN?dZ#L}>T54My*)B#Tk$ zEqzP5KYkV$gAL>1*1-3-+z8uHpZr3{*lW)>$ICzs_e;;|C5=3}#~spy&Q$ddO<_!$ zcB7?6i~Xhf)AF3-o8`^s>+wZX9{G-5d>pzO^w%C@@nk;kHfPx6>&aWLC@jDC3`r8o ztq*1t6BD@=hGPBpBHj>Tr_`THXC4m2ZY}gw{t;1daFuvtRA9y>)8U5@lFp3tSK17& z^*LQ8FE&0g(eO{2D`2e+P-I`g9vHzqtaQxxdT82x;y7Ptc%akT*PXy-cv>gsx%rTq_nVx@Cal{U#wY&+85i63?RW%VWi(^|h%E-i=iuvUGSOi)vmU zEN0}vz?cc$lTMYj>esJVDDLqqCD8@TfCa|~_Di3xZY7OnqG$D45sOv<@J=Q9%tQ)z zbD?-k)NPR<6hP9%9lXk$?xD{7;@Va^4k3SzR;e+#lK}Tg?e|SL`Z(pBFqJ2JF+EQ~ zQ88dO)m%4~<=2vTb{_r4#@2}UA>;3g99WvQ$2jb_Z81ovY@l7Ju}n~0=`gLDO-@Lo z!M5fD>S0G}Rd<=>Ig861V*&#?<;ySI7Pg#1U<~52XJ?9u3;Z{Ff0kw=jhi$P-4l|QW#9hbx+BxFm&lHYAq$cLgjQAMDW)26jr;Q3ggVq=7wD;K6}-h zoy;ibwS@mgiH&n=ZfwZu*=aJVO&qr_hGiCD>|kW+(CgjwhQ;4x)Ki^*ORO|90#H&8 zjaN{*JX-;c5eUziLYxf4{glEjzux+&_^hDD@wOw~_se#o<|9l4zbB4%gg*jjSj0h+ zqKK-F%2&VlDCD2TQc+ov9uvKKsl6PW`Q5*z5|M?tWCs)5cQ83)&=sBE^W*bfH)z5< zjo}=noaWH4Q0Ammx|^`i{;tBd|A3`@4HjFkZ#pMsi=8BqJZ5$g%^PiV_cPZj+}-h# zANO$z)@P#W>dc@XR#X~FD>zMG3t4ymbIxx_N6G-+^~4pKeNU8$N&rcv@F zCj;0O>1e4QsU{7j3Qk*1szXt5VDOzJ%Noil|AB0w%V0}Oh27|4$oPUvZPyTgX9xSL3}^)h7JiLpOsRV1Dbr~ z>(2hb>|*8;MDE+An&MpW$JAd!E98WrYObf zGBGnBO#mk-7F8t(rR{B~9={{0lK-d&P2JI0HJ+Wp;ibJZ^EmB2h)gOu5U3XQ&Q(1j zJSQ-N3#&+elOT~Ngg!bt(%ijRl~@S>*ewm+vcAFlu7d=f8>9(5iOuy`7)!OF2B22F z#@@It%x;KzIzTyi8&oCi$LU{_rugdUb#3DJER7Y0Uhu5_D$Se6j|>Hq`o6?{>#%Hd zQbz@Ozh3whj}&{!&myfsBWp?r^=||R0&sRbTc~D)QrT~&=c48Az)R7O$G>up=y1D6 z4NsL+m9;&e$-eve5j1hVV*33SBFBQ#l1N-X)L7X*Dbpz-11E*~Gr`AcT$2Mv+Gm&By!BbQG4vWBfyNVka(90qD ziB*)BALj7)ZU{4ZkGqcv-2`}?CIc5(j*HxOQI-b|Am?jY zFy~+)swPU0`?GiybC<6ZvcnjF^vzEb)ttEf=g4`w{*4AJi^5Qcay%(PvEpg&KZjq% zNu0Tb88oX}kgKDkBfU=O<^5DxyH48fxPHcN>k+D7neaKT>vUwB8&vrB_}mD3Fp4Y7 zb#!~$R|D?&4)ByDor#G<)@J&Dj&08n#lr%b8<}@Lne>`0lp=D)ws&?MTB1iQ4*jgg zJkmDoYfq7HUO9d!v?U9iy=ZoN+>}_|YDmV>zbhNxdC57 zu?2v=jyZ$1EzlyXFk)rZLpFDL68f3w+KupBw(>ZzKpI7Kw3%ooQ|)_SA)VSi(rS!F z3;}GS+rxMu20Dy^3zpp63+_^_ndk$f95jqWg5&92o!D=C@ya3ZaRI0nk$X&QMroMF z$unSbWkc507^+T{4bafVpskA0(=&~+iPFC1pve0#=r@7bvr3fMj8m==_!Op%8W9x z>gJS|j{+BMMPxg+e`nZ z(*K}!yt2GO>aWZlD0#8)_>MtNM&Np97dQGi(blKubg1zu58 zichgvIRgFQMO?7ou%n8ZVn1Ty@-VXo>?}6Rphn9P9q&2SZqrsR4dyx5Y*Yhxcsw$c+V zjqCM!k&gIdHxb%~hmA!zQW;7fpm`kn8(JveJm|?RP7#Q0mx{S_A!eQeo=&P~ zWR1IT*0~wM5HvK^JDn0SI^_J;uIF=EZZwY;e}K5!!VPkp5Sh`}Rg}4ic&xL? zMDg@OJh$n8le-FB536N2jZ}WlvAw;w$oU_{3?MzxdPFQ|7##f8(4bPyN{<`nk)5FQ zdX%t52TAgNm4Wv`zUc&N)^~SuoJSk1(?fXkjKMRC9_giJ6h?(r03`P?;^K#HZH-U% ztcLGT(VS_hD!=d(vZwF!ua26E4vV_Oo5_mJ1DHcPX$dapzd4(R_s`vWzw^A1M4s+u zfhA?{sd#F=!#H!qeZu4|n0zTHfb=>^7uC8dmgc{1)YQ~ayN++BQBN>eCRm%XbeBjJ zIg0K)A`ZI4Ixo*>)7`e0?vPDx>d|3IK0pBhS82L#n^mwN~<=+W_UW!`I%#=H^r zY1V?C!cc#oq0tQ8J_v<6hqBKP**B|4h{baGKp(S&H`eRk4%>4J@I})Q?j|o(2mEP&H^1NjL~H3Oo=%0rTR_^D zdTAFVI-(M^C!K8WzNEg|-%ryfM_q>39=v!_W;YTtpr@JB8{d)Jc z+JaHX2_p(*)||``<8Rv#eT0yh0Y|ay_liXQJ`xM1B`45d*Na7Yv*Mp_c!j^MtPnGv zG#T`vm$dZ%3^P^)H7ikVU1};wqn9MP;0%RDN$qM)(IfGoWix)g`t(vx(M#p{2ZNWE z@dQFfZ-0Mf94E&sSt-c&lec#%6c64w4iSNuWv2GSl;hQJU#DVyeGC5)Hd^uVM#dln zc=nT zKp3fk^!i9Vp#VsM%L3i?L!j0Q#7N$&xU0dnSXfw~vhB^;edT~8E}oVb9^EB;?HLs% zoB|w?OH_??Beph<*wL_t?|P3~Z@qUB>v&}Rm03&Tu)k?X9nwjeW=kx&x{3!`OHfNy zHUJuDvh4M9kZXyzHzkQTFD+l0v#4e)67xE$w8K^N$kxENl{Vk&d>QO{8}*^lW9l(k zaIFc5`Eg3v*ziJY?RU`5mtv~u^n^}dnBkU6-Rn|M?gzOxn^7NkjX$8C3>#qZ)P0Jz zXIduAWu_oqk&shwI;7goz@U5D-XV9gp2xZvwJ@H+dXtjxIYhoSP{#GTjT}6Je8Op8 zwlL%twD1wSUSDr<;iD+5$GrL{!~1(VAIA?59SIoUIiz07Q_4np&JK_5FjXd@IGEwx zscq2D8;2~NSv%8h!aA|j#igH% zI#d#aWnPE@4Clq{!HM|=2DpCTaG9A-A~nX}bz@^3dhJ#7dt@@&R8(^9r{>CliE4I_ zLjB$XK@kF{c~0E=qOmg@?(JJ0AX`}-rmm~m;d+zA_{sNDDB?7}n9&=>? znCe(_ISN!F^jp@CV3nh55;#_c(?Ln_i(7^vo!f?@92xolHZJX~biBEfgASSwY<->#Au9!ri+eta7<=-(+FC02*fp{#%en#=%&KricicWE~VF%?dIiW|!D< z?Qsz|A76{P#~PRZOV(AYZnaZ4J$JHpM>x81r+#I~d?E^sbwIcq^i2r-Ix!Xj_*z}?xB~k+F75z(w-jVGno^-OuF{Nwj^-Ve8qos z8qjpHss$26$3GzEgvIK=l*qc0ZS^fJudEUvjB^E(fT86I)T*C*|0{l3=LvQ+9(fxp zZL$!K$Zg%^Y*;K==#_Z0VJWNQJ^|L!^cb6~6d7k8n>o<2d?UnVBwnD2Qw zR8JjIU+sWAl=lu|0(YKA+=gRi`woPAhNNXV7g+eTD74a5u!6c7)V|sT-D9ueU-qt& z`avTIcJ{lCM{CjiBjc0(DAn~Co-B=|)|HFFVgcn=A#0r2m|K5IiovrlU!3dUqP`~> zoBXtTk?LXzKSc%nVlhIa;koe0lik%+ck%bpo8xYD)6Hf!!J)J8=~d+0+rRq z)0OX!N|`$pnlHG7r7hH4f#`vZEX?}dyUXYr^V)V8hwE6;30TKM6`?KCJs)|sji9ps z1D;-cb&jcUF5v4%ZcZ=-AY|xc09xNueIQQ4zqO?y{v@gF==KHvW&gdlTe~oN7%vi@ zp}Fr(WLz5L!o11j82e?rzlE ze^;*PtLbj1OqO%%<}d(mhPtWf$)mf+RgWCl*QaYRt}Mx8}>$;kH7C}F|R zA~4vijNQuLE3V4Ls4#DiWf_T3e$lvS-cyp#)xR+kkMzKL_xJQ@IULPsMqF5!oM_X%Ad4gcXD<8DG`UiB14ipVvfk2SpM%$2{oaD=c z>-l|FGEr1n#d~{E5yq@^=!IDcTG8O7xAZ9;E`+}Yg3yiio6QW{zd$MmQjGaJXmZ@& z-q%+NeH>m}>niB$`-&gIn-GH5$5)~#>SmH1N+x$(RGq(D)cfB;nNt9>q3~lwfv!xK zg(YBeVs!NE=7Ok}wlW=nMO3KW|A7|XXjvHvNr{`S6}fVKDwtnxPS_0UbP;XsKh>fx z(W=YJn}?IfF{|Fyo8*mS|HanVtzc*;d#}NM8ymc}Ir@3IG04xi%DQ8U!>V$7CqTcj z&YG%`=XG}WQ@wNp&@E!!u>(sic@%;(keD+_mEPEMG%_L>|Ek!K{QUV+O3JH>vb4NB zp?p@9(=|Vn#QcPW;Z2mq2F6yC0eAtoTn^rJc8!$b;gF}jXfa97_T`Ij7gKu6(yk6L zmqAP*(?V&TPEw{M#v$AuRr$q&6?d@@V|==-SE12hFtF2&}M=Vdy%a<1+FdRQVaKXmQLXJPdjDEa$u}5?ed(O&J zJOy{3YRaL4pi`UoZ>bwx&e%ENi0yn@m(|4o8>H19Ap9^Wf-A7`0BSvrz~mLTx8EK_ zSoij(BfDTAQG+x>xfO1odr6L9IF;GAQOB(RU;)`KG6KE-nDkYKl!E?&V+(7*H!m*o zj6F@>#~WVo_ST1{hlk(fX4=8+(5nLZxsnbOav?*OL2k?Ic7h-mza^cjN~L67Ff3;fXyS4yV(?83Nf&=1J9q6(rQL@H@tdbXR#VvbkF8)2OYXv*a%-ExM4Ox6By*a>djT! zxLA(rc^5qj%>^Cke0DYOdT#lmWb)S$2(7(G_h41Vo5K1-1kTuiZ8NGy@t63K6dtbE zkkrmLg)NVwA}0;eyjFy)RSq#q@ya8iq(huwPsVyy)T{kUieY|{}Md${8O{y}~jSLRzFSWRWP}HDu z^v#`Ok%i5poQ$JDfH%(ldHgAc7B^9iB23V|S9#hhWOQx3_F%tEU*zdwT4UGavf|<| z<>|vf*CP{y#73Yt?`tT}jKKu3Gct3ap zHr7|XztPf$CT)W3zY(AwS+L4pn65;pR#LvDHC|wv`sPwB2^R49@t@z^6=1nm`ms{1 zx}xu0CGFmX{9@*UPrHn1s3;FU8!VurBr?pX#|!)cXcF5pf{a zQvo=h0vh(rzeX=Dm0_kxB4Ewh=DpvGu8RqwCzVE_Ac`+DQ*8>IcThgOn!*#7BOP<_Sko^z|?zau2KXK!S{W zd#N_Fd>O&7l1Ag+ZTI)xJKtbTzE(>^kPTFwo9hOr%?<-vmqL!wAOq#R;oStw|eLslgq}+O~42@RgajlZ$ zgpty1lrjCPx36PK-fCb!{!BdoQE7>1_}zlJg4r!b}NgfK#d4R*~_IVf@viLg22Qm1Ftd30|4T z%a1WjdF$dcdR z*SdH9dblz(Jt}tGd|DK}_xg1>r2UdvyK;LQ*=1k7IxQB$IcCV`!8z~=px69yX8<_w z@2_(~0#b=;}z$g>w9l)oNjk&Jgvh zv0uMXu=&xE7p4IL-mAV-P2rNeRCjcSoHcS-`10*BO%&`9)6$X#v|(d&%Q-bQJp2|L z-L~@j_bZ_YV3LQ_UA(VfuPPY*THd!9^e@JtNo*~*+?COl4oD-F+!t!Xs<}MV zDyd*{DOx{&4tmCzYI1_SMGc7k%{oc35b#^6#rfSFA#C;jJ2&#@=0%a~%E|_2oTdLV zQk`9Wpm`IMu#m;X9#Z09?X$+QpM#$@H#X!32b(C?Ji!6H4N09-^7S+_N@Nh1l-c${ zFE1}Y5%`_Z%x^$-6nCi%U%|DeRhIR*1e1qSGPLXmpfTucpehpShP#`~vWTn7@BQAK zz1o?;5mh&*eSA4aM^ahgo0eZkk^Ub$PS}j7i2bh5_JvGJ7 z8kmlDHxVjaEEyYgp84!+w|@RCS6a#-D2xg2PcOv{+Zq|k8&gOO|NNVB=A(p5w9>lu z;L)M2pkS4}#Co>8r{s^o-BpK{gNKOtRP7LtiMRehb(=uyAXlY3x$);J$w3FIO%NXe^XF+mx#C^iqb((@P9R?uYxaMA@OgvQ&v{@ZuRmL*>uq z%R&=%xv)>KTm7uA4UZt?6E&)rKMe(a`r!y8c7b}+LCSS^Xjt)3|;kifm$ARV`D&VEHmNqYd__PD`k zl8Kjh3fh>OqC=k~haFxVwzxXG9p7A9fCu>dlSKlY^DR)krpw+7)Eq(u(yH;xf ze@Kw~(8*IbnnBOOwTn$#n*jpb!$c@v()%k9XoF%YECa^YxXb?Z-(7*DoA8k5lRJ1y zCHTKkON&22r-F~fDCl5k>dt50TsVy=Z0-jsee~F< zUr8S(ckqYB=q_*SUJG3uMac7Iv2nQ&3)rR6(FLH8dh{>|mDguh^QB=ei^Y3%P0sPq z;cCQo-CCpn4AFbRBEp1@GgN?#om;863cRiS7AgUt(6D4xdGR%JJg3riV6@8^@XJVjvp2$jT%qoS$d< zROI84!#2Eyl1bQ5DLq4LB1XkOuGx0I)tY&FYiqQNhx_d8+@HPL6;Y~tL%$YZIGT?G z$=HX}*RLl7;o`gUjb`+w=iOQnsIrgZKSX7B1%!QC3j@GYNHP=U}bAXltF)Z z@#2pFZF7!m{T2?zBWu`uU6c=o+`E1IAoN3XNy(2zPrt{`&TkjDa0N^vb7lWNK_RJ* zH{W>q97_`gKjkv!2;<)2-sM!OCI>AFUGDC>Gt-lrh!`4jfv)Cam1zz5mlwhXGV6*x zt`{lA+*_o%`t6%P>?`7-ksDoDrjwV~W)qoA)_w7K_mbKp{lP=^3qNGa0%SFQWDP)> z+4agjwi2F*)Kva^2?-W*W0U>vA;(&UE3X+eNgSM#Ioa74nUuD%$ri$|qMSkN)8Y}YB8ARjx{ln>;@J4scO;YN1!#jk zzrCljvm1{Ts}=FgtW_-Z{qc#NFix#5zTVm^%g;AEcb}<#onHNd`fbk*ZnQXK26LEI z5fF%PD(K+*oL^oJ`AWxjE>e7Tc0FQuZ_(QxSP#Q!S}Lmu<9#1uu{(X*n1;Zr!swQu zpeyO7LlK-WFq#R@DPu>^o0}(YcPH{M`K@>Un_%L}Hm84@24#N2*eR<`|HOn)H|UKF z6!Cu71cP;nw&B4CUNbykGCTgMDRv0vq~|u*rH>U>GlDC%{OsoN14Sb14=r87DJH}| zzINAd{1(+roF`XfwS(@~0MQEd|Lm=+xGk@MoK?ujN58(#SD&jlBRX(n`N=L({yzB= z!flC(@3-ZKU)72J=2CX|KIb6=pEox*JiL|6%&flttFMaD*WBFiXIHPj&HkY({Q6X& zU&QC0n+!~>Inh_{{S!F=jF&^Tv(4k>mt77P`|xMcB4*$4n2)y=INS~!%-LOich~Ft zQgZ9&toqxs=Jd3?_UpHOD{VM9Jw9$`+do!c-{5)vtT*mozC6cA?Ya2%Yk4yD|9`A$ z{rvoW@uKK;1r+O@ZrQ{`U0UHkw0v$NOPCaWpWJU1sKYr)4) zr{D87J&2HKV`VRY_opJ&^{DZ|Cf37=63@Qo-Tl=$YuU2r%T8%|z7NskGB|MbfU3*l zruGKC1n!GJFJ3myWt^ts`Ct0(f!pg?r>bb4OFNzA@%6wp&+ktKzizmkpD!of`9|z} z52L#N(yqlU7ZvtpUjKI%c%4Q6xf@=WA~VfI9^7Y+SCYD68aF9JZKZO4wM)$z#VUTc zw5%DIQyJJ)*D#23cx+Tu= zi2h;~-%K+<*PCp6JWZN|4KK{OZ6O@PYvX6ae2wpc@)6^F#R6sZ>)n0P$Ce&22;ls~ z9pU%K2-R+M)cJ;vb2Id3$9d;habb;n) zn|*80?%;Etv{(0R;gu%Xx*sKlzc@0eR+e}BL4JBm-bVSr+pOopfQ0_j?K;)?4ISk zJ33c1+;J<}XQ0>BFu%CygXj_S_c4nO?-tnK^VWrVEz<+GMREmqfNtNC_E_|u;G;3uiPl-dUzq>0qUwM4jqhwx%!SB6gz?NA6LAg#af5X3sTl|5Y_tczo1V0o zBg$c_GOA~b$I2Q9o;4&Y{(>d-Pz8V#>^Hz0_TNHu%&%|t`=-L1yC;}ZWO?9{6V_}m zp1k3R`pP89&okI1oyf8?LAZYur1+jiXQs-uva!(;A%Qc&nH*XTUMvLam$%@=9@d!H z$mcJwmb%r9^jXdAcP!gr?IoG1$fLgg{|6v~Pp`n-AQ~hg)SYDM`2yPsCwXW456!6> zPz1P{${KumOdUiU^|kgnJ7fTSJ;)+{{IMjnt$Yosa538o7{L}1tY_vZ*>H_!2agr? z;tbj^B+gO20WV-5z1?!AP2S3gqG@xZ{HKzBd~+JE59A22a_pwTF~?1*pGZ}3^R+O_oq~{Q45{Lwd3(K5SnTr5=0yfC zw9Q0m09O0eEB@aY=W}avNuO3q?=s7$6%~^kLX<&m6{{UhWkkr~&F6t$eJENPCG;dJ zGjw)lcH6_f6L@pzm+9xZ$dWu_9fM+z{YuagNQERUcU0B3#v@W;b<0dNq)nQj^sq^a zZO3P@6;GU@=EahCZn~2ZFTfrgymAuryX2ipUz6VEEjns<8cGp}xNrgOge8Z9*t;aB z-X1JF)gQ-QqzQ|8flbG)Y?>(Qn3urIGgY?R7FZkHBbVl;0&F)w;!5I)YepIZ#^YEy?zp1;=E4JHiMsU^drVaYC)n}jYMnY1XuE#DVlRVW zMqeEIQQc1DK-F5lyqmMwEkFJI4mZU_3wOkzv_>N%vm(UqquzkzY+w??@P=&ovRjEz#D>&Fj+lz5@{YN{&T<5?mdDN=50&mdy z))M&aCG^~Mc)w_yUy5Ksa3Q#fnd@oM#X1OM_xItXfMq0o;JtO!>dj0GOl_iLK3G`M&A-w}dus z+r6;NyV&4M08&dN^RcApw~1|=TG75#1R&bb7*p5|Z(#HGslqf9xJYlB^GUZWIQhG` z25LFJYqQEa{=<`hOK7%NA3DBXrTtBw{QR2Bipz1KL?^5Edqsj*#4N1#|L%%UlqVV( zGTJl<8>wlj6+|aH^5S^g{5_fM`}}RsMN2A<_m!=E;6cy? z8c7<&GLWZ4d_O-wzg(PVWs5e z)x#jf&%zdW(x6~{&^<#((upBy(H&G#$V`r>_}7z6%=uZF?V}pLS9JCo3iDup``I9D zA8&~wIQf6R!q=Lk`lGXM3fi_DwvG(hpJv8H@JahP08EKFa4L4fyu0Wwq)x zASnk2Sc~bMNc_z*Ys_U?2fNnWf5ZNU+dqJX=(yvRKS;2Fr5k7+-o5Hfe(-22lJ^rX z8gS6B@q)H(L2mj!H?rkY3EeAzHt1qNX?de1f5EMRGiY|e3+!+P3Z$2QKVD_e8usa)eTQ2>` zI-V*!yGQQ6!Y_Ito3e_O5)Z1Wke! zYP0XoTuQE@wkdYh2t8J{d5PR*xIHgDl-r#<(Z0UU+#2-hY%+PEiGUsMJ4Ho&nkciV ze?Fj>axWAcRb~62^=;oGX9j{I4HT#jYXRa*JXV_9&~C1#>Qj~6S_^DkHpptezIdu*tC zx~DnXMdrY?U!kZ-t+S+~yE~TLq{`lz%eiD7p0DsdW4_*2>3mfCpl{yA*?r)+se^-~ zvFeI;SfvRQcN5ZzVI{@T@qPLy_9qy&SUHjo67@J`Atxc7loTYso5c2}r$E9&EVhP3 zg~HGGcqjdy6GqIt)%?#<=xafk4=8b+|CQ4%}h0Q$sfk>Z%S?^6!T22q$9=Mh;b6zp~0Fb|3KKGk`Hr95`3JWoyOJf2NR) z0Dlt{_|L?sPR;+UN&i~~B@b{S=+l(Bg11O%C(?NQVF+r*S`Gp4&yz6j3R9vL@TQus z(0_AGAP;FPNZdb5qojpJ!x;)H>AN?p1Q0*l;DyfkfSw@i674k43i`FFFqTIZPRdUj z9{+~(8zI1-0h}Uu8{+;H%m+HA2GDX32PhZzU$!{fj>x&!Ua-4kLIkCp5 z%?I63?QcUt*rp#^hw`xJ+5I2ym=*mvzhaw$;H1ZvGN4pT>_K4lIAB`gXl>Mw&!W88 z7-^owk=uOuM2^8qFrUK&e(HWB!)dK)XRjkXLkbFy{cw6E(?GVcu+YLM9=Fg8N$z!g z1Crq>`K2S|&-N3v0A`yaQ?j;|)p!5m!N7g3a|_U8)sOp!^7_)0x~NoH>8q<4v?^`p zc!KPx6EBvsS5K%CBy8*nted}VelKI;UI4!lIPL|O>d8>FgPC#7!jcb+#~GX=d3RAF z23_FN90tTnu^r^!m++P}F-eP|7_=H~W|O-D+PaApKIZymtlBmFErJ5~+N0}+fIuiW zhba(Wg|Xi5z!Z#kU+LIem}*h%SZN+aWtug-Qpjd9TGZ{=WN zIgL)+>%&Ua9DKp8u108+G2`_$hPp|l8?GUAA2pg$vG z)GOG*;%#d0FK~1RX7Ngm$y*iX?JM<&O1DHAB#`>ngZ~a~^1Xjys+9nS@qBY_wDf0( z^4u#;=c$^CV2}$Ze-I0+y`~ljlaF?q40t9tz>cEo)UWjIua*{NGOcU}1@Na%oQ5%Q z(`Y=XC(%$S*ffLDv8zNVl3wSzr^UfjM@}>W1OsFOo3WhYo^ty3p|+OJ^rRdD*vi~g zR^!T57BBu($JSQ=3|UlGoZ~aOkmfelZtmw5YvI#6pMW(4+r&ice7oI15B%VSf1cW( z0se1pTM*2s{wV~?QJx}--~Us6c^Ry&WG`>egj|8K>X@&ECfr>udtx4cAuKOWiX1>G zM0a}y_fgz_slEoToF~bBk#@UJnBM66+%}n)qJ&Rq$l5m`e`1>=-|TC9te$;QMC6Z2UN@2xhPgS zc1QMI2)2<`Rg1Z9IoQJA`{7fpzI@q#wKkcuRgKeon(qHs9*wC#lgC^!9orH+sMX{< z1XEZoNWbj(5{kV7x9QG!n2WihtDNxuGWj(Vd9kdRaXJSeZ;>XL^y{RDSf;Iy8FB(< zPy^)9Y^uI2DJ|ti>O;Vidb|?{9kK+mm$K zMSKZUQJuTIxFKOvXex?cd}E_zJsXg7wz1(p+wc6=`vKDVBd_Ll>CJ*y3(cy+Ac-tl zs(KK5-PC~R8ER@eCyTl9HXybsba;N+Fr)hUo3y>A;BMS967JNcqdQ)Pfs0b7u-+L5E zfbwy_uFC>36R>5{dqyCnR)( zA_4AKD)Z-ApFzJfJyeZ`8$Xka4*Z0h`s}BdG)7--rI%7X*jtQdOYaL8vzd_p-4m2joIh_Z2q?dMt9uzXWKIe${8iW?RzL`r7bCYsQ&?u211%$iX_8wmND7HXj zZadDmST>Q3{F92Y*+H1pyKezGw^5rd*HBb1^bb)97e4Eq9oFJz+VqiA2$as?9e;Aa zd?4&R^t0bQaO>!M?lAoKH3l+E9YzyGe{6pBY*TKLNUQ-z1}8@J@U;N7nWrxJ9g{krdK{WsZG;bt z_^Et2vy~Q%1H8y2#u(W$y9+s|8NL@ULxLf*Ch4F$U*rE&iHuwGXT$b73$%rGh>@A= zx|DZxJNkSP9)hX$39iNQi4JRST^FqWNn#o$G+kXiN)nKBmz3jv?i!elSTc_^8D0Fz zy8PRNj~YzQ8q79cZL^+6{pbCLnQj)7`m_<}j@9##VoZaxa-Dadi%Ov@4&qfmDdM60 z$e>Cc-e85Ss+N8wgycX+;Jfh{0y=GgZ(Ro9A^k){wTp&xaHVAt1L z{x13ako_2R5z>kq3z;H0IwLN>gg1RIh_W|Q@hVRHGyTO^L7GrfuO25~%PPTNNp3XM z==+oouuf*~jJ>>v1}#hmPTKzd{*}4lC-|d}n$I+^mOL-#d*?1@9%X20ZCfp8+Qwh3 z-7Y4Bh=$pPEs}7Z7(2PUFQ19|`rd+sJ#8`m!4eX3HXYW&Qe}IT_PhdbbaZgZ zg`fGgMhLQv4Fm`+_GxNrcId!qU!5zA`&MPYq9Z660a<&Fdj`BECrlZVB=-OwK7u0xF9<_%F%$tA5-$|)z{arzdy&__-5H3`%JuI+`Halr!5%t zfz({{?SibnR`e>h-sgk{++rS|&XhDMb&%^1#k<#Pw?K^+qsvPz;1{m`gCQMTteZ^3 z7JUl=eNcTK^ zaw|Rls|A0kZ)EmTMvw>_lu&*9{20aeT3YGX(+NetWs%%Bxa!>6;oHd7{8nK51|sPpymRA_4cSR|D#G~sW*|8`sbGx^ zT>ZeJTwwYgq`_ikUj&aHCr0s7j=qG8T*9dbCtteIQq;Kxswr=h@ZAXi_tCNBWoumX?b?ylql^+f{n!3 zV~i{E^rHp#@BXQ{7R_auWPM&!_cZRrVO9m1vW)m_F>Fh;dSjxMObTBw1<#s#977ZRr@6LCT52#2APF5ABg5j>4Q6@xMN^}w zUMTjv_jDp>DwMRSsE7=kg0Lk|MtC?kREdk<0o@;JuEC}S|$4wnM(GK`V@`&<(nsI2HqAiC~-NC%pN_Dq!%Ysa z!jN`0Re|4N*f`Qr?O$yh$c@m=w%Vj%gG_%c(awYaS1YPVxy1m&qh*lwDoWC0g3CH% zDn4jepd8ZvRx#MWiObZO^X$2Ek$F!6w)3bl1l&i5Tc=bX0=AY{iJpWhC>hWCu$OC? zqnB++;yS(Ruew9hrdl$2bc7CRrdT*Q!h1EDplW9dhP*H^yA-v~M~J)nP-Q7{GcYKq z*`XBi6G*9$B3RevuzHZ4$(+nXROLfkC-#_i4mqpF3*ou}s|?%@YQ1FGe&JHGVLY%r zTT6uWLHOu_`lo}+1zZYu?~W=dDk|2VNC7~>LJI#!DMdmV!XqZzqKvhHn#Z z2`%aiIc-fQh5cQ=y0qCoyBz-eSLA(u4HO}p$FzozUZ?QSA9dqoVUgpBW_G(Ykeu$$ zsIz0tlVbe2xaY&UlUba0>{ zX3FR3$C#^El>(1CB9+EESQ^w(k4Ubr2PsHu%X57uKM4$;Wg$rEg*`0N)f>yccW7uD zo=&OHe}@__l`HpauI-c?n{el;``TeRTU}!7huEL^Y7rbw%LHyNpWgxJ`fG4-I~j4L zCp5k>qay@;4$Yi$U)gDDY0GmsQ$qY);-jgM@$C2|ky$=Cpe_t+Kb*AqBUvn~+(B4= zlMZ!nt=_sDy&231oJ5FFtWF9Q#5|*MHep5KmDm$Z^}0Bmpv4(nO#Z_eYv)eoF2dTpV z0hoNTrurLY^{u(?$f{E68^*i6L;QD}YA`OMJbF3!8PT788AeFve+s5-GYtxF!ZGt= z5A#*7V*2eCt3CiQ7Xawejpqh_wkQnAl}$XZjIEwTHOk&M^uxPJ-Aw+zo<8BX^eamo zn}Lw;=Mjzc*jhZhgu*R@Ws&wnc z9OK8T%}o9eNY}{b0{YYi*|W$a!WZ9VOAFfx_7~z17|(w~PWoET6ZXV}Fig$rX9J7B zZiTj0A0gJ_Pw?nxdnnBPaL>He)?(1QX&oBrM%#>$R+?$^C{FXRt_iJ`)GD2EX#_P% zIke|JKcF(#wb*HC9fA8bPMx&huQ0w=peT3xv)}F}U&ZRnMcG#sonjCv03rW`1CET+ zjhac+q39z#dYccMy1obw%`3GVL5o&a)4Kq87+qp^e%9oj&`rxH$DF5^5ZY$C!s9kg zSYLn*tw-MrX-+R_o#5y+oUjz!&~KQ{r^7k#U=4)~zq?CJS(s*U7Ip4$mKX1Q3tpPz9#+2wf&_ zW19?+u37bl<(j`VYdN`i8PEO{s?tMT>n{-|%sy(*t{T(rnt=gn&3iG8QxID77zakIPmbpG*!2D-oIpXo54t(NAab+q`&r$5_ilgU*MARVGMWsEOKxs_TTbCAlq_!xXc z2$gP{=}t~;L_5gBDEZCAm}x8UuUe|DNZ!f%E*V_EeUuU5$mdbw{$J>-b2vHrwS{Dq-jrzE{pS5x$SFVV_95yHOL9uB?f5I| z<0=jFa?ntNh-X1c?R7$T$W4bybXDK&WW?C<){GT2sVV{{X?Fw1$J4W0L`W}jwL;kP2{NtM52yhrr z^thuNn=8hlYE0W5QHXYCOAN#Cd~~RrC;`yW-$Qx)o^2pF>DL#M4M(UV!3s#4gpE8T znTr|QyU6NBU1?%f6>ijeRYmr1o7-i6Bs8BVCwiS5L8Vus!Wy*pTf;X!sHm0dCfCy{ z{`UCfm?zv8f%xOT#y8uJUlGP$QZji|)?4v}WVWP%j<4}7MZ@gGXXkE0@CK=p!yp65ID zvjdbZH};`_)1xL~I+13E+tlwjn1o6sqP?=+ks6z3gOC_2hZ(63CScDeHqdlkHN5Bk zlfPB4+*x)}xP5!ppyO>5)am4;2IvbC?{zyX2BanIEm|?&^rjk_^%DI;b+hb~djJhL zl}1~2H5mX7Rek}@v<|QA{~gC%+GMxuzs*=#;n@!dx_5B(im|ls9T*balzwdJ7>aW{ z0KdL6)4C@+)Lh7OZoe49`!ap^keJAx4UGeZtFWBAnoRved(;^Vu#pipl<~VMd2tC{_wpYZ?mY z9+}IR{lc!pZj_&mpL~~ST#00{!QZBwaW78Gm^HM>lc6RMJG}OT|C=i{6+VQJ?(frJ zXM4CZL5sb;p7@PM%{40X;yWHh(LP~_?Bpj>?cv>5gI|ZAs)!VW65h9Wtz3WYPfu{B zHBbK!Xd{%!Q6e-AJqbhrxhj;8a(OJ3{Ozz!PCF9%4Snc4KW35nzchxUW{;J1#7{Dk zdHk0bd;P>(nJup>qn#c?wOuwjHQpxdn$39$`>#c;R(Doojy>*mkf z5+9goCsi1@O@=Q1Oc&KnVhqK)*6R7J41EA$B{Gjej%R0&Wj23f&qqf&7n$iyD-+mr z1A1UP|MBOAZgGVHiIcn$JJ(f)!DiWp^%l7*&}JBQq0y=(^ zi~z4AsiC4X%fX+DmR5x#;q&e1dnjDDs~XHQ^FlUpUlHYGp(1_v?g9UWKaiGFd#-Vp z9Dq{z>RdkC+0T9!rDV3QyimS6-@mBnUxN@i&PGckj{Xwou0%VoPTtOa0i0F4LD?+&WIXP3)w%8 z1J`x*<<)~1|MqI-Umn`2_+ENm1&kD>NTiGTnzviL30pIYJUImNSk$6yB(rIyd16#{ zzwN#VgJ|E+)-O4v_mBYrpp{{gPsfT!6IZqF#44G=yhe{aCA{R+mQ8Dfy6&ko&-Z?( zS)cwNf@?4CUelYoOO~)3YRVpCQw?W&39ql5RMQg*Ro?rXs-mQzJiw-M>HT<+O@qY? zPI`ra?dInNFJ(pW+?y+T6tOq7niT#kbd!YkQw!rG*lw33RU~y#lW<>h#&-PR#ju3Z zXj9~sMh$T&Hm_RxB>;U6zWQk3Z(b>Of=OIEG)C1={#R@pU7~1@qm+kwtbcG`KlQ36A zHk~IrH#YkmZ*P-omZTkn$DcpJ+OzkN@eGH1?AOs3YpElCYED=-eK-gS2@^=|1^-u# z3vi*8HIS3f#GK)dBQ83*A_R{vj!BM3Vwh=z=zKH9H^G879c?mYrr!I(e`GtzS81kt z{|8r^q&WcAp)cJ>;7tnKQHWSHi#Wuo9Q)=69S&Yh3)miJG=+VBx^4S&yxRNlZ!a~q z9yI+YNcCe)4LPA@D;|`wd=sPthxL8tFG))UG&{%48uIw)8(DJ7X*?5H^Go{MQ`sRL z4(Cs`vLAn+jaxL`)P$ly_dZ%jh|5go5G+%fDG`-+L&7$?x3~Vb#{)*b-S9`6h6~d& zf|+cZ5+!~B7eHF|>hfZl`|v*iTj~7$&`G<#f+rFgB2Npy|6Bi%73tCzgQrthq~R_J zBXc>SYGQ_LrYCpFw2tr?=%nj0Id*-$(jw~(X&C?_Wat#mL5Bx|6u{>Qm;Mh22>_Ae zp|%iF`J7{J9z3lWI!56p)dGbAIJkU8?5FoaZm~F56}6%5%)Y-(p3ryUlgHt67-U2{ z=6p53I-}aU*G47uNQW>e<2s{OK1!0jxt)aSg>r@M$fFj5SASW}3FxHg43o2nNE4R6 ze;%G-{=%yT*w4}F{&G{1u8e4(JotcYf8T|_P}kl{C~x_Yznmu*b>R75^gB_z=Aji? z>D`U`xsmgnAIBVe{&kQY5eA?;4&w>4?>Qg6fnKiLpQzhklY)x%WRZvXbJV8!5HRgW zjSy}@#zPC={4}30`yLu>!)d)?kd+LCrFtAoR-sb)(w$4?QI_5L&e(9{W>$Mg$G?0# z3z-sj1Dp7!nr?Cji?M>V6rhfv7gfz0mAOv^Ud8$LZ&z2_nNc}^K)ff8YehSNrFy4m@*w6;QD!t+g!8i4}(MTo5p z@--`rha5MUls0^^qH?Asjlz%108Qa)hWP#{zOr=P_P5)|pwaj)G>43cpP9x(a@0bsnM=dSp#5IM=+pmS7!- z^bm(8voP-%^s)k7HBG=L2(knI_C8XNhjYwL6(c!?76nz=duTygqc;CCXGT?770;@r zjfV0&zvqog_5H8$guH}z{aJaoaEspV>P%VHGc3+kO2lLBY7M~X+Ch!0tL=@G7A@rD zs{PtPK}*s1{zU^FG`al<(3)jO0QF&xpFtGG%c>=f!J*p+-J6D^qBDFtOJDqttPI)2 zt(2<2Yz2UYZ}sKn=SNOzikn|VroV(s6!ij?#m(?wv7^fCeXLR)QxT)(-phQ&h5uEUX1PlZo``@zw0Cu1mw zOzJgIVMuuB>Kg7YTa7_-MYKIwsWmW?t|07i?Xv5*iV2}>n4jwpo(8OD#1X5WFc)t` zdm_I|6S6#9)1X-L>Q&U)-ocJ!hLa7r7D-GmzS3Yq(F0@~C&%dh{ZEc7Xib?}&^_h+ zEArt_L-rw##k=qN>@IJE+KD4}ZswJAP_-wSl>sy1Aeq4&xff}G2WC#Y?lu_#I&{Fx zllC9hKbk zcE^m2*F+j!zYh~hXW>X>R1Yf+`4xO&ZbK~h~jcxowu(sHA$vActdLpf|B6Hy%m6)W+3 z%_M$<`@-f|V$w*_nq!e*h#Xu`=!!Y$*XK`d(tiuAKblrnHQy)?J{AFZaR+ibDY@-l zA9e$OYcQQ1ZD)cE8+BKRlr1M|H8!oZ1z`)_4yXr_k;V0bFX2(@aqH;yHPf^-0Rg*` z{2D5>T}@XI)`|p=PI`M}dc4V)j)q4ee!AFm z^|P&5u|*BLZkl<&@H6sZ#rn_egBJBNx1wI=2igWUjXuSywRilvLvSWm4g6|@6x80C zxl`7E8Z5NPR=|T^U3N*?AU{~Tlm=%Y^dZw>yIn=vI^$T>o5C_-W7w3Z>qDT7ZuJmF z{9afP&n98T~P}kxuf^p-)M{+osnx{ee2C3KQ z$!F!`_^a>q`Rgs)%Ff;0@4f`>vdK99R+BUbMjM|?DyEYrQJo0j;6A!wR)yUXD%nse zO-Zn&*srhe0lbkuE06Q2V=w)>&=(*=*O0yjPAhu#oJP_0KGhl|eu~IfX1t^5*_EC6 zv39$JPe&gV-q@E3bxf%}POnLu?65*xFtg`GHMl+6AX4tJI7`@0QyYjej#SIFw&wPC;BLskU1edXJ!rP*e&dylVvwC-OO%ww{*E7KV6D8sKc-xXt zcx!5(13rMkKgKcC_8*h$MIPCPzdtTB?bPf+OcUh~gToFA`m) z*gSG6*R!yOjb}g>)f7lW7%exlQ4LJt8y8&!TV-@@obJn^syP%8Q5-CC!wuO0uTn}D zoTC!3F+papJ~!cx3E`|-Zy{5n43eW|W_@w8LY~hYollbF?)X$Ku@jl6O{o^8(r z>jHCKSGR@+fCf1fgLWt+=}p)=V_?DzGv^Wa1xfN!5z3T`5ZRJ=rdDtWEqmF)_T1dF z=Qt%MWws~$pu1-9 zK1Xqu4~xg07Jg`#`~6ojc?EDDJ%g7}EIRC?rHzCxx_S z^fOu;rIVu6&oXhjv7t7V4A8XhTf#5J;%Bd7Eo(E#nJ_yq1r{V7iEnx9Qu~#wRN`i= zX?naXT4Fy{ovHVzC6CmjX57(j)9Z`@TVXW++$^S{xso9s3ibh(9@zKW+!8es(IcB! zWOQox89Zo*xugcY{Q7mI9ZH)Bz9C_~@)j{b$-_>N^GBaqBQOlGvP@ma+gY1>9V;9| z{#k2LccGHuTRG67Lo5mI8-d_*F>$F8n-^t_in4qN@)H5mnE0uWgF5<%N>WIRgwD>r<*_#Vu=@V4?S**{Y{ zym+LzYlhAa@bGJGi7pBKA#+o@!}$HCOob^2sI*d~*DsJB3NEzGN6_L_^zOq9>D3QX zL$LR`D?2w@w&Y+hi~$f}q%B*0{v*&$#IbmpG<`JbS9DC-a2fbtwk`vPtj)UpSnEqV z=ap7qa31%jMB9m*%@k<{KYs^FLEu~m3(vjbD=dj`a!f&|lRj4KfcE;QQUyD({W*(#ziEh|O{Ffj5cDRI9Q2 zH|{?IIW{5d-z$e9MBT^^SdtwxA#P7*3^=k|i)9fsCc?&CfpU*TFzGydYMIW>YWcQ2XySIVSl9Ue<1FeaF zt>!F;?eZgt`1sxL-&IJ@WfQf));$g(LCiAwJ@`7_)ydZ58h~A%aoHYfSF4m%Yl-VR z_L~W`qbew(?{F2&-&|#RX;m~>oR)bQI{=j5paU-DH>K~hNIN3Gy=)&>*}aC}3;!d_ zDQb(kBrMM!R=@JizdRU({K(3h9cDkUi92G@3or*S2 zMsP5E{VZB(cg(Jz;^-wuG?Dr;-rOm-L&=|@9DLzUUp@#-IT z9_d6vTN&}5{Heb+_yXR%d2{{)9j2^sIBIm8o#SFW-gf+KDpuvZ%P4YBfXnU=@)4+O zr;91_%U*iT`J0La6+?D55s)7(O@tEWNl!eUmP3~#am&LhwxEc+d127^Xk&7mmYVv4 z{z3}4_0x%V+RVP(cp7+fc@V>6%s}U1mMM-a4%oE(cy_-3Rzu1rN%H{2QJE7U>~(dFDsF@g}%ZQE$-Spkphw~3|&F( z(?MD6QIXaoNR7nCq=u)bXB9xtL8*TGi<*+c^i3H1Et3x2~Byp*yAGo|yfeAfs#mJ41$9^(B zjtjeV9hsp8@ROs{f23D=soUR{%21&q%x{ZH;Yv$ez-6??&jKS54E$33JTgL?c0STOK8S8r_n} zgD-(?oxMkgn`yYUj<m#%nB%7I`9zac{ zUEmq?`0+vG)geYR>53Q`N!>iZxPR|ZKH|%p>_M3`C9RG*fs$Y2A3utsfP|5%a&D5_ z%LYbgsf!Y@3j(9INT6PnFWo>uAAiX>W98QuUu~hl^ctH`GVHG(alo7D2+!Q==U@)g zR;FhPM6z1ZbvE!H*;x`VAj7Ui{LF_kPI#v9(N>nSyS*oy#^hWG^PBV20V(`O-Ri!J zoSTc!-UK4)H;jkV&9)L=xEl;0jUT!I@@-rqyIhJ1jqBMgnIsVTx&0dN%kEp=!`xV`Zn#D|ZWp$T_O)lo zh`8}1Au&;$jpCZKbE1B(f&l3C!otOEWSvZzhJ>wnV8pI(H2mu>VBeWsXFXRZNSKrj3z^+>ucb>=*y{fGdLd*FHoF;C&f!O{n%a#xp`L%jP zf-$py>;RxhlKexmdwU}O2t@1=-0X;4;EItEb=dPX;O^Mt{|q2G4}0KeP`R9#LM$1c(Y1MxcXajE0XaK6^Jj#- zfd8lLMNs8vX3XeQ09CjUf5gm~c+R@FZIAx=!N%DBy&!I(MVVGCA*uEEFDi$sZfxC? zX+cIkQ0Su^=4*l5m+#W9JK&vA+Wo(6DZ-`MV&=O@pfsbj?6L+->eiIHB@Ov!8=?Ts zaqW)%yq|wb{&R`8A@k#36BFyW$u@&|;_J%9llK5Y-xZZDGm1}QXQ>kvsT{17I^}Q~ zsw$Lb4?iwNPOo=8cHSB;i9oH5rrj)QSddi)Hw~Oxsfm!vLN0xNBX3;pH~v2^z)gaR z$0Y*M-Eq?82|zw|7dsB;f>TAFW>0GUv;l^@=siO}N5aId12bq3-rxB{Gzlp2aIbUs>3W$efH6wKzh`BkJGlf4E!x}MokKq{-y*T4 z^Ye4yoR&EBm&gZvR|I5Ol_6oijoHF&tamj7=x-2iqaUFIGgbm_7v_WW@D zL1q0s5TX?oh!wz{NJ`c2Tl9lU$C}}Z=nKMEyt+5X1N@`}(3Kgd3uK%6Kws$BzQ?`VZNJ7)6V$~~1X7RFu{#U{qzqgs zeC9V^2{0qT;y}&xy|9$#%*ZHV<@?4;nHdXL66lPU<3Fm-7;e|!zSe=P+=jqOss7MO zH<3$ab|qJ=BP08JngIq@_pO zkLOf6(x5r(n^hI#>wRpX|~1-EE+H^qRWfEd}Mv zkZ`#&V`k#{vK@3|Y%+3&c$_49Y)x>Eum=dK$sKddn9^S7`lfrvn-pMI*Y>PgTdqa$ z-{UQ6F}$X+zn-S0VG81fvovEE01xEzn9%KKwX*(NJ6H__XV; zniPJVsRD0HV$Gj>Gvphipbf8Xzy_sjEqeEI$86Z`D7_F8LS>ssq5t_=;!&9r9SzyI!tc6o*CC$!BUF{kl; zq;YF*e;?_4@cWgiQnW46KDSB(DynwXvMij5kM6lsBFotFoO8ewvy^34j+g73%ZR|; z(Co6Zh7&pXNUCV_IN5K~#~&Z?sD{-L-5%hnxV#Yi7wqi*v|0VO5f<%LVxtVx5lprR z7Jio(P-#?929379;ARyl^Ok-DkJ$x?hG0Og-o$`SmE%*S3)LGMQ-yYYhhm7Sm7t9_ zHkBz=B57+J8?00TpaY$y7=FCk&Q&#RWjM*^;4`89EIU)z$j!SJf(%{%fpMn~K{Za2 zc*>AT-?44@bz3r#oMZN-mL{WgsWlO$e4^BCu>XBVPbMy@7>|m|cMd9YJb%}kX-#<@k|4uph2tCk_3Gt(+w7r=W zG#y5j*|?3a^zk$MVF^E)2@<{SDu>%0v{NQ;iU$o6G;sTm%8gr8q%+=5Z(Uys9fNLG zdcZwu(ZZWFdMn6wyn)KbMj`sIg-WDSy|Zj%OT_HhJ8v~-#8^A1*)T`R^z$ZjisjLj zpNvjX!0VF}YmK)9{fl9vMg|jiQJXkB4G%9u`i5AJZvWu2bBN^IcXxu$8&u!_oopz$ zTz;NwpH2MxcJc}>3UB=;$UINC6q=ZTxxY$D7T{9dR?*rL5^RSe)XKm0Gh|4SnQ{mA z#IW(-bVnCGIZw<@ToGeHLg3+s6)L8x%E^LuzW~ciYihPE;1+|4Wr;kT+Nf*~r$%4U zFv7tW>|7`HOVRW8h7c;gtxdy> zq0q8!_%G-1NQrle=HMDkpfMSrl45Aa=i1g$LsL`l!o0nm^fUqRNJ4@TVwFG`(*MvK zK6|zYz3(0x$~KuW3(h|JQqzJIr>^in4ZInx|IFQqAM~WEPmOY@v@}~XBRt5{nJf`& zsIR5vP4u9mRE+dPW}e|Q^2zyz(Vs_JH}PNEo*{$k(M?vu*Z>LM zU*6Za7WJi-cmX8YAt0b}MMuev2W-^W*Z4W_WcaCbd|VlPeD3qF`T6zN6=*$`1Loel zl$$e+pPcXmp<3F_1z^abP-=w&wyuhVpV^4r+R+#m+Ge11|^_&Mw8% zc(AP^51isTUdQ(qhrseW9f=d9!9=%y9|IN(I zth!uWEM%zu;}1%dmX(#&8N4B&k*xVFC{lM?leLu zk=#%yMK_tPs60>H$4wjDf3P38-0GqRLLNLfDjr+dDb>E8;k(;(b}Na+1@R!MvW;|e z|I5;>e0#L?6WiS8!AN@P%1Q7_B|nI5BoGMA5*!>3(ZQep45b(~zWH8jEAzTT(b1Qm zC%UD0R1JKPp7LS9c}OW?^~gI#NEN4dS4UhNN%=T3GBOn*9UAXuw#5#>Ck( z1c=m>w?t5d6EO_BjL{yq4qoRg}}px_k0SlM=_3c*}iw zQA*h1$r!Y+ifs42Y%MxDYaIJXS=i7&l74(<0P)_l5x0HT5PLV3|Yif1aUy;-^2* z^EmRN8q_!Vz)%Y%-2DaJ6c~Fqm^1v%VX$;YKgA#9me)4Q;H4`eYVo$8xlRyQ+>WPZ zmMY1@d2CLQNE>;$`iSgvQ&VElPK!44``8bCe`SgWs|lNdP^>=4NnCuVDlRU*kCV$X z>d7nSxE|4aAt| zcX-v|B+gi6!uFe zS6#V%3eD1OK4$ITLkR~OJjoT# z$f5%M{q9ga313QWY+`itHc(QvX`J|0D`Bc5PNJ(j^t`o?J-Dvw-C~!s&6I16Sn^|r zveIvk6J^yOJo0h0Fa6iTZUqG$u@PoYZlgwyLoO-d)3r75R^8OBxDoH9@=}wSNX@Of z_j}Fxtv~pVFFZb8g>=j*0+yF*@}S;zW$-C{>?e^<5uRGs+SdK$?-vJEVasSMpPXX= zIUDeARumIu5)!v*-0$FR3zoA~8 zbW&1M+uDiUd*dfsyg8(gCB#1QB(8i<)%&P@Td1g{qpCD?^Nr%NNoFT7{%eLpCYeW^ zvK2T<;Tx3|s5LF#1JLo!B$u*qC!$7~x)vRwg>Ey7RTA zHRr+2Yr?aw;hf)*tE&}^uYdJ?6i`lf3H1=I-U-1?RysJ5(_Nnoq|j)Q0@$cqQ=W&T zMZ?1r{oLxdR%dnf7Z1%g7WR)|IRKgMsQ6|Qy`WehxhEuASFgJ5YEZeT_3-bLrc%$5 z>c9R}US`p>9j^?qkw-^oSC<6X*8^UaLxg1O(t2XlzBD4GRza?gn9thgqQlqJw0q_c zLqKe-zE=BQjygv)FkMzto^lMYOTVS1M>9$F1H~MKv;D%t=Q)-%d{xDl1WrZDlTuu(QL(S%@799cus7tf&bb*$>0K ze)SMgr*hiw!R_c+Ga93ZldiFA0TL;N7SyQu5#Vvuqhg#VUs=1Rtj>92y3c44=PU} z9(IHsv0WZ%sh_qD=UtA`A5zvjS<1%Q=U1-GIWkhVd}e?Yy=v~Ef){=l!dI{0QcME_ zEqL0Pxa@B3kZCo>mde0`}oj`hM4MIHW5g3+BHch7zfCmhgV!pmJ&FVBbtfmwdD z1K{`O$b(2-m!Z1nIix+>!LziD+Ke}lLDzp{A%{NIwamuO+3UOVqKL7@AF<@- z@F--EHx}9<A&rqY#Gsx2j z$3+>GO&=4}0SNK#olB|_%v^~n9axqiq2e+%@So}FY4G{?@84IsH?Z*))iZ)}>OSj@ zjhjr+^JlBaUiGb79^Ctm(q4%GO@P+xrw02)qp?o@IazZc`HYSc&6)ppkq>RGv_hQPvh=&#t`G# zXTWxHBQq-W6$@2;K(`3z?#l~$;!TAR-!cTksV)$!*0&upIW;bu+~bI+CLwCCSyTTU z@?&IepS%W5P(JXvLLcr=w6PlGs$H0)Y>1C$&(<93F=nb4lMam}d_V-Ub4IudJd$tw zfy;r}5*AquJdj#`L_H_#<%UJkVY|FnepfivBlcMJ%gU2Q_4E4^yT5*=LNtIG1ds)E^AivpFf-~5x_SS z1{AU)6fnp_5E-GFAlmKI-s-;?L#|eT8EKK5=}z`NFboRB;|1LdCu5G$(E$P(H7mv@ zW^GeY>wdlHcAbGC!Z2jwQ-R__-3Q8--qPk-jQC6)+FTl&0CL z(oaJxR=Xszz#0$`6!ZZ_DeU56p{jn}+^MnZCq3r09mjN&_Z5kOpRv5HOKBr>XZW+x zUz?lW@F$j*bzy|r>4-TgAPnJLmDSPVp)@yrdXzcgct15&Fte;_T`=bH3m`UCaW11u z2kxDB*=x?pb9KJbD#CfekMq5vkJ{#nJ;Ja7+gjsZsaIoYwZ*#kwde~xUVqm2lc!uW zPGAL0VPf)4hl?|p^>mbzRE(JqgMkNqDT|hR-sV$@HBdL#f0ggPbtWWalgQe*K z^v>HRfQ)Oc5_Ptfv^rItGj~7!6Bj2H@r#WOWLjFvsgo%OF zRP~LP_2TxW`e-ghO4dA{A-ETn{RfX(0KINhbntV$O)Vv_(m%5{8gJIs<&GM({mRDr zOyqi-h?;VdZD_0+%_N&cGha7#Mhy|A+ZpB^QZtvFA&bc|X z-pzYYgJhlgq)0xze>DC)`K^N+&;)|+EHWZC;P7?%ch}y#1NDkdZDUZ&P)0uc!mlP; zKCK6~`J=qAZ~vX1ZU;v=V7jNbXydW#w%c)Z65+3O4ElB z66D~}(T~yq*{$_wpr3sL_sW&D>oPHggO@iW^I9h{gD^1fc-9zp_4xQpo!EL=gQiQh z<-umst+yAOElPba(8{MX3U z6`(-11nl(mv?<01Y>PbDNHO|U;6`-EkWV8bST6mpqn~H#-_Z7wnU`I0_Ikk3=|TOp zbYUJ6&81)z6q4!Pu$-xk-7&n{&$SQ=OfXxgeuqRtvo`Vgx)i076dgCDp?PpH#3kxb z=9a1~>C%!AqE{f1x82#VpC>IR`gD!=dc;JtS`eV}!cc|&py++AD_{qwHnQ6#e;EM$ zRS-ZreB9le{&LX_3b3+nztp^Y_ijzt{m&UMlJ5FEB_ zCQVt=bg*~x5D8gaU=GD`>uG5*v4qf}!j@*(0;V=$y-zX^WWmlMyqhTi1STXmul0ZY z$bm2k26Fkr*|G&XMIRvgxC(&;TB(e~v)HuAtm)@UZ;~naSQECoqoSv4(Dz{0cUl|R zIoa7=uXAuvx+0Ho*_Fx*8q3>EhAkL4-~~_hhCA z`csgU6dM8dKXuJbr680~PMt7V2-<$c$(aUX?e6jhxd+}%^6Pf0o)V+%P_Tt{vNW=m z?wyLma;lP5#qg9Q6;+mj0@VP0Y$i-)8cX=)`nYg(1-PdKSXtF0%&llvSQjFUSm5WU zx6sMJ?~MfpVNAofao1K9gB*|Wq41^AMyGw2mG`{S)!{b)#PehgSc!MI6OD&w%Z@I0 zC8KM$;j*(Mc~gJ>l}Lpx}3bkx6jiYM?-Jd+e)lf$M?I6&A=+o4

    pthJ#~=&h1QCl+`>+@`?KRh`?6XB94X!5!-ge@2dv%Nt$-K5AERC_4it zKM1HDo+L>EF_vkgx!d=f3>+fNYCKmg0=WJD!^7n?HZk?HO#dWWzls-lhaENmcm zUD@NB`}F)+f5wa$g)aw4H_C9lLxYbK-pF0g1B&gYX-e^*mMO_-H);7J?4r$pm~MQs z`3aH|r6kFZXf|UOw2XDK#HT;|8JZVBD5-Y*nNvASO4BILzB2+mO|Mf-7T0x}U)|j+ z!-wq`fzZ6&5EX578N$XYn(1}i+N>=xs@G9r?|8u{tnC0cT*URTIr!a!%q$kvF5tFx zR|Z>I^MP%)A1JT7*AB3z#Xkm%&BsROi9c--%!_1PBD|$vt+lDK?4KPiPGHB*BMQ0l zM|TtodBeqyGVNvK;qr{y@gkx04!Gm>te*`yYAhSKhgqoX_(-A=XW zp`!M|JeL}D(1&RGu{E*j1#Sf6qBWpirhxtc<;2w8w%+j&0?hhaU-FZ#fXY@pA=&-?+{$IM1Vz(=a zUD@nd*x2$wza6E6L2BW0Y$`6~WEMO;!SaK-KXUI5cdRqU$zDwkl6>T`D`X1sXMFuY z!Nl@)U8yyl2OOwsecyOFE|!*1XqZl{3!v(epqR(E-{%}-avo-upw#kwKH7cob#n4n zw}n2v_G5RK!$;~yidUgTndQZyv-Au;`<7b*PfG&OezDyBp%fY1!THjya+5x&e{LecAhQG>p?ny%% z%Q5E8D;K^@=?V^eLvs>yS-cioU|XdCfqL_k85CSzPW6HlKA)p}wwoBVQ4SE8BGkeq z9bBqPnx%h2t@T7wMfl4vb8~X|txX?3^SdUUp-XKO4P^ndpLxpBspJee-(uO?vaE4l z?N&b|N|BQn+$|i-Dwv`rscH3i65;6hjoH;Cm{T#uh#XVhbng8PD526LGM?lONk^Yj zZj!L|0Z5A?{J3AQw@OSNbTp1ecY&V&z$wBzlaiz+Z5qu4I(`$=zW~44*ceh6x{#a{ zZwlKLsYvz+jz^zD!851@X&Q(4@U(1wgg=+#5G@V!04?3J#L(eUxZbEruBBxWF-1yR zQ|f5W+qCJWrpijcJ6Qt)qRL8U@(+ZBpH^CkEvx08K|pC_WJYoJI00sgu?aR0WF*Qk z`>5*1sw2|!I@gA8^3Yk1#MVKI(cguml`sjKb}VMsiz3_;qk8R4T}@4C=-YEvsgjfD zn2BZQL5Pvg7V-Mb5zAS$+sFx#LPHc&(9XP-@3IiEl?810Ta|5%->ozs6aor7t521c z6+(!a-?NC&p0~f+vqxJbG>&rfV@QVv||mZvmSq6 zN=kYVH8o>BQhnVjL|=72d%WIsLn&T~t&Qd1K{5S5mT`t?9B&gs6gP z^Svm7ht$N*|aD|=SI8|mANiiGXiyS_}*jt4Kin>v?%w7E#10N`O~gEwdwP3>Sb z-3vQ2uQ3ptQCehe8Ks%oa+7anSu>rF)bGVg2a72&*eyS;>M^7*IdgQN?*qx=QfH(D@^xN5a(A$3be({zBVP4y6 z;V5mc=ydiO9Y)9Z#LU^yEaB1gyg^*vWBq|pSeW$1rEw#5@UtUl0OrnN4gfZIR+j0$ zk-u^S%`zvbAjxHaxQV-RZ4%H*=-FAd{LPnVco%~6Rubr(Q31fNI|ou=1^G=L48uM1&w}P_(R}d*MiCbi(CD>^)fAPUr?<1cx)I2q3XYlci;F z^B%moG7k=PoT0Ry%TW%v_>MR@2uVn2Cwubo$i^W=WwY&cy&23J7vFkv00YdE2t3ZC z>?BEAzu@dt1>zw;ZJN}a^4r+@Ep}~QUqVa>7E9*i=a*=--hfuJM$cR)e)aBMl7)4k z;kR@}!wZ|MTv0@mUZItF_kzsc{rflIaq=zpJa*o`e@K>Rv>j^GZG!W%a!oS?oE1v{ z~&pT9Y68_1aGgoOZ-6_0Wo)Weo~-)02JEW2r#^PklUjQtFLuLI|2{G%f!P|mxM&*0dAZ2CcGmMu)-}E#xM;WF@W--^*H3Rc} z=pm|nh`*?krg07nrz9c5KhYZSjBa=PBp^#pe`y0`+kt59Ew|bxKGKFME4MBlk@6D? zSr5K<=D#O=GpRY%h@R*HC+FsCi(9vpY8%+ewjbW4&Mv%EYR9~echE?mE*^XRAS~GT z329&N_SUQyNnc+EH#>^3Bi4U7)ltQwuMZ7~|E$Tv;wVmCKC$85-r$y2{?VrS5eR6D zsydu>Ej(}j^mOVAw=!Mxk+6r`Yf*$h)@Ea)d~MGOq!JZ<9mPg*8z6Oj$Z87Kzc^6T zzW1@ZIzw{;t4WFzz)isEmD{J~+s~+14#JLzY)9{6aJ4vL(LOIxbM(l^amdOLMIbln zS)b+77S~$#4f)K1wO}i6_J){hjju94VxGCw`FaMUV`Y|C3ycHBm5ont9USZhP1uIl zE4Q|lB02}$m(+rJ^U_oCTM zO}YQMlM+7{kuy;dMxCNigb92c^A05SGrPeC0BzfwEFBch_U08a~;Hy|fTD`*c+AxsV(dL*sa_RB-}?W%Dsuz7%jgr-`< zzszNNL@hc?ih6h(tZBe~gJkzQI+!z@9WkG^z;9h^{MPz8ZXO(%)YhvT{T*WlNGsO^ zR~~2AUrOYv*?^yT=Gg_?9~~~r(F>QA4UR*7+}5T($aMdly3t3p{BC}JhTY9FU{B{; z+ht`{fxwrQ!OuA~re71)qb`8V$&$D@^Z3|x2|&uk{rd;4ly=^B`NG_ZOl8GYqe@Cy zUvIOr#a6Dl(Im!a*45>)$L;WfI`#GY>_a!qkKD#Q6 zH9lSy)Ts>1{qF8H5TuwshJL@oTitfKOp0S!@h3ttQ6aJ?>IyDTb#$CTi~#}vDctS( zW9CE8+2}4F;{-cNokVbSTaO=4{)x&&IWM+vf^^kHWXb!6!pA|!-eM)?gI~sm!i6mC zBarsi`uZdHBR*tMwGmZc)hrNesTH;eA>O+yd;RrMuCG5hJd7GqmBYq8n$f2|+3`wL?3EUq(ffyoO~?jksNaroe&x41 z*1nDL&Vd2@3gbpuXuv?C;CpT>k|?+RLUr0j0TUB5+td*yWNn*TG#NryI7lLAz-Vf= zOfZq#c-GFBv7vt>7gtkj3E9})MWgqDSa9|h^r}f!w7OJ`Is_=Dn^PH6MG=&RH*Q|Q zu-s!)rOhXY0Y?e}0C_{vN9chFXXo~b=C@IxvD++mdb&isPe)-POddeA+tdivTmM)q zE7^T_5GGM=xbJ9AL+v@Q>Q;^Aev%J_!L<6*5~$kkzvJoelQ?x?#{$m zwyqW0#}yg*qo6=wC0M7qi4(w%qe%W>vE@HaP5-en%8J9rLL27vb<@8mBm*0*2$Q1)p% zxllhzXqN&#Us_5-|J|J~vhC~Q3H|kUVBl$u19_Y8v8RW}h9^*!R?vV%^4M(-Yq98r zf?85jYo}<5DyCnSr6|!@100VpwU^v7>?R;Ve8X3Y{289U!}Pj3fo^)AC=cf*HUekz}0bVWP)HRW$$J0>&oEQ%z;@qDKnKfBAM(v+G1KEa?7t9|V$hQQzP@-^&QOpf{9lQqeHZY8M z{Or{wy_eZwy3P%vZNV6->>Mw+ACA6KzGt?SNS>G%i#r9CaC!PTk~KsESTtT8TMxfz zE^GT6QP(^z*1E_zD%=;pI}}&b$`ROgcK|vLF$9P@AXJ8o%c;AEN8VGN3y}|UGz&VL z+FYQ?$`4`{)Zz0ZE-6OMMpK*7CF`4x#f9;s^y-_l7mBJ3Ku&YLt}fb0$BE~B)5Qg# z7>M@LU*EP2=D-qChQ}bld4w*!GpT|{=CUC;LJhkUs1&K`aRDw=0Tub$U@!o=r(~n7 z$$hG-v{S3;-21@%QDf~nt)sZt?U6G zORQc7=}s!<#9;r5asP z{h69NK>;6{PrbG-3MS6D08f5+k(v30OE13{R`#XQ64;HIm~Fs~M3A+Y4SP)&Iz`Oe z;T!ZL5MDQT_e?O59C?90bty7&C*sQ*pyQ0&NddZU-O=9@?vTQh10Yo)u$g>{JSewM zd`%!y`&=8vC}_G;g6e}r)0WF`P{$X|RoNL;+L-Op|@97rV zVOY#3-3&^Km1NRV`_`-@d-%ol^`49m&n^31viepWW_t8jYrX%Jnhv%7l5+as0Ff^3 zJEW?|qgwp?j84MGhd}n-)9r+3o4h(U);-u)3Kni@JerL@EsQBHF1+aMjGw`;07)Qf z7iA;Fm`vIbEOb0qRWGlqP>Y!`^O}kbwyw9Vp1XH52SDa8(~R6D4^=Xw-eBGDD<8Lpwa6C5Gy|uc%7YTqBCXeqfmQ62N!SG)xR{^CEjivppe5~ zuSHn_ZZ7e6SD)y7_o3WE`Ox3lOEEFU%+`?EzhQYsy(7lP4`r&W{{^1 zI@i0j(C0r8Y4UA5S)tX56DfY@+jI4u1qDhq_KsXlP2Tidv#o0i1CEA6QKDJ2W48W1 z#%vb_uM!Tb(AX&%m-YFT!P*I%;3;Cz@Z21CW#DNQFkB!$g$xZmJk1N4Z(nzmZW!JH zIrA}iweF8t0ePh=^k4SK{b8u?;2>H(@24q#D!|++{H*AF!KBl)@|)`6crrSEfEkI4lkM9qFv#7^cdD-0KN0e#R zpmvXQ7obyA*Wdf`cvBr!mqOq@Hh!nWTG*sdIbN1mZEZ7D*Wh4@Zd)FsxX9&0lI^=C z$i{@7=R_3@^Q6hAqAx(3R5P$2;gmP(ZWguAn|d^F#*KllTf%Z)N5_SWw@ zA<07*hW0<))W73x?$tq-ey?=ozH1KrtlZX*mV9?@i2vXS0erqpK0OO)AUoFkOzj8u z0bMrydD#H3-}xyp(ULt&dX9Z5@gn4@_C=)M;|t8sx<~=wJv$7~L_dPWUI1Oc;Uspz zuU|m7LDaza`G=lNkyJ{rhj2tQ9n08p9#b8@UNjT^ z8e(rNoc9%&dxQ0I2jx1rXhriK->7uf3b7UA7Z}n#2CMQG0@)?_jAp!cyw`&IR}3eP zc^f(z=EN-7FFF^Ha(cFxbh@!^eJoL~P(8`w$oi_{^s_fhDhdnYB@(N%4ZR|9?NC#c zscimR2jNJE6NoKw;V9+*xq#W#b;RZ6`L|1N2OAXcvn%3D`pum<sjE}fwTjv$>5AIlZ%vX$GB=++<2a)^FtJal?jkr` zb#%rsZ>!aLhsqvuhyb&r_R=QwD~cc0@&B2rm;Xlz{$B|Be-8P@S?}P(mwPn|wx+f= zMfp?SkkDH%XP8DoiBkd10~SfrY4gCRmlE(0%Zr=a6bvv4DD@c8JCr0CM$|btWN$~K z5OWc|s~)2am)gelSvcQ#p}$U$b6{=)eaSbOHRS#S+9V&*pxwT+66FKtA?t+~#*{!0 zKT_R51By>22)1az6ID&R^d~wb$_yyh+khju9)qy=L@F4p-i=|+`3yf(^VPk5yJw}W z4ocfQBk{eptugDR`3iY|ogn(52Hv^nC%Em+N2WryDdOq(f`RQGF#i9OhW}sB&;NO` z{Qvt>`Cu&;Use157#<$)Jb{cMaYr@={`%-Kh68qDMe)i z+Ih3o;eF3%pGnxR5m-koKa5w2UYVCNujJM61HTh}BmG|sj`MPKbiDm%Vgd#QHa5ne z`)&dg8^8#!PYO|KBMyl*DlYlsbPaeaMM~6kLY8yY_k09!8^3$NA=d!3iTDph7sRUh zO5A{G`*5CEisnAx+%!G?{{0&XaKT>!H~;cv1D*x%t7MWBBhrewBuaIf_9d2*CIg0G zWee;}3M-D1FI?=v$`n|dUvPCvjnFzKN|YwW4%O3FpmXhfqTdSX-7)GUX#hyP_ff(X zc;1&nzu31YViJjIH8?7`!tWnPi)mQavD8yT1nenq{6d?*V%_ep?2g7h=Z3GukjE5K zKS|qq1o@wfe%H1zR8(jCN__l_Y=ZC;-^TjiSjySUzhOSa!H2wkFQyx|$#%-A;_Q!W z(0pJEKxbMsNpQqjGr^w8)6ys$*@R1y*N(OAhyO;yFZAnnsR7Pv(x$t1BkI@CkDM2X zl>eNhmGun>3T9VMtVX-fj6129;UESk%lwrl;>$S|V+54S8+4eX5;{`9rV7|q=9ICjBgJks6ie)T8ikp6&n5bBB~a*dp!b zzvmVJhlKCg`vBb~|BYDzkl8C4G8J;W%mNbJox@JC40=2XPk4`;^WrPovQ}ZSFJO*yh{FVf_)k%IE&f*5n z%R@I&qpHLJLH+OHaApQsK>XWe2DvJh#GCNijRHXWOaF${Lu&VpI_!RdTX19aKXqaL zNP_eFMJXiACt~x5%UCC9$tDGeDTLVnDOn9%vXuH&>_6Rk$qx?UxwZa6{hLDQfuN`(;Pm^O0053}Pc) zU0b7MX;86xV%@;Iy1Z-s3DDf?g~Qjk&we{0Xq z2nd7p7C0n}otyhWDY~F)%99yIIMM|Teyyc*M`G@#2>&xFLVSP#Uoy#* z*t_azP^#Fg%PaXnY$O-ILulJ`js6oWU=hE1F7ivsZin#?# zkocab>42MXY`v7Lnzje2mc-ekYv4)$ZqMfi_Tg0nAxxB56B-w?r=2;B0>hdVxf84X z@!3D9)hj8Q98mvh`6oa*e{MZD(?J~KF>*O=922!u-Gr ztK@$SniZHCSjrh-zsnHd&+9{7fqIuSr=imd@Wh7%Kf`Eq(BX zf-hN*5ej+Jf{IT9l5lR8(;Wi-@}X0(h1jm45CLzjTdrX zN?2Pn>2dV>OnvZd7`U&j4}bC!TX=+A7A<&D^1deEQh-Hvhx)WtgVdMqJGcs!ULl`! zH7U@&MS2+(yCDi+VrzV>SZI(_43OoR3fwX?^x`frFXij%>#P; zK9auH^u8D}^=ge%ej!0nftwj|fzdh)T!U7I7O$L!DrEHm;FZ}kze;XCMfLW`v+5@J_Y&FM?JWUn28(bf ze6F2ky{C|+6N+g^2L5fIij;rG{)i&nEiJh0<3A0&=fw)Y;t1jOmER7<6{4m?QKo<@JL&@J0 z5y%SQ@wRdPUi=SHZ;X14biAe{Tz83m#g=1c(2@M4VxtLNz0Ueagh1&v%w`*xU)qh% zU5WoZ(wH;&cyy8pF-v*Qy)EX;e%#;pq)fbnvf=3p;k!M%l@iDUX{y92i=smnnXG@= z6YzOB6{s|^_fcP9U;y8I4H*R31aUiHJy%-7cDsiHE^H(p-m4Soka|;te!B7uF#r6? zR<1~l<)695s+{!OED81qBevFnKW6`A+Vf0_wRsg(n$nAfO!u^ZZdy_e5-zC~i+W&alOQ%Sj3r^cnVTCFhyK*C7 zzAiMBD-R8o7dJO?VO;Op-aZzfAi`yR;I~W@YiI1P+w|M?blziksZQRxt+{VCENx ziN)@6d>@$k-=KaU1sLQ#GQTQbHjHXXsDkLu2Nq%`dPcG4sSbp?`rs=Ut5`}_O# zw|*^-xzqlLywT(2asSU{rrYRULEyEEa!W7~il2R4*Kiw8`c@o32N7)pe%bmtFP0Px zWL0Iyzj`%SRyI}n>)u~3aKk^B|EjY~+u#Y_GalQpRo=Zd%)gsyUC{Y2lARp!4d6QS-7WHp`ll$mkyY*RDi zf>iAqPU?V@Re1lMY=a~NW$W-)WZeG~5`bFr3?9!e*cyM?W-5e;0Jpi_a76~?+ZKTs z+`SMGF->If*Mod>;3Wwg2kxUl?<-o zyQ{U=hB~xDTIbM_l4MZ0*K}Kkt<&ToiNee*9V9s?qw&U&tp{dgj5;Khd{f??f#hC8 z>MIbGyxHguXdUr!E)+Fc7uhiY@&=cI()&t2mhDr!Vve5ufe7Y5J>7A>R%Tuz)WJ8l zuGBU)HN^$7MWnnDLZGvVy=z36|Myz)VU3%twL+;h-F{RcadGjiJ2YNk(`F;f)Id|o zbf1PGY{DY{9$dfg=bNS@wQ+0wqm?>y@%!$F@KzDa=X@0P%z(IXf>&d29umc9kfH#A ziJ}g45X5}hk3s)WZQuP*APbFad{?f1dNWR^&y z*LE?X!^m9kJYRD0`*OC{|MpRC*fuy1-E_)%SlEebQoi=~11X+p-MqM(@cS&~CPhf8 zq)?OGdXS@i-vw zM6E!fX%Xfj8V;@Tp*V8cmDPpe%%ydqkFp@-1{u@LJk zZZMu+OsATRSmF~DY?v0tshq~*fKA~RwqS9dBQp@yL02PL>1wUDRMhU$@AL7E`)yg2 z0gBdksP@5dhwvcM78_S9OH}DD{$bP9$Vg;+DR;S;&2GqbsaI>WZ!$AvXPWWw>G#K# zO34UK@vGDyX$sef5AMIIJWK4J2$4@)Bs>gYeI{xZ6Z>~*zos@;I6^S+VQ({I1c!HN z)#TZ!vZ0X)=8}@CLr2aHO*;?rZyw$o<)w@VwWPg>saDy9Grf!|%*CcGuxdZQ$B{H- zoqN_12@o-Yc`=m7q~PQZ0&wzwNX$4qpd7FMijR2g4p@LFXhW4|6=h`}A0ctrl=dVW zVsIfFMkmeMUx|Pq3gMH7eXkgvComzY+maZ^Boow&{gvOb-TO7w)zzlOW~9g0_J#fU z%Sz_{{{8!ow3h~0NNK`=eD|Qc(w39XUQ_uCTo^h5Z{+>k!aZ@ysIDi%2|ZM{@c`y3 z8<|P>yoFRxfx-uPcrBsh(nOme-&eD$fdnq)G03v~=j&%7oCX(U-~%zYsxrO{K_z6Q zUwBqWUjtAwovVpgAm%dGYL&EbjH&N~?fhV30G7mThfGm^-ts>1sL3@K999W)th}^f z$|5wNWW4$JEqYQ3e0ep?B8+4BX@)SQRZjUyhtxGr8yoilA#dg#4q|a+;fc!WdcLTi z#^6!AwK@-l4`aA8gG8gcIum$%2y zC&42NxG%^#CTcFqNnClswX~c?SAI{-Y)wF(i2jB!lNe0(E2XHZBmh~^;mi_ z{r{-1{kOCQV}Fp6_pF5*{nE7PO1|Ijdc>p_>7-rrz-O0_nEdXDuCGO?s+^=ZA+yR3 zx!hob9NnuSUamwQ;;p6w3pG*;j%NPC!nP~F}=+F%FL@{-RmIwLj3)x-fBk&Gw7?7hd7V( z-TzM6AJbQ3c_A(?-s-ma1~QBvw|eamvu(x8@qqJ1tPb6d0654oPHO(Rp8SH+a?ptn~hMd-Xc=UzLIU(7rOhLI?73;W=6 zk^$pk#hhQr@nF24hkUBcuDvB9?T4?1l`L}?RA#c|f^@&4pl~@q+i1HQ%&P9!hAM** z*4$!TXh+zaVB-};L{f#ZI1fHu!gtGfY%mYqwV?07{V>dhMVJxn$xG7J2=w7m4WiJ? z!}Odv4vB*lb#*;O8%gIsPxy9S?o>-J7fmvBdX)FNi%a2JaFRmW)aYARjOlgBWHSVJ zHA$rnZjP{CLqBf`5f$=e^1fH#7ANwkW8a2!Q%rz=B-iLaChwWA(V~4AT&WAzqw&d| zqk(5Z#Al*oEWn#aS{Ih=oh>sfeu^0=;;gm^sbJG6#A(eO)=ruTbyPqujkrspxno9j zCR|-|%_VBTTL=$cx2Ldb8oE5eoF%sTAuHPN4N&IC~ZTf5A9k~0q-V#4jUJ@c9 zU`?AO`>qfmrapDA0~I)*o8@{R^EEMA!JIuj#$k4Rx@MA3_VIg@ZW}_)qD)`zy<}Qd zDks!;#tsd->bYfZQv`CSpZe?-< z$uaE4HoZ96+{|J@+IPiDA>9~z;kxh3fggVP8d7%SQnDI*4t2}S&GAf4RUgw`@3pQ5KEq1 z&}|*RNvUv9uBE2y_q&g=?VLCp)_9@hy$J%oEm zYm5SC_XM0RJ~o!{rPS0M%ZN?wvM)VH1eK|WQ=dUrm1JVODH1mu_8WsAQS9bH7p1;^ zjIZWOGEw7;RwOO>Ee86Qb=Fx0jX$?y1k|*jTc-n+y)4xNJ}&%-Ms>8e+iYAfy~Rm4jRX(k znxwxtnzR=ef)k)Ge^i<>JXnNDLW&V>j>&9jd%i&asERg}1V)(76IJMe_Xw3DcDBW+ zLmyeFPfdZ#E9yvQvO8nD1vOuRFD!(Fo84)uuB{cRJ^flY?f)G?I=!Ryx%TxU zoNzfQL`rVb@3JNlkoU}}#?d^$+)2o+I%HvM&wOPoi`VBe2+W4A(*>Q-Py2DB9vKU% z_N%?0z2!OxJa%(?gBz1K;L^b~H=|lm5JMPaenElluYka;oOf4ITI}zJ3HwrzNbg}< z$JfARJ*ocBQ$6DWrGXj6Pr;j=L)v>iu9(VZgnT#>U$faM_x7ylw3w1o%F&nv&Zmws zr?&d*ZifhpKvJ7Fz2py3;JYd5|M;r#@rO8FOZ3k>sp^=_^t3g~MAwAAF&twW4<>$4 zSllx754wmqg_c-8szIKesLGyh3MjP%kL1>Q*nw3Pq?*)`>8eD>xkg`W#SQ^T!I+g> zduh$oGvDt0kY|1QWjghj9oFAaj#EN9-{cZsbl-lFMfeF(U}SWve9;+h^NXK97~JoA z?D?M%CiMZ&I{mQi(S2DSpo2@fdh!HJH8Ip6q9&p+3KIHEjnR~#Z;!=As(39;+U@4L8|!!v*S_n8iK{i#)5AmagsSY;-oI6cyA&E-=K3qZ z*JpnFHVX&>7moP)D-CWn)c4`L0TGOf>4`46x3du3qYCyuJh{8Ah=)b9_BiTdM9!p|E)+xP=kW&Q0Rc$sQrdNWQ7tVQjH~?p^rV|lB(-pL1 zgC=fW&t(86WeHCje`1Iy?e!CvY?Pno-7_vUt)C8_3Mm};_N%A&$0FUSEkqmlmQD^G zSk@%0bT~>)P0{MEjsn~4IVzL4FH^nb1#2^eBpQK{|9w~(`A)?^!w$q5@?goUnr7Io zV^%v5RVM^BvUxhd`xOtP`#$hK(&vk+D20TwZTw38Z}GdnfiC0`86UeR7;9I4#f4n& z&=CaiUu;G{9KC>HY}aL!q#^`FN&SiRH3BIn3nlh^hLDJ7=B-p9juJ(QbkqNone~B5 z3NxCC)Q5g(v1?w zU$O}CqCje@Dar1xC&9u!)y@%%`C%8?g;eF3f9&{XMLsBjfR(q(xufmm_%=eJw%zck zc8%4iUU6%fPfo#)&e3sB;+L+V^5&Cm6!j7>1LcI5GiyRH}qld4N;SN;a8G zr=)-)ujAtK9g?NQHv3uIMv{B|n4J!$vJB;oi9PI3Or#T?4q9SLb}^4kL^BVA!}?xJ zP$SIfyW{!VSosu}Q+8dIc$jLO0*5!CQjzEz{S6h&8ZTQlWc`42t8$TfNC#r8^f;zf z*C>q^IzAdj7~Wzh!^wVMiii1CtH2m%^&~5ZmWx@+T|TzzxX-lVpp6%!?A>hz&L}0> zms0^t`uk?hsjVK5`Gs?Qu|0GS6}Qmqot-pF=;F_xKbLC#6JJs1DxsY7%RQI+KZ9dj zj!$TbN^N*8Wu;hiwq(#%Wf5u-bBk59$$`;Xe}3jxf2sL+1ToiWd|#u*W5>=i`lfJB zb)yi`gF7wvF378wp>q1Z?4qZl-RX@G-B;u8Z+X3~CPjQ2J6G#_pbs0HpJQYKF^Zz{ zb@YiTf1(>HXnKC|WvCXjQQ45~ zd%4YjZb}zRs*qQ|w?9F+05If0a<0XWLE!G=d$|u5&*>;-uRJ(*?rr1fQjb%xl1DY+TXf3aQn`bNfTlc@xk`EB|<;H&KH$#2nGE*yAB|gPulcQ|~ zMoz?qG4CKXk0Aeg1)U&wcWF9{6lb&I!K=0BzD3#pki-<#PAC$!dXKIG8ya2~OHPJL zcZC=nI{<&p+p5d7Y6~e_?K#{IVwNRNT03dKOwX*RJ-y#amxWsYZku`hD|PgIIn49# z@Je`b5|RyHZB%B;^ko_26$YPOpUYNYJ8v)1He=DeHxGb-2iZgF%T3|?e z1YtcD6%{vzs*K${E+&4r*e~m7qTy6zQEM^216cbgkoAKAR;n}0$R^oDdH!fY2K<qGgsT&W=hA0_eCX_W^D@4_f4`T1tJdY;np=edwECbZgr(`|l7oqO% zi{l{oPLK!y_mQg@>;KMQk>R;Y%e$SY?a&psg?A6dk7s20jtfvBsrG!#p)S$lE6u3MZ=f2WKJ`wmCUZL%Spsixby?=HpV7y+%>eUPFGzq=mV;QPj1epLrXQdwF>S#b)$5u*h}CBBKuT8e?)V$ zolP?gd(<`N5Pt#^J{9uo^y$-Z5Dg0L_@X<6L#6Hb+Gjy{yEs^SAGmr~_ZJWpPf+^y zHp{BbRGt+xy-lnF(Q+vGbL6NJEz~9{HPsSY$t%0ez$YZsXez~pfOIOR9@clVet#^Y z^VI(AUsZ!o9|Oq!G8YpWk~;_Ar#sf_o&)1P0obh`DtD<7Vw@dZ(F2mKmoGTQ-Ar?9 zJUU!C{yNor@FP9FgQMwiNu+7zyvQyGd?l#kirv`4!Y@eM+!GAWM(hicYF(SaOmbgo z*@A7Gv(iJ}daM4NxqK|?B)<<~7uMKGwv+oCN>P|-ve-f=o2WNZEFPwC1J3P7eC=}x zncM&2xQh!49NQj&_+;Ro803eM#0)OfeQOCc-d#}PzDkK#!k{+y+gv?P#sy=N?jw;b zkjEVzEv!o5yr|buW%|(ohz1^VRQ3&|ld;nNs1nq}4J;xQFD9aV#&%wR`qTRiW0rkp`o`h3Cy2MgRV~14e370U7bJl@^Djy_X|$de#!?Z|9ZzEVa$M)DCaN| zxJ%tUXNj9?>L<{M+`e!Bd9JJV2KNF3BE;S7$-VK4=fESN#lPYP7ONUpCHs?X$slm} zR=?}IQ)E?5x*1#DYJ&ZrJn4Fx##IN-Ddg*?cz#gPC_)K z6y!rBWR;K{QY-uFGlXTDXGRqIZrSM+kOrSP+w~5JRt;G`u%aWDnx`F2Y%jwFMrvA& zBzV2kfo$q!S%)vyb8~a;_%Cx^)Br6LM7Jbh{P1rrcJ7JuTy|+lNk~W#wvr98l2rPP zW9J?BuYGYU`epGF1#rDqc{CKax!IHha-mM+sMhKB;PA2@^#Xc7fv79-r18N=33m5b z<7TbOPn9;ARgU!Jhll@EU&-7kf-N#nKeNTL5+!-0Am+t_OwQ!yX5%|I`57c$lJ>TU zik|%6&tgoqW|H$j8{jr0BjX0Te-T<{$ykpZH{Wd9Fj0%`p;)31=A5#EHAe{rm!xI( zMt%W;fmG6{p$Th-W+=Y5i*viG@?Xr(bkZ)zM7k+IsEuqN?7C1eg%B&Tb8}PXV==Q> z`mB`fPUC(etH=BX3c66VZ9P$HEXb5WnbWV|9zQ9^QJFO&* zYMp1XTiEI)ZER)bo|NaV=2cqf>EHh=J)?B!a&@~8y{aJMf>oLC6U@{5KYv5Bx3kD) z_J$n#mtoMNk&-Cg{SKs?t!)%3eC2N;#O+2M$Drl5*~#qsN17`r;9mv5Z&Mas%v3L^tDld?<1lC*UC{~W6r z(1W83kn__XWa(Bv-wjwUXWT4694VFHgv}8rBr)r`v;Y;MtghYYCxCS4T$&yper*y? z%ZG#{nfT6cP%M-_f73U(B--pVZ!+8dxw7(lj=7*YVgykbvBDQWt2`VeWfS?{%_x%HI%Jm=91Amdr7=dQi)lgJ}>X<7KV?Z2^RP{Rg(jIs3u%+Xt1O1?n$;4gP`}vi8NEwvyuAmH-;h_t48R>5ae|^D|J$)g63^GHgqq8gH4Jxdr zq>x(BWMLhi4mKX*vK!NzxA*GV99dsqxAzX^F5|A;D)%5`g$7CHa0$vrtaqKZ?83-N zegHWk5QKH4FkhM=p~BubAEumUdbRe)xF)FME`*_b<0Yb2l=5U(h07OXRmx%4OISYqWpe4(aOJ?v z-~TEfUBRExX4i>`Xkz5s)+>>~yq}mf7WG}7YN6_i&|Tvs&34$J4Kq|vmi+Nqf=ma6 zMjrYEB zvn845wb)~$PWW0-)zuXg`eAH)(+1cr@5|Yf%$&=Ab4G472t@E{3`}IvgTVgl;r77~ zJ2L)o_s7}ZW#O?WkE{(aCh*mv8|p|yoS(lj(k4I2U}ZBd(FpP60HcE_q+G~UstE8* zaV_M6GF4X(9DM9uo3IfS5cX!cv%R%t?T*~5>fU^he=}d*+;sIh8Ph3y<0^+8nP%=y zUuPq|O!s~2^GyF9OqQA5yEH-c3@l?W9`c&6uAV6u=D818!%`!+DVH6oG&Bng6Z zPh^R`K(jqNysx6# zRTfT#y%xEI|n`|BKFt6Kz|^iv~&gb+sTmzamGG31dZ=+3aITs z+q-U>#L;uO-BT2=pt^1u8L*wahmMPreML6^a%>6KncT&4y z;^;w=?$A^YF!`NtxAD;G?X8iBM;4d|W8BqCT?!o9Zw(4qL0220Dqu3XLu8a;KW^0? zLt#?axQUEmCD$2sdRM!T}7!1M}?q8mppXY$aCm}Fk(hCJJAw#?OqOVsB zx9!B8@jNlZ%IjHGJQ&3|HbGWrDff4Fmi$FhW+?ZjNkbB7G}rA&xGlq-Y<1p2PR_Z9I+F74vd)bL7ye-tRYx31& zU8l};4_k3t84Cy)L|k{Sq$2e0!Aj&#i7$v@!4A)=L0_PFXPL`v9pSuI47qx_v; zUf1~TIO&(+9IDxq^4r4>ULr@o#jhT}lwG7!sg^KzyCUy}0lbs;;ryA@h@Dp3;H+aI z5S0kfm1_S+xi1IxhQ_Vb&c@lM0Ug_#+rl9dAMRc(Xb4!D$ip2m0}gk=&X^bhqudAX z8eB2@u-iNY*nZ?4x*X@tt?-Qkk&wTdqm@nnfsspyxuX-535Vm}9t+=gxSW~!S^VO+ z?(Q?q8HjO4BP-;W9!mUz_YR1&J*SkhxZETk4a1FwsZwqd(hFlUPY9!xz#eG%{`r-n z85-b%odkZ&jZ8DfaN#{V?xo67&@YV3P@dl2tM3Efl0Rl?lMk+bHYxmIf}o#Sldrw! z&emEB&+(qV&Qa@@?tk&V>CeB#jkBAO(>jI(Qy;2&x+CDrojL=F|3}`;Ts`P})xpJY z0P-O1<2oh0Sm&nX7K?1~g807_(39~_e0&vIk+R|I+tE1G5_fdOgSJydG63}l6#4I8 z=eeeM)IsDs`-4GzOG|>1?TXy0TE|moP;XM#?EW%Rb+|aj{|i}+z*KGlZsRTh1Ims> z2@44w@E*lQwEOkpwZ}H@Yj3@&5z^d~rM~=f-x0U>kV=f4-F>{y3+)_nx5OE}hDyiB zzw-7%%ECGRx0MiAR{a3?V5m3{2EdTIN(LCZR5v+olb~SN(ZsC-OZOU zajA_VJz)P&TXKjT$rFDl^g=w><4ub4aatxd(hEoqKQ^|{AA3)NachWgCLE5xU*@~U zs2$`6oY_y@e~OxCOcAjmu`Ec?yPz2u7=W;VagF6_&_?Z_I+3H*0;xJ7h*W>SrT5E4 zRqtOMC!{b@h%`M`9aZ7&(=P>#>S00HoliI|W~KP0>Sp`X215KIQwG&*g?qfe$UX(Mw^-a`jc#; zDFrG3@Yma$8g(RP;IaN4e|Bh)g2esJ(!30rUt23r{a$}sM-o>&by>`n+@Lb3ptyMm zPQ9ITd`vG7E~H28h|w0)*5BNM*tI>{KuC_`L$}ZAcm~kK5A)d}b>HuL-{@`%R5g`J z<$&kQvK?u7dWO{hd?>DY1&Fn0(g#fQggG<0j}%*{8RcN+CXMjKeGuEG< z$pw43`+FRUxzo@UF5x84m7hOR|4vT;GKx=ApZ{Y&U}GIdVjb~Ab=5XJtq_@ zZy}kV)e;7)q|jor;Ie>MF6n~n{A6v#0AhnYiv zWhZ z$rv$ml;I(kz0K-!A=%_c+^o=c+)vIaHPWfQU&Gz!2>2a??z8DrnKdnhea_^HeS7V zQOna=|7yC}==h1;K53mWN>4jSgeX@fXwIG{+LWc!b?{CN(3Z$Ckc2yrg+ z^zAQLXbUjCN>dL$pPsseoQ?Q1K#G~=~TjYxZ#TZikkV$TpUR=%3d12cE=(WCLt@6!rI^8 zafa+jO*migF(d;bY&#N_m1w+D%Z|P;lRib$rN#5Fm6DxSJv`GX;68zvQ?L$H3A;s) z&ImoG%v6ku@HI&~N(sI5^-8*$a^=fP(H-_wm`K;hM55fJy%vpiY+8 z*3SNVXfMKo!zs_QN18fu}ip|Lxr*0(;e1bg0n zfGRaI?{caku%ATUuXZY4!5$kTsnei5{C3Ev?vl>us(y2X8DaYsI)gHwxoOFxT-s_q zQ_ZCKM$c59KRNI;;m#(_QEh*p3Xv)_)pH}T=KR^ZSsE%_&ds7!Z|+CiR`~)%f!Oh5 zPZ=R2F}wg@X5Lt%+qmeZu5fh(R=zKe@-cIWS*n>l!sVoU7)S_r;5}vmXl^{Kdq`S- zCOisSjK#u?5C!lkd$!Px)@#_UW;^}X7XY6mB05Ggr^OksYvr{Im6JZE;;Dph3#OkZ-Ydi8fstKY^{!~S@NzroX2xM)%LG}V| zh0*Sb;~$%qjHBQ$5jgSencWSR90xmMbYLKgotU284f$6BNH#I>e|lvpv*GOH2&{8& zzo2L5YX$*dfE0-}(4DVN&ir5m!D?!X&o%_gLVp(&Y|jRl<-6cvrkWh8oa`zZQ#9)a znVszWLsO!FRSWtcp!M&O)!JP<2|lLJyzlRFGreM79<~QoGgywTs@e9cXJ8x`%ncIi zc*?}^JYv6%YPKuDP~O=4Dajx&Np0S&>{o5taIqF;q4SN%UQclLc+pk6$$-gX^QddR zKl4x{6)0_tpTPe5T;@?@aJtG8zz=)pxhFxkXLzcPYbG{`xL3{IfRyp9sPo4^s}rHi zPYE9$zqb?h7S8!-U;!-&YP?c&S2e83&5j6_gGGLHUD$W!YnLk@deg=eX=ZPS2ChA} zbZ^2s`e=A^fizW%7Rw3%J-Hv9{Vd5%gf@BN?w`G zpzBRDsy*hI0iSW+sRxS)64#IY@6OTT`$f9ax}OP|n>(sdjNVG)dE&dO#*D&08-DC; zMy2M@GY=2(fi`#$O=i-<_uoKrAN;uNKi_j~V}Yh_?LE{<$721xhg5Fo{j30Q3n*3` ztUSU&cv;AhXA^<7BseYmeDqD`obVN!(SVhsCR;I&xr5!I%NG+rq_mYbtQ@WXUy~Fx zem%SGT@@_yb!%}H9SFZQ1s@ugg)BC71~_FdY284Vnim%!>l>uNf~>TBqYAWlS{!uc z?f@B7zJIT$-o?Zf`a2kt3$!IETeYX3#5iN4yoZvtm_V#wh|9+mh)*vSfNb1LjBp9D z6&(%J0hqB-yoZ;igd+2%Vfc2#nu*#t3tLVStPj~6wmiP#$rnOX$i4#kG(J8VkFUv| z7vi%!8j#G|BQnPEw}_5D)jC>jm^`dd$UdrO1|8pvX?jf-bsd6zNYt?Uz+IvQPYfza z?;=GL5ME(~p$oY|2O515)BBSgW*fl(I=H`FN0Ca+3Rh-roIR*%K0~WaRPWo1hk}@t z-mYyn795R52Whr@Vy}EDZ}FO;j#NCMz}LI4Zs+Ui_GlojUBh_pWZ#~l5yDJ9EdU+Y z)b!Eh(ucoGSjgpnk+;dE!=1zJczDP2iVyG)h(c5>`T6$8!vK)yS%FC_W z#xIPT+&9oZSPrE21Hzn(h)9xlQ0=^L*3RA#e9ByFqv_QrlQ$uR2~In#lDS3}{ixdB z9!O$mYP1ig?@oQ|=gBnC(g@q}7M>Cm*&(jaDL9Q5WCvYW;&{Ws9w3Q{=s*#c zmK(Ygdc&e_qEKA5?tJYkP#K%X52K)WtB^1;0X@$NP8l7Q72c6%ZO-w^m)MRtW9(4P zOEvZ5N{^w^ZKr~Qw7rRK^UOs5bDaOe!ox!m3&ddaS_?-$#V~WhxpL55m`s`!@lxA< z>+*4u0Vp(^V$Ib7kIEB6DzwN(mMjaHA+lL;_z80>ADmw=VcWGh@BBz8CG%diX6QFP z{VQA6%^aGs@M^z+Umy{<&t*~)!nVQ4*v&~W%#v^dRL?df&w2xulx z1_&alAwx?w=^8ttnjP_m5I+t!4G`iVeFFS9VweGbkQqZeo@T6+9lj-f!bJcK#!!HW z+SfMmtf?>C&0eMa>lr9Yr`(;z(XA5z*$YH5vP;a1Qz7nTVHLL7n~!?4xK>NCx8t?o zeK^$d4GI6pBi2Luy-PLfNa`dkiwNj+0q(Z(p%hciv-qhuGun`=q6`Nb35@L&S?3d%>n+v6cj_OBo#nm)b zq??k8Mwl%?aNNd{@z}jJ{cQE^kM*-ZJV%;QLUzl)zczvHuW6p)o^+W=(GK)4V_pbzLIh+TQ z%Yi`Zhw`y1Z|D<_9rR|smKPQeQbsGq%5ciPsN?S6tMLGj(5d0#wQY93zkPTc7f^!O&A1qpka7YhL9zMwZcbH=(4?;5 z(=!u2toPy?k`FXin?0&ef`zDj>1sL!I%>~E-F0sQG7Z4aD zwY@?JBkl($L{A)8j77AS@4Ek+^|&P4VUl!12U_#&zR+-U#h;RyZer?FDZ5OlO~;>V z71)8Y#ojG1WkC*Da1N^~{aDYRDr1n(bi~=x(}GbVun2p&M;*^Ltjx)GbYEPDaTOI> zrji~DW@Vw}kOS`J*x!!-`wJf%g*2xO#^f$c_&x&P5V$hNxez!UMmvJ7LP}rFSBVZ47^vt)_d<-PENl84fq|upwd)Fsx=R$zSDYS(3qf6V zI9AgqYHOgA^rMjl=mxJk4A^Q}1z?xiw;_T|hmt{s*@DKQiop|GYX& bJmz3kxr9>TctC)Fzq_{#ZkArRd-lHo8Sas3 diff --git a/docs/reference/figures/README-beta_fc-1.png b/docs/reference/figures/README-beta_fc-1.png index 3b7a5a5c7b4cd24b9f3467594216134cc56d0efa..9e4a07839b352bdc63526a43d875bda3074ab658 100644 GIT binary patch literal 17053 zcmeJFXIK+Y^e_y=l0Xs=LN6j+dKKwSKzdU^DIx?>uuuXhMEX)hL7FI_AXpGoS^%X; z$pQi@U8EUG04Y*~AiX^6@45f?hxh&Z-q-u#d9t&+*UUL{W_L0(=gcYl;GDI|F$^Du zhKA;tndw;>X^y=KX%F4^q9#tJ3)e;D` zVPUP09<@Jx+S}XPUs6I&)g-5SlB?j9`VSFC{qH1`kH|+yqxJQpB+~DJfukzVBXa5y zx#|c8{G$Y4k3KU~GU2yJ<4v6cX=r$||DCjEcVZsX&5F?LY@ymEo(Y}IZphBRaqsC>iIH*75I{{Y>o@)T#-rfcs*ci%YhQIAb*J4~+S-XJ zcv&pk5wh^5!kb%*CdxUXR)&TK#Q@N~;6X7(T@g~GNdO@lN&5e{;Qzt>;pq#`C9_1` zbVP>y{rmg*qyC=A?dN=rQB4rtZ63PDS;Bh$Jhd<7165rBiUCfvMU`koj6e1XwJn%9 zg&vALc*G&lPPZM!>;Vn%t7T6OR=2ykjVo9;zK(5QqY(n+BfAq>LgpIC?X5oM1QgR5 zgymuV-e=1iwd}13k=S^M<}4&me78t-E1ncqq+u1JgGXm$Acd^XKrf_{6-R$Y$@|dd z_z;*FpHIc|M4|F8UKwjOm!c|+*ed{Hy>F3VFGdP+nQU5cPH6q6kjnOP1$TF`; zf29k2^Y{$SZJwB40Jpd;Ck-RwMBCY7jVd=CAs370H5%PBICje`v_|j^#l%4iS_vth zLm*T^=nN}%7y;1ze*)Y?#RqYqG5EwW>Nv`~`3FC_9n15D4zwD6HvL{wce{~crZj?| zg+hl=oxGL&9rt}Pb$8NVJBk5299yo@Z5HDxs-4V0r2(=PRT;Lr zFa53NX#x$45D{HUM`!h-g$I5!4myw)_v?#@JOtl?R}M+Hb*A*x8k2?W2gG zk4hYZK_BZQo{!^DOf>9prXlOl07tW-NL72#1ZSCL|79QJ*45(RY!qSXUpC~|Pj`3` zKm;r+GJ`Y6?!m8IJKnqchZ~^l)qf66(Hr7k+_yvq?JcD?J6RQip`490fMtfEP zK~IS?0OO9i=0Y}k0hy?ZCL7AxiWC@M=Po8DGcg6)3%+VTSU?K|{@IXXa+SvpUwsO+ zP~xUuUfp|kvv1ela+?u6AYfv+Enh&dMD%gixw>&pjN*8doK*i~5_UMTP?7NUGe#E2 zj_{m;DV%c8OuMJ56r_df{M!Ey7Tab1RMo%R*J_s$43B~sB`#8itc0;yQuXtp`0o+^IHKS zK81BOFFPyo^F>NXIB!<52LwOLCQJ6pcD&1CG5y z8f~#|U&o)5JOu!x@Q9GzR=>~iY$PZaL9T}a$C%MZ@ivsqt;DIpl)ABj!v}_fN7k6K z^Av;|Yf_(DM{z$K;5#m&Jv5yu)VwD)R)3 z0x1V6Q{#t%wz+g(LW)eAg+A&pJ5239?bxfBQY@?hH}2LFzeC#|gCTmiH#u>+Tv;7u za3?GZ=l|wGZYs)jPVgck_HKD02Q~*-@>_XAb5({wi$I%|h-Vv`a3_hAevyPP#@?P@ zLtCx~M}U!sL|20WP0Q?in!XKE>D1touTlU%`S(LG1@=8{Yo3P^f@EbYE>w7aNalMo~zZI3IXG68n`*M5tj8$|{` z?*r^(7_RM8@1QQ{_hZ?6Nln-+S53sGam|`(w-T319Yk(l<{Vv~e)ZP451Zwpj@b0N z0bJU*lE#}1eWNJ6Mn+iFo>YGhxrfKDC?Gb)7(latKJ#y8ly8(%C)&|D-coN~-~@K% zjVV{P#K<9M7kLsZ&|y!{QEY!se@hJBvWU5ckhg3$TuNi_>~KTz^Lbf=Qb9)B*|wCi z3u{el-yR7ljKbLusndoeNk4qS}4;548;_35VkgV#*)j)bNR;s z(Uv)BcrJBd)d!f-)#LR*Fo(4?@mQG_pKEw{Na3%Iz(1;e03$CK<kcK*vf*;_7u_G$--*Nu zqrK2mw#(2y8LWSfRc%{h-%WqJ|x=%8js8E{si%Vg;({<4q>IQQ^-Y63zPX8BKC9-N$aJlpqKmnZi6 z8Huqvcl^HyXd@$^ZKR?Wf}e z#?$ZZ+(L!Dw5CK+vBO^RZ@#HbquLq$8h&?}`nEGyq>R*L%Xi9Ak%$6eiIGXWYYjCW z$!D~qSdG}bWrVVj>Rr{kYh&P)Ch<#9jTV)S7=AM!|6 z83{4?^7Z>|^wQQn&HArr81zvqQA-O_@kcCH5IUs(EX^hUT6}bp+V8CRrZO|Y z%~PCuS8n-&PFUken2<)~N0wCueAI={x!(_tKDm0IY!?=6;xdtahFdJhSYG)tu>q{E zVq{HvpL}}S_*@Z^zG9=K3pwD${;+!c=f6T%2?$%9V${x!+M=)g@QmG#@@*sl5$;#* z4VGLsdOzy8+hHyy^1L@Ek6E8kazqNj;o_M{LStV@oCXofQM5C6rE(kk=2LmKZ8i3Ac{0n=o9Y?)%Q@w-xD&EUjABf=IQa`$ z&Ao8>jU_Z-%e+%$8i>)Jm(>Q=89n7?-2b5m|Kd}CmlZCsr#pnckejgeXJdnW6SM1f zU%})7)2a+U$Hk-Jq$h1g-46nNhj|ShKk#PwL~WbsUbZPErpepK>*Vgi&$LNl>W0Aa zk5kO}`{`GLKRc(q<$VpQMha6o&if{9W@K?b?l$1%k(HVJAA}x5oIs31Am?^hI!n>a zXTB8KXT^|LC1ZW~;Ak6lB|Um0 zqUj6O39Vfb{oMoK_4CZT6~$f=;_H@PqiMEbS!HgR&rS`Jd^Ur{W`cPiOr;1K_jU7N z9Z#b)a;l+wS6u+|!7_T3uk&YA3;pk-kjqYWZYdwTsJ>zedX1^(o6jb$_z3_0V=_fG zN%YljKXxG2pIpr?>qy!4&G%&8xRXY$Q1?aWbUkAtJ(l*tDg^< z+ct+$@}e`#oL~`?#fL3AA#*SK7y-ej6qk`N(V4O|yoG-M3H4u+z;x=r z;_DGt)c?rXLWu?3I)jYv zT685}txS!HpelofcVZJI5LYnmg9LrR?F_D#idDZ_=9Ex~NMLCv6AB=)5l47Cp;Zah zRg*46?*E)o8yT*f!F0aL!ms6@>FXmLSMUPk4+}U6TtfI^Yh@0bhaAU~Yu9#9+!H4w zUpE;>R>D%i_OF-T+RFRIKszbE32jJ5aoaF*9Jj7o3&7UsMMv0Q;o%=AaCircp1f)e zhOb~ZBtG4^Y9V2gz$EcA=q#BHvwywkA<)rt>2Hf6#ff*4%9h*7W2Uj#%YCUM?rcXyzBsy z5lrA#>{cxAgX>%)-wl6WEdAAsw;%fyUCtObiLK!s>k`2y`$;^U$E>sV$yU6HKV5?B z1K0KuD{{U}%7oLjTh`zfW>w&Mmk>S|#`_K9jY_|YV^A$|`3kOu!5mtm61`*&op@@; zm@`L4PwzInAU@u|K4~@`r^2W4BAzsRt2zcD@OP*J8zKNIhikdp+hFVMPbd3%+~*QF zZb!VHcR!xl@UPD`z-u?C`M$4E*vDXwp0-q3EzK9#CpS`afKXoT6+d~vq~SS!@95^l zMA*Ua=X(2YuXeHO1c?Joil5!@KW4&=@1e|2!0zDrWeTO5-8XN5vAU`&X42+RO|Jd} z^j#*``l>4sCn4Q~k zHzV%Byuf{~?%o$uw37O0K#gHEEouZIuzO24$%6|toUk6YbPDz?y|JsX$3I-ypUBny zJ@*f5K};JX|7|w7C$I4jNl`6<_{QhNyIeMNY1$uXYwDrqYFSI9gs8K+MQ8$p(Ano) z+xTuV8LI1qW@

    CldnwB>1~S`wAdi7l!09-BYT^`kL?lw9}>$mac@(#ysCqGXY!1 zt!u(v3dd(njO2L=lriemRxk#1>) z7DF!g&GiRd-2*vOv<0uN8TUg(XbU-OcH=26XQM4BusE^U9>P@=LAujeD-FA$Iy7J@ep?DX+ycSKK6NJb2)%QmlcMlmz(WM>XwSRZEj{erDYv>$&*pK^= z$_KPB36|ii202(1Ph<$;-%v}ve%^<~VwMjDdcb8gK^}BF+_UMbEZ6ok{#5IB`{fvl z7WCLmxu|~WmU*VleKN{YwOfREB%5JD5g(d6N!@YRd2*z@9C5ee#!~nZ&dy|Yzw*Naw?VH zbmTEvun|VxR?{i0VA7q(yr}v}<(B^>BiYHI=8?3~x>RxQao%eHJCpd%Ei0L0~Y*;7VlSasi3;F$}->#9KWgaPaDZMhPN`(D#KWND6^N$*xrA3%DOLtl1= z^3__wNj3CRcVKbyo1qi;WOHJn0#X6Qz0O!KsBgmja^1;XLo0gE_=fg)LC)N{zaE4g zt+2JKJm>>rly&=xF}PUw;2G=fotA0ed$jT(BfGi#sRj|wM|HE|E?2k2yAli3k-4X{ zbfbNdjafF7n_RmGR(Du~_rln>?7uBLu%LEAIf0aoyG^g&I0xj44lqugq(W{UOgh(y ztEit}zNN6aF_iilOS9uYJ{D~%iXIXsR`z#1ksW?i$^XvxVH9GtadZ7V9~e4)bHeaf zJO1S0@88t}92=zVv1AUuhyj3+OKt?leQS;N0|oE!V6=T?t9(X#H~vYvmF}>;}d|iySrii_4l0Kxx%s`5n@SCBB$(l>N$0xnu#Ow#& z5p6Mh8qp!I#?qqc1M3G1in0!ncU-|%M4rwm z1@g?ylvX>hY@9i9ofG?`!|fGh9rOE8_tgHtN&MX1ierSg&ma7dKcA9ThMN{l(J>bW zR%1diVUBCT99<&B4hj`fY=yIPD2`K2`ziWI|Bqz)3y0D3n%8G4&!5=HI~`d9SJ3^xkZw9n8GK{wNmbtWT+SgA%Df zMW=-SNT%gG{LsgQc?~2gfhFjgU}o(AHgE1>1={MDyFdq@cil_9*nQ8J{SDX${8GO0 zk~61NMCA00PvpNqxcJS;;MbRGrN9#U^nIP=7Ysm0A&z_i>HkyUGTKUWv#S?J#!^_N zJmas=ocbvIuik57@I@r5UhQq!vkSQFrU*c=am$mv=C1ff?7Rnx`cqef ztlHHQ#%C)%r>{fm9_Of4xE=gMt&1n*o!UmcRlq$8_t#prv7jSti2|Z7 zSETZHK4iqriKp{U)ptG!mO=5xZmH1R4D-R{?W2U1thrBiEoC-1hVn|^#p}A6P&ezw zTc|3KQrapXsm!(gN%FA9rXE({A%DM9_n#ET8*UVnrJtpU<4s9HhBGAi?E^&?eYHJOs(j~CN$wlpX+?i z!_lO(b+6Scn_f$HQy>1Z+;xmx~e zho1-7TDz%Dce3tis#Pz(=QH10b)if;RAsl|3sz!^Z*qkYmQR0ay{)E;njRqN{0NKL z!FcDaxiTRNc(l`^tU!gNo>L1~nu1Pjmu4(N$q4?8XwKUcQuTagiO;x*=%pXaojHMx z^Tj2<*ta`5YTV*J14YgcRBD3wGA#SYwuK(rkni*bvQ3IodD9`$LuYF+-c97;Cr4sw z+&G6saAPVd6VDxaVtAhfC9888utxXJw(4 zI3}7ExFf2b=Q`0OLe^vaKxiJqX8RUhv0nYB@Bof35Yc;$1fMz)I-UY4 z61X}jR|Kb*W2OgGY}V6jYNIt!6~dC0&`DtoTx5-$<0jB%rVVyi9Ph3< ze&eiayA<)S7@-rFK-xj&@S{4rUmf?gr+_!7fqq+}A;rWVR1l*2-aR?hSr{1jQ&$tSwJhm)H9B@M|U0sQIjd>c>;qmdB4drW7 zsUhx`XEK!=usIc2-4|zB`J1h#=&2pf98-naM*)J(hB)4uY`JtT<~ktz({0yItpLoD zCOU}6(hMpcI%Y_rTi@h+afVV55&+ojYRS4E^)%Ce<M84OC;d5w zPru=v+G3|ZhV1C;*zk=&-q3f~ftI=KE`}OGbquOA=@P~HajDOk>@E2(ct-CALE+Q1 zur}o=pz=TQ>4=P0mPo%$wyw@3^{*i$MSMq5UrQXtqR-H)!h|RB2Z+)YrOD(j_;C~q+y4MpaNJp_Mwz5ixGZM zULZ!5)XSl!YHZ_O7Y;#{K)1+|oG`;2z(RsLxvOR9B!sLIts)(NkP}si5a;2SruI>U z^1krE%)eHBN79>Xch0I$Hm^H?jS;xjB1L^n@({hgXr^d|3q*|Vq*_s`p1t#W*-}QA zX}0}qvhgt!vd#Ra&v3G%uo#g{!A1T>*OL#z?ZT)Y1;8}FL3To?n;ZC?evz#v zSVa;iw~@VffvwvPSDZh1Z{~g)a>djW<^8-hfX{MGO#*!V?h!Tenv~*2+eHujXKAo- z|Ae5vmS?#s5FC?=Y-9?0;E4?eud!|Ngi3H`9cTKI-p@KL%y$`Qi($5b7-B@PzT!E( zomt(p%F+7uc~6Ysm-FJ2DyWBn3%q!=_wI2K;s7q5w1cS+56WuZRo{47;nx^)W{d-% z6GQ>oi8;RkGLyI%1(re;F3qzP78d4Z=*{Fw7dhfw9CGR6AyM@3+V?ZJoIf^x#ebhD zMl{MN=&e-FZQ2-7D$L9NGc?LkDe|Iq&?bkrVvXI~br1PSFV^k)^q`(;TPk^J#rO)6 z(QuX`N&P@d{wIeNG;Ja*IkxYFfLjV`w`xW{Yp2BoDG>xfr$6FsRHkhdyv2SE9H(dB z@3N#M-|<&a3-r01bq?dPieQ>`cmKlVh=gUtbRdNfUWA{bJ2SxQ{CC$|fj~JXeXgx2 z5xkpnA~Y?v-6{KY$&Vfg%%$sZF634(8!60Lcoh``^`o;c;JlJy8iA<#Xs7F_;w*pA zr+Ryraa8GXYLqg2O(SzyaNiJE`AoNakt`M|3+zcy%)p*c*K97!3b1bfWdcm#sq(*E zGQQdX=fasgX%L&!ty$24iy0^3GsWNE?N>F>rltmVI1{9;}`>nB6fJDOo}*@ z)XWa#_4zt|v!IMGFqSPsb4Ex08RYhS4dO{Of0pIPC08y>lr~4nbjFYwvB-VAPt+4sE zb9FD5G|J+*XxYE@S*nfKK&1%pP&WfLWU#7t^2^0gVJ~pckE`S*X`YFf2WU6Ap=*fq z0;(Rq2&F$RwO#YZ3ipTvZ=gei=DOpJ)()R%)VUE{P`V1fW&8X*4zVH+xQ0c3LM0#+ z{+DHoWy*i`+VwLDKabu(1WDl9`7{2C)kN}nn?WmEWiGQ~ zRM;9!%8U$~XkDD~tP7Ic80#D|h|$Q>t$mS47cW6c z0A)Zz&SSe&XWT7dWp_~qufVVxq-FAz_RxT$lM{~ar16RN+cg~u7PVr2(SQsp{bDOd zJ(PNsrl7XY!U7J_kW~T-VUh9^ywuffm3bU$A|pz?*kok25w3LJ05=y{$VR+?Q$~`H z3BV?=A=o;>hr9I4_Q{o8Knvy@OFV`wgZ9=K*ifws>a2)8#K7it+98q5*U-ujjg>MB zTv5~WNVFyN8yT_wEAqhJ>c;uJcdW43B5}3x&J~wL7k=Qa1K9|ODbxfA9)rcJ89!(6R?Km>?V@uOq~(lw%+ZHB1;vxJdyJzzVV$4fBgU7DZfwO2!1a^ecXg4oYwBqz-KnKdweO{E0C}N3)zX8&@{cx zPId}(&==TdIRBvk9GR=Bcg@OAc=dx7En`Q|FXnsEG)K4qJA;|!(cU1JpKhD5oqYW!9JX(x6g zVdV=IOStgaI>8AUBtiL$4jT^@Y4;f!)_JOYe;$CGs!&a-Sq2@u-YO2cBD9>VCPx^ezo)j7M!(Ia? z#I9G)JR&>4uW?#Vh8qe;l=89>C#h|$vwUBkM4z8)&&2=o6@?OR2N^jG`N473y9?kOb$CcBFq+s)F%E;m#? zJ2ydiO!X1+V@nOB8?AwCoZk*rRBxVey4O3IAeZZNoTC~u@8!0H#(Q2 z=IP!oBjzo&zhkCb%!w~J8wJ(FI)pw%>Pgl%UqvmcBR5sN4JZdw-x#j}q@q>%23FmU$x4`i!kc`H=vh$y0jk{{>E#L?T?s+EF~)M`eqW! z_U52^z=o&Tnqp1gI3jxn_q9}9P(MQv^fD#4f0WdLZIyRQ3zkw|la~aSR>S6?xrN*> ztmQY(RkN`OTMVDN@dz5dS6woS>P(Ab0aA{SnnCT_OVfS}PV-Zfu9Ssn;(i>(2vs}? zYa6v2pSV0)!Dufiv?@7c#=VZrC#KJ7x`9QD&}w9r#!gDlw{PDhaIT=J>M=;+3sKKY zF_fdiQquyA**{r8=@={hN@4)xjh-B(J%H-GmRY|CYq@t;9d3W-*_^i&k2)a7E3Pm< z=NF|;N#bte!0=|#@+&h0liy1)FN5i$mCHzhY3eNd8M6+rSt$}PltW#W+8MI=XsjKlIukTBvzEwx zw5~_%1!=`MwcUFN1Ov931oeA*d(~mpy>8U8(0AYK_TDrtvZ>det-CmJ=gkxdiA6pK zZ1|QI{e}je5X=Qz;vY_>MbGhSSU5~?&_&R38Eh`?!;7u8I@itT{E3iuPmJ}aRMDVN!B+;wJ}{C4?mcPnmR368fC>Fw$Mv6u$F5!F z6OCp$tE0^8?5K=+l;x(HJ+5cJ?lf5KrenHg`g|Uk7ekeE0emHF>f*E(80{st_ek-3 zUaab$Xjs@{9T{m$W;wE?2dN|^a=iBNIV)-j9w)bi^GA|_{*#M>;*l{e2XT>F&F$!5!A>=9O!I%n_jy7dZ1$$VufHGF~lJH7OEDheNL>|m+D%~(riGe<29_^XpWiwD7 z#0gB(L$`zIXWi1oJm*|^s$Ni_QlBuZy<1@rA50xJiS{Tz%j0n#h*!BRik~wwYCQZd zklcEbYMlZVl)f7@u)AftBI*HqT_ueNU0O4BCk*&~Sk7?+k{|&;vVeeuUd;6V1u^1P zdVxLL!ok#^jK7~-i+z^7D}f{JCY>HLRZ`#sSrnw7o%SYV@e6X8K{pY)_0DhN*7yk@ zF7@7;AL2HQRyv!Nkhj%fsr&c%jZaFT+y1iO-Ua@;6DN-haMID0z1SLu7{vKzx->Ny zUT*ih0p^&;Skl*D1ETZNd<}{Bpv~yjThp3&{g6IIeM;Xu))Y)gu<S3>~OgD!4;(~^%WG?Y|T}%8m&#qDqJ_^3FI2$l+yph_@U@^)aaQd`f(#f zklG4Lb+&dvrb??+(zPiBU?@_l<@EsWL7YEav9<}3ZXV2(D_r1AP&;RD0v|wQUH8M zFGF=GhYp*vLiqd;!Sfovms82l(-Z}oTvQ=ro6vux~uU2`GFFv&21fyZMLA?xjl&{E_*j7KVhdbI{A2lvlowM6UPSg~o3qn9 zDD99JLW*|VieL+!@upJgA04!$-Y*gRXJZd;)EiR>A2X(4N8aVD+B2bSSlnMAMNk6O z$)RgX$-18w{_qXK4FF`FkB^yvDCCqq&nn5 zvhFRRj`ox8rkSfKQ8xLiwLh#`93r%f9K$0vVjaw9KZSYmgZREA6ZR~^iwsJcCRhu^ z2N9_ihH3H>yv9P#x5*7cC`(;y3u^F3;8JJ;u5S{i#Wc;DL}=1zT!V+moZiR}=V;j9 z)|2VPAgS3r`OK%VV4eW=KhM&(+p^h)SI@}(^EIz*WB%>xezINY@}Viu&C~B8rX)3K z;+DU26zLPflUd+<1As|3gsXDgJpCt}ohhkZ2A|b*=q}bLrWktrXne-aSM2*tN}RCq zYfNV!!2{S6cyl=mqIDNLFGjq5nMXKL`2l{-NYPDjtx;-xCb-#WCDFgru`VK_=T0{Ckxj6Y&u3!Oe>3Y@M*Fr)2WyST{#MIIF$TEA`3J6tx;&YjW|snHru zn!~C~S{_3rGqHfjLNFnjf+9r93b7j2HbIJ>G)aWy5=|1j|_TZa1!y+R;Z+?t(q%e`D{q9x$H(`m%4`u{=tMNB$a-lVS zP07F9Kq7uvrq*@!!l^`Db8Gt49faqDKK()x){&>&di5oHI!^WZ(f~?2m#v(aZ0hu; z7kEzb;c%$`uSl{8 zxpu=-oZkgLH*r-6YQ7`E%{v5+dM8|(5Qq%FOH$uSW{Xg1H+)|dY)9R`+`KQg#SO4f zZYHl!#f;xw-Sqd*W{a?DH}sX&S`%U(B*YA(4=y{!zl479uj(qXuXN2e`^f^Npfr{v&0FH8hX9`h))GGf&I%T;k{F}KeM)8Z?F%JE5sj~ zP-&X&`RIS5hF}V-x~@f$Wb|*I9K2lo88{;V!Yr_yi!bUd#aHaVh^=!>2sm~v0JZ@n zu?YZlSTIY^(HtG6{S_&1nJ-O~fzo^kItF@^LeA7=#7@)JpNUt3#JJ8O?s{3gsQ${tfsSf~I|u>t7+IyyCyOG_{TY0@MDd^kvY0r72I42~m*vm;XC0HiwpE>O-9z*2N`tolAoswkvin8?}}tRNdPds#!X$ju`bhvgfESa$7IMUzkpbwCR^R#kn1JeXCFoN$hUfKPUqSo1Lx?P@e7#UA- z(GW;qbVi-zR45AniOPvgD%0|aQ&6$rc5FRxNWPx5&aq7_j1TY0J;+ael;Fl$eM#<5 z+1lOEl{$$djDrd}Z+`{JRpOruxP5Fdw&dLMEM-hsr^4dqj63dGcv8`aj|V#~3#V)kLN__b2QtNV55u=M zkCw=eAKGd$VWHIOda0hC_X+RcZeO_Y@ip{xsK$FFK1C}tt)dLy+I8@$xq3l{^h)I( zB>Q-xq>JgsA!iwV?c>(=u-No_@>u` zPq_(hMNZ~-2Lw}R-6r!@U^^a?aqxImo1FMf>4=h9&wDLq)Y^<}-fw)t66LVgDCXX! zwoMn#gY#+665JMRpA)^OQzEon9-luq33u<@x4(RT5~Bw>M^Y zP6<5OZu}paZ2t#|TFlkY`}+k~N;T%x*+wy<>Te5CUxCmf<&*l3?}{c3tq@fcjuu4% zWpt?eb8u!JRj3n{ZVFr-m+;8ZY0z5w{fch8wNNk>78kT|trp?cFx z4!_ghFl#r0=4Yj$p;h?zT>uAl#*4J@(+oPzFI4A30}s}~kl16V82<3(DhpFkP|PKZ~}{LyupnZ;+CO>tGt2+###gqYRCrxf{YrsX}}@c z3lyI^u3d!MK@km%@E)og>sav3-_kqu$qfN){ty0f|3Cg5!J*zIDT6;Pbjcy`cNS>O MjI7U=8sMV;FExx`VgLXD literal 17213 zcmeHvXHXPh_a-zmFa*gt=Nu(R6(lJ^K(fFn0xD_9IW(vUB2fe-i6W?^Q6#5El1LWG zX#~k>5G03fe)YZ^{##pH`(bNqYnSQnVa_>y`u3fB`=0QeiM?T@dx4CVjDUdPg1+8W zQvw1a2;K=$L@;F%cgg|39p5mxsSUpq5U3CkI1{L-5U9Y%Bm(D3__GRu^Eu)C&soJ8 z-jY;cdJ?=%IR7K<{Ex&r@1Nb-ISGC_C&9-`XIQ2Z-p&$*gpyPUlAPg9<(vt#|Jjq0 zD&bdBC48JnnmBuN<3@RTd8IQ!rL#(961+M8i&+W(O~9|p3HW$cd3IJ47+4b;+Ln^i z@$zMVfB#@f$wZRMM3VDFCA=k_3&NuR>=P4b6K7|W_4SiYP0K?=XO+%p6G>+im1i*H zToZgeYo)}c!*@@L(X;j;AYjfs-wE~oqMs8Ga1-cXy>c@!YdzcDaZ=&MyAPvY?rTPO zs$`Retaa@RWmWa>)=aG%sG9LrsqD7L)(VW7pPe;{&wPwS5aMU&qpE)gX|$%8J|g;z zr@u_i|5SqDvUuB11_FY8B9M@p0zrIPnwpuQ`7)XS@&5_`FZYLR1!T5J#Qo|$&~UP` z@6owsdFjOHnG{+YLvTTdXL_SL$i{bnhe3ifmjv_raekYvEl+)u&r* zrfM2gIDj=?vv|s@LDb_6v;ViJWp+vT8cZhup3L`IZ+UH22W;n8YsJPu1PJQRTq>%c zlzYK{2l^fcq9`sC3?MB0I8L?Ms6av#fx0w7RBQl6C`kuIkWXCRPk<79b;Ax4YA5$y7GAOJMH$6Fcc|k@d*NhtMyz=;m#KZSq5@K{hp2F!u_M zCAA9r*hD=_gi>>PNSX!VYDkYMfIb#f@kJN#Hh%4!4K5F6r@2rE4(rin%%D*eh~#oe zC4vXb*2j&nrxB8_Yc6MGChofcpCSgDNATb$zgeLhn%0Q5{^{6@LLkYhCaxyA3=)i} zxsX!@Ne4Q^eZWFmyu}3c#k(ODj>y3emvIL~p!otHw$}lrCaVV+|58Fw>WE2Gj0T9uq)^ z-S3i+reGu})Pv~?U=77}X&sVe^z-{a9Z&{nQ}8xsS9%-)I?~I6kiO3H<+ieB{FvN^ z6oRv3MGBEaXMf@GfFP<{O8Tk8KWxu5{#+vj+-@c6KoR)Hl~HQ5QZe?Vjl7YMyAcKZ zFnSjJ(dmMeXT0bFZ&Ws2@ zo88}Eop}Neex;;T=xRh8>UiO{$z*uNl)c=Z+`(FaX(%noca%1(3f$YG$JS`gpuKRW~28ku=+a6ojw72*Bf00JFSaQg-$STYd6+zkV%5F+wuVQ+NwN8sQlT zDSq=wk2&xFxeNi}WoKi5>zVQ;m69QolPGAAMhhpbGjNi|gO4H6y<~A_U-l}ZC|Bd~ zB{i40bmvS)xWIlKfgm^bnjFYx7jWhu@wr_Kjf;$d#C4SS#k6tncA)c~NH#$DZ&^Nu zhGa0?#$HVaT5lZDubOC1URmG_xIDAtg@G6`c`dLkZgzJsqQoW7HCpONx2D<2vjxkj zGL&qpnzF3aXX??;nS7urV#NANMbHu5eHopW?Oip@{f&VJDcWojL3o@obwwdg=Tn18 zhk9?1%l-T{RrHze)XT*?CC$n=!to#tC-$|Q-?;ZVWwfcsX#rie9g#J=x<_~bePCbN z%yh%i5`&CJzH%+xZA{lf3)xQ$1u=f~M^yn$8WR57HyQ!eHWE2qp@_Ntb4@yA5sM1B zjqKn=#m$M#n3Cp~q(trne0h@^Im5lhm%SVPDWWoQBYgY4O~7gV61+=i~Td((((h%36e9E{ZL0xdP>ld zWv#99%#WDFCC#Ji8-z79vT9H8uayq_xIx7k4c;u$UHZ|E8C?5UxJ4;FR^gX~lbc0M z4c=%=8VTWhaqlN&aX91owdR^kl6SUaMt3C4a911d*nmNf@o(BB`^2TU>m3Vsip)nw zz3J6uL845u5CV}*i91QpCF5lHK0`*QIf{oDa}QQuoSe2bBz($b$|nbi<{A`w`)06@ zzj9utaOt`cO&e~BcWPw_{5cbg9RB62-7>M6u=#>LLOVQ>85|>ezwE~H;6_e%gJZNz z(SnU_$bCWZz_KZU!7w+jF=#y7_Vjrrv&sjE&@iPgG+52{F>9*_1^^{KDqD`&XBpvq zOaMzJJ_cQBn|!7 z0%+*R`;t~l3%yGa6Ic*`n;PLS+{2CE>40v6eYGyhRex)#D{WW!nKINNfm{(sW(3G_ zO_sE~F;qPTs>>Ybz}0=ou4-yLZ&+1mPW(^(oSADLz=XR`>8EmNG2DUP=qjC67|V>! zJ>#H;3I2eC1O{|$zu*?@TAJKDXyY{JD9l9ZQ!(dgp}u$erVY^xl)LHUY;|}>!z-)M zfDE>-B3za6gCK*+wB zKJI~l-=-R7D}z4Q25n=ujOxA-j3f5Bn{V`o!{RE#sG$TGNY{PGtE9EIqk^`}Q20_? z?W)Uc`o^_5iZIjg83uT<%z-ARY?eZbUGt_M{_*K{KtC4D<>rkRo}IXb;8g5=_jT@F z&t-JtzBqC^_$X5otx)nqz=;?8)YcweD+o(950r_)pj1XayfVT9!|;7XrcC+X3&C7o zKEIT`dsA1?QBBvWN7qSRHntLgxBVq`=_y!9!IL@;u$~35%|as-)$Uo7P9WWJgKNiBB{Uf08v7 zLdFmCksDNAkB3}_ve!Q9%F>H$++P&L)*0rdc)j4b5&ezjg>X(jeawVh#0P(xYd^?C zbF6ShHWRDnUM?Zq`C-?1T&cohVXa~~?I27!aV$Jg=ug9}Y z@h|jzy4z;>`tbVT(;K};qkn^KKrxptnw=AOXW*#%E-3Xg!hzYfUsCKg`SMj6&jblE zkFO5_F*0LrjBHfz1JwFk(`x5IMiyc8YO6-!o_S% zH`>K77W(0~>Q%ExC+`>xSh9r|NxS zlSM{9QySir8}MPGN?1DMUgB_`x4;qCAzbSsm}_bHZY{Ft9s99M@b7=6ntsC1zE zKpIim+GmV=a^aILzvW}rwkml?YZ^LsWF?z{2)7XEnGe_^W{*Jn|nvD6ooO$1Oa_x4^|qI%8pWJs{upCX39!x$2MCTVA0@+CixL z+%cs+nvB`9+lU6)QTM&-H+30=fEG^wP5X=ijnz=m3DnycM!_hADI_US=a!QW*90Zj z+y3PIs?~|{&c>I7uDyS+PluW`GR#S2HW2OF*xUj362QKNQ2CUKhS6!cX~L(BR^|6i zQh@;WE9i#IlG~-kPwDnQ27g3LVEi;Q&aPtBK>1bH&iUG3)(1(#>s4ky^YsxL%nSEm zqoEj4+DkNZ=h%UHRd%G$L2L)VA(hdfoqqvm}EtEY&);xd_F=SoB1Pr=mL*U+l1!rYtw!| z&_t~@^_XZLnmiWSeWL%8JXG1{1p%0vk_X+IuTA04=W@!plbF#eiJg*GjJ7*@1nC^B zvBrpqelOLheRFlWa8x-(tt!?Icir|1A3$|%D2h2@{@OEgP+vo z?T*>nR>~-nbCs_H*(k?2$AeeNgZ|dMJgA-@U#Q+KQ(&I}bAdA#MKHR_>Hn<6dR zmcVz^#fKl~#*g13JxA zx0I4}zJI9Cj(YW|e`RNI^NM$hjs<7y;RZh-?fVBwYrJMyNO|jt%X;l37~VTgv!sIWcuXHVdE95;>cWo|ZBAH|$q zzsUuVxW9G0s%QV|`6vE4`~)( zsN#SKkGPacx1Q+}XjL1vcI5l@&y$*a1&wjD8|eY$v(eTC^i~m6Lm5eXIh%|sh==V0 zoZA6p;7P7g;DB1(yW_>}2RjB~a;yl-@yo%N1MNR%-2q9e8#C_jq<9lw&N!-WxJd0148M;<;acJwLRajJ*l;;?q?sq6_P0UeLm)pE*bJk=MqT~(UqnCOn;Bs zN@(m1SL1&1Vr+K&U~Ov%<#wT0z#p!u_9mI7tsX~XLsuzLzP zl*LVytymWyw*NTj)|@yT!=~tCJu=In&d6tj^4F1^pEj zeC;2Dd5xz>#NR(nIrO?69S+Z%k{C^6$kbF2Ml$A3Z4nc*^juPK`?e1gTDnZ_Sc-v;O=vu@!&`S;ldcN-M2_aw*HTy22T zvqi+7IjKjmMK6ls$HLXqj?~w~!)hPw4V09{Rt?@^QtG@_&d_A|^k(o+z0%jsVm$)R zBG`c$Qbgm&3JI!vn{J--Gawz-$ zGA3G|1CIa{jh(CC$MlU9bxR5HlV;s59gFLDp)IQB?fjAbdWr>ZT-c6elBqg`Ld_D) zOuIRcsx?(?i%x;pLCVBuo5qi}AH%}_&Y!utzzL}b*-om>yMsSE5gLY4n0YtlsK%xX z=N^r8#tE|$$)uvV(XUUksmQU8{^+I(BX<&VmBVm($u{fndE1IyU?z<(j#{P7^!sv5 zhup0yv1?-#c^|wdquS+c_qLd-Wi=K3At3=evRe*@KNDVeMX;ATGoxv%Z{*QCALSE` z>x)iSiD~|G4lQcU1GC9J!H?H(xeHjH8!m1Khk19oJm{1r=Vtiyw#|SO2E7PipG6S*^n96c@#q%yHAP3npLySs_#4(Zc?I z%mcE+M2~d7gLc?O2#dZe{>s(CIV1H0RPuEhX+(}#5P9WlSwQxt!zyc#eC<9a;N7`Q&ZMv`ofliG{U@!vT8s`k;FxuCVKs`B1LG-qJqc1YuJh??B~(Hz z2rIXj%4Inu=FnA}GtTjnhgyleS&!TUa&!F6U-03jh8|J;+r`OOomD0iM-M$Fom0@3 z%J?FrD=n2A%T8ZwzKqZ)rq4r#iW=fpqE5Len;L`kR7vOgu}P0CgLg7pZ%8{CCtR$7 zTG=x_`G63q_8&)Lb~xGjE7w|`xVvbq+>_mqX1l+cE4!}VSwMI)G?&|yD%oKT(S97m zw;8*Zx4i^YpzNd0%GRb29LuwB<5@gtbekV?C>s$2gWm6f+;+PCNpXBEFFuwZG`E{8 zd-OsQFY6c0{9RyOPcyc1wVrq3p$CKZmtjdx@EPAyFZ1}Xxvk4LsMJn+3@5*aq;f+~EXlg;wX}AoLAs2)he@V%I#nUaLCdt(&ngiLWO3i zTQmJ9mlqT(%9D(6w~Rbw)~?P-w`bh|jav{3{!qmip`&enYOCgxRAc||B1~XS?k`QM zx%g$2fth=@Caw~>lL!jYz}Au-)9f6B=4=}mk&BPN%BjYV!CZVSAGWNyfHDxikDPoV zyvRH7NOpw$aBvEHF_m)Px)v-^kC&h4mNu!N2R2D=zr#*sH^x|tUnAOcDFq7aZaeAh zRX%GVZ}@7ZRS!Q0gfZ!{=OHZ*Kh3=&`l{Af9mtb|o6_@~26S?6Qijoa9}CFXy{X+; zuWTm1@um*k4!!i~FUwJCvNJD6Cx0^fzBlpuI}ho*BWpk%iyQ4eh9V1uT$~I~F_UU< zRDU;a{0u~~r$1Mf*6)Aaa08*iMKfAPu0S@)sV#D9#EUmK37z(>&%DHhTrO3*y+y5b zQ6vDJ!d}rp!Fk)+%rLu!jAnFcv-ZW#)%8drn*HLz^&EkvC?1Tj=|&U1@`I30Q=Hkn z&DRqLqaS3Gb*!=e+MZ}NM1s-RsdRqb`%)`f^(7ylk*=ZfHRb1D%%qpX(IOEMky?mx z$Y<5&j{Gl7e|e_g0%8{0v{s9rl)zh(93l$UzAyFy&4u|287LqmK5t4DM~Y~d!5chj z+Keaf-M_^DPNuq=(HOmgs?Agcp^Qg4q@Mz^=U-ho?R!7N%zjcqZlEx_RwjzC6~cES z7QxM5YS>WTP2~w~%e7pSGKphXTChU}R|>^^gB4#ZuAvU-cs6}c!6rrI^}ItKaMW|h zM5mtw92q3NRrbi9K{udjq3H#N98`|2n<-|p^NP@nd4UhUh1QlGnh^%rbo&cinl64A z{JiI~J$r;u-{9s1$ZwB7E%jf=Rir|ysfTo}8jkm>Xm(CFMUbU^haQb#&xdCX5WRE3 z)7|=b<$lWJflaDfz#QSgmk#Zt@sUfBdY6w1X<${nmanh}C2V~of)vBrUqSzHF6P#SR)%Q7V zrXW_4w@25E9%htbN1Wt8RQ}cJpQ>4EfY(;ZBQ?ezhZ5-64j<|%wyGKRq?l%#VL=Q( z{h7{?sh&eQ?doPE4;K6|(Q{1mIrXUwNRs2XHqI8h6qPAe>QmR8!*>rAieB+2y2u0D znjn<+bz)(N2M(Ob6nH3d)3GD$sgN2RWc5N{h#o@<|Ipgc4W_GL5AhKvQ26rkW9Tw9 zCy<+g5cF@R9{V$HMT$$EjLl|JosGW*5cuiicil|J?yFhGvT)_o9 zi9}{qY)PcBzoYF#W95p0{%!ZPveYHUKydCuOR<|S}e0bn=z@$WsDNqB8CYOX=w1c>?kiD!o8+} zU4zV+%rw5GYj&Wq&_hVJLloOCR|g@YJ5+Jqh|(+x-Tu8QUgQfOCl!2@D8Bi%G#Jab z)Q#}a>8Fk9f0GEl8&(xK268jw*w-WFfig4l`VWGo<21epiS->%<7zI3MgA_!@g0?1 z8cBHV2iQ_Y9TCSodp$^gt4DLjh9Rv@%0k2l(Q%1tZFeO!5~6q8YyCkM`Ua(@@^px9 zbhb<%_v>lK1=H{{E+Z>{XvmcEv|P_Bwt{HTlV1+l+|<`)xnkDd&+#ah19N5{bngH8 zgdS_jBTqVv9kv7&x2UTLfmCKxXmv?`ubeU1$AQ#XCoP`d%^u^Pp4FY>!4NI<=~t81 z@42oEV~VhC4w=y6iKPr%tL^bUHH60%5`!xYftN5c@vj4bvJfCQo;=iOEt15?>bn^H zsGFiZbqUqNadv97c5z=-7Oa|xD2_{XkkCaZWqE&s{h@>e>zJ*f@Gwt=a#de3hr{$G`d zi3OuHluIC+v7OZZSJuT|=MyO&F|9UZd^>C*#B40nlgnggML^mJ_e}ubl`f7M!GaMj zO(bM)!cJsh-*@$$n7O$*sqYa7o1&{BoL1XH+<-H9^lBL~%z;Q`cH2tl#=jbSeOhLz zy%jVV;&FN_P_oE3F1?PHJdj$2@B4W^b{B5UHm3Z=s`)n#<$FTWixSe#6E`*cxbGnpj#dS+188p&HSya3s5<;e zeX@IJL-UcT)lZ%0lqfasQyFX_)DrEO+WZ-jFihmBXEvaZG+L*%$f6)si!E<-01ufP%asYlFe@CbS&r` z3Ofck`S&`_%Ckwe(boHz;lK#arE~thO9pZblFfN{le6DsBi0F167XE*`On?6Vqg{aVvDx| zXhHRZcfkcMCSxZrvN0!o%LK6N%-q)tHbR0U!~oTy$sF@ImRYL+$_&`?F12i1|HnhH z@-@=4o_&ilVC8gFQzdc(#NPPDbP`eZ0Ip@r=E%~n>BQxWwAEFIUzgSJ)&ou1^9!W+ zDaG^7RY&GP`IOZRRzWNNV-^O0>xS#Q^~fU4;0|bvbnP>3Q5BH?xF8}+Up%YKnrs8u zoLq^k&eWi!ujUvWLueQajA>*!U0Rh^=^rWh^UH2JRXtvTWe6&&$j z!xkc+&sXhzkAuSZHiWdjRyPtt98|MV8e$uG4kEg4{sxp@haqk-2RgEhCsPaj?&*M| zD}thZ27O~gpZxXJ9Jan!P0HF06uq%VOdG#cA}!v8SCFC+-2+nXcbin}w7e4kf;)uM zf?n0)Y0*$Cjjtv89r^T1y0@?UPk-o;##a~JhBnT7(pp#I79lX)kRkSIcI7dPRE-j8 z=tr{p5EE6WA9U4qg5K&%ZVGmKaE|##&0WBA`gAAcAUEAEi_@cWs^n3lVw=r95^n6R zU4ZRmDE@U!s_D>KJ#i$KSsh7~-U!J(~WVP8ra)Voc3BB*$!VTs@ zE$JT~hmaThL#m*ZYHT<0dUzxx6W3k^NYxc3-;B_Yfnr9oca3E^7Tz5Zvz>4-?f;?v z=GK2&cqo|yQYrc*8cRt}e3tNCJI+8@7!Gm)0Z0vb()y9n`v`UFeQ&OBZq%MzZ?|Ms zhk_Yj<`ksSz&GGVn_>HX`mBo5>+D617?hBl*KUYL~#mkS5LsTc0aY+<_{ z!!Iop5hgggTByf$cbYQhM-B%*kK9?|8$KXLj5K;yNSVq&Y9Ma__P_7#kW!@6>|Dm3 zUcpbdPWh46M&G^-%&46>T(UH?`5E#6(eBbn+m$!47_R@5-a&eRjtxA~J%7kGe4VHW zSLnKp$Oa*%o=G2hj0*2`M-NUq|Qel8#OVGu5B*yU{ATL=jQZC)}*7R*}C0sY*wwX zzB%C){VT{Oz6B?PN0)?(MF^!{-X>c3Y$8c~2r~cK89^Pz72U4NuUAi&6ELtR~7# z`t-|X^GV1-2z*A;tjbsQvGE}#GmuDKLRg)0fE}gTlOSEwvQ7XwbovXmA|yzf3$CYr z<6BxrO2+iZ%uS0?Ae=xbFdJ}Q5rdOXOo1UL?CX+U5#`?1 z?-Bw+cLAxaehs-lG3g-m`@A{nb{LbHk&Q0%@^Uw$f-lqpE%B_N<8&q*3 zh|&ul`Zy^>Z?0b5rQSTOIWEsx1#~aBLVyw+7)HReN^!=bs>h@CyvKO`k(J!|$ZurAbYBx(nr9Z?0k{DmNVxx*O2bVdpI=HTf zK;J@+RcRTCN1((yMkU)#e~G+U#&A8-791)RutHc+z($5LnHuR9(m#R(^VP@wMT^Uw zPYps?BRO}HVztfRcuGsKqU;llCa|4kja#*iB=Vs9p2K{psT8sqhzF=HaPE9mQEgGd zebHJ9AmXRY3!5fd;-?wa)5SG54b$u#IL+XaWpggDUesiIap4O%c0EiI;}5|OT#fyDZdcfLOW*JPPE^aZ7Um{`jFK|dg~{UsfwOL zy%NN3NDhQV)Df?q$diS>JS^}x-s@7*NDVMko!LufHPQh#jplzJT)o;}mL>!G@hvsl zT7V4E0%W(;9d=Sbf34zt7g&4mE*LhWEBvzad4FY&7fH7eK9Iys4N-|Ic1Wu@!|5LP z=;8A9XfnFa`D5;xY|I@1wK9h<8AF_-EwZ z=WhKW3FAuyCv&Lx=PA~O*X8tq+x6qRJ?o$Lb2klXGbY>RH=XWjd3AbIuv3l*-amhI zF9WW1=ci?3CHhthu%TVK3p_9ok$%x^7!zMAnRh^t+|LRG!FsQ1I|0_xbexR!uuR5%d zWL+cl5qu2U^xbU9LRi$H;Ur#A&Ob@dKQ(+LZFDnx2Q8e^j%w+zSrC=+uML60TC@#G zRx$*evDGxyDm>j0yh^jz#Lof_zvfCi+(EgmM?T}bS175ZNs@J{hA)9ln6oXXn!R_l70f!uo$GKZOI(8OZhrq1njI^y~vx>JNl!L5$v^pitw zY~u*K(t;?)*ap68IyA8-wbDg;iNRm_He{==Pu<-895^cB2|GF5j7a3i*Sv*tbfIPB z?qb;9?Q5A;muP}9%|PKdT-&yi9HWNn1~=BeCeKmj-FrLC^Yd<1G~TUh^~iy>e| zYx*2C<-??;O|1AwQfHdfU_G(}IV~%vWJHo>f$Q0xT^i`(cz*x=ZkVyZFP}E?r5`J$G^68$nOw>Wuu&xViKzD)dY-3wXUkW2{>7tE3CE&Z(JlWaq(?$l?_W!#e3=E z*a~uZH6tvftG2paEjTf@bkHPZiKhWtBt;e3;EMP25SU>Fy0Owu7wb>5Y*uqkR0dCx5Q` zb$kR?<@m;(Xamuh_f4kA>ChwL0SP}~W@DsuRF?lMtmssAX0|L7dMG){E8Xev0ic^p zMX}fE3p}AF+e}bG74NUAMOC8e6V{{<)0*fT<(IxuZbo)G-YbXklRWrg58b6B^>LaA zL_cjA5iD15keLhVMktjYcvl?7decwLuLpDlTu*4?o%zm}40-*XH6{qI%%-#|dszfI z62}BU%LvYHs=AU7^+DrdVq1;)Z5n3c!q>`F>~D!G{hD1%pqx`dy8WkhL>tPeb&<07<|A~!65L2Aou|cqn#tKAKt$n%8U0G1&M0x8LA?bjt>`j*53%m0zyv+ zh`#`?0&JTs?m(HY3feY8%nVolrs>ps`{9>2Dru0+dD{d;VOm8L z9V_uORS%%zTE=8A1fw4y`4o6h5$HQY*xPSL*O~uL7T}lfkIBKYW*f_7ps2RMn%uAy zU9Uhdc4e54=3=uXc8=Z5vJ;NWu!!x^_&&M{3N3>i5130XwCO)-bPHsu_dq24AlyT6 z3Kyf+eh^-#4?Me<#-X18+KK)n6baeaho8)x8D=!|=FER$u6L+d7QkC<3kf3nH0#Wz zE$HG>v7TI?K2}iMrxRx$`>jWsgMAXf-igGS8t=Iv=Non0(KThNTS=U9?A%z#lRNS} zeTbe%a7ZBA6gPs1XhBX()p5RwbIk3$*BcCK;tnP65k(u(RiS>1N1{ng~=`&U~FQZSsem}jwt9ywL4&zd; zEH0%nyd^w9BDl7K-L7DvW8#pjzKBY_0-CNu@?r8&{k6!wm-f%nC=mW`KK6upy7e0q zIMp7GponKqHH~fj_-_Qkt`{?YAjMAYD|IhXS0^|;hVlYJd}dI_pyOuQfOy9qJHmfC zQl9)d5u!4bYiEK8G5z*vX)5;TLOl>QtFG|X=O<@S1kLBk>2jvgv6&M4TCeDsQ&y96 z!Mu~D?AW0NW}COV*bblMp?m=?$dhPAw@P;QLevN{Y= z(^tI z3wuWE9zTK@i%Ysm(=D7`y~5wAK2w-@$GlZ}Tdq&G)3N8trh*8NN@14rr3{8wY+Xbo znAgw!x?}#@CvMN&n6R!ZsN<0MFH(@DKycZi?YAd`u7{ev9-WfXKuKPWb3)qh@am6n5OhMZ4e!*&v`-g6^tQ$3nzot465HOyyghd3IeU)_%8Z&~HW zTGqdXXn6VL6wZERQ!#O99rt#=O3k3yrCcF1pm$5U8+<#XNynH6?{5k^rf*mgbr0S*IosDeaqnT%PuM1bdWQ)}06C332g z%U_aO^UR3D+Z=WCmV-tOFk*aEyJlN z<5WsfRZX)*CQbc|4L!POTgr9jQEl|~(f4VZ$9AO<-_w_)-xCIYIy&{IP>04_Bx268B$c9IedBC|R;HRF}>#%yvmigqqprd9m^_=z=Gdft^4mE4f3b zNoH+?o`c#9f36r)wBm>J^Vb?(;DI*h&cwy zlZ5d|^G!=k-Olx8t89tK45uo2(G^)d6RvnUHVX;+r`VzQ__yE=Cq5*rt@5o3yJ)|IJ5E{jr>S}<+bN3GO$v!X;K zGEYuM-Akskiz0YxjUdCefQkCSp(CE#GF3fSaQ(uc4q<>v@qTr{WL=QyWL~S3Ho858 zWGQY_pvFOMiGwj!IebJr7ubKau1N(h~|65TLO zhN5X)(^fB$gUBNIv?Cv`qtjvGBoaa~&s&p3QYJN_iqi##=G`uT& zM9j@n%}V-TRek1O+KhPHs)Z&1(Ay-}MF??1HP9n6OC-d81@_@4IN+=eO|QVOZ33g$ z&BAC}aulGYzyQ~J!No@0($olqMYFrpKLv6gV&vyUjIH%~)m#+$;eSIlQ~ifJ@g2Bw z8O^W*XPK$3kX32O^J=?{NBw9@x`I$gG9lc)AR3c75F8H(N0|~#`<|Tpx z{#&n6w4amx=6#VChIEtR86LZzVdGtg7M-1IU+s~8Cd2X4E_94J##Agb~aO}%?NkwdVIYu@sbBcZ`0R_ z#ZFf3f^&>xqJz69Wr?`u_qb`vCYP>Pj5A-Fp1$AL{#11PR9-UkY~6CAC->>B(O=h7 zhSCSeW1IKSPt28{sdT#J<+Ac|v_@Ftu;#F;_`aPZ4}(KIs!EWBtdQP{LT_d%~1_etNg-w!WMLa80aeU;-e{=sv+k#k3MSBog{mhS( zN*7~U5&ryHrnc;C#)FZ4w}7>Yq=-jFujEOZo=d)~*!b+Z*9km9qH-sDlzUP#?j9VL9>)j`P zAE+M5D2VsC_Wq;yF2l5iyqJb(qxXg<4?bU>$K+t*iwq${(>+l^ecUef=a-W`jbHz& zB;0jSt|7}hyV?duHvyv46tAni1wW0CJz6h)JZ2fFm{+47Ixp@)dmZ`^Ma0F)*fzJj zcq|rf;#c(C|X{36~ zXj#u~@DBr0&PkX~s}}76E{50-`)OHSq+Mah%brK67Xi^***Ys(HTJXf4<{V{G~KIv z!_L9+J~KTjjtjwfV{U4GD_6d0!Qod=s@=29F|l@d=wcsE6u3<|X{v*dZr1Z*BU#UE zM({CHWe1kk4eyMiSY5=V3DE5Sp(6HwWlH^TnWz5~rT9r@vEa!W`?5ICf>Qb?NJNe* zTu6Hv=Y%n5KT-1IARwX+WVwuc3FkHl5ji682VaDThrs8D1O$YA=f4Y(0A5lPZmbEi zq1SadYb-fCS=(EPI6Kr1$`9R)>3l$z6$y1+7Q$N=1>3Cl`fYD^R5bTZbe1MYI=D&W(JvdT;$?d?r#lRiTS`nJU;PsKAUhJb=%$=ByO6(d|?xJP)=neoBV$zfH; z%IcL~xPha(_;(-(^tFwymTID-{u7uMmq!2q diff --git a/docs/reference/figures/README-beta_sim-1.png b/docs/reference/figures/README-beta_sim-1.png index 7e3fb5f6f7a980da9b46337377b2aecd80b3fae4..a7e5df136199e7ca1607928b1df03a5d16aade3a 100644 GIT binary patch literal 22253 zcmeFZWmFYW|2BMpqYMXyp;4)kMkEypi8In5AxMZ4A|)ZA2qJZuqaZ0Q4T6BuAl;&b zASfaw-ICJHGv4?6zH7Z}Js+PB&xil4VGis*dv^Tx^}8;DbhK2?;?CnR7|dBURmEEv z3>L&-$P@rFG$bq1sRsS%)6vvdLO(GWX$;01BQ1@QMxPNFYio=(`YcC7(V&09|1N83 zYxItgM#Cc_q$AMhur-=Z8omD$_b(p3BCI3It{la=yfuDa)RbR8ICv^EOsl)(8SPII?AyV&N^BpmZShm z3NTGoy+~SeAS|e_ZK`dL-W|k`aZ0Dm59K zTkU~~ka&9X9pOYy>TFiMSaR6;jR2zk(#Q||_JZGKZ9&O$_xW2lERat7a*qUYp7_nC zxu!MNFm!S<@+08QX+(!OHpUiC2{tR0rry5mU3krV+d~TWIO&5dQ=e~K@bca&T&QCLIt^UDr0(i&FQr8Yp6&7d5uGx)K$)yF~QSI54lSPYb{WbPshQ6k3JN8UK-THw-1o!WKrw!j{ zr3;>upGDkQHd%Op8+3tJ|7GJ^WLo<8{lubQc9m?RYF8Dlp>^L6{ME%jIqtFH^5L~J zn&{i9)Z?lO=^3Y|47m-bdoCR@lW0+7`+$JOQPM@K6|<1L7DiW@E+S5|{r7Os+$-;N zvT-c1K~hULZtAvV{&5jo0Sdqc^JB^R=S6+lppXi%zuIqI;bW0EX6tWkEMQFr(bzSz zrvJU$NlzX?iq2UF2dtd`Wb?hW1hd~M@O>?pvk8P?# z)O}tvU|2JT2d0Gc8(8rq^fP%!s$Xqn;zfE@*g)x^% zT#6oYV4d%P2kmaqB{zF=aUAHggwf z*Vu&rr3te|Obaq@goUv zDUwh|(poMs?CXIr)g{`0;Vaaz5ic1Wk$pC1cCS^L15q@9ur4V&_8HV@IS{nglK*6u z8hTJn3)z|hS)Tt&S7piZ1K%fIRRE0hi~y^k-!QPqC4?Nye;&;-$I_C9L^S_FoHeIi zxji!8{8DZL6e27jTYdz`M4M-a8{#|P^v);?d`!GV!GQRA#kz^$0VVYu4n!m2UY;6o z+3TJIB2L%*O!=0221swlCtaNy2hOs!|A2v4e%@E4sK03dm(Hv6FTm#PF*a^^I{WHl zkprDy9N6MUPIg!%&z3K1nlfEof=Qy7ma|hn@*@Ra*@qR{7ZNbm!# z=lP8Rf9(y5F3EKhBQ?eXTfWaBluhy(Hvn0%c@j2KI$vPJH4_3r9^a@T7O5uHZ?}Qb z&mBQG^El7;i$}UPyNq9tm}bE-F~C_WIrh$k^gMN7G>T|7csD)hN#+Fl9sF~^mdFq< zV4}?(Sv!#b;&q-8UaKM3z@?wfoPdq1&~}9d^if*GjydIuL=Ms8CXP~%ceNH9*pKgb zF@2Y}`?(W+5pnN>jRY?D3nP<~%nUGInn@x(Y^(%#_1S$=&Rnh6p!*1W#oiMYWi>ZP<{Ym)ti0%G|el06LIsa z`(tk#E=XNbBsMbjb0QKVYyhN6lyoMJk38UGY@X)12pcs5>96&(6@gS!mgDOyf6Wej z%d)XhSsziPD#)_#Dgb4^yR8dRk-`z|u{euobg#vkfu`&Nkd$}1m)KLF32@7ZUWvTz z@(WJWIDgw(klO{UuDq4Hl_Z9~6Jhq8jD&<1T}aa|&s;b`&QK8X)H*l)a%n2BxDOBQ-u5&Y_DS6^>oA$xu0v$tCZi?8J!;{>qV{9k7~^~>P+1ho$!sZ8jd zVo;#PKN8k)fgU(@h|`cdM%|##GX(aReO67q$4(VsMl@IViVCwkTVxWicjwZ%8=An!Df2E^XP6G&owECD zN$(s&?p+11g?(E{4x(sod9X?Ty64VX?*f}BTp~JgwuqL2xOVX9lWZtOlgwo!9pLAM z)ZB1NXnpT7G+-_QkBhz;nO2LZC2xn@Ivx0tp!WHXBBMsTQ({oOxl`Tp>#+w(&)|61 z6Jws9N-$D<7-umQ0F;>VBmTcQkf3hJK^>q7?V~4%9VPpN=YtGYX0>G@ox%Ii+M9hl zqWSGIZz$w*(<~w)rWd|>)flJ_54cHTQI@R-qzm6r`apqS;6}_zn*e+_6ToYE7jP>7 z>!8);U~>J#o#*Bq5-xY3fv`}}Lxzb5o7klWr@=AAG&&-9;L%}PN{7_@C;*99;9`)r z;B8Pq)vzMt{Q!FiZJPjPQ^-XgB*8^T2pN&z4mspg?$-+fhrT~JBmc`#8+cd^@+@CT zIe~%P?BeWqTvUH>{xQM~gwE@ZVLv-ASmq_j7f{?tleB#UTE7Z_q2CP>bHwh^(5)*1 z*qwLDoXG2gQ_}%{;H^*vlV3D&h02$#D-Ga)3DDJI+-p0Z!}+~107Js?hueO9F*+=vD5ya3@Z-YPYA zj%2^uf4Y`^de^!N?Gm#zYruG=ibmG%Ym z_&&3D&vUIr43{llQ&>oz`}iSD5Goq6x=^HtwOOY*2kQf#UZFO=?4cx3UJLNqCE{^g z1vhzrl4E)hY|ecT8aR_Ah}3#ppUoskbVRAt5$D694;CH$rmYAEJ97x*HQrr)*GO<+ zv?S;r2R5Nlv!^niY8TddE9$A!I81q4^f;2v~y z^JEFZ;WIrmulE+_N+eiSG?50@yi)Cx_KjcU_8dz-DoWfcxY=i6N$* zpTkmr=4|2Lf%G3OM!OgZ%*yHDz(6I}?q3T}txH%|Qx{Qoaiu}m5*o$!K=4JY;Lg+6 zV00cQBBISgpCVR7samn8rzBj}@@x+Vtlka|i9(sjfe8bfwf?Tq{E|XM`sJ3{?AA&8 zR{x5NJ}e;={=_<&`T zazyTd_Z-eYbheh5wpy@E_Q#O3Aw)D0{C(+^9+GDJXv5#7uV>>-032Z|7SLY5CVmn5 z8-HDt=%OQt_{7CgHU*I>i4GXhz}rGmPx3Zrg9F5%`H_P{s*03Ea_zAY+00lTEVpSD z6EzI?Fd*YjgYh675Nm%!v^}_+1DVpbzpBg^j1KtUl4}TuK$(Q*D`fl&$xYA|Nz1t= z6!!+{NjB{ZL1)VJW;8$6-exW(L+^$LltTf7{-5^W2w`vI0SEgCaGvd*ckxwHm+{k& zIjFu6(}>{oX-#?p6L|rsp86O#LPrsC(jdg6dz(+ zx9n1dHaUO3dzQK5Uq0|q3>w%L)(4K6VwUPBWV&dY+q_lS__AR02I3!S2fpVQ9jl_u zN*RRof$39Mxv;Xgfpke`+U9Y#tOvJY9nOy#j>UafU=b4%*jZrnWTQ3;X7)T(do1A2 z&eYsvM`?C$hbN2i-K)p!_Vxh(6SK(+!geAt~++==opcD-8z!QHA(+nthp7s$co70A$R&N6`g3K9%zLtP*b z;V@aXY>lsqLlijt2akL)NIxWChBzK5bq{cOpLtPy!xicgalAA!JCp|M8v%KzfTmf{ ziS0Ww$vCRnkEX`9+{2)8ArEb34dZer5R*D=qw0F4YV;K4YN( z45bVYBWHo8d!go*9U~&!^>4xEUm;-aa!%_chY)t=Ij_4MBsqB=B%Dj9hZnO7DiU6o zhZTlUSAz6o*RLAs1FTZ;csm~gR>cbw6^45kiEdU$V; z(mz}`=d)Dd2z~ElS|sSfWV&Mk6@9r5o#|X3)Zt%OM#d|?SSGcmk8pK_T@i_;$kPVY zYr7Hi^|Vymzo`9q|NJ`#*GTh#IOtF-S2Wx79k`@v7X8ssiU+`(`Jod@1nOzErfgfR z>k#}{YsZ7ldO+^9Q_@=rUK~bu5>sxOSI#V0B&`Z;Q9o7jP$HPJX>hB+ckuh0$l%rf zdS`tgA+mR$Lk&2LD7gs5$9~fSI9(bezdzSZyrD(%3GVp-5?lrFfE<~>^KLlz-vng* z0>p>yu$1C{ke`L~&sExxaw*z>|AvuV4Hl6R!ULl(zS0nIw2CzarSt7I(yv zR5z0_WJ29V(A#YsvB(q6HZFfW0k3TvR)aZLAtOslnkyx~Hj;O)d}(dm39-krCGVHP z1FHa2T~!zXvG zQsRvv$uX~+^aTEIL=JVtz+51amT*(%-B`g|Ei7_&Akq$=|6~&hmQ|d0n!W(pKIL0{ zM*y#M#Z?Db6@b$OUf8n&H*1XTLi$8$6Lcw{8@HfYQRvvh{mWj zx^mfI&%fowZZP`NzB$NM1@et{LUriLH8f=CL~jkiq83YhRN3DkUN8q~EB{ zW2-g>!etg(m~SN6@a_@_B$h#G=v5y-kACUMbqFtH_G%F z;bksm)5RPCB=#Eg%Z8KwGl^F!(zvaNPOiAk6F<&JMB zm%w>9A7P-J*qx<^DqB&UOg|S)y3RsNIQ-PLE~Fm|mhrjp!}Fu1iJc6jX1*$b7E5LO z@8y(AP;t4qni7$; z5Q_nNf1)UR;U#Q+P||D1o4}0AI7L&v-bL(N2W=p4Ef7q4Uk~yzJ48J5Ub9YSd1_fp zJv?r0QU@w(FZefBP;HP<;7eB<*(q@TV!3A--noyEaO3a?jxUHDa#sn1ek$ zuK9{A>WH4)0C+wo4VydGc-xK!q)yj56Tr*|Ff4Mi5e($nu#t1ZBCRbw)-oDUTj)2U zvxlRYye?3CHXEJ$`tcw85|TT>&{1yGB~k%!PmYbJ=NYXh-q2F zdp!=p^`K(-U8?*#rgLtEF6?XYf;r3*zZ8aRDx+m0RGerQiaq$G&Eceu?Wi zg%exNaMLPAcC@`wT*DY%ySDVKJ)De=63+7%XsOg&6 zUg2#R4y2#OHL0o2aHW*@;^o{f&=YKXe=aeNNIoGd+%jLJhI&d4J9*Trz=4Cq$*9yd zEz8ll^b)~QTid(9^A3(rGD<+%1NFO+U}u7WTddXCyYQQrGyw-rbx3lL5hP_`gv~E_ z-US?98(xLMqYaCm;X6VLN=VVcSh4)fy`Os49PyzRNKb<-7nakc-l~ehc1{%Xc&kPS zj~V%cOLmIYVA97_H6XZ^b1! zB&-u*b=aF&D8kL%c-)X7{Pp{#t0i_Y`1OggB$dbh zpcS`PYuEh*aNlvU)&JfmqHtmKpLutYXhTC_h3^8nHRgcL+|q0?(E-}j(1ix7>L^~3 zKm$kC^0FVnp$IVN_62vbLq@Q<*#&I#y2)n4{&;oUX;mZS-;g!~tmUTx{DUk&UiS&w zEx9(ainnD_^eFI&MjpHGlovCy#UR^lF)r+}l0j9!w@N%!($QT*AVZ+RDwYdzPUWQ| zn2J%cKt&fv$$6qQDYStOt;-?ceufsVn;$#)I2T+>NLB`T=nLxezsoK1Z>q>0owb!; zhR3NDhFUf`OUo*(Z>30kGpE; zirQQKz$6xJMpCPp2yp4LxL33}tfLF@edjefctb3@%d!@fNKaUoOGEx>6jc_T27soZ zfCw;}`CAA&KF(%&vIzzJa~W85jP2kd~LOIot3s^KWl(w@<-$vaKuhz>g41c>ZZm1lWRTPG4QM&9tHJZcpms`U!->SG-W5<07fekh2|LriOl~6QWm)&) zEU~|O56E<3d@hz^qN_U?419)dZJ3%%TtFHEqYSSxFgaqxvi6gbqG`Cpl%?pZ&fzCN zaNhggP2joD?Z5%4DKBxjL-&CoXggd&P1QnFxX?bG`diEZP$w^ssj1jMb`%K%{JTXJ zvEM0>ya7u8qmof9w6>OX6QFGMA8A;B9=KZMt^lkUOkcQ6OU@0il|+)e=mVF-jSYcv zQ7M7Jz*rLbm!R0-(O9^wZ(aTVM!5X3l?w?WW?O z=uZaNwoF$RNf;!ykS|eicCc45?8O8Qym-%v-ClKoozJ_FK0gKTZo%WwtgD_R#oCEenaT|70Xs2N>9JBONXx9N524x@n-Ij`SqPnm1W&R~vV% z--FS-h{3NsA*`;WZE5zcD>pobuV|k*k1sBMIBI79&;_;({mo|?n(>4KSA;HT)n*D~ z&%3+>JEcDDQKUPu^gwsQai~QX9}Q5XXN6i{C@pO952W<3qoE~)kTG61MT(!*khsyV=G8|%*O6r*!=(m0czoD6XyX*?;5RXl zp0b<^Dmz>t`{Sqpgq=6!N2Fa8h6SU0z4^Q3!8hVO*otBoXf5*C06kag0@mX^$_^(# z`9f`i;hvqs1Yx;oEMX9H3Qjw8BaTzRUa3RNou9f^`}3XTgDIMFZDmT~v{6s419&_% zPaj~IOdGR(W&}*u+8aP^n^CXR$y`vI;THp8Hh*uY;|8pA%pst|hs}SK_;PiYf%N2@ z%q8q)Vq-bS7;%_(5L@0qoJ=YEM%=;22*gJmlMmbrKJGgl+<+w~E7MA*}KowPyx6y~n>Q zs}1B|wyyX*N&kh!k@@LaE8T7XfvJv>mUcLzy&r9(;UgWu{l16*c3+?(4EsmFgP8WT zFp<1J21&Doi`dt=)}EVx3iwFNMC#^Ov7zrQqr%z4L@?1t(LtkwCpwJeFz|Pf`k--e zs?|5C%kucq$G341gbiy&2aIGJEn)Bp4dl_ws1kaKsd*ydM_c~8g6y6?t7KuUV}+Fw zkOFwvyDomEJo=f}n=XDvNEcY2BX`cxN7qREat-}iHi{*a8-y+VE18a0speo-33MP1UY`%?f#lLQL`fweGfDfoJp210`a4v6r8|=f#eiDgZ}L->rLJ zso#K|wa66Pon_@}zTbd>iqf-?W^jN5R3z)P<8v08zY7HhRR6X#{n+S)c1PB4zeH78 zDCC}n7V4Y$8Z_i2Syi$?#gVSDK1a%Cle`m0X^y0tRj%Fp-fiM z3tsy&d8+w091*HB`41m<0YUh|%nPJZyCWVnQu_YoFOe7PLME*Zd=uK}=fDG6i#{?2 zz_ZUV^Kz~cQ1^B4olp~lAL^O^4;P@!W)Tk+Ju8tpkf87{FVV{_06W$G{7o*UZ)Tp5 zOnYMY=|Z#cB7jeddJRsCzp#UKN-6zCE;CT#`LB(>D>)4XstregW$)fPm>F#BHAa8~ z57Lc*_0!Hez%kXIr!KkRE;W#v4{jELyV1repY)VWI=daeC+8L{)$8YGpBW9nNWn$# zUIF;brXp}4_2s2^cYzw;CAHm~$uyAjFm*vPNVvZsOyoGP1`^`>&{6E)CZ=ByW0tS| zyo=a4D?Q8z8?#ixJ#QBc3;}nuJ2D&U$3~<_CZ)Tw&n|TcnFU3hVP#6bX+dnvuwaEN zeI371rq*3p<;}IY$*-dFqgW$^@!jG>TaxSTk$Zte!Bc3woU-j4-9w? z6|pvjV{X7j!(Ivi*J)ku+knW zVA8QVG9H>(XCSfr`;rlNG=LvqyV~FHOODF37`W{D6ZCEAzID zUAowQv?P&}3o9Xe_P8l1=>I{Sd1b8Pxv=hSTZs813?qO)oITNpY-<8;=e)U%OIK#; zH>llOce1!>{YUBZv3$K7`32l**m-p3 z30*Q2e>p`ME4?v&>c*nZJ%GRWPp=Lex#MMMH~Wm!HFp%Cx~dDz{-~UH(+8IBzrK6F zoo!c1g%fM?fEDg}+P_V*RV;rYMF8pf-j{z1Med426|-0AAtMbh7@(H94IDAQg>^pA zqDXxar-c=SRDYM~_HbK%01Z?|);!Pw4)x4{U*!IEoy5k1=RealfoD6%A3o*J%{KL3 zv!u?=R{=7}tJ?L5jg;uYo!S41P@JvcY}(YvVr2*g*gN%?1z+&f6A}wHUy6G)i9$tI za$Qdk+*-}&4r=Ah#H@oT{l7`ax1#$dl9Zw)fH+?}2kShff|xHAeVd77{rV1xXfmd3 zY9C#I)0)VM=2}im&yq?(*!OjBuGmFv0}%@ax@IVM3Q3y)?g@?3+1wH=cPetg2U}-f z3t(l-o!-K0CTqk-p^LW0Xb+7(zV&y}Px_XfB48~W=Jh64NEuj?OsZ9X zb}dO3rT???Q{*oqxsk?nDwxB72WiaeKsWsEWZOkv;BP6%LP~-~(M5=>g8nS>T|gAV znr2cqee5!iv4AS6%UkxPuR%SpI$6oxaOqojF4HzUkK+M<^>t^F-^~d~qudT65Cg6j<8q5z66$jM5bVcXV-e zqak0S^1cz*`KTTxmB3ko6bY*3kLOw)Nzm|4b? zR!;H~>FAOsCmy!@j`9Cz5Ug98OyPLJ&`<`0+w=kCz} zP4rY(L=3ojurYjyhl**;gg5^e3->>Ys28C?M;p*XEgMo3br62O`T&=H;khcXy-5SN z@oEE;XSkDUMWGh$g~Q&IzxYAgTY$70&_1X3Au|IMq$6@5f)ZYeK)zv**~?#rGLq+u zNt?_zf^W;(K$?fH%H`mIeHIxTiUJ+;znKS15RUG1uEg=D_2*vv>o)}H*_UIcfo-Wh z7o^I0pWFo~K1@@jN75K@B6gaLgsu(M0I}}dzX3gD{GOsJ6G83<6y3UkS|Deho(37= zyfU*}ysYJ9aN3S5qT}+a2zBCnU)6GF`sO@ibCu!Dh4c)t^FkaS(rlo2E#ML|ASy3} zwAlr?)&A;58teaJq0V4lO!`A1%~)J zph?4bJ7&IE_R@IMq>UCRF4mI;#1F@JM?18xo!jAVeyljAKg^OJ%wO1#hc zoHSlae9$%JZh{0q_IngNke##^OVPCVQ@A^p&a0S?H2LF=3O?*NX(ZxS*h#7|lILWr z^6n8%8+aly@dK7L-dUt22+_fn2aZLk=f+p+&~8$_3T{(%Fs6swvQ&YUY#+~>B#C9z z|F&wX_OLFdC=a~Y4+ebRJ+ah#eDdi5w5D;7(g=ioNZC-!kT$R!mAO@H?1^J0T@w)?qhRX3Y* zk@1@}xBg_FvE4$5&Lu006zON_nY=UeqA$N|VSm^*qlq}HYjGmeX2Q8o?ABP&zy1JC z-eai^Hk1}=r7iC7nMvTa;Np|}>?)?&DRGhv8j)|pg2KD z@vFcX#);jILSWS%2C^@j0c2>V*`(9buxf6kSX#RR;3Fyuq4Og6^I!C8RlTcL8Ru5t$z|So^~h&f9Ze4usj>z|8yChoOQXtrZHNIW;^!1(CGR7GeAjdVI|gNP{T3?<=pza~!ZYiL z$ZpFGF%V`nhE;8O^o8b}ecj=KBg^iWND3nr5@Pd;{Oj42gSpIWXqM(SKSt|IE;?$! z{r6@<$htjY5o|uP-;nYA$BlR_2M4kbx<%@RUjG}>_pRB1kIEGhG2k!|G6bZunFE%i zuezi;%>7>3Sqb3PZtz+6XjprmnY|1^Sqha#1>nQG7!_*I5-dpaIVFp@ucuCvo-YN-k~!#~&YA8*JYMZneYr8x*W(tmwV zq59sQeleT9Oo{MigfcWBA?WTR%e&f`jN}dU)V^*ZUB_~o`SzK~e_ z^5-`mFjoFzVR&#zfZJx%DepLvJhGOi_x@m`9iAmG;g!tX&e#htnB(s0z<|qokLI|3 z`<~8D8)8d7J!#IZIqbcGvsiF+eWO2|6{WzEM^vj>MZTAAZdcK3Rj6ba|NDh!CAnJ0 zYsDv7@CGkv<2`sW{j7n_i<{)-|vKi$i72 zE63@>TUs$b-Co@e1^`<9Q^Ug0JhP76AFH0LZ}M>{ZE|7d{m0ik8dA6SWmjcObs-L_ z@{xNVCDwhI-=eJTIvdoEZD}g6`S9yBsm1U}AE`^x^8YSJokWQbfA;?`$AI!T;Tipf zo!XsF1EQbgz~iS^hue0uk_3)Yc2WlOK#<&IrQq2GjGs8k|2cwlFfj3t?zPKP_$`0W zWi_N@r?Aj*aPwIW`*z>))<|aYis?P?RO8ixlgrJkZZ$P056u=6sr6n|QGw)1PgDE()j{-xs|(}%L*W(5b6=VG4zL!nqY*d$z(>uP2vWc1J?4h9z8ZMEtWkBuUY z9mo3O*f$SWwE49LGlK&pBl0+@P#D~CV}5Py=6)*0Xq{uhKIaYPnehJB24+_;zC_b* z&F$)=D5+l~A6^RA44vC@FI-yry09{9w7s%scFc2+B#MWz1SkF(2Zs7PO%TH+n+>1*FRhR2$f5mo}+K=F!|!&KkH>Tt3?9I z+SMn`DIk`u&)sjnq${))Ja_xuV!S0M=lT1J*|dR7l4F8`YT?t~>t6l$E*}Ve7`nId zNVv0a#xC)(1xUWKYd}M8BaBpZeM-&#StEa_HkJ2qMCrq!!hF^6>i1d&+k(;gPkl3; z76qqT@DW*4+C}X7Ob%}m4u7# z_g@`(hYMDm$#1?dq^oOPb)y=%;fvKU87hgt=8@(85qec#PM2zWwS_xxWFK5k zmi=|?5}UL#@XAWI^?pijvRLO;Kgo!Zd`_xZ&&PXTsjIpThX!??S=HYY`!mAAW-M#E z(#3Ai4pfZ{lG{hs)GV$TH>67Z%d}QwB1cueKEqS(oM1ZmJbPxhE`0Nu*PPbAkfxc` zj>hGKjbXcyx~zj=Oq(-2XzNEL2Riywmy@HXJDxrk>rb|_@>#xmGF);bS=z8&?IlxO zb7PQvOzZrtv;s?@z=uGxLj~Ob)v}DGJ&zI4aBOjScJBu#sfM4VA1Dn1@Z^{gq(0O5{}z$%^S9_mr$uswp7I= z;eaNqSD<_0GxjTnW8GqW7%ehHCm_84=Ei(L{m6xh?>{U_(l9{!>D2}w*ZA8kJh)U} zqh}%*%{f8&ZM7%!yQx(Y&R6{PnseDF zIKnBkrAUj;3n>C4=MFM$`h3jdQceq<}lq=!d#fWg`}PMIQ}>Y zo=Q(Lf_SBO4IsR9_6M!8_ZbG@4Tb2rd`PAJokm~Tb|5IE9n`h7kIjc3j z;h#?jj@J4tt4S#!zq4+rY$y6jebY20w9T6B+>yu|>Ev>j#350Grn&IsXm{|@L8q^m z=HM}Zz=+xL%;4B#9RSrK)qhG~vsvBr`fY`|Fo*Wk++CU??Tfu`K-j--sVBP>q7v5> zE0qp1KIs;I{JLjP=*H7tRE?L7n2h0l{*w6RyH*R1*nDl@#}yq+v_lrD&n?-6R-DdX zmy|OAX$gW8{ZDsiD16|v4ynO3q!@FS|7!f`#^ab>AetmPuo;WWbqYEYGqol=hvLF- ziC;Yf`MJ%6*Z}XR%DhR798vSXD$<|{z&t>8IEQ)p(VuY27>=kIz(3nDpJippAH=ko zUxjrhLvcs^0EypSR6gT5q+^%j>wtwZ905-Ne_p42abGmbfsu)T1JXN;$q8=1B}~sc(yak3 zo}-Yo`NfCb*7cNNx>EdZk^0hk92z2s2n^mGXi@*+EXzqU*Cj=n4%6AIecB4aCS9|q zCHN}71fTs9r*$69QwDB3(VZTWrG)ZqxW+q;?*QM()V`$`IS%KJ#89UH;QV>j=(|p% zXDKNZ$lXsK6^el{5!&3);c@uilyZK=*rz6|SrrqHl6h-SdfCV9j&?qcNgZ5V=MBxt z{)~u-M*aM2Vvw$^t!d7M>4Z^r%C(V4RAUld0j)PT_KIj|k@4d+HGlB8Jsq71I>W4V zxsc)6Kk_Hfj>h*(j|3-xj2eod^%cI$aT{F?`ve>fC>Fk5KcP zAC3fT6VGJ9l2>$Y179_1)|SL1&vK)V=*cyk$ncY)leeIoyuqf_>IQ+$qsb>NlG39P3OiQL(#u4TflxajY}v&yVkxS z#mD<-?Q`FS{4ule!=O)TU^G2EP7B-1cbyx01K@KRVGM8Pk`z*LAlR^9e=?kH7P3iC zL+~huAzRTGQ8+xS*Q!v60QU>hMnQVH_|1cG-{Dl=THnDd)b*^3{5OH68|VqRs*M<- z+hw07ulSNYUi~t(=01K}gq+eh&O!*vxdr9qfIQ3=lYDI?BoO_*SPaLPJzSH-Ygv6! z5s6n=2rHi~gw*dG*-_W=J*4%s5Wr3RJMan6!m~}rIE!YycLvzZuFZtPw|-H#w1KFU z8>%3@-X!(YsS3O!gIkqoQ@GkxwsaNO1CmOf+rXv2-i;~eL0%`aPKcIA5qoe@k^4}P zBdJJdLIH%ZX+*-z-3|v?Hov|IAQ6dmSMZX@Uxh@poM`<-CAbhog+}%K7P03=y*I<3 zG2aT5Q78kF#=mrhmX3>UrdxHZQ>>Xt6P4C#!cc-bqFct$yv89wnN9>7gZSxD%)rfi ze6XfC1$9)>sn!C3MUJ!ZSFPUO@zfxoyE@CAE!sgQFw^DScItxg)!)E>XZr)Fy*@McKX*rro3vZ7BE{tU`4!n@WVB)jnRtK_xe-M z>eV0LRRiu_G5{V%f{Mo9738nI;lNt)9P1(G;-jUQ%gsQV5H}p5&8F!of=bOEssic{ z9zKC=dp}lQr%@O^pQUl$jeKp%R56o%=3=8simD3~|Ec6Ytg{D$bxKIu2C*@Pw?o}D0jvtJ?8O2kKeOjE zCR-P02enlw5BID2>vQ-@U%d3u2OcwTQ+1VpmY9&Z@zphqdP!0=UI1BXP&33V3D zz9422{j8<(sgaLI8O?od!kN*OkaN;U8%ibE*5rHQ8z&a(6%8CdWVMJ5z6+A(+(boA zH9KakY)ztqMU!{oo*8)jrI`dIh4bH%6~xZPHeZK}SozRa*?eCWLqYcVRfa4I z{BJ;&j^Nw&LG3#x z;@`k6V28~i_;zta9v{(adKfL@HlVhr!#)zk>lh|FeP0SKt7zGJu0I z;-$6V@1SDq!huX#UBDYx%5w|hI4C<8&yRHzCX`g@1G6#Z|6%%L+=?neBV`YAdlXBR zdeDLELO3=qp?X0|Z9qT+NGLH3VwbWYdWIjb>FWRv;)e z@oUO&9lvXomcxLg4W@4}16;ZkWpD%Tp+ouIU5uoQy_Jw5a2QYtiYQ^87^j0v#AFVAgKMh45~p)eeigyYTFAh*3zi*qfgtHqp_rS^SZKg>IY9dsP>-$w z6tE5r#Al$O2}VbLJ76E+Di6Ch#kj{&zGs_+tL=30joxFQMw2lR|iG)|a zg`I_u?MJ^Bfwd-QNuV6Dki7NlOjD7hd+gCbfsh-eV>9s zyLq4~WVrtG`<>VxPI&w#N?bt7uVLtnUV=+AgdFe=KQ=}6&W7L_T)Nf52P1+K(HvLg zMw@L*0LvH%CtkdGNarahtb?wkMAYdU3gESA3CRz1ELhd`mdjD<4Y!#q6z@h1f}IQT zKb)Jp0y%9!s=~2J#4$I4@lN5M#@p$o{3DNe)8rT+; z6T-?W0p;2U*w=B>D3wH9TazXl)`x$RWSp;`QYF(+$|RE3s8O3%sb!iE%y zj`qCJCtV7|F@qI;R850tH&JGLvxTxt#+>BdMO+qSawT#UI=(;@ma&LJkQoQ|EaYeW zH}dh$r>VL#^?QFmyz?}z$Yz0Z&Ol|ifM%eTe!U~%#qZ9=4F^-GWtN`{TVMZN1MOh< z2a)a)wkb!Cjq2^?3ZHSK%U-RfMgwPuSbMv$5O)7J1HnzDnTb?m`dDf0V)L1Q+L&4% zGX!kRLl0zyyPpI8c?YTUmK-#&dmTUX-kM|gJschnxu^t0E2n_-p${M(AEG!9I+etvQ2LscAId5|+Ijd| zc(2HVbM!X`#xS5l?`)=Zm6(?{6iRT>BSoUZ8?Lb2p|8w7Ps9YV+sYYW3pc?5vgJX3 zz2Rs<8p#33?;(8`I4aTAE6=jKzyGjdt@WWemTd+Gj>gm-__L!qvCE^CPu=dsbMs+! z#f<;W=UJ{VRHlIc>FCQSEt5)tksI#Wk6WCY(opILjs90NXC4pL{{QhqqmD7B_Z><>`Zh|P*lA#@jn9bRTaRgcN>{*nPzMLJ z0bU~|M1ih6F@;w*&dmKr(?n-<<{8K`5!Xn`_5m^XJ6L~W0*5#HLQ1G@KI=op`!Lwy z5T2U7;4wGD&d1sgP4i+i(sS26MHnuh=9`ES_L_>6Lu$BB;)N;lxM|%tA`y3xx^z(i zqtI&4%x+O^xk=|10^BNxb5wAfiYGJ57u6ZL{H)ri5<=L963FY$8df0lQ@(S9mGMXf zog?)a0|wz-_%v0f#O4W{BZWkeg2$H7+t^pHgW5#RWdWGyoe3W*S@2^_zt6WoJl^OB zv~(|ql%sk=4A)j_wugj09Dd(luhWE6gxK6KLRQGRMb*M zmt_0=V=4+hbxgN=fQ!FxdHHYk*tWz@DS0!BMBwVuyW2hANI#mn0P=Lc?xqVCVn_so@422d1`n2k-V7UM75X#Z*fth`%8`@aK6?|@&PdrC z*nUqT=P5q?VlV9bc0hOxtgvT$D3JJLQ@EUFFgO2YyxU@j!AITMyh*UYYfrik-@KH> zE8SiNjCn!bIp=p_(8KKGF!@_y#kvnWSgYU45^fTUD3Hf}5|~hv$AJkg5B1YT{;(_< z&qf-$TD-ZbRH`t*;;wIt=19>1c}Kv!dj|mmXqImVSI1P9B{tW+;+07dM&Bw3KGjP( zKtt9$VX6+w~4e{%BB!?d-9JzMS@N0$IxEg3&}EAGj$RAP~@;?ya1>ETOW z#Ii#!gkj8b94iW#F4$%+Q5T$V2?xr(@c;(rb@4Y;ndZB@a-!f%?RF<-D(Bv`33g6U z*BW&KW_pnX&@#%}*%5sfhy3I%(y=z>5XOT>CJH`tJPvbw42)*Xwbu6$_`|o>5jltQ z6=iUi86(s-PHisox^aH%}>ETHAZ^(W;%geHe{75l8B}-`+pn~@=Axez5Ru&wkqcD&A z1CX1D3uEizj^RlBa{|9nyMZjz2;7`F@%8l_J2;TR1(eoX!&N|b`N8Qn)`s!k?Rtb+ z-o+waGS4|{nDuRtZOiNx?BSF>VNLF*;3QL2akK4@QG1ZVTLo=)u>6zWP~t2vDCvuW z@aMc2+nGAk_?E~U^y22Azoh8vL3PPvYDmm4@)~(>k%$2u=%7s$@^s%t_@#>fPy${U zb6{9e5dD_p!rZ7H?S26s7ZFI!BcwmViW+xT))CwW81pyiqGKVN690tA1MXM|Mr}N^v$dDbeRi>; z#MxYS*X2&tm!uymcQWD-2b^V8voLlIJTs+f1W+$`X-?o*v9ogQzo8Xz?9Kk)ZjWqz z&$-d@kP>&^(Ft72DkXQRuw{C$evsD3&J`F9ae8lJesH$I_$&#s&QUe-`nPQ*UFmUG z5_Vh(KqxAdT||g``bTn1w}P63&3^&Ur9x5r>!En=; zu8uE~Kyyn)TE0Z9DX&1~5{5@l#LsiROfgLSd}%3ijU##Tg>2AAv!?rg%B8$vHL9rf zqa?xSQoZ0rzr42E>W6;!o1_!EZ2Im?VNjRiiH_LrmXfR(@#O{IlEtWdUC;bFepZPc z+F}`1EXS;R70PJ;>>W9O(;Tx2grRrFj`35ULw)^mIRP{CEj{)3#$<7l_gSBObOxLu zD4G|ApvZeBtK7CQMlh705onS&Bgw1H*R`m~FdP+o-BEF!%ZUumYCF!WW+)`T9$!?{ zHb}x}-Q}1|sa0-~p>}dEod&!I$r!~I9iXrMmJ4VL@*N<*T+NrFOt_E-0c>b>q)!1t z3Xmcacr@&Z4qILR4B#~OgMfJQMy2#|E*|2dNP&{JVvPPNXh!=#2iTiF|JQ)go3$y{ z077ZCgn3k3#zXe~3J{Qt9I%vkH3-277#lh&PfttT{Q52s zB3utdQ;aWsmZnW!4#7s$j_wEC#<3}jw*7fhv)=)<9mpwT-46A6J~^fruQjR!uFwg3v_}DSLgPcUq8{fEX=Z0#TBfNI8u;n$WtX4mG-aKxcV%Hu|Bo9w>8cQ@25%$x&9hK#WjWYB)m3L^j$kS}iX=tu6NUuN`iG z1pat)KvXDDMwX-OO!gDDO(Kpq2J&pr)+2rhe!~`Sf6;&oj*~%yV;S|p?AFwht2U}8o;Hjn?m8|)dpK3^$eu)SaM-a pxM1B1H literal 22037 zcmeFZXEYtr_dk4b6XOa-mqakSs3}A*BZyw32A3!yh+d+_H8(^=CwfUDh<1ZW^cIn# zC89+{i%t+V1kdFAUB73o|60$>|BL6vZ`PQ5oib<6nSJ)z=d(ZiJ}}VJpuwHNVK5jP z&1+YUFc>U|!B8jz6lh9el1BsjF=(J;qK1BAFtQko6Gm1RBa2=WFiuVwC-hp2rlLvz zlK&k}vQFrkAd99aB*-S9*D)uwnk;($C+}ZAdL%d{)H|3OJXU**{{OG|zcjXfk5;r>RG!x?d@vZctbc!GntqWf z7z`Ii^QwwTVD@Sbb>3HX|JRZy1$4M3**qJU-?G?MH*S!6?>>^eJuTUhUa@wZ_@lX4 zFUOd*#G~HtIB$aPx%i8R&wMyiwU&OVlVOzgt9>akm}N2;g8@Nu%)NW)5MvRv4K6GO zLk3|m0DzWK1~3@%|1I)=dt64oU+!^Ma!ze@&(uhjqhR3?r}b}L5^L#I@*qLC0#rO_PX`>$JQo>99=0A@VTK0zn zy1E*gzHo+qkN>mV*JF?Dc`WPAtl0MmdtceW|W+G?iS{ylh{=t%HfcpFubp{Qa>NcCC_^21K-N;0x2%U?~(?4 zwwR)aBm-Kg=;h>q(ynRIcZFW=Z68e27kzrXs9owVIaHP>Gd+3K`TkVLi#iZu*9hw> z$#;$#wfCp^u)&hl5jIqW@Pm5{RgJ8G9fb}jr3Rp0I!L>PNZlLPK=-&xEtU z&VNf#>zt!3+Gu-yslw1&OdW6ysJ|Cd6QIr&{o95M(Uov#5BawBhfvQ8vF{yL7SXYf z)Gc$KuOBV{6dVCcbvSr=X5ZWs2{f%E6VnEKKSghUV7>yvdG4p*%wpjYkg>B(cg8kE z4jufk!?muyFuCtHzOh#dk4tuyerjm>`>DD`=nj{;w)t$RGH@3EO?u=v4WPivjmRzQ z^nZ`g8qO=5N&t$v6i4BuY5%mq z^8$a$zOJqa&|VKn|@%X|!%Tii3R0>}6*FDAMN?GKzl9bP0%i)yD7ssbKt) zZqGa$kX&_(y|^N)c-kj6a`PNiqfjk{Q_rvl#uJ0azKhL^W7+JiMR>7nP#iT#9!ol( z#y}nmo6G*%9I5lyMW9In~X1~Ie5$R&T z1Lbp2StpRZ>ktHuBzpYf6#RJ48!B7mzyGg9K3H~b*o<16ak31N2-Rm{B`_{^&Clu; z^C5oErtaP~(zyos7iak#S5ad-Ve^5|I95Td)M@jS6FNYKU!W|>#I)j?Zs$*+pdG)5%z(~3-SaGj%ELnSQTJop0)V(BGr@jkJ?U|Ht_w0Zk_Ah&hR}X3>PS!U3U6Nt~1%5H|Oj zp&IZpl^L0wJI4PdKCF-sPjF)6<0Gma#FF*TH7s%5(fw11W@ff7P z+y-cvxicCXFm{=a<4VtbM?V5>GHsz$AHBDZrO6<1Iyf+XcEEPtp+t0n^xoCeiP{Ux^A zfZB(~yU>cwx#qzAisSvohD6nlSa{(hvH$KDiD@0hb^kUSw@?KO*6Y))xyk_-C7#}V z()$f&tLQoQ(3A?+w^=ggM)bvLTkZ$#PyD5+t&xEQ!%hx#0?>Nc4q2glNe?r1ffoBI zT!BO5onE#V0Q4)&^?2-$^BL>;9fvc$CV+{{m9&l{T=qd`z0JjHT*RNrFNlOMIXzA3 zr8_Bi&f~Yc#gU5S+eyY6BEm9`xBeLancKLRr#@^bX>H0MMC^ZMYHR)X&U~)7H)ojz zV4Qu?+^Vdv<89m^Jz=45gJ=ltP4qsB#1$!SFzKHEA!(-H(j2xoz4XXvtx_ZG!+9%U zG3(_Gz@Nk44Uwn@N0MV@oeI?1W2qqlT31|Kwn(=K*21j^Hn_7Jyt{O8B=D=5%|%EZ zFjY?kzeo}2;m3Sf{uExc6}>g3QqgrcN0aDCLnyXrN;xO!pp^l)+!dYExHk7rC3P|7 z7VeJD{$W?kYFE^ntyE9soi585X2LdqmcfH(=nL|ffsnk4hrgvsJKhF>iGafSTzk$jQkKkY805<*%x??qtGHMC*(ZHXsaR1Ok6*>(;-TOizv$5uCNfP;(>vj>k{m~&A)Yk znSfI#eG{cPpO<>R_!bNPo>s=SC7<9|vX{Fkh!jiX9c2|Pum6Fs4Q9L!2PK(@p2>TrK%kH#OkTE_4kVSxW=jVz<7s~WG=&E6d?5s0H&Hsb%s@`_vU6;!_ZGZ0`;ds|T+{@{TMas^ z&pX2Fa3kEbSmyh0cLw0UCAP&PQNU5dKMlzyxI5uu|2z0 z3=_e8iU~5{u7f2`GQf=um)w?l3AR>sY>JK$T3qxZo33k!$#HHbWg@t;2%xe{> zrUdrXr+Zdtsu9Hg{<1e+l_A`pmFfLK-qf4(>N~R3sU#;F!HL{*9&G&E5bJWiMDSOp zaJ}L7<3_qyCiDb7R;@xo$lS1NqL4c$Lx16bUxTwvGO;w}Ja%>;-vbwelyP8Lb`rdP zr#mew-VFGm(x%Mb4|70)uBo@%zo!WxGn@yVC65fak%2B7$so?)ZR!aBR8j05^=MyB z2EtjsMl&t;3KNK-TN~FMe6J+IF*BZzqAy`AmWTyD|a-~x>@BjgExW#HFy)5)r~Hf>}}Ks z?F_iA9q-o*Wt+IE!naaqX=qnd&7tUX`jVvinEHVhN544dH#6YpDYS_%%f80;+fCj# zVsKstg4o|G!c`VSJm)}q${WCM+{MHBw`6?H8h{XGfb)mA;mf2OkQ!_dFg$m1yEO66 zJ5<~zetKKQ0d0Z9jgJMf^OcgyBsmQMsVA`>#{TAsU zQ47Y8$-qFl1|WYMo$GpY?l^QYc7sMJEi!2RS!(QAGtTGSpTXwb55>||BYQ}`NQ2jCuGX!3#t z&48GgH}Uq%Zss!wbY>BFv%pu7_hpQL}hvK&9E<^vx$0g7}S*$NX|IX*ZS+ zdvw;LW~Os0O2Labsl)x2s!bQPS#l$`+Ty+N3|F1c+6I~fWm-a5nQvx#>{z7rN2U>Q zm#Qv8#D&Hrv8$e#Uqx)a!oW&kpsu>Rf;eiM!_wQjr?@gi5m1)rl@7EX?J1!5`dS>g zcZ`ntqt8V-6|JM{@QF?sFTkk+Ep&cUJbCrdYmCIA#%DyfwFKq6< z1pj(rpsx(%p^V>LWDJvwjH~=B=m#W+J}ADu27G;-#`)&0I}M9<4cM-3p+JP!XA^CK zipzfcIOsioab*^L%)i#JkokBe4GNRbm~A^`f_wbAh*oV*xpYX zucvDh$9i$v8vy0E9*%Xmn0>YDinwI6?ynU8iYj6#kEV4DhSCqAZ?P-{woreksD;q7 ziBnWnhis_$tfR$is|{#uAkyS}X7b?Stw+Q1 zPeJ)MoA*vgemW@ol5|~v-s4#_t~PwEAkr-fGTApfM zfrd(z=~dEP*xkqZ+z5WOh0&h=Hq-hyEh?(ET>?nBI5zvn{Z<|?E+X{XAp3_%dV zPilpkaNTSD!>`RXF6qx00T*d4Wh8|no9?sr>H#_5)jxi((6r|}_+cea_}_rt;!X^8+I zUR>J+!Zz=9;K`dnC+1D6f^G3Rw^(Xs!dg+rsDu~{)H_sx@}H-_b|S5=KCZ8KJcaLm zuYBa9Ef31|vk-uZ1hC!*B)n34w7gfbMXf?xYmeYxEvZx6-aAw4ica@fYL(9%jMiS6 z0Y=}2v0c}3<_r<7!@nsS(QpE7OQdEd@Jo@0n& z5!urCDBWr^0S59rqZQ+;ug+51K!O6#vv<_)9}ru0KW`M}4qkJxgf252tkOg5wm!su zx{RxeYN$oQaT!MYS&+wr_3v%{#?C?*PhcYV3*&*=9!AM zNr`ns(Xbx7LC=#sw~77bM3}^~POTzl^Da{zaGOY{Gy*PP7p`1AK=2xDw@u9~tbj5} zZ6L?R0K1kC1~!bbkfU?$yeZH-e04$g5GG~mq6%VtR;>5wJ0N1H?U{EzhZ#^d#sT%) zT_&A*P^J&eO>L;;f6Z3Dns6!+}sykg3g1kr^bwL9FMF;HFCd2s+a7nRPoh+0N z5d>WVxGVwwuiM6bmd~olA#)9tO@j~PvRqg>M1Hqcwx_nhB!-?4a-MbioD{RPqG#{v z8_G{xD+wY5Vl@@QjYewhYU@+?#)wpM1uYIhRAuW%-Rw?>`YZqjc_d)nts6R zFPy~@;QSY5l+8u_p!o?Eh@@3WdCS{(WO)a(v*BFGhwq87A~b;Q=U)^;u`k zsG+%tcp3?;X58G$%Y8%@p}+9Q@;XISd?t(^uTDM(HJx;>u0kUgNMi$5wifojG_sS2oZ5kp^r zwhZZ&K|@ub=4m?&T<>!AB;u|0`5<$SI$y}QCaEZ(3c)WKIwhlOz9Fg()QO02KL=qq zr9}`iQy}DWh!iYgEK&h($#Fn}&1FV&2X3Xn)K>m|Fz~t}WZuTYKprn*xspx98(kBY zumQYZubmoFHi)BuZ@Us(~X+ z`UljN0UpE5j=x^5#Qs|Q34bS_rR$OndLd(lN${-<@Tbx9K_P_8X5r_vN_xVVc!#g& zwE)Um=KMEUdW7Y~>S54JTC ziE#E27!+1J15iiAai@V_)4>r@#oPe3gBQv`$aTG(LXCP88VEUHi64{U#8J-PjWN z=w|KseenuG#`DcuA+^f8w#5=b6K!Bz9v+EjDSAjWhej;eAZ&Th%*7B^0qTh1Onz)b z5~^H_Fj#a%xy7;gGrROhU>MZ@{Ni9CRm5uJWoSfvT?iWw3RYf1 zT6+Wd83|uruCMDp`lhB$26-~C4}PIjfDMKoIB~K+&;Q6oh|anQNqZ;ruxT9&Lj7|t z7WG?Wjto$7(9FH?^~pCIB2ac3I!4_;(x#-&qSk)EC~V*blk}vjko@dgpABnAX=3}} zYsn>N(Gx`Fn^-HLCe{paI!1MJ@ZAMQ!l^7OVm}q+`}JKhxVMp9a^ZU&!`#D2Hb}4q zyygGvO>|b11q{m7=m4O9)`wamWKTory?1jlxk@`f@=?{cU5 z@QGP<#`JR09nz~7XL`b(5Elop9<>k7?w2%4@x|9FuXqck0)v^8UNkM4U^kChX|WJ2_zi*mJNLn|!tYTW7m@x9zXz-YJ*0$)iXG`T z^`TUMY3G;E^n~e~a|7HRFzJd(4Hyz{eGzGeFRK7gzNf%}ZAGbT#|mL_GW@r2D9C9E z^tzVl{o*zQ&g%lM>QFZa<&HCJA-DxY5J{H}HLo)$;DowVUaWJIgWH!I_7f#>uX07O zmiUWMu~!qd|MBk4KHJL5qrWrp;b%`}=YuKoo|$AV7Wa|<6U2T|0qn6xStv{z`XY|) ztB`bbhhpE};;8OYc?K?=eOjg;dWuSgGggDhwZm*BXaoGP)nj<6NzciHy+Yf)lc5Pb z2)PTj=mhL7pqOZLlGEv(!4y$DbfaV`0b$iAKaP(D!Rra=>ghd^n_~eyNa>2;L-f9@ zO`;p5X5X;;V0~}g6}d`AWRmAPz^y0mM*~1Fox`*cQt;Si{bSF`<>k`DNTuf-r@!Tc zd;1w>GR<06omaKZfxjmrN582CHxR(Gc?ep_XJaH-7J)G{${P{rLVmj>jiJQ{RgJm* z;grOD&dlM?BuNCXG@DT#3%;G9!KswkR_L3RTcAt5R#hW&=fsHlK#1XObNt zfU`mw==1_Xg22Ohkl=T_OCDYbWM7ZGZ#|4|Lw?yx+J+SKWBH`0oecol=)EU*UG%MM z!9B@BJ+av!womEctwT|C!_>xuUHW?-F<_&NnLqYQCRsc|pOv%$sCe)dey?|;hnMLI z@7)IOCW7AZSM35YrQV&RxfH!|l>YtR#!(xHZL;(1AUp)N*+hCn3xh=* zmF<)-L}*jeFXGMOvR@5YmAxY7KfRVVOtX#JsdM;NI)AvD6W?&q6R6 zyx7|0J@q_&K$LD!8cOG~Cc^1kr-P3@cT zf-RFj7rHkszdYSA6h<6$qE;Cevf5I7&}Q*K7B&!Ofy3BQffRfHm>RXS!!_v3ti`bB zluR48iT%U2+}K3^Wky2%@xc1O+iAiiRzIZmexIz=NRo%e0dpSsl^pJm%<=(Y6vOqQ z*or~1*5*Pzk1t0rg|QZIF(en#Pur@Ydquw%u4@2uh^0r4 z8x&nN0H~PG;Z#nN(+%|ikOJ+`*{eHA4IYZn`q}1>MEsRTaws}7O^jbPj0m%3*>TX5 zPuX6np4g_n3HP6UY1?l#ByX$;E!;JQunmLs(ANiurNi5Z-7GtFXoIzL#hw8wSKc^5 z>)c-(g^?HP>88MMj(|$AUK*0PEeq#ADt^3~${b$^TF%~hK@vXCN*?TJ0IZDbl^Gwq zCBtkFB1NEuocI2>2%x1+=S#Y~R|dHKlN z8u%rw0{N0bB=WO&$wa08hYNt>wRX^Z-MQ_y1Q1f(-5Ppf<&QZVTXpDuU{} zj|livXnF@B9dzYJSM~$AHk;IZP?jI7*7eoYqZKuUPoJ$$eau8&&K5i@)~|$0DsH;< zpl+@8^BZ@US0Bj#@_1384WA&kUK$d+TnNfCQtJ3VdCP)$9$V(IDh6K}GAaYf$vmi4 z*24I%;G4m+we#m02zSaCn5}@AayF|&QK|wF+P}8gsXhe_;BZQLyP;MY=#m}LY&I^w z4~~HG*VS*^uRMQ7R|_Fy9hE`yLHpau9Rc2PAu@LwLGnE$f5PA^T&02*0^$`|bFX z-{!cdb|E|&l+2HvZ_Jj|B*XVP=?GwD&Y0Liq=IL^fe0t#q?NdjR~m&n zZki^Uac8b1FYVR8%71-d5Qa&@)YK7FuG{cP)AT{u%5wcDV*U%NwllBvxv_HkK1hC` zvnpK72%KQ*ipb!Nbrm-Sj-0NZs|MNzf*Y#rAb^>)Zkq-EWS;Lno1A3osPzvhS?3G+ zR74fA?XwCC#!)Z=UNj#u*BA+sZ&2)pG2!)WD9h6K$=^o6j^lk2XnA{ZWKLEIdRu#~ zA)C5Dn1LX}_*h(k+RiuVGu2S7D7Kly3pO7CwvmLPidS879OsU@&oRKqZ%hDD+h^M% zcUF~t)Pe*yxBq;zlzWjx^=z!n_+)AgcTLH@fIQbT){xmPqgtegTNP$oc8CL+ zSjnp?Y|kD%EFKm>rlqg35Pop)KWGY7MjUp>PUu->u_X>DTP@rBDZKFg;;-t@&4pAdiC{LZhYB$3l^}%uqvMu$ z1ClPBXCnW!l2#zagY^q=_b}i*NW~xP2M#jBW`fw|?29A6Z%zDd!mrgQ15Qql?xc7@ zCOCu}H=`U}uE)+q-Ifu$Wdb^w03Xe+u#%sM+=!Ug|E@L6gMAfzJUI2mXLAzumt}o* z1yp*!TSeq2cZp-GV*_UV3Sp2YzI-4bd`ogUi%J)Tk)3a_su$PA4+Ef;6Fs!&T8-f8 zK%FQHA>-W`B;kt@I#CN#vsQk5bc3Xaf4SE=P(cR%`Es>jeT1JqS*6aR9{@$1hry9C z5gXu_0=qB+c@GbXw%Vw%z=r{Tq>LAj1)zmf8o-eK0CmACv0r?$B6-XUn2J6}DFm;J zzeK=mt~r0E1*=<8M|rin25?b$T#fR~7FC;Bn}PF3;$+^~WR6*H!Fnu`VDXfZ@(+CL zpHj$B*$_`keh32{Tam}7pf{gH#IQNcKkh;Z^j%tzfsm;S^vY1k*^xe>V6b*x1gOc$Z?W@NT&hwm{5t@b9)aM7qy~FlxeJ_0Er6tQgI2@3zaVcj&}~gq^E) zX+SXzKyBIZIxt;n3#eM_GL!3qPE>6vVlsbh5E%s2>AVJ+3#^$osRsQ5>_{^<5LVn2 z-GamHBH{>vZaGK~^PB}HRcpfeCt|_4hGDahU(bT=@9qN-Wb!DI9>NaX)d8NW7jt35 zSIMB7vaLD*;+!}g)$-0B+7j1=kOAKIMZwd>>8!F=(9f9%k;;!mGD5zPl6wbUe;|T_ zC!nj7jBudlewHv&K>Kj2V{h^iOMd8?QyeYedmysOl4lcuFsy_ki@qNKM@0wCGpdN9 z%Q2Y!B)k?=daZ4f{WtftSQT|1|s zXDh~HNbgdICj_*0F~C6I-^E>fSyUKZSGo|=6x2Qq--<$Q#B3G7J{n}CbYn9*&L)Es zsO0@q;+bHFaJb;K$jxx8k0&jpXy2CX{)S0?r=Ku~|0Ri(&wivSH1jPLew6&c2j+DA&v&G-Sb7%1juc zqKAPPf@T;CWFkq980Z6<9e;En-{$KhDQ8SYvGX4$4e)RF7k&=i2KR3ySDq3TjFNon zsF7g`JaQng*!vXBT=KpcR{s%>KHD=--M09CpOSj{0qQKRpm>{XK?H-yK@iS)+5S!g z*x2fDZvnpx6qM06dQd@CN|X#Ccn;u=gg)Suo(fQ0u@%egN|zZ2Ee80concLsZF+Gl> z_(k!QEYW`d#L=*o{w)`oQx6v61HlH`mkPQw-o*Zm7H=8Jl)`2zO-1I6^9X{>DYE6Q znhV`#Aa^WCexwQC3X**OXm8^fuU+8xUR>!d5vP*9E%zyCg2d9FIs#wIfNGW>3QpT( z-2;7ZwLf!mX}IK;71Hxq=Ay@x4fpEeY%1(q4$g^&rY4P`ac6Fb_U z&uMi#o4E|01RnDvZLC|RuIq0^`wlmW3I2&+d}W%8mK_{nPg@Cby5|{^XKszvngA}# z21acdRuQB?IGVy@=)u)8F64cu#aJSG^V=w@ub{5#A{w;>1HaTBCerfJ?xC+S(0lN) z)=ZasVzl>p)INLA6%fFJg|EH!S>Jh{)V;2(=KYP!7I0C#2fhF^N@pziQ|CZtztV;0N-a!K%2D)44ey4P6X{AOXX-UES(um08c)4>tyiW zV27@X>GHj;cBR0goPd${$~JtHZs=%X1A=X}wy&&~FP=sn-5{ z1=ty*<{4VIia6P_lA)~2$wXzh8?$!MFt^!u>3tyuBxTX%(`~8jFk7}*#{jtrqfQaX zAm1|V9q9}da(832ufRDstrum#42eHZU0!c{H=UmeHah=y4E;m_zkiww;;2o~FI;MX zvB{0RLBLMQ#DVeJYhljw`~Xz<;}c7J?eyed#K6zfsK!Up=1O0f?CPPd?G@oXotWOO zpG*zD{~EPV7MQo3OoEF|%tm|b8l+nK9QiXTL`6lB5Bz_{Y=E(t$dWHC@JRLlVUn=W zA&cfBLT1wxZ`%?JLrDD4vl`#p2oifKJxm@QxugtCqSW56uK(q-K;TlfIwu#cQ_=JX zt)`sno#j3}2S}OagaY@r1nH5>>8hAbg0#70HIA&i%`NzHeBqV8&V;()m;lfA zE3@}31b-A-aM2E_4|!y-olOR*E*aKpY@!su_(lbpi7WiqU9P-txaDC4Qd)Ub*qqax zNHH!P-~4gOikW;GKhSf%lxH=|`$bLgk6@>#urj+_L!GPNv(O9bss4SzeQqW|bfo(g zvvOK&du>+fiD~@U|5uH>e!QW^djCg_mvJd~K9+p>6||O7jzcMli*v3+iR-#D*S{&O zDO6iPT(q^{Z*0ptx$QRYcKZ_(dZbWd$rZDvxYJ{30SZXx#;KkjqpsN1+}+#=kYDWn zoKpz}#*_d59u3-_9%>99y-YXpEVXX1g)+rp?`Zp#g;ewRUs0hi!$Thr4v&|Xt}%WZ z-?p_q3U&3_wO!Q?-Gqv=mN8zf78>j#5E9m79M-2A+W3nCDp>D28Ya&bNNccr_)SDl6yRzI3XvUmK#Qqz0yH zgM9aVI>JHE^zpH|7fKg-nT`TO_Y>R3I;u8ixA1Fk!WjXBHg;a;G_HL=%9YzkT)=<|og+taoBk{FV9EJIbZ_@PUQ>%Z@PV z6R=iYnBD>yAk?|j)euU`b$Yxhwb;%@%PagKk`M9x!m8waCW;)YTkmmU6i7YT`{^|h zl4!Z&SzAH@HGkLLTp9POU1@k`AJEg%)L;E6D9hIlr1U>FrKfZjM_%`I1XjgO#paEk2f`t*XRcom*Q5yoKqClx~?d-WfgPFC`mN zG}VaGp2g=VwQu-;)zYq$dNM3ovVQomLsTf^5r<@!K`dqash-8r*{|NqWL^eO>%MuB z9-K{1p+ZvHyAEoT&K_>T6TbBmUp|Dc-f`A+i7Pk%5-PHv`z_m}g6wUCo5wjXQg`_$ z+pud*Eni~qPg8HMCK>#i^Zc~rQh%kXGL-9?l(R?KBadId0(ZZ}Ff;pFFYj*Iqc;`O&=&0Ht`e;uo^6Vm7r zUAi{tz8SK}5rMLzl>rS9n8ZwDUDd+@DdShzHC5W&Vz&!?>mX zsq)Pet$sCYx7(4d+OGIVed0z)q!GC^G~*$7lE$4-0A>^7i9~X zytik7!>rxM(sn8C(Y!Q;QqC4sKFxnoYn@0h(NE?>QiQ(NhfX#k_l!9usD(iS^Wwg% zoeMb=b%Avv=o!hJ9yLqEN7c*hiZ>`@AWTAcJ<%ZHM7^8;xpI9#+mR0ql(8#EH$ZM* zcwzJNq8kOLBp6FU*ja(DDHRrl03LK>&~5Pw)M6l+0IM;`y?A#*op}ye&rGEfgpjUU za##|x;d-^YEjFwTv9#0y zWc;#CNVJeINS^+X8$xXw+Y5L9C!Rw+-3)j>R3;lof%G<;dC5SNrfL#&YUn(vINGcn zrmIjIi)Z*{8~e9nDi)S@xRBb-LVm1$eKtUl6CmqWe*pSd(%LGA4TsbG8GjE#T-adp z@vx-OKxbC*%@+%(^mM!mnh>p@eR+ow#`vIA=zkF!F?atHp^*Y1NgH8BoX+2EMr2{> zqjRi;NLy>)=2*VIIOu7e4gG6RZR2lNaMR912}zq$ML>%nrO?d4C*@Lkza_?pn| z^WdyDGI^L{a!PgH2%`g!h5~nXEyA`#kBy^jV{1|buxrk^`!3^%UI(D&1=SRdk)8Zq zRSy#SFzHD9+2pX}jXMXM$gX(ST-)oLqBK+y;kla4W3?aDNyLQAheOXCZhPN#tDU$) zxW;;>R7X*_g8bf9mSYiBfwlH(V*f>ZtBcz6v-aV4@f^lR@hFKv%a9w1D8lHpeI(|0 z{neC_6vXaaHo0jIs+uwA$!s>#Ct~K4YHR7f_&8`MJM?hR(_Qy7#$JFMc|o znltXNgRgN+AYzxM)v*#3sM8>vlfXm>G<$x>K_BHh4h8qBzSdo$y#85SF(EC72OIkN zvLRr7JRHPRON+Vq4@i4!=4Jqx?yK+cssXvO6tDp=VqjArnG>dW*#gL^JO_~J^jXe< ze>rs>9x&w@UnC|I`|~dB5hbLrqWI47g(a0(P=1g?LbMblFu(~6sOO_sB`t~v_B_8z z2~>dHpk2O~Hel~bub~n6f)a1}k@(M>l_;(uQ_CcTw7Rr!yixcLcd0MFJHdV0s?=Y= z@L-r7Dn4RZP`2^Ut>!F9l7>-KrS%jOZtCb&E@$A5M_Hi`L|Qz0*~feu68w|bAH#>8 zKZBriie>4ol}C&f&mlSV=8E*TXx9*#GQT4VU^xGY6wq%8`yF_U-#ajTg7ni+L*}oK zLe?)lUTITl1iOXRf#=sWoEdX=8Pv`}fzF^_DB9-Fl(07sJj{>yjyrUJe``ps+CL{2 zRUj*S+fzaeyR7Ra6tP=0ql$I*w7YBfJxvH1aFwtW#j=s<=sW=RIKzj2hX1WI0dj<~ zQi&+1W>Hpopt4i%v5dSc3&VjBCx!Ta&hq9D9L|K{(Zv*O&i}n2100# z9-u-L7fArWQ=k4}%$5h5r!7BD)c~keu~(KqxT6z0n;B@^zxlh&k2v`ux>p#Rd!P!F zCYYL%4pEZOGa1p_sDp`-{1q0uwfZN}&J z629c;A-e2EUl|DV7b$*X`15ZWZOr&>t`sGo2n!u|&^><=!7~J11uRbv1tRoD&q3*t z)y9q09`tTaC_Nb(iq3ZoZ)&=jv;27V?YZcXs~B`GGY-7@<=3HElogmssXq}rUdASX z4KAKQ{p=Y7CkwR~gXEXvG*%;rg04RT3T~dRB<5d*4!(7e!1fPrmE6X32!_AN01y&I zbI-C8|I1(;aZa zqVRp{xro_F2ol__3|>^(dwK)tT~Y<`I8zaMtyzU3vjp$donJ6d<-LZRGC>-Cx|v2T@PM;p5aZ z#bozFhPbhJCHRqEvu^@epOisH&|Mk$?fUFDPUQ+p3!{Siv&tqG;RO+>rm+ESA#)Jj zk;DzHTq`Bw#W@%VO)1<^p!&gQSfcP7N;g~V6M+P+fVl`J@>tA^YJaF$2YTO$BFzTC z4_DpQT5#kMm3{ui%kO+eqs>&$FEJ8U3PrJ!zN-xPbcXn`t0;SLJ#;T|{#GrhBQSdN zjMBpA7-3{G8(#*dEJ$Ed&7XpA3$ppQ)QPRGo-95mIWE8p>gZ$MUhJAHD>Mh5-%JC` zI4BIFws8gJLf9RzTPWFlrkp;aB!{ZN@k}&5VLqiz7+X!yb53pANBe{LQLE5U7iB=04>h`S{tvmvtvi-I-BCA^+lIZtTu1 z9~$hmy_|UiT4(L#ixz>RpGBeC1@+9&n`GW-jcZ5c#Q0l@hPYFoWV&In0u-$so3gp% z42eR%k+8JQwe>&BH=I0wVDo7|QL8lL)j!^dpFn>FfvNZ3?*c%OFSntt!c90|nCb># z!}AP?xPFNX%SYr2?lv0-+BmS$m9ZD8vwv)spTL|J3IE8ITdN59Ix#5EQmfo(U#lW= z&2P#|^+$6;dqW{t|LKk)u2{_Zm&M?>p?xR694!%6+04(Vqlm7`2*}~X&eFqKD19cT zx=mKWNg)k3K>4bs4@+843ADot2ff*gRy3F|7M4J{d{PmvErp$#FnC^R(lU_96%&QD z4iT)UnBe@1Xzj%3_LmfdzIhdi>lT9K#qUg!{E-j$Y=OpJLrD5H`2kBW3whpig9>n8 z>k=ArD*9O*ovyAr!ic(ki!~Rb=M+>0wk!Re-ngd$R7q{L(vt@hcO7&9d$P>tuWQvA zQ~;UDOz<>at@2xce72xCo|gIlVJ`3NX~n@pKj7$pDX+Gz|sCx~J@)p5@kP^wo>zaNpS zdYG9!i=ig8e?PanrA!~i*b&Tgyca|YtR?3Eg>M~nU!y0Cxk^9&f=u$ZWZ5DefiqLGUpR{@h`KBVn|RC4(xK&A0X^{B}VI(o_z6ozVR@@RKZN@so} zW7qqzqecV3qbhr;LIitcZw`FqLDI}_r_O|;ehM@kn`)Vnyy>Q5T`M}G3f&jrb;p0a zr*5+=4c`h5YrD%fAhkLJpHmqFJK-Ar5pt-%j8oXd`*aFJG3PSobUm5m0HY(E>yph^Jx9w#5z9M97j-1Afo(U_K3A|ddd;#_2WCs`%Ta#|=IH9DmO5M-ce_ZORX0n9)*S_qE?^?*EGQQJ4 zot=1vk=*(vO2W+16?E)Tk}h{`l3u%8#BiHBg2sS>*s3mtN@RTMvxdcNP#7ymtqGXw zX+rBaV(8(sAfeco9vYe9T{2|_$(vPZzINz-NoM3|F8N`k415F%X5ob-A|Cfb5E8sH zAlGt&8{xYBfr;P@6Y4v|^U?hg<5a^(Pa~A-nQDc@scf89*%eMj11kk|%mMo;l-}{U zi-@=J55-eOl(Qq4rD@*9Ur}Abr$aVp%yc&!J+xDaTpmoI#!bcT$%Axb1Hgy_CEk^v z=cEckCc|1I{JQB01W?(}A&JAiU;bcmeXrtAj+e_Px50U!fiU%_FnG@k>@3>qA_OC5B=^Nlw z9yA(gecvduy-^B|i17C077IcKDo-0{d{7xx{SnnFF8=*E`0uOxY(WT;AI=kDd% z+%xjkC!bZ+euB=6W%3;v_#9LmC;7RBfq}rm9s7^kvA4|{WPS3U(bc3l&bbo}#|JOx zD~HX(k2bnmXmD>2R7FM3%8FvotnYs6zuI~kUhn0$)JLg@-?9FcYQJya2g%Jvn@dl< z{KuCx2?|V+IFH5_s)#c}*Z@640P^g`ze*Oxa-#7D?iq@xxh6@{&F?a(1sNJnDyK6* zD?g-q29((M_V-ep0%0&cP4U`( z@Duv%w;W8cHs>-MD@=)+Sb{8s|EHNVkB6%5|M(aahw0{6MpWWN6SAeU6wyH%>sTIA z_HGoimt-5$nMg{OEH_yyi5A()p51MVl#0S_-%26M7$(o9`}I7(*YEe&?~mt?=f64U zyyiM*Ue`6}`Y!L!hkapC`xObl{_TkRo8|E*Fn$-RLWsbdo5b<@s_!Nu5wXK$b+Fdc zT#_NsT?7^%E@B}1KVO{5+uMr5q1pY!k_%vq9cvcTc7^3l0G}f9Kl(gs^XbME}QDn(;d_(nGVei5)2@d}<5C^)Mz56Ews=nDqM&65fM!2{mc}jf)sGu7zC))T?U9z>dgw6CFLpIos0VK6O;)8AN41XYM zUQ3_NV9t4n(L-!4)ting>Z1+rJk;c!$UupdA8Vp|#kVrw3h7oI$O@Hm_BCSU9>w$u zhyZH|&S(@uiv{+@?)BDljDhvcHW1-fN!1?}UnWrMb@&9Q=)^5JrOs9hby+_Gxd{B7 zJyh>4)Puavg7*K1{?LL$aq%wC#KrK=JSdI?f`IIVO_wtapta3)2GFS&3H*%@qo3PV zi-PU(&U{L=ne1Qpa@6i?BTMaWcF?S8zb_EOXdKX0!1l_3#6ZUnWKCSXl1I$q$Ryog z%~Si~-d;2IT{n>C?fdx*1WwQ5S6{YI$D&#Ju|^Ki`wk+=+4KLE3G@{kTI|A7`SSLN z(t*x#bnv=LJJ#U2e+f)+`ZbVZp9eL+0eZLg1-8emM=OG~sP7j0V!}+UjPg-Y>)u0H z#$+s^+ao3W;%~rxdYe$3$&+bM39vdBASC5VDxBp_&zA4lj1ZUtAw~hnd?9z(EeGU& z!)accL#h}`(e6iwjclJGPYqai(H#*wBtnN6ULyK8o|KoNpE8Y3RKCP{1=^z2XrDBr z-qQ$60ZIai0%Lfl{v10OE0QKqGdhWRokH}QmtNTLqYyoaWot-HHe^sQ@S6g82V0D! zMLKq?Kftt|D7&d1a z^?1!HI2Q3C>C+T+-pK=c>kB&CIFZs?n13EZSYH$X&FoBv8$yH5qx05=kiMi?b4nE`iALDLL*%f!lsu`CL?n84(#N>p6w`?=as(@DvLQ-vKt) zeK_QP{svca$GxRW5O-6H8!=F_w}3`6o{!(r3A-Uj*eukrUk_4~Xutj~5sjU-cw&;L z*7YnON4;r6LZ@myb<9OjjTks(Bd7Tkl!#KTp~mVDuC=6rdV zq|ySF-+EzC7ywVfj1m!iDtvG;(DV$ht!h7#zI#-1ilW-#Ma+xJQY1`RbK@9#(4Yba zTe|51*oRAe%8dbQa`(=?1XS5Cya#6u@(}U#q!+?yyUh*NpHf9?R07zb0vFIHiyC&& z((V!exw%FcAy8Ri<`Ww`+5pBY&-;Kn9O8nPOcHd9t9(GyGNdMg(pCF9bK)&El}(mi zvH86S78d?v)g}BXH!WD%1{!@hWZ$)Vxq|k%MGR$b&U17&5L*5S5Cerk0D|{)tUmDN z1L%!0Vh|F`PAnBz(AgxNaaD+({4n}XXf50qf8-uKs$x~D+`cSI`(4=-x}-8~_ii}g zWcKP5fK+zo&jf~Ba2=bZGgN~&1xUX*m>5gK;3`e;L!|{c*`N+|KGNsHTBVY(rMaOj z5m{h;?V{^Jxe8m9um(4o|I5GN-bKR$tvj*q0A5i(rm=ug!VB7M0TW*2FJyfVbi8JXsp@$h3#cxu)UV|MHI?a-$h~1 zw0i2sWQU$OxD7dO|J=d0i8ogrrhAr*dq)#DD!pFT7nluXVZT>XDM*zQ#FfQoNMZl- zE$F~MulKb*Tqu5PrbC_wp_Sz+Qsy3a&Xs2n1)@_^#hQK>i3G*&ZT!i>%Re79D?y!? z3jEr9Z5^DTLf1KwcgLP2%sCDau_bv<9{Eh9NU08eqG@~D+eZV{^@`^+2BVc_z_xu#{ciY zULo~qqT1BpcANm*G@;H*uem@Ao-$muP)d#M#tq zD$iD3ooAhg+`pe&{`6_JB`}23+ZUDdae!mDYBd!8=L{JanF_qWxa6OIzJ1tf89gSq zRoP!wLRIp`LbdZxzS&{$K`SEJ2 z2>+ZD5X@*Qh8?TG01wd|a`E-s`md6~rn4!58l3c+p z^~kH=)?NQ}J@1$KAQHPlWsQBGX(#&$zGzG9x%Bf?Hu(p5=#dwvX0X5-JMuN_{~SNIcgrpdv$(VUYWp&yG0_? z`k9(7*WR>;A00UrM@~ItYV_5jTjZ+bw*^@&C6F^P+^7o(jr7jrNB_Fcx6?HGsW>zyaLmA7iiSQ`k`-N@TNeI{QHQ+oWnNMo8*wO{Bn<*EK zOM2p+*z)?XTwj-4U+!tW@zxiw+CnCi%nDnYKwt7(Uq<(I-ZAitwsh}5GohAQbISWN z#gKY+m-3-c`X`wO)Fc-vj5+7+zGh6Hr3;m2a%~J%{UEl2zLys6a$n0e3KK%|=NEp~ zjUUym>(-E(+oxPr%sFc&-&sO3sm`GcoxIg!hFen%`ur_T%4)9cz@1T6leVrfb8x$_ z<6*Pag5`=Ws8`S=&*$mMuh*BAYhQf^OYZ5n5%M2;2`UeD`-9nQ7U5N#5{=LMEF(tV z3Ti}L%=j>HvO0=O$`@bJ$868(Bvni|g#=qgY4@A2v4YqI_f{jxQEQ>g>Sa~UrGoXH zpTLOoo8buwEJHqMnjVxv=z8tLeZ+IX13bE z{-KEQ4-TA|kDQ6>P!?z5+TV>B;twI(m1ubXb@-=$mNo0gy&QYZ+Q{+Ow+9I>#(=(% z!6sh_^71;=SuPg~6o=PFvXT#K|MdNE9j_`0)7yla?u=b+U;2e!2#Bcm;<_ZDBV*9W z%0la_NZXjkMwyDR{9@A`&iLW&;4WY9-WEpt1jVEY{$KT=KLQXv!tg9OKZa^{A~^px zaBeTM)Dyqjo^C_%Bx1P|q^7|Ibev-n{)Q_HfUh1l5W7uwGu*I(M^3jf{Aps fflL2o?w_o6HBnU}w{Vd4hP^Ar(A?lL>O%h~<>z!X diff --git a/docs/reference/figures/README-unnamed-chunk-10-1.png b/docs/reference/figures/README-unnamed-chunk-10-1.png index e2f7569f1fdf571154cb8495a65195ec21acf4bd..1616ee2dd99a379d49c0d68d603ac92a19ab2150 100644 GIT binary patch literal 21590 zcmdSB1y@^5)G&%e@fLR|1xlf~d!fapKye9DthhTV1S#%rE!q}`5}XiHptx(0;O;Jg zFVB1LyVhOzAAECW=B(LvcJ|DfnKOGP(H}LHi12Cg(a_L{RFvQAprK)Qp%NM%CJM5M zcw|7`wm+(W`hdElp-G^j*`i5Eph=+eBs5zvsw{zK`yb%HU@KvZib)bEcoHhYZBf+! zgZ>{x(tpVRLK5n-O+w{hTNDi#Yzs!^PeEvCNfKyDwi5p@G6@yHs4EGK%Hc_Ha1tDq zKNWra2)0E7+e(0wP|@~3Jc{Cf5*Q2z!%^`G{Pffk6x5fU4NsDQC)vWmsE88qKS($# zJi(uy7TepOz_w5Dq$fD|2?hF(36(#o7sWfEe&{ndWg|~CH0s>{61s{vC=Csb8BOK= zyH9?3hxr7#8$uantSy^5(|l&N3YWxfNgu992qixYTwFvX3~}Z}{tHumdRl2%jjd$e zRhCHEjHO?>mm;SjHWA&wOx{$Zr$v)%q@UqI31z|~llG*&uN+{ zfno^?HFWr+Z$~6YRLSE;=dyB}c+ON)gX=HR7_xs`uY0h!Z>dsYCV6mJwCA`f)G%$$ zadbUA31qbAiK^iJS5$UQFY5UA#=h?@Bc!4t>{H$?G=xa5gPWF_EV%0Qrm+G6{To06;h}ZMakb zSdm@dJ;2OvlLgR_8JgLG`xH-$ZMC9&c{780jvD)vPEQLZi#$wFE6Okc;LRRvncCYX za|o*qAmMB5#os`s?Xc&vnHyn?-ODZXGpZ5$=phiG^)Xl_s%|J#({Bc&qA^%SU^bK? z)SZEPs%HV?T2wydV)FLS<8OcY)rmEJZnc!BoMCKaRR+<1qAgdXj4y+)`(0Ph7W2H(#(XZ*!T#3pawS|*L0 zx6>ztUI^XpuyEP;cQ#I+EYQAU{a@JAkW<_o1O09fh6aJRgQIMz*l2#QIZk*140uez z0B%dPuZdO|kWLxLKyPBmHuEC#cC-E#(=9sf#m?~MYDdjwACru@X)tU5BN_<(UwN9W zZ`5`C`Et2I6v?Z31q(FxkN*mrcn`kbZ{6iXp4CTnp{ak*>H=3Ey$}h+BkaN=MRm|w z9@||^2zu(TrBH4mGz#6JLZy9)lT`xkE7E2e7n~U$T>Gsyvi+6=O>R6>3Q>ATs=fN` zRr8(gXV>xyh%XkK5j~C#^|GYR#9}5tPACl*3qivZ*l54P-$uYHbS4S`Pp7GmCl|i` zVzd~pOwk2yes2eE&+lL&1tFF6z4?Zc?_RU7ok)%73Jk>dn1 zl0;oU-X$`@)l?vdlyZnW6{`9_FeQy&uY47EO*nzKpZTaU473X3Hpyiq$d$cZ$4QT)a_Q#@FYk!0JVJugm*w^PCox)U%UYHG?a=7DZEYc}>eQlHcQPVM zqGU_H(mYv6$aNm|{RP8vv>sc;ajELF?g@WeYW1%5@UH@}sw5rIrr;+&L)7qTnPHOs z;hmU67!6LMoW=L-eQm5zsDoy=1vVB=3=I=o49@B&R?8DKRLO`5n~*N=h?Vdtw9CR` zOUWM-$Ic8M0c9Yi_ToNy-N_p@6ewunMu3I$Hnv?AG|c++XiL2)XED|=RNW7rE29n%VG$HP&us2#h>9{h5a`izts1JtutGoWT8g6w}8Zh=RbanUr6Pvy^d zvPKlyl{pf&ZYS6$aAejBCB2z2S_Ig*v7GZPTHpn(Rw8N!8smJa9%G2{g2uUJL)d9D zRriZfTvWpnj|CB20UKYt_H9T)XFm%AM|&xT?o$-_usSXDX=O<|p@iwbu82vfH&1rc{LFX zVBUpp#4nVH@RqoB;l?~@wM`FU=hVG8^NG#cH?lu}lDhM(zdB|4xwh90%^ffYLq7&!NLGglOc!c zJ`hyCad1oadV`JvR6~AozH()youv%ye(IJ-8G&0}74_;&q>0acA*s~>*&PW7bp3))eFe7X3s zI!SF$L`6tP8_Q03JLwtl**hgjZv<*F-LgM{l){4aVxDYM_fK5HQM^!k%pGMN-Jz^? zrCFahC{{exQMuHTplFR`tK~wC#dH|y&5JB9G+dor+rLG!LB@?J07lk0z*VZy9yTFs zW?BU!^?MrHtKoq5zu|sbU-zaZ480yT<>-?5AlkqClAFg(cM~~D>UTXv_w`nYz^^t4 z@93w7C0={r)>UTo-iKF)lZXKN$gZ|1KfXkWOT7)&S11Pa$#M%nb^#m7AVLQTWC-1t zpor`Ww0lH5C^7wgT|*vb@|&L;<2a8Eqc+{EWrPG&EQbj8Y*0oM!Qz>}v~(lHYj>qQ z%VanIvtHwLa)n}Uv;BcCq|xEl6a}?pKB+c(gO<9X=6lyjwA|cH>NmrEyX}2)7uhH0xId%z~HHuPMnKqK;PJ{-@=LIbg8Z97FhZ~YojuaR2A7D7M8%S^QNMlWADcu19Fl89a39%6y8r>2tXs7gR*S+<@ zdhG2!F}LN3yc}Z5G7p_MtsGwNPTNjM>gUTX`*kbqg(fHy9pgA*6O#{Ke9aIhYK_u{ z&O{8eK>WTDdpQM4>gURRT(e!`)^~15C(!&;7Wf1kw6imR90Y`9*ph^*DPWnuRsy&# zpE3tXk{NA2+-_E2t`;BL%qt+ee|B~RpcMp?#!n&=tRCAtWd{BJci=949f)U|k-Ldm zD@!|U7>RmT9JKVo-!s_n*b#XerA2J8qKq1#ZH%^QYXOL*NJJI2=|Eu{?7r9kc(MY9 zn{vS7rahA#cIC6tLD%krE`fi0eigyswqgo77k!5st6%3fKa1r%W~MENVq=57y)$c3 z8WlNlp^cg(pq>^9{npiHC8;}x8AuGx%o82)fq>%zg_AuT-lI{d?JmYaW)EhqDI%Dz-S!HlljSWM z_hEaRh~FkDs=8rs&<$sNx49=5FlwAoRYPQ^Wj+D8-Ep5~@iY6ckv3~%@Me~_uaD4& z&5HUpw#P0J9I9(Fxba>TRlfL2hP7M=b&N#FKT36kb?w&&p=s`cJ?W%O7GCNLHD}3^ zM8WQXB1wzG=%H$LtAdDxr9zyVG*5Bh2u`dy$Ocuv1a*gKiw6%vejTKyV}+9A-{%Jy zF*1MbcheDfQMu8!YxZIzpUYr4p-2a7n<2YqKC|V}iU>r?qtrkFy2yW3NR4IA1B+vf zC6&T#CT=GgLHe$vQ?vL{GN14??_#5Hm5;60r0tQYwnkOSAEvp2cW$^D+ST@*%CF@? z05)9Nm(@sQ&Vi+XkRD6?PBp~WP%{#k6OxP?*p5R>G2MIsOP9<6>HnFlixyq1p`shn zEr($E*iYlux2y%q9PzNjC=7@xYYBcMj(Ie9>2QM2;>Uzh*q){wyzj-j!zP$FrEx9u z&0MT+5BsVuke`xw$$_IcTbiyt2(Q}MqOgLh>=YkEYawK`92!g4?huN+H+r+prrhqA z`4-iAX@RJQT?a85CTy@~@=Z+V@mk;E@u*;9;41fjsd-^Q_4Rp}TD?u^sKU<6y%a3p z*Y4&(Y1$H(oa7(S$||4{iys`LsjcM(&Cl*dx$i8i(!@+OP3yrT0^1W_-z6vkri;@0 z)sfyP3SE^)x9uy34n`v05-bi?%rU-_$xpfa-8VxXMQ}MXuLTmdJ{ih)oWvmOw;h1^ zL}{t8?tCrNiHMEJ%%`h-%*8Huh z=9eI??&n^=JL6^XGdsJ*)zr9D6mUi>PCf2)LLq^-XPb7j1`z*WH+<`T11SxoL3t+| zbQLueaMSZF!4$|ruC|D#R}W4kN% zv#d7a2eN~5l0>D=aUY)x2*ThPHLrs+?e;zVl}fX>tBDyG4=WHb&g(u5C(?D1GrC)Z$1C zW~5|=%v@ak3`)#dlu)6Gp*+YhRV|v#)|0q#U4<#Fj1~qKbop2dUcI4?s(K|aslL!a4YXVGSEwsOZ~o}hV8A(Q@xy&B@J$1S zZINr=OP0B-?bR_eq%=WL^PSbzVgnXi0BRauIsSg0b^}{=`iRPvf{2*59Qbo_=$)W#6AxS{s1sWoRb$+O@&WrjR)J`3|{tU2gGIXN#QHyej*JH z4lMr(m5B0FGBieb;>mbvk%#yM8#1G*VcV7tocYd8!7r}kV7)QBv{VP%uOOvJ=~gvW zNqU#z?;S^^{fi2sMy_+G@&5>cFqI+3FlV4K2$%B2fSr$toMRDKeuY+uvt7%9o!!&p zQ?$!F$>QnJN;M@aHZC)G+TRW6{@(f-ce8_aus{9aq=#gMyIL0V@Hj7iCv(39*dFp3 zGG}%hKdBHUVR+Z~kie}dfDupN?U92$%P{P8Q$)Afylu(VMfIz;yHo#yJdSMo+HA}5 z&2XLr`-Dt$b64z3(yV#!)QjnJ!^eEY{zDwm56#bInE)%Zqf^XD25@X7K6wHqWKetc}CrTfhU%F*6=H?_Rlz z8-@nN35gT)Cv_PW+>9}1aOmor+_5_)>6h;ThXg+g%^9jYvt{qUcU{NBCsL7(lQF(C zopeNS0j^WzlH;lK;GYypR{LnD)%h)qH&g+Uvklu{8_EE#2 zu3Z1DccQS*z(X0a5^gmE+{iKGkf(ekyygC%R<;$IWv6%Ds}(8tvk%9Isp;plu_68OcC)G*=)2zpRHk4 zaIny!=5oR}bv1&$q!Tn=2avzl_-onpxePL1A(e`hp7?we@7k=YNz@%Mv(j1fMph$U z@M)W03{i6sQ8su(CxP238N>&?TI+izX!8Dkt&J)4{q@euniGx1~Se+Sm6?c6neuoMF8)ty0}O%%a$mD6##Ml~tOYS-Dg%M#^p0@9dXv?@mNj zR5&aX5qd8alu|P%V{?CJSFgIM4u0Iq4HP+*HrgR67_pi`l!9EN_D5@0g8gRpmOd=+ z^H9wNI(hNqdKFPh_iRiPH}$(0{H;HsbGp=7Iv-{!;U}=$Kf2B|Q?a4fWX|JD{Zsv_ z(2Sa=dYCnQ)S?hH^s>B?BV=-(2I+ryw33N5Ymm7QH`+N(oXdXW{b8ykvUqVX5;lc6 zGFhn<0tnpo|76jMy`$UN|EZ5YYgnTeoZ|kxymyR!AxM(iH zAA1}hlWe^y%8I3rU3&p9O`Y|t%+h?hQR}Pv@3De@MCOn2#0oh4eoV#??{IVpYRT$r zC4RWh?FMosyPoyox98dQGmna3b%0yAFgugv^^MzeoHWOmKZ%u|%#pc^ZMp8S^U{WA z>rjg;KIGfI8C(FlP;zLkdsL9~nBXrIiq6te&KX&7TOY(TG>H@FO~n!mTWjAe8_gR= zlh3-k!R936&=x1Lihuh&m(PjpjK#6Y&$V;h(rJX3J@9u`P8{Hz)8xHgb`94O9l|=@ z-W>%#9JB^<{;_(bc^lnj3Qu9*46Cu@A}U85M)PMK_LWL5`!h(J? zgDBk-Vx5$KZq8N40JF}}#wy|0G{#c@CEfyDRY8v0EM;Czzf`RRy_rpl=}??}j+LR} z&B&c6%|ZW&WQ8yf34IRL=lj{vj(ZK7gZmgI(eo;zCAS;cY<$%8KbeNBB43}V75H6{ zdzt|W?w#HOq*WtG-uQ9g(8fUPq$xVC80pX=$;?QiR)nQFGQxU{kMH^@;r5*&5Hty< z$;sLm|Dv1IT(h6=1jwsb%+ZM^!IhvcNvw zl^-uZ9nb}n;ig&?0syt20{fi*Rk23rDuubZA?x(ln?Zw?W$*rQR9G<8i_&v7{DGN3 zi0Myet!rliN&rA)N?Y}1rs(o+<>#nra(#t>^XPVw2Ee$8u;(F*y6)8=S0 z`OSqbCJK>iH+p*&%=~w6kK6I2w+8c^=vP#ZrrLd!MHwW88yhDTF?dv;1Px}e&t!(4 zg9E{Kgx%H@w5^eWvhNF(!H{(^30AadBV39kS4;5dyhQLhZ@S>hfQ5p3geHf z&H!9nx`{kLu>LcW;G(OPS3CEjH`6=BM2uNW1z+;ca-uFx){=yKnQ6p=P3%~IS%39e zR|i_Z6RT&e;<9r;i!&7qo%AELjafaq_OlS)`;!LE?Ia!&-Wb1_HRkl&Ay+K3e7e=D zkAFXHes*l$){v7ryo8aGF*)uQzVAYv)YUQo;I%a&~T)HgL&%g1Wxp zI>)Y%!0NYur9RzIP;u1mXfF?|_*;Lk3t>8`sVk%)+RKH{cTQHAXLPpN4LnPABTnaT z%N1l^_~IE*4U=o7bkJVGqwX_w=T#kyf=?aV(*L^`;N49%@za|h7=y1UTP0s1#Chs_ zz9|9B_$BdhIo_4A0@@$nwi+vD}%1log3(F_kctI!p%svq{F2!6jU_doli zWg+HiL2E@d=BFFM))^et*t?}Kfo+`2i*B-1hq9kM&k{m)%-pY>s|l~juS1%@e=!t= zB8oeoaa%hc|6Tfc>jcE5*ZpwRI=|ayJH0#o8AzwQdXGI4?hFK9oEMewV_sc32K2`5 zLVbts{vtIdoDNvyP8(a`et~_Mk5xI>9ha9G-{V0Lm$9Kwh7^K5cx7@y-AX>{*`GA+ z%35huxwI_)xz2^`uyQCkGUQLvPo*;*A1TjC(7+2dknKOGR&4L)`u=8p6-g1fASABI zH_5*raim(v@xG#3;40qbm7L58ciHhLyjn8h>8s`CJPWATUFWR@U$*S(EO?rDTpUr;P7$*b#bb$`4&jyE^|nN8j?e zP$B0%Q;@aR>+F(@6Cp}>mp}<5c-+*mhTd5x8SR zM1vLc=o{&d|9WfZTAQSdeQm;X_9?&>ddVly;hL?)5N!}}RO5Zwonw<}(O)MYXHWwf ztw7-A9U-T;T5l(D`>#T(%RKP~Lg_TGDHRRT4Lh14rso$DBRtdh$J9qyJ`pNJ{|uHm z3=}5;#-t7Y8!=*4Z!fwd`I`Y&hvR?NW1DtMUYyVK>pnb_{%3de0>@L-!|8*?{E}Qi zA|X)28O$1p9<4Pg?M&N7+QIXx-uEAz&(O{fCKGgYS0U3v9P8*R+9pRp2}c|?1ejV6 zeJ~elSZ%KAj^7`wc4P=V9%%h2w@^t_>xJ>$4_Qc+PX9NqQw33-*UPB` z*f@nkY6?)q0SW+svIb-GYWoAg3@COB0h9{8sLLX@E#r)e z_w0(6TI=tTrTr=lN537WFO<#olR{P5ZFm!>eJEzU>);YlGrj2u09nUod9r-m(%5AF zS?_p)=*%-=*@u@jw+GH~YW=_MlimMlzu3PI3}$NlZa$L4A^~Jq)7;=Q>1X8xN=;2* zOdRW6or+y)NAdMqElfD<-8o7KrsJ!xldL4a_Y|QlnOvN!Z;Wfn-rds+dz{F97kQZv zWiz4NT5`O;zK#|aDk6fEP60St@SGUTqUEdXsC271Yk-+cD(f@v;|p9DPxIp_E~-9R z+>_E8a`sp(0jCml3;qlq9BJt=%Dlgj=J(CMA(EMxFvO{Fp7>%f(dU$ls7W{fw-$ot zJgZ%ciQM7iu6pXfn7u6sU*YyO(LZfc4b=#?<{F@oF{X0CZCMbS@_Mc@+pO36?8dRm z<&vE^;S#+ofUT zq@`3oRO?xwY$=H8z7MG$j0?(rJfh_?JL~#!ts>qBxUSw)CS?zOSF`dHQ+1CI#(+#Y z1?ot+cnmRW>#=&%FE7hTVdtlozCpRN7y?*f&Xda*R4J7kuE7{&!95kR0XNB=<|`_& zV8VR%ptDGT-I$`{#Cm-#RCMDJqtT}r7c2T*vx8KqAS>Fv&QzPCfzwaxYa0kb`Ib22 zYEYwr2JaW)oWmI&%=aBP{r6k;6qYuSHkvI{O8%sbu4~M! znCEBOt@$Nq%uqO3yT@;tp>3_*oN zs03PKuG{FG9c?Aoygm!LtmlN##Fr!hj=|U>_g&$d zv@zPrJB~xM9x0qa@hq#cL{n0*sKYGv{dNcA$|=QANDK%IAy1jAv^NEagG_>I-3i?m zWENf@~aAf$9G=&dCV;|I_0T| z8@)LHz?b=6E26EY@6lhD_MpPTmLMMA&G)rUslB>nMfinl&3txd*3cTUbu#;^PY`TT zjLbg1v6_h}?y)_X|8({l@HWQfO?$e;>)J28TRAqw>bS@7g2L8%-2e*@>!C;%0izj8-sI@U96Hz9(M9kN_0s8zioQ-Jd=Np>D%mOQ(jjM zoJq7@B5K8x^yraXTAlv6pO;^2XMAdm)LjDI{^3qTRrkGzG#6IiILx5$k=9!@e$bnz zA#(Ta=AK|ls$*>xuS#P}6L89;hVS%uZSXtJ8Ol%)%M+3A#!rYY$2F@xFa#L|(>n87 zHf37AHwHeelFgfx7L#10&fEE0wvQb-=iTMR4_zC1PKGp%7cg-aLGVMFD?7&?mtzPu z9jg$+2aDS`bk{^^AV?)NJK4N+C;3GpW zB6p^mufpLgqM)OHQR;kfsQQN-WYfDGO)hZq*4l05ZSUsam2XgSRtF%HAVWr(-JRpB z8EXEDxIP6I1_Swc1cTHhMbJwBphO#_6zgauQYpFPh1P{?zU3Di)mtGB3LGz#So%e- z45-frzA9@p4!#Yak@AJN{`UTBU$LovfufU+=hnk%US{g-hLsgxa8@la-y<)hEUNz% z=#^>J_E|FS7+~%&Jzb2hd0Jdk{OQb`kl=13rNYV$a_QR(-+au8S>|9kwU(&E zxqqN&7vhJm8gi(`bx#2#Y3lLYoa=iPh2xp&f447O^M_iG3cep``Py0CwPgC~?$wOc z^ZzDDdV@4(rw+8EWIKupzBI+UC3&7bdi4t3e5+C+JNeXFGwaVcyi!!?k8L;@c zIji%()umidjdw6Jyv@FQovTZK5WhK`)e&|rIJn0B5-fr$_F}6R8 zYODII%f7Fv=V2651kna%6D<8nirpD(r@Gram+ff2dl+2_e%Vec#5c%&Q42ace4WR^ zFWo>7NEZ}o;4_=%PgqZ9xZfYsx8!DP)4Ki(c#KFtJ;PzkxN5MxS7tpO&!ibuBy{;i zaL-`tC`5bU>{i#Qu^}{9`BnE{#6u&NOy4lCNvw%CpnR$C)ZPqNCWvJ~=8fAmZt%y~ zla?@Z;l`>Qah9G=b&#^A=*E5g&`PgY{k1{Ihe* zJSm&w$#d!{9q_kO-f3&DKZCO|leGVpKG*<_H-9i8WlB)fUw@97a|~ar?7(k?L6Z!& zy(0q%c6a-bWmVtj`<(>ldUcRUsDj?Kpi~S!NRNd&R#(DU-BRo3avES!`-Y`4i!y@O z25}(Rzw+_^ETTNZv=?yIHypV_5$u_dnx!B+#zs*-UFYMM+fIgMOC7&z7T7@0`cy#i zr$4}EoHn{wrl|~SbC0fmU$>WoLQ=f6#$PYIR(?%A2)?ErDtHhHUC$gtoQASC!dPuc zsHJweTX6z!LaYh{yGVqUHI$2U3V5ex`$pb<{%OO5E*fKYR&m z3J2Tef%v}g;%w<;(H@klitr+`E^Nu?8iTvg{L>q_9|tt((w~F)-r6Sgz;aw-1Fz)8 zcEgve_bOHQmmHRwDxtfNS1g7+NBA#I9;LjBw;z3#G(O2OCt?71-3Y ztuF%FtZH@iQu8zw_drY5w~Rx-968lfHYwPvo>ztz62?m7+$R(zzfZlp)s}W6Z{@GN zz7~4ifZcpp+jT8wdd#snd7y2Z4IQ<-K6Udu-Yi#pXf;|6{Neg7_4=slbV&l-5!boy zH)M9??bxooN?YlZcFQmcQlR;H#uX7ycu+|75jULuae;)DaWWu zwY@cK^kAICQcrTt)64-SqM4PuCOreHOaYX;t4{K%Lk&nTCV0OKiJuA)c;(Wo^#0|Q zF-~9m#N%=+L+Zinb;-b)V4 zPqoU6N)Gg(+KQ}_3FN{=)XPiNF*lc zcC|Rz$3M{M5kI9o*pE&N$m0{ee}*ACMDnr4P0&oA159*ftHfiQMd!Uji$h|P#K@NJ z`;+pzfam^Ob<{U?z1zx^S6AtY)b##$IwHdC{Dy3HVpjUlepgcS2*AwB*A~oP89a(~ z2U|nm4Q1 zGZ^u8tX@^i1=)jh5q@q@?e%*DyeITxS4t1ypE*-j^u|&++8A)IRAg-}z zzl(4&1aX~Q-as5!D9gUGpSgWg!1#yAg%Cuy|MV_2zWl3X9-mXb8k|g6z{?qnSP)+L z53}2Ua+IAVI#0eChu}dvLA1t1Qq-e!%pPR@*cxkh-Q*JrQ_?`Y-F{fE_}gnUq!$V zg`iVSD(;Ut_=(cd?2cwU&p&TmHTf~y&N%lP09s7&Dk@J86lM4uFnZ?+%`^%%b`{TT z*Lb~hRZryFb0E0|f6xB)-%zkx@jg#@t7OgC-fzGHLb6`Tc?Y8BzYg5b+a8>_KrkJ< zQ<|{E?5LSDNLJ?xAf37o)d0r5oZGbtW;b+eyxLhn_19t(_LaqN45&vlJjq_%>@uC( zF~xTAWBKz9A2Ep$LhaRpCOR9P28s z>8KWP;C&YytnlD1f-gBF999tRL%%g?GO&__az@c|4lYv8EVGY=wmhyKFjc%N;K}%C zT5mN4_<$Y{!Xjsvo%E{@A^FYnv?Z<%=Wa#12em?-8J@i4{#gcc%PbdLAJE(#w*LRN zLez#C?V!m7f>@QyMg4q)>m~!YHYB6$CU<9(_iS8UDX)LJFw&=R+13$PdOiHWot^3U zH%U(EJXH0btN#mmTz5h{kw168x%1%({A1`am5$G=4jm5O`xdOL1vr*ck}VLAxar72 z%Ua-gP1hcQNO+Tibk3@4Ew0rR7_=gTsqVe@eJi4C>HUU&Wvr%#Klj*W$31JH0&=9b zE;M`NM3Adoxl_vg7<7Ly9~A{_8zmo=Eqro_^v5Eer}HNwKYZ~HXkrLbnNg^X5pc>b zPdk3c2D8jLdKK+$KLy)b<(iq^#oR>;p7@NrtEvq|uJhFg9{#}TI4Bu$IRNh&)TWq! zT0w}PyqwRZ5_57T3nnSvbJY$up$GLb%B8$$hNtZFN?P}d1qp^s8d8?q2&w*ha=2&+ z(Tv>;Uri1CXr-@1!$^0wJW(yts(+<|w(2)UO!p(RL><83)RZt~SG#s=#jolJIrdNsYjzsIUbW-SE|&pjN&-xFB;)M`jE_=7egS@*uilP5Fy z0=IKrQD7feKPE7H%XJXxz-KrgSOilwqMdxWG;3PJs57wA#?e@j`!vA1evB2-=dD0I ziFNpI^PkdXD$kz$|Km*S~r_X%KZuhi3Kk zS_uLn-4bRKth>Kz`Eljy8{(BadHxo7UT|R%Dy?@AGm@4-EuXHt`cw~PNk)h_GphSdMXF} z^o?+3X5f}-ij;Im#IY$W?mkXHh@w^0_97daJVmBee$FIQau5s_mb;P|K;UUWH3=^tnnY_J-IprzJrB=R(>FtvT4(JtWYxQ<$hgN^!Oy(^dnJsWbQ&0ag`Or-&Kjjg8LM+)a zeKLLXE2>V;=fe<}QvjLNX28}Q)bt<+Ii{jrSFlO^yWD$0 z|8^Y*-orObMI)66d3C?M`cX@u*lmSWu~s*D@(65=?{zZ%j}UD9*Sz~T9g{Ud$h58n zh4h6=4?~RN?~s@WefQ^JZa$OC=8nbR$b|whAw4H6N+2R2OJGh^SSlCN>pf*COY6N! zUv_0YZeYplMkwOxt24%A>goEAa`hyT3^KqRAJblBK9rNl@rlE`e9o!)F|PQ3KFjtC zFxw8fGiR5&oAms?lkEt)dxP#DiahABG*Zgq z)>?+V{c1FpHa_2>rlUm?OeTd|>BX<+Lk3`gl%g|Fno6r)Q9T`NEc$+IDrL;2dsVs61772<`5PjiYETXe}M5KLJ^5)*;OKtwQg5com@4I9c^1O z^&$$kw?IYNOI)~pWcUWq!Kz?){$NZV0`LDNqNEZ^rJY6Q=f`q!SCihsAnz6$*W2;a zms7NAGm7@$cHt@6#QsJy_ODq^0)*(cKSz$bPJYvH<7amqxRa|}zfjA^z=p$Y_U{1a zi;(mV1vnmoBm_D_C*DcJv=1;tcrHcQ{nCyMS*K5ObuFb`5&03k8AK*%m`lnu$*z#X z`nbS$I_O9}BrQB-w@<@C_f{=ewnvvF3^Rtr(Kmo@<@DNX50|XS)K+xvZ2JeD^olnJ zl%xWnxQE4KRok~BlM1ixy(2h2%`n;%^t&0{^OK3DX_FUQ|J;NOnn>_Z4ZSmm5in#3KXdFezAxM7?`a3Bt|5&h&XMLor zX_hf+%4>#MU2@2NcA*DlGn;k+SO<%l0CaF~U*<>Rz*OSzTb=zz-_}PbfsN~1vrLTD zGUf=Ph8Lj(e{>I$)K7m&u1O$vV`V_WkM&{3wuP>d#&?GUg`^Oxgc~ zB0j3D?U-Voc}OmQ!EWg+F;*P>O|U5`@s;KCXf=q<7{xbs3Duw6x5}=z{!`AgQ3^$io+Yf z={i@Z!>H!C5wdzN7Np(J-<;SD3!Bqb(7ww9VcJBrBR1X+_)u2{K-d@5{ zCvBIoL!L)}W&*PIg-c7Pc1XVzT|9Ou*8+2!XL)(XV}kQm%A7CSxJLJn9rF5O6p+qaDWd)f zzH2{T^;m4b5;~jmc7eqTu{VgM2`E)K#UNaCH#RtU#UvW0cr0@ z-jOUTR~2@Bdhs!|>+W^tR&~oE{WnQS41^|^J!R@g%r4y1b6uj+v-Z&g=Jt^9>)*3> zA-v*Svq%@)6y_ygt0Q`uLyf@|~*cEt*R z*L^q{(6~p#WNaxj3V;God3)k!GfKUJkGN z1L7bSDh}^gzMAb|`(7!>Sq_O%8V&Cz)@mb&no5c9ya-KCL%H2g7CX2VDKNGp5zcvN zqU(orWIEqoW)lcB6gbibk=w*H+W0IPYJ?md$n3s#A$y5BH$fI!6LMa^-r#sSdpr~J zEB|Fp1X$o}C(T3tB!V0`I4m8=XR|A~envOI59i|QHTHPato2pDvlVK#_%+Fl!9al4xoM3=f;VRS^NMcm2nUk1s$`i$N{K@0x?ikI0A@0&^W}R13oq zjfBe&=Uvh?Z~v5{3(bGQ0X2D?Im$B{5^qUOiY;WC(FE!d?~@d9Jr`5xqk#)qmamWk zxB2}%i?^S{R@fQC2gNHR4>&+6R|!4ll324Z-RcuPMI6i@HbwKlOo_mF`$s#C7Mqqg z3|^D5(FDf>A`7`|M%?Ehq+*JZUAsNW{LqyN99Pi?kvr~BAF&P%&3Vcyz>s)H*O02p z_E{N%Y8AwkQkW80r&{*VU^af-)}ko}?<$7|TYY~$aeZRwJ-OfD z;~7qQruAg8-8Q4*J4-@PN4I}F120v4^vd#xv#Yg~EjR_*Mj=)qhLQ3>QI`CFx;f9N zrkZsDV@yDbfFNB!iXb&~DS{vIr-pNkpW0KoUU&6CeqQ zNE0>EOM-x*CLq-W!j0cKXRUkx-+R|OcmLXJ&&<1L=KV8!W_d-wGHQ6Fq=K#YIrs6X7qpM2dN#vmOUJwXNSaVv9$A84 zI|g&q*E)|iVcOekIq`EcArN1XE^*IN&uTGr_P{J(2HV|4$5vd)MM)g3cML3jBF9g9 z`O=YlxHoszl$IcnAa!>|PXEcSh$&X@>&dG(Vuvk`PFIq~y7-k>Ro2%HQE2TgogC_o z2X*B8TCWZM92+&P@uyJ9GzNCw78(QC7zh^W4CAh)?oX`(7ptf7N?I3{fUgGIBs(2D zSozV?o98OtSAG`%(kJJOB(*Or33r597c(wp5_@>7g)x;~rxCb$72d{0(5m089a*Py zAd(lNj-!}AXfs@OP2IcX?8#;GI_u;5u33&B&A8+Xa-SbLj@OF#7E;_ zsG` zBj6it9H^!=I-M0pkeDPkylB{$cpq3wj5>shv%XMj{EOgjR1NKT zdhJYd+F>gD$Xv5ca(e8?LArK06b9JIx^Xd}xhroa)=^gc-k=dm+^mm6{kUItEz?e* zNA+#;h7b`$fqV7SoInq9sOUvlv=Usd^N0#11>&V-fc(@DmcYl--~7ruqOs<_z`T`J zvH_V-itJC3W%4(b?J*=a)K?@8TFxWbqAuq^*CYQp_n3vkWTB`j%9EUP=J2MD7s4y^ z`tZ93Gat4zzG>?1i!x^xQwvbKOJHQh!5I(2P*wdiaOZ%4J~xQliy+lAyY%Gd`TZCN zhnNGwk=V8cLAdwdNP@E5A=@@HIFeSF#}hNa38cloaie?%boSM>tR{I{&o3M&g!Y~p z2Qsc##}!v>{=&Dqs*gnq!@FDe$1p~QA!r{>8s~59JzlB5p#CwA?(Sby|JM}?@S1#0 zRPo&pJqt-uEQ=q5$G_W^YA`P&iu)U^?s0I>$n!wXzc4~|{x<@)jk5i>u`X3o* z$auzE>i~^2s=VN@{*}Ot|Be}o2;6>Q%jf>%7^F={+6e=GY0I!LCnkI0=xco(|n!FV^$;qnDR-gBnHbY3txBC4;aXyH^@R$&B^J ztEmNLT8PbpQ?k&$V_u!cwx9NHw;G>0mQjX(by93);QfkRlO1h?i!9C$BGPYLYR~~b zb#6}K*y63`Pf>UV1rQc zi^wGVW81~EPVE@7&|h5{eNpkWoexhf3< zVl$9<7tNLH9&$YVqFzp%3Wb;3y5bqx5>DV&?Xv!mJ6(^07w{nTuC0fLW%4oj{8mto zsF<8MgwM=6P{XRQ5 zGt7({7g|-S>51usM#Nm~0|UU|=z56|aV^>2Qym(GTQK$t+opifL$u1huHDo)?V+0j zu76DB@(x_v1_9C74X|-K2%hW!0|+V}GHC=Wt@(0k!6iX>@`v+f)pMaQ?8gjA7q=%Q zQpVP}54#Pfs<-9L%zuamdc$Uz!U)nIPIAz!H9@sT2dVMo9e~NgXKM}4u6~^Tg;Sh)bj1y&M&+HN=B6*TFL1tqC9 z-DlmOhRZ7n_HmdOe940!aog=C6R3oWja6oAv&)`rGGd#Km% zv8Fsk}gz$_dq@&M1U4dFoF+GmK>`koeAF6QC8Rl zO@x#HsM1+&HiFg`^{YJoU=B?c0tf&pcwQ+NLZ|2)3!@xy6mvYrz()bpSp4O z4fofiqS3Oz;kir-*z(P{?}q z-%M#0?M<8TahL5FdRsQBtBEiv#rdm=rpWcIJ{P<3n14AGfM|aBe_F6CxI*7H*-iW& zIpG>Bg|tSgV$V!H14z2|WEkqai;pMN0LN8fZ9Tlm&rl~07jvY5G*8ZCH{@5@p38|I$R<8|LL#K$gB%Egcg zJ&Bl)x=)0WHBX)E*>*`^Zq?Y$`^HbH{||+<;2HW~lbM-vPl8B%Q6;J+)ez?1rTzWB zYWkD22N?t3=WI0H4-|TU06G)`OHMT{fE~QX_70WQN}lHP$Yt#~sEL|pHG}Khy$M1T zQ$FpX9V++Fq=WWf^F!r$^M_8~i1zUal1%Hnj01X8pI$b1vmei-%Hw;_w*6f@MFv>| zE1WxwFifed!}{#4^~|ifZ0$FLh4)8)xfj|;k!tK#(?bBOn%MS_Cus!d)slziC-s16yKI=hJNy0#`4v(8u;n9uplkSv#P)af^@Ccz zaasgqLzksUO-f-106|GTp)hHt$f#}0=DcR*$jAmu|05mM2@EwzfYAULb7IMIG77N_ zdwLo2&+ghxxZ}fVL@$EsSka-4}2pg)LAEF2ZFIfXgksYJ{-ykhe*8k8}Hg>4NuT|LB=rU;v*kFa(+w`Q`oXT86` zS?^L=OwR0tRL;)e`sU(RBE7DO;a447yUqtY&(%hapWP2XI2J9!b%rS1^I|_czW>~3 zZ?x+RpG1k`y~1HU@l-(jJB4fQSL6`)4{<#sS>-5?H$z1q-21{4`VyXUbk=_z1H>Kw z-F(9FCFY)p8ln%*yhMKGeLXk z*3CDlaE0)y1^n9;(Uc8q?wqhXr$2+G5$VD3jjd%HrvyKpwN$?&t*Iy1TvJ)I)%!?g z<sI`b{M%Fslv(qV(eidHhi#(Ys!6w+8tyeaI~xFPmgx@a(} ztn$rpVtBdI+FP!pCFI-X>@U+_T!+7mc4wu^IKGPV1$;6?mKoO`8ROabmAUVu7-PB2#k~KD zPnavg)_3O<2B7mhQ-y4{F}l5tfwuCwR6EHf!0*kx5LvVKp794`R21#%TZXt^WceezByF2Wn!3hq*3GVLU^1SEX z@0|M=zMk%y(^b`VdUj^2y1HsM;=P(Y1}Z5k000<@3bL92fB=1M02tvFv%LO~;`Oxq zUPW8(^$Y+a0AK@%hyWt5FdndJdhLqfoFuQgue6(9dv|Jb~8|Bw7XLi~Tk z|4RJpVH5ufn`~Zrnwo5yUg3*B0K|&`@irp=FEReLG`$}2O|S4z{GX=yKd9xKJ_#g4lYkB$e z^0M5~@zP}T@+bb~Pt(gQ>c2s+@I@s*=F{tiqPQp+dS|ZU3^Y4-uu_o@go0NBEoIcWg4rf;$ney$RH)z5_07@vAyU}T8M}#V6G{X$7#tdJ3uJ`=0rL%?Ah!*;t-41VkO=1zTaKw7+ zg!4Ko^t)9f%GqUrg74=qLLFw^`d}s9Bp?pXJMQ=1Lijsyn6G9MVAfXmi2lxtl^8NL z0}qw-_uOxzJjs1}#C0D8I*_D4?>6k$ZRf;&F%^8ex<*c8566;xSWVfMi(3m2qGX(6 z`|UY=I3$_M_kpVI-(M0CgZ-DFFOOH$4euXa^!+Ap)U2m*S>^GsRr@r0U%H60B>u^f zd)!Lq;uz?32OvrfEm4>gbR#zJB6Fw79+CIfPiF76Cfel33E3Txqp1=hv;S7AWFv+6 zPM!d98#i7rTNi_ekBGS_m6Af9YTs4@>K#aG$=W-$v;)}F8Do9Zq0fQdPkG3V$-OIS z!$lT5V7jO>+~34%`tqu9?akWN+ftz<_G_Qg!-$QIw#y(Z{@}$6F=&#a~kdUtc*|4FPXr z`I%vz$ zk#ykIrS-yt!&iB!k=o0XkrAr3)#rbbUvveYTsRqPj|z4~m2Z^T(9A3PAP-X~z)R6M z&4esV6#r3<^GOOjohQ~(#av6Mklmf`BCTy1dr+Q{j04!tpdCR>EU+`t82aA!^=0D*&398oaq_-hDb)z_x)+$r z@>7wL$$9P2fH%Sa7wM^rPPo-}fAE2!D1y7tkqtB|>SD)RjPlY3+*ovzdFKg7sRS$= zUP>Fxnxm}=K*6y0(WDORWJoOv;PEV)nbiL}$U>YjjGLP8(RQ@~&Lrj`=FCd$0-V5j zDWMVZa1mkF?Ht_rYWR32)l9OX!)g|ikRRBoHuQ(FohukUsD5YO5>2Lc#_AA$J=^Yr z6vJB6a?2*ymfQUjpaaRM6!JUWWN4Z+V{ko8VjF#0DStYAc86Q9xQAOm)JcLP26ijW z0RKiiUSLfG+R7OZ+}X|A07y_Ddt$(>65uj;S_N#YESBZlborNpk)V4rGUWWEL2&5Q=6K_g^l z^PbMG2^k|Od~{y%>PNN47?L?4_8kiY5i!W5Ul9IPZoK^Q&3CvnW&qu1*6DRB1pwDy z0>G2-O9~LYeyC}gbc1{r_a*RQLr(qW>ej5KzZsrOn(MDNPqzu&)6HRUeq7fs!5Zkl zsY>vZ2VKHFJ^X{;T48uHg`8dO>Q!vMYJfJw6DeDSyRqku73aSbR1)IL&!JlWyufa` z1K@9M*NU8jvA!FA+u(Y-Rp0xVz4-?aI-JF=*VilRyKU9m5F~F84a25C`AZ7^8@_=nw0+ zev}9WSQrNRLDqQ7WYB;KX{=X)08EOUm`-_h6r6i>d9XW>)S2PgVrh~JN@7n@ufH->t2DJ1U*%afA3WZbd~sZi1{1{K zl6G-+t8~NU`$@L0;)$3NkvC{-x&3#m-UmlF4=BJ2h;ozsiG83Xd~=Ij136SU(=&mO zmbhXcRy~EbU{A|?Vw@?QF_3$qa!H@D?=x?!K!5ctEl@#;K5i=?1(H$89pL=;+-a%3 zC!q+w!mO~NkF6F8PjSROOnFeNSd$Q5entkuNN0X)QggG)2Pn%0*29VMJPs0UH0K%r zI>K95(ZLGJN{n&DUft%h*;xvsgrm$u*8SFbmG1`u9ZK zg{!grfB>8_y}mV}P4%pG5iG9v^>$dK02w@Vg%z(e;gXmXniaK!1{}geJ6Vak5>%N- zKv2IoMlZ;~X@SGtfWU?!8?dTF0*3^fO^I8jc_8h;H}QH^5vnvGuZrcTf$c{4>=F1_ zpoRrlF6X()O*`5gL58-Y0bXStcSU^bRsgVS(E2b5w3P9LuQez}hptEKf?f^4HUcq7 zPs_<4j}yuZGdKo=0V8RuHp%T>L5lUZO3WbkA6P3nO6E!F){YRk8uqInqFOY8Xp%k2 z^1uS&!(>3|uM{5s38IwhKmY5Su)H0Oz~-FC|G<%p5adM!oG3U2vbZneGa(oYgAmN6 zfflM(7nDgdE1_5UNmM}k`yvTGo7&;1iY@Fy@{s8zr=XKv>!%!<>p;jgbYo-xc^=ubF8N@uPmO&CtFghw&iXQ99a&*8}c37&zgDSYLI5?D-^sqEPJR4sGeF zeUmtWOSK_|>rAEB*%|^ZK10JRvelzsM@5y|=Cx^BT!Z2UkFe}6LnPb}6Fu5V)?oBP zjVtKIrN5t45&X4v#)=HUFh_fj2=cqkMS960a|GihI76hnk0rSV2!NAul%&I{m@7&SfN1oQAclK-TjfpuAkN z(R#ZAWM38tl3Qo>FXf_GeX5vWzKYGPUk)T{$rXY3F5zXR4*9g_$**gV5||bxJq{Qf z2EZ9#Hh$TY5iBnNLlG}b!D_Gi=AZDjSh%XUuQnoP-@VLb(Nqb5R%|wRBov^&4hEo$$z8+T(())S=rGai z@9jt}VlZJtM8I~sbfD!EJ5B6*&fPKD`Wuk*7(B46nS$AHUdDc70SGA;8u4L4sfB_C z#2E1z3Zsc3a4v~TYpSnLIZ4g|$h@+Z7K{Xqc%yzc#|F4y=GX*{5d9?RVf3yRuJ{MX zF^UX0NoP?u#3kZjw}4LjPdxzR8UtQq1GqC!l)%HA@AHYh@X-A?YG(uFz?n^Db=e!U zWF2svInW^`hq6iu;l}9H*o0dN0Cw1i;Gss^nd>paz`A4N(+Q$W`YV?ra2KhQWmb-l z2?M;7lmwhoCEO{soV5O!Hc_(FC3C^rSLE7ogOu?)*b&a!<#Z5gws>&py#)iS5!Vxs z+gn}7F}Jx-+Zwwpsz|%7xPb*7e?BOa^wy0V=rdV3{7gRwwT<23?Evle8wPv`9G47! z8){EK7&FdUfh+h3vRR`YcncDeOF(Y7njM3J_YP2$O^WspSxF=* zq&#>=QCNvR6`FiHfg_H=EeMc~k7b(CqAx$fm>%+*LaopQF6^_>YGVV?@fpjod2ljT ze6I*DHlSKx12UWUZ=B1u!-g;i8%(BI{RiXfySxv;VTmcPia=gX3Jgx!XKiEkW;mRf z9LyS3cNbJeTZh3hqI8i4eR;Z^#^UsSDDHmgVV97EGJtg-6hPJ++!c*_q~EspMG1U7HZff)yX;;&&X03^ATQub=0Z@_Gf?*+=Uus zwq|DD(H^p*(0T23Z93i84%ha2jxa zWDx_!uOv=U-^HrDtY#y#A zqP#PdtqXYlfh4fz#N5fvOxFNdn;Ik3;f)~osMsX!oe1E>1W!bL*E2Pxqr-k~HycDebTUFH9};xQsYz=EtBx2n=t2Cwr~NSlUIcPN=jk;HuP#f}B^ zuh~!O`J5@vkWALtu1Y?rL5N~Ek-Lf%H#D(B*aNi)=NWKEB^1Kl^a3wekOR3+5U9GW z2+WYyw{0|2%d&`<6i%V%m@4vdQ-xmM<}1801_At0(kpUSU`0mhw>sO-NL$$T-3a z`QAk3=}+yuM2Xy;0B11mQb;Tr%G^Fh6Nk_B{q$nNM$t}PpFN4JiKBixj;f258yxd7 zLE~NLCb%Q!)nA}NfUR2kW3QpYHv1LqRUHlV36#G$7*Gb4Z}`muQ5G)#s&D>&{BsFE z8ho1ymM}P#TLQU|!+yg8J=qV+OcU11k@V4nw+=K52NqJW%-i!E{(NU3CucNC0(HBM zgi*R*ouA98-YiLIe7dpw-H1T0SVMU=+L`q*IVI)4XBSq|jg+!=nB0GQBSGKuBs6$a>H}0bEs_Qm)G4soW5VW| zBA<5P@6HX90C}7WS2>wF22flP*M`n$t$@j)(a%z7V~&{wOpz$670=PRti<7|Lxghb2rJq?b`Vu}UwvHdCW@8$y2?F$OJGUn&e6m)4q;anebS$_HI;+QD7#ep~q0ZfV^@uwLnVm3BbO8 z9&VvKH~4K|hQJRjc4lP{1w74b`6ZWh7zgq;`gf|8CmS>s1aIfW8zq3G4Z$=@~`foDE%Ujs34d97KKIH5G z)?HM(RY1^~ekah2qv3HrgnvG+I4LS5L7JMh=ECWV2JO`}P)v24We1L0$yC&E?|GxB z7rxtRsc6*GnpTfPGCt@<$RnB!HuAGVVZ&>vXDn;13!CnEfGA3nf9^D%HG%_o z;}8?SEQ>w@y5G4fO2IiknE_|x#$Q2J=-1&j(3#Wo?uIVlxs1VxV8F%62nDGb1!xW> zzMCE5%3D!I(j5b=yFu!Gk8}CDMtdG!qFSQ48H%J zUoeB1sXrHwTd?S!%AOqq72)Pi4Gi0e3xasr6YRnuEJgyqn)1q~{3^x<6S>zrlx@Lq zr3P9fgtEfIcB%LgKVO8Hs}FkqI!vX3AYv;+0@f)S3>zZ_m(5N%r-E<(X6a{p2n1Az zsI#&*va>;c=VO$5{?!W!Ps8s!SUV#%4z@&-fA3^@@MOt4tNj}N{iCGJ z2;Q3l39Z-pES%_UTas0pykQ3f?q6-HL0ol)mkZkS`9-f%g<9p!aux_Dfjh8fe(~c|_8hEQTbhZ5RZqx)h zG({xiUTy|2H1t>{c%h({D8|#wPOl8wAJf9t+#L;Oe|T%+?1@x5P9O8VPv)>3lzm_t;Fa>%%FzgYrkW+;!!3C!68 zr*9E0M6x=-hfVMJA}xb$ zrzfL6Ag0Q54zDJ}{_x`3{lre?wUe9_&KJ~pfdI7c;PQ@a?!N9s4@wqSV+39W{D!1$ zUIG>7AI)yq0#j~3t7KU+3!qS1N--mxxebh1xm!cF&O9oD=G-nRGQ+`*$t6|6Y|9um zTO_-*Joi5QUvylajQ3X32qJIc$;*NYQ^CGE5i?~Ikr5TvMxdUudNm*%vnDQ1jJ9GM zB3Xknz8Dva)t&mm{?C(-b(CG?*r%u1{8RUDeOZowf35Fs^c=h2?#)w4sNU-vxSvY| zm2!u~6z7>T{Me~c2B-eHLr41}o~I?@p$nKd#*V{ptZQU|W23sNSPZT0x!R9Fmuhc0 zQ)KmY3IT_4X-UzJZZ#Q6$qqe#rA*`+G9|&!x=ZyaXDT(G*m0J^G;{FKB1t_4p}O0n zuKqeF+rRS0^I8q5eIf{jebgQHVkANVZH{)n?0jivgBzA5tOzxMKZ+$pmE6NhqSF-8 zupyV@mKx15ve=kZodg>n{l%LV`g6azwBT&adcRAsceU~|P;DxTr)(PyHG=tYX6QOQA(Hjk<$=rX*u^f^ExY6>bWbenDf2YU(02jGlfT_8 zrbo5ZeGrLZLkml|t12LgGGoY62;x<-RSm7bYqT|T4;m^Tx{;99N0Lm#_D|1cetP=% zo(5n-7+u%fr$tAghn3mDE@NP_X3TOGKPmJ(Kg(2jb1{`g;qxya&1P_|6#L?RyF@`LKkfFFZ*{YUVw!3btx_1Yt&Su?8Qr^2`Og9lQ=X6l^1563Ud&lX6iU#YwMFnjp7i#)ss&f$hfBGek} z${n4KWMepr3Z+|j>n!h00z=tTJBsnL`?vxma>p;}w?|e}2*pLMR4oHU$IW7ZFPauC z?n3Z~{Ckv!2cKy&#o)Y!H8I~j$85NqbAv>)m*i@y@#AdJw*13Z;yizfqQyw2KV??J z>b%A2Q6jA%rCJvlfwq-qNUKC&rnJjF#G1Pn7;Lk|P!u}b;=d?$j>nQ6bkNL|#%jmlj)Oy3!f6{GO+k9w# zhu%$Q>9XmXddhW{BVxk7ZV&h5AL3~MS{c<;dKuG^?99gUd9}Cu&R)crqNmESJGjpz z2}(O&`liz`3vZQ8>eNB5*BM2{T@nlHun`!7D7g7A1p{L?LtUc&@}mt4K; zHbU6`$ZPEM>_pqKqA@kot_BO5_=Ad@WXJqT`yIdmW}_B6GVkK>sVhZd(I$?OjJ%_8 zgUH=AMI(@HX>OyTPR9>EyK@OYezEYE;nnA%y1prh;o5Fu`CFu!O&J(^9~`CfOm3n$ z=X>*4s_|X)ki08v3nQ#<^6R``E+1UQt&XO{7_~acX@AQmYS4al0xBpJ-1v)r!BSuH zSH#bWOkp|FKC*j)oAwn|FS$X6aRrA|sis#sgV*QF1>Uh)ekBH0N2l33hBHbBN zEH99J2A~sIr)iwI$TgcsWtZW$!AGQphYO7QSu@(0Zn9H8{Nc9{S}l1V|HP*-ylF#| zC{K~zXEu30wJ0~82RqV;L}Q#|Gk=oz{tLUy!iJ~6au|bpXZ7Xg*seB4NY>B8&c;vs z46U{8LN1eP!<0(YtWbuSJIMc{@%>#iq?uqEN&0X$PabE|p`bhzM2mM$aa_1?y>i_txv>beE`M7}@+ETf@Vn=C;aO zGwYN=?KYp!rGgsm8W+xbOEFzOdVx zoMG^KN}kV7*=;qRT_h?LL8?Z{xhATt+q$1BBq9d{L+w4V{&+?S1 zqZzzj@K9js4#JXez)a~X zdMWfRve>z+DrJ~~DR?~UN@JypL4#xpMK`7qDZ%E5bgP#K!90f!l(@9|c`IksVxqB~ z0XK!{Pq89-?9p_wgiWkkhBtw&ZJH}71J&jE0_xVnvE*KC0ILzjG$K+rJN(m5mvB&8 z+4TU=V|*IN8A*8D5WcVDUj+I+)kBVXPjY#b{VLYy$(6zzh0c?l5-$)h^_!f@eQRSIl|EeWWNPd>5 z+)n>ByK*IEZjwzA8fi(MQ7y=yNHNbH_Ccn?FrW!XKwW7u#ip*^0zahSvk69iQv{gp z@6Y*B+AHhRGIf?$-80L!O7(T{3-0T>0*=j+g>2I&(7Vm{FD1u=;gFMYT_68cl5lmk zw8}M78j~A|=XtA@a&{u+@fQ0H->@#kF>1~*wf_x*nVVE|CLD^3rXW-B)g$zH<(*QW z9xP7%Jk!pTa4mjuQK9ed8{0_>M|cx20hsBbLNtDFyJck*R-8UYYwxTWzt^^^D^cZ` z7;f$pV;nhKRLQ1Q0Wrzr{}Z}Vbc#?f(%FEHY}#AFS-{ZDa4Ao0G6 zTAn53)O^AzG&*GwlOs?L)t&)e{i|*&w@`0cMN-8)9sj<=f@PXgAc11#a3;E!3zZOq z*>vc2o-TD@=_>yw&QbRG1$G7JTplVR$o}r&De;4K8u1-RsWH0WJ^o#ywTqG`^UUZy zICaBo5)c?6o%!1~8pjhK$mOi$Y2K9Cjg_6u4y)d}|16Gu2ttl>#Z~#q4>o<#btX56 z!+a;^-jd4{MHBF=Ecu|*#_q|GAxCWpj7;`W;$D!1O^A#d7+#9GXP;mh6TC)r;8ZMU z7|mSRbc#@HGqUc*@%Do^hS!#JYH|GWZkuXJW6{%L;btmfw-!7{U&mf~(d@Wo49Q8s zUy=o|dN>pAsLRFH0CmNUvnlE$Q_y~0ANL6wU(%`}PD}qIw3Mgg*P*s2xhY{kk9g=u z+1;4HMydI*6sPYyKW!g0i5wL{UG{FzY|_OYVP*!|o&?_nrEMHCY!sM;HfU?rI6KH^ z#7u5lI0-LOCeeKbm;Y^+Za+eYE--_14DgH&5ZX0BS<}faN#>#RSO;zb$>_S7RZ)7wZDqsY&QPYh%r2~KW=}xC zrfN=US51yHl3Jg~KUt0Tl*H$57M)Qs7Rz4*eu}crWj|4%Clhv_hP&N{t;$9A_ntY& zU;Sn7GYguIW@v1E^0@kk=7cG$rs4vhN}(d1PWp6SAFIX^=hh>Q>)!j4G+vmUXYLd^ zF;j=5;dwyep!{R;W-_UOrG(M`TpdcP`Gw0&v^$r2GIz!NU{c_hwK0QuvtkeaeG1Z- zj*poRfsWxWcO6pz>xZjdW0edwD(Z!fNc$!(x-XcKdU<-wu{H}X$|-~dOxBzQ>jv_0 zT)pP(U}V3Q-HcU_+({u8CcDofc6qE1lsQ+rS$(*6yO;SaS_IL+(W~uW#kEHkWQMG} z*ku^kh7DCu3iF9zl5?OmjTy1ikZYY;gv;<7wTYQ%;3#ADFYJA4zT4m631CHP zY0&8ROYxohh8#Oc3IB?+TxhHrZb+|lSp7(Dk8FY5S`K$Eae~oPKS#^; zo1Lp--kL%Kxs89P4m~jQq2r?x`}-%ig2WRud4n!!6f8L0JPDy6Wfvo=xpq8>OP?rh zV;g@3ooWS}vwNS8AgnX^2cJCFyN&C=$Ipj^?N;J~g~3*!6YS1Rf^%CUno9{6pbDu@Kd;G;- zeU4g$6-Q4pBHrl5*QMd=%VqwdF}$7|p}`kWkShuG%BUCz2Y95rgqa4=70Se|T@oc< z&=p?!Ru)&!F`-@IVHlyYpf2@xgydst$*%Hc`%w)Cg|Fo?2tyF99JQn1bz@{jlJm`* ztI;rTRA{h7)K-y6(g&cWV*lGaA--qc-GG@LWt+f^07S;FDVqZXt)Hw1ca#wfnF4)p z23?VyH@t*RW%R{$h`L5N3O+J4VwsMk9ozjDZFu(4*e9CGd1A|*c&J0FT|s`PR<2>d z{ne1&2>O+(h2mes6cILU#xwBcy^3H?uA;^PRhO*ASs% zVs~7iRP_sD?=5>;<4ENi5mJwR7& zIAlQ-vq=lr>H8DKU73=jZ}@A5%Kr(hb)?K>52EyfCdP_S;{JM>Xsb*4H<&H%tPLfalDoB5sIs29T>4RIX>2o8vdk0jc1Z8```j?lNP9WQ(3r($RdsC&@+sf@y6gU zvrc&pJ_A;Fm1g6Vn$2JaoAu(>zLe;jnH+0IYlMZq*+%SX-|Ipqy=Ml3Vqw(s#}xg< zg|D8BI)((&_;;uA}8bc=GARMjqM; zh#y5d8de>v7L_<$dWGt{rmR^v(A=ATTKz&VVqDS5*q?2GN@A!xWny|@Zl+*}hrHM@ zL2_6{bzITep_eLhZ`YY}5DeUVa-0BYu^BO8!%h>FPZL)$&YYfX$Pv2p0?;e`7M9$0 zVflKOr!h|lPIUtHZAMRHj*n9AU88U7JZB>4it6zUn9#qFR4HN~9ZNi>8Qd#)I5ZD0 zLFz^!0@IV+%dT_N?QlhBF=sKVcD{rUh5e;nI*Zw2z?|UwSQ?HQB~} z-~H4~Hf7+(crHz-gK_%iTW&*ljSubNPdPAE_r>Sp^QU)0@unGFcZU;$;^eQ9fP*d0 zXEt6pE;`OrAvesC*_hH^=Yjd*1J>GHE5nF>KR-L%?zRv2f6T6a%4ym&6?7(t2hY(2Adz*1)p*DqZ%s>&?{>o^RBu^oF`?W9$y*YyV{m0-R3Gy)eVUVkyd6=!B$y&2@CR7Xzd`>IOiy{;!$h-NJQcoGGNA+zxP5HE>z@N`L zw#S_`kw&9W1g$Qal=;3xY;_d$d3t+og@5*Q^LB%Y?Siz2M5=PlhZ~vtWL|h$XR#6V z4vadWBe$0OQC|BU^e_6bU_^?p|7LT-xNYdhEMm)3Zj8rG1+Der9eLV?eIfd>T*@>i zmUF!`E9h}ydBI1tN?ll}n}~qWy1S?5x7Y|AIi&aMK?F4{^s~}MMq!YkN=$R^-UxNK zQ~_^^R*!opav5RT)?8@^JKnIQs@t7jE-b`#XZ(z)a=xkLqrr76dvBG2!Nv zotS6L_OjBSvj(_K!alZcotI23Yc*;`n4zujw?54=)iOrtnptx50!%%k!yg&*^!!$> z9;GReIqhpp*plmib6z)C7}-e7_TI0z9eu}~14~qw_J6H16<46zkOAyBUQ>l%1J61?x3uLf6{a`DAw`#d3kx~;7@dQxgR=N&3g4+5UxVp z<)Hj73Ca0F`BO=XQmiii_JL|8gRaciPpvD34f$y2bkEsrTXpx}5w_~D$B;ktVe>$j zozn_>?SC~#PLI_9`i|N?C6QN{SH(J}W9sl-OV5}2Qe!yYHEEvU95u$y{X0zA`aCtY zuuyU3sKi(?g`mP?+bpxq)X;x=n?phlJj%<=b=1>m_t{&-)HVESeTruc3GL*W7Ti8G zv3j>8Y2lGPaFhin7bd?2Zyn>lh9~@KU72V3WU$YqWwgq|V0G!{MkAJ18Vdh{o=~%5 zQ7GqfcWF4Tb+%NipA>*0{e9-XAsAgK14B0q&74;3ac-b`#|N{T1$BMfn)LBY4i{U` zJiFVod0zy*z7KnpLeW_{_YpK5A%BMqVqP^?DHPAFq9b~uDn_?`xJ zy7NG`f3UT77hz6EJf$!F0e|p~T|9bukYFotzD+UavD93;xC1 zubdXQ8!q0r`?maDPCJM~Da(+jMAatT3ZA23^VY-jDdOL$vKe0(5BHfn$7s>xtXXAD z=Ub$OAq_I!lP%~B%)1aTkqp;`VOv{>Y9M9N`RSz+TCJO`xjjx$#i<;LP4&+b!mLPM zuB*J1O(*50f`_01Y^tm+bvp7dOawG{A4k#H+?tZm)NOC|aA2Hd>l;65j|?mJh112} z6tlgCZs!-A1D|0V9RChOQ2L!avBZd39c({cr{b9n^6OzhrqWUE;Qe!O`NP`jnz zI67@p8=GEs@_C072S$N5YTa=K5Pu5hj! zc8(rEUuFH4tBEaMP~rjk3GUZJJ3Q#2G+Wu?ZrR9^pQ%;&yWhW*?1f2m$*#6ZH9dG| znMdh_P&dq9pt|GKVrKP4M^}Sn?^+4v)W5t*si9TM{T9oW5Tx@#iEP}*hk6BW#eh{Z zPV(O~(dC$DEoY-L^Qt7$4P`r9sObwImMO}rO+G_D7VC*^iE5Esu~FkcZ<Zx z$6p$Feh5X<3w>RqF~TBlbI^CkR?SPFF(RN0&FL-O$=-Jz8@!(Zb08lLmO5!1`1 zLlr%Q`jF^LsPBr2|0Ce5r;x~Rh_V5B}Vg?Os zj5iE?^_jVS7dq*}qSpPdI?P{2fFkbVv*H1C&?NopO=Hf)F419@(iYe=b;E<^3&cgI z@H)TpcZo%x0R@;UjYRyzs>%e-$Ni=9+0CX9E&cUxt9>lhc};fg;Kw_kC%ya4=laPL zR63+iwy*jYl6wRZNHx^IZTJHM!P-ZqEV|~&9R`WVljV9INjz99=>)qxJ4zDyYKwMtSV+}Wpcm9^7tu^ zEu8)P_@_m?hbxNbZ{^iqk`L8O&YD@1qjct_yb5my6oPt-xn4@Ul^Yl!4FA702J=&c zJw@$+1pDe8@tI+aFN5K%7!3sGQ>JwlK94>rfx>6<2$$&o*ct{Qo&5O_VsQIDMG48z z{*K0T(}UBQnDu#X`|pNwhU?1WO3xfL1ymH{;#u^P4`?h*{O3v(?M)@K6VslNtNd~7 zATozBEe*=|r4+>;7U@p(h&70H`{^1WHEXzt9sB z+n4>jZ)6E>&!qwSGkz)G+F0_WP$ky_?>3Obdqt^G#qaZiLInB6mbd6Qx*?{k@-5*nZpx&n5j>`dfIyxCa4SmyJpZiYp;7wn3 z*18MA^w)`ey;TeP&o~`#K*+n_ID8B+X(@&*-eVI=bpOL|_?dONPceg*XPq-@`844q zUtGw2MT#WqNsNsBbOGj=s96lnHMP}KA00%IGr{S!@-yCN@J7j1F_33fea9awtBcKs zb(6D}o_0*z#`_!F&&_xWF`GHXOv(klBg&#IKsWHv%m&@_9GAdf56{%snol>PzIz0HY`QM1%4QnC}Umgxx!QnlId(C1(7|8Rl6K2u;xC$?MDApXK=h%enk8Y z@c<68!hpwKNcp|KoY>)Mdj`xEzTRl{PwtnW8`)jT(LhC|n5N7nK~6m=qeOL3^>$C| zeWVRkbQsaaJ3{JHplT3R_v?o{wHe3{{1KT`Hs$1ax|f*4gcSl$OXa z*-Onuo}(8jw8aTExf?&Rz-IFroNYeEmE1k7wGvL$+62|anP=genL!$6R}=R9455*9 z3k{RwN<%8RDkPbN0Yr40m}h5M_Bm#CB5>Xmy18@BHSZ^xIgU`rab_vp5^BlS1>Yw3 zvp6FO#jbOI`A655Rc+nIUAIs|Erw{$$`o**B>J|gy~y1+d>J?;55Wjr^8Nm07CwSH z9WsC_rB>yA-5Kkjqqti+yTnl`G{qRSJQp$c)4vTCz*bVQ`$%7cG^A~?9+R*j2$b4w&B6Vsa z2#RwX5SD<6^q#B9Pq8|FPGpU%zn`t6{5Eo;QqyKl)+vJv{Xzdovn&B+{l)_(^ZINY z+-(IhxEcq-jV(@Ok#R9#*kT}X;Lt${Ct^(I1ZPh|&QJB=AI@Z%0b~OhOb<~(` zLxX?nUVA#87l5|ji7jyVn+kRH@iKqu*>t<7-TgoI|?L#nx$-vqc|D%&ALDpT~m%$}~3 zUfq+MmDl|5>NohO$ojKSeyw9<8d|0yl^E#0v!f6|bhwTl?nX2!&ion|pM3MsI{aLR zBNfzfaP#$-p{ODq(MVUl@E;l!fnrXrWPnT5F#s}FoPcQ-gCDoowfgEoB&IK-^mY7J z;;OFF2h~50Kj=DxbuZ8|Suaq0qnw#VYOp;|&?iOn$`MRw(Q8eF?Vc-(KQBwBc8nvT zLBvmuBi<_p9abNH&wc01|7G!U_N017<2+|xg?VL10b&BK{^GLN$b0S`ocrNB$W=G` zAL;SEn|+W)*Qc@A$n1>7kpw9L}gMd zs;73HzLd66>sDc%IgCmPfF5HyytfaHJ6?54O8ycX7K|leSBJyv`^6PO!%k9!Ie|st zd#BJ+hL4>#7Z?b!Rkyysu1;H`WU4EeW_=4$nz+eFocW+KI$>knXA7aGl!wk(=6+jq z)E(p#xt>kiaOul?b$UC!Zp4B;p00J;PL7JhY~C1It?2e6HBX_ObD4M(hP)2cEl5y; z@E#<|>Y~-l%TL%(|G6P$#$yEXHM#QCPjwxAzv(`2E8W^7Q<#UjakBsb#mE2t7r^JHbF3Nzd* zFVHi6w{Dn_3W2MWF2lT9Z^X&)myANV%O6>HdpQAl-u|H!Z`{xn1OcD?jc``5f54D1 z?z7W7%|;Cs(aHe@%a$u_{W8>EMoFycyIY^aP<{WPfMfiq8t)!$avO^AVz2KqHEYzF zBLyA8JMk$vU(?8hW6*j2Ohh0gH!JnmG*xWt;67#$>Pepzr zQFRu!ShD*yC$gllu=P4q=bu=)N$bJ3=Y z;3v~A=%Y2Z1$UJ3byJAN@Ucw3#p#l(8qWH{02Lj&Ldj(ZLFFyd_)pw$WRZ<63p{_S z{tT;pjW^(j!-QGxFt7NtoH9xT%F$h1ui;!;JZPWnI-$xLS>7ZlBoa6q8>IMl0^@=a ze=@Ytje_->Rc$8!pK8uKD5{`I;BN!4fC{337JdQw=@0oi1Du0 zXNRlWU9IqJ(O~aE*J`+#{Lb0hUa8)PHZqJ&5jhw8D5a7@mJEyb9jA;+zGyYv_`Itk z@!<9r)taP2NTKs%D*MFOLGqT#G%pIMJ`w9(_{>{Xu2gRrzCc;1&?wS%C8|kGuJs~P znJ=<%=GJnkVBQ$!tM%RYy1r2qAK)KOF4fzJH} zUI8*o7XQ(r;^~1;^2kD^_qwo$R2s$jmDv}jKf2smh#r5wCSt@J45PG4etN||yx9I0 zXz)z`X8L3r;L5fM6^v>8%))v%D6v{X z`!%ukTw1urSufq07jM2jk7%UT&ZIh|Z0OB~BRdi7iEVJQC9O%6ZkEv}`3y?g(XNkFebTZtO4bG{v4CpfJTFw09dL zLud&z1Gf?Rj8WY)j`$IXxt+&~>=a$EOS;swTgK3rl83MJ$J6{#{#=)uQ z*F{+UQZrvQ3B-U)OD}<@v1@0)^8dCFSeCRhrVJvB-l#~rgqySTw(+kAq!fnQ#TgbE zRaLoek)O`quoJ8^L5|HuUMP(fas0}PTeFP5CdWy*)7DlXMtEYW*O^!7h)eN;cRFpw zC}YDzxaAZh%S@F8@6u&I*OK43m%SW@&hDd-%2*V$hm*Q>HKmuHv4Hl@wl`lcS+P?S z80`DM>nqzaaE6#(=6_VJ@yg#U3jIEgf=O5-yT>bDYSt*&D+x~gvyr8JaAb9~+xc}& zUGapx6wWMveBrPQd?~VH$hq9i z>btj~OX($O%bxb+F76?Ei;i>jo{3Majro03)a{Q$h>ZeHQqR8G2-S=Naq5B5W-hFk zDOj3Tpeo#2hmyA0%A2_|SnQZxDPcImJFMDpSAVhhF`{9J89{^86? z1^sz`Au57P&`ipg=i-9F<#Iyu!f*y=-FW8V%Q(KRo{z;x-B6MHtT}C_swv9hu3kA^ zPpGj@vMNB8kOJ#E6W zgu`ufF6)&~uu2+jqSbe(@_H6I{L+GBa)7(jYT?dt9v4tvx*^u4WuOXP!MM-_F%EJEedq|t6jgt_qLKX ziFfWc#MnJi5Fo`oxxX^oVREr#n)0AesY7I^2!iS09jA-u3uwh;QB;3M8v`pQIa%7# zCoT<$nM(;u;Y?GKQz}yo6$N=qA%9^8w9Ums)=TX}6se3MrX{P|Uw*&v;dd4=5p}9B zF785tNiHkC%7dKld`I&cZN6`b_QYjCd@`|>S|!$fjD1Keq=ebL?&sUb;_qaO=<(*L zUTO><$$=u3j4HE&ib{@A6-yrZ6AZqOBl{kdIo_42jf#Y2+>V#vj6V-Lka~RCmR|0k zDKk1c2h`sa`XwH0Do|hYHQL9YB}lx`kj~doPEH&>0=VQJ$}KxExfa}PRnxS4F(*)+ zQ(Mv<9_ZhSVxE;0IMNEAeG}sHYH|!Y{L5fGVPs2OfK*_r%sz3gSpb3Q7ZPR;8d*|; zNmU&^uG7PX7Z*o?tRhaxS!JmE zDNF19n$iGr#P*3GwMf?nWzdN0;4_2ch4(1JjVz%*Y+yz|Dpsz|zu8^+^H~N9DS&Q{ z+SBNn(-9mjHhXH~nzClx`^8-~ueUx@-Dd@LcnKP~Cvu7BnTT0w$5Z@_QY=5H9;zhz@T?u8Rn zzVy5@h;<1A&5k<4+GY;yTQFu7B4cy=gBysH{wlE~cXvL-)H9fOM09hMWrl6^o9CA% z&8=QNG}=|dupx(LCD$Di#G;$CjpDBVk_ABhQ5YzQD*28!L|I*@<;pR%{q@u9A|Udi zCtxvW##5-q1&HM}F=LWb8-v1g%d)*baHzSr-2+K`wPWs^NJ3|EeeYq0HjMCHIWR} zsn6|YdyM&aMoSEzh1`?6x1%R2-(t^T#0}{NJm&^=^U1eHnCZeFGa3wXkU1{hNUdpF z?2Is7*k0f7pF!fH91S!_JCp*1#>Ig+n)8~e`5kMFlgH>>RT?1W*L|EHuQwVSj7;2n zW&6di36T2e4OmQrqsWau^kT<#XV5#O_AvrbWel7HHhzbftc0H>$|Cd1Gk~m~831Fr zIdq0NsIZe)E*u8lChbz%jJ8#9n~V&OurmQ7h1cIUvP7D_^?n{Y*?b}7%7s3M1t0w< z(4@;Ag-Z63)zBYR)>|UP(U(SE09Z3!$_W}S^b%Akg5sPvWor(8?rAJaumBT=M;?d< zG)iP6x@SsO>g}`ym!M&SiGc|ql?Pc1>b~!v80N+ABsP3!TPtoHEuA1iGqds&U1KdN z8(IBogFot5RPK`mt9Y}cOneKC;t&$o_3RPu0mHZ$KA6c#ROT6w_-X-PK9sUQ?|u#j zmXCTcIbFU_{M zU&^*n0y4L~QkIZD{r#stQ{vSq`#nue)4d`hEiTH*fJ-KdLY-$=u-e#nMC%_ZH8PNf ztx*o}X;5jzA9c-@?TLy{tjadU!+Yt@a_-Q(BM>v6TKojM8!M~Bz0dHU- ze1ybVM;U^|-%Rn4-jMAFv-M@u>5ID{`E0?1A1*N@-v*u$V)JKn<1%2O6tnYQNVF2w1jG6OMT!^Hi+dpjAMOKrkBP}M>HWc+$;y}j z$k80R`UzPgiD1!!=Z4os4(qr*=ST#DA4`UXMvTODRrT- zWdnfP-z$9KCoz%c;H#sI4sNQ@dLb`?EQ^qmJddk}vqzTtg-ybMAp@m=MVr0h^eIX2 z*C#@iauMsAkn~Dn8k>5e2&W(0k?XQ3sXSQx>_=O-hcM9WnIpZ$?U|}Jgj8zJNZ~aj zL0Z7rz!r#OPFinL&3dN^$f9~}rUYT&GmSINp}utnRkN*Ujq@PZz^`X(UD z(FlwE&%^>wfLZ3MpblMYfZsl$ps}}4j7t%XSGauechg->iGfE^0D@;~jl!gXq0c$d z<(u381%ia80dFyF>nMr4HPD19<&SO_YJG3-OFwL_pZuDo=_tXyz}@WX_csuPa1?(ZXnjv4=0Zk z^^VqH>~yv;+zj1v66mxb$wd$>*<&gvu_2_W-wFcjNuU^^^4b-CWw1^IDJ9hWZDcp1 z?9@V5j>mx9LD;Z8)2)jLSlk(x;g>>TBp%RESNuqZeud`KK7kN8mGB);2_i81>3boN==_EBw$FwBJWXi8Y;rb$j7X<{fMIjT~wcjNG znr`0my#Frj5_AE5XaYd@WDDWi6^LH-SXv9)a5ECxNbQkWoJzO>+ya2QfA9g2gT z|11sLWbVQRv(E27_;Gk~RabOvbh#hB`Z6ESBD%wH_|8}99w zA#SOeKLrX$la|f_!+pBzxk+e6OVoX&r&FndyA@8B8$3W@L~vYLuaXnv`sP(kfZ|R16N9WH&Vu*#6>G*|! z<8h2$I9R}Uj!V79RU$igo7&c^H}&{|RReugiKX40wMk9a4A&J0)ho=3r2}4%kN3V! ztt$d$I`sfV95MfN!5;yWVk7WX1X`TO9)1he1XlIj<;L0X&;sMW*FI?19%GdHU^e5Z0xTRx?i3m{t((O=S>yg-h{Y)Fj!43tgoL09tzdeU&43FL{*I{!6WX$qaBw zrCP}-{d6jq1S1V)wK^(qN}k1B)E`4#gVvW(!C{4k*PpZuVOVd;f4rVXGlM3)k~}7n zlX+=16j&G$`;jFmYIAH$Y*=o|X_gt-C{PQ67Bvx|Iy&@4{~BwZ3gE4(g2>RYxr=3^ zR8m}V=ouFT8a_M=1ruQ2PnplI6`M=A76HV!9}yTEtT_jzQ+~iFX!W#Y3^%$OkxObEy;vS&Dc^M;ZWgBSYN;`Dpfeq)sQpb#{n8M=f zqU%O^;&@+Z8K#}KH6lxJzIYb-x==g4ydWCDAY{s^OAcA%Oe)*DVxW{ZrhBGYpu8t1 zEW#9+7>k~U6PycBgi5lr{34Z2!RzS`98`QB4P8MvS zC+aOE6hQ+g#6-x(KitZDK`BvznReaM8rFkYNi3VVsM;CBtjYIj|5BD~@|E#TX>Wl8 zBo=ZNPFRZ=ikk29T%#hMAUC`Yk|}WJ44rEln#KzcX_1pOP$s;71J$cAlKklK!Vw%W zzRC$WP48sax>?Hl5+?vWK&XtQBGkp&gj8sIB>$Y?AyL%*sEpi)`OAFXvKDlbl}+o` zAqsFj$?%uiJgPR#BvFg}VGvcrjqN2G!ob_*1_?gYZ(-;5%DqZ2h&Io`@|K_O%Ut0F z#_xNY-K5L5t>Y$i9>ew+EGR(#5oZlbT=27cn}megU@w-oL633z7*r^Kgg|)Eb z$hk(Tba^Nd(`8z~!T=b~>gF{8R=G`99rLu+f@l$|H7ybbLZ%eBv9G@Ke3$sQon*f)BWSD@kcd`Go zO$Iy5WsAp+*VTW|R7@Tl93Agfbfw9Wu{v)3IT^~Q*Ap%S8QBYe>br_smk;T-3&#U0 zi|$_0*Umm=Qojgj|3GJrAKRnZs+JhaLN@;1T;4w>?v1>!cl-A)j8K>K!+q??SlD&n zqdo3`Q?iXrTIZ8Y3eh!wUvxYKbwtX$&##1GNjn&lF6jiF#XjG(9lRR1$NkR^XW;~D zUyns}!)1@Vd+S|{LsU_-A~{*g3)jn40I9ouf%~Tc0fAC-v6Hyipi+ebI#*nG9}UEJ3Lp6B!Z+L~z_)epN7Z*Gc-fG+ncevl%znFQ zYw4utswfQsKDJ;9lY1ur%IRsmG7R*VXMcTuXuD}Xz|fMJF!Y1>6`a84zEr#G+l&{% z8GDTXvteMQOz(FxeEdZeKMjD^3sevtIOZR`JU!@v|LesDmE*bx8`bfGu)k<5j)Ml> z4O(fzc*{jAbACNQ%F3y9yC=X)LDbG|Y()RN-k#LEnZF*69ctYId*@sy*BB1M*SQ=n zeR28ssIZqtrH=d4}qH);Xg2C{xoFZJh~b>5c^j!|HtRn|MJxRZ>lF<-Tn0h0xoBYVxi!W9mu;Y zUR+k#iGUsXv^^?;HE0uQjP9J|y*}^;AWAI%wi(7!`(W-1*(UNssj>yO^5|Co$=wn1JXZb4 zf*mO#2>6Hk=1vLHbKEeTDQK?1&I)Ls-kl=D0LiO=zq%xpi?zbaDVTE`>S2$TO0)V9 z=Hj339FbE!Guq5t+qi4AV4%~$w&TRohrsB-M~@2!E~@7H%zHR!XgRf^>u_{O*s^V9$Mg0A?N8z1z9^DK9^%0-pcMGkmO{h46Z}Ao0M*d zUc5Rps<*Wud{#sJdIuo@1w6_!yf1oeea!TO^&g^zBD$=OYo-wKvkD+GK5N$v`I+{U zdN6r7JQ&NSo+Gi2K!8;gkQY*jtHYis> zmV6kT>*b2W5AODO@x?qgI{0&%`r#AbCllJUxG|=`gE&6GHrC2s^TJM&y{$?&No&VD rJMoK}298zFh0-*#D5UGMRX(B2rN|hiz zh=6qIfzW#kp@tGd-p=uyamRS~j`6;4-0zQfzg^baYt6Y=o%6TmntMkY+|=P`= zKHd(G0WP2n8V8L|JE(Xnb)>qQim{{OjR*HAG1^Z%eIH5Xi{A3D+4 z$7aq@Pbj=2%?oYlMyF`FO_zVtxiM_ZUBy^2`*f3rC_%Ey z=?jy}Arz)SmQjPXN>$btpEcuQqnhSV5~(5?_?>UVZDLLjcaGJQMWS9omD4_5oj#P4ow*YkPa>}&Zk_<0R@ zpWCU44H;?Iuaj|Ygzl29yGDyW+m2s0$URrv-Z}C6mWA2Uvl??M`MUWnlMnuw)pRaH z@U2=HWw}-QktI<6rrEYKi(5Z4!!ok&FsIrVzmC{OZ^9B|gFcVOe4!NY@){O7@Adll zMClv!+ne~ioXZUG#D-N7(R2g!QtHC0WUW5ab$5sDxPEjlowNvF=Lhu$ADr>E>kMUd1A7{mm&pi4RMRyxF=SgH&Tw-WC6LJ3pZFWAiaCNl3ukSjORp1O*)}X=%h0~U&`R79C10_b z8tKV~fnK>R&HE~cN+^*mq#AiHLOSfCdS@xDcxmvOg~_Kno_szy@kfZ%0DY~LdPD~A zJ!GjiC60gd`yaQw^Lt9~cmKgLI9x52k%+is&W5~&ddBe$keBrBHfNJkMDzURnD-I& z`=W{|zFFl{ag27(orfwYN1cYUK5cX)Rg6vXXH)4SQV`8Fl8GTu?AV^3gl=75ma%gh_(xpkyBQxApH(yWK zfw1c}IU!Owb3@@^Aa_*Xi|Y^urtgK1=_9#TNvyX^kaUdNTnjK&W}tqS$Uvz&)bQk) z2^(59*k%@RBQw+>8vQ>-V@e2wYsIBS&H2W*ajGt%p7C+5spU3{3JPOUA&=E^8m!#xuC4DVZv8{_n?0( zKl;51agR#w-Ll`=9x|6@Mt*L+4aWew5 z(!c{wIYQ}KCT;SWSyvA4M8OP{@I!24jKw0H?799uX<4tpFL(0OM<$OMG##b}HCfZr zx@c4dG!$-N&Ux3 z9w8h<7NZkt9xU(zTsv!x#q2;0tOC*ezR)6qFe9&k=){>Z1}Bsc*fyLA8RiPckC|Qy z8vI1Aizkc?CT<5&7^Y8TYlIo04)iF=V=6KyMV5;_v%E+fINF0fB(V~ji*4rw}J8`k}?9B0F2M>L)8vR)n!(&@mq#Y~1(I0!OesVHZ3@9#s zur{Q@<+MdYUxN(*~)k;k#{!%SNX1y%v+Sjoh;dDAbel1GN$}5;q7NM6XwR~ z7!5AR)n2tVuEVC_&oO-^_aK-r(zzH%RJGl9t;jf>Gn=)s^ky3+0n>fx+hFrU|+`GlZcPeUX zr|+ud*iEd;P9!0R&YnZW={rNx`wV~SuaPl0ocQ7!MLH?zKv%3v`2%;)WQAo2iVNo< zInlFITKIW93;-Rp_o914BwDe}ie&A#F+H*$A>c$jZiQ~m)R+uuP3)FVY|NJMSLGB} z0`b7BVP*!l%IB2iHR>SjL>B(LD)SpvxoZokt*y+JkX~R>Q-ztuudJBz>tok4euIW8 zxWV%~Lw{$5zd(?{z;@6u6&^~s!5K{}%8#O~8z``~Zxd3k`B&+F+>r9a^ZS|$+mGPn zt2E&6H(rZ~>mERV5t;tJ&yKGTwj}Jc<4*=A)JA<(9(K$IQdqn%hd3xGFOI#V5rk}3JN=y+mB!lSOc^-u*_RLL%Axn`Y)(6T0nek zQfmGvLPx}Y9SstakCwU70*pV*NMlWvMafSCNAh`iqa7|8ANEq`sqh zbBL;Xq&EQpa^(1i!RJrck0F16-h^KH_IgR6uv`>Y9poSiyFhFkts3l+Xn;V%liW1Q zJPXD~I7%!3XxXV`V;XssjT45u;c)9ITv8G$#etg*U+Wx`F91_bDbFF8AEC~~rG_7q zG&Ar%a&}aRdb*yay&fUO%Ytx9}63x>$JG^st1b(%Rgls z&bkkg$BakXqI&74S@^%IJ&}P~VU;FBHWHUD0|Qm#>UfpKsL_1j1|OQNA=%kCEzZ2T zgK>S%@twgIHZ>TW86d#II+J7A`Efx>@de%?*iB=IrQDK9U9Kj)(zd1eN$T95yxD7N z5Gdm$&_K=pW$fW`e{4dPd{QZ9KE2-&)9V_^{gkcs=9+TRl>zOQ)R~op;Zt+8#xyQt zdu8Mwt8h%W9_x^wIcio zqD+pf^El`%t#LwR-&^=}5f!gk0={ygeMY}ZYMoGS(RhI-+#_94hleRJog7%ue%W%U zJzeLlwMyD!p@G}es4mrXp7UezlyX10O-GfFS=`$;tMgZ+E%^{X`_}W4n3c|`f7;A{ zVsVLxmtzTzkmOkFCHwbVpol=53k=o4MA(OBdYr=3jW?Yoco8NF21e^B4@*li4(#J8lKA%>~X z)%?OHN0yLyPpgmz{s|<9BDaZkeO|RNRezcp!NUJC^P9RmaggONIVs_Ru;c}-pQ}<>R&ATcD1zGKA7+5VqTK=w|&rG~%^gZOQ(P9v4g^RXy zG23;GWwmEfHs&5Q6O)80ke-OO%rhn#5=WuXUvo(dnM!29-;_%XvG`%h9H3CI=8y=c zfB%vig*Y)hbH61>nr2U&8ILa2tJSl9M47)rAZWZUz}atqHc}x1pmg`uwc1E2ig|Zb z1)&+6xN_{$OWI<7dSZ*butHVN`CF?V2fR8^esBtQbFvaZ=#r8Cy zTTp#KKW7?M{Z@UCLCUjKm-d$J8u)&%T}g}g4t9NHx&@1wp<@6H_%-c|c2nj`tLi@w z7V;c1|GlpL2^fFQ+CS#j!23^gF@N02o_w9)K3aRXScf$a!SdK^Xg5~fT8wt_c>MO7Y4*9onH-`hc> z2omhPGu?FgF+Hx|=J&W@Q4Y8ARjJqnp|me})Zh`_&Jy=tCqQ7j#s{)(Q)&bR)?&L~ zWs0aT)tpwl88ad-T1qpA?(H9F?&q8yY82#vN*F2#cF9bo6t!z|2FRCtslBwZ(M+I}P3?u3<|Q>(W%4d~t@ai$ik zU~3P&_;iq7(=Y&gw*puG(6qcqR`Nt9j6{pRv zO#OA8cfS=3NKuqi)t=1JQ!t8Z@GL+)&Ni!aI{jYM?!MYknAm*d)HAXYoC(O9e&u#> zAWu56`o^rRcrwe(U*_LCdKW@@X0T~6z4&jXlIAN4_Gsgtm)T*jIvl4v%y-j$%JwO< zw1%IuNDv)GvX2lPzEP@%yi_8S@0)rwrzeaD7N3Nq15A3^9m0M`9f@dZsPOC1rF>Gb zR{1rc`>-}qRt#nH&1iVVUCrY-kqn8)V>+~a{`!?6eBw~4<(MkFowNZ3kPNsL}3Bczo_aXV>*7leudf;3=tpWBn`k=?T;zS}PBOSAG4 z4LRGqe!9&=W2fV9>N(#vl#CBm23|=%;agt$=uuhJ4{BYFz;kP2*=QI|0l|5e%+6Ft z+YWZKyJ>=TT8v*?Ol2cqn411MLvodDnSr0P(VSZD@vTQ@1In@e$<2kCZW^;Kw*Ew4 zZUnQ%Iivu~DM&9U_n=iD1wrJ0t&oTnGL@l`|e5I~?uS23kadw4|1;I`N1b&S>zm@IAWl`8cTPu%=D% zF*iKChs)K*%ZSW&E~C~@jWZ-&D~S7S^`LNNw)_a;iUeJg?(D`sX76M`r`{Ulk+zTd znuz?ZMBRp3d_Y=Y$XW6uCc1F*Hxd0J;eCDPd-GR_lr_?Nk$rZqQPx<%;g$zE_br5- z-I;^;PbEWT2?F)M7)o-s?F3;u#H~YV#ej;}z9EJNU ze#lt`Ot}J4;eH`b)^AWVXotJKtS!EH|=@>m2 z6M*G$&*UgP{$hL|up{kCKnG_8za<^B2~38t&#<2^D?AbGyP*s(l2`vw^V`z;Z@~F4 zcMkswVgK(KrFq=Eoeu>;%YSM04JIcC1@u|X#kbY0NaCB*B#vLLPBQnhAQ@v1T*NSm zX!GdCo}Y1O)P-V?V=v4ZXS8R!gXhqjY-!)lqWD4Vwh!G_-^*H6;O`)(DjNu(;g*8Qms%Eb#Oy`sxnF?{mS7Jf-|=z%Ua)I@;8 zK*yW+F$=Q9v@f*mB>096Q%(Z#j)vNhAm1-dZ^+R#W0E%G-FV?ZW#C;Bd*Zm>c`?Y% zL}3&wkZy`j7&FM%VvtG@_HkiS9U{P+NDjfCHcT14U`MY`!7_tWDr3yX&j=6bjef>n zq)UE?8o_dxG(@A{;Y1XRTzc10;(*st1{0x=SaK;^7C&waxv)6WzJ97L%Z?r#RYrN8$tH{~fo9xxlq|KttLVR|P&QMbLVq&yl zzKO)iI{r`0(9EIE26sae3ph7rI8{YZ5v2)gz zOAGJMK#DqX!~O6Gi#+0^hd0hE*BiQOW8oc!#=Q<^lP%@zd|)j!p%pST_VpNqog1T) z_z+cP$PIsryLlso;Cx>P%Vn*i*z4rlB@SW#0~2+zmDJ>)8?E%iimYVy?g)Q zQ+9q=g+5GiER5>E2zY9>!vmS%eO=pE4SHwcde{$ti0)s%(dam25&4k|o^f%3T()#k ziTVA0g(^n~s_yhyr#<2+^_Dx?ljLUwB8u&Ua*Kr-)IT=^BaS;PtLTK>%RU| zG5CqDyNIX>@2#2sgk~)Esou7y45v#?Ty~?M$c>E)a&QJ~%IEKVu9U@;pe)8x!2K4+ z!#P~2g~ck(?N=b7yo4pi55sEBMup0f-=-T!vNHM4*DDCPR|M;cfDknqdAG*=N$;ko zSa5T+bi_rK>Y4>BNMg3lW<4Z;`^lJO0ARa-%}hVa5F4OUz70pxvZYRpB|fJuo^!Ya9UbH_EW{J}~ z3a*{-u%usgI*g|#PVy~9w8`RPDfddwmGT?9{^I(Z0xr7kk|FPPI!rjF82a)w${lz%oKo_c0v7w~Ci;@*800?I~-PQ>b+(`O@p ze<(y}2v?`hl0fdvKREor_%7*Jt&aAI32<_7ZF5uwd}wIXxgh_3%ej|EntLJwp=c)K zk=^l>%@az2_T+GOj{py<;}}6!m*^k9lOu|&Hlh5@NM@rhXWy2aVyksxWg5G3(&~nf z*7fr_0ddinuoUz5(4o@8^!&l+&DT#(T)>BYLW|*()*i&MU&d0tglusSY7TCyUkPMb zX%G>3hSp&wRy?9`)>?vH&yI=FbFVSCiYV~;9xs|wljQ=(<+!%n_aP#WJwh(tC(`(v zf2o*#t&0XgjZWmsWNMc~keJTrb*ZldH1?hHnn7O~BgMIk+b&5pNwT+tgkB?mSKPz7 z`jlE>MCRL1+ULCJbj?R>i})g#`CFY^YI~NeLJB8+4Yi_+et_)$-T#a~j@A-T_oYY# zJ#~a6De&1XVo#62w7;3OW<@Jc>+|>s2UD9`*tllmS@o%V_ zyj8cNT(v@3D0zU@Pq^L{SW+g1i$bgMdh>7ZxQmQLiZ@)Qu01I|^pW)qI6879E^oQi zcf@J7BuZ&iVp^poI>eNyuv`aAbmIi09MVJ_Q%v4;O_v(2yL+Vxr=%>}%$9Jn234o# z@mts!g;+D=wAyaFn7p|a-Z<^>Zhk|)VR|c6v+F#aH!tw|F}1VXXEKem-*fZbu>d?S zO1@U6HBQO9rz)McP8%xgh(M|$fj&IT_Nm;FQWh4u?z!$R7ntQsZoj);(vM@o`9fCS zl~!HN=@O*7`J6J>Tq@VPVY`WLXggZ8$&9?D(5bWzzEny zbieIZ8gMSoe|;c(+k2>W84Foapd%R|cdNIhd`)fo#!vZ5Z{|g~hegc4-zMh6~qhZr%SOkquI?6{+X^}#OpXhBp;eXru z83Thr_R$Nt6ZGO81H(CnJ2&;rLvmIpyj%t?ViE#AW@mnp=Ndh~0_Wgb?d8^N8wKG!5Jz{4LH*S-*zsx?Hz`{VkqM zE8SQ4?;Ie58F>A>T8Z#}1)0{}T9n5?T`!5)8F z4(Jg1E~r9b+56{pRUM{-!$4BMa+WYn*>CuTH?f(7- zRV?JG>&EisL-#$G@+zNAJ9KFU`X@9mVJeg*a6t!0U^SI33KlKV)x*%NYNTu}+plC0 zJ$Eg;rV94#$-472&rR}He1YHrLF$vzB7lFZ>uL6_y~Z!`y6r`ac9c)n(+YPYxoB7S z{B!OdEzCrA zlucS9E9?%$uclne(z-HUWu&?2#EthCUH5LFAnW(=n3~+jBKv_|VzYLG@0aVUN_BI; z_4Jg7FVn96Al={m1RAwbuaye@HfLesGoT~XoHl(6H6Jwjtv_DZ0fx!=YH$D55JMY^ z*s|8}seQNVZRX=V9?h@_C=e>BKCBxpu=`%JgKj|+I=Krf&H`bxS8T3fJ z?yyB)cJ!8^UwCIc@wpdZOIyB@E}?yLa}qt|MhN9IIbR|Zm7`@n5u(1g;3vibs)sIU zmeD(#>h=SC(L%;4R>!JF9ImS(|v`mYNBK#v#yG=uVi5N)3-mbRew>GEf%Pn!Qf&EAK8 z@Zs+CipTtlToc$+GmMcXOdivh>2BKGpt@>cg1XMrP6<`DZ&R}_0b5E<&n*mEbuBYJJ)TcyVXfX^{4-<3R}ZRBF`@JIYHxG z@>13L1O?dK#Q`lWM9D%y3Nr)1nd`s$2)7k0{8;agmo9k#EGMZ#P14CJq@7ax`ZKoa zU8Q=~i|FS%-K2`EHAAlO&STYHP`hm+Jz&R*bM6dop22P6PYB?fAM0)fFEV5vH$8&q zzgF?j_fY>i4L@vv`E<3lG{D<+tH<5)Ko?VhZn~rjh8iT=>LP@W2J-{^?wrBt_4&eI z*;6^~XLWs)kEf5&y4I_;s8>0LimUJ{1UQ9<1%1rlYbBPx#ZZSriDhjU8L{zX$^7*?S%ZCZ=VhHP}hvB$;{)N{x(&~ZLEv`tJmX8{1cSv^@Pc&zlA z`$k_#7n!oZD5Dac*#d}y1yEnf-_1!5tO=_(=QL#7J*PQ#$yx0>YIU_VGhRWS(YMH_ z(fl>wl)n^KvElLsXU>#pvKO!4v!5_W^%z4`c$H7J`XfxKsIxe3!lpFriGb|Mb?)3T zACD1I;5j>{@$a**GOOfS3{bAd^TCAbF*xChej1xvwf2NIsnPyPI-GFg=1Vp;gwmw8 z)Kv8kz9MIgSt7%!bw~(iuW{o0BC^7HxCQQJshbovD%LO?jUBdSud?#mYQS%F3Juw>AS-+WB|x;DZh8WRN&Dy&wY`vyX6JiO*j^UJ*>~Kb)Yk3mwxoR?fa*;+rXUu5j!p@bNw8$?>h!2^%L(jgP6 zZIK2s02Wp~zV4Jh)UWt1as=l7xO45A#eS_(l<=j!vU15_!`#=CFQOBERFAC74-T0P zj+;!q8z%Z5n%D`1_^vvEG^D8AmJIk`652FSA)ngGYfHo&V}#Y@;PeqCY%X99HK!j$r;%t3p0@e zB(Ug#__iAoBsyk@Zx3co1*OBMJ6=Gg`OQV^UrY2=WD^T+NGh!ij>GapFwE)e0#>r$ zwQ6jb4Lkmb<0qX_ zrt%F-S5wr48j_>6eGxIShN!1{!B8*}Z_HYp<^y0(===MdrFd|aWxqVez4p_Xwj<;c ze{0<#=xh2Pu@-d?&j_m>Rl+YfOSKF@Ndkr0eJ(qVhVb$i$Gvc?{nWWG{mPeW7@>!6 z3%$12zgCmU!Z>Wd#rMGf*HMdd&_mzQ4`A#&hu68O!DjSKt**77HgVD^Dw=F#Wc@2Z zE0S-TKb$TrSf`VytKtp_k5truKx&u0t@a>;<0{wJ9*UU1$MLt((f9jd6!@UV`o+nu zWK;jNqdKI0fqkDfgV7Bur~Un*xg1s}5`I0^n{N(1qkRXM(sXi%m}LdPWPie~)B8qI zE9rAKPeD2jTywYUkbM^(t?#h6V0D5O{ZwyA(*b58Sx+2Yik-#?Atjyn@$39_`F z5T2`BTLp@?j;ZRmIG5Qy0K04~`?VgztTiYZ0OEIYoBtE8_!!`$+D``tb&H){j*{bu zoyh)T%3^c5(#!Y$YSR4grfxItY?7a+hgJU^%OITNL9;GBu#&yp6cG6~>iM-V4FE~6 zDF|s;WB7JfY^zi4CsK*E`Ru{%;_cRoGBA(FILAd{#xCX(KYQZ_juE}4#!JS{o6`K1 zwY9tR1qp+5pMR_Ghga?}tu#(@p_$X+SG$83M#~Zzm+@kzC}ytk;>~E;kZWQxKDIT+NR*m zpIn&gv0=jgZ;lgYBP1q9#;UI)DdIQZk!qp4+Hk_th~`DSk*IAEn$q%Ak6TDWX!@2fTk1?&0RaT~D>fvMZkf?&w!x!v(FDeI7-W7Hap8Trz!Fg7) z2H58W=$%=qyd-%vK{g3qUmW)0N6Wlh?(;tF`uFTzWvv%?Z5yff;SjPK(BW6r>li-M z#XPjOvAB2(H2i+TGCa0nyunmMt?Rk8QJ4>XoZmZ_f*mUR{`8feYtQi_bB;9-VglHX zW_bf8)RdP4Ih}?i`HFIN!R;P|{w{^`E7$$1{?(nCg*_;$z9>y^(!5?1*kK!YX-fE> z41dcC&FG?Z^HaUA=lj48e>tOExz4J%k2ZC-rol09Q|}zj+R&Y?&$8L8F1XkyBi{#v zOL9u=o7{De$7es(6mwp%|9mHqc9z-wZl3ZaF=jrd^97h%|DCWSefgm${-Xf|j@2U5 zJLXuOody&gwXD7<~@SK7XCb%%#?$AJl!FSl;lw7 zF$mgUVJKJFvx*yEoM!#Lz0#M`cwGzSr*0O9$V6w*B5=`Uk4_h|V*_sSZU|nr&z3bf z@SKagctesLUg6*SQMV#4k0wT)pBzw?K2>HhiQbho#>7gX{&OFxU%$8h=N`3E^R104 z&gbXp_@KzaF|)M1#g7kDkajuMW2}4*sGy5l7E3~dMMYHRkD*!HY-yi^6P~|5kNbR{ zUBa2%NxWNHxpVgM!jt6$dtc3y6~RkgB7MsgAOA0)7MLXJS@M=ImMY^DI5@V#@U%#pCzx`zh52B%}ePEflHNS8K=jL9?rlkt9d)w-@Lw-bD94<=~ zFDquP*LCmcKFhw=fc@n+YI{;n$8B@W=ExAB<&;Z!p7ee}-w+eh4r_%1$CBhpvSfA4WUgva8DTKfbpmD*~VG33`BK= z?ydYheX|7yW-IzkX+QEZArDtDdnQG~b)3})WnCKwoNhJDVi6lF8I(p?yj0GSh+2|F zYLw1Lt;6}D7a9C*OX`#fK<1-s``E$Ry<4_sUEesq!Ue(o?YHug*X%#h?eN#Uw$KO} zy!BH(JO~&OGsz22erzaEg^`*j-BU_iz%^K0b9CxHlH0DF?AkU$-CNX^Tb97BD+XJ^ zOQdtrV@_QpfDC>4-<8XMLxtgo{vxTsyP~tXgdpmETr%@}g^EIjI#_ruh4kivJyk_o z>DX-m-1!InX@uAp z){}aw=&N$wQ;--AG3+m?7(5T2cpY6`X6pZx`%U6Suj+PluZff);^K3lLvQ-()aZ5A zN2mO4C3t;Z=Zr;ht7~9Z?vUEurrl>-NM!%qx})TZd>Et7uW07{KIW`E~Km(OpR+ zNx3n0!m?D>(>+vAv}6Mo8?J&q?-=~3xjreNIJRegEZ;E!Ab02r8o$RFYyiHL6KDR1 z@Grn#otn^YmLGf|P#AlkzPs9et1+c3h!bv^!JinBVfQWaYSMS) zB_vL4JTx>x!QS`_tIBd1To!_UGxZNk-}@bz{pPkVkIk376!bz&Of`Orh!V?F7Yq4vyQcSg1N4MI>nGeR zFcPM6v@4m5J!Fq^NQ}H_=XBNaJ|5Iok*UPQ-up)pSqUKYF?@7&Svy&&mZYV+z8Rs9 z^4oG;Qc*GCNtroE0uMt!>mD4qkNV&;@>Q>eCpTc$OyQ$px;!H5$R})?W!_ER`EtW@ z;p;14e+WCGX481YzC4Su zSC(z{u)JKa3=wUmm=Ysbx#d%H0i8-1q?{O$_u@zt5#JRkaUhl>_$i8e+gkTjV&rn8 zlFx{GCA~W99QE}va?*KcrRS)+ za(TwHu9+C%`zKq-W{>sE^tC3^OR1+!#nc-U7pApOWhd9?jhn6<@zn~av#g$bHJMj? zhL}BxkP=g@&YC>EHXPzr8s2vi8L3n^$`lc1{>%vF5-_4@U*c?N%@rgB15I)G2^LdD zzdo*4=w&r1#J=*NrjGHCf1PWcd0$cnoTW;G!$JZN@IhF*B{Zy)p|C338P&RWuzuAn z3~`C4)avx;_|hP`<`G2`ciNbQV`aH4pE;oGKn=*MiT)wvHGcn{p~1hQlxm8PJ|lPg zx6i(3i5245H;8QcBUEL;%NiW|d#y#3N%-v}lh*f|3lYYwTDH);^=f`W77BobZ#Eed zzJ?CO0e{qJ>eWkQxetv{dSez@c}_n-t^TNNecdsUv^%K0){)%0*owLv7(!A)dXy&mW}q7xL=w3Vn|s#?m9JlG z5TJ58-mtEH1iwf?@6acdsrY!K^!Bq~%2jLv`2QBEZDeJM4YvzFBF#%wqVm#5O9Qwp#%j^ zy7>z2a$`}b-y0jtsDwT0ao#x`nk4t@dR(Ld zu_q_+;9sNZc6zP|#3t&P{~(yl?m5q}j=el*E&& z3r~nwURtAXz7*Q3B%k?N>~i5}a_Cq%`=eonQ#0*atJ=&8gb!>1E|48a%!eSO*ct_s zaFhQ)alzL`{}ac-{`{Gy3n>K4fuWg$cE7zfqVU`9QM|Y*f$}amKYr5=}LB z1_akA$oy(Gy(1OosIOae)}nF6(KsLLm*LneUi;*#QS71S zz*zvuU%7$WLGr@8Y$%RN?^j&@_@S+Kq_gPSsb%7A5Yu?Gows#q2p!i;*>t5*F5cDE z>{Epro_!~AgDSH0JX*8n^)`ZE)uQ7*r1)7b=5EFV2-^ne3lHO(Q}ApQ)Hol%TSed> z=pc1aO|pIE@>g0HmzB1wWgUl|J9*C^rfln>5^Skcy5f~T`6KN3Eb1$6pzez4-{Z}r z^RA;3kXZ)lXlRC`BfFejT=bT=`=0>xFz=}r&4E(@F<((vTRWu^s?IHEX5nKJ8BUq| zM$tWhGdl2s4K*&{M1QIXB{6bY?TReDjNbokyYOsNv+NOENxqkW` z3FOgTfTSb}=Jp9j37i8{=3Wlvxo~28>hD70Z9}Gr8d5=T(T{OOXc0&%__AwpqsX~~ zl)#&)glu=owcypb+zaA-9^}z@to#`lgvyO(GVk!>Tn0C8xBjiXa z?iuDw>a2%}^f9%b25xDN@={cJPoa*ofyzRHKvnQ@-gm|*s=2#u0?kO8 z8f+${<99qG>q1nGvr4prGrkD9M@U9~#t#$bXT+Ay9q6L~b=|{NnW3Le-Xa$}!nPG1 z2IOTv;Lhj!nI5i=&?Poec@ z%PuN#wZ03|-|BbQw^{>R5tI?F4eNuE5J`)j*WOI~iP8Gk?(Jw!go{i$l-yH&OY$g( zhBmkt?v8k_Fs*1aat|PpPx4Fz8Sf`i7xs|SotrMIfKt(Ws7Z0$bs4aRanqHnH$T?A z{u~&DOngeU8b&>3Q*$DID`MxsR+aVOT(5L4yNt37Uq?+}QK_Q{+a0odG~95|_B`u4 zUq)*9&9tIQ?;efT2<0r5tel6n-U$rhWk88ulKXRq7|b; z(#+NFrFMmV6uD;|<-K=XnsG-6kl+znvqcT@h>X~}2veAniX=o0RIO&97tl9&;ZtmC zw;dtI7{@i)3O}&lq)95qsy;`;U2I1wmti=8wGw#_nJ^Q$(XSx)()D*Y$OrL&h zXf#=&G+Bu?#XSeB|M<@m{}Y>8XET`XsXFK#F(6q*0U7m6OiNhm09 zP!wf9>3CGHTaCaV^nVw+@FHJr^be ztIsADlTqVjvQZ&EbrDLbEB&LnbJb+uzaEg>1X3rOuF~P3R023r26b4SbH6u>P{DWq zDs<;Dmyz7?C9muN-Rpn7P$<9%0^R-N^Z2kVfrKTw-=j&eNM8(Z6b!RCfo={Ty2sZ# zK)3%+_k!t7KAU>q9BV={46KHlWWL0L(o*(!{~qQ_ynK@mM-RL>`^59*ev@ZB56+z& zTWq{gUILP>n0dUeyxD`T^%@F4T?uMVAEZ{JC|J1#={~+&IVRXNCOWgs%|YLiz8>NW z4(K(6{WIV>qG<@Vva_5)X@KsaUhiL3g4!QWA3PJRH4d2uQiIKfK^c?9M~pLW+S+Fg(4kA(?-=vOK!p40 zsMKXw=|KKYYB97kh+9fel4qQUz>c+U49j$I`!$8Y@D-}pO1YDxE(3yC@h&w4$~|yG z|Fj`*`P-gke+c?4p@xU*^+SWvQkbG|b?Ot7~4a2yL^qknK`S2JI* zi`Gv$60hY5a$zC+7CDL@Sdb$_7p>(uTLba;DfgeWyOtI&p8-i%%mkGCGmh&Rp{^N) z&!bF_?4WuPtc_T$JY1YAp6n%Iz`5J?wZ^@|H^HXQRaJ}*nGtWkdY|r`q()X!- zodyXFQLuKWOkjpVL&77L@uBk%^pb#%RAFyxRDG%6d2cgguLi#xf1MyZQeB4+kW}#5Fb6PTOayvO1IOs?W&Pvr7&_*t&m-mO-yyyKyc@<<0r z(V;BVs$ro6ncuWI(go6BoJ2=g)n{=2G&S4UIsWp@CszYwAXH6Rf309gk#u0HVNeS* zJ8(*j#Gz?9Po*6=en=bS{D`4udH)GBLg$^+Xe{lC0gz((oo>3gmZrAK6$cM~@KS-0 z2d1rE?9eKDRpZ(V#n3A~I=ObTmg6c+4BbT|zt?ahpvrIR-%5V%ix%IWQ0JEKfyHA- zOS<&Z;^ZyoD=cZH(}_ygYzgeITMm$zOpP(xmGF#(b|@kiW$%Et$Z&~yp%a=WJEvZG zF>Sb1Gi+S2A2 zE?GLGqcWk-sZ{1nFLEWa6ShRuw#b#yWow6SnG&l>k9q)G>Xdox2O_-s;a~lx6Ga-cnICJ zXMOVX4+UGAV5{pRL7WZ^Y%Y_xKMVVL-_I7;E2T4bPIEc$=R10;x6|9w{9tqtn=SI41vMch#sA0( zq6Ju{z`^K2k<`Ww60bjJBXu>eL)llnNLZl%?1{mHXqj~`)9~y^koAAa%X-=PdUv+K^3~i z^V_<{v8zTA4l?VL82aS0b21+Fxg8h|Cr;F;wj#A0GZy(sMmM z4wdFSDrF~N=%>D_3SGSG3;-!(J?sp2|40mDT8#)LS(ccAi|{XMM?f5~qDYp78WFy7 z6w{kdwXB!r)db-LNWSw&_$WR1(<4Gy4ngQtB#Z5sz33Z&i6oPVKs;QXcE`fhR}&5N zep~5lh@hvkVb_#a%uT&4qXQ}Dgm%5%$mG7KPZ7ac(f$h@$#2f9QdtD^?5tGtBAecZ*Ube10+v}e`p~#2P(Au4Jv8)lPnceiL*fh6d!8Cg zpq4-K>g=6Kb!N7Gtn(s;m?Jm6%uNz_POv8pI`x6SbCsx!3u&N5WdS>MRd4V(oY}XT zu~G@sj#vxV^-9ZN*PADd*V2%?$K5Dps0D%{sIu#accs=86#fsTrToD~`aA&hGp;07 zoieIQ*#SJ82E{8GM}=jhLqSBdkQ}pRdV2I;5!#4z#3xcIq-847flrD!i+QLt1uAVc zAe;T+PoXe7O>NARKWi9h#dtAQgR?qF)bLdB@3B!OsAXn?`b*TM-MZiM->;?`D6zQ} zKAW_I(UwD?oTx~&6u1BVLUmBrnXVpGE#-aD%ve*z z10s=7BLcj^;gB11RVs@*=97%$&^*_QwKL^Qehi>a8YLi(pi3kno<*rN#W$Dc`9{46X`5JR-zq zPiHQipPFBm?GJY{ulJ(~;fK6rDe18w<;Y8@vCFpgb@jq(5e?!DHW@w(W6OeV8Dc8f z?hicPF6BTCt$n%A_^SDCA(hORi^VCX%PVMYia~h6rOfl2p((-LpGyjfz0$sCk{Il( zk0%?OYTjDceTp-@a}Gx~vDUc0QR$P5avzBtjEBFZN_Gbxe4IUUDnRwai=kra@8JmA>P&i3 z^6yQmvMRKrdVR%@p<}*6Y>NG^`Fya~mZkkSG*c@f3_T^0T2uh5Kxgj<%qHdt#`4BQRmUKJfTOfVKG2h*nfpyoIEkx5qj5NJbIjjz z>X>UeAEj+Rlm3v;Huf%F!LwEWId>grTS6JYr9w9sg~#U=G5N#{7v6Vv+gGW zAvrvgra7!jI<%(ouYFoKW0l@xv*m}^vgoKM!Y@uft@9%JM}8UBS9DuPx?0Xj)1tCe z&OyH)eOfn@5~V={SJH7hr+;tQUMcD$rSUkr!qsag4r;$}|0TkywRw^=7ONmVpG~z~ z1;JCvyJmEr{j#@5F)TE1ae$l(-*v-tEWOUF&|6wjh#u{7n(U-74u(*V z=IM)4Ek;5gLA%qDidc5clr(}l;)*?jud*6Utxl>v@alZFVx9aFKz5|ro{IEsS>$Em>6-1MpVmwaPa6#eZ2L;sEQ z;;;S3u4BqSCa)?UQXHKPXF6sk!y7z;g~_~w(K^maLw3-G!r#MrL>^K3EIK*L z=xRp1)}ZzSXZR=JV{ij(9UX6sb~*)b^?^o@&BmmwTQPDLy_oSWqiqcT{tV{95dBmb z-s<$4IA)aYl)6F12d!uvm3tW9je=GQI=^LD!tYFs9>EB(bkwxpJTb&QZbuJ1MJO80>fm8{f77qne{;pXG~>!Dh(V>Jbmv zCny{6cTI$uR$sw&-s6q2yT+1$_lF=X)_`O`TE{xV^q+Gye* zHh<;jFRrBQc)(o@U}LLtY|Ls=TlH;TY=Q<=vjqFl`Nm|VS8CGzGW@1N&F^gk3eXQW zKh!JUs8#oO6nhKDrdjU84sP{H;^1b)iNxR(Daj01rWwXQni6Kc^}~5v3Y5qo6Y1#P z<`I$mc<$EJWAT?myktpU1q}zACV{i|KqQ>~wAmy`w0(Y<$OW9R&prRed*pT)-xi%0 zW+fUVlVeE}P)}O*Y0VSeDq156vdWl_&7b4&rzobztk%F9jdr-?w!(6wAf^dO`*NZN zx)EAzy6airJYtLM$b!i|O&W!pzExeZIp#Cxk7r%|u8eGc<*ZlFojx!=zq#_#SYue7#)tb9>LKN=2#T>|f56Ju&e zZ|{tVwtKOo;TN8KM9%ajty=6m9qqIsbkDSbxUX8OS^Ap-?~Ka^fTCc-zrdJwgo1Gw zy*G6V56Trys~gMx7r?CMOwTk&jkZJ=WC8;-)de?`4=l#XA8mzYnB3Rr7u5VYzEeHT zZu*;!C|;vqk#4C8P)owJI0+{=O`fA8o&{r6q)2lWs67P5(A_xY%Z8Sv8Zo+jRh}uG zEsJ(X$4@1>L2yHc0CY&?+#1Eq{kZg$3sn?ur}8bibvlD}bh?L9K}B~`)CPRPc%u$k z*Br8f(Ay~rmOYWRD{0ni$%2lrLFT=0G(?`Eg%QX?hrT6B_KNk;zP9Nm!e=&))@?CQ zGc=VyZ8lC6JU_XCer48I#%w)W#Wlksc_p36W~}n8E{V_N9#|WGrQ*pZ1N8IJ>%Fj0 zi%GXw)942_e?K~;FcLL(B_i78K79BI&jQPX4_0h|;^EI|X4BbwHyjX%+%f+r55wF> zi&1g(lp4E!kC{nK>{iwtQ^)smzMAey>7S6>zAI9$G24qbw~o`@up4yd#U8AT5! zKwYLuvn38n09bqY^58CVS-+=+y5vGd!+5_%5iApFFe5s^F#rs6iuZb1>EO&7qM*^Rk627{g7<59;{enzlmFIr)m9!6(sY5p4=n9{B{t7-z2g#*GV^g z_!Z59seaK5pLPvEjy33U^otZuDtU|WO+rkhB~WJluVf0+RuUH<&0l4DpZqca(NCEF zr4Z^8x~qBm*3_}c%un1&KPNeHTqQIe&iS#H)jijPW!2xGx1|KCw1#nBeJEbsO{mF& zIYUl&=0am(V2^z~%kPZ?`fwtMqqx1VI0G0vttfXcO*9zCKN-3gT9pu8ez4;WYRtBH z^P(L`wAO0Ee(jR|$MKtp?9cKCq}B}zIb%O@fV|;cAZ(?%xTgs1IQ!9G z?`9@3GMyPcNBl1(dAB6>+*b-3M~!JbQCn9fMZR!bL@kMg6)J%4&QTNb#X5is-^w|+Sh0!#1vqtbv0S7Ls&~>=nNF`c_ z{;2*uZ?<3`DVKa^t7o+ld%xPO1ry_%A!>5{5vF5)!hMH;)xs zU$JN1IA}vyFbQY=nS55-i_Y(owfMt@8|zN0_ze37B(L5A^%!V^JA=p-AhyBo5szoN zUV0)uK=WVr({NW|y^Y4lnYn0*aW(fhZh0~Y4ku@JR4=-q+iU^S*RSU(eLFrSM{9jP zOUm@q44-40o2aBZ;`*{hJN8rM5*RJw!Pr^2R653&3JA&Af>{mLQ)#I79cbt zU8ltZ(wIpZ9cuX@#r^mzCJy?EitYJf)f|!+RE?S4 zhpq|%)t!?YEu);@FL$>q5ru2=!}|2hHIIA#53H!4fz91J@~udGh2TbhXlq~0JUp__ zYyKay4ua+BsOay&G$nJFtqnN-1gTqJUj13FIk<*MS)_XmefHTv;JSKQQ$o~U3i--C*qDowY_!r(~yiw;<`{h6IWAV0+DLR5EZE7@U z&i33#VYD071q!A?97)cMt0DB()pc^E#xUsi`1!SS)Qp?Dd3Fdiq`UTmU~Gg1E&RUY zg|`xq8ft+s;SKQplCS5wq?m7&P%=T z%eCTzU)fwGNlaIPuv~I-r|@$5YS7(HUI*B*_82s;g@K3tU%zbvdHY0^3Y)lS~ z9QIkENZ-4cI3KPL{0>sea#DkmLj*5h?^jFzwLnOa`D}9^zV1)d?E7g;&XjECI2^CIcaqdoi!JwifjE!1o?MPkG`*g6{#O)kkcle)>f7geW9<6xZx>t0 z4GBdiIUobH*^PHO>a%ke)vmTbiAvLYxy&C0`H#`e7BnjEG8^0SYcv&amK#5~Dye?@ z8ANbf?ts#c(VnHt?_7k+t|_egdn=ZFg=&gbWC8$@v*plWW33(5ay87^b`I-wYhOtj z#ZXsQ6I05dorPRJj@HsGu8v#>dOs8`(s7J90?vJEURAI*NE`>$-jewC?1gp}{21&H z<)$2uEL_VRxSqRq$G9#_AUrn>*G32)y4n;|sp!dq&0v5!&awC*?}PdH@1<&+A}Yew zmz7*3VN&Dx&pR4{5Bp6i;glni6xz;pFm1wPN{=?^s!%%bI)!mnkNe0JKD%H#zJ*iS4RCWfDG`q{umC4) zn0b{+m98JoH}yJ7s>q`a@<|q@korh(-(FloXOl!2d(CEsRZl+X!>B$f9q7uwWNB4J zn1{4J%%8DNOv@(!lDtx|E ztk+uMhSuBfRPKaBz`ytCn}x;&tkF8v$k{4Mlb5~|Tm-J4vV3)t|B%|NB5PjTOmxf%X$3Jtu9246-)NaPJkzVpxmdnX}7u*Fd}xZ3vOA;4`nd)sgB zEy--y$eE#$1N!JX@*?yR&H>U^j<0_4=bI|s?34nz-GJYFZVY{Arf?YGP(XHZp~B^K z=Q&HA(%1bkY!@2&WkZA4LNny3yJ`^k)07!IW@fbTVP=ZPPLc9`xg@S;&l;RW=%Mwb zDBJPJDpGH#fD-2*wf_wZHAnx2J*C9lmafRs8Z@0_6@98S?Y1R-zO&WPU^89#LlhVu ze|3=gahiqfHPTl-#QJWD68Vmt@mKyhMn%XikBpQ<4%+I2S=iR;9B$HDgA-?w7OrG8 z1~K}iegvF|Z+BdYpQGW_x^qh@=lb`%_g`@mt;h8gZAr?j;q{X|y16$<4&u!EGJgr=(wT=K`OM;Iyo z|BUg>VP6pXZPKD{aTi)`8Fj>aN7C<_wB{3o*l)J10tjMxKg#kX6K>&39*%RSv9Ltk zsf2!*>BB45%TCfK{%#yOJ16*wm&$8H(f?SsS%gEZuEk8ok(xp^5 zNA#5D`;NP#@LI)3nAw;(P4?XYcliDTJ#lNZteU_6kp zd_YrRhYbc)<|me239nK`Fj@NTn`1(8Zk8LpZCBJ10~MUM&b(T#%h!m)s~PNe1rt9?j*~ zv}wEm&3NfCce;u>Cm6r7`)L3FZ2?qak@w0bn1T0GOPNm>`=2YfiE9ABbc1D7Fcrtt z-XM=b=?bLInnrtsV(}AJ*;w2t`c7lSsT<{kyH9}lxSb8{?!W$H0SKS+Afj3O5g}3B z#|n#__WA;X8?i#N=~*6}4+pTo-Bft*Qk~r`Tb6Y0X%fGIO1x>WN;k-oEKfCe@JYeM zJJ$8xI5+G+00LvK22#>ZfXih*^`oX%AiA#mtv1k{eZ?vWSK{HYJ-M5yW(nwq zJKgeEP0Ke!X!?`53T@Nb*{mW9hV}L9S|PQgA@G{${EVtdc7vOkZFUB|FD4PSXmZ^C zNk=$V%9f_c&>Hfok?+)dr>qL1CbHR1Ik=Eb7YYw3iT^RaDYM2CdCnQ0%!8m(>U+iC zaHQ_dPcl=;`~U|{HUZ~z#0MCzJN9S4YZ$qErKW!WY>68%ic$7~27WTRhdPJ24r;&k zssDkYt^LM9K{t3sbxKK}HU~DHXt;8J?d+Uh?tKZrJf7e)Qw*5F<85-koALPb;n1&1 zvRUXr0FLKsNU>er%HOWTZ)JIw}MpvZ%A|afIWeRv!+U{UA z;Y)Qj@@wUMkuzU&?xG0bV8H>3>`U!pwz}`bQ2ml-|HkEN0r~NU8gilOo9U9Y$^IRF zf^D6PKAC$T+}H1Aj&~1Niz;B!`4C|1RdCqBoBkuf0=_I%kFC{m9M?_)Wdaz=jA`FPK1ilHjyfe z`xWI2%r(oHF07SRzl_YTE~;tG(;q$i`PLixSE<`NRjK#&;AJ`aMrPx^VNZ_iJ$Xik zpkO!tZB($J{6pJABY%mXEba$mKep8FB;(t=j88kx-ZQYZpp5F5^t)TR-@5~qL%NYE zS+9ZzHN9@_iX(1`tQ&fxzGXfjC^=$;t#yBTtK$o$>Us|MjmWOfO0J)f*o5z5XdSqd z?dt|z9%i2mx6NKR9~?rneeXU&LI(~0I=wo{f4v0M0)ioOQ{a46R}m5?Mq3FCyNM6E z5kjfHRJ|rrU+QO0^JljnfF-k>tL=Ot5SHx^pQp`_(Nw~x|23Kr*KH~_ zW^FpY$U4tZgX~TUY#eVeQ+1xFce%SvFziuL3xk+B1u(WF8mT4k#5l%NkUignt9x{?8yDOn91G?u5Qqys>4bYdB&Bsa!MZc>GK{Cf*E z)+}s0TU$|3+E@Kv8)UVsSTNQ|y7r)PBb@u)nlc|#HSJs7J(Z69|lcil6DRyUomEw$< z$ZBBJGXfb)eD97|mAXL4O~@&w^?GCrCZneE_u z)*i@E8c-&QmpVU{Pw0k_guTz-2Uvfx7|TyagzIS_eTP#=vBgx1fo;D;S2V9Y)s`wk zrSZs<+uzcy!MIcEsQLH5Iy5gj>#ij-lpehpHE(>~sP=ezP0`c3u(1MP#@p!mWpS@P zlS|&1aGEW_Ov{rN_m-l#7bi(lb1bzY0hD`?y-?}sfoegrJ6q*Xcbp0i};yH37xCm&npd&T+Lw*xLMX z8`NPBb$rlc=5IpJG==W3v=mziJ{{_S-6dUMF^e{C|643amFZF$h;Oq+v6M9rP1k# z)$u)10EVAXT!z|IqR+|f7_BYcgDt1XkT9;b$o{IdUveHqr@3;kW<%WrWZJ-QCAY{! z@Wp`Z{rw^_TVQbIdOT#D-EdzxpymPpFuInlH8E|CO^%hZi27&=y1_1EHnip<^I@(z zIlI0++840vcUbZr(p5e+>pFi5u9D&w`$T2Gyu|y4ak{yjV1xuKXxs9A?Z=?Y^2UW3 zV`boNrq#)El%r!=jXrTivg(og2kQ4*#;Pz$P%s8&enx?~muuFk6)a`mZ9Tq=Afl%O z-*_sQT$cwtvGok6UV_6rurmpTa{pxM{hs2sqo(nW37hGEKePPhs!aKP>0ctoD`!V8 z;lk=RvF(kHAmoEmR;a7~;oY48Kys+#J4sWT+bYm3xRhFyjl@8EUcdk=B5))j#?UJ2 z6}8N#3O;MVhetl)ZpC@v7d*~tgA%{8e`tQ`d&GR%O8~|??r2ivLEn3$U9y|6h$@_F za*K~D<3L`bHcW(riB9wj&}Z%X#n(Om0nCfvY_4A$d1vwP0onUllod~&8E8$` z{TrtZ4%#1Lrr9+KWCx49#f6KUXp9uX8?th~?KU)Ux)rV4(D-2ZU1c%S$bo!L##~*5 z0P{sNLw~){B?h2pAk)i}r}KpZoZQDLKr7}rAu9XvYYcYb#XBbx`f%W$pYNQ~NPZ~9 z*E>0fJ{~`E*m9_nYAml|9BnH3CNsZ}xihpXs&IMfch)qY&@Uka%3g}lLGwHM5J(5i zma1|kq*w69=yW`?>rO5pF5(uPY>pA%rnPVK=;Gggd@Q(=F>f=3Ab@BmGFDaXj0G$ zyX1_}A2|2Z*aP@$%msS2kCTn?eYrK8GVpMcP+Po!nPqsbrTOoHh&(DZ71f)2&K_kYoWSCBwKIKo{;F+bt5EPCVx+IW*1Pe? z^RBdQsv}>=p3ZHZ%B`k7H`PrQNOB@^LJf!9TCZ&A%F4g_GpAs<`g1org}JDt{7046 zCs4)la!5VtTPc{ourTzR`%2(p8C-iU@MhN6Tnc{=JoOWx|Hm|BEdZ+!p{bw)A*%H5 z=Q?8Y$jIEd4*#9cU8JQDcyUKm*1lcs-IP{miUwEfdhgb3p{KY=7s|T4(6}9$YrgX7 zZKVh(otZq*iO*7qg`ZWPO;5x4L3CzV5;`g>nh&bYY*dH7Wx`rihm*~bA5x2Q2izr2 zNeXJp6Gx7l1Wo7unWJX5wN)`1oxmfi?dh-KP_Yf!P-U)(5@@7vly*SHML^yxJTr&{UT4RSE} zdCY2XuS{Dvgs%@3bob8o3d|O3hchFKPf{q-#1oOQi%Tzwj_MYs$rFhS&pC1u?=o+$ z4;>R0^`q^ZM+3Ej!2wrep?pbGLoQCnAuxPU#HyaNLB~!s&HnQ90&ADT`=j{l94~~7 zH7!eUXMFxTpSKwAyN4OB1F*nCJwr^}|ja$0s1Hg+^|l_A!P7b#^9@P+Ej8^?utMCyFC>cdmt#CB>U1r>b(p z&W^ku9flE;bR}iV7C$p%OiBO2vYfMl(SL%bp*|GH(^34}>o!ER8Trw1FvfG3H;RP6 zyVawOBEFf2UrY}myxU!3aI&L&E5c0`V95x_TCLRzpgNQa7Z*EX8)sYI%B1+WwG600 z?X=XYjGgnM{e@+}9D!)*%{E}cgr&B1D=qFpba3&-Rq#e_u9}IpWp<9I>*vhM*zL51 zL%-G2svE|?2p%-_03jBQ867__9Y`W@=_`WHQ3u=?Ho47g}JFsZtx&Rh8N_GN_6_dd4^F8dbi z;TeLl^HJ2}0$w(%ml*Vd6sQ_^a`)m~)CD{n8503R9&SQ~uz!8rwhsO8s-Q>Xu(c=i z?i?(zKD`J|GZbiTwW)dve5TZ2A_su!SuQ+fSgP4JnBHy zUpAG?Vl(Gy68B#kCTrlRW}pVPyokh;m1l-4Gw+T-K>(lh3ab1)g&!Cpkn`wsQ8)=v z+jGC+$hkTC%9S%$gKzocOLZa!LD68Blua{UDAD`UstEnBV%X|acIIO83L*sMx*v39 z$M{krKUF4P6J?qaJA{7Gta2}2xUDkQDdyO|0KWshG8)a3J zl8{fGLL#~JN@93vF8Ea^kj^wNAKJb~+NHfaK8hj5Z z5oB>3_{pK*q@R#hPQmf$^BCDztvoBCNAJRt!ce<+Xrpl=%a=p@h6}TWSz>THub-Kf zVn#%55n*;~Cw%#q&Z}6Uw%i?~&ev5X_P*tv5x=?>Qun8a0j&jkrX03!N8$$WQZdrz?uS(v28EXy}=<+#jy<~0H^J9nx-x*xxH{?kW(lg

    hM^DS@BO^6i!`-;4wd zyBgTnPOik5$p7m31u-E$ze+>mRyUQMyiFMr_-fdZf#H?yP{Z`FuYNxO+#U_G-OCnl zoc(d`Sta{^>yJaNt5m*uwQkFH6WCDLs}K_StTikPpeB*KE1y&2%mmh)>Wkj%INOu= zobDDKIB|juKg-baGU0jM1yRlcgK&p!F8?jn{xhG7z}Iw`IP>VuBATu1tcrGBu+sq+ zZ+e3o&Bab+hJSBgqArq~hVPzb$PWp-Ny)KttagEyfm+_KjjzL`uER6AyFjiNeSog} zv|H1`k%L4uJrGMwxNh(+!&Mr)K1um6UXn<>r_rraD&yC=kWKQU6=~XlOo=;BIgO?C zv~a6fgPDEs%<*5ZNwY(f6xY^LJY-6}{I?QE4&@b4l9aR|%1Ul{^}W}pH3IICz^)!# zF;k%JANTM<8X8$zX3=P^la09GQuU3k#gj0Oks)~&#MhgDu^mEXYTs?;6pcN?r<(rY#KZgGh6jpp2~$|_T$Uk+1^#jyOfwLkw@{h1}zINR;TZ|o|ODH6T* zJBo{+dzZr^0V&7J(cq@!Pdc%*%9Ka5bG~Xyj+Kr%w%i{^_f&#sv?z#%S%0>+aI39M zS!>0RdlCW{(v||01PL3xzJ#nQ!sRZ3uh(DT4q&7FwzO>`Da4+{1SO)QcMxvC@ zhWDI6-sM??6lk-Hybl^&IQ$Q^c4Dg5^RX99)W3PpUP?3b{O1)$HAz{16%@YI^| z1bxEc@yLx%SbG%A6RWM$ZBo!woO|t~o#M8qL6gA(-aJdwt7YZWSeM(#n}-kM!Bp=v zv~EhdoX9V|-p+3N0H}@mUS3dmKOBa@?km`cZ#V{`rki7}L|b+6t}5qQpAf+xij2?T z68&;0$%6Bg7KZ2pqUd(JuKkpqGGd12n$yOW@qL`Cg9M|$Xs8D=WW>m|ma1q}O771! z7L-m5$En}xq%+W0dUf*fg7da}8 z9X(m@^o)5E|8%is=vh;nJ&5g1eqgS8379;Ngl%MxOGZ2#TG`C-qjk0OUn02e58sZ< zCL&|#q7Kt`qkJpQj(G=`8#pj51Sd^Bd{k-k(Wk=3>)GZ7ERr*! z;>`4f$Q(wz7+U@SQc8>C^I~B017aYbwKh$5DwFB;CdO4JmwGFbNZD4LW>RWV?g9s9 zVtzJ{RskH}|2n0AHrGXdw;^@!b8&G^Agl?>=4tc|gO13XOegzm%XVHOFml5863yKBak4;L6A`*d9=5BYXcXzW? zj7A7AM~y7lV&D(s8LuR3l0#b-YD*ixF7CXBf9qX&N$``O$4&$H^$F-DU)F24EFN`t zQp)55SmhlE?W*AO^0_n^?Ta1_d6_;sfS!u^;rSj`xr)qNA2-r)*lgLep-C(>$^+hK za-~-L8h(r>N)h^y>S+4G^oBA^<%dIz4X(2?ds}%s*n$a`?eZ`oM9)({qo8e;LxI z6IrKryK0*`-*u2Z^+N(aqqQucsSzDddtG`e8QZZ>T3buNU4#>c8#?&!sqS5yTKIdB z4HXb+!04JKUd|(B)g2Xg|KgpPvyMvnA5(2kQj95GGFDhdFrf4-bFh~<7t3Jt_TG9+W?(J7sua|HU&eo zUrW=2$6&N;h^p(?w8q@kX~)L(zqJP8T$4p9fpC0CT(>K%@um6gdxeV5Y;9oR3*X?9 zlOAmxy#j;_pdWy^5iX)Ok3)7G1I(`5ic=Ry2gE1(=#uT)`-?WV+^527!yr`5=w8LJ ziD+U62{!pI%}kM8b{CU71XTrkO|kP`fv{}SJG3fwz-sAhJs4>y&O2Zuoc+!Sp;)2T z#So{Pma|0<@N(wAb42UDZ#)!W(F?Mn6F9yhX zo4T_DnR2l`_^6G?03PFR##4Z5C;^1S$ZMdTn4M(bpJ>Q!FhCFeuqlX-rvN>aBKV@$6xYZXPKx$S4iJ6bc^ z7aZ%=96qX`095@;frO_z=mbNtWevnX(4`=uX1#*3PV;Xnbu8JG^HdH01uMeq6G%^LEAh$F;B&4kyFE(=_(D zEpOo``|2L0+~by*&e}JJgvl=KvI^{~t~aGD)y{o3_?eOQ`e0jr{TN7mxW^l*qzqo7 zmwJc#*ZPD8AcpOas@2mIr1-<)Z!pds12>z+bMeB{rvP&s>GO%z`PCaIX}1p%x~;{% zm7=Db0w9x_Z@F*x#9wQ9UkMMaV?XGE|E@{;ULrS6ub8^GxKltG44XlLHazO9K{f~e zEO?UaGP}NkK|QQBLgW{1;?3FGxpsC9*!OQ-)FUh}!nPL#sjDmSs`I#e4F|M49t8Z= ze^Eoal~N1wf36_6FpzgKLHebVo5^Cf*cR7q&icq@N(_Dixn~?pqiP91Kfwi^6jRsz zAeP&B(Qf7PeN=azNTj6&@^3$r2J{%-qg2a^Jq2Iu1zaSHL7x0WtzXR?6qwqQOJQYC zom^(}v^;UTULR5tIVNq7&QDW@{An2xi4ZiKG*Rx&@onIKscKH126l?oHmh9T<4|$x zcA*Brz03nz)jEIQwag8%xoP5GOnaBh1D3PQo8>umf9dY(=B$SskFZ{zinSwtzV<%aqzEmwfZZ-v zXuZE!j{DLnveak~I0|AI{39V*xy%qjLpp57c;?fE%A?`x7}@9e)|!yVy# z)0s6(C1o-P&|VLBA`s4NdR)QqDZQcRVVYg^a(LrAbozBYUwdkM93<%Zp7|n2#*Bw}H3?_HSa$lX zPWUN z-3Y2W0i2467gm>^jy!*uv`lIUeZcl2ZBeGpRPh8pAkGTVAW%g;_kFtpV6 z5hjzYF9#@dHia4Ety`JdQr3s>wBg(vEwAT0vwfsF&XEy!-#jjFe5^EFcfMi&GVkQX zlA>`OP|PT@?i|wHee3-S4t(=Av%sv2tdQFNQlk`2MWCec_3i?IQ{kJ(_+sVcSbW1H z=Zv9Hlhg&re+v(nEeoL9rE>V=omzDSg#W3ZRoZO((PJ!t z#dK2qxsLf!s}J?ZyuIOz)GSC?CRB62H6);0V7fmfg``fJ-NeP<&taX{50yUB!nK&Y z!w_u5gO8@Lx#3Z=H*z-ZqiQ{y{KQV4OU30_i+9OY-D4wD_RK55wC%8nZPG0}ffx0! zpJpUd^x4bN_ZE;&;gSB%BzZ0T+6tO0T{e#}9(q5JA~(KxXa?~gug8Jc)S6_R#n8`iscDOw#pn5ND| z+jYQsJQL9Mm`jc*i1{?GEp=d67nj$4Rh3$+aV1m=|95LA=PS$K^FkuvP+xdq^W%1_ z=U(5iP{tX|atyL)vMI_r668y@zi^Y zPK~!^OOa-adWK^du(RwaD`#~n0JW|Gj3R@1zwdsFiBGE!qGVNLH?@2I(3ur~yq=@B zuQz_yPynk?rDbZKxg)g9e9Mlf_UqaHgMndN-%bCN z){4&m9d!jswXnj<{CwJE|I+y!F_ki~Gk$CQ!s4+J%ioK9i4L8R3cqREJ>!zqLDd(i&hXsi( zPB&HC)ohH{n_c-!(V$6{@9}Ag`Xrz4to_qrYx&LWY%NOTkbU-$^uTPUALk?Csb{ey z5N97V!C*LjM~hGAnTaUOq2bTi5HoDCKu=E&9F=p(2)aLnrZ(LFXZu~Rj=$AfVOdUq zGjcd*(9qMr@s(5^ONEVQfoQAKIe zy_Tehp1-v@S6&p~A%&TX3dj_90CLT~@{{znH>KB14>`9D$jwNIriD8&=r{8n` zxzBU|z0Y&+{qLOjeb4)Sm+v{>@AEzH`>AJ3HgU&4jcisL0XNpCYU^+3Xx27fzw3%7 z4bv*3xPJCdYPy=p^sagx@iow%b2-{0YysrEH_Dx8+&g*cpFw91vxF$`6p(w&r}Xo0ONM8BK*(>#|iMr()G$(!HN>+ zUoQSQQD!G%lzALbgl#wW$-O^d8?rt zA|!30W|zI4a>ab_tn;0(Cj8~VhZR4G3Y&vlHMWRvC`y?PXJ4JaCG~h`YiofJwC=3m zG}t5`c8P!G{>y1Q7Zv(=8kRq#3mmUY_j?mmFr-R*N(tXhi@-Nuz1rz7zh{ytS<$$q z{O!+p!^NfZ8poSl4)|#1yC)%v*IuO^_!2$GIBqUlXx3g-2>*`5ZAd1+$Q3t5o~^sO zKa{ECIqSS*x#Yu8a57lhlN^2JTM5HMhw-5FDx7v`afH1I-FCj%36O-3d>3@k*#7%Z zm%L8omDAhb?}CH)HrI}@{7sTBRieikf7GU3oZV_T??!moytnv}6^s7zwcpSp7nZsi0N{V_Vl`<$m%EB& zrx<1}ntMM=wc#$w4~z8u>NOSSJEEnQ6Z5mm2k!{K7+Q8<%c!MoGPx(SK$o~HIQS{& zhE9U7u}c<>ERrEM{eBy3Y)8jtb|7WS*IRwI^WZacs_CE8nl5`CMaxd0!ulg~eVKb= z82#twgEFOK(P*;}Mw8JxwZpP{ump3E`G-}`K?S>K{qs`LJDhuJVV$voUDZ>ncV5TA zwI7AnS}|^vi%i=W9LA5qj2Lr%Ly=9xJ%HI&UsIRfjj>-cTFh?2GR(-WR9^j~SGSEw znswhV4oFQn6(c@(Dc%}XH)gGmJ(OwxQxQaMA(fE?!fAw@nS5^ozTf-!gY{hNvG>?l zCTF;Y+N&EQ7R#=PdsN)W^%zik;bU++)IC)?=Nc;~yIthdUqh)~L+z@PaHC})5qgVp zP%Cl?jmybL5gYa{^E=}PH4K-$FJ5N&Sno<3THJ2%@x(w%9KN%;TGLsXr;s0AYU+X$ z`lk4hL$r_g+piUYTN9e7wt+)UE1P+=e%At4vu-%Rp(eGeXkyL&dfWptRu>z}`1T0Kaz zcYW;R8D?9ltpnB5)YbuJ4?r*(xigr=wexk9iKR?xBe!>6m7MGQq+Yq6y{P*As9T$0 z-u)iE1JlTabO&AoAe&lIPxw`S_-pUc{6A==qK+7k`iM5f9hCNZ``EK!@g5<+@<+1f z>jCMWR&Kp?$*V;gte4bHWnq<@lkt)xqVd>?W!3#x6x@l9**!GYbCK!Keajn<6$4~( zkGyFxS#3*yZp74E#??;FDo?x2un)_*GK9LHeT=i^I!rY>pOgwt%z9yaxoWT@BkEwz)4Z2sY{mVM^lIYw{}pVd7PPrcx87(+s8l=Nuc!$i$}LBpn`8Ql7oc zRtjOS-dcI3ExEEAa53~vz=->R94k2Jq6pG|Y`4*D{$j>8qcZQ?n7M_WFv>6^+(2qb zw!V|}ew$9leP^~@_90#nvZ=?+T3>b`_FQf#p!1VP{f`y8crq3~DF+ZV zX%KT4E-soi%E9V79fync7h^u=H)C66*q$eIN0X;z9_{=nuxe=fLIXYkARKLVhOQri zOwgE5ZJ*npzO50zqS*~&fd%CvKJSQdrO|^z3vU<*I8iL~O`@&e`_253ZkTG^BK?wv z*-wZ*4=_N$WQ*-QJt`81oM3OuJRp!?)99OVsY~zy2wh`_iI&s=|Lpx2~|z+Lj%{ z|016M20(2OKp8b;M2s^BjRcmnw(wqM(k@qo# z{49%JV40G6#Vp-BWTl;d|K7bh^nu~lmaqc7$fdf%L>}T4ATi>!pA!ZORqJ=(4QcBv ziKx!I-S2$Gsj$9N*M;S-qXe}9^}HY7Xxsy45--I{%`MuLa6wC23)LQDvo$?)-9^IV z;X6<-@0St*iNM1$-^RwN-2g@r2EIU9nY s|=7q{Ur17?xnA%GONozQc3A+kDabt zx0`B6d@HDjySAE_AD=@^dF_5m3V8^=BrXu*an}vD+8AY+b1AO39PZJfJTx#=4Z@N78ko3_ba-t7lLP<1v3V+*aRKHDR=mp^RA5VTxRCs%@a%|90dRUBNlNPjk7jE8m;_L_4FEV3Gu2r=q}lcS>_EomY3G4 z_Ul`JpAh0B7(HTaG*2yGCnaYHW-_e-RrS1p#3tZ)&yT<=tiH-ou@(AqHc@SHm1`E> z?-cEbxTeJV3sdV`lT_C}iU#d^$}jk5XeK*wUZa`e?nH^2VZ;CChA9nV{?zt0Mg z#+&BsK-%s1{Mt?l)NBq%F)l1uRm{5ls?3!AA_wo~*n79UMO9__OI4cI)~70>)BNb+ zlf?6hNtK;c%T_J5Xl=^~wa(wkbL+1J^(Lg#8|XnFm!Rq@Rnn?<`?lnVn!-C^uz74+ zAc`)(`-$hY^;J`3OXU{?YWFSC=zC2*(T_?&R)s zXLd4jEs_%h))83yU~yTl)eRmWo8{@N5Jy(1dXkD2yy1IcRb7$Yw&4{^Mo3PqT80@N z>AQWV@!qfi6kI_M$uaU`xjzjQbC#GA=RE5zujtA^)l;cR8omS&izcHJ!5sGY!B;w& z=Xyy>befDkOii@Ha0!H$oWN#JO;wF9v5g*N3kDC1$-sYk$$M47o>gr=nJ<7+)x0fC z;K|t{gx%cw%?(mJ10ELV98P!{N)vn5KqdmEb_oO?j=o5EK_{s(XwL&`=wPR`94+tS zG2=VVK+hsM=aS-MS-dY*eYXe|*5VxK@i`eT0-7a%WL9MY)62(Mkf!rrP%R?3L9nzJ z^pmF5-28S68YY%6^e8PM{#C$-1p!ElH>04&#$mg=_~XF>2O5wk2g@3le}=mhb4~4? zycDqbrJp1J4Z6iK6azvw7j(0Ummj?5`lmQYX9UJ7bfSLp^u8q8j;+<>+iIrfA|9^` zyt}kEBF=yhn>sy%_+-EvPXf;Jmeqk@URocC#0$=o*+7~Z-jbWRP<{4gtBHJDA)?6z z(Ac>;c4FprHGS_$lGuqePEuh6_?d0>0=uGIBY?Z^7b#~l8A{vNG;PyF!&gO({p63 zn4sYYsnO4$yZ(QI(no52NyNPvpFx3cR3D^XbYNdrcYp@Iz`(l`h)0OguY zzlROg#9zKe<0uU0aigsmMfN)l)2r(OO5FxQ>2v|ScOEoX@TI@UAb^&O#*?9j!WF?XYx?_SRsLA0db3J*KbrKjy;BcI)L1w zs9cNEJH;+e4<0>Iyby&gHa6`TKg8}gyrV<1K^)^>0u{y(F~AT(<)G2Lq6$b~E{Nmn z3~Pl-fx6oB#=>w#tIp>0;==GUUBFF@(Gkfp=<#FJu7K)ave*MIx&Xf0HyjWwU^yeJ zFr14*0|S>b*9Bd`|3eS)fUd@&D#Q#yOJ%x+!F=H_+o2d$VYr6XQs`sFw^4j_Ae5+m z_md$kQu%u8 zY!?Gpus|GBWDsiTvkVwNVYrEsTNoem!J}xb3J77A!a=S5;J20pS5Tcykzr6%P*u#Q3{XlEhNtTS?;jc-_0t)R(;>>J zu@+bB$5Cq^8d$+{ru9*eAF*p9|21sjyCq{{86#za0W4=0lvC*mcQk-v%!T3hzn8*f zk)j(2Y#=q=R>H$Lj^K`-4pUvAn)9FhjSs-&Jz;pRF3_1~(vdKb0?7YsW+pqL?S(8_ z1&cSOCRIuVzes0fdj=s*3qq9`m&!kZzo3SXx&nCjza&+E6{gvtgE+p^L$`fU+6|?L zI8q^-l%xGuQ>4_}y#BpY|7k_g`!1Hogm_E~;{I5G9k5Halmk~#^PA(=(U#U>!f*kE zquOrX=;Cb1H&{Rf|Gj=%cXP3e>A8h2@SF2iN6(On6bH!G?0Tdi1rH-fR#JYZ8nqvH z!3Nha!b?j#*TvEyh_d2L9aic)Pnsd%u|qn0pYflt`@A_eg5Zh_D~eWF_!{l@siqd` z&*)D)(QbU_Ht>GeX%hGWrlzzwjoMWf%Nof?IgX7un3Y_tR3E?LV(99y!versIe)LF zgy^K4?$6d(DS(~oYP)l3z!j)}zjJ$@N6sSyGnBXLcGtiwY4y9&?hr@$9|<2lKRl`jAHQ&_S{Iq*143Ccou*%mW~gwu0<) zm`9xmRB}j2Xz*(9g3JVpT!{-m-xT%_NxW_x_19Epao>bbF1&NJ_S$MT63m>k+&BVYALHzmyU7#3K(M-5~=IVS4aeoy7& zZb*2eo8K*udSc1I9I#Fg#P@NRM!mG{muq6-8&$`(Y-Me}->71H6EHNB*Z04Kct)A^ ze+teM;LH<{n4f79|D+X0p1^mHRBAW+^eqWB_?Ywd8`kQGywU|Yx3gJMp0OGS&abom z_r^<@O|MVI9T=|)nR09>4bJHn2+{-sR?TuHYz7+z?(9#l4 zY$%_3+tt-T&vQ(Sb$uY%<|`B8%{NMl`*0S)5j<-5h419g?gGKMo02UV>$iQPH*Dmf zI}x|EMv1`BnjtL^>P_(l)omd_xT8aK(3yz#-&&YI%8^U_psHs*2F_xo&pXF$Ds zzYpMhJ+QeA7+)f{flJ|5xHX74$cK()GXYb%iwXjMa}9y>M()m_9anvJ1eV9q!?%2! zKolq3>=I3ZfQJjvU54qojI)F|F%TlaOMZoRD8GCCqTKxk&A;K}pJql)$cr-Txzv4?-p1Ja{?1T`+){_SfRtJ;4G|WlHB2e`_?lGh$YA(E{;aj^G z#Wlt}`#-Z0Ea&RK=ZH<|^f?!C{g^&$cS0&!Oy-m}Yv=~I%C#1J- zBJB>kBBm0s`EShdCn04|XqLMsKA@cxwGKqTOoDq(s2^R3Hcv8xTp zny=MFWK-+coj0@s^GAiDhs0f5OCe}*tX8)F)|J9FR9CNjj27wU@=wpP%CFTzQqFBH zx#!!sr4jv6Sk2|El5ERboaIna%n0cnN{gJlxJTVNN>QJ0S+g)DUnT!0?28qC{@pc# zkGv{4`EG!*XXn`cIMvSjl{%z?1JYu&9lK{Pbn@*qtgkrbViL=0*6J1O_3DyMDCW5^ zK`w+s@miw-q!yvukH_{*OvCM^2=4X}$7|5wk6I_al1u3#2K@*sm~N(TaoS$>KiDA} z#IwP@nS|(mzb8p2`&kmjjWUUdnKPgr*74B+ExUHGvgGoB6}QwI_pO?5P>e4%Mp-JH z-cO%CeH*BH&~v^0wOEEq#n~G`6N2hriZ=epwMDj?xD(NWI$BMlKey9+T-}ztU0jPA z-|2pV4Lpk={u9=`7fXiik%!b;-z+%IXyf5_(_d2KX&3TFt&+-xqgM7%ZvX2*(UGp literal 15835 zcmdtJbyyrt^d^ck_yl)LfDk;m2M7{KaCZp=f(`DFL6Z<%f)hMA1oy#%ThKuUcNl`p zz#YEdclX|ZcAxd<+3l&Wt~&L;=bY-Esjlfh^+jD(kpPz(7X<}{;EmF2O%xP#2y#aO zpd%%VuzNb>VNd<7wmkBPf+B{3VuKIW06}u@)KK+%%QQ+ z`dBD3f5=r=ueU*|w-Kw4MJAiab|m7Ty}lk=4@IVj`iF-mfB*i}RA{UiG}Z=Mk4#7f z|1>{BklO?F;bF10^`YM80UG-Nt$#p@9(l<8K~>K+2H95}kdlEL3JPWV?9qByW8J0UgF1MpF-7~uQA&>zw!j8w@iMlJQ-O`LgU3uLkkLQ{H$EG)OXZ> zU5d#_oradpV>LO_{`_dvj0%=b&xY|_gPUn`EkJtyagk9AI|p0(ve zzHs}Nw;uSC554>-xdx`Nv6!#XGYk8<(!nzwq*5RI2bJZopLQE=N?$A~ng#95EFk*v zlfCKRp|zR7B!A(^TT}YBT7(VkTo>D z?n87RRjU11{k4U% ztX^Wny4TRMFS}PZ%bg!go3vu8$GFUNn}tF?9xoJS(+iJgHe~PEPuDM(Q~1tC51uP} zygBbMw70)>A;zD3C2Q_8OhYT^?=v5hJXyePXBSYuzpCHtVla8(U#0t#1_g_g8|3Ed zdt2EpXx%AvsIm$-Y=WKbZuc);mz(DQbQgE^Vs6L=psl|ke{_V1B7y$y2VLJsv#;N) zzAkS{w|B6a{+Ns;t$bJ4n~q6NxPoeq>}%xr5U&T#Yu2oY60;ICJ*;I3Vkz}X-dTH` zUl-`DyvcIrkmOBF?x7f-%iP$%Vb88rLLkB;mqhnB3L@&dUu&ZvKuX?-V2HH`)@{B} zh1ez8D7cOX^H8k$R(Y?Nqgn|nTE)sc3P$B2r?{HB{eDSp)hyo9m1K@kaV(UVv=L(V zOxv@cuaKp|?9;J@L=<3FAX@m1fB16K_ffb13E!51IoTP-h2KKbAdN)$-qp2`k=MT~ z?gtBkQdzb^R5Sk$iu6hK?*&jLbaL zPVP0N8T<{+8@sIa_ph{S=Cb8j(je1KFIB;)PoD$IT$=ufct<_8h2X`b>7lPOt8H?h zy_7_;WMYTEtPC>+^`pLeCV*+W(>6X!`3aTZ7T1`d^K>P;mxmw46G-MAx1!KIzfLS* zj->%cMUi@CjzWnJMm5LB!1}}oq(tfaKSQ8`*XoWysj{&Ef3@VoVjzqtNJn`oE7%Sc zd4gT?1dE-K#uSi&`yV9}Wa$?Z77ioL|Af*MlXwg|8e53N=T7$>EDE%u;3HM)x8Y6> zOrV!LSX6Jr{x_6D;Q|JL4E$ypED|PKLu9E-18a)$zozv4MW+BjksPfk1eDVG?0=v{ z`h0~k6tc@mYr~5<2!6LWb{yp6`_MBLbbE`vvd6^BNVEwlJl$R&l7*ED2TseGzoJLN zw#HfzZ~B((t|SS%&ZV>cbcn#HKF_g*lB9)i*Di>Cw>tsuMae2T4h5V=ty7C^~$!|D~rwN-A#H`u;U*iJ^+UDH7uSd~99G zo6w(P8Re`(Hg|PeHOuiqt)_Vr4)Pru=`% zx_}JeWE@s?EFlNRf3i1kY=UxidbYi||HI(%B&;FvvOy9IsL7?s(fDGb=YAlU$!WS5-IEVTn&uy{E(27Dm z%VbDvLvX=bvf?w0xC=625cV88dm!fF4_R2^c(mZ>U{7_X|ExN`@xUwwG`2ABDjAF( zIb3jpti%E%?HW@UDD(W!(??e%7a2+S zo*-Sxp?3n}o_|KVqD~|X2=jf7bmeCRO{lD7F4C1h-2}2Z^cqN4_ExcS)MK6_)t!Sv zUi}JJYdY^vrbM8KAZ;#TD-1ZeaZelM z>-x~y&~c-S903eOLSM#7XER7&mEZSEU&xOfG9VsD5KdazRApF%*&j5stZ%L7o9lyX z+oq2r5jkPbTMoE~hCd?b=5{^La+@FPAE{Oj37)^{qNB7(`_98|SzrxmaHAyQ1$&K3`f+t2C%s}3-;;l2L2jd94$0K*aUatbY{}>egV3K(qcz=%_LjsF0 zhLkja?d4n}?6Y{HBoRgWxqFe25Q%(c9U#yXOEv<$% zqpyJ>Qqx+*bA^uc7*ouZ+%9xJj=N!En3j+7Dd5~j-b-Ok_(ZkoJdYV+sX3_)&ZDVd zNLuh;lcz3lt|;mk`*?Bv&xgtB8^8_RRlCnc#!cIvUE}SxYbL9HqJ_h~hR|r#%+I&K z_Q?EcQ967K7j1HYmf|=%Ys*0AD6T3%aP6Txn`8z zG!JvtCP+{0oGdyMy_cUXS|)|=4)emVa-(PO1I3(gg`x7rU{SlpB%OOiCGwU-KT{4j z;!tVeB=tn=2)sGlO+XwC713SZnc54M-}qqC*EF1ZEo`ofoh=kppGS9j+KHA9tHRRT zE=E1FFO^lx0u{gkhdMEtA=dk{m6V(u5(RA90KxA`{RbG_W=kDGmCv1)j=kZTD}Lpy zI@0M7As>}_Gm{n2bg1}e%L2Vps!*%i_iQeS5DM0K;debQgc8{NI0tsl#aY)1P66x} zvV3}oVqUF~gl`3J1un?ub`JcphVE%Q9)uo#a_C4$K$b5G)9#-4oBq82TG=&#t-ePb zgL`0cbnp~@Fw9ux!LRH*Ao{r`v*=qpnc+di8YOkc$?xyKx;?=Z3Dcn?*>`RtX?vMy zYAeiH7hfYrH+xna1bPE)6`grQ><#$o4&oE%UXrB+*AS;kGnn1S+(gJmR<;HjT6{d` z1{XOoLvQqS{lfHCU(Xm=eGAazPUzlARns02b@R6Jqc-BruZvB zEKsA8i$Y)Y=<~BTlwm6ISUdsNU!uEj%3t~Z)qSp)V@B$AJ2bv++5s1@_RWse?=%7p zFaJVZlguv*obXfxL zls3J<4%5;WBf#C;i!!JphzRlO(zt+zHSs+X%ZFa;AFOw*H|KPe8iwVb@_WZG451ygY^X~A-hXT`6&C(du^_?q^kxUNe>74Mpea*eiPNp`Dxujw#idvI@LDY2&;}f7dTB)$)!J&Ow<4H+F70 z)&ZNx0v=JvR@s^@NmbYeTOG;0zn8zJ8ggu7n1Q#;18=(VyKRnzAA*l&ys?AgWKzDj z5zHHv6<}gqlm_NPCS}}xEX3YtO)Zi?cmJDKWmYshwCfgidSZ7POj0%t$@TnbT&_*yv$#yu}Qe5M3> zqhoi>JjB!Psg2f>-Sas;say|&93rfZg;Ms$d^8sC&8G2kVtBqT#ax%hPNUXeD>;tssIs;2} zyi07jeVXhuT!Eg(q!u*+q(P$`cF;HD0!5n1dv!*38=3nrrvXQB@r-!<=!xMnyQGu- zIFYFCBb79V`luUTIghzT+_!LxaOx$~^PygX`iPZW4Z*|Lt;uBUX+C6vtMe)u5LmT1 zu|s|2uHCaiw9<&t8F_M#InuyO_$-zG#F9F$*Ia!W%aVbS#5;=^ny(H*U#u`#uhwn$ zzEs**vk>TZAFr+@i2;Nq;WNX{pE;&PRcM`g!IJ)BwA+yF-le-~Yyffy8A?t6a!4=p zt8Nphwr)d8HQKsGc>rnPi>gVie^*9 zt6Mf_jRUjr0}uSJg7Q~>WZ-KGtHq!7TF(fDMy!|ey8!lO*QX^x8E|{C7?S8Yd%j7R ziUgDO-?ffe!L|5Z%1x8mz8Wre+j%BG>Y^uEjRg0M%960x({ha5u-t>B+SF&D?TVEbZ>Nl#m@oH3gWCs%+v~#?`BPq;2>8&nVy#Xdf+jiBZOXZ;|0qE% znHo9DFpfRfmpxJ%?A`JBnepBpU4k9&!}ZC1p**^leBDLH?vB_Nw{>L|FH5_dUUDY6 z@R5ZwCoZsk3Tip@Gyh14hvp?5Yf~P$(GaI_a9+-O*B6k|v-exv4lsjlv0ulz9-A%J z!dbi$V^3@q=3_@;T~;@1I3zLS+COHnG>m_rK|zf-)qO{u6WO3xQ;dy)N~*zlFExdvsX2-bd>)2>+5j-)lPE@*V_8lHm)3ewD6Yq>fR3d zBs7vbmex@}yKgE?+NZh7s@5CgY>Jmzs@{JaF>R=44Ou5PsnMst&?feFFJO0Q&~wyq zF9`8FLAQ`TYCCUsvbS|@?VIdk5_hP3Ip#>&5v9qrg3anlQ~X`0W|pM{b>5=E?_%aG zin5$13=-e9R1DWoU-z8>#q}*GPo=dN%o)ei3cyig2Jq+rHT1ux&dXI*S~=_f^$!a0_^sa zkDjw*#XK98DY(~O_UE57@|2OT7R5PQ6sDhPQ51>G=vaw>+O_F$bCL zuSS)eiS@DiD4Pf^oJGA#X&5i(Mv|aS)PB&}HPwoZSrEsf1}zjOo7CK^S$rZyw{iMR z$1=V910Jo?(EWI8RHC6twZ0o>*5CRRTGeM&<0#gKitKEAwp1RXX+79E7zh=!@3IGu zAo(dMY?ARLtl28EcA#);?$zS7C{*oE{lRDA?O)um(g(t~%eWz(>=-j?Ki&=#6OxVC z8~O`y>>2mBiRMOk(8&ptqNbF+Fg_$Elk9-WQ{cC8tdBqKikR}O zWSLv^^%`-q*TA!|v$4pnrdtOU+iB4rK_y-KF!cEq4v+zIaJB4 z;OKRfb%SC%O`en(+}{r_5w(1`j`il9t3;o$rX#Z>LR|t4FVB zbuFlW9NSFrw3X#3nOxEA_&g&@tD(j#wXedCoJP)h0J|f+ch#Y^E}9UPvHUVu>n_GYjEx*jUt6iysnlp<%lew?Nh8N z$YZ{(UF0Jjv#eV0A5pp&%c1ZEET`?Zd$R9o&y^%O>8cM!ne8h6@eDB$G>W;+XKm!y zpAQz|y8A*O2A!@gd52!znAHlVWsYfBiq(-NxoeQYFZ@Dlj5$-^ByUvn`$9%n%ll6X z@Wc58W7~>q~YrU>fS989Xa|>1=czmUFtv=M z!ZvMnX`pC6D9uyC964_O8iT3F`{)RY!E*E+C@I` z+|gi}p*|{fi%~Vgi%T$hpuYYhD1~5Vfz3IMFNTXS{ouS-fA@P%k;0Qi4+6Ci-#<`~ zflDg0Aser6eZC=9X_O&bV~N=m2n3JXaklr3bI_&9wDXICyW)`rB{!Nh+FB7#Zg03& zBVLhYn`0b9jb4zqjMg0QjiJ!k=YGxfKbro!wW~ScJ-f^D3V7qB?5+P~Z}VnY^7oH^ z;(rQ{1L&0wRiGcR@Y_6WrY75tr^6Pl1BtFXqrF1=X%CAuN1C&iLl zGsEgQ72!e_k#xfy{=2LLv$NH)4^tO zX)SO}>k6j=beRRP2&o_r>Q<70*cNJjbnOFX_)yE*u;{3dD{cnQwA+bQTt?$BXMG%= zU9c~W?>BEJbERi!qh)iPa>wwrR)Bq?Ag;b@r+=JF2PXu1@`$<%^C#0Bsk{9TJ>DHw zOYArsEZbXUu;*1aqPq%A))vccO#870uGeMW*nA_}FX>*snLVuDNWMEhsaIu;gN)z< zpLEzUO6ldaP5GHiaQG|3-RCAu*&Vs+L(fL}G>xC*LZL?;Px+UHew{6tMsj^Z<%_2{ znK$kuyivNFY0sF{4QU!gnc@rA;ulvc?rEYMz6%-o=aEw0(Hf*kL{6(z3eGJGsU!xGhs3 zz3P0?pj$QpUYNT^Q|-NOUvs>pxH7}7g2#*9QSfo0GsqxaLe4ep&5C!gETJD^+VAyq2{Hen6)7cZc{z4L!M0`2TyhgTii zn+>bK$#3OSjvzYhaW3t*!aTp3Aqv`HSz2%W`?d@l$HsD=d*K)G4EpBaw`|MYC;4 z6X?fPzxckIqI0mlR9U%K>3vYP5ycCLfXyuuHcJhmRzt&ue_67_=xGXZhYnhZXsb%UOkw`}w!7 zylGKBXY>xN5{_ZMyW}-dcu~;DyVQ=G38+$myM?@(Kqc3ntfXbKM!1DXprW{Qzy6Q= zIJ>_SO6y!V$$1OcbP7<Ko=5f!`lSQtwz0P^DlU z=an?hnQT>}vgLxKPqA`csC8>qi9DLAh6E)&(S7!oc26sHS~Nnq{CY&1x#{;h&?Zg# zR?O^4Xw~o)b?6t93VZplRSeB1D({&?G}eBGo_yC6YLs);A0er>)uJ;cEd5xFe*D?P zv8k{!e$eQt(;J4RzHy@2i?OCwGlrT)d_H%;JxwR!t}Oc4Xnk zkY;ux6)}xbkv+ub{-jjas}aHM`HV18kMoT*xz@M6_G5nE_n#RC|CA(fM$x?F2}N5e zd6v#1aPTwSYVLlhm^k8!LtyKN|G{QiW5)jcJC2bwz0>PbT>qyxDtkpb_}!o=p%+xa zmM;dJlKcXub`uTCEwrh<^d%1*q^dpm0DLsoK3WXoP==Q&Fwl?o0@uE^oU-Daf-!&1 z%xlE-3SQgo(RM`3ai9<4_i2F$Nhy(Ud6^3(Hvz@_L$K?uz>A=fSgo%_n%xTzCf~H} zoMrTqVAX0kXz%PvL-G{J#Z6W=NU#H%lp?wj(p0q14yZw7;253~FPZFF zp3p$y?kDa&emO}Njbmhvi7zomOEh0464X)A>gLk#SD9A_(c2U3<403#XPmVWj|m(~ z5_}i=vjT9O7E~!dK{XoAJwAJ5sro)Bt>2d?oeh;|06Coz!B_dXb5D6d7l3A)?-|l+ zBA0Qh8X6v5P_RtDjk`t8j$1U_ATTHHA4s`B?|prL%caQM=9w;=_ovX$sh&TtdGmo-pA^b>x25#(}HSKs&Kuw4%lxcZuR}Kwv8lhFIuS>OS6y^Ur zNppNCxp(aSthezS#Z-B&|1n9osafYrYha|Hp zEE-(}o#PJs1QzI{k{QQXG;d5|;>)%Pz=zZ>`bJZY89wVT3Y6||4n#G7WT6XpsOn39 zQ!_K)CGFh>(IwA07UN9nFfX4@&xq+~zjzmO4KOn7VvYP>5on9Jq`CCJ-~@Z58(K~d z)V7yTtn~>9R+8Rj4j~`g;RYBmND6nTc)!^biYKrxZGM*gR5V)KU+Zgg==#lMr|Szc zE<5vul3I?pd;;Gz=e~7%>#oLZRh3gJMmiD-Tf5(n+B(}c6ZunnBI9Z4CyAMI1CTI6*Tou zS$XhXap(|32VZFiRqUUxoTjo`vfO~3L%O;=|Mb7~!QrZK@;YA_!7{S4jhnl;e-d@o zLvc@28e->^+h$_jF_23`H?1sQ2(nlCmdMm!>1cX*ym*lu-Zb9-P!gTKvc%!J+M!CR z5kL)AK@>dy>-p!I(9l{#VmMzxriHfs=Sbfw%qe5uQBHb$(`~qB-$zHy%f&rnQ?TvR zS?Lp<-Ih;nEGI>AXc~RW>u9JL)8%XzzX1-SjYK7XCb_C5ahde;FcW3F;P3YDZU}pg z2-_C6e93gL#U+?F>8JUBv4SO?ZwovdWQLrzX#N!VK@>&hb2Uu%Of>X@o_ zgFk&J@ATy13h~NlTl%c+^A5ZOORp8h6;E={MetGoYdW|qNXQ<2NI?8#h7Rej~?!XYlH`|=&!%c1R) zCpQ1pX|ZqE5}PYe-RVj$S_%7?mu4lMdx`$P?OcU_ZM;96C0X##&k(~@#O0?eq!I9J zqHJs|h+F?MYtr`DNQ5ns$5OtDte@VhI;6-lIh9eY^dC)oz26{XoCXfe7lo)h;TT;jIHKUFw|i9+gZKkBRp zO0|@Q0tK6kU#5!-fZl((--_FxKuENh(oIb%aRoj;bib)>i2IfzWKC^!c%JXxC~!2u znru7v_e>nm3UjXrHJv@8!E%4m3{UMIIZ?Bkd7@98(mkb=^{tVjWbf+6`a90eX?L>7?=b2U`&%Be1dkBDHL(`Qvu~1(%q6ogJWTIX;gTcjMSZ zDB<^usju+((Vp&|+Vxw2ui*Q;I^0E}l$7>d$X`5m`=9NaY-#Y$=^92YJJ}bMl_#oQ zTQ0Hw<()NyQ08fQMYBkViM@P)-4zGDY)5m@gQ>=1^U4XVR|+<^t&9FbQs+ZKg$PV+E=msi}J)sjhNj*B0_Vsm_F zo`=3=^Fi@TT2=YC<2FOu%_OmvAn|VgP|I^XoJE-XRFvZG7AjX>Pe2_QD?(y1wy1pQ zkJD@0sK!ig<&SI~TnpmWStCY>T(sHzi~9bo6bg!Y!HW$`i;$_2KX2t{Nhg;7=H~BJ zp0tg->2|b2m=g-fs0Nf@5NE&9%iAv46=jdu_f)#Lh(W}Q`&Z2Eh{9>T^Yg_>c`PP^ zLqN0EAF)*an#Q)AbL1d|H1CZRHP4~sjTSDE6ny$e98V&w{Zvk_H&TO6e^c~kua{b0 za-Cq`GyxN%7xX2H-XZ+Nwo3nu4;0WzQ68}P|Apq#%bxnurwBZ0YK-lpsG)H<$lM$I zw)0mPdyL|Y)zt14%%R67*U2TYa!YV-xk#Qi`G8E(Yyo?W;Hz{k{mzHce1VL4%hh+{ zqNR3wuAVl!VMOt*n?Qc<`}n{g+2T0y;{w#%d=A_p0XIJw#Xcn0`JL;j0lt}ZJJ3skR<4clHWA)Qvd`svvDvm=GSI&xs^5QJE1AXNy zlT5;`G3ntN209MEx@7Y1F>><{cNb=3+F#3V#at*vGu-yyFu`B{1aPjgo%YDgS)~+# z1+MBlrrO-o(KPOw%3`v{_7h+#iwbF2*AA4zS7rEVM!WRWUzpBoB+pqGUJ@Xr;C6Fu z++U$;3=|`EWv$3J>dg9NPL+zcgi8_|I){f9#?`n6QF~(^0r!4VQ?EGzZ^=erjA7rM z5YNLq8^X(B{zwCEkQXRQ*{*i&3pxznsY(Og`C70?`py}ZF);r&LLr7#HS zaE}H4U0m;%_5ral7(W*dpu)mO`w(g&rKI$9x~y_|uzNbmp;G8Why~;|@_oVrMQ=G( z;FC8$>CqDUKre=qN)=WnD|m)J;oKWHs4*LHdit%Fq%MFZza-g|ak@$S7QP zu0|uk0ITe>$S1yP%{3f{HsBnXg1#3(!AdB6@m22lcZ~u*`phl=uz%J%dw#nwU>NOu zhCLvpGWd|o0Be{Lp3woq0yq5_3H(t8*9qF7HFq9(X$};5ihtUPNfc4pTrI4=j2n&` z0->@mM zl(n=+W?dF>!dF~>s1{Nv02xoBarj2Vj^M=P3<5r5qojUvV-uo%DnRec&8alD+at4; zwJ6#ISPD>zk}ONja`jxVP;0qn2gizbodsZQ3(M4>LN;dU(~fdhpY4g|H81f~Xb6{x z_SplkP6DE^f!@Tll^<`WI3$LYIGc=0YM!=yEo#&MWYq|l0I7=Dyaoh!@2O{~S{W>1 z=`7VZ58Tr$P~!6>L;Xp;rX7v| zuwL*6s32}c)GRe~-(L8O=G73tp&e#B_t!0xWCn)owmEdPO6&=ka)C=sH{ZRIH?f~e z;e;{=+~?u>$w}C(Rxi-o8bJ8Hz*~{+OCy$w*1XZnC|yl3ltHKD#IJ-Bt@24oH*?_2 zQhPBD<-f+HL$)mB-YLjA3=;`jW#W?vIm&Y8X{{*Eyd-VdRzE?nngX(q_VO1Tsr7x6 zQ;?U2#be;x%T*IUL_HIRDZeL!T);V}Cp8lP7M42~aJxSecv*H0IbBNL|K~@N%+lo0 zbimcX1wT2rIzjzB79)`zs^0{WaAW4HMt2;Ie+yrPA_LQ|Zq4Yu(4;w?I;xR@Fcqj6 z7O5mupQTMzYubq!ndcg@2BNphZYla1Nb9rRHgX$p{-hYXwKxyM>FtmWEi8kWBDnm@^y4D zDh@yfS=O8Cciw%tXdl8pXgZK&RR=>1R#Qo#p&!Z^LAu_oy+W)1FYJx?Xns!stQG$D z>$@%i?UXM`WQ7LR@+skuWIJ7lCxtmkvW2f@oqUP{F4}gOouLD;FfJJ4W06Kq6Ka>w z2r^A6?7e{b{z3lfwh80B1bv})qx^B#;2BUAOcd1QM}pKIa*_MOe9Q@ zN9eyFW)I4Ig9GO87UZeNf{Gw*RV~#x7?4%&xsM;iyc|54a*!FyEba~arT)w?LJPA_3Ruv@o~U_HhPBT@z*i6ZC}RsxC$ z`@31m!3l^lMhR9H=Yakp7)Y3~u+V=i>=5F`OpY;1h*U!O&FWE!h^P?yIwjH;uWIxN zL_`5;>sx{qKX3FCq^)(lXX#*<&x{~X$`Adz=CsU!47$Gg>L(%$&tzZ+yra=k5K&p6 zhLfuC}DybTc z;ev?0LfR@jwZf|+e6+QHH-}b+p7Bwy{ghAsAAt|^MxXxkA! zU(0B>Ccuzui!5f22p@MwP+&^Y??DUt%y|U6_LdXmj#n)%sary9U`y8Ck~{@(sY^m$ zm+*Aw+28FeG&CcNz#^ATULw{1Uv#Vx6YnLhf#Bk0#qOOb)xkM6XA|5Z|~R zd5o7Kr%au>pqO|6DMHpnrE|?h6TI_F?bWs6%Bl}V4xcA zNkhM|`=vX#A|DK?K_X{xA0S91ESrrZEXbS@P75DPNa~X21$q-+Z4W4~GEf2}u5DFRYrObel#4^4iPhuF=m8w!qpOWeg#*(f*I(` z6qd!2g<_(Ob>Y6Wjw)m11bUO}#)~Uq-KC*NV>g< zz7c~x02d=GLU3bnPhU=*5s75d)9t4YMgwnK5H$S~n*ovnB#7*PCrwv}|4=8Nb346J zus}XbaSfAav*G6UE8qITIn|8xP@-4H+_%oqiQpA1c8>`(YUo2D90FmFOm8%P2K3Ha zW8`f!WC8{M+k_34`~*2A#Rl(A7WjPSR}!^gUXi(;TizAqr7 zPIsnvlS0JWMeBPc2HKc5Ek>a(GMrmO5@XbmV}FgY3VR68VH*Srq-&%+T+^MvaY%q| z7Sbd_y4a@^=Hu}w8osKUr-$+g&;KB$RxM`uM8I$I1B2KpQO7~dJy_J}==Qa4_3k*% zmP6Aqi9v6n99v4wX1m&ZvUI{s^U>s6skr~mKy=9eq6KNR-PRMXUc1RXuKp*z&PyHA zQc~v|o#`y;BoX5{_fNiHp!I`BrA)XZr7kPeD-N=F7Jg8Ms={NGo&iOI$B4Y7xtGH2 zGO)_HFP$%XGle(%DKJ~4a57;Gar%rP4B=aGWQ=Y%X>{dRrpvL&X8wMPVJx0vlEtUQ zL>SSqG=mC`R%ATjWy|8jU6pNgW@W^>2BA_Wj6M$M6%4?Q7q}gX&Svd3=4($})cSDso<~J!LNTjGO z2rus&#Z?U{*0P(7xoSj?CR?N8do-X(MtVT??UCH|F4?;O6O5x;$qy_b`IRq%ub&YE zXh%IJvRpDxn~$FU;s(zGJLJ1gxoD1W-wTIlkj;3B`5}18#?B0zLbG|rmZI`=D zp4T44MM!-5N9U?>1JO~2=cPl@xLHk5N=_o-)2m1Iw4?0rJjVwAuIB|G9|Zzaj@Luw z*k&Hx0%7Rn{uzTv8#S{`0I-LT=cLA^-7PWyV&eK3$2cS@~lME)Cxe#OwK&_6^zW) z#3b>i2C;sXo20INebqmvmPTUaF|T@Z`f+}bS=WeJHP{XfJp0=xU}?A1tTZUQZxZZF zTVBb3saM!ztuxQW>%$0t;p0`wca|yx>zm^V@}5;@=Me|^8c#S?35{&V1pq57bi54-0Q2%kIRTw_ZM+ z{H%w!rhY#!$y6!k;TY=)hSY)~_W9XIcOK_@(j7i}^K&Li?TDcCiJ4yx!W7hKQ&?z~ z@yMl!h>@jVZKreV?WkBhY5 N$g94tkTnnfe*l|}yITMN diff --git a/docs/reference/figures/README-unnamed-chunk-19-1.png b/docs/reference/figures/README-unnamed-chunk-19-1.png index 2adf5821794f230155747ff70e378ef2c7594ae1..64a2bf935a83c53ee7f642be8b93b8ae018f9870 100644 GIT binary patch literal 8125 zcmeHsd010f({3B?+L=iU@*& z>>>&(5I~R}5=7-?M-XV1kRUr@-xEkOH@w|;_czZo-~2H%?>}>Mb8l{)Q+4Xpt*T$0 zlY8gkmeM=-?-UXelD0bc(*+?RVH)ri5*G$2gG`@f&&A^0B0-|AjSgc00!s^1S0Hf+RRga39SCCTN$zJ}2s7i@Wa zsz;>;JM2cITV>^I2Pan4?6X%pb5)%#xc-_3zKn1U1k)zu^hGq$;x@EhPss=MK^ACm z1WiOLR6-H_{~P{anWPY+vXH2%c6#$Y2=OFrc=_+fcU0h}o<#D^aCne~WSU6zO-ouw zqzhM>RK7qQX-nZWGmg|tDmwk^OMBy4+?ghfBdsHXe6SGcG5c$Gma8UFRfd>H-Qpa* zED*rv^r_j$3_YYSYs#;vUxlrn#TU|p51}WmdWbw_`}Lunih=QE8Ck8ELplI)j+h+1 z;0ul*UYpMu63>}El`I88dt`u9rpGVku~mvL6ur?`({Zlz$1#tgy^Zf6u{~tPkPTi{ z9$}Rvo2;Na8&F~?%p0Kg@#Nb-uDs`UauE6-2b5r^YzJP^;f>B{P_go~!ecwV+G|hd zk1ud%3PM@1YPLop`N&Y+iY{G7X8bT4=>e*jew)t=PvX+LZ+9+$BjhWgd%Vo*A31^} zl>D(eD}j`&nW9q0huJsOLB-#}joOAnDAeX)6E}rizR8#cBD-GlY1qrON5qkesfmUo zs@F(LmEql_D6f8rr*ZUB20=7q_N?bxDJK0n`7*`EnOQv1!Ol3fuC}22Fl&##^%agX zly5jWBwX7X8Vkl)Da$mpXD-9SOGP8*Y#)ZrG53}9(mKKyr_QOI442nmL2oHnhP!vH z30ue}Pjp1q%jn%7JEt>wimMz*jncN5KyfW0s>ixcvYQ&Eu*27`E<78J>bHG>IzF#$ z4AQD)Xrk>u_;fcup)XT-fpK1pW4)cPGnPy<)%27Hzgn339%N0csV$u#$UzsEU|`G{ zm(;k&h@Nh$X`izhFLM0Z&+G#dpyKakI@9Ba?Ay9w701SoF;6Bw*$Yf%Elbv*Q3>0X zM;^Y<^)aH+y+fB>6r5-}q2ZW`mJ#?|WpOXi)xhnE_ym+)y0y3`+%5@=!VCWK#W?0Ya6C~;{4A~5Ay-WiKD5mp}a4E zK{GdE>`#~y7QU*V&XIec^cCjxQC@Le8|akHFa1&wn&bO4NLp&*KHuX>_#3Cq#finL zj*+nSYDwE*2lM;$J8sRt+KRC!9H+~=B$_&sJYo9Q%u;TfYZS=b$&KXbdxr#tWpzAq z{E+A^sXU&A@SLXxZ7g^JV`&^UcN$v*oUMBoFc%+KHTjbCZh&Mc2%>}UEpvlEEr2n{ zMF9QV1(6ydq?W&Q0_gu_*KiiX+#L@p-g+Kf(&P?gfdtpbG4|{S!=h5U;{R8%0-48) z&tXw>WCWQfo@_iPuE>e?T2=e639y7?XY@wAvF(P^By^s83xtl%)2)xgxh_vvXO0K5fnE`yisq7@N-cq@87`|Xf{fi zvA$oCGmi8S*BO|GJ?)cq@!po5nR}?HN9CRIN0a zm9gjRQm$*EJKD=?tJbaQ5m4n>(Y$TfF{VD{z5&;ZV_m!oghr zuj``~?S9Nr+sWUN=*rtbQkcCp;x-cWeNO@}^uk8mnVI8!G#fE}uUPoRGub42{>lo&+8t#2 zcu!^G^;NsJt0tSBSb<@jX~h$}plQ1*6K9XC;JZw@orOSl2E4Q?UVCzeAT4Fq^o}Dy zwt>Ye$AQ+Ep}P_0fRl*fth^Y!r2+Wy-}?id__2P!{0!*Mw&xFzYh~DZY*FFBpRA9Ry{BdHAW}iUgz10!KULqcuB>MK&(%vVf202Hx>CT< z7grv9+sU)LNpF8aK6<-PUcclZT3iPRg#OoWEU7kICzZDxN$l0D?*-Adl+WW{UY(rX zF!jB1%FX~lpF<~q_o>~jzoO2X=HGIp2Wg`xZHKx^C4D!5;52Kj;iUXgz_@Z(&zgA4 zc3u;_N|ii-6DV-b002B$RUmg8WCx_cZA0k*f>@jRk?-<-FUq{%u6GVHreT3M**{KB zow{T!NJ9q)rWtBIN2I4)eQS2Bk~U9X|HD6q3!Q=piz8L7o(mV71Pc4*^XStsG%eUw%|8T-#Yd9$xMP(gR9(yS`7j48z7rksycL43zJ^MBCfX;X+ovo?5Q^LCbX& zZxBwtbcxWrI*Ew?S#IGh;)|P`Xp3J{6(u0ob2eq%37VDm7Cxz<-+Y8sY3}hRty%)9 zu%+%MFu|qXRUf%oe@JIt%iZS_QW=MsFdt2H!o@b6**3huY8*aAoU=Nv#}ZuO{j|Ll(`Eqyp?i4B=Pi#1{$ytE@a8yY&A|9fCZ?8 z2{#!E{P4?XjmRnt`3@2;lB_BU9|9t5Se$Dk(;E89KT9Bil}~~fQtj^r^o!tg02)LG zvjRzuwz7-`LHRsVNilvOK0B@ivaowgVZkE1Ys$b8L!-!E%aqo$Kp`GK$g1oU=WC)T zE!S{J-#cAv2W$m?)=?+m1V^C!izqR*o6xBnyo(?UQ@GZh|HRVEQGvx7o#M>D7OW#C z)tS+z;0W_kr``rNy=q4JayD-%VB41s@>%iG)At{@0)~(V7K#-;tAa|NM#bOfJ?JIWL=Q>D#~{$Vmpq-9+{(4cFaXjs~z4aF2}o=^|uV2+6LuKb zmOVLrE)QpU<87~%kPASQ8by$R<~NGAKjQ2h+;USu5@T+78@ zH?Z9)zk6Y}K~DeUu0L*AhY`2r?{vOrQa&{wJL32g4H=zy{X*eyI~Ht}I+L!+4Lr z*>0?Yag! zdu(ePxRW2p>UXNv*eY!kSM>K-mo|iu93jvDUUoBGM#cgUNNDtq5KZ!WP^hg9pW^*n zkAYlsE4r6+Q2n_}%%%@+KEAgmD{YzxWWu)NsAjR)rv_$oT1tW}F`UK#5+9bb*l$J_ zd7{hgb1C2@dPV+8ag!YU7%gIBw^XyE7T7~jP$?J_K4&v@ckZje)%#S}zwH~e9Z%Q( zLU}=X_`xYa-TvlC1#N84^uMe1#1rY{#Mt6TmF1rk6${+&#rR|gH4z+|&(M&A9-?4) z)p_DJ!TQtG9pvCST2}+4%S-~Vmm_!kX4aJk>%gD)ya7X)t&*GK+YxdOiSOGEQ|+r@som2uPChZc<+ z4(5HY+FBV>4#n~<(g{D-exO9DGmsjh!6{S}iF#%7eC;R7J@t_g4YRwot&BOzEy}^N z2ltR&=f*di*_!fL;cpwTZm^``s)FLQ7NNmsqg@iAO28_+ncn_6O04x4Wi3~?a-es3 zH5b^FF{PxCjo++gz{Lj-_`<3X@78RWA4z4UN%h{{;S>8VLx2DeUsN)+{=HGy-!3T8 z>=x=;CZgN6i|;m~W(L+s+N3^54s86d?Y);w<23Kkco^zCdk5AeG)THSg|qm)@O{5g zA{#mB8MFsmY+-`4)X&T7X?0`B2Cw&F7wU@xJ&!0cKl*KPp@=P!=8VgWaylUqNm}dE zTNw!rWhahI1>WUPgKY}8_Q}KQI^CZJ`3ZJmNF&<_fXZ8NMUo{FVD(?M963_f=`O?6 zN+CHNQp88Q!j*jqCoA5Qa3D=bo>Wu@ddjc`T0yO41Ue3I*6h`eLLL6mc|2ths0Dmu zCh)smHVX7;-<0XoEQ96ov%>?Ioqg{#Ff?a(pkDoB*ju)9SjYUD>WxJ@rk_od+{??A z)UR7|cia-O&bUlzoNY@rGwHuhQn&oafSBaL(UTF)op6lfKjjsRo=jos7Az3c{-J$| zs88m`x4ABFX9g_c{vReAy8HLmV%s@128Mk{=b1)#5YX&g@^?zUmk;!yDf%8U%m3%u15V>75EP;Ig}tba_Rv zth8lGc7ky|cWNHXVP6`vU06ZcSo>E-dv5DS$`uIH??MXDVL9==~CJ7Ym zz3yWxtmhjcmYA+|5^^(4A$(55=5^}FzQcyhW!F|Vgw>oiUJ{j3A|B zVCky-jK=xG5Bu6KdeYVlg4geM7ci2OT3T)_#)R~F?WhtjFWlEdt(Z--u6lGog^7<# z8IhpWaQ#QaFeZ`Yt}pz4IOCM=d{J6(LSQ2(CZO{H3Ngl0+L*Xzw~F5EdL)@VtPF-5 zKnE-wnO9ATU?iUA?z{W=MIE28k)k&wIPV_8&uLt0VmJ1FHluOB&O#AAMGE0Z>r#l0 zHx7zQVQ!c_?Bw4|%K1XJ4$NR)po-Q~j}pKkPID=aT>-Lt+*i)1a_H7U5$WHZsIO>} zD$fg;wlm804B~_kf)v;ENE8ki?2fOE$5l4|;1iZ;^fF#kGIiL+ZHLR3+NG>$>&X1X zvKW#P6L_&jnaRNpgCYeYE=;M39}Jms5AAa&{HC6*`o+98J-l|lsm3njS%Pt$kYQ?W z3)!yu1S~7+a2}->6sRy+>wfy2r`?0Fv zrXMdG=8+;}c;*bNi%gLe`nkllUlUF02|J}X{Hd|GvRM<>3h6G}{xErx38;O$a%<#* zmP!AKl;MWc?k0AxL5Y6darMQln=USt%#PfA7lE#fn1#6T^10~*^HB}vOQS$U8ewH|jlaoTct~#6WV#vkzpf9t zNLuEdLC~v0>Vlq-CAFAtrOwjCWMY*oV%?X^mn_GFQCGwet6N)<);gdwmZ1<+k~3?u zp^F6`+W(MW!nUG;#PI|bm-QEffK;FOo5i@={n&SFCEP5^tX_$hJxy%4{{V?!H}g!$9+J54k}km6h|!cT|(vmn3v)Dk>mNS0OqeFd$XR2r44YMkfIrX@Ugl1V{oXjN>36Dj;nTL8Sx~ z3@tzql?g}_Az%c8^h8MLQj+WoPH}e6p0j7qZ+HILujbwN-hKDJ+rQjAYhy09ZSOW7 z9v(4^(c3=DV-z%zx%3lG}d7WeQn z@B&wg0RX0ei{b@_8h~r7gWCy?6mWW_fG6Gy48VhnlVZS=;sq{)-+NNPfd^*_9y}>2 z6b{~t2k&J7Cg4*H@F`wfJzm^S?m+=3o&ug6Jcm;o9o?FlNl7uFqi_rMHJUj|k7AKBhjL4oH ziuzH~Jom}y9%()WX@97NSCWLq%JrYLK2JhP2FikQ$WI%XhqL#`MV>3A&(Mm{?-n&m7{;#$q zW(M1|^kw@8De))8yF~MBzuo-0>8bJgNygI_5ozb?gVZt?XoB%LZR!iFHr%BeL3U%? z$RLQ_rbTEQe6i(uofc?<4iMx7ZOW&*SYcChc`=arBWr>zAJfns_sq&QCBY z{Za0H)(Gl=;hN4&R}$7qqM+HfKuxE)7HTYKFRR{(iLQr>q0a#3OXFKcb0h@&hBm{q zRjB8dXBOkv4`bT=`QJJZlqkd)4xah&WXKA?7&|o;rst0_W=;hEQvUABr|x)P#VC3I zxJrJ*JiiZ+9?K0&x zT^cH%0`(%rb2u_pM>Il^s9hm~UB5O6Bq&(fnA4~-RoHyNw5e`+!+5-+G^*P$(O51l z@SLjorQ;H`sqPK9tBk=a%>;!m&zvMV*mz-sVJ`7eN^b81u53P!bgLECn`h}jDwR*! z!5qT6>euNO0nxp#mXFbGjO%E<@W6P9Swd`S2`1>bsU_>_SM4034DD;^Gw1D{95_C8 z)u@HU$zRW`?Gpwl#NXwn4PWf+Gif+Fp-MGOzqeaMcl8L^FNx~W0fqJC^oSqK2H(ILhL#DvT&)aPVXO!H14s4*Q z6x)P&#oYH!O7fxq1|W+xOk~&tM$4n>k9?w6#}Ta7^0_{XA#_UEA+R62y$>AcIzR&; zj`Cb%mcu7~7BHiQGIlk^?!|nOe(+$HW8m?hlI=6Yj(vHmKRwQlsZXU^VUz8j);F-q zIUjI3_+m_dusnwnE2kkzEwH0y#$-h6=Zxl>9rh^R1QT;x1H<^&leruE8dKFaLyDh* z?J&sMZnK-y^Bta8;kc$)rnx~m-z1RR;4!DIk$sq5U?*ODWvn$1#xS+rHoT~IbRNEb zsL@ZAP_SU)JTc*K5(uAjUwp;_dy}02_G{Ur{BLQu7J9zR`<{SxiaBTOJfX$a_I>}`;evi?InQu-(A|aFPYGUJwUE3 zk7a7d_%Yi=8Q-U>sd)mBs2ki z*^TwB8!QDgRo$mgN|kV?>&qp>AhwBMJE$S1LaG1}edF<}pKX)1zL1{*0h@m#8jMFpiIpKGAJjJ{7SrTlr{|U-ZbhGb^#>%Gm3*WMp+ov+dz6ul-`( zyf4QVv3fhar2Z=;%$T_;uo^fW?LO^{$4&)XAKT|l>`pkM!FQjb&4ic7<|Bu1BoLpM zvEyr5#6FvMT*m7RcKY?EI(9dR-@Y*%qIz`c)!^yvj(~c-2{SvdtpMY`JVJdC22HRB zF=SbRS(tp*8Fc~Dq8TF?{nQQ8GF8c+KqLrk&dwze#VXy<0>$% zA66G|?D_V|m341)ViyH1AZ zm*n^oJH$ut$~Oahea;YUWL?(#GHQ`y*Cyad>^?Ku$65G%bR^Nj;r?!os??}u#ilw3 zSm?&_5Bc4I$Lu6NZpPDIv);YNS(9{<&c02_*J6To--WMdX6=b*HP&$81#dpW*K{Mrb((38g@u2M7@`m z2Mm9`aP+dkGy=$}Yk!Er{t$J_g=tbz_)4LNi0Du|5N@x^^yf%1QKPmO>k^55Z?Z`B zj>kHZfdGv!yRZa9Eo4X73zPuui1npwEVH(ghxtXz#$8y6l)UIGKIfYNCqX!NcvoU2 z3dvEKU+nnm;>K1PBe2}xG`Q(OT(9sylI8WkrkO+%)}mE# zr10Taak-aWfi*@{^hN`7wdn8T{F%R$aD3_qg+!!LccPYcWk*N&L|MNzuG5nOKPWt! z*`mY|%mfN@OU<6s6Yd8449yi+clT+YxxU>IAR@2YGRV2;tf1}vTlvl!7`1py(6mdu ztuBnKu!Hs-c7=`aStOdC#2lx1Tl{XNT;bhXR2&I#h|fE}rN@5D$;HR=2y^lb`|t}} zklASJn%LZE_ZqSLg+HWg>Ot5KAOwlI0Dm>&N3BQjnvD=d#9}>x;Da|}OLDfnLP+Sr z{-OiVevOis6KR-n^qIa{nYyn6P=Bp0vG^?)Z+A1TsaboLPqa)(8cH{!S}NvOEfql% zJlDm)a8;zsTSPP#=onYwD;1@oE;kN5yR)>4jAM@@2F$w{+KQz?3wFsctwR|v?uEmX z-E^KFg&^%%aC>`VX&Hfzx@adma+Lf|hH*dCvQaja*}RSHQ!9Ha9~w}gs}XP?NF|Wx(WOm~qEA;~^OK_KD2!u=_y|*Z&(guMI^18m zGmdVO*q5UVO&A`Blg%j|T-{3hNUs|d;wZaMo3Dhzk=J`y_E~eoLw7TGCNu#N@(h>U zxM48k&rXIWgk{?Z{S(z!g&JUetYhTD7HJklmuf!InBQLDl1K8Qszd3atO>?luH{{J zCc|9%ln!TsvOpH3NNw%p6Dk#M0gdZjvuY|fXk z`n{WXw>*z4(CneL@lZxYbzRmL#D9vn3mGVp*eRHR^Aw3NCRg!34oQtFH|C=#x-2gLy6`6UOQ>B!&YAEHwor>$E}&1|{BB@~GGg7HO99j-Bm z_b-d#d|~cBCxK=%AP$T7hc6N>7oW2ZhE(SH`VfTN$YyUI<%y$SV`uq95a##7D?jjNt; zvY_>gUfq0poMPdYaOiak+C7~s|0e$yehAgP70__>nZm=~kn%N8Pkt-)1%Z!8Rj3Kr znUmfwRP83UD(rdwTN&!vBonsE#G)P7a9vC{R+Sm>93464X;p}%4PL2A zH)=IfW5cm01LB6+R*pSvfl~@OYbRSi(&T4+DFn6G<1IGW4(7g|>L;93T%VRsFsD?; z@n_HA+;3W0`VgW}klXVC!G?ucek(=IBl#k=I{YS*71$XwHrAWmvNN!#K2GVm(T&Ey zg&tBEyaKSWTNU7%g%kMtN%q=bnxLJ*4izVGO7D+uEIYk4cj+5n=q7^{+h;#zr-3v= z6_4I?glfp;*#+>dqrU4HdN<>NBUD+=`@m2%p$g-G155BlFV4SX!)xcZ-QUjaXtmr3 zpQuxDG$raPs#_OXG;2Z|*CL=r(to_>t`Mx!;yn32_C;hW^S2Atl+0^dZ@a%E&|%E; z!7kMURNR~PqlX<&5#dSczUM1`!Pf6p?|tMh0}0ngY@z#CAb2DT=fr-(Y^E}*J80ac z0m+cc>)f@-aN!IkE_JnYXNaoLj3F?R9-`4gX@>EA!9ge@6}y{|%ctrNb;-kS5Y7$H ze_$&(c|hkroq`s@xUa}oOT7UzBK-^z{&Cv!7xGB_spEVfUnlWd+5Y|Y+;|QX!&ySl z&Qv#{Ps<~SwQt%Ngmzjtwz5F3-Lg%AU;%1t09?}8X^C%*!8ocvJl?QYru#AtnWrSC zPIVodKi z+0PJe5z!+@%qsj4*S3cljZ5dGt0YPV;^sdXVfj2ozEZu=AkawHW=hF#%^tq-mDNFo z)jzZIPVHPvtMWqJ?N=W{4%%NEt0hisqkZ)y>H4`?hm^|Hx|*JJ>2mLz$pJ-CZIKQo zC&BLch(T@Y&!V>gDsN`4!#|!TR<^458VN`2e=Hext>99tCF(>F{Dk^Q(w%hEm+&&_ zKfq_St`hD`%q0aJq~4JGt><-8zsH~LY@30nMyOC`3U_cPG2n&gTcSeOdth>JFOO#hl^k;cW z7f1Q!Lb=1ofVsT5^4IkLUOR}LmORpg;RMk8>FezyPq&s?8;(39t3GqessGv`84d{q z$IRDRqgRIS)HZMXEq%Z)b-cdh5f-`7MQ1pO%D0gRcBft@ls|ght-D5!i5<}%zyJL+ zmA#~BjQ+?gC=OJsU%$9ke1>U7uZH5&WUzjBqYd^4ih+1gyP*%h$LRk&HeMo12BTA} z^XA*VT0PL;aI=%S?{g%Op&B9+z|-(q3(6s&<8cv-05Nw^w&67%KGJjk9Sm@ z#H2AYV;=JV1mX&RJ?vtbj!;RhrrZP+kUdD8T zV}&1hMBT8}SRKFZHdMlSy_KppxQ;f}@%%o6l%}%jAmtwCHGmkERE-R}!J$E|x*t&jf~&Ub&HNNY`sN&i3x=$`y|ZnHg5J$qbT-s-u+?cX<@wT zc3;ZXhlxOI`^0J)qKr$6DaRhCJAa2vK*D}(w8=WBf2(o;D^Wy#)6SGhEc4dPhCgQXe4euP z#&5Q=e+lnW8+W0Ku6j4U8Wi-or`wXgUtwHj*Iwo*_+~sg))SCWVp*L>I>idF%{{aH z`RB|doM+}yeKQ&SofU|AS)}o84&1tY#cf!WE^NGcmK`5`!<08SX29ciSGbRF`2+L` zE2Dd)yOUnr)!yHtg&2V~dPjz4)GKRba&OyxiI2Xg$!k3LfUQ)@(ZsW_7lw5z7RFob z3)XUB|5)A|Z6H!Zlu>Yv2x6ALlF3b~P1h(0+T&gD7Tbl^_HHUwN3JXPe0+PKGmzIn zoAXuT?+l!4DQM5~FnYiAnsJo6pj_ja31Q?Ie_Fmj(Ib`H{?zv?YUG3DI76`-f=s7` z-MFZ_v5Fcp?$$jS=JZR(6D(OqvVf#GT+8KFec7k0Gxza*-4-uP?cpZ!=TqyBlcHI0 zF$t4sL$*oph)1lX>y!6b24a0qq{OXJTkES#o|8qx6asyZQUC0KQSTDQRn0 z32PzLAmy5$u)XgwSG|$H-d`QCF|llz#=@d}->8>d;s~+zht3%d{4p%;7u(hCd%g_V z@8WXTj9Z4e;;n3|Db%KC=@>kY-xwd&oBy+T#7gnC^#Ej~mf<0` z`diaN0oQjMd{XO2n5?83$?0VNrkmPP8~d)Eal4dIAQF|Ja8IxKb(?5SX*kUmUvkBJ zB_=XTdPNP5TOZo#9f3~|#diR8DzN3eysNu4@JY;sxr>yzi#k$~6HT1xU`AVNvv35N z+h_8qmps90Jy(`p)#R!WbLYYYClt=quFhz^U+{9=L8G#Q#OB3iP9AgpHZL!8Kd_QD}%-SFvvR)<>d_h&zd(%nAAH+8MN+ojji z13OkM0=T{*uz9U1CAf$_WjUn)|GsjkS*_P!ly_HD{kf(u4Z$ zwDi)iWxL_>yGzQl1zkUhj#vxCr0Nu^hg;;t!D@bZ2H_?DDI&&e}YTmMjd-{XtB61crkAEJBXAGfL;_s zKZvP!vkOOVa-;(1`3Nt?i)n*{5>l6Jl&PPDBSQOZe^vJnkw~m|vucdos6n43tX*0$ z>D+0OF+Q{z@qTlP6onA%mFnu6WTeLlMTF+`MfMC*oPn|vzN0>FAz`kfcLwr65pY2V zBVPsUcULt7@SW+rI2{B=juW*KH+W&1yA1rETh4UBAjUAJ({OEGl{&-mJj(iRi-KAB zv#DuSQd(Kjcss=80qYP|nvYP26Z-OU!?|Fx2{EtSe?yVq)fiHaQ&}kCMTe}o@e`oj zArX>(>#rg&?R<KrE7Tk;Rz_>n)%33R{f*SCI3g{#~jvL t#a_eBz~wAQ#nnWpTGl`LC+h$QdgaZ;b`wRfSnglx7AI{^;7r}){vGbAH`V|E diff --git a/docs/reference/figures/README-unnamed-chunk-20-1.png b/docs/reference/figures/README-unnamed-chunk-20-1.png index c7d25be9646c4c39a9611ec1206dd7079c5c2261..bae7d7e0a4dcb74a6811117b42c1e698f155f64e 100644 GIT binary patch literal 10622 zcmeHNcUV))wvQo5K!G3v3P@8#iog-17ipp#0hKPrfJ%`TIzkXPsHi9)MMWSv;6da_ z37`R_MNu&zf}#{@p$Q0tUIWRSP|kVx{`0=~-o4*<-}mm$PWJ4XHEXT;t+Hn(`}S!w zV@?i14j2r^dGdteSs09k1immN3#jR$(D#AM@aa>QM&JsAX~1BvFbxfu2KY^Yxe~!W z^NxAAYPfO#r_{S3pK2x)Q-JBS8a};0jI+ zW+P}`|0X1KCJ+-6h{Ob9XF?}2p_4&$g%MpfKu={P3A+FoY)=~V zyX|C9bTSMk20Lk}XBnD4kr8pBlNe^4`2l zIZI+P5l{x9@^02J*LNcd4@9Ed8uq5|i!ADuhsPrk3w2&Imw)u5yuRU^bRD(smM_us zNAZFPkzI&|_w#d04H6nfy#(z@A16a~kt)?4@g$ZgQcu|(Tvs>F)XC1b{jsiSj-Sk_ z{#suw%4y9#@YOYvK@_R_M0b@x21y)hnpf5cD_@&$xpHx?Z95c$fFk_(BvlCoISaZc zi-(%zWO`ieodnlj>QTh?(B^Mdv^wZ+e818y%_ke_-^Hd9#0XOS9m~(6$-=D&`ANH% z7u`Y;A}EB8mKsxi9j$Rk7CeSiSObX-#R!BMicR%7H{y*(11KY@XVxjHAL54W?|oG+ zsitAIU+N~+emj+C;p%dO4Ic93c}>uEPb9V!w(yps(T@K>$ zqP{r2WU%3=rBZTzIHg0|4iT9|qMRsw(8=i<^ibd4iys-TDNWq}f0Yo)z<%hD{_>5_zQjtj? zPuaa=tRnC7fBxLRCoR|GxB+GD&3=p!#Np+g1Ahw4PR^S`FGkdYI^;NaxG|+!bi6tw z6ydY3G=bIwIB+5!7*k$T!()soDkxi#8*CMmLLyKnkhWW7yxMnz_+=^f!t1 z(mzYsKTz-g5i7#areVCi$a@DYV#)V)_TDf?%l;uYW$Sm8cPu&8c0x>X?%ivL5sM%CLQHb&{a2Xe$Z;OT&1&04 zx8>PVZu6ROH$f37|5+62!n;<(xSX8P7x#Lfj+*8@v2pF=X}=?b)UuW{&#t^P+ecS5 z=Z&>9Yv+I)oFC_?yp>h=T&P*~)Sw~^a1Ca~dH*m!lJW({WX`8n^Lt-dSmkUj<=Neg zeF;pt4_JE&j{RY0W;-nad9Ta+gVfM4!Bgg=tqAvJ4sF7dA~lw1^n$kg)$T2w9+S=} zFH^hc0}~JHzry)A`f$XPtS$8@MJ{CgP+CsM-sztwu;IA1=08V~rQ6V?tL?Z0%fD}L zzLX(alL<-DMAOV9Ic0JpUZIhHw*+Ay6JdfNc|USzgdRE`AjJx4`%l4z`oed=02RWO zq~j^r_$U=7TDbifb5#3&q?R!SXPbW8>Sm#}2MaWe?BcaoDw5|Z)7)s89hSKh7b%UN z!MG!c7q$VDh0`7O>TG|$2Mosc8UQ#;SE*!v$Ga({*E={uL{>#W>5=w-YJRG_qeSWq zKhptr0QIKS3C5_)? z{^c2*{EY9cxyrcOzJ-Y-)Rg5u<9;lLr#+4p_}(45T(8!NHgh2x!_Hl=QhI%PXI`=8DDz>`re zmn=q5TDOq&4(wcU=zHvJY)exjYD06|kCYA9dAw>z@6*{*W_h5K zfpdDG+Nal^D{oTNx8hX=1O$4`qa^D_k!uB^g!rtmS8A}y|Wy3FNyZ3b}igw5eFaB$I|L%wXHLY=ZDAe zWZlTY^k$y~L5oH z%9*{xn==-~!(V(F{00LV=4{lY9Xs?+nx^!tkG6sW+bi~aq}EMRGX9-O=a@&Je@FoN z@_{-r!WFIF3w$z?k*=~Hh1NMuZ5BE4*Uf786S5J#CA;9U7Ebq)9|__0q<+pAa0bend-`c`uBK;Du|xD=Fada-U{63;zu64^4&2QSfG`9a}geRUV% zD8SofN?TT(p!O}*RzQH?^3 zV@vb-{m+T+maWGl%I*9Pwn{4%eb+<#)ZHlm@>Q64JV>lYvE4HfIc^?g3&)DK!pVJ&3S-uyvZ|P4+ zZ{ELYOVI64Z?jx0zcMXWzErgqBX2&ac>W_QWfV2kd~8$4db-?sw~#`grdJ*|dg|S8E}y4xeP%boR4X^1S3+!loR8SNxS8@KU#J1;JQDV{u8Z z(O2hlk|CLkFsN~0S>*ZYj`<{t@bZ;#Jm79dr@`|#F1%7x(w@`I4Q-piUiwhy5{Q9{O2(@qcLSK=$(P1?M4|%Cz zTDi$%phI+vBu+BYB!1>rF(1!FA5Z89L?J(L*axe2P7;_9RJ*@cFUwB|JW$QeZCb>n zdMopC&o@}@-p4pgx~Rei=YC9K&I6?;n`TU@73@-suA=Pc5jv{JDSEt>=YUHOuG(d6 z$6pl{)nqKz4IU3{Gp=mX(7nkIv6-z8CTZ5~0b@ip_0~5(iI~1!6qitKsL^#uaA+6Y zK5jT{oaN$JQ`QSO=JU{P;cy>uX@cDwJ5LU%G0k6lVO#NhPI0g^aWaH81Y{TMvjUJ! zibH(FH7}t318#f*~wR1Wy!?NT>ML;(wPsuj^c0dmyXF-n0L1|JI29Yq6GCX4Kn z>H#UBEH0gt;6f4PI_Q7q4PdwL78`K$q9TzoYm_Fw|Zl;}u zw;_)PYBASO0SK|L&C|?1n|~r<-pcH9PHfCC0=+eBE?}0t_8#anz8o+sQ9nIWWfzKA z5c0haPdh9alzzFD@S~~DBb_5@X-Y`+x{a=mDwu9x9k_P}9d61BmgaxEu0f8gioh2= zWMF@@sL_Jc?!}NI9&^C{ZdKD8itNhCg%J*7?Ak7qKTZAFT@5~rJoYSeKpcaA3Mcg( zonmhzIeN09xFMP{AFS)fCO8xwpu^Ef{_G~`iQ91yu)bOdYKtYT?D6fO`crx0vf?0o z-<=5t!@wvCtR$B=XC7pR7L!RdjW=a)7@Oc8@D0h8+KG7rfJ_K1BYpi>E|gOH1JQ_r5Kb4I67BAhsZPP*cFPNGoMV=2Hxf7_LlZa_E8L>~>`9g`Qx@60GJ@Cw)c#0j) zlD203q~KA86A{Ahxl6(U08Ax&%iZr>f=Xo*Y|YdzN+O8e$&(Js?>3f7d!QIFQ`qEI zz5Qyjyq#gXKDP}!@EdgM6upl#svaw=%`^UHY zOAA`GOfW@ZTIy&DQxpC*yQ}ok(Q}lNkq_?L;_&detrp^%9bLP8rfO|EyCX^;u^`M1 zdCDw*GO}3mFA>%|C=3txU;-6IQja>NhFJK*)Rz^wb}9xro-GZA!vV~Dqz~2p>pC{T z)i1sgCp=sqKQev)hwBDt1yd$J5F-ifF(jwQOt8c-abmn&P?a)sTp(utmx31DqCfl}}MsqDW>ptq;EDDKpP@_Ali@ z1Rr^EgguTFA;XzeaZikpl$ml8gP>Y?taHlPna>0iZ&EwxvmZHr(f!gcVTcCs4iVBr zOBu)}Q9x4oqFCOEglq0S_m{{yR+TiRCuta@u$KkW%ZQR`Jn>sUNDw9}yGPjJnz;vf zL3Xe#&O8QI=0H_uYDwf|4FkH#klz{ry}b@K^CE)Jo;(OrRPIFs2nRGXIRdP2E-Az@ z2ezv%6K{hwCDU>GH?VF7W(Uc{f_xJWR@+i37ysv?c9Uw|cs5iT*THd~xy*hJ9lnG0 z25{zRZw{yvL0ppOvS+GQ5kK52mXlu^V~nnuMzu$1m2Ow}uF~F!O6oxQ(GMPDU{=OV zbHSob`FdvdzTC`gEKZ<>`f&Px4-04JZf>Z%F2FOPrL_~RgFvhUq4v?~#2%52OusnY zB{=wEeqkfq{#zvJzXZ0pqy2C8{x%>k$+WK0Yd!bs3eQmJT#wwAkvgWIe-g9jj7Wc< zt9YBcW?Cxo+)B+~t>hF6L&~1v->b z9i5I#9o#Z?A>Ph=dxyu5g*+^&3fDs;D4|ntTBjJB9$@;6n{km~9=k*9%X5kE#||i# zxgLdAhxC(*p4f8gi9)Z{?_N_|D1gkz&$C1afMvmNllsi7u;-J~LlIoU+DaVeD@&}< zJLVqY*Y~I7FkJB10kr&F?#uFKiZGbWk9<49y#6=;I;yK7!3MHx^!Vk*c}37)=Ttu2 zycyBYa`zD(ZkM1a=T#}&qki42IYt~A!Fa_>5BDL72S(}a)El9-WlZ%3uyAGa&N(CX zduyoI88{&fGUGRH1JnvVNNRPl>zcs`B4STe^J1Z9U(N7#VSTBQTGaLG$ZmFqwkids zp(lD%Y;JALY-zH5TTCR=;)Cz>*F{!rHO>i|AYQyeIhqC zGt(2ZI@#7jem=;sdogrzzP_<#sjg+QcG5*NDC5@hi|=D0V>WLl3@t=IJ#n8|YFOdB zt>eI#lvCN_Jg;X*dHyUxwV~nJaf;E(>|l9(l~-l~Z%9aCiM-ayNX|0eml3wE21V4w zY|of`ip;i< ztZMEej%hQ6^KLbsbA1bWgz)SPu6*udxIz+(rH*fZ2yyPId~p}vsE(}efJLkA_2=ev zA9)+*JHW6B7xj`7TtP9CspD2FHOIl9M|J1@3sZtMUg$jINO!Q;{y1#98t1f|wOaev z-hm~?T%g+-t^1l(HfwgIU!v!}0ahF2%2A z9h#D(1zC8{{$SI;Ak{B`zj*27jnkT++hfMvUnZ`UpAs$L(6m|aCX2yFJZefC8?E9t zf(B+wUvBGE4m&d9L~L%qJ)av8T)=->N|2`5Dcs;nHjABe4xX%WI;C35_*HYCgQy{E zHEp&4!(Xz(dwzE)@#@h?VdTK8OQsj3_*(`Kwzfr@MsgE*O(WWo>C_j;Mf(jr=?jq_ zIniU$e~{SAEA6@^rID4@aCs57sL-YzUqkv=uqnrlpPLIuQw<$O3;bPLSp;A(ghM(>kLXgR-l2B!H2(To@tBevO1MO z#=Et|%)1G6NDIR&F3jR`7Ef@%3l+pC;aJci*oEIHa=Ccr+J!nuOz!c@l-h&==#mp= zqh59I7Kz$kIczh=ZetG(=+ej1uD`AtX8oyAbW6p!@OQBhv#(r+a)Dt-_qxsu=W7 zab#sGwmPHcv1T;aCvc3EEP3Xi)2J+;bc%4_Bkf?(wmnEf9`If^=v`)AJ z`Vgi$!<|pf5qIEo%;DUuQ-c`eW$mU6{b6~iHf_!Nw*p?9cNQb-2sBc8ii~jV-t^C680Q<8-DOD} z03I68M;Qx!s-b~sqIr?7X-V{BL(#-B7XnWFfZE| z45Fz)l{;&M&JBz9r!JxYAb`{ZD$DT$8o zU+)R+!19R`wjsxpZ7HWZ(|%QA6;$>*=@9~N$_kG=S1>H2kLE?SOWQ+9qUJk^NDFk5 zb}4x#=sM{*;OGw*!triDG&SSz4kdX~V~}2OxTd7SlnDU@HX}A(-ng(osu%x0Cbi{Z zM+1Pme`Yb;lM?UOHyEQ3(s9E*ST@(W!C`P%RpHA$8-^}DvHEn^!dO}idEPrL=J4&X zq{{S~KK`)^_EqUp?`o-#@~4xGDM^NB`NC7TcWZ~d1Se^O9dO9>7&>Qs*OF*SNo`w4 zRsMigYY#4`#&M9!;_kkmFT)=f29z5}cJ&qi@*aaQ8lV8bmV7?RtC1 z;;8nIx4K&PDLHP{vEzek@;w~Fj5JkMTHzG{T+oD--z%wXZ&jObHe=65CrhHVQb}V~ z9o9N@|AzyY1C$%-dj|Ip(blkaR|i$A8l3ddEbG?P%_!u(;{94<&1NywZS1_8I@GpY zsebvAh^lvLEH;s$`;zct;--<`Fn_12UakEjCPaz&%Do|uXI z8d8|$fiz3XgTn#$+aMzRA+f4~DqHAl|B}7Zp3GTdr5WEdF>?MSrJgxX`w%vW6ZpiS zuS>o=-%{9Pfii+$ENS#X`G@WBoPO-=%!LY4d4U68a#teuN6L%Eyb{u~sS>Iki3m1H zBAExb%5qfFkic&WusNh`UG_6!U+vq~;8IqRPWwLNZ6vG^1*dlQdOe2L!{9QjJh=nQ z=};E?wfK^}zZK=XccGjEOX0HGVTZ>8v?`jpg>y?q5ZKWLBQwb-Wt(3nE+z+e-}rQn zeAT<>h(Ngv#-p>b=deO2YmcA6D=`ecP|u<0#X}<~B+@L%rflE6bvZv-t8x5Xg=6t{ zA9dJ#+K&iai6Oo7R_&MD>Ekl7BwQAX==o5pbL`>55e3ZXxBjOg9Xev`p&bS#(TvH- z1HCOxF(oH$Qc`Wnjv4W(>Yn+6z+rpDf%L$Zz&nGpD$sMKqC4=q`*A(lJ8t7_BvKIa zRp-7dcd{W=U{J;vu_;&A>5CC(Dp#_DP;&%c--{`2u5IX-}DP z7@0Xbn{$Ng}vizbz|&1MaQi7cb|_W?h?Jz@G62!sL$ejqRkuxF4!Vh4YwuIZU-g1-=mJOqM*$jd|I!S5sp3JbQ$E%FN`j{=V* zd9X7HJn*RfsVI2}>R=27A&-+^N#Glm1b$;t;4~~2g$2L&lH?&tDDaRc4}!z{pQI#w z5;iFbi%r7flknIi{2mqs!J_2BmDnVCY!d2l5DUKWSUh;_VfXOZy}jy)h?ewpe3Cpq z35Cak2e^8F26-0v+QaYdfwcDUN#yBZ8(g>FCzkBP1S(47qh;w2ft<}Ce~xJf-gyjx za6z=MsF{Xj&Sgb9_I?bCan^G9_$R;Y+YC{>`lleg^+VTzW#d$l(RnW-e0v+6t&{4Z z>uAlP?ScxB>RO@ZTk77C>Q?NIMfjCNAn*8ckr2rDJ2=QgHG4=C*Tq{7@UyBCu;ag- zg;HHR4p5w@!W=vO-^2e^&2pc1XLTwz<^prq@Q9WS9V9&I)W({#@mM$F&AnsxoDKl` zT;cbGo+0m=Q?^l?e|jsc#%a+=u?iweWkzgs1fPGCS)!o|ziYRFOZuLfGEwC>tk9@u z;4ya2&{linF2nKMj?iG#ypPLxc#a6UQ;m?zEl~FI=bB+qvt)MNZJfp(B_C6+#m`9! z)XJl5ReRtmK`4OS1IK5Yj7JhCs?8L~TZLhYQr9~^$iK^Y&=j&v2Qbi6`{x?6w%?u5^KsEOv#E@0XCdF~@-Q%+~4E4^3iE@igRC#=yn~ z$}RBPces}z8x?HOyX29eg4k&q++6f~2qs*Ae*VcFn~TA`^c2u}X=GcdK@dZj2Nl2o zHYHcue!;?abIv~^MQo3Eb;z!i%CvODM4-TWy6aMQ+?`f7KT%UiM;|GkSfN)BTjeTh1w_Mh0b7YQ-<7PVBa^)$eN*k^+B)tEa{_c=VnHZ+xtNyoB znEKl|vHLCznI&UC3}S1E=6ujKT44PwCBW?8L_6R4sCxw7F9;iSl!9em-hOX2imwRx zjjId+uWGpom#gKha`Ff}9gkC1BXB%dCp1-77Va8kQp~WHeM{GQfY&1RP>KS|n`m(OA-rbzoy9a#&K5LJwi0GMZ8paUND~aiLq>ya3 zdfRNMuFBJs7_u*(ZoY^`)J$(eHpH}8$_vjy?`d$AQ9RqK^}e`bA1nt2YE``$+V2eIGO1w{B2%S_ zx2S91b3-Yyt`BwtPKA^yumPCx;|xJD8lbwPf6V*9pz{)n{p@5`_sCO0Ef)6)t)Jx} zo`_K;{5^3KPLmY{^<#tou^mNLQI0F9k4EM$?hXZp!oekr-CUo0k)TSrWnm>~4jLTn zy^Z^P26_SpXn?Tef*rR}Bi!P;7(n?C9mun^uWkudV+J`qqr?i)?$RYd{*QPvu1@{z zVrDQA%dT&H6OXWGG=s~TPwZ4jraun()h)(>(KJ;fSTL?kwaKxwJ`Y&Wn2%1gYbbko zI5U4IJwD|*GQ+#HE2Y~#BLvE1M2T_K{FI~Zcm480mYsm0%o0o_j}~Zon4}Wy^5aCX zOv8FB&k@;E{a*sN1r^2_Ev|s!c4iHCOwE4!;o#*(nkk$?)X+cd&`~ufH$*O%*W|!4&SVEAuep%ciS6t2g~%Y;(>!HyWcGvcr{N%1 zE}wrl3N1hl1#Jex_pbpSxl?U?vx(-LUuh-C&d*0V*zovJUY2D%>jqz$64Fi>F)Is| zlLFdKbNdv3-1K+eJX`Fh2*i?`ur0|qwdh=yL>!MM$nlY^WWN$s(O*rH-dy$-%LfSi zWFFAH!_+|(0Q#yuCs!FOd_xl0hG2$n;c^)JsbNGaC@Bu7tZFaIwdev}I|kGq!>I6< zF~IxjVVP$v8N*CwsK}H1G;?L2c#(TOY)=1o=f8$QUXccOR|gP{V5A#I9#~yc*wVW&d_)9`t=Vr zItex$n!IItj9}IoHT3c>uZ{=|4q8ZQ1H*k^fb5USnGLUYpcwp-0rfD6wq}V>y+U42#6 zMwH^#yhGC+D8~BEA#7zx?aS3E&e>Io2LbWqk%~8mazql}I%kPoV5H!C0P})Oz^xNg z|ADtmi!A@rm4uuqpT=*m4?Ad2T^>9Vx{uV}*wCoG7mEB*zcM6o5TM1omf0jRZ&W`H zuk~8Z{%79j3?11#0KL1(QyUSv)E@RN9(RcxtE}jT-SpiRM7m1G+kowIV#B0{=z&W# z+jGPR6qAfxXWM@h5 z-`pO$vMuK)dfQads>O}j$|o3QjvtDc^V#eDv;e;L_) z3&A)xRdLGI`k1k)S!Xw;woZ|+DJ&S))BAK9Xd}^?O2^$vL4(ur1nd#cw^ju3A7)O- zWqcYXr3b-8OhNFME1mi|#a0bi!j9D~+?zk=qV<=Q zar`UbeKv8qu!DYgNpC`xKou$jX1L$I^w2`of6@#1eehS{24p{0Tqx)Lg<254r}DK6 z`G&clgu3@3e@Td%3d1^~edbNha7$mu@z&>i9!nOMKk+n`JDTpm(A`M4@De1>Kq`gR3Ar~mR_1gsg?-t2-;r09RaQtbSOUYuH20ZJ2Q5%k zCLE@FsF%(Wmlb%;ZcN5I@X|)U5In(=xc2=(3&_4WT8vex6z6mjYz*G}yz_uf6udl= zvq94@7g9l0SYU9UlR=E{YTMSyvj;HuKv!A%{W2Wiq3C2$d{Vw4Ck0LAJW}#gpQE#h z`^vfQ6#-7KR3&=l%TdTbP%_j9ONm=P6=SLQTzhU>IlK9+gnogEn2BAq=k!`r zWR?rpsG958r9afdxn&!--pH9q+T9M&tsObWTXqeM?N6yH-hHPeI4UD$5GhBgX>AIR zr=Bry7#Vv{gFlM-U|#7XJ5l|+$^Pc_>ermj)!s?TEW}9tcN1~;Lt&iJKfHBw^yRi( z#1AoRyzCNcxG+-@yfD1GU^sAhx-T)r`{dztezd@3WmLrj3%!Yc%|qA4$E%o(kH=XJ zKKo3*Ydgqq9z(SkT{kWNh(FSAu4|`fa8xFO2SL82BIj7k?TX0lsPS#gkrF!bxH*-% zTD8NZ!R2ETb_lTl?dfAEM`WFj0K9v9k9i@Z z!96qURz}a^IR)mw{AoVYURXUb9&%)=U$h=(r^7s;5KKm1=q&~t0&Kk(Hh8*&B4QfA zOP>jYKDdq3H&Vhep2avHTvu78{(toH6TMJNiUhbt&CAd4^-e>@y4#M$;Cl4$a-j0K zd>+`Ikb|ar3H`cwiV~yy%MZt07GRPalYSm{JueO16u!uyRcgPYMmSl|<^vNMGM&C5 zKntWzPu|k7pD9phkTilN{B%9F?Bg4`zpNiqNZstih~wg~5T1VZqoVk}0*4Cg0|Ah;az}(ok3&PT>Z_U;!i#O0*fWmoo0@c35 zwe%-K!k!u8H#{@lLw|h-_m&6taFX_27GmdGZw!BC**+J|5eu(U+lN6pV3;zov<&~=9uULB1lmV7%WEn7wA%emf*$rC-;joCxjETi`!7>hmHkNLpnN@4qOWAbD?C8vE=CE{s3qDfz?VyStu z<}age;tQKTyqe73n6KLyv#%4!%o#*PB%WL#TR1!&yu+H&AyiC!oQ+aP18tsG8F>vS zd_ez%{XlnhMl3{yIR|TS1KS;-g;K$t_P&+NmtaI`P+*HAbhI@ec-4O3kgW)7BF=UN zz8}c@5GeCd1j7H{i9`fr=Ca@A2IIJWk_z~)Rx(g=l@ZKO3D1&Y_7CFm4-xb~gGiaD ziMiJK&y3I@<1b)LG1&ytP|DxN89dw~N9aGz1+Q^IlAj{Ir8~$7DqmU!Vs~GiVUUB) zdzye9+5ZHu{~cp$BI~I+aYqUtGaq`bW?-!X?!W#S$oo4o{9naD$>{%3y*kKTReu$) z4ie1hf2dvU&#V2PN>>NjIOA_CSNpLUB6w7|a&`GlTfgX8rIiZVHNk$tsM(s`6vfhH z99R1?Ge;P|gT~c2O25Jwj`u9makBVL;RKhba9s2NL%glsT`E`bZu-7w=gTE!pXEWJ z?4^k_U?IK)<&dS*{sABl$~~ov6p~?P$p@?P-9KxSRl%Yw3ykdySlWlnkt_0C`~L)} z5`I@DVDch6^%tdKL?kaJS$)BjkJhc_h-bC zZbjcnnvUeWbnlcp0*L1FnT{Kc{+tZqhOx;z%5ewqsltGm&a(zEb{hC?T(0DQ(zN@w znEK+HG`lW)_38V2@Fsu)@(=shteb0bXL-1AdA(w3I&f`|Z@{NKVsg!OYjOsWb`JUV zN^;WUpOeqf7WF+1yldR-Va92`*?iAiWQ&k&f%zwSdKoLuICeP88*}y)@UlP~bcC$^ zqSA@U?$6LlVWSrvd&bft&O5ycF_GHh+rw%gh#K<0oV=UsZU&s0$>&Ag*F(ga$4N8K zYDH>gB%FuK?bezOJVIvZBQLhnp~fdR#>durA}lYB&liV|$7uA>r_USqNE@bRlpm5p zUzLaUO6N3QXbA3QAU;*H#yOJ6MUCD6JGVG ze5KzzE&K6le4;ng>)&ZCU;A$Dm9O@(yPoW+5tKeRgWP1Xdwl}Q7VzPC^3472hi`tU zv%h3;{hHiBmzg!EDB|7vwvySbdcJd+RJb=4!_zyP{q)w)fTblrenZz!o!a zPIAMSA0pGLT3cf&V=k6z_yj3hSA5F%IES?IUvqbh{sWzLps>($QuH$G$hPSdVWm7P z`u2`{kz?l_C92o$#9JnRHl5@ydj5UP;*}?Y+>dWLi-_j%A#_pc#dy*}$M z_BHu?QV{!0H7-_#`N??dBVWH{xc_(xO+jiBv-cT6I6Vj9be9aL65bkUXF~q*>b^9o zd}v9Bg-zTrF~wOuign5xrd(PQRq1QT+VfIy`;tzfkzi$q<`wF^Khr|ZMJnRv&XQb(}$u1X0>ga#}zev2EWDpwX(S=_4kt- zZqlP}yvVJokiZ#(tK`+9!;FKRm-PF#9}}t7-@j0H($B~y?s~q6pLFqkG~S@R54!}) z;d2gkZVv>&%E`-D*Ppn$d6r7`yLe2O^LHdIOP33>D>&@Si?&{=90>f9xEW|hw%rwZ z2P{tzW0BhZrC0pVptfDB!+Ol3oI}`#z7Z}*4Q5OSe7wf3Froh*C~}9lu;3o=DA{>h zh<5Y*;j3;Z$xQt)ZTPa)+By15eN_QPCI}Wfk)0_q!AAd&`iQtBX&W*R>E!3y2Rw!& z8i#!*dwbVbhKQ1V2&LN2SnHVUW{F-3fgfb@O$^tZi_z{jQ^TX3*B}sTCGxWX(K4|8 zVCXmfL`636b;74wr8$>OYnP|J&z#hCyyG6b_`RLI@2ORo&GyM+ci}B>)7~X^32VmM z^gopIZ4i&?u2(mFnamb%iz60%nTl_=ej$DSBtWQE^&r)-qOf&eK2?Yt)bv zi%s{m(NcK|7${`s5`EVTcvrb!%jek=K5^@BPi0%Uw2vrjp_>w|l&oI}@S(qV6nzzD z=O8$+_v8w0OQyyT?-`9H%lGXsPY%yd2n6%eP54>J+O2=}=NAeGv-m03IV0a%IXsKA z6=$mOU3S=hw~0o}SLL57>FVVmTI4bj=Lb&wNL!x`qq__vK90v-F!V_MopGbBDoCsL zRLHZ}_1DJx06Tt|$1y;G|4h~AwY44t3=2KOao1qL@KJbz)o_>DZJZ2OnTZVGVwY_p z(rt+G?7RMGGXsiwt!iKR7>ZRCAm-v$bVmS}sX+$Deky2?jwRuReZ^A!p6blM=%ksxNV{6V0i_3d0vYT{Yog3>T zpJt8xK=zk^!4oH!DJxA!0v7{a2mB0~UKA|sg_w}~ifz}6YdD^0_6Bk)N0B2uj1*R zOlP8@;EaLbP*Z$LIWEPyBW(;=n}yc|wHo`?AUjvvNI4S;=4tw|3B6f!J8dBY0a!l- zC)3KFwoprZk;ZhZ@sQp)5wCAZ+r#OEvSThX)3-u0E8)Z5)lH9eH3678(7GNrA9P~e z8oIO_LmGBMqb3wYPbBnmdP5ENL^G^+kd00kLe1)Td>aIs%YRnP7MZz`cJp}*xfk6$ zWtv)KV^1P~*1ImX{FZ4tzaGo})5tc!2z-2kY2TT4Ii*y~pKgC$w6h)0DsISn47H7) zTD2`&tnz9#Ue?~+8&r23knWxRq#sOEhjrhr{B5f_Xq6=+`E7~qYVq=HNt-{+gA!19 zp_uGwnu!uyPkVW~Xf%iZN5|daWlfRsxr~UXoED&C^LO^jJ1u1P+(_GdQ8}jKS!NlZ zcy+$zrJ*IUC?~y&qHAcc)R%m(i_+|#mYOr!$i^H>sM1b7?Z$;HxH+`_cEBVJDl^j1 zN~v51>U`!cW4}d^(RHM)4OX6S(To3^Uh16UR@rm(J)AXJ%{Q|r0P9;gg9~;ato*JK z2C77SoJT2uDc#gZqR`H!&H1ls?}4-$KQkjgjkRoK-|$K^kj4!Dk0}iAzYqwh3|J!1 zgsgLbrs(MkruEp-)>^I~Hg#agd_pQ8eBRiv^ZjIqyTe9UHvq)~n5=T7y+-GjKjD*E zJ_X34l5)6~_yl)(@uB$mr;;PrF)}Or|3JsZmR-RCbfgPqfo0sj&E^IulN-&#sv6>~+hX@f^ONUeLqLXqZihc% z^}}onepixGX6u^GTMKF^7J|t#=Ji?PAnvvl(Hys18;TD=uMX?f2zO=_k(JT4cO2Nv zSXvg~8kY;M#1+*hD|@Ww6V@iHcD%eUx1R1N-gz?(U_}3gpDNo#Yn=P4P?PCoPJX6P NThri5iMsvme*5HZN4Y-35*F$iVXX3L)JOIc%>kt8C7 zEMpmzeGiji%zdYO?|<<7eLnYoKKEVDnfE>CJnuQrd7kfip6AT7>n3_oZV_%478a<1 z{?(f-EUYBpX5nN7-i%QW#DQ%6y3s8iAZKAwWnsavsH(E40%;-(rWSZsWx+6CFc08I zqACWXiUHDE)kNSTWBxV3{Hp{MFbkPSB5-07fwUF_)Tsq7MgjtnsLGNEkiY;Jvj(%A zdDH@DVl9x86UnuSWJd1w>$Mn`T8wIKB5+}tg+TGYySA1LoV8>iWz;elAA^G0Q&Y)_ zs^mlrxfZwp0?ZoBa^}GxGZRWlUu)x!q zH^|^o_)8X+V=M+&FW>TevocQC9?;LkZ*1XbpNNWE*?4B?pvFcTH{KqdgFF`d^|?RE zJ$sMA@Q`1t7&n$Fy7oIgKvS#qL!(cAj-=e$#%q?(o308h_#IC8p;$bq<^Qt(H7s!D za19K)bfF9se6WBp`!p`Pw%7VCe*N7vbSeX`54OmT;1PNd+%4N$Zt zx%??E`1~acE$>M(?nQ`y&6@E?!pU8&0<{)=hZ>1;_#&?vs0n@8wq}Epg{9?!Yq|D zs=fku(hi=A25z)1!MNL>bHek?IQv@LbwKKK+MR{^{zViX6vqu} zr)Q>#C*VQBi}b_D-ipzj?>n#Ac(<-OHro@=gPX}E3hMVA>?!5nxC7&rwp}vcofB?n z>Hf$9{E*DY*r7G>> zS+yY5&iPS51>P)PO8L@V=SWNwP*>;H&9vv-8+EP2h#;X&7|AXTi zJ`au*p^2XWe`(r#VX=1a-K5kp^ia*WWE@8req5+#sMd~`71Suln}UmwM&JKUAGJMP ztw$>F+|$sAuDmEG08%?W$zq%Nqr!%5`6Nx81MF*73v}^=K;?@~C?zk5b$I7W4m;TQ zMl;BW_(`DB@F9#%e!&6-_BGfJdm_V;_*NPnH6VX-+MhZtP^mWm_zCCm(QPQ2_9_9N zk;L(aYDoGaP$~CNt#bY`FQ?xH5nBO$V%{Z^bRW`=Ce8&GUTf%%*sX<$q#dgCb6bsd z3{1`80U0Knl4_ILgb!6>hpb2){z+3`%2pz-cyLUoyWvELqNY0NapG2BnlWi>>5YTd<(7&I zgkLL-;o*{uTVk1bvf*C0Ec$yV*0d<=LGr8FlHeZl!6CZhp@7^Afr40$eEdiGN#lH6 z*a{`e&Fy)>5{YR#i61w?fdTaeJm>Z(=8ts*R+| z<8D}sBPc&V;QE!EX^)c1aqlKtJ^CaUx&n(XunS_Xt%wUiZ%uv-^o-l8KkA|TaA)nE zCikL_)q(!;%;_iaQ!eHpuQt=%v3&vmRi{~2p_!d&<+!*`T)iBl5mK$#m zf!%Yk2i{@04D%I)YO?f2g@!&W@%tT~lGa^t$rC0zuDNDfFSaC z2{?Wz+q&Y43IKlT1~lWL?1iC6zj4A-@g?`54d3z&a;#q&hH=%WzMb@err|OyCV85E zM1-tWT1VUlgvb1DG6GH0DID#YKJzhl%DrM&1Ea<8sT4%{6$NQO0N;MS9oPx5k^b<6 z$DRi+Nato%tG)`NE%;k>BZf>?^&>k$HU~AcfKO#9yyMI{z$ke23^C}?@@XXauIeXi(p4K49gj* zgsQt?l@2RbUiK%#KxD)4%SCo^K5z~(i9_z#V<`XXYmshfHvkx9=(!GUo|Lk=gI`%a z8f|;mWQTd&jEd~Qx&~!gRj#JbMuTO{syaO>XjuyY)z@B>UFug@T%?aR2ObH!Q!8R; zY^f>elC1cC3(X2ocV0ng!UB@LbGAEF@Cz_G?8T|GbNjR92dOgR#q4ChAQLALhE!WQHb3fOL)%$O$xW3q*1%kEkiE+Gz z`1xGB3vbsJo~%SZRz~yfUg2;vMYvuhR7qOXBKR6IO@@8_?rYVZ;1T!H$f#UdFULja zT~rA`Qw2nuolX1uxvcruyhw&L9g8%eZh)U2>vse?em|GT7$BoTXay-Oz%mvBRPD)A z;(RGW&OQZ83s2ml9-pVgxB{xv7gr1PL~No6|H3Rw;RAqDI(jsKkh>p()dYc7#`g&U zTtci+!?@rLhp-<1iDWwWU1(N8njw?l)>qlyY^RrB?pJ6i+4kN}(0U%|xb2zn7{+QM z3$)I;Oh?`fI%V%=Ub!)q!Bwvc>R0e7%=#*DPmS6X^-WYBvFzSvPPEkok!@AK)@^q1 zCigA=8JqL^7|!BLa-O@wQF##Q9dEnO}F6hX}0rcCwb&> zbKVx6?;eT*jEk@u#O1~$g>j+OU*$#Vu_q`23azzx-$7iA!1eetBR~0DlCBW;5qlcW zUJRxHffF28#DSMZ~d=FtQ`V5k`c+@!S^Mb&&O((DdpvT@B z>;!cU4dWecvhB(GaJ-s9m@&}dtvI||2LheI1s6Vqg&C15O9Rfe{;Hgu(%}fYn+B)> z-TKkx5W^ToOt~gucVXl^l~Lp;l{=5GFa)6MQ<(V>YuyJ_jC)v}zC`!=-Nw=NFjkXj zjW~d`<@?P{%d<~ZJ{Yat|M(}U-7M%r8UfceV;Pznusqa;vor>_l-vQEMuEDLDIQ?{LEHeFN$H z0wRBS-~39eDDG7_(>K_2q2a~v%^wkNl>K>+fQ4i9PtOCi>ehVKJwE*TFmm?&Y;zr5 zYBWYDqf@D~sdqQP`@?Kk4Y9I}Hf3n~d40O|$|9!au`5xXG4x*LBFb;})I|Tyfdb+o z0Nde<39xO#8vis~`uI?Av)yQTneUaSZxceA0IXvh@K`?3R^MQ*&Rp_;y`~Y{?)1WX zR_p8R+qjX}fz-64{Y zrK)@c@*)b`HoeUg(bTu&$jSQ7PCtLesPuI!xm;>(Xw{3QtW+H~N|jYBE^zP>oA5&U z6Q|6A6-woKdToC8Opo_ybk)~Ptw7#*umB2v*ol5sEn`60W{9@m-(o_c!*Dg%AUr!XJ#&#gJ7G1Gz}?Lv_BE5(GYkCQT#U$0eD+ctVVip+*X+pNqJ zi+g*f_lM>VP7us^E&mxYorCVbjqzFOd zc~~ChI!S`=;PZy_uVeOr2frgY7%PjWwZT6gM*enqX~T(HNy@ z?tjTYg!R%J`BdiAoz>UJv~u2`*1VJdW&hTgHVNqc=S_Up%D{5`akP7L=!OXW_mc=A z=T>PDT{MK$$41!KC&BYJIK%*(HO5mUkhII@>MKTy?yO2G&(u+I$_ip&x*2xV^)F12 zu4-lRJ+fy-kW)YIw@I~)R1w1xcw)HVj^;s{>z?aYlfnKt+yQw>ufksfez($J~RC{yK)&@Yky9{PPv_um`q`B8=b_o^uWV zg5!1kwfYxh)wVO!Bqy9n9nfWfJ+HQ_P~|4|RT8yfP>wFP*d#L6ZvLafz5_%S9Xk<; z->XLs-y?OL9gAzyL{Iv$es`bZiyfM0Ro>nt9g0<^@chi4!oPxlTmfp8ZH^ z>IE2Bg=(EI~G zMPP9eyFq(7`R1*~5tF7B+tp~N6ICw0=oX>2gk2|J%1PCC_YNMS&HlAIqB&bd(Pp4N zg8eoYZYZ#)&o8G5IisW*Z#b$}!#}-Vo34-ggX#j7daUljWn$?VUYhgH?Ab@T_~fy6 zKKYYlH`@cv53-(2+?-4E&Yp^&ZsUCw=)l#KZz6^iM7}{beB-JZVT;uM0$UfLe-amU zms6w4xU*Jq@g^UkUa|019a`OTckml8dk=vY{F2=MXqOo_hkI04UEFxT6LxrsKSjy8 z{_PgF%Aw^l(QPPO)Kz^cekD!G8I`|o#czto?Fa5t6%bI5Lhn5#s?%EIWVqJBt)sS& zNqTI+C$yFx?@dL8e5exCm>&T%ibn-MpKY@TVLQ-UtTZI69rp*J#Sv0Sc)E(W3Xinj3LXw0+4Cg)baO-eR06f0 z6VY03IiddSHerQ5=(8+xEO)#0fQa)kc)x;IYCev14bWOq*_%4yDu)JUSZq9N2YdJ+ zxeTAc36JkPct9MnP!Bu8UvaL^1?ZF*Yt|0>aIGMdb&k_BxIeUrMbCR+NCUhl&)hOR zGFd?^+}3VEc*do0wE$-xfWliSnFRG%#(CcytJ}9+Ir-t;d^ynW%`Gy|ip8C87no)}C$S!i$QDXrYMvq4E~h@t&X zoxmo%^DkNHkEmf2s{m{@vA1W@F^X6M#F&J=zKvSnN%t)Ks7-* z+i=ZA+Ijrd5}K9GN}US|un)ioWYSVer{F$t?8qWkohMsqJ8aKoLsbM77VEq zXjwGM^^sPG?>dpEURv+S`g8o$J0W`Yq~N&2-&GeP8*h~P-tOTwL-#;Uy_qRBjxGQx zYNxOAc`UW#7Vj={r*Of`i`mBI1?N1mzU>1usr>rQoNEZ?JXAB5ht#1vPr8 zJ1$AP8h2E|7;t3cy|vE{g7A3qK+kl^?o=ZOP)n?KaSHQnwnz8jIYK-hQ2HumwlkE4 zCt~c8Gn=>xaWOGRdtpqeg;X*nIYctU^MlA*~wAqZb+#0sTO@FhptiDMo%NTIy zPge5bPccTs_tco~fr% zYa&R1@SU=(^cNv}(hW*_RUB+};?031nlR*0!Dx?D5cH;>)sL$S3%Y=3gw77X2E;4K z^YeXffBjxr%re^pY`Ej3u;n>*j%c>llD+n|1?mK9nY&U2f$B5C2vt_go#8?K&Q^K_ z0I@oA+Q%)~1?i;neS5nuk}UE%6qORzG#~wGu6d}HZA^)&^z{$5>|35m0BV^1B0x)} z;&Ir><&Xp)#+kccW1cZhsr9s=`|QiNpAp*{ZL`0V95?TQflqJ%(QgY^XN zd#}&U35Ix~#>|~*>{nj#&K~@7+Z;-7TCRZn=kOu@Kg2Ieq)9TPt4}5bWALGgUHFkG z_N&Tc1FK&3Dm8g_$8Hjf#_e~8rX~jB@u6Rf(?`YkgAQEM(?`dJO~<3l6`Dhsq1(do zfz=agaWe*0I4zCn=2LE#ZaiuDQ2E;cp%Z63mvmYSVr*qc3Q8!ltQbk*L;Zs-U4Lpr z7&MtT#F?}A`$2VomC-&v5lCYR7r&}3AY6g>FR{pJZCu)~=}_I8Mro{_AA<^)>j)yz zwgB{6c^&;RZu?>`5atEt!Re4LNft{Pg}aRqcP|HCj)KZ#PR@#i6tpl0bK`3;+2RUz8QQg>nA85Ad5^!-xlMT2v{{e*i|q5yw7Gtx`e1X@_p3S z#PU&zm)RWv?F$RAd-4r$);(Llah1eod~E?pI-ZFDtY-;E?^eVD?CUKclres|qy&i8 zVBCweNtZB#o)pc0a|)$KtU57g#PZQ`y{uN1_@rRVOXUI9BZ?k?%aiZrIGo#~CBDqY zXL~xtu@Ntd<3ZjTG@t*$H?6zW4+LdA%+A562%A`$%9K@fD&t ze&p>}xaoqR0ugme;A$Y*V^g7GXVCpC&<7aJUCz2WxP97k;nw08P!&JV$=)N{be0dJ zgP+U5?mOb7r$R3E8a&FjbvRdVD6=HTJBJH?^5g*W&&*v5Hi|jyPF&;a>tE zRvCX%kMBcY4q>Ds@;c^YlrWRb*RMRo1Gy}+chg3W3kf0Ba-;^QhXHYKV|R7E!4i&{ zpaz!7A8v?xiyz^FzJK?k&P>p(@-03!RLa~hZnbnUVuyMRO(Gbs6{X$}IgCWxjJY=k zj=Smt!kOIX%|Ea@FdCbUPe4Vpr2;Nx-0>G$)z5`1Tbw|=sWMb&CG2@XTEn=w0RYX8 z1~%Y+u?1ZvB`&xtjQb1i8~+)x3%`ihtl58@2q4VfkLs)-P z@022olEQHitILD5(EdlxbeCSBi6GoTW~rApl>M8nOY_WEC2HQk5;ooxSk~1CXeglW z5?3u0;g;dTg6jf$NyjX!`P|UZJC-C241$!giOSrAtQJY1ph$xwom*755P~YNg#-b_ zPF!~P*!(&b=pcZ6k{+Pz&U;pxSqH1A$j|fgFw)cs@472vaOWB4->2dFiSmuvmldQy zfo!}Z9}Ky-p9=uqSiLDm7A?TEXh$$pbJS-^$*%zi_)6`^HRA*K*?e}kF1|BpaS*dY zsk975;x&8X{l9>rT=_Z{pDej&3BM$El==9B!V2tKS{hy@HJ#x;*4xVptaX0!TB6VH zS|;{P-ItC4Np4r2!Aq@bigrk&zaoB*=x2qf4s(eSf+_-j=UpR>C-YPqeyU1xHz9U+#m%m_zx&!ME}1x%_@9Z!Qd~6{?M}E zoE9z7qJZ`+N|xBGnuu-?u=tdu?KB?rt8d+x9$zs>jD4)wtmvkL0INj8O>w<9E6%6R zqPyl`vQ!LbM%n;C1s)ozCED?o7jQ-T;Iyiwu))9;GKnpA1OB%v$!IwO0~MJ$2TS`cwc`7En4{Fxi2laM-p0}I5t^#U(XmfrdUSy-0?3$; zVR=2expuMPUx7~j_s$!SWoyw(Hr}y3Dt@qsA&aJHegWGOa5Uk;UBj&19u7Ds2fpN68R_aW)x?_`^VgtEns>`KR9^88wd?nL zkswjDm;3J|f)o$l@ru}zye9+K?fqYb*j(T`cwov}&ij7%8z#(S;vo1au8!Kde%;K& z3m#jYMK~KSts`F*a@r^!5Nn!pxHh|idx)hx&fuU3NuN=4@&lR9gd7eJS(khmG}xA! z%wh9yNN@Xt*2nuwQbbSxHPT^R9b0L8(bNKTCK(rC9Dji-86+3pRrWX;y^tRF5dZTMV zDoyAo!uBX*BUP~;f4`>d0;jEuS4xwY)6;IdTA{Vg1;;`Zx>fpa0Dpf1p)X0^aPl6u zu*f29F>u!?1zC?*=$CX|_c$=Ss}N8}{bhY%UC3lZ?Q}vQzqU-t4~$;g-XuK<;_CBu z;W0yeRdj+L{J^(xv2JTK6={zJneu4K1(QXma$cXIbRJ44y1IzOVQ__V#On8Mn75Qh zTPL{;Sv_t{{j^Dtw|0ct!f|z8z{$Npe-|r)Ch@z3^yeMIK4A9sNLLJhH@}d$0d2~9 zSBN*(=P1rhqVi)>m?ZgEyT>&r3y^)Fx!^iD^2>b9nI9)fYVegws zW%KUv76NG#x{9D!d2OAw4m}62oMR`OPxU>MILKFu!W-{@5MHpSNNB=3RI6K(a)st` z;P0O~+PffP9^JOO9x?bwN3}`zMAN;a4^zM2f#@~F67z@f{cfh=AVhl2J4O-G6%R@u zwd*CDloIS_w2PX3l9Q%|=A9JO-g}w#dz_{V_iJgkLSU62HFkoNu;B@zt}+0`(JBHAJ^Yj)U{O@L0^^qYMX2ci0 z^A7+PHUt`Y?zIi9n9VNGQJa-r<3%#6$&WYd6Vj=bfK| pSg&6N!1=#0`v0>3FPvcT>!kTygLFQbWc~%sK*!{2`4x27e*kmlx|IL` literal 9912 zcmeHt_g_=Z(`Xt+x}Xp#BBG#l1pz4{BA_CI6zLE|0!oX5(vtuJk5UAYE?ra zV@b#{91ws8ST$I1*2NrSGRGSmnK&eKEQvXWV**7iJRoMSpU83tMtlf$&CVYLf@iZH z@b$-0uRx#^pzBxlt%6>!PB09FuIFOczhi$t6_c=YoYjg$)m8`2UWYHR2a3=AJ9zF; z(ms>fvqkq3{Lt{Ro;J1>hPHJNEP(v3q}BX#01I?gGaw)}V*(Zd(;TJqW^X-}kfkN2vJ-*(o<9RE{X5(iiy_y~fuiw03uY zLXzum0S?<$cZZo>!^%KZRZe6yhfnElM?{o8JR&M^(?M@@AQ(Zmz0Yb*HJacK@ILn%GOp3|(u+O#d4;kygAx2By&T#omp1M$0kK9mSYFekk4j0oxn zxo&hFczyRv84R8H@cNIp@8d_0?rztJGXCuFn-La|CG5p8vJ`E{vTT2f^rqS_*4g!Q z0FY9x+)1B>aQNk4oN$KK#X1B0vVclR$pG;2 zAC|EAOCPAAYw|gDH4M?v2yDN>&y;Fv!*Os?Y!$W|eJDr*V#IucET-}HptsxS7V486Fk?Nq2H)p;^3l^P%}_}c`%IU zah=zzqiG!#j0ZWF3FhhC8EAS0wxIM^`Kk>J67%5!{`Kz~;45eF(3|*heS-NbZq4O% ztfDmHeF4e&Bw{>NCzzp+q^&|BPn@d5mcGbxjySo7n$ivR1S%RLu}e0ZkSBMBfYu`C zIY+GR@C&k1PdrYaL>Rkk6F&OWQsb}^hIry-g6|Dr0&LVFPb_fIu$QZ#G4yRuEY|7O zDrm4A1zUO9$s6(Uy~|iRcf#QclTM9OedR&0m84EyL&ts!g?1 z2ZvIZ3qR-0odw6K%9|0W%UONVpbwDi(z!>r%8-(_)5Kr;v&^!FNCy^~!6*zlQ__V43QORc8U`^bzI^azU%|lpYcL(hP%j1A}Kd?a;+C1ZCpT%JgUqkHO2mD zSg(C?*lrHp>UD8uxzNk$=flH!9NS$I5;}7_75X;`*HUSjv7<_DXtc(=j-iSyGdGMN zI^|V&s%_g-M()))Bs1Y>I?U?^<0jFwytQZH>#lxL_Oa&1UnI6GO zI(Iw?rg4=1j8BH{(5GMjKsM5z&x~-vkYNOjzfc_2SBht2+%qIFj%S-i!0>#sJL@! ze(ee5n_Lgi7K5v20HUAS5z2*a$WBdJB-(oJ;aF`MvpJJQ`OSjbbJ^K4%NVxlkQ8v&eyEGj96Ycx`ID5L~B%@|R<}<)S zr4R1B#x99OJkslm+f|QgAkw_L(Fgad$k~nN&gNOz)M7@iDp=aONvvaxF{W8BT{3z9 zO?LHurTbR{1gunUSp(1JL$_|hbp|8wzZQA=swO9{we(z@{FaAiT-V(HIIwR@c;0D( z>Qlb5yk_*=Z2EhXXu5^cf9sx_y=?5y(k5sIx^mn1jpmfShU!g|8hPh`t`lx_GBykh zyeE2icpu=yD!owJuI1s>ham3kVupeqeQ-_N>aVaM$fO)+h6KVp zZCfZ;n@jRRnyZs%*8qAH+ZF;FccaG9?=hY(Ym(4CmUg3ca}-$PF>OMv2uCIDW1lkE zEoUR;n9+@4mqoE$ti}vTcynC0>VSSePSq&5$Uk2B0FQGyd`b$@@PSb^e(J%QEn>9z zL?;^U=N0%%B#Z_rqsB!AguyjFTRTasGk07K^&wn)oO^ba@fXFh?eW%^hBsg zZ>$&TUHx|ZIMEcy-iO3!;K5J6H~u?y5L_>UAx z_zfuOj4w)4p4?fci|lfYUub=J?FO`&QKvB(xy_t<(wZg5VCP>t@T6P25bJiJY|iTotL|YVdg#8IQg6}=uQT}j>4r4lC{ZmhP9lN=h13ii{uAHZaz(= zZ5^HrwCmSj7b-SJM(n3`9Z~f3wljC3#jZ1fIog z=O-1G7g13bb>LnuAKt6{KEJ?dgUZJT=DKI%!PqT$EwAXFvz-Cyb5%4Z60H^x8W zXc2Zx?M)L!4f&xVIL3#mTnoJ~E}I8d2j|!O%g6OqYGz%pK)=%x0NU6VmgLRd*W7Bu zz+!Zu?RCg(IV!gapdNW`svMo_D)?XLFid?V-niIWtS)S?HZLS>yZmqv^g6fwgcNIB z*=kb99(+V=()YkTcqMXGggr2o6xI<9cMh<>HZjhOpAboBYHb;%bXb}_G&Q+RK5!&Z zBV-}fG=CoWIy z-ChUb^0|O@y}-RJmu|84iP2CsH(c)GNRwrdEygJZN|)qtKDgNUFZSZ&r;{U( zGz4FW^c1*IU)CMlz2mM?s|OCm*7 z@t5^VwfV#P7Ijb^8$bP{i~6_SIDu)pR=j$nG=?}Bfe%}8m zsB8Kj!^lPxTJ?sZKsp$2iFY_Q=}Q>p0|+K{`-Qxr0X%%=y(3}rVK!EeP2+t0{?c&XQzBk2C#p&m^^jv^ z68LZzE%T09`j7V)YYUiF&u1f1dELju5hj6w101nhT8YqTZ zyCOvUdP4I^g)ts3E()@wE0LkaxD`GHfL~yK+hJd-n-IWIb9@y}Wi0bDF%v{F ze$7m540w6#qX_8Wczuc z(xMk88GQig8Cf2G)6#KEY=o59e3q^EW#VCCV}agMI`$kYiYLejkNWon6v+WE8==VH zgGv1qBrsW;g%lZ*Ze_^}8G` zWO;(VYCS>e`(BqIyRTye>)(8j_sXA6-0$HjzEJs8sYHmao7MHTC#}aC2&iuq$fW|8 zTDPvMs<_I3!x2v+reE&gUL4S0=)6Iei5Z>{b?8Ig*uLWuA7@Fq>v&1w)1S4Hjf8(` zP$ajg(pjBx1(ynv-=N~6sCI9?TXrQI@4MfV%PnkuFVHUz4(3YdBelM`sJigs=@ZOZ zv()Lw9AQ@osOtw!=)fb5d&YG7w10Ep^7!qM07FFvxSE?M{Rn9}ukCuccDvXm*QQ*U zj++SF_bh(Y4-`JcRLfX9Deiz80 zKW?!vbAKnNW2awl(8K=(H(8!@BiNWCIWjFSKz{dOPRg~xfs60vN-UUJEY|-(!{Ni}edVsk4`tPdsOwW%_1yHi z%t_RXx4|Em2BT|W;y(I=%HnSn5pk-h&updyl=+?xWo;RmZg#6l*MUyZNfKC-<5+oz zqJ$8cfnssS1pqT0qqFm>*z3i{DvWFbPnoTiOz@iS?6E0ooeP;=b6JBiT?A zSS*i_LDYT_M8$5Eslmie0dZk`lx}zMqI1(cfUjJ7>L{3KJs|1ZCam^4ZM%AZe=VCS znI7CJVs$~X*_{B08lU@m)4aR=`lVJ(<=+TyQD14q<%-fgN^mn^!E{UZ4;)ruv^rJs z-v#)y-DlZj@8>>cm9;AQ9ClFEwg9~^z;m$?!Z?`1)Y8+}Y%#M{=*e3$DFEqqQvM|# zNJb+?;E7!{yZELm+4)$%qbltcQ}vE|B6K>xuAhhA!@d?DUZ6n{xYAe^|9A&Q6f(4Z z7xeH(pmbBnFzPDt3vY%KLi5u=Z_g;6aagJ6HW}Pv z8tW%n(JTV}$8v2!uAbv;t>XPR)PSNimdEi*NnRbvCun<7J*ctMWRr!j=&AWB;0R4^ zCxcY7lRqr~s3KqC#IC(3E*}hGhkf+E;z4in2WR)KK!`rY=(5J!8`s_}Kg9bX5hCz2 z94lrm&Oyf0)s@37uyJ(+E`PfAk)D1Fpp#D{@>3t^X_Rj>Mgy69zJv5rzb;XPxO{`B7cc(;>PA zDB=-Er5rzUaZ_Ib!hYv2bej`yYpqd$S#LDfqhrvQ#9k!Q8xEP`FXz8%xvLW*#N3)! zVSH?1xo`_!wS2BP*`B-i*PpwXWeekh-DB@Qr*Pu4`|XC02TBi&@t5D%zn^$W8)jt) zmpvy6pQPj|V|=RKPxu@Re4-r8&|?9=Z**tj6OSc#@fXWm^d;Bb>(_}7Li+$GY$ft` zLv{YYISUu^ltPYr;om#PU@WI24idLtn{td#4PsmRkG86zOQ(Bo zJF0-8^Pfmh`R)wwdFA*l&fR}B;f{hUj69b?5E?u6O97|Cn+Bp*@6Pu*(IfjWu@OqI z3^Hi+DvTI?bx&fbHd89ki<-#}orenx$VaR6{@T>G!Y37>4h>HvGp%_z9GTTv@Q3jP z>ZzPtUb>RCsEK0yo-R!p!X7VA>K5=;ZwC+8XG(c)2WL@w3T8r%v&I7Ki)Fy&^Rr=< z2Y1xK&^DjU2$5O)FG7>ey5AV2bidR~4cDKG6Cr{Q+Y#?{osy%_5my087AVdp4oI?x zCu^5je(8#N9m@CW^~Jp2{Ttn8z?%GQaecaQY4xf57rD3rL6ttE3(;d=rdOZ7crba( z7P)eTFVPiz*6pk}SMA1bY`secI>IXWc0<7RQe0YjZnm8T;Qjtlze#Wc97mVA9fqRU z?y>yjwt-T{>BQm0WMH=6HkPhLYlNUP&F$do#LxohX&fugJ@pDKx;D67#8 z_fKP5eXTYJx>TSzW#+~dGCH6xo3&26q?QrAg(;=;3m^mQKe8d6frV|*=Kn2qBXw9P zes-fX8xmcX#U>?Q94sa>w&eLK^zA{QkOo)nqz4F^RzAJmN(!FXtL)HaL1N0HWe_K1 zZHQsw67>%rofB47K^WX2wvu=Hd-1v-gSXG5>DZrkeI&`^7=`79PP&p#;BxHv)PvHp z#4AE7Nh#YYiaqF`o@Wz-mvk!L1vpqvU@vm={w}_7k0VETR+PKmQ3TOHPzWOk*u zt%GDWlDJ?ms#taBn#s?au2LGQLedYN9ZP8PM$k13hUPQJaJkX zVX4ffveemqyyQKrLnUeNkhxzJl@M+~vFBPiW@J&OAoLnnMpU1GmsW`Cg>!5sTp7pU z7Hm6<-^C_8G5iqr?uL!rjNolqfX@t9)g6|R+5m4haOH*O<1D;%BO#Zj6$J0u=f-dw zwqZO^DtobI5x>C1YWZMc+-?PWQtY`SjX#6^KD; zkeEGF`15P*#Td3a;aLnO_JmiuT zf>T3dv*Pku@TL{}x3r0uZ&LsHYuzjjh>21K1uKjRNs3Ly=E}za+w&>?9ugva81M@x z`5bS=NQ&(Z2m-qP8x9^?gwNg^fUvej70=|cm3cvY|&U7 z7|#-o>HX&G$XIwzcu@Eo90&|9>TS$YM;A=$iIp_YykMFob`G^}V@D%ntRK@S_I=mr z)ye-kIV;^L?_sc%!*L%~6e%wuAkg-E4UJSPfp#GD!)_Ab*jzoaj&D5Ou=tim0BgS| zbd^qk#ZNEpRVUvRj|NmUv46)yy2oT8qRFjzntUk8kN}TieK_d!P(+%1<)Vmz)b!}J z{+d3HUuDskE=nPIp2qbWokZ|N1Bn)pjV$UlDsA&JI13hdg zHN?&iG`1CdTN|{qxLH*NT5I9q;T&3UcL$G074=~e;m&u23A!uF^4zr_A3xbnPh}Gy z!d)D5sK8;+SkqPLfIz{aiKa3>48&mn?e6;M&*5~fZ!SXu__OG+CtF*^d>iQ({`Gq< zndcN9UJ|wM&byvH)9zv8;_~MN#_sO4n-~c(*zv?^Abs`HZ*}+KM#hjq5k=raOPbfk13`S^olrw#C+8 z6bqgFzOGTM?6YV(YR?bNHO3SAO?q5*I!&NTysXCNXLosb|D~FD4eq9p;LNu()AjKC z_B<{fDCy|30gT+uM1Zw-)uIgcuCFz_C}N&5OH>%Ms>K+vSrJB%fuZcEp?}Ur zr?WYV-lfNGof>Rpj!xU0(|E%CK<9#deM*U)ES%cA=AEXZl@^Q{%z z`N&<=`(WSDnc{WHyo*iTLCzgFp-iuY#KH2vT`)C_4XcOCag9)}*-Scbq-kgkSWl<$ z@LkyAvJ96c9})@?p;&K3Z83W=h0Af15|<9r7{WIUyqOgxi>s3@=Id`ik0uMxk`Jyy z)U^hv4NSg7UdjFD^V(K>mRiAP8GQ}dcXfHG&5VR8D-%)F{eM;^)i3ZGtLpvOs;#K@ zL7rk(JHHjnkul!zsNL5O^EY6#Tsp7G`^CTUJj3+ZPa<|l4l^h%f^uac{_c$nosZ?} zJ;k7W+C9n>A8<6xLb#$Xd0%pDvEA?ESloMrzrh|6$^X7!OiG1zJuZmu~^gns*}9d zl3RHfeId6DW!t;i#aDZrqe;TxL^<~d|RvqW5CDgxq7}$j`+WwH%&2?9q%#@){hM}V0$Dg$$!)aCXyE< z+A-wcD_3`&H8dLqs291>r5saYA>D0I@+CJ z#aEl+b-d7`n>W?8_$?+ZW=jd-Z}Z6-!!4tf&8fu znWnllRUQ8Eo)^7I2W*YBdyA7xEZzE6TGs(OsA@i;B2rL;wyAbPZ=IfhiLs4-fijwy;ZHAGZfw{;AyDr!h) zEj1G~!A8;6RMZ$EsNysTQ8DN4#QEMk-}~No?|t{)ci(&8_mZ_&_WrNmTI)ZrwRUcw zwy_Wwl^2CTAmXS~C(b}10sweHwhMriA;zW>__Kc6%I+li3xOaY5G(|NfFQs+34$fd z%gci#1O&^Y@jh4t7A#2!EE$mm78;h{0n115+V~e1n*@HbNnlOJf*3MbxKRNCi5eP7 z2uKnZ@q1%ZQW6;~V(tPVw$qPeR-AXzrHK$G_6SjB++WsHB(#zw7WC{i`Ci9NNa&E!o1ylx)-#v-;> z|6z=s3&cZ);s$wygdWGhZUKTjqD6MYq;v(yB-T!a+SE+;+3Q)2o9?uv) zdU9I#lg8g;f!D53?$a9AVOYP~-)gts0wVX!Z-HJ{Ld7ttf8GAQxx`wll2QezQTGdC z_v$&_@Kbz0DKZdZn&`UN=D})0@yp{AJ6j0h_^-X~0fNk5|GF0q%CPdCx#3mLi7MQU zGl@d2NXft8gAY_0aMExMyRlHFS!}nYpALhaS}_-~u{5@hI()fs5Dz_mJzprIO9dM~ zK4WXUh^%rg$3TzY@fV7?a$34Vc$m;N7iqFQzkaea+}?{yRIMY!kjm6$Hy5f=T4=c4 z(CZ^^KoZ6hN;2IO8-Ce zh}iCXely1s*m5mU_d?cAM<59s*K9`O_A&K2Otia$q7LTNu4%u0&<4@J)vEuB`0Y(6 zN=R@E-?j&Q@2U3pcq^D;935brmy@%GPrQ4%7aGWPs0+DAq`hKp5U&chZm-M|v{F+N zsSKWr7P3-v6M2B^};2yX$>QqLQ z3Ypzo^Uli>s`DA4wcI%Yl>^-X#DQ32V(Nk_D5Mm4{6O#+i?%HuAtxziOMTvQZE21t9ZBzfP`COr6Rd6elgp#VNf$DP|Z=e1$D0v1{q*OUoNAMq-WGwM?-}B=l_C z2lLl#c=D~ER zKMz`a4MAAhnDDA~>@Uyo-|DO-WPJWww%=Q)!SW2>EmG^+o<8SRxcfPy2M28Kn~1+zFIf8iv*7UW+aNQ{qA)1b7|eRQ$YScOzwFpmX39T9Lovz;$b6! zZnBZ%@HGGYH}ubM7VywQH4rd0S-Cswm>#0AC_1L7Xg6Ah9;U3Zm1S|ohQq(3U;%0%TVn?n*CXdp&GwI_kmEsc6$wpD zZaOE}W$}fDS?x5shOwW!Y!0I@tLCSAr{OxKLH4ehHU!#DMJ_PvVmek&p49=IcT_S{ zDWa9@3LiFY$AVUjt~V!I9-@>B$3kRR_sAM|+SS5jbx{v?K9At!&|(}$Xe9XJ?JIKD zLeyf$JvFP!m&Er4M>US#cVA?&nk|(c)I6nrYlCxxUIl&_`BgM+NKgv{a~4@nedVqo zuY-XmV;+;PqUCDJ;X~1iFj*GzAt!iHM{r#g+Kpus67G!6I*iyv%FUe8f{Ni)vS1G{0(u(IsZuPN-O#wAhBCOyf7xMPV=#Yld~mZ;3PC(zdN9 zA@NVj(u%XekA<`tk!5(T#p(e~acFJ&PXLT=AtrozheL)2RCqmLA5W0TbFdd} zy|pmXl8`Z>-tEuo@t^)2uU-d`rmbGZp)z>3y zZ10#{`7r2g2%xa0ty!tZXzQco$Hw+LGbbCFp7m(Tx0xFXI!+}wp1T{bFR!p`U31NV zsH#@Dk2~41W|mO3Ae`ryHS%yRK}$(&V{@W8<_Yo*t^e^yp0$@g`#p0Nq*gI3*R&<@ z7wbaTWN^l?b~zS%!TSA3#926Ffin>s3!|%qFWd&Lh=b3(_r3rsa(EvGDrQ)8-gMHm z4Jozi!yT-3zL|X}nV2IuWabOMpwBTuffH!<2Hr$Y4;F)y;o$ia%gjd?H5Ng`4u_lv z3@%uwqJXoofXCmUDpzOrh6-vi0-P#jR%=NHR}lAzLRNPymjq~{CeG?mv`FR6Ug4qs zl~epdmBfZW<3URaf_5z;3P=?Zg%ta}a-=<2ycLClvqfva2E#<| zYK{DBL+)ak`+C!X#gKGCV>N~>&nZcfnk-6F&8RczUyWl9d96=phWg?}K`zS{W^Q~X zyhHFjFPaFN9QfkB*JKaDX!J(6$Yjeth9h@jZ$Zc>kMc0R77pO z9;pu0kS-!pd>)fL>be6p{QRgOU)P@}?*S9|>XmvO`PI`?VxTa3e-!2nFt;u5W1pLA z=0;6%;Ib?j6~&d`eQo@_<5_9b&YQgFl8+s>wl3V`QM*_x$rrA;9iN>Cl_T(+Al)dTs=>ltDNwSX6AEM?&(=HG)VUa2mIQ|Hi*!~-H{ zTMlYvy%~KH8*Az|Tg0r0^-^f!F0^ee?OwH!ZZ+wTL()IMb5oI&p9Kz8YY>dJT*vN( z`y}UmvTa--FcOhpIh*U}ZP_99$$4`~&;&x67m7)8>~4{a6=N`QESmwS2MIR`+{+;d zkBjby4q%|};No0*7j*1Hf)SgZOLrZ`L4O6id70w6!F&nLapYEgjQ@^Ln>d#60*ow} zO);yuMCT5DQemej9l`To%|mMhM&#-*GQ0=t{AGm0j`L)Sl#fdS$Oh+v_#craEi#PMN2c#QMs-2E-sZcZSdd>C|VS=@D7)0{{i z)I*@gP=#<1HJ}- z_9=h(w8hfAU-|4f-XX7~UgTjldwT{kO)yYrXIp|_rFhDh#m&rvOS$K-JWVL_6%HS!fLN?bjDQYy6ySPS~Ll3|AxLpy_`FVlNQC`NjaR6s0;;I3Cl;Q?7c~Uea z3-G}b-_*2%vg3Mp`5s(+AS=6o>UTcV(CY?4+b;>oNgRxq(^ZnvW2EdYp7s1u($`l^ ztm=gL@`W(1#jJ>Cv%p{v)i?m!2kuD_=HN=93np^_vW|E|-UssPexKXU6t^Wvh}wusFWfUfirMqJ$Zlgjy- zdvkPqp6=8y0S(txTqCK(>9m(ncg1r~K5lz>bUy&h;_yOaHz35SpQvMVhhCbO0GcG& zH)h7hmr9Z_u!mPelFl^?@bGV5yeA0lxH~a5xl!1|JE(h3O)?*?&hCRA|4+`btpv>W z*1L{>c;|FQMVDE)c%6LO;{(3m_q~w+-iG@tMa^9TgJw4d^vJljVKJr5&+0R0^5n{6 zBpih`s!)_qznz?62=vyW0=f>BhuIn}6GL(LGRiFT-9GI^V*Ur=LQZy=l)wHW@&?U4>JJKZW)7oO+Hg)mLrSOgt3B)1w zfG^pLvp%)^kzvc^F8#@C$QQo8fX29RG3OG+A>5@E=9YeXb37$;Q3G8UUZs&`n(nfE zeioJNBfbOSw9|0pSzmJObQ5g|u9@>-Tg0GFz&dU|VDs03ggSSQ4{%WGLlpI1omXL0 z)L|-ae*fIFy5wpOPIr3qv%OcQUWoCU<=vo<19e@`7p&#?UE7F_V{L5{f(EK1ck)1E}Ft zS=9JUed2(+wMy1>Lkg#+B_|6ik$rbOG$ncEKwt@&=Ejy5SMB*Dv4vMW7bC#Fo3|L3 z^p1=_o1Y2O6)~KAl>Gd}f;Hm2V+Q{IT20H#EGQ}B15>Oqw(i0pEE-2w5q${^ZUIz+lh%eoLNT4X0^8KuN6 zeC16?6w>t0r?exc!Mxd{$HCOX{itZjUMR_Gsk+VHeL=`YI)-D{U?L^H zp5A5wq$?M(rvn(bk zpo*2-&<5oad^{>fabe^ZrQHBQh;K;}OkP-WiC?ep-U%n2E zp{vx}dYMgy8Uqr-#_yx{PcYRdkoEKU(e#gRBU3Gn1hSC{&QUFgqaX`PR6@<=_MdA| zVrwquQo$-oQTMo>x2FHZ^uFFo7gYH%T{XrfC$LSR{pxCeP%-skN?;cY-PlkeH%GD| zr%fQ$0_FvYnQ)(wTb{GQhlM4&hutmKq7|y7W7S2XW&Ai!Q`uo?qO9BZ zY`&>vB{MVG91HbUTnxCJ93~Nr4m(^mhio(1pGV%7Ilb3PcBH{`b$d$p^kh(L!v~Is z_S1%I;a4-3S=n)o#9;cfRO{hqB#YDy1ou& literal 7329 zcmeG>2~<;AmLzOq1XN0bAYhdUifp9_7E2;nN}()@BB*TT5_|`0ihHjC@MRs z2*_dpfe;};0EJSKErk(7LJ$=~2!vuuAS9WeSf^*snV#yIo-=d0&*^ag`|sU%?|pZD z@Bhz@qi#;BYqi(P$;qiY|Ma7WoSZxbxa8Kz1DFw(SQogh9(6f!5V*_9*~rNu8NeSR189i|fQATw z1RENPH!{kwk;_2X{4tr4kwFB2m_ejx(1{szpp}#)B|QlYtj6JEyFf$-al7sJn=(=%-7M1)i%Kqn;xeiFJw z!W|ir5D^l3hJ;R(04OOp&`QV}F(SZvm9U>qMaao%c*WI3R($u^XKeqQ(J!VWGsN?xGGu+|APN#4=^Gr*7o|37-9Q8O9F!2DeGPS zhY->X7SAq)UQ}fn{x?;>>_x$PbKtb+<$G~?1_5gf{}hOxAPMo;w5JLq*_YRns{9q} zQWVy;13=svP+r{}cVA*7NAd8HVJoxoS5=Yi)=btB%H>!SZKTr=9mMJs3uT4qQu9jN7es0WD-4 z^VD6P@}njwuG?<4iO2rglc5tWtZZ+O>GbdO^HlE3y#=-S=KTpucc;5JO~yT>B!gl0wCF&Ac)q@km>#DbzZ3;ER(gV2KTT>34a|X#1BWzuxDE@?E@rkWrrAmIyZt2So{M( zO@WGFd0x`kmG*RNRzyt7Xm_0{HSEf->{uy(j%$b)=y# zZAXEs4FMIrDcwWY6H}mV5YjKW;Pb~pMJI+Pu&c|}?kNXhS`u{-bc01&h%u{ps#mam zHl^A~5kh)Fh^MUa9X?74bXO~M#a2`doUF$|rbnFO2JWdU+GTN`u$;1#eN6L&jdyVR zaB=k;drgbx;CT>!tsYF5FIs03ur$zR_0XxWNu$hP9ikbgA{y+eDx$Ut%k&|H2~v}< zeq(s7x9+Mr2uc!ueA(tVbMV7de~t~Sv%*I3EUL2@fwey(=;XaN1~nQ5%-9C(wve4??9xHs-(7T4(tbb zdYKp|(qK+5A)7^q5#apXVzbbgVNPYGE z@9j0)ob0zGMScH=P^NMrT)!>l+&;6fI^X)bE=HpX!$3a+s$8*X4z)*LeP=*!x$p;q zTB(y`o32YM>xpo#MIr8UO1)p<&+P|~tjR`9VGfNx3FB2F+eAxw4ns5zo|3#DA8);h zw}RXuoZYKejXlT{%;mlbo$mdX;sY;EFj|@NqJT?(?Ra=s9}|NVOrvLM_VJGxSN%c$ zr+B&BO-N60?2+F5o*MBZ>9*_9M{9lLBWy_VisL-Qv2$^XE;S`MY~e}?5J61~#V;$% zyvUg|=yA1A>uYfQV~jqb!*-UtO7`WG{D>2t{$jDPTz@eA#YSLqV71I+DRN<`0|kO) zgDc$;lSnck4+M+?=BuxvSH4NV{#7X7ksqzFFe0Oig6m@|)LQGIu{pS5MCxeTr+Ak8 zn(WJl0U(W#P>q#|tLfJZ%`$PrXL}EAv}ji_2}m%-eAi7iKV*(^mwd}>zO7)wino;H zcvl;utKHPmwxtIE54`Y!J9#cH!_|^OMfT-tg^R!z3ofOsX630?w(R>Z);nxu!V%(4 z5eA99Czb1tYlGWz94KI>Q-t!BTUL2SAZ3j89h@Q=f8WjM8{TeE-P@CJ`8NGEs3sRM zBK0XoHSPq19W1r)+Hy<(P-iO63Au*9aERxo9QT=K+@MPO#PNG?nmQ|wU3$x66}4?X zIYiZv&R%G{wAN3DH$-bLZ%%n?J=#|}{3^+x`>s*L@9MzbBc!F&6#cfi<)W;M>v{TS z^N*(AXr2ir`PVMCEIlHQAiFwh`}O^?-E(rCs|3*!v$12*OXP6a9F0fnA5 z9Owww9a(|q^;0iw*u5h_AgnsBA&GilfK~UCD)dUM+-ENamshkTS z`i;H5h9Gwp6a<(+(O@1ZTJ$hG$-dzD4k_QWy4$fIpr%0Akpk8Xt9kA^*_b#b zo=wr|#a^{}B7SGM5SgQ3x1D8rfgTzC*FQSE4&q$~4}+F<|WkAs;psjZd-0rk!kS5r4sq9S@7*acA2ke56t{ zpPK~MrDj=HWLvoQWqDFiCg21@H_pG)+z>bW71sggkFqZy)_L#=M}fu`6TVm zcC)6Bu7npIuhtd6{o+ia!E%0{*_vU$mef8@WIf}8Lu*{PdVbcZmtOF6LiPC@kZM#h zr#8~cgO2O&b{`dE+SPXzy@0dhW=2DIu)6WIkj*f^hyf+_goHN)-;a0T#+Q7XJpE%| zX2GryT7x*M{Jqu4!}kTNztdo@p=FD2;#@0>u8pb_ur@ze?%Ap^^6?SiyPhc;#p!Y{ zV&BENZ&AZQ+K%O3FeU{JbAE5Qsh7j4y1L#cYG5zlO^B;DL%m%jKm@PpZ0)O-7H!a` zSkwmIr0SR^QbFBc+22;k!$C?3)nVMTBJ+Wp&=#^9@zSogi7N#VMMwHqML474AmU z6Z89keI)_}J+)7BWt=m|PHKsN{sgBOXU6(Y7TK6@fjHISUrgPWu^pL}=etVN^TtpS zgrNfhVz>Ri+Na4p*=&UVE+KHbE^boZjm(!}vf|-9SbW1x>EQmjB2a)(Eua8b_?@a> z@bEqkyZE6LnFS!jl{#lJ4BA}g{8zec#p%liAjrPGEcT707L6L5qR-ipzGKbm^&egU zb>vM^>=Kdn*8pXdt}0j!S$IlOZd)O~qw1N;wAumzN@>=S!jx5;eCuYgW)1F$lw326 z1Jp(h4k8`6sR=U8cTC-rX`6`&H9jZf)_la3uw}G2JR6p>zxpgI=EIQ}GBG|Mg5Z7a zvTjvXeH*kx){WD?SdFfgmRy#1dcy?&j;t#%V7aQ3&H{U=2@5Qxi`l^{gaCI%A8DcU z%oIn=Wot^QA*98xw*6BN1gb#xeb^$kp-~&yI3Oe(U_CI=RC%1~qfM-`-+47VxU@@;gcm6Z}Z5NO^V6&Q999DbXIXf+wNUbQT8xFfDJvcSP zuDL3%Vvfd(eMKC4b!B28@V+A>FUR34=#Xl3U*U zfG-LAl|}h_R#;nS%2CJv^#0rweHp*2G2xgcpm=8=$+BEs42vKoBj8~`*%vKW3!bNO_K5C z>c#0-Ppz|Dyd|85xH!?vy@aOogYKOU%KoB3(SurkVq&1LyA8o`CekhlHCC2bu`)f@ ze8`ItJ9x~qxo+8kuFZS(Qd{5d!}O4zR~;_Puu8Ic+D$1_$Z_b->@9RL6IO9NbJIDP z!Ra|n8OL)a_=+_HLt{U72Q#N1n5qgy51K^d%PA`x>Na=6XQ_WkNX`DDThvx!pLsA;o5Jjb#|IdXsh!s$QKZA29x%z=>h!4Lsi^qzw3(-KjQTN$Gupg? zm!mJoMptd~ng{E=Jau`4NsDcMZx&8rP-AoVBCUc^fq02yzMh{QEvE4>HJqB_8I#FW z4{gg6HZ(g>(SflsQE}sGk^sA@fP2I}tg!>XpVj#InEA;V z^%79Q9V`B4n%+-PJ0GXwZ1p027&)*>+x$p!*ljgsT~CPnV!`MUCtXG~eKT)v;hnB{ z7+dp@V`slQgp}IbOeg$<H{l{D)v0O!S9OO~3EE@Nf1IKGoFK{2@xKBq>; zo2$+iD;KN-7RP^ickY~df)kS11NO_U5!3FQEuD^pvAF?b4bj$#$yu?M^y%r)LEeo( zj5?+)QLiA4nIxPZyV{u9YeX9zkVl@8Z=HYTuJb*V*8#YbxM#H(T{iDL9&<;$#Q3-= z(qa-7`Ot<%FjPg>C61D9C4#9(EH`EQxZQj!k8XSldl&1i`o=IXkUBMYnmK)CkUh%K z2@S^#FP;ml2Qi!|RNscWr&((9go?3C6$7>!3`vfzSd`alYQXwVq!_n!eu?Nn!x|gX z`*qc{k^A`@cs(!AoMR~2#UHadUEbT6S=!vA;Pbc<=OltnUKm_nxLVoi&<%yMzh|+J zbg0P}8VoHK-F#KghJB7#Ate@gZ;R)?s1R~vJ*bz=Hb>Ti;+dUpRUeMgDlJ=nqFFP4 z9oaw@)@oFyHs0=vjn!cJW=`fa*hd*d7Qn!Imx@JubI9$i1I&WU)t%QvAD-MFcao-lFj;gqH^Kl zmGStY<;O2IjI3;f&dAS9Zj1Wje>!qugYj%xQTMT|q2cb1Tlg>bf@djxGn@11-%N+z z^Wzf_V|D!n%`--(EoIG6{c?HBt$+H_{LeqB|8Hkm_EE9k_SvF^NkrE5B?WSIdIf#9 z3!Zx4>?EiLRLGEMNK3_WfZ0Ke&T~-6%^8y`0%oWlLn6&3)ey(peLjo zvRa~+&eyA6hS=oc__Vnooe!FkR-oDHIjefp$q+EpzxeVbU;a%0fC9NYncfc{PUtmc z*+<8sc-Lj~fli(mWW2-9z&#(wKNWv?<3j~cMuPoR`>AxDC54!zGa12QJ EH{S0`0ssI2 diff --git a/docs/reference/figures/README-unnamed-chunk-23-1.png b/docs/reference/figures/README-unnamed-chunk-23-1.png index fb45f25724b9c707529c49107e5bd68b354a2036..e6cafea0e22cf35c2aad705c4daa6731d2f7d920 100644 GIT binary patch literal 9414 zcmeHN30RWZy9dS8)GVE{Mn&geX;w;`nu=0Q6&lR1=i;;=C@a$Eevty}M!q=c*}i+Sh1x-{~Tt>+H~zXqPyUm%ttZl5vI zCPHjoCv^)avnVdthHZP>LXT?sgKSel{yX_MH9^F>cp~`1H~yf*T8kNr)#j}E>5KR` zTjSbGBBDYTDtRPmeUY-&9>m__%RoyT3vuPg1czj80~>&(9s3#8wHLB13zD=KUne|N za|uot(aU9B*bJV119JYFO|l~zxW+*b^eD;frH+L^QR+4qBM$1V>MXyNCSK^y07+85 z;_b~#IZZZL!?1g%kJ%d<>!`>lGK>jt%8Ceky=a#_SEOZA7@sp$dNDzQ>dlAfzIO5k zBh%w>S9n5v!v;XMKW-GBnRqoJSoRB0zOAP0@@N+^dd1rV~k>B)oAx!FbVwn0Hezc+CKHGBP8?Z zmN~a;*Mll}U1A~gNh$W+_S9TMgU|)j<(|d5uU2bwQ3~SRAE4sWEvW?d1!BT( zMd?j#!JIBs|2ZosGZJy9GOaUfpDTG}<-VB?8K{S#HHUxFM>3XAw{Fh=F{c4FqQ5K> z0SBjESF{g;YDR4jKGWE<1Oyqp@K;6xQu|Vo0x18%7@Xw&vJp+da*i7-Nyn<_^0Ioy4fwY@VKBZ!q~{x(MMz5KLTe z#@2W9AO}xRPdVVQfzZ2bt|{U~RGG;vsP;09L<5%Wg8Fi%=_hTBA4KDOnr6Gg(N&>m zG(>$k+!!;UM11TGCFD1?bTM*IB&pjY9ZhE&@bfw}6t=u+krKrE%q_!V)??IZ5mdK5 z{67Tem=Uj9-)A1-On1Jt?V)tMo%wET+}%~s2=VlTy(71;Pb9oxI++nFnKvh*b^KsA zi-`6C(fld&i2L9IOZd2rfP$Bhp@L!d%5ZnU-9}LT4KH1BX{)+v>XWzYn zQ7w%400FP3qrto#a@XmbRCE{urfn#uwi;6vdv+HBP1kttMIk2Ck= zTnqn2p2AYNTE)9|>{@KBU3z&IEqXXIUg;|~;JR=hnh$>X)l5Rf9Il7budxt#i5@(* z0k>WRDLN(c_EPwu1(M`KL{HcGkx zJoJTq_QW#rp*`!o4viP)1sZt{lm@9)bS9ZWU2x(*RCb^fzm2y9Iy_mbRg7abQt3xX zimabXLF&?X-BynP_g(3idV-N*b2F%^r1BCaIFRM1q=_pUxNN^%;zD@1dWZJUqbgoo zc8#cw*$rh9ouDLQtL9_F`Q6_#P|%W7Jjhnz{QGIHA?9%K9+%r-x@d&=5WJI0btmWVr+S zz}zM9f|VBBP0rQv;%0y=M`XGx@(UbIE%9B%bAh{$)H9weq~ zra0v%mgunylnyr?z2)DUJmj2)dshBB4*PzN+&NRCzNtRW>XZ!QCA|fxULKD%aR%)o zSr0k*NYTKk%}uz|v8(-!FqPBsYjg>4v)Td42a&!hus`4`{J#co_eLNQO`4LQt#MWj zFh18XUD?ho3CKe)8~Zcb@9+wjlW(2&K1XFanamaC_e}ds9aX)e9tO@(SSh!NSdD;J zjJF+Av*2vT9#rRIRBopa&iJhQoH=4{b!EJDe0%v|%-TgN5>XLL%-h*nDB0am` zK*F<9cw?myeU@J#K}u8pnTft+Q$T+flK(1$#6fT)Lu~_jz=}Jmz}1)m zPwK43eWCJH;An*2lO&0yQ_wCaKjwu5NzWV~k4hyc%&rTT1IRvpfIGjBxkR>jNPI7j zKbliH15a%9q4FiRNxtswT^@I#&eJQi8_lTHS$i0sM*EiG9HaF5sWoq807>L)6?-Z1 z6>g^Kg1DA>R=e0$neq_!9*|{j42g;>@XI}84Y(6pZw6=R4GM$?$j105;@Zhv$K#XZ+>Q7S_G$_{px0%Bz*brL@J>vz?|9>&UQnTU$a{BJyKy z&)8$!O^$L@xuWIAafTDD6xiZUM>Z)7d3*T&-BH5=?*bOE+fl9th0Jrl zhz`<4j8C77DxA>4I5R_F7q&4b6m;34t8!2za2(?kqK>Xqh5+1isu;j>D2&rUsXmoq znKfg|{(&8Lo%5c2P;osp?_68g{yx=QcQk+Zxuw5w!M_VW|6YS2Q4F(oLb23eejWpC z5|k_Xs2ZN1OMTiiu&vTaH0c|?aRz^wTod&pC45x zeZ?jvYR}Xs4=^$#dk>lvepKC&*7K2UcyUEY*CBeda20s6Q|ZN?j1-ia-*Q|<`&Bna z9A-Ae=s#BSZX*Af8n;SGeYBlc21z`)+; zS^eFJ_-}udy;TmWIf`LFwcMXSO}9X}7GGUdku&eVO&7lnenuDLeLob#$8E%-lJc|kQpNGE4_>q`isBH8~3Q4lhaF^q@f z-i6Dbqs&GW?=^5zns;aYosgLzBS%AwYJ6I(3Tty`SC5*xf}lpWtbeMqNVE1;g3U}3 z`QsJ%zLHiaeAD13`;!F8xFNT>uWex7Ox_#~8fl>R&*7;&zBT?|*fcB1V0Hv!i+Hzo zT4h9j5-R}V!*;r#0F42ih#3eFS9TpR+xZWFB0OjKi5js?I0{zRO&vXLuyVBnoN?XC zX2sG*E){7GSvr0|Z0>cauH%+_ICT1(bArRNUhiLF zT(T5+#1Tt2=5_Xw=L$}aj=Vo$&Kzc2pGX z>KMrFZZzf;f5S0{(5&+e(`jX_4$CQROxPGwlYR8*uBQllh{-u(QPtiprlJ8Wj!>WQ z56(zIuqM2uR+3CSGoMG@=W*=omw+b`ih46eDJP`@sC&S!mDqI`5!U}y?+EX)R)bH z`}S41q(M6admO6yusQ@KoOfr~7eaGv`Hy9JVT8W0l$L?s-r?|qeLvWEoR~TZK<~N+h@;2seTWb!y4v`>#7l3`SQL0w=YU_{_ z@)p@I^Xq`zI};5|aFNW%Cfb2h)&9ERebW)+q_(x3sxa2lSMlBs4~odXneLYA_e^ov zb4WBUa@^JE%=}PYwYEh}?Q-XR;uu)VzLEv8kr@-mtTg; zs$TKO35()%?4u9m$4|(6c)+!6C~>1&;uZ$$kZ|uWS#D<&jDHGVnXtlw-pP!X*|eXh zOk97pgTddJOFobi>=IK%Oywq!q_XE1SFQ7~oZJ#uEKR#|#xHJiENeVJPuzDUk$4!u zK(R+(#~?FmWS~6!Qe!!j+57w^k!jZG4IDx@4IXGZl9ANrz+t7(4#ik8UuCz4c-QP_ z*l#}|t-rHbYvUX+I-$Gl(kL5xpN_cZ({Sp2bmU zVK5@bRtsDWc*}#e9LmPw3O!m(`#~;k9^q5l*gE z_RxV-)A}GKpjoz-a5gHc{_Vw84=g6fX-ljTY0<)EZL7n5Qi2_)0{qTXz78EIm$3%V zZ$+X_aMm13ex9TcH(xDrGlSKcNX*Z(Z}VoaAmQ(i?C)#d_RBr)j<6UBTciN89!9di zZ=A)*&8}jip*Uv_rQVZp(q*~}VXh2*fEYJE-udt+`wY^>vA3NIQYXHrnS`#QR|Fn* zj}q0FA+kazf^ynJUc!6D!ehdEcK4ZlO`1zfOOmfasLB7ycT}#)G@h5m;8sQk9t33qa+yHzJS?o`(Iaw_ zIXTILTn1c8!g_#0^d*x8WPt$aQ9w=-k^}ERJ5gDX-ac($TJnAlCjvkq%?#mpo+Bdi zCJ3Yta@=Wq1erN{$Lq9K{j;+fr8{@xFYXOp(P?myv2VRcU944!9qZ>C^*0=@(F6j= z7GyHWAqnAHd2r@{SNO)P4n(u#qb={xJ*`j#IqYe#0D;&&`Wv^MQq|Po1XW7XgvdH5 zf#igUE1c()`Y4q(yMq%=GOyXWLu7U01y^>_ zP;HtQbRa$;aHPVY-mlf+Zi%Uri9I_Y8{{yyQ6o+RJw>QVrot*#l-+DslmOain#M$* z8ryoStcyKz;qZV;m!lkJ{OIY&h$~dr|621>ID$lC7~EYSys$x$Y&)$y`5R_QtppsG9y2`&la>f7WRz2 zZ$oJH&rq7-YDfd9(z+vHr_Au6e0pbu?`p6wSg7Oe2`TSOOL*}2P`nz@XT_eiHiD

    {|EAWAlYz-7CXfD~r)O(2|BYy)NBp6SV8n?dn3U!!=>o zY-zHslV>Ty=1O3byE(?gbw@U4ol-5Iw>A8PNzUcz#gW7Xd4r7=o0h!I)$Ft?DS~I$ zkmXGdO8Tlmom%dq5uM`+hY?XR2Z`+>TSQMsd5K4!{HTle~swv#x$BU9ylrf=miI`zk5 zC=mzRdQy8f>Oq3EU37wGY>y_oB-DnfcKBaF{1*)kV~G7T?Qr@R?D34pWR=;WQg+ZL zmV?tyOL_;0G&JhnSOfh_c7JY5B&x^f5BWFxr#q#>P+(;H`HGL}@xBM}g z?KM=Q9-V1%c~WULo!$0C3oZ|&%lvy6OBGy2YO`zhGlO;o@plBe9Zsakt};}8AcxVq zPRP-%T(En;zC+>>8Z`pRDeoT)CM!8T;w4m}jKX$#n8i?AC& zz4)d1$tz^Vss-Q#=$%kyQeK}T&3bw6~YHDbSDO$<(VtNdWghh zSXP2cyib15FZ|n~BfqRM!{}Rm$@t{f9eCIRH__gD8fV)e4;fUW9{W}%iZ&MF;Q$@( z-)9x1bu)8YlJ11fql@w+jNDM8Pvnh7&=0jI24s7R^Xq5d{t$6S-f5cE_MK5fj*3Fg zvK-^txspKb+sFNlCUsgRV|G&<7SzFiC>Ry6i6&Y)I>cw=9P`jFckb4y4(|gO!M35Q zG(FMb1qKNc`p)1aiE;2hz9tcSL8f7|9jn2nt!9DpYHJqF_B&qgt)w zo)CF}DYC~Yk+>F>!$Ew{P6l*V^()noVIBJ**suXzL7%^XO1amk){!lSs(*Vp?>A02 zDTRPFl>4FqWI;fL>{UtwVk`gkOjBEoy#1~ip$T5k?7nyr8dgnUa)xTJw7lr5L-pHsntO0T80M3 zN@QYNz;IVC|Kb)Lt6FZds6Ywx9V8h0epRNjRIG;%1(I@>$E#nbut27lcEgC|C#Qn4< zX^pu#v$^e)*|NQ~;1rXeM`xW<1I?6hp=$d7uES_mHkVw5d)R2; z_e~_gr8{XnIjH3kv1Idrg?slkDoc<13C%uUY6I?(tC-){#V?0cUYsq~Z%UQoi1_d(&sGy7CpHo6@}ekf)KnpD z6%FuaVw55+PX055giE0ilMkw5L~TwdX26uHzhPrse%AgvF2N63oz2Ne^=a@+C%8zU zx|)ux%|8dRqZzLQ3_VIJ-5^Q*LGH?8F$iwY8u^eUboOagMzzb#i} z9RDr8<)39-%9QXukvGu32Mlf`_xQPBJcScVm;@@klUP9+JpB1d!1Blz@s6Ygz zZaM$Lln{aDWUu=^1D{nHGPN+R~3Fu|Z=@LV&txUf0 z&yjIXE49F~tA|2}Bu*?J$WwcQU2bhj$6}W(FhIFl(mRd1Jeu4_cT=Glm!gX`nnP zXj!L-RJJ@Ic3FPv=91vIW_`1lYL{!*6z@QMg3^W8A$>h!;f5IW)QRuM3Y1o~?w)zB?JdP!Z&lTSWxHH%!UO zuP;2ION-0-q#qTn_yu?Cl{@=heo)bb_t|-Oqk$tVnM=!-5wi6_=g)+?Bc6R!_*y_sza!9zpzxfc% zRnW;sS5P}f`a@@xh1FW44qiUPvev`1%N8OuUGt2-+^iY-lcfkc>u z((Pqng%N2)!<1q}!iu})%{|JP)B5zXfhD(x{ezCLu50)TSM;46E-=oeKK*czwe7U; zC4eLnASpj|jxp#{V-T%|Ea6bVX{~u@xGZJNeW2?2C+FC^AP}Td_*;NOdG81q2-b$J zjH!G2wlwdO!goi~Ti!~`&*}ZWIpW)tA|_Plf`dE3z|L!(1Lj; z!PSDmP3TZ_vzjfu&V#IhmJxqudc>blqzkW&yo#mnt8Zb#3Q z#-95Y^m z#9y7^v;@XB-tN~Xp)Ca;-+W0URH-7LJ#CA@jal$$g2&P+_m7RIG zV#t`F^1@gtF^-V!`Q}lSw`f$|F3ShJA~ptyi3JF#F3VCuhBiH4u>| z%MT6kYEGeyyN-t}L``RYJLgDywSi!nY9w#j?mH3ZMY?KI2wOvc==S7N<86&X>^>J4 zE(7Pgel%y1KU7-=;D+&VvBe^J4JRekQT0Q6%h+v$)V`GCUdBU(P|LIcPSvx=O$BN4 z_`nUJ9KlcRMXybN&y3bdT2hQxHc|A0;nJiU>Bw&c-Q`1{M z+_aFf)-h7VGiXOKPDK}<@1i|xG>L=2LOUj|-EiIuqujpAwp>qV>@ZferD;O(Mm~$! z8Cq!HqcloieUUApJ1t7zPYD2qmJAl} z?H$^E%d?mb3bPFUq8MiW zs~LU+ENpFr4)QiHt)Tt))Y@N)_%U!fm=zfQ24}jh7*V>O{=Hf|*3)|fM|$195lHat zJ8pppV1u#YIX3uyp9yn=-pk6UA};{bf?DTOj}*H4t+|MAcK0;e)!~bfqq$xxcQh`G z^wG6~-Zxce5oh?S#rPMPqE)3sNn+)7)90b%yk9$V+V;r62SH#Yg0fo zEFl%%?(cWcTOP3UHf+yZFj%?ALnU2 A?f?J) diff --git a/docs/reference/figures/README-unnamed-chunk-25-1.png b/docs/reference/figures/README-unnamed-chunk-25-1.png index 8fbcb944644777e988e96aa70f50a58ee043bef4..5a384419a617c301913485ed803090f1d2838fdb 100644 GIT binary patch literal 15903 zcmc(`cU)A-w=Y_?cL$(>7LX=L7!#BF#ynNo%<$N{1X5N07SsS0XX3AGeDF- zYt}4lYinFPRX25s97JavMEMS9aH;p0y23p?l03r0J;L#KmPgX_P39*=n2G}~4k8f{ zOP7juOyUmV_)5wOPkJ7nh0DhzOd=c?T=zWbIW8ZQo==`}0B1xFXK?5I z{4@FWXX+;}Cq2#z_sB}ZJtp%-AYbH=e+C!P)cvWeKEEE9$^6O5=Sd#Vv%;TeVM>$F zCnxLAIMnBh>hsUk<3>}h@HL75>L({ZW`%!zp7il~)<=9zPPS}=pRa$5sbdnj+hl$I zRI86!lOHjeDZ-c-?lg&8c7B*zFjevQzL5avOQ$|?^?{=o0Qd&1UisaonAEPu)9D{q z9cumTd&Jnv?8p0&Q43R7P)mP5=NOjulKSRHS&>3)-#WK-fy*CF$D1c7?HX>G+&H)C z+?oxWZ?73S9H6|~=Dl|A?I!C+XJ==-AE({PmtJS1Y41$H>`i;YsdZ1FV7V@vR@rRy zpH@5pV{a3Tx6M_#Ht;`h{C~N{^@WR~`c=-Tq1P$;j7wVJ`a&q42?g)8fu8pNPe1Bz z^arTZ#~AcZ+cv%b=O19{2s}+%-I6IU;1>l_odWWxf2#x6_e1d)pnsEt&a>%x{^q3L z`v(Md;a)Ygj0k{&HG06Di`G8`_Oam98z%jNq%K%uTK};hrU_QH5z3GMvCC#7<)Pft zKVq4fIFrEpzBbi|6E|n&k9*up2K+AAkm47306ge6&FK+;`M-_s-%|>m*O;rai^QbG z8aEw}{M&!;-j7|-M6;Rn);rV07fjP_o(wN_1a9psQRQ?d6|sJ>SQQPi=n47MFJLqm zc|2m`!ieYb)Cd0{3A4Rk1i<_O56K_C?wJFv75Eh;R z_JthMB*zGG=36Pz3Jsc*2ztK(P4$L!;xj{}$2+M}SbpzYS{-pz(NPOtZ{tKa(Rq)r zru>E6Y@%GCN{YoyQgjn)+HaUk+*>CAY&Ko`#8ch=UCx3K6?BwTHf_&j`6W|8Gn}m~ z@+Xv6@pwSYAPbZnx^@P{L;$Ba(nUGA7&IAx9t{){Az(__IkpzcM^|Q%-QIX99L$w- z5;Vo1c3u3}cvtI{{ zv_ZjX=#^uF8h?@ofQE8yts={d?j-fr=gIn6HmJ{lS<}K8Ip4P^Uj_o}qm7nN3|`8U5tosO$}C9*456 zhftik@*S#lPh%O)ikYo+Jh2rywKXvy01zLeX1?~^I+98L^6+)JOZsC zsK9M#DO+iCeJ0E zseD7({dt4vmsR+3j)+peG=hh`0^2|KX7nW z$K=%@5S67XTlxoZuOU;;UmqwB1)x}$B{cr>`AOsa4zSheC=)7-AN}F|>~W5%EW{UR zT1=OXXr!D*U3GPYednW^_ZwPa7&mjooJWQ9v!TgCb$Z)Hj?8H&7T?aozB!# zhv7vq@zHURdMzF;ZDtDt%Xot8Yv54%HCL8<2OOIGY1b~)Gr^{%70kk-_sfw#cPTw$LqG_70uoDB{gi z*?g#2Xhn4&I_>%yvj{+4!Euno5xz8`AZ<~>k`$xSXAceOi5fpGnY*f_FB=WipVI(7 zv+W&~gV%QJbu7~$!n|BggFXQraIyn9n(Ap5M&BZ#W2;gPEd^F@p=cB)mLg~Gw?xXT zS!KqSY*}RXQCM(%U>E%4|LUK(2=RA>sf-N)qCJj&TdWDZzxr|@9K1M zU-LKg_QH`5ux}BS!VnjKSPiWEzP_}+|JOC3d}65~Oj8p`0bjnV^ZF0_K&~q-`Wf`@ zI14&@MAm3v`AxzktyRkaIWVW2m%@MT}!S^T$V68<2JAN)ny7Tp@>a(x7^~2 z0|kH!3qq}?%X*=uzW_Mu9enD{XqeQh6wz|c#ZXzx06CD)096+_y^S^Zpfow$JXeuektv@cKJTbewbODLQ__*Q3dl=QeY)SG z*4~4l!hmkkAApzz>Ilr%qond2u;yS6@x6=c0_efZ^FUf>DynzO&n|W|x8whqF{LKbYp=jnF316LXx$Klovocd{~{DU!@_8 zJgp+B0^#`BMi66P2iMVI#>&BhoevkL&k#si^4U;iLWk*6TI!0_%4JmU4;sH-zX|U6VGIm(u<6 z8+vd?=wZ6$Qb7s2>Bo@Qw2p#`JQN&9dvU%d9*?Lt05c97KTNqj>_k$f4ABFwF7%q%6b7us0}*O8m%2G*rK1g{6ctP}_ zS^LgTR(970ypBpQAlX89o!4t6v+JYu-jTu|iEy);Cm=d5AIi3Tz6?W;0Y3+-@6@jj z!Av4$HH?ft@Oz2nHVdkVDZ3yA9a^i{@-NVPEh*Ch=7jsgsyV2hGy%eKzq(T{suYX9 zzIb9;uMOyk3v?qh9s+65WewSA4G*0sYjgCsFeMxJpkqzuk+R>&?i6>RFj6d~7uzaD zZbzXGu*&1goQz~?n?HeY?_eOEUkYU^tT2~4rZ68B?O)4~kYY*~dgoFzl(i@P4{D1Y zH=iR?jHv_Mxi(aut}R2}Z?*9Wo1ag%a8U92;AC51m61>ssY7Y$%1$vQ*)MLPnrE$$ z?}VNN(AuaND7@9E^-CyQ4PoFtufge5-lK!S&WDiQ*+)ke&qT$y_pPBHFl9^o52mi5 zV2o(4Cf<2EvlZW>FcQ&u!@u`7MnkV3)r8)JAlyh+U>B zGyIh!+%tcgfK3%#0UZ_ZVM-jVn1@z3+S*brFxxYwseCz}z2jU~n3X9Je)z~)mh7y; zPe#a$zv{w1NEMN?vc6a#R=S?S=IfTj+gE>hyP=>@?_qVJ)x5i$ z*AuT!?wYL}9DCl~k5zOg=$lXPm^`l{8(Bh7m(^u?YILryns5gr%=1jAXY(AYNLA3R zF7#ixkTSvhs3tspZ5lnDD?5yQ_60c42tsHXiLkPd~?uo zz?{wZr=#OobVni~8GsefkuOKMijcQ}`k_62gs2bI+}w!riU55#XAISEz5%l>Jz0{i zbo-}oLD*K7d^?dc;_CFpo))c%Aoy;m=EKhyk%u$Age@dwP(BdPRNk{e!HzlJM2jXh zS~Z7ybsc7?qv0qz%Fskbv1OBhwBw{Pupp>XA^8HeHy{Jn&VycFX|IiIg$ zNb1gSgVMUDd%rUq?wX>Y6pk!*r=hBVLuR)m72PKlp3>EH`>)qQmMZ4|gYZFJM1Vlq z9k{FNM?bEFO^WvEP=^>mvE$W`T-o|FGqA|vhcft)KoklhF~Xm&?zwUYeXz0~t_9ua zEUCDXDz0!`VD3O2)}=*8CNzV7*oi6`{jg=kNslX>{PQ3XZZjrZ0RKGjF8}A+kd-Bs z=MPNGRsiYh9M2d}x~on~xOZ`^mryMv|2T5x(IxdakHXw>RHGP}6+m}Y&Yw?-Ku38S z?}zUnzGTSvktr51%jTW0D!n89%VlHM z&|(2Av_YhvAi`(wG|HA0mLX+MVa0`%s499f?QQ~v34KmHvGsKhhHz-c2A?MJ87l8vka4YIJfJQUlEf z^oDnhmQY~LJu)x>dtZSU=6&e)0*)e?=6=M$J{D zN<)i5wI@AN8|D5+14VDrqRL3wl?QPUAFB4hs)!Z?(DB3lSbFy>H&$3w;vO=rCkW%I zL71YA>b-$&j@?z3+=t9R@(kTP{7;7H&*@a$qs7!7`$fu@X)orWfy50qR1uH_LfL^j zGAv0@?GnUNS{4D}E#J(EgU^FOq$!oc5^QA_R{!N~Nfqy53Oga+9(c{oB~!vw#iJj* ziU?W2Yb{iBgP@kO!kA=lzBifwEDlKer3U7N{0Qven!)--u59_RCjCbgtR4NMe)dK_ zb*N|AOezmz7VBW}MWA5DNw&n4gW-*BPpo1q9&~0T&Gb?i@*%Ig6DsG^U8~Re zzW{wviEMyp_!#!>qTlaBHJ=qKg^f%QpdoqZyrlXKS6I0Wb3K#v=A`ljUMj+c5}v?% z>m|_HwFDKB!g8*0b;o+s90vb_uYtOv^A9KLK2O}23W4-)g&YlBBPppmJIw5nC*AVE z7%IZd2`Zlu6rtPoxqSo=_|2mNjH%Lmo*;Kd;bLkFkoWIx*?p?(+Ae5~hYfo(HULrM zUStE~xn5_I2& zYW^4`y(fczs~}q1V4tS!@RgZ1RPoN~7~FG#^-?GSF=v+O)H*l$!VcA-j32M6S)(Uv zbkv@;sK$7j^P^g_Wh?Ca9u53*3FK}@JwJT{-6t|2J{0wE%8t-RBXZu=IKd{J} zvw=wIIveq}fh`A$>0E&aGy_T4i0zsS62nV@Q@x0Gnl5<4mdl-NE@}!JGsN@*T|u*^ zBrk}mtenf1&(~EBGKPS(Am{u-s+R2Z{3|N>1AA zG}yS39??6K0j%d+u;p=RmpK(j)><;@1xvXKlUsXG5zLOrB?PfBaX!7ga=-KXT??tG zX_Uu&6Ka8)pcRx9A3(lwC2{B`Y%qGzg$6b)MzLIR?y8wxalslemnS&sO26Euh2}G4 zPSa!)KZjMt#y#j-{pYjglRy2$XUQ7pbmN3SxZpPpau@V zTZ=CHf$Ss!h+fU5o?i2g|MjuS1JZ2lnNfs%}Aw9`WBJ}JmG z7lt$V`^fN!JDT$%V3y10bK2raeIFvfDoBpGy2nV0)-eYck}|Y*KGM>VxqbrJba?PxYA8S>2kQMr6tS7?rr>N zOZT0g_?0b|{UJkvBjx3#&HgUF_mOY(drfwBd6^z5TnXhHfo+I)H`W^jZ_tD34ZQ;m ztBDEassWD;XtH>sGp^F6ywip_{WY@YCBuJ1tUHbvKW7xm6`ZRyV|!jehOc85uJU9y~9Ni*CM@KDlMDE$SNJ zMCWlCayF{jJ`AlzUa}?UZ>iHQKMc*HmT@H)fkcxLmj65+)wo!r`3tD={x5yehBu?X zttqI*)JK`G<3`RGXO-2#sC(&c?Wpop8sWZa9@V7DLtO>~koSAoSp&LLKySJC;`jIw z8onbti<*2^(VNsMNB`S~bXTX928N#4%ba@v9fN!fxZPm4?}Mu41$xUS`+5$Kzp7^{9gFO|jxPL8G@`l<;kcG2=zbHOrGD(@$jI5PdAJAL#S zt+{So5#6h=j|xaLJ;7R*WDj(ABSl)UBhX2OnH})yEGa0Eo*L!%$BnqY3i`#%^dGNf zMO=Cx6s%PdRvxiImCFKDWT9@Mp@VZBsaj2J@DD^%Bh`n-gKn58rI%cOZLPG(c?Dwx zSFts;2-e^J2vSahj<@@sGD`+-UXZI-8KrFp8<)_0EoyX4cFU;P^j6XPo6Sq!V!I$+ zyp+gpNl82P5oVXq+Q6s7Y?M#$u&}$MOZgafJbP!2=7I_pw0Z<)1zQ7?65hk%x3RpD z?w`G`ybXrpW9Sn$Gqhz*#}1&%VJAmwo7s0o!A!n4$qNPbCl~eU+iO$Kc5^`bbc_I; zcFv%9y0Q`9ZA<81xeEIkFyjVt<;osC8AHQ|=|)1!VZ6N{ji}8kls%N@CQQ5T+T*w(xZ*6Bc$yd6y5& zTT5p9ROUmTHj?(A^xz7Qsr=a+G&Wv9Igr$$t-yr$#n_%j9a?TjX3V4x zeCR@}H9=x5eE|p#l&{&kP&tUvV*4~G%j^I=l5UB`f^Qa(P3UI)g``1C8QG?{HmeIu zuPnj_z;})+E|kscIoNn*^6j~Re-4P+7lUQ9DMFbK=&;$;I3qFOn8Rj~VIiti^OkAm648?b>N9ZTY2sU1iG3+<7*~Vz+!5=5-&ZW{KXsc3_yhuny-o7UrKyG zo5A17rfi{5W7AWjfs0zLQRPOi=*U}j47UsgK|1JIZtVk%GEX+2HJQdGHa3q5$N2Mc7^3~ar`Y`hKouE2^@sB0`8@W+s}{wvf8goOqM zAS5TAUU{6%ut&$P+MP#j7f{!039EsRHA$cYRQ|ae%AHZ=`b(iO5wAgZ;Vepvls$ZE zf*<>)n%yideu$O-g*%BnP%)Qo-1XPNaz?fNBdYz=dYaC`$86lJdeXyS;9yNTSMJ>>iIlsT5GyxInO$x^1gedw#i&yMSJJGnehz;w<+%4c!RtF6(K~Z}9;)d~!loR^ zZ?67Fj=I8`B(DQ>lzz_^dSw2EiciMzsV%BshrODwwD-7N@q6|Issn;9DCbiaJ=5rh zq^}FmFhq?Zk1HV-hHJBc%OSCKjn9OjC}}p#O(b}qVOD7}OQF8b5}K8%OA12v+EL>R z11ER!&8~u&GF5CvO97TCelC$ZTC#auS!tCfU203_ZzQmr;ow_yAf3Dwq)LOZ8D!Z| zZnMT{>*#7&tuGsoUAc_j?f+#R{Xk9D3v7pe(u37%^sJ>+0E_w!)ug>^Cp*tN?7hFx zkUF-eesR^)a3=pRsgD`K4_--Qz!+9cx{J=< zBNg3OF1%&R-Ozkzs#arF)%|v8=d$X{Sjo=!+qZhs-u|OJBR!`3C`iP7@Z|=2K?4qh$k{5ZX5}pAin|?qBI>3l6wvN@M z(oAFrr>oLMGn`HiB&>2FCmMSuf=Ajc8izsOI(ie6x|g&7SdkeoVO-!zn?7<*qXAe8 zSX8M94Cbj}!0(P7$hVP=^E)V1td6t6BC7QrA!%iVnZ+-lMg3CHH7`F4|z*R-uqjJ^kL{jKcdKK+5rp6O$uexFjOB>ccu7W~25bXj5&%`sR z`SURXUPV`OT*AZ4io%W81CI5z`IeN~C~`FwkjkSVSAln}m!jKE>ylcWP+O_=nB8wi zd2Dgy?|$?JHJQVGQPfYQXd^la6dcKK1eX0Kn!?GGQE}~ED=*fN0beVbUKc?NNHr3) z9wRgQ$bba%5gfv}4HF4~Rh)?2-Q+*5w>rISpf)-st#DtlK2?k(*rY@qOEi>paQ?5;?RiJn$5`ZlHhXNLC@K^admB9;DcU z(_lu>A^M;aIAyETl>?PCJxECu5apuzGn7%RjU3@2Sf^><`|SJofd2i~Wu_byz97F2 znQD$kdeR32UeBV!lg6B=b8R5YYT96J5tRB{Fl8sy6eU)DPFNT#jQT5xfS8~mz4DUM z@nX}Va3-xu+2k!Id4tpTTWPtoB=M+7hyxS4cS-k9P*H>0en#oz|KztF@4ma85G|yZ zvE+Kd&H}S?K?Os|QZ5`sOl8XqBVCazKH~iFWYqN671|pk> zy3L!*b;j;Te)rt}pNwF72_r1yi8^(Nl>!rY(W_pB(+_~e3>2&?ATosLi7Kd$1=6%- zk|J&wdu*&=fH(4u&N#JZz2&^_l3=d1G&n+_OH4kGi9 z_dh_DmS$ww#Ce8nndCUks6>^e7iUs;+AaIza(j|LklAS^6H<)4|8|+YQKZ-PC1LP; z=aEB$JGqnyM*uPjcU_{^M-xgDa@4*K$3;f}GLD)%{<2MpD@bT4(e9{-j&^3Tlma>` z#hVZsYk{Qt#_M%;Z})x$cFCxI=;HW}-k^^m$$y1ji+1K*HNgj@I-HL7>A^1Xy~dQU z9u)wo-Ebolxg^N?C(f1G<;5w-x~ZP?8CD6gaij0Je&wpL+KgT~o1U&CxXTI?K|uE2 zNn2Jp)OgI*n;d+=#8EsjW#eM+KrDUm{Bc60M~*dpNf!#^^xnN4hFMw{$SE|l9oS0w zOo2a;#m?{NKRRiCzjL9XJlE@p4bDYEFNki*bgnRcEC$u6u+i%D-gc0%FIPhxSzJES z-MA-h@^k3Sgn4cIQC`+NQ15YpC8-4Y9%TOHPh?6aG&;wXjV{kdaesy|AH1ZM-DPBqTxDVSAJyYNPD?u z4o;eQ^DP^_@Y^_@vc9ko)od{X(z&~=DKgiLj#p8nOqX3@n3L}Pt?3Pi^vZ??(vN3f z2lOlsRi+|&0^LCa2bot46r8={O}1=A((@4}UD-s~voo3k4&fdG`7ePxOYnJ6K!{^b zf`Z&@-t_LAJEVIJ^iC&x2Vbe+!0^C4?9AUx)VA)@r4~$=nU$D|>yC_LIav^)(Y!9o z40Mxb%wU#`q1+8FO)OM!zLGtrn=fZ;(v_|dxf1je4M`FVV>9Ux#@LHW1JLJ>;*x*x zA#8KE8wlE~QQ-*p~F^Eb7|&XFX>O4V3GkVHLs2 zVES0=FtE>HqWHAH1P3+u?d=EFUF-2@%m*+ zJF#b~7AVHf6jAh!R`Fsw>QOAs=TT|;;@{{&#-L(mj;iEm*4UWwz}5bvOOu-3 zE^j{cVM5w`yd3+pBZ>S-9`fQU9`Jhm(#sCGe5m@toM)*o@X{0>gx27mkw99NaNVUT zJ5Df%Q%vSM7|3SG62tpR+plpqM_48%^D>FD!2PrSTTSt zzbZ1Or~>TRXwV-961~o9uP!6sGz57-JohK~!E_DlzI8dyK9TpN#wqogYP+|mfnAw}(Md&=k z8fJJ3&oO8%lCn~Y&aGcUr>KFBN?lb&{57Vs?GAzY-Ahf;{hM#wG}(}ZSN|PqBk=rM zK{bwj`rBG`k!D{^s<%5bWJ_B>cJVAc%_N+E*YSl&kwU2m)IWMfiu7PMq09?rx!;6l zUr1Z89X1wTjKWY&nQ`J4kNY^W?4_D8;UPl^dU4Jmb}E`G;hV!-!Fizk1ng%~vHtXu zmG2^4sF0(e6XRFs3mDeTrp}VGK37%5E_Srv+4U2M@wvoy2S!9;qaQYAy`aRCr5Lvv z6VNL+BJ4D7eT*}a)-yqPatc>g^vf!|>QbQKO0bVj&J{L0nNi=Z29BA#p)4}0enl=D zhfb2#u-${9$#`wYC(yC5hb4cf0ekP&0<+P{%_#2p1GZ!?yVH_Q13%#b(k#UYhX!ZC z`aGOl=Sog|Y>BgeOY}P7kSxwWijVFHCA!o9vPbO18t&J&qvwhIo~!$e>BoA8PZ{#1 z!3-x8Yv47|RH+NA`IK{(8Jq!vL3qR~x18yg)5LN2{OIKgHJ$0dYbeoBTXw^LW)xIoHJs%dYuxC=<0wuS5{D>!4A+G>*OTGmxt{8yPS=hGNN_REy z0?PHPLFD!zI+v_eVB)JUlD3nZNJWG3KR{=x^$tStxtieV5|)|VaQDFB#~&BFlD5Vw zk{&WF;;lye1~jl%gd;(pU`8r>5>AglTY=@C+oo6kJ8RaX;`(l8*l`AJ4m-yr+oDcj zy|*4luOO5gLANDSc?Nv_p5`;DVx2+yK?hLw!`=g+-nkdFjKXMkhCdr*auJ8=eji51 z2?!_q-+|wHbGDqsfdiR6j;&mcHl-q|bEL^{cd*_O08((eb`x6}{&?`Wb_Z?oFM)>g zH`uS(P2ES8t-xLb7uq2BfZBK7q5kDi(v1>OW^dd@*?cm z48_IMVDJ9psb~c)W&iw-F%hjQaXuhrTk+5+tm)X!9 z+PafTW=tFb@nN7L`)DT9y>xCegP(eAJ2dI$fL3*!(9^A}CkSK<)uZa2w`_%6QdwfG zX5SmOnW>0hoM&Z?>bB4;Vj91N3LNA+V1QRBW`A|lIUU5rka7gr>&uF-E~SrV-dz=X zLPe3VZ7*^=9{*b^PKA`#68XoCkVku|F^qXIf%AqFjzbaNe;oMfM{atH7IvkgIs-VG zV$7yP9kqMg&(|E-PXF;U!^s|e7#MKd&!C)df|vs!{vdsw6a)k&tQ>~*QWAsALTYNO z>{53k-3B96{I5EFbUe#}C3tapGw9vqLp0nq!FtrGKn^#D$8p5iP`WCu-Bhd40f?;{ghP@Lh(75;OYhclY| zNabM=A0NWz<5Xds4PAX70}ddV$~gDbV|K>Rsu>L;u#JE%4-I5T44&Sphb{MP)MY{n zK)qHMo|O?Pe!ij6gcR$d;>1K|nD<6!W%r#G;5a669HzzA?B&GlUj(Ab!5opEa&W;r zmOXV%A3y3l)R^FQyL$05yVE;CIJ+~@L!EBi?E_!&fTJ;?m?+j1sG8#BNZ_~YB9Z?D zWb-F~f7?YHZz3$>(H@&6}Y#&3RwX3R9JsWmx14M(?H5o38ZGIk$k2O{W3-T~bgUGn5zDmJAdcn1{q~ zY~kUCI89FUwLPFy6`jwAy@}5XA_gr1r32!o#=xE$!$gPutEohR-I2gg+!1(k;8w!q zWlxBeeSZrmRMt)nC(o2?Dq&C9*df6nFX8fCw;}Nx)c=XG#@7DjCqKIWhqcF{xx&Zz@#TC zyBvdV63Y%U&Js#X(Db0_*w6iOX`qmU?Dl9H8-VDm*stOU0%wBm_VEb^o z?lGn|x%eJ4W+u3I{X97sHnEfLdrJzo)ZB(~b}pQl_vdK>STX6Ho2Q;6wLPAsjuR4N zs$2d%J9WAv-WfS8p3)Ss5W}1)9BD`>PhzeLRl$yZ%z`ujr#A~4)IN0sS}VV>R2RL? z8FNSLjf2_o;zy`}LC=f6#7N!!37py&{T_*N9((R{r1lw?jE2%s-oFEj%?`XE)<=tdT|DD%l@AJ z=dXW9^1t67kAOV|MK3slB>n$5iht`;{Ec$I1^d5kk)q%G63c8|LV02?v*e&Ih(Cr0 z^j{Mcs?%Bxu=f~l@$UxxU$^;B9*XCwOGv<1hkrMRsb%@sqS;{X`fo?%ZKxbS`rS=D zAq$S+;qw2@8S_-dKjQgp#-nwGMl(T~=l>>wsg3*ZcliV`6VLMjM)x;>>mC2X{{Mpo z|Brk8zqVZe2P^!4-sLc6KK*Mylhlt3G?CUFd$8)(`~Pn$-h);DymbBcfel!-GeT?H zo`o!>>!X~Kb06lhyx&l34A-tddOM82Xxbiil$?Fz{&XA3%ct7p>!-hhfcA?%`@-hR z&apPW5&mqb{#4r#nEI{`n!j71zjh~x-!b>}&0CKs{x#Tp_TrM1Us*@*|CquQET8A` zpT2{5$)q=Na=dpiZ*q9=moE8W=j-~%kBqGESxvSL4(6Gvv&DZdI{3MwzP@~P(ZxlQ z;$@|Wicj2kD%xD?|GO|{4fpGP2mJ`M=2w1JO*I=I8_Q>Y7Nu1{JQAS z@O4(@>!4j_uS zl;;;5UAn`s%H($Cq0haQAD->A^9oEzH+&kQC(zG((IbsG$WDHeI(NY~e&S8+mwb`y z7GX4~{QF7qWLIO< zf9`H1Z!doO<>TPs>7hh>L7-E-R1Jou{a9B2&*vatzB4s0`FpPcs()m(^xm_|NMZ1) zPcMdQHokwxUFE!Y2QYQQ^KP0@29132KVaAP&xhai%g9!fw~5c%W6#Wb`X+3k`R79H z5RQ#1IMYKv3`ssn&f767nNZ3PK-3*Dom)wrgoVik2xy-xA`4AF<1r-Cyq#*8F<<%fjqq0ZN#F1DsTL5f|!{}08N zWBVy1`grmaqf1s-GFy{PD)zm=Z-c}Q{nL_oyyfO8w_xCSbg9TMxws4OSMj5gU1{0# zDS?OAsk4v0-f%lBK53d(Y=0ZG@BuTvf9+PRp$8JLaT6|g<+?FT1;w{Z(|^>vQK1#V zr~#v(97Um#snj^qKpdE4>I7|6rq-581YVKbOuhuBGc+(}&Mbex<`tH+P9)vHrhhlQ;UBY$&Or##+Z`IDGXaU!Ra zSPaDD$8quTLh3>}nrpn0mx=-zWeKGRA-5ioFL<0WcM;_-4_D*mK=2 z$rTFwq>c}Er+zbBY-Rb*!l>cYJ?7Mfl9|nu)z+>&6E;coyz0+mr&gUT{xUjNu{m|` zjjeu#Tm5d%93GCl``X39udvUpqc|&SiQ0u7B~M(z4}bOpg9|@X^bd1%(8Q~bVA=0~ z|Jw#@uDoKjQ%!S`+BN=v`|y8H?*HzIYe#Q1&-gk3B>we7!|u7+YaD0{HJI&jRTv7`z7~MxgQ#CI3vxHF>y?_dnL5#<)Y%2gpA= zThg94EXrpZpw8YrWcvsV>Oy5484VkEXd{~m;JgDU{~9E=fA!2i7>x z0E4A4;=qG+J#fBg51Q1~l88F9<^s=|Z?Ym!8w1|F@}Ay)OVGUfMHNb(*nG_So&-2< z`vA_FGMSgBQ1(<0*KG4zU~(%KaOERsCR(z)o@wEA_2*`R>!!+2sg2X*&!#}f_h$>( zxR1)xH8EsNHwo~FHe0@Hqq?Z7M3dDYR{K3_di3rDDDhLnO;;x~(%E#4cnUxE{VQNH zgV5c(q!~2q-wRSEf_#ok9Y;&hNT|eT_KaWKGkJyKS%x~Nex>$yUX7MM}^`3zx5)D{DHkbRKi_6 zm(Ne^-gcql1Xs}S&&Ir4#>&@Pl)M@BUbmeQ+LD_HO7GkQZ2_@s@MwK_HH_`KeP!<> z9`Y$NQs%V0;WP`jYl%Qa%nCQG5P&tl7TCDIo=xlEH>|XtZVT(eWVU>D0A!pX1}Oj3{o$k##Jw`AN4GFqY0a42y)9!cHO;3Wpi_c~N4fAIxW_L`M`)x1my@3(fp5>)@W>>!F!v|6*A1JL+CrNGYnVK&t^bNlBbTmU3ig2aMBr zBI$jO{1PQ!Pbq+>UB|0r5E}qoZf^knLC+H0z$B2dGta;UP!Wqv)upaFz{SZN!PxbW zSoXY&O+hb8`nnKLA212mM(2UpoGx^^e=Z0z5_SeXD*+s7nZQIzM*@Fcd5K*mbV;fZ z^651pY(awYB(_M$nkD}=15pg5nu?x*9`I zD$z&5d$!`|DkkEA_tA%%cs(jh2%RDCVUr;aJiHw?cUgNT<$_|?U`qW8Xj%_EL9=oF zoofciV$34ETGheaJ41SoiEJY)2jJxWoe5Lu%?_KjON)5HtTa$MDI(#g_iVvIzz^$4Qv4>p%8^yGqyyhk|>H1|3#mqL1a4xA~izcg!mVxH;Vo>_0Hx}ntv7)b-Yl`+%*gXA^ zuCHu~a|S01rrYIIp(@K*y>Wdugb@)dko|ykw95DomDryQ-^W-mcqMr86fXQhs+tlBq2|JZ7D~vU0v7__Jkr|;D?skPAv0ra1S9X)~u8aUGTe)J6HT_ganzY~NE45hRD}kH~_>taz)NOI$^fVOVJKAOM;4jVvGEBl=}R( z91S?o!eQxs0IIe4xqpQYjt+Q4>4CgWnu8BY!V^7fTMlvMZuGjjv}-bu?wlvL%pdu= z5QgpF-uM^lmPIUEFQo1IcJT6kKL*>9iusHhTLv2H_4)gkAAto@G_(%YI(5L#L)n~A zi_Xm``y5N~1vOos@mtyI`B?0A2-Xb`ccJsmX9M?FINQyq6|k9+K~Yu0d%)L!={@PAR9;hDXtxC}UycU1ihIebzu9ttN zWIj|{^@J#p2D-c_(pe@EQ6qcMRt-Gei9VyjB)naQs=nvRZ)a*U5_V{oD2IbxTxsu_ za`DC)*o8xH);X}vUA1)#{}$-(1x2ZCc4t<-m)1~J#B|*KlN~5Dm%ExVT3neP%*~{5 z!A2m;x7K3pOm$h}^{Cs4IMKZMxSJafR)N6Tw)AlC1mOTHy5na}(RI*l)^Qs(>e6Pc zhStqWm@^gs9gj-tKQ{TQ&4e{2Elj(%hU*jDgyV;?E zt5#@=PH9P+hVqYVBuIC#Lqm>JBB0zo4IMlC7`@qqkJfS}=2{}Jk5@s)uD2kH$83Xk zAZxZ3<1&HSte^xwR9!(Ni#hAE0;*n6;u2U%V@2dy!z#eU@g?f0r+lWi!Q(c=#3M8f4&<%;Y)ZRM*|d@7g^5-DVoHf2~v3i*Z@Ph zT)f7E6;>7xat+r_qZj1*K)p`j$99J6iIs>E0G;0&))%d7-I=I&*t-tf@~C`$Q~H@v*C;Gnq|-lDDcc=udd zOzeg1P`vx%3A8#M`HqXXu%&n9K>WVmwTB}p0BO-4EanqTGsB7j!{vPPkm`vq4%L_U zPvt^I6Ik_*666()Am5@dQ?ZzT9fZ0C__FC4CqZn;Wtf-Ry#REcAKt^J_r|MBI-84F=LecYwX#>7HolO)h>=KVGu{MN4-!b(59? z;BG2Z=jJUk_uPJ{C)SYxJrAg-iK<#&Eyd5vS2(eSRV@2u-*uzyvuNiYE39COQ8pzJ zJaMBFetm>$?;J+8=YF0#bF&Y(Id8}jN2gT7F!N`{s9PVLgF+r1P?CCfQZaZT#xHrH zAsi4xX~O1bw>o}#l`#>lD&{a*o4NzJ@+Ys7UY;A*v_QVdt^r7NVcIYt(n}cZlET>X zpW&)vwkXIRG*_S8i2AhrIg%@Xskwg9VQ!&>Qb1OIQS1VGN9uxJkh~DHaTDxZQL4l2 zlTFqVeTD_|(39%iZD^|&j(2

    9lOOn9Ou3I`y32Sq<$U*6baP4~TDMDn6yZxgy~ z=ZfBqjrN+Nw&W*3@_-lGU)0*W4z4PhC}5q~GleZu_tcX5UH1oq6e=_^`o*iT7A<;j zIzY34hiKVXI8jZa!_HHzSc5YwqHo@w;V`^>8O!7^>syX`%+T9KiMYzUFu@R6?i^Sb zbnjae#z&>_1tPD16xAhovY(f4?pa z<7)sPo~V-}Po{E&c*lOITx<(f3(%o6xw~EE3VYzf^1Mt5(m_cE3!jVwB+{xn9ZiMt z*J?JDT1vLEJxg02pGMoYB%Niib}iq9noJEK<2pf>moPEH7#b!ReCCB`NaarR(?82q%c74#n-32+FFr!5im(_tDmu>jzbtqVdmhQpxd33ZDjy^pJHIlKyh?4M6 zX6hW7hQ9xFd9*_ik1;y6Y2_yT{83D2!}=rL|j*OAdj`vHM7&TFay zr4+NFLb{JIu5A}OQcX4VOa=B+)I=s4BJEe4X6qW-M3ist|DLt7?oI4Bh9JIYGFyz73|W0WJX!vua!NHlo_Gdw?)S z1RG2|^o3p=k=LnTU}Y4`e*LN-9UQO|7Q|uCLgzM?com8>plzWf5e;$iYZ$t$2c%^X z&1D>&=>?vRyigx?98e6_4_xv#m%5Vdc$FSoV$Z5eP5bohJe4=*XGM?50=1Dk+ISht zMo{AfVZ~Q;Quji3Jtp3DGMYjsWyp|W23g;+QMSZE3ooxm z#{!7SEseu_^zc2H*E@0N!HFQ3^Bqf;!U^4%Zcfp)VjO+B2Zs8TYch2Av-JK-6I2zX zU+<#?-jk9@2r-M~C4c=1gf&_sCw-vwe+Mcj$`wmzgB0}!wbPOCs@55VO4 z;Kgm|;Bb^Jsf2Vv#Z2(%_pk6p4IDk)gsd1XQ3@a-U6K{8B`q%IdILJ)ds8v8gSb#EOqpGCVa)#$m0w$GrQ3s>MoeR-JfGAeWoe;|1TAR+b#C!_HQ z(Gd;ZKvj9R=#c3^7#5h*g;SW;9U)aSa9$|kVf#H;a17OY&QTXW;o$DXOqOTW?jL-; z*WjbqSTYJYgy^YDqCo#G7SnonBMAG^SBpNO%d|9dKu`HIDnir&^E%X$)g-2rX!U;A zFN(S5v>T@(aLr4Y6Ax8K$;$08f?=s0W>{vHK8?<9{~Gt-e)u)6^7rJ3zJsy?$^x{$ zT86uCJ@d%@8pj_9g`RHMf6qyRYTV#5pXZ$mok#Dss-g76$yE(?EHMF@%+9d##`f(n zX9#`;l{ZjR+dwl#Y)Ngt)*NkSAJa<-syh9m+f6D1v41o=6F292OAIKzI0I?|H)p!q zo8(NTmno=8NgnY$iSJS+%L}NwkavejTt57Y-yk~vJu3c5NAlJQy_rmJ_9!xEX6rMB z8aTiTWGs0Da&#CGPx2#rw-z5=4aD7_w4m(h+_OAc4lH1Sg43uwMTnZ3W^rZfsnM=c zpHX4tGoFJ@zG&?sRO{7lh?`j!NpH6S$=hvM3uVk(_b6nFyx-@eCD&6I=|2UM`7H4V zVE2v+%`?>^j@DI2sG`E`V;9JyL$j$s0!tXS2jfH|VG{|*wWT9>4YefOfd>g(w3vHK z;?Fe^cRa&U|1iv1LE=UjVFOZlQsXLJx_~T|iy1eKLFe#_16>byaRvFTL9ezu#Y4Hh z_CX8K*x>DqjQr7N|Bu}nCCTNgiDydwJm0ea-PmaVzL=r!K5-HNiuWX%FrQ@wbLYN=SyPxiGiAs?_-Oy7j*8;#JuYoYNihf9_IsQed97$|sd>{; z;eAeYl%dhG(`{IX&oR2+s{`I{_XUIVB z$bq-6Nq_fT439>cl_5?BLJlkE6zZ#ju@3Y;6MA#>+2YTWX$`jEQ;O4MCT-_U;d!?R z)DIG@2lkrK3#?c`bC$hVcl2C$b*l^vedls-ZkEpqrq<6EAAN5o6_ z+B=!P(5C;O2-by{e*}uUhjXxV&*B$bLFEE;S_@?D(uq+0a4YHQ`*W!H><2bJ0XjE& zP@Ws~Xg8MZFp67*+>48g2l^_;8V~oLGiEj&9qnnPWVIz3mAuf)$!C%)(G$&vqYudt zvb9m>-Nq9gwQMz0BWEI^Uc>F{0qS52bexD12c-F!9>A9ct}vuEB{5 z=-taUETsFKgd^|D_ZeQ{4JzKGzKv5==NiGvkD%ZZ*tt%HYJ1*8Z}&4@pI-)UQkS;$ z-sDSNH9mg^CR3OsOK(+_l>gFS`8@n=CCP6Oqci0jg>=-&J&;_5mKq{n@1d~KP8ZFj zn7fu$!#A(8LPHD)t}g5T{M(sFc4(d&$bz9UDP}8-u=-O?>Bz)&I<%|6hTi*o6wH~0 zzkEW5O_YSks;lJ57tIC9--7iUu!|8r>mem=`Q8KMn4m@-98+?TVv2SEhp|ewM70eS z>ob5}NQopxV{a|*18KbzL8s`Pj^%uzyC!|J^F_kD=jg#E%t9?UsT^<6q%JwLnMCad zP%=ebdS(i-9@C*+5=cOAzLJaI?KWdZH<}oNPS*y?GXV~8Lp-v~g;4p_nk#Weapp{v z%y?Q8DA^ccsv^60eR zi@3gM9cT)Qy4=5uxRLo^?TwmID5FtuAjLCKN3&1dw9(78ef{n@jt#(?zk8X!qmlMtjUV$(RT^pW!R z+R&-$b_7z_AA!p@KD}V;Wf0ZMlX+7XcIJtwcIJX$Pqruq6O z@dHZ?x^6*6z!qle3hm6i)EYv6&?J#fH49|CJ3E>AwSVYWA^wV;XZad1WldbngL=d8 z#S!41q%12=PW`N&7Zb1rE8bld;`d)7@IB3j;{;$;v3jOH;0kmoSv#e7h}ARV8{zec zQbdB}CD7sPei-KcEg;$SMwqOQdrr;OP-X@JYc{dX5tZ{MFm4k{pq-&QGr?LeUUOP! zFm<4}Y?C2cuyGKq9M!$j2c(gz?SzjM`3}A)xSK`u}SaKX09s2VHQ2@Wm$)! z;b%yfYe|QWHr^cv=%d$UX)z)aCQEhkJ^wf$$}G^5R6)gE^lm-@79BidXV9-$qLwEb zoY3gjS-`<&MqHrHS;wYAJrZ3CmQUtND5VKO_O{P?eaz$$%n3zTqVdD7GqA|#3Rk%p zxNt-(K{QlJP@D-#dn$qKBuI0HmAX)+j_WSnxq5S=vCy1lVNP4|DNiC&8eJ3L{@`3${z9#)S^pD1oSk}aK!@4 zs^uHdb`IUQO!uM`SNe?nXim5TB+-^ZD*y_%*jJs_nZe&rZ;pkppGAfNU4M z2*d&%x`1|lzXN3K4}lrk^_q@ypZBGMZ@RnNMx-$x$j;5py=ZG3YJ}*>O{lP@LuP*? z{#l<*d~0-taUU#LPwnf!)Rbd>N1tNiA}{eIyVzZ&Stlk5`K-`>#Xg(}h2b$fw&3{R zxx##1Wv{zQe}|6pWRrt?&RF8$tNe3*-8|1)Shqe}o4%%jI-wx;Gz!^&V>me`X#aVm zhvCjeo2Z7?pxv--0o!v3CIdX*o%YtF~X?5m-*tJCBx8t>{_`hDXQ1}v%X8hZ)PKI3Aglxm0Zyu+&pvXQUcyJ ze2zNBOitW@TDIoOGNh-qOEJ?ZlhHb8AGn32@^CMJh(vh;8 z=VcW~^GGVSlIN)>%!k55kZir=yhgS0&6SnZm!X5%Z8q{;pXY<**XUgrdcdOBO(GKLNs9Svjt@_k0zIdpUakWWIJU7w{w7S|%Ke`= zst=aEalf%v8Su6lEmfoSSd#Sy#0K9oXN0TXc~uy}jH1Ogy60kbD_bw#J=eJ+&k5MM z(~&FjSK5+zG!!s0-pybvy#iKbt8pQD<00g*?}zs$~x; z8QHdt4NixlKN^`bXKr{<7D=pV{0 zev|W%z$;R2#UwP=Srk6B??Tr%^&m8yhsAfJE8?Mp-)LBt9c-RAq(M@u6;PDq`JF30QBBk~RhJ&o-VB8S69_P>|NM`H z3;7(8dOt;SWH#={I>5mvn#7-LBxCJAI1H4lY`V?$M^dx50ws%BYFiSc*`5WZgOJEx zhvf-exB?IxG+IO1wC?QT;1e)I|En6lG;X^Nig~kN%S5TpB}oFQpePL_^e^+i?D^oZ zy|2WGu0F}KAmK&EKoX@q4PRIegqMHVJUE}Q2Rg1l=&l@*i~YZ(pBTIXk_o&t1+Moe z{nrq03C>*+jH_SN!CY3(DpnXj$%Wh*ea;H=`F1iH;#1J6zRp&@>oiZ~N#&>^D>kEn z99Z7LJyhX9#0*v)Px2YX^`Ws(!+R@dYcqlO*5K)rg~?oz314!E%Gn9R(gGIBJ9^n) z=J+~*>ysJ7mJ5R3fq08EtxEKriQjkrfSk*TCyrdL-r%f0m-=$Is?z+~`JS4xg1Em`Sl#W|YuFs1 zg*#XzmR3YUFVA~-h_-u-%p9RpE)A6Z8RIS;Qw;poo9(GBtv##7#6hJRj$S?s5U89W zv~KJ?ois`kbyWZRsMo*?g; ztx*=I4%P?aP`9yTqp|yY7QQ*c|5Q&&D}Jd(RZAgixeyQRZUD(I1ZJL$LSXLB4cx(l z85!vcphq?M=L&G19`4$NYLEZTijE0i5p%&kcJC?u*w_WXHs z*m?RV44DQE5;--umCb_X3Co8GrOP(1J=abh26`>}b7Asc)R*4JDoh6Qb=k1cYuPYG z^XYvSc(R(Pk|X~}(si=w-vo^_ROksM3fg2rOv}MbYB+{3uD#TDnXke2Tmc=jDbI}* zDfO8Qq)i=HKoli%-BK}~j?a&?tn27KHE19W#NUACwhlj_T8iU4PqK2J!;FrTK5m+2 zcT~Xs^A2vaKNl}TS7Py}A+NB1TwlTWWZ~6Qp0`1uwI$tl+nPX;EYH8tn_`0d54=)q zNVxWDJiLf6hst=e8rfKJaW$%~@CCVJFL|P4+UOD&_d$E8T!s&jf*MD%$;#lLukqoNuy?1((A@o-N(6x!ij(^vG^IRoN4qXb;&!gFEHXW zkWR%rt`R6F8P<7BKrPW^LzwJmob`eY7c}wvn5R9E?Co4j#NSedDs{AL61tLz&ruP1 zJAkY^+>}E**wFjtU_D#l6&;Uzz*P{+tC+|H+5;~xzNEozHpesRiQ2+lJi$tq=Me%K zrc45l*m-NJfqnaq!xPP!#$VO3fMmpq1FQP&nx8B}FnAQkmoEKWrJBoJQ z3It{(!YZ|pU+E@wR&JApzU2O2=yJz&5=d8(pzyY1pT8D}xdi2>q0$g$+#rLyZmuqb zMB9r%T{M(zf&Hd3L(~N=lW=R89EkX}g;@7ScV4@2`SfLfwP*MlOyacSA z@o1!J__ZRzE}a!I5gjRnVgeCLFcKDxzbVUfJ;}u~>)JEZH6x06)tZARGkjo!7Cl9t z<4ZD+?&?aOB-2#+f@iZIU{XV!xCK{ld&&`XsG9#S%l~r05ntSf_pHDhOy%N6Q+eyQ zHSEEH;kHZnK(4#%REzR9|4B?z0EG?@$La}l`N~&W6{_bRpjk)$9F=t2wmXEJo4`y6 zfnV;H1x)}&lmvR_Wp3$UcZH@JRxG@<4DXqU&$os1=N>)xT7?nT# zblTlBkcS?jxM}E6cvV0)DL5>(13mnyS`1Zak6Y%eD1`}X-_RPcjpX=O+B{bbfz+^X zr_00UXBjhwg97=xvbt^;P+BZ4K(=G%kZbPqLyO<8hbgN-S5Qsjkg^vK$ zFQA5p@2F$Nr?>Be@fNb1cwY@=Zq0!%3-*C(eb6ZxlFk`Af6K_8E!f72aQ<{<)>5k3 zPppeiw%4#k=UH;K%Gr9#h(;CaP6weLW;zYmHBoBMALvmfSN;NuoneACiw**%LIE(d zHbhHUv?&PZdV+Jdpst%Wz7yw-KldvtPU#V~>(D}bok8cq7Zi!aH9^)Ys^9f62e*RQ z&7w$H^1B$W|A3CD_Mjwv$mAbG&UY-i%_S|~c$A=K_m6eyb;0I97JftKv<=mkI+-Zn zmeYJ??2HglRKJFjOotW;x+sQ+iN(@@O;wNvbpd+9+wRq%;krJ01eKo{S=CKwpB^xQ z8JG_GIrzo>`3{tPA29j$3@V8NvEs)%@*@wjAi>!@XR)F?2`&_Uxa(w7P$-FLJ@Nfv zGf~Gp<*Q{q)ux72VQdUfm^CNFP`cEIhLM<`O8cg%L(ra|R^Z z3G9iv_It4mCy#%W-+}o?vj}3B;0(evd7ic~pKOIvvgt6ahV0F!ut}C&zWGeXF5vQR zfD|%BDuBs+Z4EWF7o1Zk1#YCoRtFKx$ayNTzOe(u)HkR#6hv5peyY%?nWXCx?}4bu zlrem<9X3rOTcnpybh2eo>JxzU)At(UmLuOn{$X7h;fD|GCJa?WC9|M%GkP>W<_ByS zm&-=D=NDqUjU9k~kS}_)qR)~G8k}DbqL!%m%k@AE68%9QB^RM7^MTtOP)Fdfm`=8Q z9a#)l3xIeMYT8Ieyab|{g}6OC4h*dM0oXsh%I%tb@CjnsQge_#e&xucHOSt4Ly!fIQe8;rG|%IqrYReBL_e*?(XWBa zRZ{4?8%P75?FBK$0FMAs`b4J85TsVBIc_t1%}0A1K@5>}WFzq6UtxfV;B%+7V#BtB z=AgNtglv#|fUKag?Vu*$f}buZB9mEfi#n{M)7f~}5y(%YaG4*Ghzb&fl@h{;Eb<0Y z1kw(g`6!)52av2&Y&WiMYrr{i-1ctr#bNiM=3jG$uSAMf_Mkn@tXxA)y!R_5tR#Ld?)l;^M z(M-T+(V0<>?Uas@4LGbtN=Kn`_V_~HO5DsxR#^BFOR7206a|xy^I^~G-5|?gyb}>i zSLY^V6}!BclCP_0duk^1twc?cKhB%G6S%y;hl&C;u%WXC^X?|1($sJ=RQ|pR^712- ztia*CqCNPeK8$z>VkZN#O6>@7U7)kc2H23Re;Q@uTd+U<>yk%MXTCb}ctg3AuHJ<* z_B&8IzT=uAUsnuDZljR=je2y;GQ4?w=w=)|my#bHzYH`4A$g0jbIzun7RZi9>^(9uL?|MZw*uKa8Zm?D7Z>fMge2K{@MV!x|~!mVr*GY~^0N5uL4e-P9{ z9^E{X(G5>GfG%z1L8euP>Rt4mrho*(h+MdT$g8L*e?%TUAOKw20k|=@QAKQQ)2AQj zlF+%KN>f^5KoCJ)WpYgT*oWZHA3ciP_f)fK5Um2ylw3l9!mei-Rr||h2Xjd27{wR^ z^M*pp8(FTqdzX;v`~jA{{S|lcg`aBD;FKxkz8_z?Z7y&WXMl>>f!jgv@<~!Ncnh`X zS?$UI?me!D50(50n%!qi7EaNYrr3jh9|rrYS`D|ugiyd-55tNaP@3C^f=Uyb_M1N< zTy#*r0^?S<_a>@Hd|5H(*#r)IQ}o!>n7yVrH-`;UNg-$BrTTp?E__4`zy!MEJLOpd z?r*}W;caG_F#`GySAP7&1}$mK{MgmNWydU9<^6Uv<3cJs&&gfRobcCG7TSK+o3edH zoS!)_)2-f8z=t;I41ow5}p6H;d&^( zk#@@ApV9fumlu#di<&dUK++qW=mxgN#UrazF|4b%ooC%ltsHi?n0}NC0PcY&K&|p5^G~*OMLY5692K(EraU)F9&y)|mf)A#tGqq?G-! z9gm#6t2yo~OfE!$l(w1jGbaniHTFNfd%!FVq!|9Yx0K(99wKw#qYEzg(m0YOcVhjg zDgPf0dS3=GvHQ<&|A%k?M@0TB^V%lM(cB?oW&Yuu{&$m54Cfy%FZv3``iwWWP6WLg zXa*ZQvxq+@;)?a?1ePYtGyioRxvzd~D0@e8=yv z$0xmxM14Ns=tnLY96hc!Q^2Lt@u3^M(H@`4e{?z6M!GDX!ozACO~8x|k>Kds2mdn- z58%;1PbZ^oJHgRETc=NbwMh#n9|($j^HZ6DXvIOR?SiG+IX7?o@%1fRQ0==S*lLIH z^s!moi^rD2(wB4dO>U&&l}4Wbv>UA22F?}y^6=Z2v@q>Y;21LNSoZICX~6{;QN7Y= z)w+XsMT?!;!o{;!|J&K6n<k{@#6_TeTF|y~5k9w+Ot#HioAQ)3Tpa`|_e6W<064t51&Udl|tyxz#_&Wy8*- z_IB38#WnkW^B%r`SM8=L6O#IA-BY);N2crTw`t=bn96ou6e? zP2W7)88&rn&^Br45_fgajj!CdwSJL|MmZixL+-4%r7j6^(vWhP|1krTEaluB3wP7I zQ#vD6Cf9@=aW`|&-LG72m)$h~&Ag$ga;tgemikzmTby&l*RCn9{rS1-&&D?KaM!v;;j*wD zy_SDzcis(n{bIRZgo2-*xTDv~{^X1?UO@Smt&7Z$UF@H|)jau?%_TV5_Jqe@s{eV# f{r}%QjG6ay-E%^yXapM&`l=8`S_J6`Yk5UQDPjrIUK=Pi zf>NZ71x0BJ(xk-((m^^1ob~;c^PTJa&iVawmPxK_lWCcqXXbwH=N>Nax7;NvEH4ZI z5VhF7{U87+Bwj!eB|hokFDe0mnC@pD-a*^~U*5wl5__zsmI9ml;iz{+{`Lsela%*oFnML}C~Gx!Q@pg7&3?rKPIqeO1xkRhdL0 zs{CH{eW_|`sXf-PJ(k^GK&04qqDmq=aV-%gi1(%Mncm+sqrX=XDf2sVEiLsNLB{U? zMKnWHM-*OaFCa24eJ5)A(*jW+QD|vtiJE9CNsONmXSban0J4dHUWkSN`5OSN02bS~ z9u7(x>J&} zZvN<@a;;AJl1$O6ES&^bPhXfIf&|ETzi-F#cuxU39X^ore2idiLy;JF7>T>Jqa zFwQMk1UqBTp-}K32gq&}ri0bHUm%#kI(=|;1^NG{Oks6VQ6mv+76a?7veq>VxIPJ+ z&mXs0`skx?sHz5PX7$9*z>~sns)c9gwtat*`(foK1X~=+r-|`W&W+`Tm5182FMN9y z75H)GCIe%B;nKwDJ>>UUqlaBeSgFPxpYW+s=JZgy%*bzPC5gE6$l|y8-n*kRz4x^j zXDiPy%`H|MRY+*{(=iXCjSly~OWZI@SeMv+^NW5Ouz5bSzUfiWsj;%9#TwKz4J)ll z`YZBMU+;8jt+K3AL%ca+T9K0)`GU5IQupmga`$M&m!;p|a?AY?heHhKo_&wZKb@W= za&C?_M{dpTOj-LORpx82J#U%Z=w(=S)w1uZSI5fj~uz2=~6_c^6sFO#ab zMT+$9$K6IEu9=M5Nc6{!8y!8fQC?|t(tRX+I@8CD%+FT+uyRu9XJGh-)Sdrku73qa z&KBPIEAo>OcE*e7YLYq9(_J1x{OIm5=Ze?psC2_{tc(mWR(nh8NM)CDvC=HL(^VW$ zWHFGxab~po`PN7gDxQdydTRWP{Q@|WS8rbWoA+^JTO$XxK-fS3 zm`}+7)BPV-&eMR(+MlrtWIXWte78%A^1|1fMq^VG9pRVgZ7v{4z1W~BxStv7M~0zd zU}SaR?U)MvrSYHIp>+RkrR1QVtO|@^axWi&|8@W5hRDfTmt~9#v zOxw^K1XXspm@Qs!$$e~fC-8+&PD=ToZ{Ube)kvx?PqgXuUIo!@s^YGl{Pz270d{ z8uZH?!Ls=W!)KSSmE8X}HBp$FWNFqC`7!8)i|&xgX!YC$9WY`lS+~vTzIpP6=5JKI zlcDRgpb39n62$%fj(z6vA&!ZU@bp^)L;aa9b_}lFA2qjs3yk`ae9|e_+E}(L??1CEl%+%@d`q02W zevX{_PEi4&|PwXFOM*AklMGfzO6e0b}kdd|e>@(J{mpC@KL< zItYACV%n08{h4!kCLMO|K{#>|6eR#`iq6*Lv=Z@E- z?LrAC4Fcy+(<)jQjD5vpbMJ{nM`;{H7($EEyD z(0VgJ&>XhB0Xyb`eKtE7dm|KhL>)SVgD2IoJKoSfKg5J89xR9KH z#`ewf0$IX)3N_(Plp8Ax4`Lep_vD%okeaM4%6YvaRXAv-RuA-6JK~pL8wzr_BkW@! z)holy2~G*=iE@?2M)_+~=|Q_W!u(6CfQGgbV-s$-8C$B}{06A?Td6Rrg}KTorz~No z=9!J~yc=MpiSZ2SwIZy23PMH2A8I_JLz=HtrE5TI8O;9@CVlYT$WRo}m{owYg13cQ zbENQvEJ4Wc)C2GeZiw=V4;@>NSr-D0r_t1;y`0B*;z=2xxKRvlreprJcy1Ss zdm6Cid7pGvV+$wa1h_1G9WZ*>1B~Zt3aI)|cK{aK9Iq{Dqr=0dPI}o5Em5i%34+p_ zih_)1An{8x%JmiHt^w>*c)jF?U`!M$waN0Y9q6K9o8=kW_(0?uR4tUOm{(u{o29*n zo7}hDTWC=`D2@5ozjnlbtV>ToS{f17Z4&>ooe)Em)T0U6(tgy#idb=`vKXr?<_Mbe z3uPaHBKUbZ8p}CHAuc3JZwSTWr-H;)zX9!R9dX8xfW}!bMc&LYQE2|nZxc*A@(qbm zeRId^I*FIO46{+iuIWqi$7>WQ9cF(avUoi3@U{buKY;BK*w2W03Jxi7$Pjd-`XdAN zU;?Ne^whyVzR*#@44$d*?pS0$K$vN$O)4`f+k8qWh@)0&NC5>H+zDj0PhmwDArL78r?v=K2#N96`UNw9YjZvK`j~l ze%@M4UOR!xx(=6CeHedJnbt%n^rokK@3>&K$4EuIcqLzfXPz+j_bM6|unf*^ppe=GvBG;gFhq!0=yrhW z13swQN~odCAY)G+>e5?t)=6<5)<+S-|Rh+OLSRG|dEAE@PskshE0%wNteFJ*j3V%67-wE+UCe<8>f@H~gAPhprO* z_b$5zwmg*KHCZY!j)5#Nuys9f_;yB?vtlE*9?ACyp}CAxxSbZi&Cpd1{_5L=yUSzi zD;}O+j`m#7dWByd%vlPTx-7RT0#rePkv4^~n@y-LMAjUw9y1UU=#czw*`oK(cZyS`%{w{+l6 zYweLecyi`}n&%$AbohWeIvRUmzf?QCFulD2v`2}d(&}oFpgLaGn1;FONHFA3)?{p% zZ>YfU^y*zI_IS7BW%Fkx)m^J~J-{>)(3U0Cnrx_ry_}-5>fdsW-KelFUT|h{F5RW{ zsn}gNN_1-$A_5bTYTLR*3Quok>&m?(b`-Gb9{nK33b%it!t?v;8G+AMoKgm!bqN<- zM$PXBAAvX6qz?NyuaUDmt|NL_D6mEGHbK~Ha1ha^@zz>=PsAwD`7;5zCat4Z@S6pj zpSVo}TW1R6`a%m0{$6_LYTtbp~0@L2b*i z^&m9rp8#tQ(ygV}sHGWAGbTLS(w@RN;KMRP@&%yhGLDoO*Urm;!k<@|E>8`DQ|Axh z$p*EK;`qBdknTct7Udl_kiqPBmd>xq+emcE7*4mSPn$+>hfS;SzBiR*;Y75n6)_ZOBOaoBNfFV6MG{rs=}_wP@^5Y zNiT}`pdC;D5oMXmeN?E8jG36tEV5c%32Yo+|26>CdW6uI1^z~ct4i@>d8*j6TXVt1(UOQQv9W;RYa|Wl(WdMV!?hni;^y~D1}tv>#mS+= zxq)wKDE+uC{`U^;v$fQs6bT{Lz!gdjDALm9w>S16+V{%2#fosdOPb|~s=5;1^h3JI zf;}*S-a1tCu1x^C8e<8{@Wv#{2F9xt(3-CZHRH&6Jn}l=X7sZAmvsT%s7utEq63A3 zSpHZDsIKIx!e1RUpqC)d>wlsOPr8)K@`rDynv>N0Ky!UnB?Hu5_ry`qfaC*WmZZfS zBD4eYjAN(p%0X>X!E^;kGVnmvoV`qNJ6Ybiz8vSD3n%Rn++Sg`7Z@UvANQ;9io6v_ z8eMI@ln&1k5qz@PgaX%_>_)jE+Dg2_q^X)ug}K(kbF%MmS&3ki{UBu8GK;M11`tszsB6=^KW$~Nip7`TvasSxE#Wj z5@Ri~J>;=Qky~PnT7(N2-CM9!&wsM-&K?8to@SOsB3J`j)KAUII(SE%7q(fD6}G}c zs)u+A?*u_kqx_pjL^AXH6ymUNZ2b_*ETFOIgIRbbZJUX8c(czY_?g)$c%Ra zELAyPVT>2j{OzBFG-;M9R+g|F`-rJ<+-%;HG=%>~s&n=GNsepKGl{0KYzg(0gcc1fp#;c<`=Npf7t9a$_^RZfTXnBmjRx&6^(Hu zk(5OaMAXLcbqb=~C*H8XC`1(6$h<#Kqd;#*7_ci+TZF5d@1@9STZw(9Fu#I)XQ(R0 z>&gI0v4^3FoB$KiFEpc|;bb0|{bIopCMy#NvH zXl-u6qn}spfL?VKVA-!#VI0c0&s0Y;y$-vdJO=XD!n_Lm_GATkw(bO?YeC9llQFY) zil>Xs9x5{wG-jg(mW{&#JXTi_%rf}g`sr`JKhSIUJOJ;3#-$MRb6F(rT+`p6zG##rMpiqy5NZp=5tj(Yhh@OHf%R_uIu3`soh2=5GiL=Fv@JQPVqc-+Tg zJno8=M0(NcGx$&rz^0!(yOwxOvtWgt7|%4zS%@>>K%WxhBAhoGw4z^n*4nJ?w_7{; z0arQ=u4W7B>u;W-adkW-fu~pJI=t;AE(dl!oV;l`H!uDYH%JxZJ^QOb9t(Z^OWY@- z{=+@|M|blB|Bt17)ccVWafa@uqcq7 zSxe#?HjQfF1|U#P3p@F|q5r22EDcTpoP3pENcHO9`tZh2&Cis<&hwi@SidEyMV+hL zKuJ9q%|Rrm?=A#tV6!dP@qzkf3>xED4az)^H)X})4tfXND1)z}NHrixzY$3GhIVel zf9$GNLvwbL=vS{1YgC3`$}7Bb9D(`%yEVDNuY%|>JG%)K*jBW~(ntkwcV;F}X#-Q4s#to2~Ik(A7J;7ETRXt)qIF%s44L}ME^+=39D)Ss(+hIgy zUeev2E&3f4H1AYY@f2hv$Z!(1K_HTLA4nGRlklOmhD~^4qywc!VGjcPeci+1S+U-M z$_ogwebh`Lep|ksfU0zc3dpi7Z8kfZ?(jibqLQSm@bcu2{3|Ctbn`W6TyGK1cwoWC zgd{H#ftPzy&_YZGlMrQXv;k`Dl(byBSnHk2gb$R#mLEBoB&fSp3vQ{X6zZN*;JBe_ z)rj;lZO~dM6DCXP&>-VOLvbhr|4#zyFxk7w_UMh5Fze~Z&tVwckXQC^dbTO8t9x1EMv8?I~n z{OP17NK*ig)^f=BOC*0coI-ux5H3f`mH{;9$O%~5cJ#(PK4f&|wt(Y4gqUX8PmbAc zvqM|2+JY`&EVHTYxvMYX`j;S45+U2`MYzXN=Hcm!AWCJlT@pKLHp=!~Y*oc_CAUq^ z5N1?@SDsL!vdY}pjfmdr`-tb6nM(Piz|*HYCpjlR2~XUaO()E<@<)A@w=!?ikO*ukYw(uE4JRT)qz5foVFKWX;GxB~D~Y>?5-c;fiIF+9=oGRg5VrJg?1v1}Mo zdxDQdLI0H%V7Dg=7E9M?*TZ!-ufw3I#dZuD^hw)+_@;hbs7@qt?3u*nGuLlvwPqUTxpNqJViT?YQTf*OuVxZUz>6;iEE1=S@*CBV-cY6=eP>{8|7eni zhlI#QlUL?`Jvf@&w4TIsKD?R#VOx@Wa<;xMwgsmke#!*bB8aB-r2fX6%0t!Q^DIZB z1E*JEN=qiS_i!Vpko+1dE6`mHUU*W5PSq!LB&A%6XO(^XTa47xOurI|G@ca3Oc>G# zvr@)agY;i)t@36qf5FZ`!`2ix8N4#_$sYlZI_n&hJ5d5WgCD|Cv1@b61u!=T8+ZhowyDi1d`cLU>%jU#{Gimd&mdMh6#Y*Ljwi|F6)E<^q>YA&yxe+9uCLt?~K zw>Tp)kiK+V+lmdX*JByK`}MMFS=UvLcdWTG@u||MP z;vBsWjMVZ-HtK5(0hLPznFSA!DH#NM+fcK%ry)7py9e0c(HewRU$B|qyo!WBUZmnX z_K+MA-krgr{3#mC28HX}Da_Ah0A_D3UyhBt8JOTgpwJJ4Lk_B|kn#0K*jL?c&tis1 zj3=H&`PuZ=g=kGMmA4LdG`z_JJ;ut6ANN6~4bKg6a1EexcOpIgz3K={RhiK;6$BWy zH10060I`4>O(b4YO^4w$nYHA%0t(=XS3!*)()v>zFBWTkDvxLHvavX7(jkm(?3EYd zHg~VQyMcmj7yv!ZV;fxr7{}8V>fR%~XIBXdE2R(dtgYW*@~9|mgaX4oVE~()b-VU^ zRxol%TA<^p8Hw|ckON@eJQs(%3vw#MZX^PNAvf9uH0Bdj#CX?qX#8jyatTbrcO)XM z7J|HcANQ=sp6m1HUZ}#J#G%Pc!n$7`;fX42Z#`kWeVqWqjE)UB2F(|{CkS$D$gI-` z4e$-X`?w_x2?j~xoJw7Upv=PTBpH2Zja)sQ)m$73FSOxOk5u8|M0o+vL03|T1_=+1 zS78vW*&H(d5%2UDM0(EP*>g0MX$)0G8Pg!Dt{-8F@aL!-Kj{GPbXAxnBi#BpVlRI4 zS~#@cBEgZOv2Ncwb-E3oylB6iAV-sN^YNW%nu0*ba?`?AmuzV)pRAM2QIJM7yenjmcv)&K6;YifHTljtt*!yzd}>nP5Ub zsEQPwlqSLW>lCg!+S7;(90x(Gu#Wq^W{8IXppDDPm>@5Bq!ia z*<2HRL;Cj~a3~)eUvs>tUkZq^SHfETdJ=0jim6qArwY8q=nJm!1|7NO;3I);bou+v zmD)K~&;v?Qg5C0f55yQ={qjiB?5xOS-^ByC+pG1B(qwKg%0z-FFsb;ary`?eXq^IQ zhaqST>0g1#lWH9BA@)T;gc)3<(Lw8@Xb&+OSwGc~_+Vf=cV}oDemTqB>*IT7L9;rE z5s3H!O99WE+?}9@!styzJxyc;R3@{5_`M@^h@3+9Fumj=jgr>{DaD6H6mf#J; zR$&>y_8Zbjgs4E22B|fBN6Rvbqb9wzLhrLh99}HSCAOUIo5G}k98K$DAlaCqi`m(S zi82YYhiIO~4u)wL6A0HRK!7U?w;y}ZLDu+80Nq{oC{m-nqo5%>8oEdaqZZ$bQ=-j?FC41P|fr!1rQ7#J7FAD7>M zN6Knp)jk6l9Uicg;?=#!=Nl02z=({BwH=dAoehTT*23@?o7$u? z%ct49;Z5gA3p{bMR)8yp6vz<3_fW128?e^M@J%O61Hypy5ams~ao8s&I!-V~55&WP*&qz$;yK;yU| zV)HjK!XQgqn4=Gpv?Y;7fUW8pIgRwJgsNm-$XPKEP-rL2pYzy@=*ONz{5+;5oL`Cq zTXEb%3o|7#j%4gG7GUjkJXiqysGJ=cE3i6Zr&tLcqt!vQWto&MlGSgZ!#}wZ-iQNO zw@*`Uk>@lXe70Vf z&!*lH=0@t(O9MX;UH=|8%J+b!qAbw?UCjSu_!hYD4chZy52#JbSAD7KwA*5X3xQWyb&Fc1vic=Wy@i;IIfyHRC7b z7*u29!)pRHdLl)687QB7;cfLJSE}NZnpH@*lj-8u-}U$FCoZ%%T2=6Kb1mz$6Lykp zG~?o55B)wWBB?CIGW$q!BzPrBQ_#BpJIDe0ioi14)tIlaaEzzSDLS%LY= zm^aAWyqGbAC#r|R{`pZ~v9>6!wVLh+!8Bwprj&R#$M>zrmL8slk9ALN<Mq}Fd*m^rZ^(35ck;U_ zFdxdlovt3IBtbk8w5J;6e1Gb{@gG8%$0IRsvOVB`b0epur@u3?`TKY=}B3@|0pNW@$vd8 zys5NVlI@`>R8&|vk3{9djxGFVi~5r49Y_m8WC9&+*Rv7jpH(^pjcm)@l(C_GB_CQ? zoljpheBuV&=F;OPgtEJLg_9c}DN1uLer~q|9IVR~ zCci_t0TqT%GZMelUGq^cA8(INcXli_x_3{)R4mLGYP%W0DW4`yI?M5SKec1bAtcYY zLKj$yf!>;Pc(VE}ildfJaiMvoG}(A#3Dwi<3^1khCy1D@Bv8&;W4>lJ2_CqqE*14& zrMseNCVz>wWQ{Jq65F`3e0sV+A=N1Wch@}Z$aJe=}S`O$nZL=59 zqIX|FMbWZZAsKurIc#FnR=s#u`DutS>b#S~AXoP$80alBVDxWFcU8&cg^ z?PHdGGv(|RrvW`NmETv!>wladKV;?(9O|b9@OTnDYhaWL_=X2_u3Vh$)TTW`^+&_j zf}|U-KtcHzF+9EU$)oyhiI;trx|in7miRA8gC^Zl!1Dbmpl3m4ZqDsp1TE?hCf98M zQ-lyB6RA6M`~=hNmcYzFR1`I0EaLa=h}q>hnt(Fuw~67$YkENF$XU&QewF1;E6d{k zY$Rz7Fg`9}6k5LZS8?gPV$q3`!EeZwzXM0bDWM-FG$zM&9-Aixh4F2s0DD~|Ky*sevaQtq)RhU!vZ8CHQ zEGj-N1DrR3t4vXl%Y6k>@>mb_K9PemZk`qW@*U{pl=Ig@xVV4 zD-aZc@KG{8eft^;rYpMn?4xX#lE3}jps@q8I7|H6&ZcYBq+{F)qm zPl27wTrdA01&vkV|H>P0k;0bds~hjTl*-%n6Y9r6YnRf=!QnF}KLd`l)O&61yfuRdX*=E)) zrF%9k_DF8}_V)5#8EeOP&Faf5+%N9^`f|0*rh>eCp|0B^H9oF(w-fwt63CNzcl<=0 zL&th0hmXaBE)`#M%^n*W-<_G2n(o`Mm>ZsOAoJ8}hty9q>T}j6{zMltvj+dO3!7*} z7ZQg9K1DSV616jrTsH6PYrWFtc-dfhW2%}|MMe1UHM!K<@dsZWYbNi8ys-2#w%VX{ z^TGS~!*N1NdD~-D*>dpY06`N;EQNphH_Cd$$M8u+94bM_e`%4E1GHAXG<{W1y4dacf${nHPhYjH($!tkHZBbRGO$wC>c7z& zT;PTDkf*C2(Cz-&bufQ9HmmzZO`NyRB=270+*ON{W4BeV97?mOth5l@;=EI)qQdmd z#FdJ2>G_OL)+1KFZV#va6un0j?KK%)xTasmI1)H!b}(kzx%s$Sqs!=yE=PkMQ#`73 z?k?ZcRaqw2?sOD98JQ+?LgLhOW)Z7PSHO+gcKQ>&7Q< zmi{#BEB!M2bM3>Tkm|z~?t5H9Oy<+-wzaH#x-0KLY7=##_JkCvIv0mdR8PJ9re$v$ zS8~NqX3g@#H+#38dNx`zcXc2w2OU2e>S`aU(Xje5F&&2bek*?;KG+#4qqM~_tKp+m zr%wI@sfdg^dsV4I`_%ovcP4EXpVnBT6}IB>O{vb+@BZWYHBN6E_;Q^y|M>ZsO;<>w zZ|_jk1BJk$W_7*rhL@4oS#}>yu6L}An%He$u;8w0;`k;4e78~2ZfZB~yRTi5GVxI^ zb5f|X@}HMe_d-?6%y0dSd&(dG|CRuI>UJ*ASXM4WvNFJFM zq+kMVC%VEz#%{Ze`E*yzSWFue(qV<#!1}K2rRmyNfhE0!p13WbJha(QL=+0<9X=6Z zxaZ87vnGslo+~Wy?(jLjZKpMfxHC+hPJTrqGW&LgcLjn!nSYcnOx&9`r4u6Mp`P~R zWpC>hiN;HaW$65pK7$5USJ{luR#MIL3Cs7?>9_gWm3SAC-Ku*hSBsD{2PplI;^xu9 zh`>{0e6vpxWsh#NsSfMn)`rLcvdP zVQOUK#_)-Xl;pyh!1|5hzamvW9ami(9o-f#QP9Vjuw=X?WtnyzP|=F;7QNu}WA|qB z@1aWzau=%{;}puf_!6UmTRujag|0=afA9Z2f41=m(L*|U#`tKR$qbc+@3)GLkkqQeqi-H}IUnaxB3| zxw$vV%*U|8bp8C8E&CG3Y~1{bTY8l2CL;Vv!M3iCdH>V7;8dn<+_vgzi;NNK?C(uljcbMH6o zTHk}w&0VJ+nFft+6~QuJeK2~VC_Gx+tMdD2#X@}~A)^()Shaa}YU%e`{Rn-L*5N+` z6G_rA`t1=a_Pe&ezuWt@a?qEs>GJUTfih|U(ynx|OQ`1r{zIsqG8+8bcqa6e+H!N( zxJ#z|ZsW#K%wKxWP6qqW!D@9p{*->VBK*Wg!DE*+#Ql|KzM^N8W)jXQ75NKZn}!R- zcq|Uh%gA)k*Y-{pZ5laSvCvjoiH^-{%dU$0E;ebzui%Wlo*P>V3E27B^s<}3Y=}Dd z7&2TR71b>Bg{bq!NXq1rph`&kYS8gua!fj`%k6B~#;)ZRvK=2H2b1T1eyoK%D&fx2^w!ao<@@Z$J?`iECOqQ8^@lHkMbD+k|AG;$= zb3J{p^Tfi=m4vYr5IbSs<=Djww1qE6>SH7ctJAn80DA-Hx<`!4sKl3FN@tFY)T1b2 zPDVaUPeznw2ov(!m3);>@MaNSH%n;)P&LDZl%+^?PiA)f~My?wZYE*f6Rre zdnc1w-QmxhL$QAq;s;rudhfOn3iz?SC;yo5iJIxF>1uzC{0}gr>R*KOzoC;UYSBQH zXsi;Nlkv=fXEP-zd(J5DINT*A^1tGt{|7kw_eO8L{!?rv`X^I*T}9`=i0kpVkKP~r z#OeRtE=nlTL6YH8z<+1)6yZ?9K!+T#OpYjNQ{=y!14RU?{$I2FXDzu2xmu<_gQW?G zCJNY|w@wC%%#<7lSF1cpqZ;Rkn{gW0=?e7y7bkyBR*E6A1P=Q&Ygbfkmvl6Kl;|^da;e+@uGUY@G6t2Pn^!hFS24o6;sMlqkkJ-YaE$GGbFw`9ryDIb;`F=glpM%FO9fa8gGiYhc}Xw-Ehh))T5H`5{-zR*cY71K@K652 z#Pg)C?uA>^6&1!NbCnwwMr)fadd6;91XPV&2AuD|o$x}vlhNeXt0|fRl{W;Cb|d}*s=P*) z&>%_hQ!gT5}I$Iz*6@sasu@_7DnHTcZN$7}!@R$OgFQEWxK_0#_`07m2L#ub$Z z4l%H=mYbyjFQun+We*svNge$yy{pz4c)XyJ6%A=;0{fJAXELh1n$U+BO>ggVL`Ln4O-$wnOY5H*@!wQv((s{K$&~J| zk1PZfOZ`T!%Hu72#;?eit2w5JL8pgEkn6U<;m$wD7@8VN(-Hm`MJ3M9q<4v#=~_ro zqaBs^1VC*fe)V(5A~E!${7(uI+Y+l5vsSnWayCup#k}`MBuVhT1PBY9O{yoe`feyl z;qm#$2=@N%gEPHd3zG>G#*rVS`BzlLIR$SN1$co~(%y|9kw09;q>wvESpz&tFnlvo zUh=k0W3mlrz1jAuPR5l?@0ko(6kNytHSQLe7vYZAM& z`UwhW4+>yD#uI4Q^>5qZS)=KhbCDlT%izb}ZU%{2f<>RD_*2QD{vhb^QK~jb1iaL~ z)SaKz`J2ux--MkbeEWAIt&57mKZAWNE&w01kroM@gFw;_N?tbaCk)=E1A&5 zNZ6L!VqC&my1fl(cOl&E;MSRsS5w#{O7Fko4w)q+{_vVX5+@TEWf=>>vz}yLamIc@ ztm4Bq{MGtuQVomBFW5yR;uJ4D1$Y@+$Y^X*8A6YHob;sh457-(chkn3f(fWI3? zL^Od8uewpPzOR2<+BF#-HhtM&V!$MBE4(SjeF~~=QhU!mf z?5IgAa(<%&bFf~obMEA1L6-8SZXMjp>a~T&{O*vMWzT86#kzPxKE>bOQX-2H0i^;& z5=8H{giQ?WW4Ab7Sy9XSTGO$olg!N$;Ql1jz5Agut886C?rKe>$ezaV0@Vsg1OfF44_kcB2M>oXNi`Yav+uq@| z2kaK8pd>+R5k6xQIaI!@l0o`~Dml&{nRs&jqaqWe{$^4Gm8I1|6;v zSn-orI6;X|uH6kB-N+i!mXjyj@XPl6(SoU5w4zv|<*dR-6Qu@1Cq`i;3$~gzZldtG zg3#u$dc$_eL~RIVzWhm9#ycu&$@kT6cyi5g5Eg29zN}>V)g8`iotJM?c^w`@6ov=l z-Fd0Nc@J8n2=k((0W)#TeiBJLhBPwq?9jVEoTnG!GvX<|7Jt&gv9mNyeDOCQ? zr*ERdt&Yu^pNeh7zc`lX!O(Amrk+4ur*as$FXk1Is_KWaGKXXl67INX=v4Ih&R9U9i< z(yj2h%%{OqxW5*+-;g-AletlnLIgJ2wu1ahWWX+C6Yd}X z2C$QHI~A-z1$Nmoo~eBjQr_l(H&vy|F&dNG37MP@lu8uh_%DOM{*ot1_(o-xssv}p zRsJt9uqJ*C&s+r@A`=r3ZBgzUQgi2R`kym{hr9FN{edHAU|#QS;K>#tu{9_>9chwd zOpG!lWzx7)q_qB9H47l8#X{=vl8ZRwz`)^YVFiRcgpOXw|FD6Smi9&*-xt_k&A@B9 za+I2#q-KZXPVglyQJ9s?9He^s%Ya?S#|Gfs_h0gOtzheV>|{1C!`%kfN)wiS@=WV# z_+UQ_fkUEyW}v-fkVolH)Uq@9(^da_VYT$ui6<0K?=$Z~>&88w_SvpR9L|Tk!_!jm zbTHf(bLC-%vJxdLvxCZSwq;ay&`gAQb2oBQmI-80O+Bpj1X;$Xfh~cV=pF5cn*fk^ z`SX7PpaupcDv9C$~0RWP5o(&u77_ ztPPE{RuP^q*5)19x#miOA+dK~7H~}XcBL5c!1|8}W81=D$W#!VoAlaXC&QEM{JZ=M z9j1LE7O0!<$E!3@?oN<%JoT~p94Of(a}Pa-yVH1K>t!$xBPN;o4J6u%F4V5rNT9-I z{7EB?h0D=eGdzg%rwa|D@Z>gS!a3SYs(Eee{8K0nFPnQjd~BcHRaFmHuJ(aVc-glF z3*15o&m>M-zOvKc{}q!Z#PXLw`5e&NH+v9h`y@`FYH@g{*T;#f0wnWfhv^YeBZ25i zN+1KK{Q@1ItQG=vXzzqrxrfyGa}nD9yCtwpe|J3bOz0nlMDJcLzHUq{XwH9{9*t^H zFNwC!sl*?P$;g#mFTsc+dscAmtUQ%@<#i)d7UlGJu_Q1+M86LvarrjQcDiNnv7 zZyxh>h8jY=v-LoKeF9?S@L~NH8LWRFG3^r4#+pG*S5MMt=%@S=RWMRglYSo ziDQq_Q6rQr8xo$ZqtvpJ-Hxw$s}J)o-bdByt_CBt7}zu{;}mJ~x2L}soN>k0BS#s)$u#Jh0Pr0RY$xDuy~ECTLb{BVKEB1Al*gqYa0P4wT zu#-IE>Qg{{DZ*-{a>Dl8pxiB>Dy?YGb{}QD@#@qW0#`AMc-I~fgp`gk_ebQ`}okXXpX zX2_hybaTff9}$4EI|*BKk_-RM9|7;iTO>AZ7*we@AqD;5Q{?%I=%c{c{uKW4OjiqQ z8)?RQV8=XMt?fk?e_w#z#~DS!K!Oo4o=oN$>gn^lLLBR58jQMU!>)QGi;f*bRL7i? zxRoB>dEH=b*c~6D6JYDan1V3qBnFOHk$DRdFS2Bae7RZF&ke-BzJ|o2+h|Ndrjrmp z@ciB2F|;d@F4jZS{-ZJa%eV~xv{9tJs(R~(wfqZ1!jEg?mKx{t_T`O<&UV{-&g)l# zC}ZYY#<$!VX^KtVJVZ7g=d2+a>0X(v1B!W9@tokx!X8mGH}U1_-4dHlkDb9=$}qi# zFYzjol~pY|(9mq}vT;LZ{~0PrD)mo66esakcwIcCG$F?BTn9?8k$TLmUHg64GLP-m zwIr2uM{kUMEqJ`TLTB92=`jiuB>tfG()rA+9Vj928O8f2q<0)&TcL`S?*&~A4|J5e ztKnjrMqztf<>;)%BT-fvrANsWd{UEOSRtPhr(UFxS+k_bkHJC=X!+Rfo_M|iI7V61 zNhZ{9TZzaU3$SN6-H5Vl|ELctH@dZAs(@|rFGiXd3)g`~abt?>OV3Ax5PS=c;~T|Y;o3h$WsQ#OP%e^46S=%wV61)Tq8@Y z&|K}SH0UC%v&g!{6*Ii{X4&ze)C;eZFYa(e2=ybxikP=DU+Z{FJrjLv`CateNLoyKN0O>HsA}77 z+HShTM+OVYF-A?;g;g7S$t-b%nja!}<;juUKxMZ1gbZ|Ofhk%l$-IlCZ6(Skh)Yug zceP`L_?Ha>3&gXFmB=P_{mpC-`jHEd%>6G?p- z8Oo)_M~?LIeu`GHI~pJQ;2tFko$MKU*!9|={*{0Cyb<@=-OV{)HiRjSUWwUEgu4+lW@Y!UA?)tV(5@DrXd+I6cqqvj zP~^X&*xX*N{vGzUL2^5ESMEbP78T?V6g?8;27*-9=bwjbVNAg2)B?#wSohZOYupaP-KKs73}Gq8Ls(K4)vPuzfQ6V&m|u;tsF@TYkHC0I$P z06#d3i7AMS-)^`KRiDNThdQB~UZ#91MTj?k55oEyilQt@pq>P{H+F8kpG%|IaIgC{ zS7y8+@doE(4P%loBJ|vB5{twpyAD>oCefc)tZ$5qBzP!Sn<#+qonG3E(#y5dNhUux z-B2}7Q(QWqTw9S1wLH6V%|-t|Y$ZUphB@Bm9V3pl2k4XJLjSaYLV4Z&&f%&4Ks79W zOKK%J(N9LY&QBqcuem7epOnCmtOGoku!BS>v7ayiJ$>QQUpL&K%aS?QDg`qEe^QC} zgLFT%U>-@9zqAR9*cbT{pH9$MzyyjBqm>zXB-Zv5;$se?kmgQ~PzE*%MDamotTm1( z3mFvwBmW>eKj9y59w+=rWpv_>A`xRh#;sJx!e~#R3L*+GTQtHWp(WBp4Tk;S&cD^*4L;@FG0Bv@(_ojRZ@;pLfb^ro@Vkl)%1%X=~d1H%Yxf zV1qaM{wtX9K+EqJypxl5P_uBf=L4AFWPh3P+{HWB$>eu)j6{_ZP{dEPjo z3Hz!@eInD#P0VfFrkDP%2~6~AVnJZX>aeeQU5UpNiZ@<*^;`5}7s(M!Il$E_ui0iG@?_67|(l)81LyjtuM~GgxaWKuWo7|(|!7{hsfe@MI3$g z4Ge_810kX^+vYc6`j;A29&IL^q_JEnMwLQ6oNO8q&z40^BzpROo7wJ1@^Hhm64kKd z_ug&dhc$enuxG7lQ=`X(CG)k@<7BW0?nLO|NXC~&#JDP-O6pSZ0gMok294Hw82I6S z5~)x@f|oO#<9F|%u%|CfBN^8^;*{{}-3IHhRx=`o|3HU0UKWESt1aM8|9B)yJllbO z@F8JVn&Obwsza>_Lm3XfUShc>W>n=TD*GCCv2-k? z<7HbzCsMFJgmrOZGz?Y+kYkl^MtbZgGR-XZ(sqaW*}jnEz@2sz7G)jWgU?6H+T1o4 zb*+3vb`8v;5kAhuf;h~?`4ul(x~>44=Ndk2h9eG1QhBi=9t|5{C}tn8Tkv)w7R(6; zJmNG2=_#eLI^ry8lyw;`^>Sts1X|u!+?|yAAbr}dT$zzV;#QC{#IhvW<1(H_>GG+*5%V!yybd6N^6v(-V+v%E z0C$a891mWS?)Te~`>QES;NiYzndS|T+2?n^R$KyHL#x%Bv z6YRJ~@sCsPcyvke6VMJtv2$|ri~wZBOp2X-A7xi;k;2I>0t-lVCmc2bg^;3m39rRJ zXFXkm($5=y)F$3jWuI&eQ=pW(i^FBOjclh!xA}CuNSL)~NJflpf6u8DSRxb6J#ZTA zN_Zsl1Kfz|q(9=J9wWqR7JGZ6X7dRc2E@6Q#>LSTvo+X(557Yp#Q68?;coEASW0ww zNlhPNUFyeWEm2k#GEwjyWC&D4<~FPvD5f9`>1o*8C+wQCB!!LVi~ z=Swx=Zyk6g%P)Q<*7MNI%&oyH6fw3B1=PY##Nh}X!1*D4P?g_xujQh!y>LUoQ1Bi< zB5pmi;%f>B9=SCru86nmoAM`j$YMK-ekX&fM7G<~LJT@*el?tUR`aHG!@vMuZFrx| za&AYGCZn=MI8JMDK}Q8bq#fN!#*PPR7gPl9fN3_PX0X`2hO$P50=t}zErU*P!gi&B zFlF}2(*WNSHxxv`Y?mftU*fxgm}>cw0=3n6^&F5TN#|x7uJA&{dut) z>zIqvT@*!+pW1~$u&*Sp?`OB#I#h%1dl-smJ(q$?z^DY!mD4{qdaM(2d%3fdZ_RyL znIeY^!f>aS(BLt#OJ)*^|hsv`Mcgc@7S|TB(+ou?s+IOl2~JwW0#sxL_@yH zp~RxK7B)XJ+XNo}$T1OHzG^Pt)ZDa+M2CJp?UkFGEt!As8|_r{DjltY{3lJLtY;`~ zud@hbm8@1vn}MALBkOgu#NgwX;Yu8D$$xUMerWZqeOGH6nrdUe1xDK3ZkrqM4IA!E ziIH6DxEb)drKVdoYNk(ODCk4-Bf%?gd4)G`APq(}sYEX%sdo>?hSa~cl+WXQtsd8|o~sFJ+W-a= zR?%rie4WFTx^DEt7N?Mxjflx+wUDW6`}#emGdv(uDb)M(|C0ZjeRs8<->d}_G#BsQ z-WIcLtg-AUrP(+UTl-@?^QHB@ux-0a(|=jIJLhv@Yi`Zgd{t+N{@#gtA#Hvw<1Sci z_^>v8@x*krWl4CTB{WOyEmdU_1s9jbe|vT}S*xR)_dh|?%!y3JqYghjn#1nFEk_?D zE?;U`xik6o?E6s{Ug5ntNNn#dYf1@>cNlJ&4Jy=$+ZvFbKAo*J6-&Ykj zEL$X)J~`|3#rBY|2ZVh`0r2b;HhvT~^vFQ{gdFzT^$7s^>3wnB1o!BWz(f7@_m+g@oyZVeS1Pf>C$zPu~YAGFlW2#k6*JNz%MIHJB#w&*l+&`l%ak%jrifkLrE)4mam;rq5^|6s z?cqkwDi)~#DrR8;WT^|z9|Q={-{~FH6<*FTpXI{@;997&M)mt^`qhp9EACz^UR!&2&-C3ruXovaz{^{Ex3<Q1W;$Z&Gh@ ziu`;3GvN70N4(O|G1#tTs)6;j>-cJS zx&YEkl4$bf{zRJW8=Fp4qklT&D8OC1;OqV6AKtzViAK}SvR&1M;Y))W24!fj;)io0 z$DS!V2fm`>g*`ANh%BVaZeMt>8XlJIR^KDo`0ZN9<F3$w5EjAvsV0?xQbnId>XCpf-XS48K;Q0f#n}hq=vTWi z*UFIKes`VTm4*IGt4r3i?Eh4p8Y3`2@zWWuQb%hVB4)Aw#qyQ@x&T*|Uv|v(^;VM6 zy|Aja_EADYqDh5ZZRYer#73T3xBR_RdSxTX9BWE-|qBqSfmU=Q@m$fy^uk zQ1Nvep{jgwrZ7IBytFdtafn_}^B33Ys-ms3+IH21+*B$IPS$eiJDoE8{h8d|*;D7%DN%Bw~WrH?!vU?h*0{9EeEk zy>9wLTET#`^Y9~gMNHcCr1kQrOdb5?T=}$1$UX@?TLNgv@C#{OPVkY@cgc>ohI&}XYN9R2GUfv<|_&sm~3}}b0KWQ=*Woiv66)^)s;S{n^dtj_qRYsutE*V zOy;ujen))WS9@Pq18WiZ0XTXt`bevt1lu#H;dZsi-%hVcOe%B z>a=fh;mt85$k<ep2uCVTAF`y)j$7BO_`vyW!qbPtmE+-+RTBM@& zD1|u$HFy7krcw(;G1G`-RN6e?kLq4HPGt;EE*w_?%>)Q2MSFtmvPN!}l>qB`mI$}z z^}qV4(N`4qlYrZ?lGb=a4Pp1Wn7xAi|VVaRX_eHI6wt%}vH&IhsWj$wCXs z-6=y)g~ggckB%3Jt@^72s~H>ZP#SBuYKW?hg^GvIjK200?BL=z%X)ZQ)L zP43~dl0e$FX2SB_K;|G3jWjhz^A{T+A@0()-=t?XprKfm%!=BGJvX)@2JJK7h&tW$ zjexMOet4)|i;E@9#d^VC8capo5#=|XFey^+k2&yh^d+b_UD=84Ikix{sYn=^dG-y614VnuV0X^|HXiB1zEdA>|1#RCIJnGBs4VwYV*6gj^Si9%vep^RVXMGCvG!H$o8N)xbdl`Fl6dU%N- zKIuI0%b-aje%74LoLT*d3e;3Z{;kIm!1)C@C+-o%E?{;}4w&!xf@9iFThO(Eo&s31%oHN)51g?8$ptUl{edz0p(kR%Ve1XTP@Xi#AY_!ix)0PtSQDY~uodd^2%-alCnqq| zYiO340H(@Snh?%Kuk8y){Hs`^r*nq8Jg_5*R4~RbqQVCpwsE7;z$B9(QkT~c+HBD1 zGA(0*(HTq_OaspLlfuXt9CueoguaQlm(aL2N;27m^flUHXJ0Zcw(PO9y~GJ?9TJgV77z=o}>V3 z3&X@DF=s`jjDTF(XS(P5ZFDJdZLI9XQ{{bS)O<2F=o*6UAk*IyJNeWF7<^v*8z`mz zVq}_Cg1;6P z==AM^Xzux{*d;kk{on%sDLzDnLZOqf?U}-uRGTVBK=!UrB|$c==NHJfc|c|~U2wMI z14?nqn5sCv7{oHsR=nfkj7_c61h*yv)R|4v1Zooq>)_Uqhk1}~etqtTf$Ai5~WC9`y{qg4&i}A|M64*zcS7qhIZTf;d$>fmDLGQnNt;-nP)r)mN24 z&m47ZDD)vl9EthlH8-kr5egwa61Z#U*OEBn^MYM=TwdOruTER{kJtj zZ=k=d(3;Y2c<64RIkv2kZACEQ0>#sxXBiJE^Fx2wE5rW^^Ybc;dZ|Qgwn$78%q~1C z0&NF?le~i&*~4F&OjC4`1&wpJZi2w$GqbS#G$gtssMh?P>{M_2Lj2<9Ki7vJI~gF! z6rZ+EUWn;|%_{f_LY@89+mT-jF`&Cdz8Pk+UELQiWwa(JI~LXvip^!Dr;0Rh`d?nY zQ(2|m74pw(({rr{On3+1E`n^4yY}dIIO7bqjBS!6n+QQ)|Emna(qKvzD_GkIzS?)Y zezkjU>63I8$mw70C5X69$p~C}M)9%813{__AW|)FCO`twC3I@NaCvl};!%2tAm0vE zRR&GvEM)dZkBn@17OBn)$vcZ64<0%OjL*oqdLrV4 z{Yx7$x?o!o#a-T*hCz~Tkj4xJ9T)&r>fSFF_UB|a^8}k>54-@Q#pxI(_`GX=B!DY* z<2e;kpSpbgBo%S?p&i`xSrFOQB?L(pFHvYpeH(`FnGF^B>A46aUC7gcF7!&Msw6Tj z5vzz;#`SfLk?A&oJyf&>2^Qw;L%q$&^pKSr_pwhmKAkPG%LV*!?Im2zg4h}^HqVb> z4-^TEu~7#}EJXm<&I@5|xghos$nKq~gi>ReXs?wgY-9;#NakEM^nYzTs0ao&Vy3}D z>$(M*q0#pSSjqjW;dps4l?JzAJeB=!}vKg^40zIZ8m?~h!%DMinkIiquzjD~I*bUMj9mhx19c>S8zld$) zD@{2?L!Lm>HLmjBu1`yDTLz~?4aahI&@4?oOb0(Lpf&**Lv7LyZO6D#cN#M7rHpkv zZSgJC>OcL1iCS*igtY$TN3?onu<=lSq(B$h%Twy9!8{2nXoxfU3!v}eV!v8AB3&&} zE$Oa^T(z{?ZSiIX7(rP7kel*=3z$Ck5==3Pkk03wmLx{()8_K#;So~KQ2U-6dbk$3 z(?432F6&D`s%8&G!WsLqgRqyV3YciI!*IQfOU#ADgi-E#K8DggE=*I99)QbD50}rV zY53gq6R2Z4CXLO76^!h{oVAg?Tny{`oc88mKDM2V9(tR=Q~gp%%i<2_i9kEHSKNx4AX0uRaL6E8ofSZy;es@Q|t#&YbaDuYzA6)U}tYA z#XHI(t1^J9AVV(#_<`}xlee3I1`HwkYwl>bz3~|h5&A4t;(ZNmf1ydCO|D22nP&mM z0mgBoBLLB+(o=~nMZO^VCOCtK{`43u?}R>lul{>d3|X+qhfy8tT#uyFV6=)%kD19A z!)3&XF7}CFQVf}-U#;DMXbZ3cK*^fi=!Tku*g;Q%E#5t}IB9&Ma$!c1 z>_`pD*j&b8vWMP&!4}XHwkZf5*^72J5@|~JNZ7 zUX;gn$RS6eDTxH$&L_N`WBgQth^@s#DB!Sdj$#LB^cIf_hbD?Da@cHE~D*l@ndRd za{&5_j`XKi{Z@E+3=0xLCTd7I=eHACYfZci-Fh!U#C%>1^W6qK+_*6=klB8NpOHL^ zFKoM=S`dAl)YB324IR8#ankn$)?4@*Fkq47($mV}qV(a9B<6fdxfW;(!c=(?FN+5v zB#@K^5FITjX(!-3DLVqwMB@2NrBg@xcVo*PTuoV3+p(nWDI+b-EJ10hW6ag$Z z3FK_izy^+2(r5esbj>1YSdhfFNzjX+wgt4Nr-L+hmxP)Q5o$-_;u7*!u$09^=Yiw8 z>lp=XFi?+fZwf^Rh5Mmw!$D3Uicd7=}HTJBuPljh(Prb!c- zOqayo|IOH%LmH#u^G@{mE@a!RPmV+?Nvxs!Wdvy3fMi76CgeEsL9?W#Tt=wA^7pg; z%2c{NK2`NG*NcyX(QXL%Xw;+TJcwm*O5FaMc7u1S7Uf6ZvaX;rpG1isyiwPq9|GIc z(TO2^$f~gjk*SA`pMA&QnUWv!{q?RmJ;saotdx_G1us33r*l;jFfXZ$cO;WN%Kadx z5OP4b4;aO3XPi2=!N(1L7n~%{&W+uLo!g6;EGtRt;hK*MOgGw1h#L@wS)NozGGdOp zdtuMZ${XCdd;(u@C)5H>?QBB8<|VW}Wy1obqH-@aT?JLkJBPg##?EcQde6UyI>(G| zfXFpy>Mxo=r`P@~_~8MTmqk9i5fPP?_n?Hg32t<}1mr>v%nHjBI{bQxY$5Yu(D^)S%i(U*GM@ooSe*?^RcCgRidg(SPk z_p}7v9Q7+s*pFQjMcsutUNv=u4AMd`A3d+-D3GJFUvzCi4i>_-%lq#&wBMj~?zGy5 zly}dfOE4<5SDJ12_yQ16Ehb``JnYN;ZDI(`4Bd_Kf$Rbj)TWDCwrV?#2~Q<8wB!T^ zhF58(tgTuOKRv3A6l)@?6n3x*Q7lVmkRS1G`Uo+3Nn?Nd2=w~7<&ZYN{g~@7%~%Q+`+K}*;jlXA!s<|l z{p4vS|FfVW?W7FM93?hJt;QTEQ$flRYkvw*dStMfTsl{tueqtl4Z0>81l{xgnCNP?>cN1pK9fcbW@(IjYm|=a# zA?giUZehdA*0`xLB2AdEho^G{7$tf7*yVW{tW)u=2-^LC#L#dO^>Gu*IDvIs)`O7; z*?V0xw_%O2Nurk%>Tj7t?o^$lBhg{lt@mzwx2iRKgxU^4-S#?46j1Jz0o`kafP(Z5 zE6YbecLA0sh1Dq}0M}k-yQ3SwzKTU_nA;Km_=se!ZV5UMp(7lc8mcF1j_9(V^H^FB zpuc{i<_5^y_pnsyouXWxrI=Sc(N-?b#N*=>k9bVR{UWC9mKL>8eA52xE~kgz388-4 zYcahJFH>^jwZqc$iw!O92LW?1q2nni%t8k(=+=bwlDb5m%d*eQWyDiD9Zk!oHSz%a z7Liu+Fw=pzQW#-2-QRr>s^zMKYu!<;*PB4Zi?g2Da?pmvg>;i|6za2~wwohA5(qs}WUXjN68rKB)p& zIY7)EV=eiE0SD|L?WzrGSV#S8ryu%?pY!5c^Q|N(pozeF)(FwUo}K5T@7_SaM_?`} zx&Mw3R>{zsHX%xBUk_a2yn=cHEt99ELM}Wafzic+?h>llFe&Fj;zaMjXCa^iVdgec z^xZu4BqEE(H9y<0qRz(}gMB!5RL~r6f_7a)Zx=~haUmC}Z-lYlY{ujZiH`$GAFiWW z9+k>yQZ9FE$OigHL%?~}CBS|qbzsj^Pf!?&wu||J$jr%G3K_>KJ@#<52lYrEx7eg8 zyKU#)*MzPO?9-PvqPORt&hbF8w^4B`gUtq{DSm^Cb8q3$kY9h*fMStQD)Lc@1iTZD z0u^4LC3Q(eKT;F>IdoZz)=mC-iSk>FzQT&X$ zantMJ6bd~Nuw3Ark9yP!0c0U71jt<|JMR;C%PW`Cw}4h&KMR8D9}rmnfOnH0P|>?7 zUM0&8i{tVILI)3^U8k@|*^D}kN4+;bK{Ur0ufyTldqolNf}yXQAf3!w2tOutD8_y` zyBGZ>00}{?KTur5`Ng6S9qm%>u=>o$otbJYV`%S{zr3>KU#_@V2yoON)jR=mQiPni z9D>RGqQ?gM2+8Erc&P=X!q1xS#=G#2zdsHFc}G8nroBWET+0c?oQZ7Bdz%QfIw@k~ zWl+*v6HyPu8d7c(arHf)k7G7N;M_PVg!}^)@}b7us5yQ>*Kj%y$NM$`FGt{QcF(|we?OuEMz!)_j&TI3Q#>%#LLD&^Ef4>x!QJn&_{GsfS zNHU1rYw_#0^P?q5<>)TbSn=utsyve+afd3_wL(B!O|Y^EYG(ofG7wEs=X)<1N;k)@ zU3(_1&QDKwM=#1Ez6|UcEEZzHza5C#tb}4I{)2W{Cx{d3kllqVK+R#GP!Ni>C)B#Y z9d%D110lhm5ZXJ&MHf2s2Wkij^27yR9*-C=cF$c)!MmLXqv-{F$c&+(NmUw!wQLtGX&QHWw)etqNu#0l;5SZyeNG10mE}-efwG9Gd=H&%|-CTxVBx5uf(Pzjak0W+S(H%C@ zEfU{;wL@=<`w{6drn>+}1(y4kb9TRv+<<{$acwO)+)ZLaK3h4nMHGga z-&SN*DoK$SA7tydZ9-mU*W zZ@5p4ECYAGGyDuDL#!LF@nuD~?j!!YA;oFbVXuq-%pI($k3v~9!QK{=<0 zVBjfG;qL5LhvC!=HA=xefjVRoLOk3RY z{k|W2z6GDlG4dGQi`6Z`=Rtk^x@Sk)P@h~Cm5+f_?dXP6g4hFYtp%gK*yag zUX^IM`aJ z!~?Rj&51@Y=A*`3^bWNBycn2+U5`Olg~)cuC`SxCzosfdHv=>(CzDWn>n#wuU<#5| zv_K(#bg!n0seqgqd>oGdnT3b0e#p7G4sVcK4E0!B2q(FC?)UmSbXs^q|mPs0Rgb>%shkT@p zStL{GIF_Fd(zjtA;b`8g)`*|E@Vqt;y;~Z=El&wNdE#uw<5(zrQ0ayk_KcVH>*-zr zu}lI! zx=^Gl7psY!b5sbz!7TZUs3kWIYoyRxu1rExYL3-?EK7RJ_@QHSO@oHs^Upz{A#8L? z@1gf0Y-rkrMBAl9qW5WV%CiG3UOoDmb7Atuyu`vfQv1&(j3$ey+3RV8Vkbys*#0t9 z=zuMr*kmij?)(a2ZE}N0>vs9x2=!b1J~Hwr|M7}U%NJDq>`t^su1|V>a-%NBQkbuD z4q%ah(9u8cLk`$ko^9N8r#e8h#(r*o`Lk#v(m`SI6Re)<=;FT^qUX8jw@HmBflxn? z-;XWpCKDR}#2=SJXrOR~AX5J7vpVt$Hw|m+h1EDXYAw}edmkvQfoumi4FFCUW}=i? z1C90~7 zU|3J-+|>PA50vVR-$oNAKNH4GJ~OFkZV;M4Fi}O~2x4x;MurlSaW7OQ`yswL!RW7z zAmZKue6;xZwzlzhdb2DbN`Vqqp;@Vy>BdD*|9P+!W<3S2IQ&KJy!=lX0TBVTSP&G- zKjwI$@XYTNO4!blzn`AJXvTO7Fzo?U-1P=Dq4e_)AHh`||Bm}`@zFLCQw4IpRRdYc z){t}bRl0aNNo@=9cg;ic=1$wk`8QF|>gjd4UEd8i#=(u>zir73edE%lfC!UVgK*;z z!S%Pp9X(L|;>PT3gyd(>-E~_-Jybjzy*-d;%gzObnwW1){~=MI&7N)t+et-$@f2T7b*N5>dr5rF zU77n_1bJWOGnG#W<5wiHBYD>LSS7E^F2q%l3}JhX(VFgMv?jHcfO3b^2X3O3-7me( zs>5m>90m04&TN?CSoh-i7wGuA0jQ@5fQD_r>K7PoDs2Kf7jTTPPmCRSdG+ZS{nF7E z63wlYh^z{LVN*2}wt?6xMOE6?ZA?;Q9AV6HbBQVpwuu_!W?t|%&$^=WLqwgc;!A_1$xi3QD!9>BZzlMBo+Y<|!*$iBOB0R@=0ECYPvj?k zFxj&tjCE)_p*l}@inApE2-GMXJB6DEX`()*$&t{+i>r>Qec>JYc3WIzS$p_c_lc;R zt0A_rf!!nn6*i*Y^Ot9DQy6{eddogHeuKhs{JbhT{|d#Y1D# zHw5$-ckr--a8+~mCXK&Tvgp(uvfT;blkpdrqgFP`zYLVoyuwd&pb=S{Kt8cgYU(e)({I^@<~ox-sP6$CG(Xr2>YVp- zz7at=OoRriTJ#~do(8D!0BlL1YZVxcwohmS2XzXe@g6U$+EJWsd*`+BdkrU{pG+RK zTZ)^WEyC9Lp^Ejdcwo)WT|=mGi2=^669f0{8&2_XCIkVdi$5JUje|Jf0LM;w{3J)( zGaYE2Eyz*Du77Uxit>ag5#yI$kbERT@<#UBd7t@JhhRuFjsOJ`P!%^p&ae7CL`^3! zwTu&ZHi3Kf%^>iw{j;pl@U;|!nLn2=&QAQr4RMkoEFD*BsCey~${^_dvr#xTZVyz4 zlNg%!qBG`CqVHEi_)2nf+lW*y&f`O} z*Y@G$11&+$Z7oG)i?z|~+!;k#yO4eG!7YxD!T%n0S zlf3_V30Rr%OTEpx0yYo=bj5(KOQR(S4-5#HoLrq-Tl#81!E_G+SEn@g4lKKAr4-d! z!bDEwPj+`v`ZjXv{ko;5cJ!%}Acu<+b)?2BK~b%xec_?o`a%Q4@1sHmdK?zu6vb5i zJ)K5zb^I!t87+mmO@_VcE4FrkIO-s12R=G1Uc1{filc;wdSQz#o(4eI3eFZ&RCt4(NnfM6`njUk|!Pi|%GjmiZ|51Qpph zF>5dgol8E24F%F%9Dd6_9yHi9J_BRhNnmm(j{Ykd>qu)Nd9pxpCkQ%jOvDe#9GmHu zh4|-hdfS)s78jL)-AOQ&8pAc8n0Ma0@%(Jl;G4cMJ`n%F6DpKbS|r7gaq8Avwa@eT|nAbUQZ(iz|L&F5u!dg9Q$v!@7g?` zWuJY77eB0*m@$pTjE*0g&b&5_MF@aC3qj~>a&xsusqb^$&&!)T+S+3G8IaLqJou|2 zN8UYFRs5amp?Y?!MIZi6KJ@kOwvtrG@QWu)Ha`s4`1lCME4S~XRPg~eIUph*Or#$c-f()|BTlJXvFOss#&m^+Ghpx)hB;A z`yU!xv;8*RUR#|l358P0wMwAR?OMY^-gsNRF1FZVwh+4a$PjI4NC{sS6q!@8XemrnIf7-}LNs+VU?FP;?o~1&%s(?6M?7(v>IYYt2X| zHwW%dO)@tTI_pCwrG3ZzU3*EPf#ZFNDcZfua-Veqe!h!^RDj)w&W5JNn`z^lM!N)% zU)a~DM=d?=Jr?paNkCL(Rs=UW2Nb7G$36d21~9*qo;B?szDQ%R6@9HV3|J}wkfEXc5a}*X> z_A)&9>H686d?y8GJxlpBW93R_nQK$-KPzlPqHEl4%T)_g{?n`qB?&ypb`nk}a@h<c@sN?^xqb(=MJ=9{C@mPPF?KY z{5zvtEB9JGi+r0Sp!sL?wUaXSPJZpZ`S z-#E|FHFI*n+E0Jh=j3|d{5Pv5a4nSN4}Wgb->Gywb1p5jX$c4K;`kUc^B&~gxLhkz zbhWJg?H`>u14T;T96g9#9&;D!KmO2IYH9HBa;f`2oy#90JXE;lN&@?}Y zd3)Q^MzrwXFKXJ-f&I?fJ2J{#OD%4lE6~$Vs3403`;9P9u1ExBm%TF=Kh|;R{5`7<(t4`>dw#BZto~^C z?6V8|hp*bC_$%k_?f7?~=7&CwMfNzDT=^8~q1w@zFI14aD^_*ZF!;|_7Y~cyPizdV z;`eNCzO3rLK0RV~uMd>T_Rj}K74%H2HnaynH~D9#B;M~uU(wO3*&A;z8YeO;{iE%~ zFMK+5`urhl-WuvB~N)2BAK)*{f&PIlbq?LjQOz z4KFQC&Qf7?OH{%1K>AhBbNHgl*`%ACnqQ?8QW746uPmG0#^~3uuu1AlEDUh?tS zfEO<;5xnycr{)7*^iI{UDGT$@|&)%%C+<>GmrHG6<=%#f8FxPR(i7y zzH=1@t_tg^o?^-Znw*ktNPJh*;}NcL=lUmvn|I7{t$m#<{-%3YHrr-->IdH!!4`b>K%zAUeDlOwqMF&yFOh?Gtdk< ztgAkz(|5pGC-{v0;jsCD7>%{r!otFk>iP7(zrvQNZf@1{Y4;OvtPG?VI<5@5jlaHC z-D4o6@g}kC+MQp1CfINF`vD;fyR+4nHz&q=DHtqx-~T&>wjsZ<+hq?}>lD;mN?IbY z-?c1M%WC_RHVq6%p-HZ7r`C8K=1iR~58ogA+TCpGG=F>M(3*F(N0QLX*s+br9x8=F zrNIjm8cijc#O1lK%Y!DXOD`;}Pbh~8a5KIyEsZM==b7-H(`X7?xa*~0qNYY3-*zF9 z6h0|ib4-AN!_5j%Nw)J$UfD*gPn+;BPbY*e%^36;#G*}3$5zjVx2l{|Xm|p3dnvEg zd2d5rJqUlWgf(4Qa?F15_t|ABp{Y69Er#-{b261Zmt=06famCN&2zpRXp z!R6@qza4i9>wh*}F5%O5Yhp#tK#FJFd1R`lr7HXhzIW{Sldg}I{ii0je%JhquD@0% zs`R(;jXQsPH;uW;KA* zYT4CPoGUS@s`7Ts`oNDb7@nr?mId|t$VXpytgkd2gx+vu_12eCvZ#UVaxjAbe2`MIrhDn?v0a>U1IOg%@U{1sf`a=OXrHKrtJ@CC zFa;DgO{onpvb(Rsvx~~JCE-b$vPWk3*?)@5`wjnxDTbRc+rO=2LRVJAR1;$e{^rNR zLf_7Xg@-*nNM0`p%sv zMB5Mc@ujToc=>5(Zt*LvE5H9-TAY9Qby82}oN5gbd=^@bO}PH~)-ZuaJ)kiO`FvYf z+;$=P*F$n~!dr?=_1V0{e9?}f%{Nnec=yUi*1^?q2FKGJMyu{YPzfWYyvQ`*yuM zItRm?b$wJARQLe8b3NePz@e8jxTD2!2;)`Yo_c%@XOf>(=KNMSGla0H?G|br349xV z7lXfcv&Z_xE6T$?wRL6mpHk4>%~g=-2i4D{p30j;6YuRD)Bjtt6=_WG_|(v!QMa*~ z!6}zq5^ejD^I+;9n@#LM+4^H$-)^gI!1Y(0K>eCgiPN9M6%;^U2>#ebX0Oq1bVmjV zEoObm5HLvN1J+WY;>b~`vC4B&P-pE_6^xbRhn#H-P@PF#cq*s2`gi(=`{R!gq09Ie zL^|)rR@=h9;)i;g@a)ymra(7Yfj=ZH^2r8l+~Po!tT?c<3=1WqpIbCJS08VOXYU=T z(@U2G@yU73U@B*usT|p7@=`2BNmb*zz1x*qF^Fa%% zt9fFekHTTzmxZvR?==aHI^jR1GrTZYYn5afES3(CcSaC~0|I9Dd=H5y_sv#t+f$J0 z2iqaDB{Zs?fa<-@h9^XXfZ^jpZ|qHz1fZ;+Nd^c4kyG~>FmmKI4j?Q`58WQOMQX(G z(dNOQ3m_vdU>Mi3AC&Kcd@|{;30JnqObZ*cGNgd-}xr$t+$EO5QZgBI@6FV$@Zo~K{`T;z7QVevTi;TJB ztA_^&G;RWh=Z$wE(|=SGK3D6cG|Ns4C@sWphzLJ*SvQg(--^Cb@POz~m`@1mElQhS zRdS@~V>jgO20e4k#DEhOf;cFPcb(Z*PIn}wB{BTdWOG4zcAK|j{^#S}j;&?om)9%< z=joi+Mm8Ie>Z|xiiyITi)^1Y5{X>3zSl)a;MIVE6eXG}-{{5%~GHLzNIVhq#QlXCv zbpD}WQK81L)cnpMnX02z_?GZ#Q4O8S`)67+x1jrgHKkDpAV)0gdFCgc_wK}fYAo~a z03l^Iwe!NaXfz2|@(Y|#;;MRJaj(iy9oy`_$wU|tJ*3LX2$V$#=$35x zZu1|X<1-bm?sqP`o8i882ozhIfOYf08otaQIcrmU82W3cD*K;%D~(y0@DjZIw*j0W z9I~AcuAL!ts7Qx^x$lk3?f$opZv7Wa9UqKc^sT?JH0b1S9@k96^gONM+8bafO+f{> zGV?=1mSc8)@!~6&9h4U0#zYdr_q?nKGECOdPWarcCKCy~m{NdF!W!fU9`|mZo;2$J zAI-JC(qg9|TRTUXDwYd%mZzN|(p_;XFwnFpekCh52jt5E6Ph}QV`mhU0bbp>z+_U5t(cbKl9J?I6|*pYj8g4jj4Pa&Fx&bzm<%r1Tk> zj2uOCtsaQ7mz*D{Uw{STDyTmCCP33I6brhDo$SNed>6Kh)4$+Q-lJuOQgsq3J27WH>>O_06!2+0E09bH>*~Em#z4?z0l1W3Hb)OLih)K2 zP2e#-w@1pol{8-5`Dnz3k1jwEF?vq+FiHTWOUXB|!nsI%C7w_Qx>_}a4BTM0fxRV= zhNTSCaNiU#^@j=6OL|`N`Wa%ENEp{1il#h{86I!mft-K+laeD+L}j#F?L?zVj1`j@ zGV>VR6L``pe%E3%ss>TRaquU3gpzYy{2`G+P2*EF* zts(g>SZFGYF0du&_dw5T)n8P`13nO#$%m$R@Guzmfc%X^st9qFJ$P|W7pszy(_p? z*Tfp4eR#eDdnrpFlC?FV07{`YN1JHP&H4jy=cu?nxHp@cmYQNWA3IqZDC!@EXad`t zD2)nH8*v(@kv)bR;NLF3nL3F5{$8cBCy>R5F6DuTl`|?fW4K#Ia?Ap{T_*$V2H9{1 z&d7Aed_#hTeU^KP7Nci3VlTz8dq}GhnEFm!hsC=$*5ccWFDx?5><;5b2j%>LPY|MK z4Wy1Npo2~^*U?|T=%Gylz{mnj@7Kl7hWtH_Tdu`%nR7i0qW>h+9s?Qr$bK3X5hj`} zf$Sk3w8>5ydn`kK521eYf^2#P5!vE)5qr5OW}XU^xLLQJOYOiZ>j{UTNHv*X>vUs# zLEIWUvI@<0#b$}J)h>XZ`m^ZM+jK+~FdR@_B4g}n%u^`+B2E-hA~I4ce>6&hz`YyU zWldLcACSu`RHT9n!A-q9s2Z}%Z0|6E349LjC3sOJA?Bq5&=K;<5N*HthKBtP3OR!= z2(m}LE?}2zu*WVqfA$P^?Er=Ck|n(th{cl`W6FmiBRO2aO(b{;BiWHzg%jV^ko=3A z0CSGosf%__a%LL1OLLbjK|^-x0BF02RkY3$Ttgs}S|~D)qXyEIvF~iO={T5|t_XVt zwVlCgz0I(=S7)#w9=wT_;t?Sb2f?Ahe{G;nVS#l&IWtbJXt#VQ!0xc69<5M7($zOB zTcOcw1kR%%gX?boT+0XhHY16Aj33__Z&`&P=@Qg1;|%CZ{l2JSOJZ6|3T(BVgu%bU zZgu?Juo(TN23Wuh-FsKIasmb{A1Dyms~X(wzO%T|o2!N(uLYKbt%x3#8fm+w*_yUu zs~pMg{Oq{~8>Mq({5Tr-qqk*Xg~%lTZMPZl|D!_DbC_BQQU%yG#UV-CXCi|D`y=zQ&>L2uO!fiAfqLGWCHet+zz$te3gjoWFV#(YbR%&K3f#V;`H9vG| zb$fXw=Tte~UK;K;7VQhN-&mTXxzk3@TagUVHUl~F(sA}??Hjb+i^9WeM$D0q<6`WQ z22zrKm4!W4sh9U$l0qcNOgX4+J9I241ZuS1Bh(baiyh(TM>CyQdyoA5yZvo>G*OqA zt!a1)LPCxl)x{o2U`I^%5E*IIQK+ZS`JBjcestlzB*;r_nxLeT8K1O(OypYc!kT@u znJhIdVTfSzw%s!wS9F?LAE9(EjA#E=q$^b$-Dy;h);!&23npGQwCSgpXd&BD553D1 zXm1;*v`a9ixvvLlemyGz*7zfOw~=82$9kNV5dK4Zn#8c>Ek@7l`3NF;_V|PvKB|jcq#uPd?6F!8GNwvq zR|pyKF`8&xI9JDGPpTN!XPHwXdfY4RG$sF9;LRDhmUrE`&fnHY3HeUQ_ypy|-AOzN z*nY~Fb|L!az+J-oR?7dx2JJPoG*X{Rt=GS6WB)U;hd zJ%PxW%*-Gd=_A@g^pAcR`d~lp$`dLB66VdfvI2*hmB+^_C^ zBxELPQW0^6t*)$-U$Pz^#5#AG0`?WLr1+aZ5`Lci*o9W6e<%@Eft)1SRZkwKsfaXO z5~Dwjghhl%`0-GR?hEAZ;1pwGVv)TFRw{$_1#>jwmvyJ6D!U};1{o?F>Gq;@ZXlxb zO;v=wj5wh+w|4@Xia4GT=NIizKrDyb39}R5L&g2K$L&1qu)cezo>hGM{nUeJ38-b$ z9+H?i_L8?Vw4eet=R+nHTgrF$y>@_xAzIbN?yV)%Ex5Nq7QWu}{Ypf`%0u zkcxhVZu|}H_O3*;3~MVM`n4)u#yy$%3AnH`J(fz=u2Ft9sUi) zx}*6UKayzG1j|@l4Sx)5RR9(nE6^#}O3K+4t&I~XJ8ItXGV~4{JN}-p_>_Gkg}JmY zaZ0J|(^1ds{}AK}^lDWLssUh4Mg^e@hsoHtMiTAkRvGq+zQX_0&AG=zwf6o0TC?Wh zI8(@>#NIX%Lkl^RdsoO#B$%@oz6)uqLL#JuS!t?&BJ5+1s3WuusQ95Lc7PeIfNKX@=$oFMsNPBr7ShCO0u`ZA zLmJW)d``-1i%=6Ap}8OtI|mtItOqo_LKR<}u$HK_^NUl>+lb~e%T~o; zRSpc$dBZQPS2Kk>cBw?Xm%X`_G%S%Kr|Mr*v7OtKi9J%nE>ECrN+(TdXqjUNJ>uqf z36FCz@}@WRWG9h5l8w@a6Cmt$m@V$UC4Al}8aksF8GMesn4PXhI245utyMb8_=~b} zwBMt_Q_*T01FwwiIMNP=cgf%fM%ym$cm&_!;0HegX$h`*#{{=h2CfbIL|V(Ukz#NwWZq#2C#5$KdsKwSDI(3` z07D}||E5q%#rdA4NC za(qtZ=2^>n3%T;EkDu2fj*5tnwgsc}$Zjj&`Pd9Q;>FLP;NA&h%MR136GZdw+yaKz zB*#e{-C8?8tciKku{sU>fd^TU&jNL7Aa6U2FbG~fixdRja$EM^TBcn6Q3s{0dcKXW ze(9YuQRRM=c#%NBl!n;TU++tNFH?o6`g`{GQStm;Fy~Ac%u;&!HAseMhO96=U>T)u zC8^hQdPgyl-=nULN4|=2CHn_Em*DrWAjCmOByX5#)gGh^?rjDUmQ6r;<+Pl5{?`=I zP*3*D1Mv^uJ**Ep9FU6Oaove@IHG*I@{pE7&=mT3$z<9TRXl$(qv7MRnPr7TmZT(4 z;B4*S0Hsb5VQH;X#jEZe&&u`5S*M66>aD;$2O=p?nBqaPZ29kxpPwN9&Mx`u;ku6g zk-^U$JBBA)rsCM6x3e@Kzm=whgh`WaO8dz!S*!KwzOrMzmVsEwYPh1bohnNrV}CXQ zj#WgHm135Zcu{B1!pTLg2T31y$zdmf`feKq?9s^DEN2c=9M*EJ^<0h)C{3oowpMO) z|1I7tXEZ5pve#;8VZ3rMBJoqrihw0T)SM~wo!>x2YT>`F9DBYH$HH@Ok9IA=a^dPV z!|k;qDs@!Ru(Ik3gnaC7zs^8CbIen6Tqub}IXRVRdkA@}N?I<(R?~zE8)a!>7u3Ol za{_p}{5m`E&=T)S8H(fhKQ32g-7I~6lFIh^Pz-+Pic}Tu?K=qZs7AGq7*QKOa#!|? zxBBD1*}LpvyMRS*jXRNfMDW&k>ge?-<9>!n3u>0WEc~)R3GJ{H_jpJm##<2RzTV1x z9mAQMD|?hkF`ZXQ)P7oq@^@C)0M!8y7H;u){Mkvu*ib3rOEjBmX}NWD`%$7Q63shA zd~^_^q(#!u7iXz&?Vt$?=U_u+X(3`N+J-3J&;-m?7Wk;+@!e$n83J{>^0zK+1>kAJ zAanR5fNWoxb}#LSckRW})t{~tlT#c`++_e^>e3?uSl2}{8s)`F3;7APo<08J8~j`( z&yt+28?+*-EWQ$xKODQjVAFr14*UJJJd!)K1mAM}G&1Eck2(esg@?lF{1Fvc3C%Z6 zjXQT?w?AGu)9S#rM#%Z1Th}0G8HL0ZMVz`XIH-zc%UGUkl{ip`?)g#5yidaZ(b{wA zhd%ngHI`95fQVoD=E`6jx{$X>LF}-eA1h*7ru}A<_YS(i=`uqc_AX`MJ$m{{B*@%v z#{AO13zW9+%}^?p($o?<=6HCm=65bow!s zeDjx+0VU+tm8UcwTp0}QzE2~*2BjKbxLb#EQuA#rv!&zzVFEOsXn?#;WLNah#)NUv z?2lxE{7yRLMe0x}mm9cZ*~B{FPiq(rfWB^GM;UV+$nVuR|p!upyzqh=}yU+o@AT~HZ-@z#F`3vj4vj4+ca)CYz@Ea=Y zr!;3?Cq)5v3r)ng3Tcs5{or6DE7UFBKxP~GzBSr+SLJ8FH{tm&d)CRFASx5JvK=1P zvz~=1l7VAu>9SYlNH$Y=Tet}Z3QT2CU4&-uwaM9%l;C#q)?BZH*_4*hpT6sO5mav~ z8?)X9_@K=F=i!onk|KyOl;U$)D?U(SFTra1x20nZo{>{p@7ZbLkG|NKhYCwTrC%;G zM>AL4FdJ|O#4pEdj;!71M10aB<}R0Rwd>u=np}KCG>ag24`o7c3hY4~U(;}(_?Qyq zF7H+Nxo7v6= zR(vq*@?u{Pygxh2>-^f5hdp^Dpo#6GZ`)Wq(OVZIi8(yhqKpA1lqrNmE>a5jk+t=+ zi0qaaBRoqQ8%Ip{oqPr2ZbzJ|6x?lzXJ{db3|2+=Ag$8_Z_4h zyf(z8rtYyGt_vn=O=uC@{Jc&b(!PsM#oa?9e09+f4IDDOQR@xyH>j>6@^&p5W&-#1 zs^>xZfg3T(c>VCKq|Qhf^F42Da}a^6%u%c5!yMKVCVxy8ds%5-3Js2FmRI3S=g1Js ziM}N5Q00k^w;}-x<1(=_WWsbK+;*I6LnP|$`5INSZ6gv9)5s86q#Kf1IpdYO zc-<_>`;pY6VI5M!!!R(R9t@3W^tw(P;fJv+5#&f|b(Ck_Fx)gRLKQxpfpt@{o(erG zRd|;$gm7EeP(GZ)mU85zSAV;}xQ8H1(&Q_+Bs{1fn#|5QQq<|r;bd^Q? zON?%Q`mXCV;MkooyS|{*uy?@&DR9Vi_UlIc%rMjXiT`DfY2v`Pk*&0I(~$`Ej4mu+XpQobLGN*5GQ{F zQGQtH>hg9c5MCls+ndkaN;p~P|t&)(mLHs4}sIM<#Do-FhQKcQ=_&9ig(f~4q zIfS&e!)e9918ItU14=syE{AMm?q^{78knY}(~T4ui7MLJK(&bB<>wIuOTTP@uY!}_ zAATg8j;)}HMzu#MA;m=Y{Ztdh-2Nsl&=EAMh_$E(f{AChplymOhw6L|v-P ztJlq|ld#j$$>77jJC$5n0~0VJ8TkTdFkD0F?2fPb70HaGY&KHHf~1Mb!JSmN3=ZeY zA#DS^Ik+xKRNh%GjRnU~$51`MgYT)pZ2-@L(&?X?iePR`lE2ut8`>;=%ZXPBgqp!h z>~R3eTf<=qxgIx=5NBe)5XLr8VL*=-7rcdVKZRg`RD()09PU_VBsmsrx=_|!%1fmZ z<&PTCpcC`Jfc&CLEG=Rx0G?hZqMBw*YE$`JU^8+|Q?kysrTfP>>8 zwaS;~b$2()-$U-!!nIYN`bsSP5tQ8_2Q->;38*4ppJ5^)d-;UhKp~62^VI%_?Zm|g zZyIQwhBGiF=-M4=+{JU%Ii_j==cki&m+MG~5niVN&cHpXFL)H12`v~q=-yF|7sbbQLhn5pK<^~N|_c80}9}OTkL>9pNWj2moxZ*3TM9m5lVP%EhV^1RCu3^% zJf*zrl!2zu-*O14Q^u9$z1XKXC#a4Q7bRNZ5F*kna(eguQYJsZL!6A5Kh*vh(@Rtx z&ZLZ}>d9jT6l@$c#kJL|?68|c`p@~2FQBwf(yTX@{km?Y?@>S9;N<&+=G`1 zzUmO@2>wSDAIc!BykhHVqyo0oLOq1eTS>+%;FW%Q;%oUeG~vcl z9Xv#1@Vt~)vO!}&kYq_6-x{GRoISrW1T_8OMrA+MOHJLzl=0H|XL$EBlm~~C=TdmM zH~)tU!%K+^V>JA0QRRBJBa#`%#1BU?4uVuWcNMH<+sqp+I%ZmW8R4%)h2lq599XQw z)70Yj9nGhU+KaXf>wZ=soDN^u;d1P2-g)37<*C`<)ny3y@ypE&>z);9yi3C`T zG_5XOOAc=(D*uJ%KHNmg4P8(}SfPpJn`7N!*{EfNOm$b)jOcJCDrCpO^@N&AVeg)z zWbDW|>rAvRIli+5qVLj!%6R0(SC^5VG5Nk#$q?;;&GrigNXW|-$=*ri*U^e%5R`#L z^eQDy6fTz*D{)cf1Ljmw237PqbQ_@t=hZ1-8GrSn^xf#w>wVTFlhkwvFqh}HSw)!X ziKMtbx_7f4E{Q_%jvhIzM>!IhcG)k(IQCPWEUyb5XxZhF-$Cjl+40OFTj9F|NnB#2 zhB!eDxPY-u>r)r{Kfl;c#=bBIY@>u?q#z3RijupHNoe830H40KMB%X?oBMn4gGHAm zv`N3u!qgvkc>hXM{9V&W1DjwhOD|d~v>r59i`e~k0AkY@oZ)`ohH!Wx0?1gL z3W}i7OiFBfqr+eUgWXX-p(+_4N)%=r{%6W!g|hd2Gb-NPM-*O82PsT@U;FrQFrD>h zCJ?*X;=gv@cYzkt1V;{Ull78=&$U3UN5hzLjhqQ+-dHcF9klrE3)Heu@&{>9UG;_6 zih9M~ZS0G3rUtgc4bLqfQUG_NokklDBV9;33}gYBO^@TK@-tZ@L;_ah=@`EbFzY$ z!TcXU{HZ9=`x5k~3F7q&^vIzM6x`62?X_b7R#yq%AR2@kZmNdQAGL%uXui2dC+pKQ zb>QpBL{xvX2jx77S!@FlY7k9=x5EUY56%b~Oa&W$D>25?e?c`86t?%nbWcfQ>o=w; zMHYfaCuwqA{r~47^5Bp2!X=lh2hxAs>taQGZ}2}wzAAyF@_!4=bLBDZ=--VRogG(u zpu|4;mkw4>^n&+tD8pr!rn@ss@7!8xGb%7`b#T_qzf?TYT00DSC+p~BqS_omWIveh z{=UAuq*r#!z1J1u@t{z7;C~e{DbjlJYr%=2s{8W-o7mxh`Y(>eSRd(JsT2Eusq#!XeQ#Eu={qq{`i^^M)tI@9kQx~EvKq~oSK^Lp*2 zt6V4TV0djU?;Gq}V*M}t=IO&MlWi>_HNV}1i1=31!M{12gq(G;6U}pD%jR}=x$7n! z-{(I5&$Q9o-8*_d?kUx9Ypl_~{WmqN0MEDgRZAVvP2QiJ7`c!(JNPol$@P7+j%M%F zn}9~~H)yZyLsEu`xn}aUBQyeocKwfk4s<#V%-qW#Cur5$k1S!8--Iy*7i~oY2 z=X|3HzYOYs3Ob`58R*$oE0EmiZPCZg#=6YxpPsFL`ek&_isUsNZ_}Ub!_zD-Jk@J0 z`uX0iRP}Gfc)t`;J3XN8knOHjuk5rggyNcc(AOM1@buf2&(nc`y_x#4aMQO914El5 zM~*y2YC;V5%!;Gx^SciIlylG~{zs=P9WT99xcWg)DmHCdHt_Ssy=(W}@OWlFIj}N$ zVKlk8diSlp<6=&xbI#=c#Fuw}pCAQKEBHGkgm@r_krcgm${~EsyVm#@X{YLz+r+MK z4>^9dShF!tWpz;IZ>ySTiz~ubN4DiTXZ{VA8^Fu-?<;$oUHYJs+t_rVmR2s^-sAuD zenPwc%xe{9z0S9HYE-bmU1d*xU$}PbZrvW4s66xR*T-_A7DX!2BRR%8ZrOJ&8mHoZ xX!TL~aK3oG-&NWOL%{STCYG#dZ_ diff --git a/docs/reference/figures/README-unnamed-chunk-27-1.png b/docs/reference/figures/README-unnamed-chunk-27-1.png index 8fd0ae5e17dfdc23569ed094c83bad39a35f9009..3a7629bdbf6a5095bd78da5b180dbd4e1b6502d3 100644 GIT binary patch delta 7266 zcmbVwc{o(@`*ypEETzPRvV@d1WLH_U6(NMOW}Pr&Xy{Zb*|TLIWQ#D_Ib%j8`#QEE z&d5Htqq0m)#;fn|`}^m;-oM^+UFVIP^H$@E!2*gwsCfc>?dQ@~063Xun|n_W-rS36Sa>h{{5xvLp2u+vw07c9Os zw5~qS@Y20fgjA0yHq4Jt4BmhHrX2b}Le~B=;7)OnC`s2w5j*bKB-agX7$9a6pvqX5BUWJB-8_}zLIYyJ)Iq+{AFUnkrTM!s0RVkg? z{PRL0+>l=K50iKzzfK*JDTT8f?wgoNO>7bGY1|t2_71V|n2R(VWx-g5HBB{jSGfZw zu2uq=VB3z?u!W12p7@CTsYfd98mf)kY3uZtUw9RaiWv+eO2#PkH#D>w8*LF(oBJo5 zwvqvt*65c39uu?9M1x-maZ5}`d#1SN*K5{8UlTz=QG{QZJU?qH;-g}Xv}W6r3!Xmf zD`u#B6{~pou9r4am(_d`S3PT;1qdNuR-OsSwRf`c@%SDgjgv;qb-~u(qm@VPe8?lB zn&&HwHM)`+++g8^U&D4@@S882@;PvN<+o{|e)F3D>LbyIjNTv8tM{jd&8Pd zRtVf#GhyF|`S4b)*YGUM;Y^IEQ3+N~GSg~q&fd$RdSQs7I;Mw!(h1|hhu~ie@S^Q4 zyOe&{Pb)^Fsmk{Qs;mx*At1!ZOX?f_4`%1H1j@EWH|!LB@Q5|z*2555E+0mOxlz_E zgL1JU78@d!eLMadGWGU8V=hAy4&S5U@2LUfJ3BTb!OM^TF^uV5gY(hDq>=E{bvo{rU1Mpl zXst7w$4roCYj!t3rvBy1$N0?kgo(|v@u2GaCbezSsxBa)gmG`|x=RV+KgBJxVKJoe zaVh&%OteLk@`2Q@unlv{oYbtrA=QrthtN=E<5!cfFBei!=PRz(nRWfPF*WrnEAHKA z8>?!+8|&gk9e0t}S+?>1`dJrK@Wx#z;@IbTJW=Xh`l)A>j}^y0kBU`F#)Ai^?UU- z$8G#Yp#gPIYAEiSz~lGD;Ug%HzxVP#|IbI_No~@&8jB+cy&vHJESNBfxSa5Lzdd`( zZA{G7qur<;(PN~W4-)R2zmuSK;CO=8c`e{^+4w@YByw3OSM_BJ5hl#{@e4JF`$g*2 zQpVGI%c!KC?m}i8jXlTr{rG~9S=0MhdYGdzh}ox^V%F& zk5$JNoLIY+b%IYnkvi+kjre>L)4|`HkV&b6Ipx`t3=w}uYiaCU(|7CXYcpSa#cAy1 zDa-nV5W@8~H97F+qx+KdrE|~)n+!?J?>5IS_1Gwwlh0NAMZ$Bwvk86s)qxyyI*^uf z+2RL3N)Mxx&5*fhC|9=+BHMA%V&I4mmug4UGInOj3WWKpNa4Mr3X1P9s5=hhxlifo zVvcs})+Z!OJ20BvdE=wO>ES3thM>I?FCu(aWUO`tB8L z>NWuZ&W&Jav@U%mAMkf>0i01`eO@bds^HB8_SvT#od0srvuC84KQAsd^}>JPp={Md zg$3h|nu0#PM?|FqH~FCp*A!;i6ZR%Z>|Wuo=l`{|D7tG|jQ$P~*z%#0`Cn94`@8n> zrwyXB)UBC8YJvrfsp*d!_~%1E)j@_^WX06$G(Q%gz1eiB@kns@RFLAY2lME1=Z(&1 zFmv>MNnK9C_%AhOV17tbgISkcG8V+zuK`^5eS*-(nCf=&rV7$CN(YZ*myI*FJR(M* z{S#(vw2b8|A$oNEk$>qq29KZAz<*4Y+0RUV5(wXeOYecVf#-nPNo-)S(1b)cRwF1(bF!n z#ikV!F|w__7O3$kVx+xEv*d(B!>80|GWGCE1s)M}-PFzbsrJ_T-5cgJ^82ose>)Df z8go^itC-W*%V^|r=~#qHmVmGG=R;K- z+RWaj`c*w`lUxSj02W&M+If?uyU^hrugw0^3Mk}qNed>pbB<*o|PuE4fmwVM1UX%EIDk z*Z8$sWVf3Y694nB%#X*Q62kL2Y&Z$ImzM@6xn4%h#w;p1d;=a^SlBPN{5l&4o06d; z`2MK;yzy2&+Yzv~U1~`E6gBhAScH{(%gL=V)tP*sa~{cyOl}DKPrLYFoOuJW$-D?5 zeK{NrY@28xG%Vj)rBMKGR>vD#!j9X|_1%UnMOWM~hK$eJv9Mb^y`{QFZuH117}vr! z8~bK~MF>#0C}`j00Pc^FR#Q!*;I{+}=|H zQh(a#^LDNujDscR@we+?UA|=N-fXz@@(4|ellt+hQ|i<6{b(1drGZMg^lNA3RJh3y zHjZ`GBCXs=lXIa$&QM{|j(%ox*80~=qYd2wO+egL9MCq}<$GwAWc_hqKe$`;jT7Rh zF3udwSwcfBTLS;q(x^LP;G*a`^nrmfB>6Opgmg#9zh`Js5Fm%_Q@I?k$G@ZWt)1y$ z@>1uZHsY?sHg&W|so`igb_t(iVU)Vaf3M}LCD_1u&cMp{ow~3Y_h>ad)FB&SU<8y& zd#}>QQZBzSraz?5uyayVY@G5tS--@ghIA(7g>>TdmY6kBJEOELzO$A?(a049aYL2Y zJ`YPhD7#6U`HC?2EI|cbxE5aqiihatiBuRuj2>Opmo=W-jgkYCCPpAqWxNLs)L4L> zSzHotymATU1q8d*KBB`0OJ@uaLiC(iWenT_5o@ES$rrYas(HpA|Dm~-?JLeL37F8LL)R1)Ewi3 z3IlcXWD{CIB}-SUCJp_~f}dv&)Khj+QP;>RHe2OC%$#iZx?u-o{NRmiG2$Cjb_%K9 z&{u@Gi+(AB7=7uE!Y;oF&{TGQVy_d;$8cQkU3qu*BgRCsv@RkySSYRVQOkHY!AP$huJ{1zt8;wzf`iuf?=Cb9BPB(g{E+S zia{>_rrlc=pd}67B}q*dzO^J3W=wUe#!Ob`V`YvkP;FApMzN^XIpz*SchU~)BV6ih z>U8WF>%&v0pfK$kG9>fKCq=AJ^`tP~eVTr0fCvSmkg;Bcgq*=wWwFHz{q)uxtf`0k zlEyk(gXYub*qawCKsj-9`FC2`q3iU=wJ7EIo^F7mFGQzNHCx-o35988hxvY1q!*l>zn7V;|2M%+Gm>#AVW`L4GP#q{~G|igW~*bNLG_N6rld z9^9ss&br>T{ZNZreSi{y7GnpXaDga%5-1j4CMmHuIlMNA75l;`1G;m-XiyT#7pK`HiP16iRSex0+1m+V!mTyHov7TS_>dT(5L*)7MF)!bhU z9m^^n&a!#10dR*V!AWkX*p%rTqQ%j|I;u3 z<6!|UdcUNaE2R|qsA7nyv6%oo8YJdMwAz2WN(~ye+aCfV1kEnq!FSV#$!js{&9a{J zC?=&EL^}$?~?e#jXrh+H0C*4JQ7Vj^NXXb zS(H*%bEkyb@id&X%**O%N{P&}$1>u3v4Adp0O}eGT?e+N*GddbEd-J8US}46 zuY&oTeTus*yRFWml^i#iw=hKa1lpET`u$Z2A*XM{4kr;~f>j+Ved`ZEH{#o-uHoDZ zv4FO5I^8*7qo*@b5SdQ|(#7OP>5vX|@Me4TAkp^E@WlJ-OEEh5zy%P!YNWNxp7}~c zd*dxQUyuc}2Stob=`6^ZI}RVPR7?SxTzlkSyRsjVWJcW*ap z+2pBx9rw}&^y%+e6Ey!~X!1flf&zeD&(>Ty^w6=8Q1q5ySd9Oqw?y>`u0&TSDvo{H z(aUN0Se@k=1#+mIS$_=c*Qz-!jsSnM=?6H}2GMg*$MS*wdZqryum*2P}~Ql8L+BCzGg} z;gHY%IIl#c%bRiIj74hOYwyxTnHDxY_DNcr;$kz6K^*4KDDU41JAOrU%sRE@qWViX zl**#e73Aq2%{9BoD^FIu<%)Tt_R>R@rVnnjWC2Eq4GwIQfsDP(BB>Zn5PJ)*;MvF! z(;HBq(v&$jDkrVJ08p{VI#O4!qc~n)r$--d`7P5Xuzn>l08H0oGsbpA$1VAM3p~8& zRSkck^%H-G`dp4R89KN`Iz#=S&*5f3w@JUd^DrLpK5-ZX93(ZJf&%$GxoJM~Ij)g5 zbaZV&ciBBlGS&Y`SQnaYy`iw8FwL^;E_J9eGqrb=Sd^7dFFr0Ljovj()f~gookf4NKdOfd zT2CYKu)^$Wy6(UfS^cUZv}@MvbN8e8a|x7Ee-QEUBV&S43e0ie=wPYNFFa$4tn|^a zNG!JORXtGbF-$DIq(--z8I)$Ft2*Wr#tltDjBn$nSNdd2auNHea(r3E-87yv%L-rl ztt?pCD)fp8JDv>?jVg|t1(a8f>L@$z8?T|b4#v>V%2?D`tbf)Tm{>5-bU^V^ zp$pYiAHw!fLTS{7&^yZw4iF-i3-K5mCJt0+(>X(>{f7CC>o0q^-CdQsfcRJV9bfh+ z`gp2xNt*`4DVuVXqYo;U6U)n}dl(ZnK=l9cL9AK;jg%+R?VGYe;8@>7X+41wMs`QW zi(88~7N`qP8eu!V0t956sMM8PvW@fpyF(|T9oRr8r1Q*kkfWqa;zK_2nJ^FRQ4y<8;h-kd|7k3 zc0p5eYB|~NcB=UU?zU=}Sk`IyXfVhNW0l{#X)~}pzj&Hgso&zAkT(Qb&S_$Cc!}Nb z!*{pIknX0es0f9K{M-z5Y%bG2*dZ}f*lGKrQKw#im*F^X)N1hC>1#7Zich`6P)=y% z{qq%Xlr8CtIg4g=pI@FKK^!$o7rDldYY129VS=K0-xhxV8pl4Fxd7*DKdGF$P8Ybr zru{l=pVuH{?$Tkd-o^F&iaLnB#K|a$8h`@3SSTTT=lF}zG!|G3S1TC*^RvQM{Y?lf zibKB#PyeLK49UUmwbOKrJErlb! zhIf)z2JIXh2*IjfN2-<0!N~uF2X~UoLF}z+VLdNndQexV`#?zaeL5d=)%7H)MEA^S zHsi@1dq5Otw$c?>JX}h5Xmc_SuT<{ak4h%);q|uk?)MFY>iIUf^G&NjZ&F^R4*i24 z3N&=E6pk3r!MfbBU&NVRF}*#H2kbCGZ^S>?sNC4%1UvWCBgV_H=>NqF;pyMJ{K%!m z(~7tcMtOuEE(-B&rJ(A-XY*oU_E`UWEZy{;;1{&uuZpzExTJ-$S7pUfx9Jjl&!Iq` zzg3RTbn&*_PA4yDeChO>pD^jvd{7~EX)3A$4cMyB(nJ&j0dcpzr@ga^*>{l*OxRg0s;~9Va(ekOG7)`^YvLoGD?Zs)eas$DuW)F5ZM20@k{Tab!rBilC`{5hk{VQr)ja`*mHsaYg(tfC^$iU*_0Nr- z4`z@yj&6nRm*YKbPN}*%W1R|eo?Bqf&P)mpr%T(9utB-lk+gs}YLezWFMz^hpU?1L zKyla(L_ z`)%)?I)igy*o)wpuf|h-{Npd+mAHfj+>3q8+xd*--Wq?7z7SP%J|V;zHF2wts4fR0 zMQKz4Ua0ou-cC6R-qyn0K63~>$epb!egL}8MPrZHi|hsJ4khFqw)(G^6@X0B-m|E% zkheog1k8C(tmBFRWbf~(L3qO0RLa`^X9~51@A*9jCnC=X?D;Z2i3~K(*;}Pl^;@*? ztjT74rr4IlI&{JQzC>*xPQ<~*SOvViRoI`U8aUA9Gqz40v`X9W38 zx}m}z`F^wfnU6#Z^`^eAX{<%)k{<9_m)=~BIab*4*(>C?5N>^y? zlfI=H8=u+0n}L1&+|S|cqbL@g{}$Gh#Q00_{^v6N6giL}dtMa~8rTUFWW#=v>)C<)r*&`*w4Ry0T<(Bb{e|&5$>S$v63cs(W$9k0?0B`4vyYksB2Koy zWna@e&Vz?^QiOQN;$vmCt&WgI#lLd5kGuXxA^xTZrzIV+uQs{nu|Sb zp3+$yHY=-==-$1SR(0h{p?E<&-}626qK}5sxx$bQ{3ej>S9;Z98L6^1P$2$3o-fn~ z;$c*ZnHN56zf-aH#GC%5SVBGJlW}R@e^FCR?@qA1fh(nO^&PI^lEU0l!TRH`2}8Fc zgf11y(uUPlPj`mrF4(juF$se^kEY5~tKqn$L~aNayjbb=h*3+t_L_1Fl*V?EX#&;; zfC0Ib5itOXn|u=*4$%=26+I037c2`S-_*%hUW|#4e*r6-ds=W(iad19>DO-EIu6c% zyAz&|^E-4fj+aK#@lrXlhkqKm?|LaCZC%b>d4Kty+7MV+`bf6tQ|d7ViTpe8*^6Ak zMSrQ<7G`FsC7eg~no3s0>1OHm0$Gh%=ZJf=`=W~S@@T_5on*C`@S4L2$SHN-eZG^? z#sBGZXM0l>U++Y8F1w-KhR(TKOrjaLg@FONO!Y&;<%{q6SUGT8Vl{8Cn;6a+$` z*KqH4OTM-AfRiThHrM%GO?#w6f;lf)3yV0L0C1eLMX6v02 zydg0rWBcM^HWtugkB>}$)im?9aJEoM(XgnS&WAYTSonRSP3fNERx|zp+kWU^e84@@ zcE}dyd)>Z9Kt zXS+^c$;i}V;;!ZqY@fPFYa(jn9}{tJ!_mD40F2T^VIK2N(MGl z+T{#>R=rI{KKg{DusltQ1v==L(nT^J`^m9&&vDUHqmCIY@#ht#Q__^4hH#yR1udsx zn$|yF1?gT|tXi4WySXb{-=wO|upjsN_)idJv#IwD}iu%pj)7`s#xt`{UmEch0l-v&)=0XP-Si%Jp|EbdKp8YpUKg^h;e& za|s!dN>oA(K9KuFV~sQIy!ehSmV}ystXX0m?!EhT0slgsLe{QZs4BoAEPeEto&ZWzdy zNk(Du-Zk+I(RdvPY0JynZFQu-DbsDE*7#W_TE`KwLU=nl-(5nTW?D_}y}6Xo(2#^PNod-4aHQmpG&KP|rBlxa$R-+v zXzQCPpUWid9l!fc4q4Kt#)EanqX8=kpSzI=d9xku_qcesa*pk)h3BwrvOXC)R***d;E%LprlNH@7F-|BbI_W=t zt*)jB>yorv=v)9t^a@auhX?|&<2f zCEXRxQxw_iInw6xK8-WEh9y}AE7bdLjC#pHye(_-B!EE3qlgpiy@^?vedYEe)(yo zqneK$Yot@~l%H2MVyYx@|Ekn_78mmRwGO$&pMf$c9{`7k>0)SrxXLRbaTku$G1w?W zd-->r^1Vege{dZSiJQA(K%JM3drNx;@F<(vTX%6^(^towio`->(M&nja3&&i^hQ~O zLM`f6z zSN<-TBln`c)~ls=h%39T!OJmPxP4|jeuzuCHR4{}Gg@REKuZUpR}PU(acUaQyuG$3(s%yhiLv zLi9QU{-!@nrZIoN{u7{1;mls}LfTl8LO}$4;eEJQ$L&eS7V>mGWenve32ulq1!0Z^ zfj1|2G;(0#ys#U33xD4Ag1_zOxYVL;%Pa3&$}h16GGZ(0NE6*%G> z7bmHr-z4MZbg8=t!^Zb6;emggxh3xXPX1xAJljO0sA8j;yZh}=R7Fk=ZwKaqYHb5- zIo+C^B?hUULxJ%lLAwBYZxgMkME+@#^=)iROs*Ig6SL*^p%%J7cqJjxvL=v z{&u9(o*h!S=qn)P<|KfTMT!uxJJAfYJp8M^!4j(?N1k(XpvIT;_HFb!L_(j5!B=>i zCwD|{=inHq5t0~aHmna1zY!`7W7(i@C^H+P+@TmP4>#Rv1z4e=oNF0lci7HZa3(5b zco?RD8M?%5Tn9Q3%d_?NWfUzZ_zvb~?C%v%`6<(UN! z3PF-`96 z%@^eqC;+J5M_eG~iA(=9i2ynF`WJEXLg`|c-?BCQ$okEA>p&?tw0mYkfu|f>@MEjQ zPx&TRhy3hI=$6LUpC@Aag@)&!jJ$+Z+8C@mH>A755nGcFK( zTL=)cC^QRAS`vv|9ASU2_E?e;HI<`5ou#_E+mDm;JAW$vJsi(5N2<6@a@IB{V9Jf7 z^vDR|y>Z?9cnth@(FHmHAsnHc%w{m+{ET_cepG-4?x-NP+3H+$++5_#2YJ^DHl=k%8Vds1J^4|#roSTYX?FLc zH%jgcjpIHp!{hF|3b!pSlgHFCX3!f3NJD|oG>VV3@@C#q^^Cr64%W&(+^~EPAQ%S6 ztxuvgNruYf>C?+1MdM_Et`eE93cO)zDpXE~sJ<-2H?v@w%&Kz72S0sa^5 zU{JW`U{r3gu+C=0J=^P%!fBPwGxdavgnmY8FggLsfSG#tF@G`=9{Qb4;_;K6Cq6vH zfQ3^GJZ7@^BemK`jmynG3;>Md`;*yBoU6Srx<$C%L_DG$5$JTGSvykPqjJehG!om* zU_S6LL>M0w?x=cxuu1P*{_e!$KJBcu^kz^CV+t1|V*#A)9bb>mm}iUe1u+SAl}CC! z#(Qy1>$LbpNTBhn{nfz^QII zTzl!GIc5)&#SHnba!2TZOWvukjPr@_79Ktez`y(A^v3C6g?pKsMFZa;6Twf+gHZ)? zzU-$^m`rT+58wpn6KGh>}Na4Q|Wqx6rXc3rQb>; zt-}r9B(q|{mkTdZ__*I=QhVVf?TznJ)q*A<2M@Dt32N0`_&z%6_ajK-aE5iJ2$G+^ zH6m{D6K?fQ>)2g;+}X(r0g)3zuJLX=))DZVR&cgM%A5ESG;tmgc-y(vhfj$ObgI!Q z!M2bhk1=D1DV4JCZV7qiaGcyQA`fI74t|dY^>M!)t&1*yb0>F! zSGRgE&3WH#!pAQJZ#u}hnm)U2@_D5l!2#)%x&MGBa?kE3eFWWuwI&}0@QX%4!=sf> zuOc7&{*IWKJd9jqsmTkt10|u7lV*>mGYv*>5Mx^njB?h-O0mUGks#Ry!8h4_kYH-b zjemk$PPb4w2T0*g?MI}we7%bs z`Pf&Rdb$uoeO344=NNh{d+PQGNM=JQVT9&zIt+PO;$`mYloM`FW{n>#9JESyYet(| zN~Bi_CY^j}Y59WkYvy&eTrp%GfUmO*#k9n6NdW-;(S zYy<*tFZJB;wPKQkblRSbK_mGQ!%Zf?%64nZBg<^#p$Vh&Sy*j35b5Weo#wnZ(MX674OI9dYu__-p&c>i?^F~j6 z6>;P_p`ccxLC$_er;yXHcfzd@8@j2!b8gIiLhT#zqQCaEw%OI%s6@oM`#&0!-@bA5>XvJ4AWPh!Ufxl_>MMfukBXr4;tB0KINCQE9Li53?HyY{bP%p53ORSUox3FKzN%3HSC89HO zlN!L*bOB`vIa?69PYId&%U84nedL{hkfMa-Z~c(05y1z2TUDK5bN%`O_Z#;hvT?Li z?yO=M{Q2R^;nI0%T{kdTd{XhVoUYFbL7Z?06wAHft4}swb@P9J6jz7iC7uhAe%}Op ziMB2iMmx1dVryOe=zOG6M!-6k=Jw>%o?E>IlY$V=|5wFk1;evVqZOMwvDB|}&+PhS zQ&D!j#xh*n!rLL4aXkW#q~-&IL@4^qe%pTlt*1#lyF$Se9Ea3*Jg*r7l>GBwYB4rFV|}9eI?c;k~ujOAX?y@zTrb zq5(ys{v*^YgHE7D*^zfISA-|2*)QT#xCYDGH)~7R6H0@1v(Ktu5niK;omg%51ITa^fc%S2lY^X{16cfuf@747*$vSM;p-}8 zvfoY!>?rmRcnm36=wNRuB28oX2DB3N$-TR)n2mea4~>87;%*~HSKRDY-k-l*dSk|} zc;uj-)d?}pqsUSvo3SQv0A^z8493wPoD}A+o4Y{c-RY;wM7a{SyYRukU-Aq!^^M#H z)-U)Q=Zn19Pa%u*SJUC61|wU9Tlkmgd@;&d*opVPVe&!-EXwAXp_z(*F0O&(tLz)v zO60e<|6B7f4G>Vo{>1HAzG0Cu4LqRFj=UPzt_M1 z5Tij>>|7F<`70F8`e#0MRU`ZSIO^G4~(3>gug6`kpJopO?;T`0=t-e7`lo_BVc0I}T99Xff* zT258fCL;kKdEKfnibz3eyyKC1}8>m(H zEu(o-qu_Yn>mX6S@Z#KDf$;;hV(o*=`gO)$TsNvIkIy2IZfzI!46j{NZ-6_xh=nQ- zEB#`?+IS&Xt!;)IaUb(W!)$IAGExbDWN-jF~l}c*3n*K4n?T(5Jle7NKoS9qqd4E|@ znqC*><}QyZj5=@lC|(u{w_2{c6>TRU{&4*)tAVEGP$^|8&YzRX^{f_Tn@nTDb}^DF zPfgbLWKIpcC?PuMybx+fjk6A8$Qw>YoW{8fSm>rPSc?-m%MF*GGVSoEp>XEBu z&vouNbiymP7cb?%sqHnVQ}&ZkT%tFSq@P#qpm=b`PJdiVes&;b%ZkC6_pr1GBMKrZ zA@jps-IRzC5?v|1d#Nu{+TyY0lT)oq~Zs;5~F?72(!C~50M>PE+%E#J=Tov&@w zFm=qYwRW|mmJC$4qv9q_9&;Qj@@U@=>Z2Ra5Ix!QGr*rnx{GanGIMa?Ji`Sk{gE4E z(cX^f7;VEhUPG7$AM(0S;G``qjnptQ%iQr869ZRKf@u5X8yN}daFIUhzo{kSPX6vI kVk#S&<=-uRG3G;_73oXrTlT|mX{e8;nyzY@@}uYf1w&@O^8f$< diff --git a/docs/reference/figures/README-unnamed-chunk-28-1.png b/docs/reference/figures/README-unnamed-chunk-28-1.png index 00320b9fbb8875a7768ca4dd1172208ef6ec05fd..9b1c0e956fbf1568c7540ae1027ff02f664064ed 100644 GIT binary patch literal 32647 zcmdpchdW$P)c-Dv)qC_#5S{2ff(Rm!Xwf^-R_|-A9wmZA?+HPa5WVf{q7yCJ>O@<8 z#p37tKJWWa{HC1y+;cuN_sl%^%)K+`#Jzl>NlL^>1ONa?wVplI2LNyp_Z0xfz2_{V zZdvXx2QPKrsNY`!0674_0U##_kh`bJ0EdSAdpUr^e~kZ0Qywmkkbp1_!x@;ySwI)kp9ffg=D#fWQT=@`*PpM ze~AC&|E0TyySv47Bt_$oc(n2_er+ya53E?EflI%Qqqo z0AL4bJym@ZkaN&Z+`7^5u_TjcNJ(JO&vY_rlV$7|e_%sv`?_Fa&_3%>=CoI}tNpG% z_Dt^$Zn2g2A-AAfsO?(X|%0r2U$fe4=Q*T2R@HP5Gi z&{%ycx8+AXGU(Tb8I&h|1ysCY(FPip$$iH8uJ0@O|1*$<1|^-J`=WE9Wqh`DO0RRN z<>jY$ab!g3imBb)PIvR2fN9M1OjP+BZ66(27#2d8mM6j_a@!R8sq5+Qmh^x40| zU7vsR7ro_grscR1wt!_@DY>LVNl-=5BnJ@6`s+}FVX5+dhF@p`Fdl5m# z@VczLUKybb^{EyA-J#S>>4V{sv9sBXxW#A-UZyQ@A2Y} zMb1=5itzSWV3EuWKbT_LU%$EeBR-OI9)xpQu{v_6fYg5>qJ$R{o$0+aT=-YB6&E`h z)oG-BHPZQEUq|f1zbl=q%KN47_Zzea+t_gXW6iF*hi}8Ac>eu)y16@^Hg%R>=x1Ze zi!68d0mD3pPZPu~JG>^SgnSEsubNcf7za5pSYJ=RCjNE*7LFeR#!{#J@8+xdasR+Y zkmxKynHzNJhXbtCFcqg8XCvM`GZ3)%=yN&S0a=Zu&Oa16Qd9~<-iPW+}bqT6_Dh+QEV=Jt+XdrRrQmt_LO^RMl|Jn1L5YiwgvGh-wQ0HM_( zx_qU(39y-cHe57oh zbuw^K=*p1{0VZKS{RN=Xku;`XB(x%PU)vXc@LvP9{jvLQ#uA^t&+$7`?F z?ix(xGwS9_KjOg7ow*Gh@8{(>ZwxDQcISiM9y4D?`Qbl==v$zZVrrZ?C}l!<@gY-SgA>Wy%tdAUmb$`bxD8o z+5gY$R4{Iv|J5Ud**^>gQ@aP;n1A2f-3BH$y*MIy0M5 zqlUgm%N}yz1$g_4Q>29kH;VaGz(oqPHdp@aEgiK?IM4U3HR(23=b(#`l0O#eM}y_sp& z?&r6vfgm!0*;Eyp zOEEc!`48FxXhIx(Acxe|Qb!!K92>x-UrTfCEPm<7Z#r<;qDKZtuc!i-b++o%X zW`w$Ab&{dDSL)wiUH}^dYIh|qQRs>kc@AQWvBV1qRTS>b#?1jED=~>R^3H3s`0Ke} z0o7IR0AXcka+tkDHhL&2!}C4zI2aI3i>jaQ2e*t~HI`?KJOrY&hLL3eFccj&;kYNTVhvIAad1K^SUO%T;BoJ-@9II z1F@JEZLMS(MD_e0sjag5ySQ+nFfCLZ~j|2cQ2=`Gm70ig2 zo(@@juK`wKfQ-y_NSNe5@xd~sP9s+U66EC#3p5-Ocq#Gst9;Fli=Q96G0?(*@bZP` zye_>(Ei9M>rtR`l){)fj;yTR#}RF|x%bhN?4LKP}E@5QdcxO!-ZdqWm@w6+lSvg$dyRw%Xtm)VR{ z2Iehc>eU$&h98$y6yp|wE(9w5;xhg89#nc#(8Af(Pe9LBaIr;zQg3wWbp-qKUylcE#W~Il`j=ZE1)tkVsf!?;l&IhruKex%ghbuPm>) z1MDL|kV5(+oMtMRo{rCeqytDtS^(a&1mxO%=cT=e-$r>j$Q+}_@Mu|J!^kNh$0(a33?69U$N9d{zOaD-Ci7x~7OC1@^w2ov_|L{OiK%tNf zaF}8hzVa|ongl6?F%P5?1coq(4|`AnPD5+7yg%>m04|?HP<}$&RR^{2)*%bH3NkR; zQmMC3AE6Nkgci6cHsxDXb#rg&3MHAX9iZ@;)bZ%r0PWT4tqSl6ZAri z5L)1&$XA@fkPlO+Pgial5H1fF>FAEZE<)ayMO)IXF|W76uulUN>v1qKox!1}tMXxi zx7%#8y~=_J)D+`_$e)e5U$a>N=J0fD89Yec=E@``st+WMgXt&N3-{`RJVfMDCU8y4 znPz0$1u?_y_3>gwJYW7<>fpcVa3eefpwyyKI|e)?2m#}9_63K$1_%jDCb}g@7T!z3 zv>aMV$Yx5l_zrw?<5)T+a;vbXrzdiIew80~CsmBmfsw00`pyyv5fvG=3hRE*27ncV zMV8nLdNHUYRGO!0iF0OFuhcR`@`l#DhX}`4W2T>7#@{a*V}5GD7+9gABFzPcehKSdoJyUm! z?|y9~VD})VUFEzN$~W&wVV8OML*4dg2WNyJ)F(@gM#yV>ZMKSRQ0Wc}Mj*n)eFm$B zZe>Bb9pQ%EP0&Zq0t2Msw)^5*;LeJyhHtPERzo19)`08k*EVb9%6-@EA8kpx?phTQ zt(459?K)2=;%Bz~DUoh0-P$G|ZSk%4#(PBJgyXf$(*EB=VA_n*7mquyy8R4;p{7j> ze?gac=m(%#O-qU7$kKk4TOWiJ=>o`6hrC)i$qZURz6o%`9+nx7Hb^03@H6Hk>&hk7 zwnnsGrFQ04ruK=s4M1cO0!;?22>VJVHr3Wn66E~+*0U#jH=gNt9bFb=Kd4-UJsTUjpEU?!g zI%y9Z5UH`d4n!Ku%7Qw0g0=~9^v`}J?jn%6UC+_Pef5aCjvFC~jW*$2*zWA#Jz86i z_#3mLhTCQi?vO;xo(6kX6whx9+cybEVtOH%3F(bpp^< zP?PRy!x#S=y*vF&IZkB70ci@b%4M4o$|Up52k^jnM<*3h^$7B!4hUaJ>R(A4rZVjuoF6SJwI zNZisO0u2TQyrQmFIT9t|>`)UzN+xVZp{6y)#b66|{diV~K|j9)%M&9M0mD(KmdP0_ z|2GLMjOoUyDB7#d{_*pJTo6VW&;~;-V-yt-2Yurek;_^Vof9d<-exKgjTu@7$M=>$ zzHQTOYcSd80Zw%dOkDl3en3bBMH_3o-_@g60nSyvAje1)3&8yo!%+2`;=dIkS6Z!q z(Ew>MQeZOs@?=hz(1L5hOmfLTl@fN~d3cspbWMy1#WDLm?lPHueX>0Q9tAeZOodFW zP8K=v1|H)&Z4tlpbKbo0qlyy6&sz10Ib4-qz@1aU2i4Zoezp z)6jCs!&hPnNmOl8oi){;`|9`*0mSxS-r^bhFu*>Lq8By09xNCK*C}YoRC3G-TH1G# zH~&)p3r^ZJbbazM#8RjaC@ml*$7kkk2A-)W7~#}4KuG8nuOMP01s_@hZYTKlS! zx$qM;Ga<6#l=x3Eu(QCv7~3bJlWG2kzf+SS;BV=Gn((Bj^?r^xZ@!gui14*~!G4d0 zBxuOQfc_=-0{a23D27G>PE%=|$Dex=>;xkqhX9c$bF$rei(m3q;B1=}yiI)V^zd0W zRr$lu{dI6a&by*TZU4fk{_zQ5Qk2zJIYZ|4R#w`_#e=->m{%hyXLWB$iyBe0W|NF4 z6(GK4)EI!b{PVx3Fu zLx9y{r{70BaFP#)@^l)ydGtp;EZN-pt9p#ln9F0~MyLYV8XmDSy(y zPRskHLRYYUI1p}-p6#S$m&m}oTk3ZChOCvu5+n_(Qe&LDvl8g1sScIc>zBNTUH~8( zU^24D`!wlH*xj^$00mbG(ucM?q*v`i&Wya2R=bg|Fb0pZS~UA#5Gwfg$nR(GtYa+n zpVP-wcX85twf5=Z<$W}&r+^kbq%gU$vn;?-kMf)U*{BB{K#zs@sP9ScxD2*SL9A0d zAv97WTj@#dx0 z8kgOOz#6VNM227H3@bI&LF6Kq}x}__-yEu6^MzPhjMna5typ}AQAS6#O6s{SB|lOrYK5Z*aHzBEmUz?CO_m_A8+rPz2r zhF3*h_%Tv{d!2Uukf<9?Tg8cM)i(_w(Y+Kf#_7JA2H{HM1y~<91ISnD8Sxeu7%PnG z5_pmP7SymkHOS7lZIuYq{zn}*Z+b<)j~C%H4&`Z#tJQ!;<_O6?z40C)zHRu6kKzC$ zn{JHuNSFwPx2Pr}S9pxVNVwyxu773U=Gw_J6)a#|70LOB<# zxcbJ@`!=|t!LgR3R_S z6HMm5T`9r-1l!O))Fuexoy(PEsa}jUh!w5UVL@~ZTwxOwnZMoI(}pGh7HJV{F5Mmi zy3V7KD}~Nqs(%eIrqwTRP|bdeMJ?FCtUZkgYHp-z35N2G6{1;LVW=bkDjV6g>@E`U!+(%YyzjL5u+kq z=Z<%d5>rjY*V7%fm0DtfSK~-=7U~{73k;1KE7Ds1Ik0aN#I-Z`&?yYMn)s!kUY(5* zRUn_yNJbzkT}v|hJp_>VYbDYu+7z`hZzdc{#Lo+snC8RHcp#Q5wDN?iZor+^nf-sTh=5=+~y5Mt%hp&YJPpP;`#Yr}C>=EbcUEZO+T z{crZ&+h*AP_nS%w6SX4!m*PmDxzh~k8?{&xlS8#OHmX)PXp1;zA8vfAgwQ!$ALPMx zN}u{EmHdK_6m^m|p(g#k7CUsmTFYK`SF@0rmTCp_TvhU9TwpV_7#b~_k@b%)#mHCX zJ6LLg4z(SOu!C(KC_!+9(5Lt2z!CjEgNp}`q%R+_Frhd|kTqHvGtT2S1)5KxS6#0I zqnDD@Aep(ZVD?58k6yeGd93yj@txxnFd(g2ja64oaP&OG&QyG-YV7C-aO>TNZ4sS4 zK{pAMKHmVIaC6f-9b4|mn;RUdup*CU-Q`nJS8zhTsDPX)vxyCsg%h2%UtpD z_?yrl75b%NZR^)8j8=;(Tc=h>+;O@cusBYry~OhYW3Oho=g4%d!7G9*f(#q-hWIADp4qGIIvaOO-I^Ycvr=;>6P{OY zPNG&6?^^+u!UMdS&jrm1Iir}%{3?x;nHOZ zp{-OM5LOa;XY<+@i2ltJyPDQNtD<_POI8s2s^Oq8J8op$^&OXPTGUJ`lD9@S}&)jO<0Mo-k60*B6xQ~4%O zAC~s>hEaR1YuOquBfDH-dE2&;QU&rK0YpHuLm)3h-$*!--cRpCUztt#0@WfFitYB6 z{BCt5?Do2mp?4eTs)iP|lQ0A0xu3QXiV6;KnCbJ$bh1k#i-ZtrY1VIiy8dR0C#?o> zw^PC9LE_zXNmgNFH>|(DN?O#%TD*Lxpe0a`i`l!(b5^*S6vwW|9APDkF**H&B8Q<; zb+dM2W;8R;KHyAE$gT) zYU!ZV(d`Fn#KD~Jo*i1=-i~aKJ-vM=H%?)7_rho@WOTRqAaj1k>?s%4!Shp`Xw)pF z!WV_?et#6$;lkzMUqY(sSN983!by2 z_n?!{@9@w=Q)4CkN0)32a8n!wGm1{{m8GLHZ5zYjDL>(@*;c>Wcr{32+2V0QM$h{? zWfi@o8P(qkR%FGVGe2_;x#KNyAdj3gINTEAbVQ}LN-pwjjtxCII$k%JQY?b+U3u-8 z;+s7mM$HLb;Kggp)4=`uYemU&E$P7V;-A;2m?%6ADFRKvxf-#sYQi!{+YU%&HaKNF zJ`JohiQ`O75O zRxm7ooP~#VSAo=VoYDIxLa{rUsAzyGbXAN39y2$S@oY%K&6Eblqs-l~F)mNCdOnya zU1tU`7FK+iGaR89Z#zo*ELB!V0W|%=;MdpTE$P@UTU@(J?YIZmuOCdvmwf;$w8`E4 zK3c#WcTdHKITNAJ?yTGhFKWgoz4q!>8`%N<2pkf}i6LVmv~IpU!1e07OA=Jv70%x` z`Rp^qe)f0%@{iRDzvd^fQ(g7MeIWkK7BT)oFQ%%>5b$C6wvPjQ6EkMlfHT*H_%2+i zv{hU)4otWk#zuEPG8}xIyc%GLN~no+Jrr!5ocUz~>+U)L+VZ(Dw>JmbV{$vK1^mkh z5vhPKTk6GCA}uW??|H}qvhd2S@#FeAHTOjz%@P&LdQF;Lrs=sOHM1P=W_l)j@2KO5 zus0y>H*FqmyXMFN*Rd&ysF9jWYJDmKO^e|w>TRmE#zz2;rx zr;`{FWk65I)kzs8f(&O1UvGSfS;AU`Vk}eX8OF=~Gc`jsq*`mVlBXs+!rknBx}D^- z%37lQOEF!$^XRy zOhw3Y1Xw-n{>fHDou!v#8IltvlUQxpNJZb_l|}U`Xf=$Q+fsN{kkvpQD);=+S29x@ z`W@^811g@#wY~{f)FkC&zKPBhKf-YDbbdtHS}Gvo1?u9N*b*}@J<`c!m6;8Xd;lWc z*~2Q$^&skk_$nU2EtBNQ4WI)EMp?dQcyqU_M`j^?=jP@aV_=XvAq~qxUtQ#-}-U_zG{*hGa+Ig zpeYbwE2!YTI=PV3vX(2)tf(n%rN&H8|(T_jD3K%U>c_W_1M(A2|WrZqa7OAt$|u8x-1*{SX~U zQ+-p$3OlUZd)#ErDLtGX!13mxpJxqi+$j8%)7pwnbl^7eL9(-rjpOpbl7(EA`lX96+o)VL5RK}Zc+95u9f8r#+s6oJXPRFRYVJ}8kw1rNvxPE@An3-sJxBNWi!%}7VXoG0E?4App(h>F1f3%Rl^c_5)Bp)h6S!?{yH_jT7-A5M zZ{lSh?qP1WS|>ffOx+YTyccCQvK-~|Q(sL1RLoy#=OnuFnDyO4-<*Fp)lg*ZHEI~3 z81X;~^H#0&f{$C~)g>QtJA=rT&(MynEs9FbNyTM-8(<++@JPMf z5gB<99JII@^mA-ytHOFAZ+7JZuf(% z{iB*w8bW!~qSjFyM0d(mvlmwHC@SzR)*?Apk-GXDrJkeNlwgzCmN~5P#fk>_vnhYy ztdLY}&Zt8Xi|aK_PYHg3mL1$aNR>uXC|L_)G|Z`m{oWa4E39-QiaVvjjOa4YuUk;G z2Va;x!yRF-_C|<23fPcdRM83~1(RJb1z~9R3o@UTG~7z`&~gg?1hTL7<9nbDwVJ$=I)sJO8Ho#elq)0(O z)TqeYf{(|fT+CbP0y7iZ{|v}_M)@+zf(!q+SwvAjCCp2rgje6v$vK;kZ<`WB38cvi zM;tof^Jt3efVgyG&uoeGal|lsknS^zQEG{A~UV>5$cE*Ou1rve@S6(+79+#;L{+pKyhOvi)68A|nKPGea$=YZqCGoxT zF}jOo6Hm@B4J05*WNZ{-2aTu%HJyepQiq5or$U4z5^|(mFd<{c4=#OR(E!3ZYPHyE zKgZUgzc0##1Pah_LRN4`Pr|cNYknr9k8v`y5&|opN@^*~^U4rRiIiX%F8<7tbXXs7|H27%7l@4M>&_ zR6%V17#C_@ycCVRI9;A?B`=JS6_gpEVh*+@Gsu^i58GK7_wU{df`k-NjkX4 zEv3@F=zbnqjzm3`d21~uF-T?#|8)tsEv1!5`BIGBxTQGJyS_~>`as~>$;AvhSQJjE zye^Wet4DMDZ}+DvVDxR&X9_ar6%upvAca_;!D^YNkIZI`Pou}Ws3`X*#vR^}T8{6u znN=nRB6R*DuvLNsXce&V+GXDRPFE(#$U{lmrr(RCh|6HtSaxQR zE-dQwhR+!DaAcSr$w;JsnMYYZbWA&Zv3YHePe05G|33F%{R$7)apLcDXz0f{;l(E$ z$}4xbH`_bcw;s2(TF04};h7zxpa>A;Jc7@d!wZzXOah_0qE$%WeQx!*a8^iKvt=ca zjw#YDD!>+BR6#QNdTtN!fas!BQz3^f0`@NT=QtllC_(M&+TotNh}7J0O|J|SUQq68 z2Zb@C@*`VcX87sltM9KvR$mBufvR86T|ZtO^!cgVUpi21<|#uidSyRsdp$AFgU()_ z+q-2~oilod?+gJE*lyEwmZX6?7wM+_1f#7yC zdt>F>{FuNDWSqDwU2V=3iH>${MO(wU8{K>&WdVDd5-YShce2OH>b+QB9+##yN^v~( z@aGe8q?O)4K(09NLrlBlv4GJ`RDfx;j!0ZanAt1Lqp5I&EX6N;R{571E_vL|F@LojEpGsV-C z5f=82E#k?QHeB{nPvH&sRx9GD=Pw+uOuOhDbci-dDKUww@qRX$hH;v_bF#-ZNx+uY zs)#r^6qZY_`WWkAp3FrNf!m5_-8HuN@lPQ6rUa5;ZU8ypm%1w||30ttX(iv9yb7E^ zTXcY}DgTLlu+1eXz^e-0qfv8HH;rvt5@Hjfqsb^UD z%`j&+`uzifjE-vUHEBV>&&Uy+B&`!}(FCQ#Zqe24O>pHrC^WJ%?YpaG<{b$YBW1|Q z+&s5>d)H|;&;zA*kxJa*#H8s&r6+p(m~xn#tc@~wVUa3tB`{p7CI`(#L21(7B}72T zx*?{tlOHVZn8bP~sdj|&cP{FKgneRHPD zAE|^W%N8v*A6&o43UX7D!Wx;ZuDi|Sdd*082WD80>W-2pJg#_kv*NgO;2~TDMQ0#; zh(`7j?-T0b+;0VhJ@D1A0g|r)IT&~YgV&=Ttqw+=`nfzSA~aSmsTf!1u*QN9srDGl z_)=x+npL$5@)dg$2<$d{lFh0cI+FhJ1sS~tz;gV9gIBkcF^dA|V(8pEihW8Inr4~G zmu*SicXP^)jSJ**%D!R{9Bk%)$^GxS5Ky^4hUQqIki)`Mf;kRBfbo>z1jlq9)<*1b zcjCGR1)GZYRc9DEed+8-wuZ&~*wFGL5sF*i3zTa?F-r33f3Mmt4h%kgFGns^pv_)q z<3P9jpPS8hl{IrYC3jY4msyLoBXie@;DlY={fPvVA7%eL0htj|BDbOeqdOh*tO!@+ zT`d>TMwiK}s9fNv=V)1NU632X1GymZ(sY*{Pn(R5*03xUuFV%B| z^)q!51n|x<5NoQjMHWg7kCptu5<$#v-0zT!_?|8eulDAkYl1uvxlg`oj81z=(h&Lu zCp7UiX2Pzq!)FXaN$Un~eR~AAy+&UqN6+Mg=%=W3^ulKwdcc1iB^Y9(F}OqTi{s5y znp+I0bm*fkT?a(H*)Y7F(4gZx>_3Leb6m(^{E{NgHai}-Oq=#!?h#SlJEXObVQKAV zQ~WR4nweZKf~4`6>+GvSy7}Wq(I#FI%%m4cQ%i+*B<-*13cVm?*(MFUUw zz=c2~y2$NYoin}#^_eGahx>aU7b@)v##HeyCdqfU73W?0hpSzf?szhZd2P}lCgPe9 z>eM8zz#>2nUX3JUf+$=(B2(m@Ox{W%lvy#BWJNa2RFy+nIpk_t!ccjBqy3P9l0M8v z__j)*v?}X5-dVOoRtWK0BMH^EOmkK5t*vaQa-Gt2>}D*oa`(XM9cI5@B6&F`V8NPN zm$!-P=u$qR%j_}7@<_)1-)PgGQtR?q%n1IR`&riQ(^=6u(HgQi7wU3bmM+5Ry_4Zj z>)RvgcP$4;StGr4N{KXAzd-bz)AZaFA~Bz5W$B(lCi6(394%8}_E6a`x)2tjqD$A+ z%C|>#hZf{_;=h0t3am~4*sQ&+jn~p$JYsqGDr@@T%iVzO2?<9WQ>)sUPs5%YLviS# z**cY0%6&|xQ5D(wUZl#C45H4h3&#FGo~}Nkjja~1mq;Ww6AG@S#(S3VJ2~O2X(HTn ztx1wGaXcLd?8t7NnmhQa(R&@Rb@&P&a)Zq9p?uQHZmOfhqwM^|7I+FvD>s;2EV`m@ zm;xVT)k(fj(?44(bM4q<-pcckOIoy8u9fMzR{WgPI)){-9`J0&HSVu9QIfP>u}A!F zQ#aj)E;FTM9#4RRR0&+Zf9UW>z=FLp9?!aPj|8fX@~6me=*d7Vw&-TOY%!fAQLXuNGhwG}l1QGe=tT)iKHYisb=;H9F)GY8O~mlKQN)7`+feQZl<2zblmyS5 zo&7dCGcU(8(GFaKbr5-ypGhQZ6CiJ6OaCIC?#tCY`Z*4^?dr7i=AUyA|Ig`v0&fH5 zf27P0?_i9bj>vyeC)cH##!0nH-BBL^_I^mQ+Z_j|hdDb_&|jEv+K$VR&J$XRPg}>I zjo=l19|EJ9%E%sx&S(Kp6<|_ek+KE)i&=~ty^yIs7s_PN9s0d;F)J$98p|ci6w9yPHecxsH2S28=1k2fa zF}Pw|-L=x42majGrV{W4-{)f&e{gA0O{cx~B|GTsPc>TfpL;Rm=4_~}gCf+warFIZ z&XV*i{>K4H>E7bsE}1tfM^+Ci;p)p)Z=Y4x zW^P1VKBkYQQg}8SITxG2s)@CjFwM+mkOJv}inD_H6WRCQg9RO>TmK}4%H@+{pSx1% zYf*oA)y@O&FOEB0^{sTE|5I-cQd$f}kwD`j0(nWnC1|;jh+{4? z;b^NX-?Dw~qdq<23~f@><$I|3^k9_L33cS0qe--NByY4gZC$@kABv@@%KWKLh|BsT zMtFpVsOj5*Zc}ajh*)cen zc3>3!+hZff(+u)OaYAA-z=ChUYwxum=`ib$md>)o6bdlYivn}*=OOM*@YSQdX2Yh{ zt-Pc+xMnO-v-wy?mOCYg4x$>>GZwbZtWuPoe_$aCA2eWB#(G&xuttuAvOcYD{sjgR zkgeCzv7p5z4v&fnokcRNgDEK=Avj#gbOKw0jkhI85IIro6;?IFbZis~VO0bH-*QPj z)X@`1xSHxAe_54wi45bHOpFGqWgk-Sci5mSxBX-BtzU~gJDNX`p`>u=Bl^;nFzR^O zVV`N~GLcXtVlHmU9w60onaRRIPy96@QhyE3mo^*7G@nKx;tERP^Pv=ove^Hm= zwq9bu54qu|W_{`26fsXQ|NIr=BAg)Y1gu7|YV;aQCaT$jez{J4q^I)t(uQyR`o;4MyVS*{2*PtYYQCrV)#{*a&X-;NSBwWePxqbOY(z*IC zflb14vEioflwIZuj}-x6rr3WeNZ6?l@Vly^B|f5OfG>4XX9%*(oA;^u(jVbsw*tPo zIm?5Sxa|p{qjzwihJS1~$v)?%6L(t`VSSFTx9^EoI*u7#bR&Df1kF#?<7q$ykOjCw z;%A%5EzFJDA^xZA{tClr*5Ryu{WRIiIXmh*UuQ&n!W^YHoXF|RQ_-R7 z3h5xn%@EZZrhHxbAER2;X@L~QdGvQ(*skDd+#;&W5z<2;4g1qkv0RBcmnsS4hPtOw zB-JlOH@9CZi#(5rome^*$c4Fctc=i*w`c@dTY;m2lP@AkJDX{Bj^mF`ABvE0AXTVS zs5);aqcH7P0)LhoUhiZrig)8_)zDqAurw?#B{f^;G2ueHq*vV)iJWa$Ku~MlJS$t<8r+4KN@Kd=&fRClD(if<$BVSRhVOWWgir4&h(p#!A6;k zFmEDl>{6KEO0sb{28NQjR)b5#_nu%1a(%+OpOwfy|FT z%J;~&7XBlZd>?vWT>9PYY_lp!g}IkwhQdk$-f)#WX!)(Z=+f48Xu`2^fA6^tbv?71 zym?txdNR$ukBJYka)j&YLlw(QXk7fTeoq2J^L9DWwHb$HE$qC-NdxzoXpo0ed93#v zp^tkItG>ev(r`3O29wNAAQUCC}j3f5x(184M@<8gPGn#~v0(LAeJXbJEo#eHD* zD`3w8{C>C6de^qIuNdBM8(VzV^4X^jC5wCey%}&vtKQ+I`;jYs(4O_hmOX)TFqK(i z3W%K5@)Xzo{vd>aU1uw8Wrvk4+}2bzObhQqR5^I_9aA>t+`ILgKOO&IsCqzNuT2}? z$VXYo)mZ%PcG%stc&B@6W(|T`=!JjY;Xk#)mvD=vA9gm>8>3lE0`c+eB2&+H7M;SK&RoZEKnsXmp zWd%1Y6w4*23L*t!tiIfELT<+5p^8e0m^E3f62a>3nBYHZ%7B05JMV}<_Vf*zOn77Y z+wo|W-{y2kfW(ET@pteKj+YwID-0S`}}1NisWptiRDmdEH@a? zTN;b+;FeBY3HeNmCauRLjS8&i49$eiTG{<8|>y2DXaR<4Y=Z)5WA{;kq7*uShpH$=OD4cdt9j3s9$- zTXfL`C^~;E{q6vGZT7Ww02v%yboGzGU|v1km_09o_}35xNi77K&T+n#ld!T)?eXy) zl)wjXTm5~0DgoKRTdmA9x1dJT;t*P=cN66_-J%Qpfa2&<$-$22HpJsvI7rF>Ce?&@ zX)ST>W-&>K2vh6Cmx2T~jTEFO;-E1CvtLY@sg>4@4>c~b&hS&kaC0*)_Jrq+&QqY3 z4C@~*dJ76^sJ6G`loV7|MPgH=p-u_@>pN{JH*uh#9#LFTnO54KpM*sHl(g?a=zyuF zE9QXD&f|5KX+`vw-LFKBo;xt^8>uaAB`_s)dE59iSeeVHLptcd@x`8S>s=*#W4<5a z^wbf>Q|%3_oFoJV+{HadT6qtwhD1WHGji+GB+N1g3mmghKq&aq?Av>hw^QSrD^<@~AVVtjuj@mSd_6Z@Qxqq?6KZgU8jg!Bsz zlspg96ex+Ez_cc>v}R*ps22;A<%5Y0=z7m%KXhHLO6kF=&0mi}j4xB7&Ysuf1O(_F z;^r%jJnBFZbWG??oX}`8C}nTzsX=Na>|jPO`>U}j@4-lW>_gU)M7pHcASl7R{+Jc( ztmLju!8@JMXs_>NMq$?4dVuwX4y2Wg_9Q?1;nwoAa=45u`G%=L83V$OcZPt}&t?Q( zwZ`P@*XSfzLb9L@2x!%xLrAqFFPryzovpt3XQ8vzAn11Hh$wWh^u1rUoMZUgm5qC6 zikPISx+!Y@p#As^-kY!A-)PRN<#o}Doa{>%AGU8$1-M`9w+4!w5sX|sDW291_Qn;~ z8H?lmL0?%Z1IG(^_3`2t%k>iL;K&0#7=uew*L<9~CYl}XqIgCE?hqe!0<#vpu45kW zWe;xe(R_Iu@O$HfdUljcBGX;1zthItVj~*pUHDO(-a%X@b=Ir0xCCHClYjm^7bv2{ z9#l#Hp1(UH7k}ssuHRqUYhFW_Le%_oed)IPAJ0-2Br{XbI7+fdk1fFQE+yTCIcl>dI zQ(`FUTKSHdFPPiRGNjMN-Yo;ic02sBligEARzmuusvDdQ^XQ^D9X^pYX^&S?>c)Pa zYp#nhJW2KwQw2p&`_=GgG&WA`l|}91lfD9I$(-eFj{Vwja(Qt+GP>4VG0`QOLVANw zhRP`aTPUl_iV>@7aXy{m)`x5$9iRg*TSB&o6<@(!d|o^%kO0S-%ho9gb%CvYC9}1% zI_(B_{i#JCM#`Y{8qTHh@BfweUT;l3fxB-4q4$nT??oU2(tGcSg(4+Enn(-1hY+MU z5oyu{6jYEZy(Bah5fBgoX`y!rJwSk+?{8o1{Rf=qT%2>8m6>PFJZsjhnR(yO+cA7h z^NbZDd*lMK+*L@)HW;oIc6|TfVLL(;b<40cSIg7(e1}qd6aVPJ9bHTr(N0G}SeBQF z5HweghUkF)m@?!1g?FgADMR-(um!Q;$eysc7Sr-)`3o4Yb*JnY*_A$#}%{DpDa#jZ7x# z64U(8lO_7hf)-62DajqNTSr^&FPm|u_KMG1)0ZIGeL8WqFp$GyXjn&^1WTJ6^-IYa+x3>0BrIl@@FGA>bEqQkYx;Wd=_4Aw4TKv^{8 zd|#xi7hLPXzrBG0Kz1BN*5zxR09_wXUd-~;=g7tjc) zkKe;6&waHweXfroK}E#c5u>xg7sP-8cQcv-I%(==t8h4H%QElnKTZ?a*s5PrFn8Np z@>KxVOAGu{#r9+1Zl2YV9QQ&^`FL(s_dEV~3G#yf?3-41Ke359(-Se}NQB4Q^ccyR zQdz*ut!z167?SlCY|2dsm{Z-Ra4AC5QXCY|!J3x{vjGenv9Ze1+meXbU*eKx zIgITBH!?^JmX`r?M_b$w`mLu-2t%f}#wsw8QS)LZs5i4hl1ju(@*&-n$lIzNzGjV= z#rr&{@SCrcQO1n(^jyEM3!|&R3Uo-TN70Kik#D)%%YU0{`2W051ePORHcl1t(wEdh zRMfJcZm1;d-pQsS`8(KK_q(402KTsjze*2XGxp-lQ3# zVod%m!q%|&0WFx;**32i1>EQJ4c)p z+XO)2@qw0S-1Cj^Y#Mvg6yfaY(q7=dLr*nTjbD+2g+g95)OytB1p%qPRxPsK(gB=? zi!jhuS7W^2V3pw4d?ZZ~Z<9s&)dC_+c2Cu*VtUPzQT@!Q@Y5`vj4k`*K z=X$g0kORdNw{u|iXUDv8G!1QY()2})5;|`N#}a)x{@UPidG+W})gLMkW<|< zEycG1zYhL%*1|QqBkv0ovte>_O~#GO7tfxUl`+>ltY*g14|DFBo_g<^ z_MO>A*IR4ABj;KS>8)Y;Q(C!ixpuR4rifrz5p~n6@Q~V_l%6eB#acS zl#_TSwYTbd{qzBo6-5=o!ip#M0RGg|12rb#5vlbee`+?NUQKzsAqlthBF0-`#$qA})FsCA$y zHK)>xOF5?sAb-r%@TEhA8=snX=snf^jq5DpdQVH7Y{v^~)tz?Z=xOt(Vi#ogZr_}7 zim?+}Aa&zLvKQW|;&~ir0KaC*;I!>E<`u!}=PlUDp{=BJx)SXX&{c1v%!cifwv}90 zL4}*nw8-6;m`~2xj_RjrCs0llLj;-5``(;GTL$En{@)F8x_jZF+L5c|T(eJPRDAXZGo8=p~ajTw84PZu+n;{%yKut8TSfc8uabq-l>Ip01rlS+aY);8h##J;-I zN{7jneo5iTX&YsU#~e)ue%UqOPdLi4BR^HH-&A0@&BWUx1ZXhfnLb1k6j$QO(0^LD zT>0ZHj*0m=T^PG9%&Qmf!0%=4smmEXN+BkhXeIfg*SXCho8ZpexBnN2n=jorf8# zII8%A^3C($QT}+Mm!c^4rS2OttN6j&`6=wQ;obMB8NI@(-2Y?%yJmRD(M!raFT6$J zHN(OgWu~#e_6*Ogg#la`M8+MOm#5YJ`(L{sJ?%mkGoD6Uy4pENbCN->S944>uWjC& zpvde~Y6^g;k7{X9Sm){sZBLC>-;7zG_Tvv;!%`8S=1@__3!cqK#=GB|8n{Fkl!|Y9 z*nYojjD(UHCw4KP?dj-Xa|M5j*aZZdG2lcdvsmzJiu*z(hhikYi8vD}GESUoU1@F``+&T|U$uXSg1Mcq8;H$XYTE*qR~r$<&luI4Qfjp_>0rl)A0zf`XdBD* zb2*AUUbQS2?7`Fjt1{NrZD+4}rsMLE6fl09RF@h{@fmh+CVY4njMw06CKeBjK$L+- zyndW`y&664$F!%f0O@S#j+rEHbe~7p{$LK#RzyX7tI~qE{(d7cmHjQe(`_HbZnERX6)D`S~&cD15 z85^Ig3x)L0Nh$?raqe5G#s;->BP&N#@$n+$ObiWMxFKUD+hjeM-E*V#(sjmIWb5q^ zav}Jr_%ET#6?#Ru*M7_Q&p(&82eZwn9`=l^Mdle0Z@a6YL=tZql=+*UOs<{%PPRUh z3h+U!Ov>Bg`9|PF2!-p!j-&t_Tiy}GEc8Z!T zFmi1wC3@(zr;JaBuHIYu#D#VR+#>V)7+!XbUo?NlTg~sExm^rS{=@45;YVkIgIups zzra`WW-uX?l_>r#bKJKHY<> z{Hw*BDi6ip?)j+l$M%&ZQweyql|59`#@D zqk@&LRw66u;O*Dr)Fd^3D6;EY82D$L-TI^s9{l1)b<^5e_tFNq^ghXgfpe_}T=29( zdKpvyVCnP`X|09qNmGLO-;6J@6IBJ_IDBEj^W-{~UtWs2X=GDR4p_OIG~~qTp`VDm zl*Qdg9_p^4Z9lFQTEB!&eQ(mA7V5>(CirdqTrM8txlNl|OP5J)jg)C_p@RJ=#SecI zI_KoOhr3He-I*=NnCe1mG0zC7llb@dBFK1Ie1AtwOX1opM4cjXld+XWCyHu>se=S{ zoTY@i86q8_C#Z=XUXTg(v}8I3GZVpqYaxtEL#DEQ9gjrgqL> z7-SAHyDn@iVhfgKii$D6R|is#Dlg~VrmxLmN5Qr~0n;dc^`|Dpr# zp3JA;lrfhIHJWBnxvEn_sSZWECAQb|;Sb$!xj`wKK4>B>fB~k|l8MD58~V1nloR$J zTMv$)w!%_WaZsoJ=^Dz0CSKR&Jti|jN^&l6_eYvKr$@l&{P_9aNX`cd3(;hfT(44JVwIeofoCMOtN!auXhrxs zX;s)&a0$7(PnSX`ZpeabgDt>`qUcp$@yOWlz`5<|i(v~Is$P4_J$#r|ybTmkJ9kfO z$&a>Al4ONg=l~g7^^nyW^DPJOH*pCXSMh9xq0P}`g}vnri9hb34{Yxsdz0P=ISb+% z70IH1oncfwo4%W77=yW>4vMMbK5GV90I}Z2;GKf(EgI;IT`s1zreGu_Vs!kTWtsm# z;T=Ykuphxj>>i5y`o#l&`a>YmZXeF>`tuIg?<0#j^by2X(4!B=3OQ89Qhlsq#h4J} z^E!EH#ISr#7P)$S*gJLRmf1P#9!Zc=&B3Bo7!jmp9n?jaOu}uC0#OiCmp?2JFC1|* zfEfa8fW)j* zAh<={>%{)Pddms{f&FYWYIlWd*`~kR{@9*Im7rzE-rpKl(e7^Ey23~)d(0wkd-CgPA zC}!veRYnmFK9@OMLU`3%Tw)y%{`K0SL^PANN{+L<{)5^4=*i-cq{TaKhOHRlj z|D2J%kjOv#LxX7oB0=H3t$GIg;J$z7J%DJ&6#Fog{w>$}QQ|U9#cp

    A+QLsvzy~OR>+=tBK5dk$>Z!+JMR@pGz$?Ytj-?o6p8LnUeww6sHZ~)0 z)8a6FN_bd6Qr`!DwnYFWdciMX&IX*XfL_^SIEjQfr8!LIJZAuR;8V-1n10~O9m%tW z^j$Z_eoFm_T)srhpx0u5>xX`+LQ4faUJ?Hr|13BZDukDR1NH3hK&+}sTY0E+BxDsX ze>jx=HAN&t9Qt#z6HRR^DxbvlzMO)CG3t~h?a<@)Nb~KzkLP3Ue;>T@2!1F^@RRhP z_p^0PoYO4)IM6?{zR?7@UeRA{{n10)Rx!C?@9^S!=y$HUP(0I_lJcBv+#qL?L1vWS z><|%qfv-8!F9iV-cJ`n1rwxIJS^OV!OCGI|@v$bki`ji4@63FL*Fs2b9~oPfKupWl zbH)X56Aa$`f+~OIRk69#bpAwG`r@roxA|SG@ll?rjpXWO#$KF2&s5fPCxeZ{PlCjF z;YSd2u;I`-zY3{UPfO|UDC|Ph8#feN1Hz(p96Lgxw@~C5(ryPR- zEAkN_3Yi@%$=BMMu{|{La{GcRZcFmg4GmG=-9EKU+b6O&k*%Y8RUmYI`#;Wowu0HO zpHg4h2=!@!1qsknNupn-MPtV9&9(*4UU-wX4KFElFK&{)+cdfOvhwOQgaY+`v!&!X zv{Un|cy}|VU#%m%ci)<>Bzxm^ZMV205qutB<2#E#39n#7&0=U85+TAX_wUQiG&fmL z0n_$=`vSBO-=kg=tjurBQ2-d0e1_+8nSBdD|8Ek0g_v4jBn!o^ny*yP=J zyKC7+yUn!}ay+=VgSFfu-Naq4ZoeHWZIVfFpV#81?{uE$Q}@0$vxGkTcYB#~R>|l-iUH}A`dk}}Fa23HlV=e@49}aqi{=N@ z*IXKjHt*a`@qI-EpXzIU$=SYn>&+3oFR>dV+9 z40sCOwulQw08mPuM-#YxnI9~4_c~OrJa30Z-DL2F*dsFC8M*qMMG2p8+Z0?&fcV0k z^@OA5s)>iDeii3C(*w!x?0@_`_`b0sUj=whCLiKDv-Wl}Xo9jK4IGh)BN;I%lBo%% zAuQsH1vpMVKO_F$K{mePPw+Hv0}C2vVWx^tT+6#;W=$ClXsEz$W<1y8!&~I2X~1Bx zvh#Fo)ecr%=sju6R{O@CnIQiAv(g8OZFe}R``~zv_N!>z5ado}&hmF+t0QJcbf5q( zm{9AafC^P&L~C!C{Ol0RW9lR7*UlDcq?Df23$upsT=?xnkb3;`eV~~T@~*RV0Sj{f z8Teq}1JQ;(uJWHZogsCN+Jn#|)5WH3F>PPw4!XV-njyHtMJ;(r68^M`h3bekx%L z>G457kVCOu4z4`3`CGRy7x^HvoYaaAtakfee;!BYv2Io@iE&FV`eQ||8X)4YFZ0TT`R^zA3gxbzkUqfYP2-Y&N(oq820ErU&{c#k=oTm z(QJ>%UQanYk}QcVrH$PBuER7)GU|b)IUKCN1)AN(a86KSGNu<4UZQTmM>YwR2$|Q@ zYKQVs_3Uf@WDS^TPHl+e*v88`&v~&KyPr};r0e%fsVd4iJ)@fu3owwD*ggARAw)0H zGC;<1kp26cC%%uhiR(aOF?&PeHnR^2N364?L}uY!x>SJTkCZ=ubk?@Q#rShkur}IG zf2Zdg!MA3zDBY?%CRXu8uj)&Q|0(;+%vc$eWIF_~%L6|lZpl+If7p2a%R9chCPrrd z$iu{-j!LYHrf&$q1;-r{!~W$<6+hL-;G+}wB~YK|8O*Cif9I4v!C-tAbSi@vCkz5oP6;aSwZ)QC|9F|^M<_GYYqVgUCH*=)0%~y8$H^0jPOOX=<{?>WQ>!uzU;s^w(LM+^>pZla`XfXaLPIF45m>Vc;ecO zu#GFUDG?Qc-5K8x4ypg~IH_@0C>x>j=bC}|WsO`ax*OAUnt0897?u4MfDwcDHdke- zEz)uu`Q6G`g4VzB!xG1l>gCJ=%JWOS>Y@v?1{Y6ks>{yDW#vMLx#TnH9D#%)jw?6CAHz>s?5RJjfuiu->cqV09xKJ5J|oB zexsEu%_z$VV9EsA$($x|}iV3M?s`tn)EB!!=*6)hB7bt#j^R>~8)o z`opabdWr9)v|Rm2h8V1FFJS{kBQ~o;LKpWqlq$u;kiQsHrUK()n=m4F{Kc^adTYV3 zN!AEkgEcES5g!oC1!~x%UlKoTU#4!MLL{HB0?J2ul87Y^;1uL>p=JQLI~yjY=J|=F zdCq5Haf_Z$4SK2_6iEb)okBBBhQ)q97eY(8Gf1vA-G29YZ>M!MXr-AAab)ZkiSTc> zX8-2khmvu6{>p908)yu^uWtY^it;#Om3hkCVwO;$cd+W?nn)4<a;YRzeE%k3(suQ`kNUF1msKy}1Q=lLpExWmBB1~s&cw-q zS-O?J!jpJ|1^~D?{>ume9$v9gklEJv%ChT>Kq_EvSvwDTjSO&Sy$`ZZ_BtiFhJf%Vk` zF`3IwcHchL8SOoA744qJ(LSUC!dal2EM81x3RlWnf82nlv+V!kzNOszDqAqLV)gSL z0!K|iz8bCcN`*gBAV!`a%ia;%eyr?bu9r=Jw^=D%)R_R4dSLZ-R8OB&q19jhan(&G zNTx`+$f*j$S{gryA&}+ne2{m{>Z=)Kzn9YFOCfyjT;lfg-ds-q(I7MPMda%dPXfvc z!U6FXVN!G4R2M}{G$cdNGUP(EJK6B>H9fo5dFa>?IZE-K5lJFT?s{qzcG}t*` zC$M$*+{i_F#_5r3;Y(EoI?M!l_U_OkTd(1`G^W~o9~%Owc$bE z4pYMEXu)9o!c^$XHCmC8%%_g6ojt_KA3K>U;o9!v6?et&8|@@Gs)(YNm(M}4Hm z$6ZLawO3E9t$tH9?3UpV%>{+1hDcj>uE^bACim9J-o&0oRR}OI4cWlOfob2SLLx{X z@f?3{j&a(48AA|;>|O6azTceo#Lm-|js=Ag(5#&jypIplxS4OJitMMayoCX1{f^^!)zspX3j1B$~ys6tvqUW$56#FJG4Nt3WrR%06fmwv5 z{Yg1lNN!CBN1`RcO7m|kzYnrhWxF~ikg=YC+|C}HD}Ni#;OU@59kAR@MX!oQHE?u7 zGJ|iv0X)?lxfR05UH5{Vp#~Kse+85EN5u&)zMhV}x;(SoLB)v3xh-ectqg#qTE&ZP zrrU9+%*gZhEDGv8!>iWU7`)`?(4qA_eQS(t(*w==T(#Q~{W_PMUq}@M6t?fyQ@^Az zQ=MsjI{feL7SkhLGkco#+NJyRP-M((vK-Exe^zghzsthHr>+Hu3-YI zado!>*}v?+{~{&G9&GUzBWVA^QBdET<16hvBjI|p5Z)+WxSi!2A_D{kDyfkEqL zhzg~ZZwnT&piDI*(nXTU+tm==1D5$B{@WoU@OD5*KTA51qjo88$VIcW|74ih(&X!0 zH$|X8hSElv&dA^N&#q4B+T2-XKH{|>Seqp);Aww_yx+=~5ZQWRZ?bEFm(cxCG9HDw zkdU2%jwq0hww>&~UZ=MhYJRQIM~szLV2hpIJB}A(?UrK)Kr^WxPic~J&f9`h_(tV! zQTV{GU>L}4)r>r?+@)P43FcDKvn6nzWm&@~5e$Ya14BAb(oF7Ev)U%eMeV94Nv_K` zPS96EZ~r>8NWruXN;mS`jrhIZOq~k+3YaBE8>-KeW3co%5C>VSk3CC3!|$FyvSOMt>&a^;bDz(;muy!K0sLH;!64v~Dmtq%C- z6C<|GGLdc@Jq=={n{+{8=<&DslkdyTObDm>7C6BdPp1uL*JK;{lOD3u*k_sF5B%Nxtyy4bF#^ z5@ajQ+=vfN_TeDT?J;^NH?sRcmE3j6Y$=?MvBJ0%b&Z8M)1$0f43i)7` zpZKt()ZPdc0QaZS!hQqExayZlg=c-@u~y)(%#;N7lCZfwfURyQc6yy9@NdimXlH`$ z5ln;2C@_CdiJutxJKsMjXhq@Jc`yYQChDQF0R&qVj^R0h=#_Npq)Z^I@7htaq zfG!zpnqCy&ON!Y82=!G_!yKfKr^6V?utK2l_J)n2J9EMfNep)5hHPlqSpDqhZ$?J% zmBdhyMAVZCe~A<_7ht_F56XUj^&$@na_ckoc#>w*Y^$QZf>E%s7q<6fFQR&?60(=G za1GFVzB?k7`GB%JpWbt5fZ9+OwH1`CX=2Aw{%P-nKrdom5LZ6VnZ3XTB>h!I0&{Kt z_Z5er>z3Ul1)2YKz6{u0!lizm|81gst80~3rZmq@K*bxd#|SmYz6DHH6mllrnXfU! zJ~xgwx0+^pQ1I#S->_zXpyk)6$tjL+)y{dYA4#X>`J}`;h>p-Ckk}jv?zRG;1j2A={Zzd+dE;JY){8{{ATS94{ zUu;@=8nBDCnpOBolQhQ@x zod8ujShtA^3p=P8xxxR3Oq2q)-0P;|Q;J$61;t>(>EWW?lNW5WEq5_biH1^ptt~?r z$>`8DY;|35rK_dN%^C^TI?||^S|#H5|7cI$;`Lodyn5+VjN=z`@K4uI+AyN_Iq^W8 zkV_+NNAJP8S1aWe$4f|r(sdmT+A1m@B}et{!+8Qgf1bDbT}$*l<&a!dvK5sEQW(d| z7||bGy7H1{;J%U)%FBoU>ihU+1;mRSi!*0J<^+F*!3!{9ufUz!aKQZ91WysPcfN;b zRv_~>ry4-Miw=LK??gY(j9~>ew~&)7R%v1-(DL$tnpS*@iz;_I+{3@!;f~1%@qh?; zzRwDK4EAQ82qXUQT?0AVRkJ{m!?!~zmpyC{Cm~s9_U$ZEN`eTi7~-JIiJgH9|MjO& zo7be=lY5d)Y$e1t6!>(wG_SYrx5Y0eV;@P>OzeVT=2<+|k0G*pW_0&2}I8j$KJHL+6D6o;iU@&1^-dD{kKkLLSKzz%{QM+gH)9 zTj*8t=9WPX8Rs+y&hC`uHEItZi?Acy9B{#{Fwa{|duk#)2I4DBh;F$LkhFeTO`5wq z!pN6DuB@Y7s{%|Z%R*X7HokjxA{+Dwp&7)kcYlEx<3&~V2nFzum)W0dZv8&8euqnN zq<5@Fu*JKXI*hQ@f&Er#rQtMji(dLO%i~B7gfa!1jugh4FFxu~PfPb&S+ry(E@ZVw zc?E=-!v+Gr)6-UdpN!nT7a)ueqJ({wmwK=yf4^U--!+1Ug0;27VwL&Uv7=FgZ)))Huxqu{vl#z`ovV`PIZv!0=px z6e^_7(DIx};YOsD*ogZiRv96lV}M0B>WMX)NelI}PpKxuLh0u}&x9{ETOnp_$4nF(pbq_-kEqdP%89gdIm=Pu9V~jnJAUBg?&-N1tbGl#c7IIa+pGpY4p`ie| z6&GvsNi4(FSy6SAR!kjX#@fs34ky}CfLU&|DhQg0=`rDh{@dB77(RQ{*7n3AWN04J zW#vhBLXH*7mbEm1Wi6hyBQ^@3Cw{3Escc)NuA#xc$g2?~2@&)KSlO6axcupv|NFCY zx0QL3g$!zcIKzpKOnDdY${X_7XUFVkwHI%X$4OMq@_LCeVzTai>)TjprP+_dCy%EY z<0jjX!9NMPL2sw%XM1p7T%Haedp@&Le;~X}t>EFrErj5r-vRWTBc};s)mw`Bi}&r` z*}|1UA%e!14-ikOw%Zq*J3i-8*IiaN~&n_ zy7uz>XH1FxNl7+p>_-^JO;>&QW|J`2=ev{`TK(U|f+3omZHvt(vDum}rWAB&A41NA z+d$Y0W@P(PaAD`eq9xbNoz=MAsx-i!3_zZ$dk)*aN36}Y$lBTn_JEv_V3V?|J_>=( zm=IPwANy#QmI~goH`Xv?Xqf5kvb6Q_)&DF8MZNuL6yh#`Et3q#A}=8lXbGC9k7hbL zLV+*S`+OjP8ux)VB*4-xF>EQgom=A*QQas#9!y9MW8iJU%~s>)-j@{_e|m?j+aP2w z4uN>8fGwSx9`2R!x01~3{=mL3tZ3Q~g!w*{Qf0u&+B&NXH@BzdL8-(<@rnEOe2Emo zs?j-;7wKWPtu{2y5)!HORa0#L7z5|6WwLIi!8czme7W58oh^MD3BW&a5;TS> zJ@LWq0kO+C-NH6th?lY4p9I&RCl@QhM`>Yqzkkdi>WFzAvtf2Hr^fe!e2)n8eY<>$ z=VEMiCwT1i>Nup@;-dq=Vea+NeM_;vW53PZ1y!Xj-pDcyRRBKMYP!yn`ES?3+=nu* zam7Odt9{$HzH^QK*K?oV&yB|Vsvm<_2!U>x>U-fO+(5)nn-WnMx(PzbP&c5y1qfgJ-h=&U(oD<1#TG&Hw)U=YQT=p;fMT zAF}~`90w%BKDO;z<;B1FrX`9F-^$o(a^i@{*Tyaa;TyxD@7s25a^iztx7;Seuiab* z;ny#3t`7)4pLHLZaUXh z!wUZG+GdgkXC^!a;t7lsGDu!_Eb2zPL~swvhIem_Va zDt!OHSRn|0^hRc@y~5Y1;I0}C_SsC@7qU-_dlMmeW7Qg0fO*T?C{nyzRR{_0-shGm z39k3N#uJ|8s<947BOiqra9$g4;y*4iC~X0RcHUVgTT7X%bF$SqG!_!0Xd?YU3y>=Q zKa1pYo;8+$s51h3s?wchd;GvD|H(!?cK1D3Nw)sS9{#URt#7?nLau%-wcnhK+*}gK zR0Me=?!32VY~2|!`=d>}^5z9sOrbV=UE@Em5BR+@rZ;{2iAKY|5m%vl-L3m|KTMh< zgYcK4lah^&L1_z3f3qz4d~YcRF-?A6?WJCbxORSrAMm-!u<0Q3Trh79{6y2>kJ+Ju zAu&$!zF(daWD{$IPlxce80tp{6bS!Ag`n>%0*??m0>qo8Anx`=kH&AyFV&s@3xzA1 zP()Am0yqju|L1oibf~R@$$>AT;lDy1oPg$E)v~vM)&jUGQ#)}I9Qm{;n(B2)00T08 zuCMVSf-b{;1OQ0~!JO$McZ905h$0eplt|gXbvOa;UT-<+1|?^Tq76CQo$7(ZGcREs zMjB9B0Bpz2)}!9`tqIU~npV{j{A!vsE)nN-bEd`pUNCrgk5{b3>tT`iJxvL)-NP=U6IKsJ4H}*Z;}d$* zimVMgAOAVFE#9|g;-jteYi&}0v}Fq|OZ_{C0wEvcpDTUQSr5zK?s`Bs8t^o6_(X0p zvV^O2^DATFwpaC~ma5LUyP(qKjNMsmSVH-@Q9yNb>mJqrlNASNeGdPBE1K7?%u2Yd zc-PDD%Y4M?Fl2XOAqsDoN!Rsnyg(`1=y-uY>mkD9xIR2MG|;c>Can5r^1|+m2dNr@ z7yB7TqG%Sv87f=U>`a_X7_If+GgP?J)p6zG<%k&}SK@K$4cDhEBD<3PBKXDbyxiT< zd?~Z}Ge}YS&yMq|228BjXm~o|&076?dpM$S!-u=jY~Oa_hHxmW5(MAMu&d30io<*@b$t-u~`M(b$v7M6T-UapPGu`iS{Mt@elUunSHrq4?gXwJXxy-CU?M31d+zK>|J}mfS44Kz`$c91 zxz#SVmyPq13NZETvR)ja-)f|ymHyZWC^@;EndjTN<1t6JRR@5-7!-6u|ifMb#xC<{jXTuSfkp;i4mKehRt1VVfKd&hICcww| zGYRQ0Nbscws-}E?E>8}Cz6hm@K3hI}Fx8;$y}q5r?gfBwIRmiqgy zb6fyHhTXi-lg^Frj<{GHJS$f3!u4Bu{zFB7T~IBApIzam%b#$XQeyeHCfxrjM-{5U z9o4P_kjE#P=OGvNxu>b7mxK3qWzfaHK0)xlHEkbDA0oIPjLfFuuXZ<&8xEFbN^g#L zv1{sU>FV&1i%ox($fJ|-zPpB(epeLVp7rHVzKhKO z+zGQjWV!|aGeW>Uilhs_Hy{9aH-E@!LWw2bV(A&;Q+h_eEV6j3_?)96iX;U71;G9I zze^`AA}4f5i$iXtS_y~w1l!|w=riN-r+tt#_wTxQGt117>7pb!h7-T1!596IZ>VCY zPm|306@jkJ(j?;#r&ut(#z4413RfuS8%))@V56${Md&H^4UVd6+(922s1KtSLEh^1^K#sLJ`JI=nnH&qwBulE|L|Z zL;ufiB8LB9EKh-IO@#ly>HQrynm0;eslT($)RpQy{`wM4iLLuU=!c@-_4cT|X5BP= zXTh0t)X}KU;$SG`FPp2BOD^kv-$O*Y1fdnHP0BZZ_?1(66ubM^%CY_HK@P9juR&5@ zi6T5j(R82o)ua66gUS5Y&xBD0XC58rOYUJ8KWNKazjFU7X8y0K{~vnpw{OVgVBgo< Um=A*q0rLPuT{E3(EhzGT0p(b%g#Z8m literal 19954 zcmdSBg~y56 zs3`?I!@+%lgR_SF@&)b-EKY#4Zh@u0z*+y7@t?E)Vh!^NUtswOFu!IE~}Om48tk4*D?XyNhXC?ne~M!ypiKhuPR%?)Z3eP%N5}g{!+}3 zn331bgL*X`tD%=kd=lUC8e}+bg;vjZaB!DjP2ot90Pw##afrW%gCKC+7zju|&8Ruy zFyTS(Y>81YzV`pW%u=qo{iI`bXLYD}-f{ z(-ZCa?C=9~E;bp_R?0NtciW@)_kLu_n}%K+5qph@)LG1klz=LU?ui`qn? zcW*0^?H)uNVeyZn?&}lpR?XZ&wR-oR0dLnmSZ6VxpbGuzAvGGRRy8lL2M5XSOV^B# z#zoasab)1UqO1FvjM@9zmDQPm9E1?-GI3LZeOH-C4rjfll(ddt)wkfYdqY1ry;*3M z0n1;^uka4+7anep|F-V48cegH#hhSm!koaj*9W)2N=7DTVVN_jzYq9grd8%3uVq8i z?u?ti_Ku{L0Zi;>o)dc}ulI>~`{;Y}EVxNAuu)I6njv(tjapmuy6fJ~4H|Ox(UvG=~V;Q>V`#ux-tgNQcyHe=l z6EFQIh3&$F?k{6co{E9V5&{m}VNU~brBp z9rs&*7(05HJPi7g0Ib|e@`n6o*MOtd6HSGb1XDG=Wf zdKfK!5n)Oz0Wb=mK#9W2kk1nUmo%3ISwRfx{mDa$*Y@2QCRo}4aKM5xP79=jqyI$# ziXK6PjV^8mm!aU4354&KUrl+E0qt-JQPv3TzX%bKlxC730_e1s8uV0fNpPTB|1nF1 zuK<1Awj3RpFi8o34ciEzz`MFEX#{ru`ayD1Zb?DF0o#bQ@4LDEAMcW@B!&qkvPOn;^+XP{8@7>O#K2}P$QA$G5Nb6005aAYc2!a zCvNHsLf&4}-$;%qIX%=`mS|r;;m= z`*L)X=Ar~o%v4pl9HIM6Bw-48ZsJMxXn9WPBUPXc0EykwT z^_(ovNC*x_MM)bZH_B>FqFh|>JLISJw>XH_cN~mwNPtdQ(ww>u9R-6KmVl6xYAQAW z3z`SZ*#}`|;Xq~3%5CVbXrmAeHFYVAQZk81yyo`n=1GCWoWnKCs=uUNqLYivcq4k@pvM{~0UjvbJ z$GX2mtTiMsl#Q6-)a&k!A#wc2<*>JEYJ)pyBiN55Mu594#R&bxGws;krI71gLedM` zNsshiJqZGmXM+JqqUNT9Zvdvrs4*f|=L#B9i1bP+L=4I?%!xlagx5i+(*$6r0ZhchoMsqtR?^ z69w-E!(Ut2UBXjELrrmp(q4JlUE+%2Vb^_Lr9E_*=sCw7WQ2ucaBGhSt&shaQQvgZ z#rp4}WKRaokiQ$h`0(`5_A(@GM)A2vhprF0oj{YKKaw6Q+8JCY3P6zk*G0CAu`TW> zWE$f8I&e=jx{!vlQC|KI3knAD+SA$($lxb3SYPXwQNu}?!t)fwVWBIkD%@kBxbD#bP$Cp4e7`{0jzd-R!R8CF<9;FbvT%k%-2K! zK`|7hoK=_ruV5=yNcp4*$_WDc%y)QD>d7$?G3-ih1A`RM34)lGhy>BpkxdlzDh9lY zn_}Yx_sWL7BL)D!XA3}N!(drdE}xN!zeD_>N+>be0$)uIUzdB*$hN<*@D{VwDti zpytdC_zbY1c@)z){!gj}!M$n&{ZIadM|2Rl{)Pr&Q}Dmb7Z3zH%@3Xv0gCMY4_N^W zQ!0ovBCzhOsRa}hHHJkFJ2lGYHx567Vj&eh&l5UGqRxXJVUvUBDcgAaNi+z0KYAc~ zZ@rZTLFvVgtAKZ525kukUCrIc_ZWH6#dlwhcQb)-gQ;k>p0X9UOV48gTY0hmZ+{L# z22K2|wsQU}78^l-VYC$RxOQ>3X0s8dg5jiSDuW{Oo)z`upakB1$CJzJ_A9|tDbEuW zA-oqmx~VRt&Si{4MtJq;nWP{z?*P?oQ4%>z_y`kwJ=B~rN&KZZ$c_dk-y zAuX0-nES{Awt9APm+9-00$`Kf=jC7Q^qUD|Hor%wL2q^bZcC?bXpW-P!{{ezM0n0( zr>`aWZO7~)Z#$EFgX4!GeCg{}22eJ%93g}!VzfxU0xUGtn1S=W$u}2k zSZkC+B<9dB@UYTL9^rDXw8x%$-VPsVFXql>;*D2Y8C}Lat59fmT;wY5_#VK&@7{!S z9=f0YEKxE-US1Kf(0l8d`*zfYgg_FF&KleA!5zxt{D#4g|J?vw9rVEL(mHG;o6^7_ z8W(=Ii%wcpS!yY@#S(Z~QWOZzGS!3mG&Lq$t-@~8qS%f<_cm;F{Q1}9z52^rAV~Fsf?zOXnJiMT6`%n*Vmrn;LC9enA=91FVXU@g;~EPL%6{H?%xZ>G?e{S%a41-Ibd6WxR& zG|N{8u2rV$9Kad^6j=Lr?8FgZVrTgg)UrRpMHo}0S$D&!;NsJjugWjM^N%ZK#5TWa zx0d?Co5Q&4{^V-+4-q=m19%`n<#Q z3y=TlGVAGjUmbYRF%4wUu|D_4%8@dU2Jg|k#QwA4zgKGj*9onVH#Cd`R1Stw{ewIRMM=KYqq7chh{+LzA&xz_2TA-jwOHjkf#F961S)NJHn#p*DB21NT=X>ApB9+}|K2Y$K?436YILewGNOna@@xY# z%`<4s^;9YTaS7sUY+ceWfUVgYtp3^8n%o;@1~f#Flu2`AX0wPHj~eSxmC=3qRY?#6 z+;PHn$5H0Xd7)6OWKXQJi>|^uZsyYBoZSkw!YtSa7QiP`c#N;9NDN(bXPsOngfw$U z8yhFtVD{M!*QZDMt}i6DIwotISGIas^&@O@Jz|~6ZW{+4V}8=6*EpEjX<6belaQ!u zOX2Bin{}HJ@O|IVnXG5TMm21GOo64YQ_~uh{{_kLT@w?x=sDQ_8=A0%gQ6Hd@5fME zf8wIUSW(l!DF+?aJ-M-}Y?d@ z_kOPj)9JTD6Wj64hxcFGlK!=W70r5TPz*2Xl#38U+}Zxx5-^Ew|1#Xj4i_Xhp?Qi6 z&0z;BG?nj83m|y^!4Jzf@A!k(D6G-M znpT7-S5~E=MGQ&1DOa%z(F#Heu|d1f)-;s>s?Cy41N+xRJSN>fWnlF6Q7DK-B603_ zRCjezqh2d(6Ol+GW zO5hhoaX~6~92`eP2%;AmdE{BO++TVLVN3i!F-5AFk zZ|kpSNH){5t!AoIlvu*{-&UoEaa;t++3UW!0K$aVwS;S=%ydGv_*?M^{PDrk>O#z{ z`Q`mZv_POa?(v%0%Qu{RJCH%aDL`;N$qDoxOu)A*GmZjeBuA5pB{!Z}KuQkQfAd&u z!`PgvP>e=s=%jhd&PY0nY{AW{Vh`{H)pnlEypbBC1iV#r-hT*!QsQQiJ4b=R*6b2o z8Ola-D;_I-oV-aS6X#=4t>v?7<4$>cUd0G_byXHqehhN*GA67;V$v`x-SnQvIawR~ zQsBpFBpp|}2w+v_ywT4oz4=d78?q{<@}fs&92h_A-Co=k3!ncY5pm;xc9iIX5(+0UG|3Q zmDN>KP2!TOyunEZ%Tt;}lg>X35mMTa`suF~GiJAD;byBs=!T>H7?f~I7z#%Fcva4_zr8_Kb4gx zR^Tqr83B(uzgVh`+h z-e($ad3e*g>goMyC|wWn*-Wv1yF{^%J6AaE3u1B-|5{i=z`bG0HdmV4b8i0jH zbLKbSrD^(wh0HIYO9p)oI0pXnN*f6Ls+u%Y;v#Z88ox&lTUT-ZcYl0dCHzifTgEJG zf%QG1G^Qp-A_I*pwo%s)q& zhA!?xI67*5`iI-==9rIy^~TBoY@$$mKSshJi@&{HS=6mv^C}MMm6Z%*)nAF>3FCzw z2&G3gyB=hID=QeK%Ujo_7qh(7GiURhMOpn8rMWTcwrq_zAmG(yB}g)Cp%j^^vAE|; z^7N{s-2HO#ly7AGd~9RWe1&Xk0#aeziLI3oB#p={xwvOq6FM2J*B;oUdi%qj>GB{+ z?5}B@?m1y|o>cj)qiKvfpBnWuwTuX;&ExK5oZhP)yC7~*GAH>-i5RLJzCYc1;@YQT z@0)Wmpd9#Q+(RgN^0TRPeG+v`Y^cNN5EzuG65Si!B|{my;{HlHwL;STr z2&)79K`O);v<=m*MJgyTLAQdYw-G(wor`?2zYR>h>j0uo&=rxtLp_%! z!X%WJ#AM4J^0&|~7~IAqqALFjrch=(|3Pc-%$rUyy=2;gtpc%Xs5cfl)ll4iI)4S9 zoM$PmbRxD)`YA~`*t*&c6+@l5!fZSvL|Wo%%b7pKKD3-rY2ZvbbByOb|IPyFTRIYg{++SOL(1K0%&S z7Orlx7lW&ODfW)z@(~3oT5r1(#5VMVzO{dWS4Qx@eBlCg~*?^b%46m z-ikhwz0{M~PP0DSI<*Z{HR&|b%M0q6nG#7y`{mK?S3_@7vaQI${#tlP52oM@3M@Wd zZ|_I{i3Q#z+Bse33fYP7H0NrJkJg-CdMRj(jd#?vwfnb~7~1b!#@C|n8qo=i;&P6R zEzCS4lnBsSf~eQ?`O=$F$=!NoDD?`#V}F=ED0@Y}mBb?Q0%983ZkOFsgtn0sLfUeA zZ`9LT#6s1j6`|qpqk@ff>ORm@B`oh~_@91O^9dv|Kl^RmlX{G!|Hz3DboO?2FwH)k zF3$1SWX28sMDUxhOF|9VCFX>TBzB17(bUIJqju+V!r^yGJyqhf`0{%7ajs?!8GYuy z32Vm5B+2P+;=5|bj?y$W!oEQVBO@5h(j>F@D=&_pm+{Ma)Ue6kx~?^;%84<# zZw$eEpDrxJ6{}y6%Zh&rPWb;^WJg?c2+}rr-l|j=x)N_vD|c%b z8=CP7fA#k!N(ym3ElCPcxSHPH`J}{id5~L!8M{@xenLErk)bkK1*9(&KPkF9)XBA_ z6LnBox2{5CmIRi+?}<9L5F0Y1*n2LVYRMnlQnce*dGFEN0>jP~4T#+cr=-_yZ~xGV zO-N5_32)_g!)Bc(h^JD41der?HW1mrux{%@Guo6(S8*UP)xuR)Z-$vLv=}Y>G<8g| z8GkR+mcy!yWbbCArPvrLUcXW+C0kEELR-gIqM&jIPyN=@)H(FCVh{X z+sUE@46k9L<}Z$|C><|8ZFk_QVU)KjE2k+IyKX9sMSbpdo3ovZ*Uh;5jd``q+N3*= z#Tx|dVJ(AGbdWBuOt<6J?HWo+uBe3v_C0&Prj&UUDv*l~OExv`{0xq1TOeQ~M7|c| zYSU?vB?)cTa^c;KqmfX-^zD{RS+)>u|JbclvzPVlQ~_}##8=CnGRneakFV|M7-HPG zV{A*++0-$Z)Gr<+`NhFkV%U&oR{+ThV`6Y8zZkPm+OfT7RTM)aVV*0!OGswxbfkfJ zE%c4SQ;@`?IcNS?dv8&{St`b_{bR_H;+*8q7U>Y=IKRSo3p9TZHlcjj zX_}i|XzGt5FxRIfE*;#xyJ9z#2Uie=gap^=X^juf;c%Z@H;B!K^2_MOu5H^z(_I$G zS+ui_95$rkCHifRqsKF_(=NPS7Y>ZHWU`zb0)H=&6DD7JEeBSat&LFqkkT~2yK2tp z;!K31^u1eU29{+4yKU8HLdajmmi?AcHjb}8sitLUMTji$%qLHQJhx_%-YvvR+?5vQ z6XmKQ@fK9?4Wa1lUYQEstlHMc=C`YgKPVHH?H;;2xZ3a7+o5z&&ZAvvZ^$_im;X%T z=HZ|{X(mq(z*_Di|2rWmz{w0+9ye@m5syCHI3W?yE_&3Mn~p~NNIL;;jj^6Ho}y;; zC?pI+jU4UsS*=`gV9w?u{7cQM_zSFEB)m~vLpu3TR+O8tTo$4-^l5cflNZ|R_g?F9 zL&nJ1ev=$bZknRxuWw2*U~hH&;5&o6C~+hf_rsJF$`yaDjzYt9dN>Oh8kM<1{6=f5DtK}M14n4j(>D~Ug~;_^)HpOIRSGSp6I zI>-1~ZgyAFkT2p%F6TmNu{GZd2^4r1vtdbLXg`-99Y|rm?C>#@{ObD!hM!d&`xpE- zHicT)CN=u#BHe~gC#8bj)6|{5!aPIp`r_Djl}?a^+qsNLK;D4O-o2t^UgZ%Vg^%@} zoo+@|?wo6EUnAsXC%ldMvA`I)1}0od_=GqKt)pCjJpr~5>(bh^J-=`^r)DXhZ-ja- zR~3~r7!p=WXhc=W0BOI4%ZQHf#(!0gdD*Me72L=@W`7W5l=i9Q`C%31ZHjad+L2g9 z3bGqG{u^FT?@s@i<+Q}WHfVPH4evUg%3L>CGD2a{-P`VG|I|@(x$=`Nyyn~lYfUvm z9%U`nGAkzU3eivc677opqiKVW92BlC^tCnJD=7+IA#Aul*ZD-Jks3@7l&D)ER&Kh5 z?Rgi?sqn#KyB18}lqH0;sJ)GXzK_Xq+TmCFl`7g=Jtt(9HRTv9!g*e;lQ-#8YP;+# z2bynoWS(JTBC7M|whtUHI^2Mz+v~zdHW{`IX|E2%HzBa$&9 zwJ@4dByUDREoert;X8JnYxj}FZ;dBSC~W2k;}+Ptlp(-{5YNLG$a z(X9Usj-Rdd`CdheaM_fAmvJ^Dsy=1aal(=a*79W3I)ALk-6w9h#_w)%XPA<^8NN*y1saNk@j{SBG8W$-sjV|N;B7g{YT zDeb)+d&gL{uub2 zwV3rTi@l6|@xMR3^F))mV}u?^Z3QxPqeI-iJ0Y{!B@yH~v0TciZNbHpX3*wCF=S@K z#=B(b{)OPF6867dzIy6MrMVY>HyLN@6ltLujq4<++S+8(>=&ZkJdo_%O)8EN{c}VR zgUM0zp0ZFE2aOYROE|6-`kFs0!DybepK#ajKmW(lRJw%Pq-7eIws^gCwmSD2DA;nO z)*c|Us-qLd`19?{xT~wQY_wycY}dbIVZ;3$9)=G!v81h3qGsjxxCxjGWT%w0D{*sI zIAOEF1Cjf^szwcNt8#bpp;$KP;8NeR-&c5239EMB_!@khd#z3+pv{e9>WTlCP3yWd zd6n&=unq@pG*-@)$)_{RykOsz0~_O#sUXBph?p102@B_iKs3p3fnR8NU3X&sSn~Ws zn(R}Oix^wNdic2ZHI)O)gOBys%EWVM_sA0ybjoD2jJ4fvxE)^*1uwUtIp*EzzuZ(! zfCF<{{k=L^y5AUv~bmEJjNTXV>iWM*>8Q$xGQ_l zh1z&km26Z^V%%#i)xmLKbS>(1wbHQ>pzszAJ|2-fRJ20Cy=oAMd?c1X|8lZS{z0GX zUzbRZBtXUc`;Yq#q+P#aWe(!?Y3H$hiucwv7B?A%sB5YM;U8rzs{f?8*=>Ad#vmhh zD9DhAC1r~W)y#RnY|7R7F3wZjrG`cd-xb=xUaMqe?5QohI4Pbrv|a8YyplG43%-ih zRr}X!l;t!qZyaDJcT2zSLM`%7;zy;&w`WU5j=md)a}E*Ji8!>Ppikr644X? zwj-fwEX-v=)I5JLlXD`Q`%me;|K|<0{Kmun7B&{gBBKD~GqV3uuY(LO%)))#s>DC@_+4t=^T$t+S)qPg zmGZqSb?vefHm}nOnj2~eNvcm_@3b6vWeXsY;Lwt(UQA?JZyeX+3+{10>#I%{(p$q} za93h$tf~LT!$S2IEo4q*7k!H^W}f=q7) zg`N6&@7G(9lKYB$A(XMTqQK&b`wNT><|dx6OVvM@sI%BNTN0 z{1bDZ;zM99Mqp>Zgk7<{$j+bjx{z@rW9vS+JPejH3CYpTVu1ze@qO2=N@x-h@Gy4( zI|g|halC9NyCStwD`|oOc_QCirSi$Mubgb4<~LTad_n4X1^L{>MUoor%$J{#FGoDGi}$pU_C#HatBUk-DZHVxst9B z;=PzzZyI2WbD@2sNm4@;4`pwnlu%(PN}F;Kw!ZxXA#m98uLhj2`!LF9^gna7Q$!Pb zpVr83zGmr@A66}H^}6_dsg^Y#%gjlU`HN=^zo>7y zuIHq+7DLAf)wz&D9HCJwz(4l&4z=?tAU%0u9|nqQ2cthgjfxB6UBlVD2f+;)nYhgX z9PAqo{C_6hZwIl{pj4#eJu-oN^!8#JS2~GO)>w2J-k?4f+BmAX9W=)B*3DkU;`-s`l<;~3P-1mDGHtJN>>fWkd~ z5X~iVP!DTLUM}Gb`JYfw2Xh+LS!oJNbToKXI!|Zu{6f_xnHc-fDFGe$#KqWW{0UCO zHC>jvjH`-a1@}|e^1G4O^&Zkq!~o%LoJUU(Nz+?=b|M}bRZJu233X{btFD~H0gg7d zHmS((rWF6vROV?>PBj0fqctEYYq#$}elt>hr#n!Q0w+Coee~+p$+K8fr~$9v*+uP7 z;!7swF*r95p{x4rK*}!K7bq~v(&A<(4i~LN1XzvUl9a}lc3oKL{-5-Xv~r>EzmbuIO0=ApudP}7 z64dv(pft+#HAg>AznU7j}S?*NVB~*wc4O=dKWX0g)L0zMfWuX_uB_tE8 zqOA=o>lJw*o3f+#Egq9%Vf5f;V)re|GpSI&V&o|@{_=Yh1>t}&cz61gAD9=Ie&KaJ zE=x!sao}~uoh}<@dwPi8+AkecIzRO0OK%a*tIJ%YgQ1D3eL`TLKVmwjzv*c0yO$MF zRuwAg*yFx9Bb_;%^7njsrTFBu{1|dj2VC-uHx}Z!Jhq+zRBE)A?dvDC&1{?8EsA}B z7O9fc*26kit@A{Q%Bd^quo=Rbu3M2|^DqKzSZZgPAAdSzyOx+Tm+Q}U3k?xK_rgC1 zp_6B*y{{1U{_}9|SwL35h*G8atA9-~maJn?Mr$V|DRepgrv9t$;00L&{WYi1NaN>b zt~g1o6UhuBNspAMzGq-W+Q}R1CUf<+6RMq#3Q#H_l0E|MF|Qt|^mjkzUg;kB(4Sr~ zOZ4uIXCm7qXx=FF?TeWtlm+4JFw$cn4%7(8Dr7-Q{iL%gn60Psfz4?&L4zA1GD@cli8Lq8PrxE_hnP)y9WvCAhntnltFS5* zj^?Lh=cDXXag%REi7($kz;;o83@AA%V4q*eitk~3oVHknfYHz_y<1q1!-#Uwbo_I+ z%#M1e4(`IUmS>1`iw@)Hp4SQsm10Pj7J+rUooL{DkyibP3+1Z2Ky{NCtz%Eq)H-VN zv)UANo=j`hqeoIIbS#o3|C?o*vW#Xq%289M*(k1$G{f#1OqB1tS1A1~aUk|dN&4o+t|9Z3+(rSu9 zU6NgjNcGHlT#+CV3M!TpO5Hr4`guVArxug&?pw^Vbd3b{GOJ_~nku zIZxYNehMDwB7cjo7PNOxESeUcxTZe;I5E|%S2Ko`COwL9chE`1VeIeadwCfh7O$@# zM)N#PQZgu=cGTegoeqv}AkE&$V(olnxSNk>VMq7XQxPWPVBjWGk@Le)cRp;l zMhaTp{Fcy1f{+*euYp!;a#Vd?A72mkq2|87XO`~iGvh2!e2D!AOQy{ae<`)RZ+nAY z{)z86dl^Po=^lCGmiPd&3ZoD{j90*0z3CMSj^{qZ71+=rsUe-y z7TwcarC~MVL8dVZ0SE3Yw;_M0Lrb=wuISB1TTd4_O>LZJ;1oTkcnbpe@1hVe)c<8W z`V|FxQ4GS2)xl=je-Z~(c|JF1NTBArADBXxZIf0$9%2^G$&@DCJHkh;ebeVda287cHf` z0f!Y#A0eXlTTA;p~y}662-AHnJ+r5!V{d4Jd zU*E0Rc>@Q%s~vKEe1c|uemBSLit+a1AN5*`HTb*X`7e^qP zQq?Nip3st$<9m`M9uPQJ0?sZM}frCPBMG!&RQzo99Qi5E&uh#pJ^$!nbpXnv(>OLKOzH|hIgx~CTSb2kT zh+aQ)?10Ap0l5A#9C16cU2}2tvxOb}?AH6%H$Bzo_BYtZfUYd$$0Ed%@EmT!fLN{- zdwt7h%!N=W7D~~ew?{2^MpfgWSz2+u9!kI-x5hHr!!?Sc$)A8}fQB6^NGYP*vP|P& zMILfobr+L)2Kfh|P5@&{wJo8u@2*<^NDQ|LI_WN9$c6zvo4xn)Vx*>D`Dv`9kKNS? zD@4`&8&dAtRtI8SMK_K5M-vT@*sA3Gk|rmWBjPOC#G5Y91URjM6;I)y@^4%kLh*EH z%It_>-Kt6c!aV+iLgC7bR_X6%;onq-K@r`v(kTPVqstT1bu}l;d{w;KSRK8WAsgPG zRxRt5%sM2R;=Wkb^BuK~y5$$v4kr{MPMtfSV&6oxd{6J0Es-W*`zQF2%3cjQDzqU9 z0TvBdN8E~hI?q|&6e(FK9&L1~%nslPKr(`Cts-Kf^}d6C6AZImZ>;WbkQa{7#(p@) zg!a%XDmb|5o~0*2rMWviu2|BSS9y{5(%GZ#6;LLuXL|hKrVaApk$J>py5F-0=y)h@ z;&iF+aE2hGL`o4gv+V`kP$Z2D;w7-Hk3$JZFZ78TMIay z5J~A8Czjh_^_F8`mFJO1MF^`fj_n>A)Tb+7h3lPQI=a~%$`9^b&|k={e`#yl`S?15 zji_^ZT_|#zFkIcU-iTr~36qXu$-go#p@2#4BG@O3H4MiE8I@>8+<=$s-kf5a0P z4|jqeI`bU)l=R8-I)Y>K#b3Xv(0Q6*5n>;8*X$igohqp z9x`+2;uvdjk`{DctsO5cm)89oS0mqlsS}dXLz3Tq2>ZRzrJd#!XW7fQebA}?S7%_G zTg*qR*LI(s#jI9FBbsA5%UGT&rJH-4zjZCgRxaq4&&|J|^0-#ov`|cu1$F0MW=mvd zO!7=Y?sH|x#l4WSe>;XESXA$_k&@!6PaeA_qi-}>yPmHJFFKaaR0z8ssrd z)2e>;L3Rdb2Ks^0nT)vWDtI<(OaqE#NwMmOjt?yvH%5V&#~~^cz-+zyjEVByYr@;b zUX|JAVc=0g+J5>+(}yogIL17x!aI>Rlt+R7m0Top`GGOPEkZCL9h7rk8_ zz~*;u6K&l9iekM9M;o5)oq+(uEl*#7?h{b7h;1#j>%poKirBwgK295-oUK*__A)v8 zx1CW#GDYW-L*ZKyowiL^BA(myES+nc`NmiD4{^Ho-$h8w`*EiaiRVe>6}XnhsFVun z#Jd4e6h~aipj|<`bbs>l%p>OlTP?$+1Qu!)nM<~&Y_eYSjT*yTN(^BgX zuy7|Pi^h>x7XET)Cf-W+shiA$+zsUD_MfYO{g1vhUQ{7vdM+Q=TWh@+t&*u@ch35P zo>J-FV}|I#)Fop{ZKF`>1i|h)v(k{Dm5}7e^)2{BC}RXs~;D z=A(5sPR_1gP@tNeJ$Y?0ORi5CgGMTlL19_2uAqkv&B3v<3A%rpeRZsh&!iky49toT z=YapgbuVwJ*Q|azS-S|^PtREQ@;ys`Yhw7^@x#n92BEWT4nI5I@bOwijg=9TZ7Ens zD$j>>W!^+>J38JZ#^0;``S@CYbA-n9Tg}bcs+)pDoZL;X^Ekblu8U7D*qt^owz@-b z>!Y6ku25rjPaz~%n(cfbiF5NJX?>G+x~o{}x52hnY2U!wa=PfE;d{693dBt*O_$qrX!6R3q-kv zX?QZ6Ro3iIcM-(RrzGB9oDd!5Ukivuk#wM-tiSt`>kK{eK|&r}gm8J3U*}zu?b{Qg~GSHuAs%rPA$AX3yP253|~)q1_x+~6?yqipQ|g*)VrCils0$z zBmOyafesW@T5agI-tHev>zAC#q)~-lZxkWtOpQGZiY z{6f|2IBzhN)}&eekT(c_adKW@Tf%II*nQk_Xq4uh{{UX5)7>6j9o@b#M^gRfYW{>H zgmYBa0rq<;#N#G0D^~ZKgMH8ZXZ<+{TgqKaj^%;}m~#J`x}-7q4xmulwerWJ94?0m zfhyR07L2};l%~6Rgab${XpdRD@AQRJX1RDSlBWw)A$UUZpZ(W}u06FyPRGH;x{P_b zYA)20G~`P`7UL`Dntqfy`%0PF6OpuXL{FHp^|<3LQDS6jWE41?tyLfVx@gI16?bx&IBnFTe5#y7inYMr5tC`{t6`rQs9y~e#Q2O{Mv zZ`X9*KS%JT6LFMc3vD@)cvJY$rrQj@Ome;A#a8ROTE*zZpWJVjx25(FAZ%*_wu0^q z{o!^uK2I~!ETZI$HeJ1HJG!U~fwjC`iaRoU1o3>fU(bX5x>25+fHy@n5~&0N`!0^? zL5)g<*yZ?aaS^>%FR5snV(6vaM31jM5udlbgPvE<)pk7rHg%3UoA}#xoBRL;9W4_~$hV;B0| zQ-kM!w~-)V`Iau~gXX@p=JvD$Mny38Yd6%HfXGc}=LNc(AF_z}3p@=TvsscPg(X#~ zK7_R1v_`>o;e(QWTFZMLhIU0TN)BciUKXxui}cor_!E62r%UKY>@R3!X02vAY&C+8 zQ6QZ-{9(OoPucFmo{VTLxthOCXkT?^3p;Urasznov)#W|#4qzkc`zHUn(Q^o>$?*H zYW>JA8-k+Ts^||A<|&iCoyw9bEyXVK*bg{_JDBYfhic(JYm*p8_GBU#FGv@)G|P1% z?DV~U%U_%!orF!pdS)&>uhu=)BN}sKZ0x{pjnjO5X5}EFtKn2zQ5N-O9}}69 zsvpy>&Y_tUsN^;-TCaqijeJ~H+J9V_!q{FZ8*I)7HxaOo7lI?)RL0&qzH+Xy_&XKS z3foK-kp_7)xLkbm@O*?S5wAOwhaZsrY!q~mqXclQloIflX&j^X(6JGBot_$1g}HhC z^z@kj9I}}W0oSIdt_uDRg^+D-Fp%%Wt#r&}IZ3^qshV=|u|QiBafIr^`i|g3_55ZN zZDILprUxK_EmuKI&gI}m{!!purm@mHpM1bw-xId5Xl>LGhRFMg1c$6&0Y}P}AA-DD z>W(o>GToFUKLd!c`i6*HejVx5T2j{~1n`1@Jyb>2$zI|vE7T5l>GZkBsp49n{~4hR z{m$#6Vo9Xu_Qp6DBBzY@E8Zbpl!#hZv2w`6LjVQ1Tg%LeQDw4 zv5bBQOO~h($#)u;TTSlZ7g>QR`>WP5Sk=d+C7({DxI&!2UEkGtl6X+Nyv%b)fn|B- zD=U0*U&XhP%9ycy6Rqo(v`)Xggh7;4msGuycSpm=unbaR>a8PrVp?Ns$9vx&BO^Ek zkA*iPvmpCh5!5W2psb^LV%qW@hx_D^EPRKtN@eNCKpTIKk@CPmGET|N z!=3M_Fe|E5&|&B-K6wckI6*AcQ|?kd81QvlyWDL)xlOXH@q;4_akf@G<*H(;Q!v{u zNeAn`v~u@<#~D^_<(ga8FpQXz#^Jvu&J~zNAU5X>>+5z&xh5Pz2=+o+Hw8@J*gUqc=CKRSi zXQ7j*6Z2gw_`w|;YyxI_|x04hRA0wfS3OXg*q zn(-f)s+sxiz3=pGqg>50$YvQVU&zoil<8?{$bZ)XFOGq=$OB&uO@E zkxItaHG!W}dyL8SCRGmr&LJpiS$+zxG*sFoc!i$v-`;HsMDYYA{hsEF0e`@aH#6nB z(om=y5l=~tK1I7S)g3z$m@09~LB?Ke5l^SovcA#G)29$j!WYs$eecP8Y^ z!FFhe^bo<$x4_H-Z=n2B7Jtlerp^O7-o{0MW%{cJ?q5f#DS>4ws}FF__~!0$3_Vq1 z+ZCB686^QqpM4YNrB!+EWL%mpeq36D;hSz}QK&0P<=lSvd?^-Tex$kkC%Y9ZJVnq5 zJF@(9LdyDVOot&KLrYzT%9nN8z?S9AO{bk#bt+`$LjBSs-fZ%$BFR@Eg^w#I$k<$M)6sPY*e(=QvxrRYJM1$ zB!<~#uB-p5d*uCJ*yi+tUdX=a{+`_!1p0(9 z^C$2UG~Ba0g-RKAij?-<3el+3RY_lfEW_ti4H6(3MPg+grLqMs3zi}Hm>6+P#aKrx z+vrtdEDyuxbwKDS6X^RVvs7GdSyf08noURm-#xw+n4&}hio7JrNh~p>uQT(7O|&$C zRDiVS06Y|WN|G$iXatbnIEM5kX#&6f1Xp*5J%N@}yaKC@NC8MF9X@zyq5%*=%ACpd zX9l_ZOMqo8auFUJfOJAn$=XPd6vS!)8!Jr)eHsy$;d2Mtx&b0{GXAJ$o%+y166a*_ zF%}~L=p#K~P?y007^hrg9B@woIM~TTpT?F1xWftgXfNj<4=#@^IJ#hFjr4l-&FPRD zTXL{pcw&4@d{n}jt@=*Sa2zF3pOlHJ^ERoZT#;z_cf`-2$rAV7yT0lMv-zHPJY7C^ z5~HR7ZqNgu_B+K>!SDQ=7O@5AfHOFi{ZK6uY=1TSvzHf-v}&0l4Wi|JFoEaow|U02 zATLU`e;3myUjWH|(&*6wYXf}{_&FdV{->mdLA)FVPjWYcv}b=zI-OxoHGurS`aP5f zvu`NKFzs+m!8s!I{fn8xZ6=JjgJkiys%KbBjHvIiC(U* z(LmMtRrbYooSNH)tFTyba#mL2?Xt4O$+?S5y(x6hgn2uA9gJkPTD@R!7mz0fr_5)Tw6;JI z_ZpJ#Q$1n+4_CC$OM$bQU%N$uw-;%ERSfGl=M~OERc~BOOy{-LYY&c#!iK|d>;AJ+ zdHx2!Eb{Vmg)O=QP7nZTuZ(=+m+>y;f;7as1h6>hhxV@ZrZJYUs)9q>y0Ivx&J4$(ix57ayt0DdGU#;qU0n+b6PB<9AJ7$#DkZ`odaAtcqV| z38g0)e_|^&$3~?zIN~L@PUfZC&G)6YlE$VjL`RMzJoUcqh4p+`{7MUV+MY#6en`ME zQcH6E!&SsH$qwCjXwGaI0bH^-|JyBLVyg6(ZSPFZ0e4%=w%o9rtxasgFlU(5H$6-& zw}dTgli3HRHY2xq4B@EC33sl^yhA5q4Z|(QIA{@(3R~gyud{^uMNpk1Q!9QQyUd** z=Jd^swmuZ`1JgvLh0$d1PL+`r{?6K`FLf>KwI`hNmAk&jCjZd+x+yBz0k28ok_XwE zQ87>#!0~80D~_L(F-+o>4H45IJvS0;Vs3OVf#FghZf>AE$>o*P@uS&r`{9%ab9^0e z85b5?DIV9#2(@i1iW6NaI^`$aDdsv5yrSP?p#6<^F?U_+Y+OpfGfRbvZb@j`BiExa$9Y!2{EF<=Ab9eD_ KZa5bD+us2|VI2ej diff --git a/docs/reference/figures/README-unnamed-chunk-28-2.png b/docs/reference/figures/README-unnamed-chunk-28-2.png index d65bc6664842cebee934b83c707c713a69d2c775..30687f5c40e6eb7d886723c4a033fafe6404d60e 100644 GIT binary patch literal 27144 zcmd>lRa9I-6XpPeI}_Xj3GVI|ECfw(cX#&zh5!MAB)A7ifZ%~3!G?hV!7aEA?qTo& z23Y?8>^|%{`?9aQeY@+Psp?yO>-24_`X*jSOO+6h1`hxL5URaadItbtbUzgU4#pE_ z8U8^3blcU@&{KZ80|1f$fCE5M5+M0RQvnXmProGr4*y~NCpkzuJmpl$Cw}TvUUGP< z{a^8a1*!iL{wJkAT@I;FwAtaQPII$E^Amjx0{~Jb0jUm>|5KRyl$xKe)aEC;l)BWM zy7WXJOLTOa9RSS^lFg}4+2KF(ryBn)&CN^AOHcW+`SI~rSlB>L&Qhx6QmVsJ^HY9O z@L%E5Q+ix_d|dA6cx-lfTuOahYJPlT{pX=4`lwNo_}i%|ALF z0C)~iQ&P|i%0KSJZQp9nD5G{(AIj7VFg^RZO+EfP-KDHj`uKHIWhYjn{V}>JkuH zp7IYerQ344LENHE0nwTjMFaaYe(s9+wbU7SXUDW>=S~Kn1gzN#OWscK!*tXaUv_KP z9))9-2C7p*w5BNl4|jD%W^*fv#E(4GE0cgmrVF-mMQv5^!?5Q~x0q$eqo3V1jPJoD z@l4GVdTZ73vFD|$RNv*g<-6?3xUTyxYG6V29R_N8K}#haL%JuWj5iGi=* zefguZP1I;0CKD@Y45P>64|mgymQW3ZhSPnekI$>4zLV)sr0tW(1=R<0zx~!L#XzkQ zgr1KBTICI)r{5)?G4IZgpf#1YW1td7*A9ywuf|_Ur6t{0`}q78q0x6Z9(Y9g+x^p* z{A?*QdAs^-@6axzTv1nJ+A@AIKAZqj?C=vevSt*dg3o5z*d(lL&guuAp*{WfVi;@5 z@KwzlS_sY4izP=-2R>--q?5ZZsBK%cR zCb{AR;=F-(dGW2@M^*jZ3u-a+@v|AIt&HRbQLHgQKNXdWdLTA(02*-$ei>^JFr(oG z7F==`SQx=!w$8QG&x_$j|7h$~LBB!^kB0`@Lk@(F`zf>>c8mdK6HV;+huzfOM%b~7 zQ=MqZv`i7F$J6zf=fIR#RX%5Z<=PQpHyf4@o2LHo6Fz4$E+}U$_qNmz!N?yV{Qow~ zCKE>&|1MADENu;{r>b(anr&Qj`g*+*@lBFhXokAGu7ODu=x!W{E#7et84Nj%&{kDZ zNuwUoj%5Un2bQT~#E()w61yL>o9Tzqa9~hrzfefpe*mPo%AR_!uCc7mbWrsc5nR-t zj7KPFpMr&C7*WsU9a`}WJMYJ-j!e~FVg%7~+2Rn0eB}Y;?_YKv!D)jgbWERyLn%|o zu z&llm3WV#biBKB?)U=8X2OEc3o7IJl8QD?eMNWPsOC-(oxS@{2Ur7{0p#Q1nqg9^G! zk&9?y4h9e?IPUqN!tNhHN$r+oy>j6fjnJCc3;@Lm>NYC5y1=)5vPn=hexSK!*2eCr z$Mu-y!_6qAw$g)(Bp{M$@3!rkTwTD4rs682tQHW%3a71$_xJeHxFss;VewdnkLF3y zr9Tt+S?vp0(G1#ZusJIR$pyE6aHJ}vXheYfKZ+@Ri&d-gE~W>x|EGe!@xzt&2G7m% zlmNb`t&8Hsj6Vlh#UWxC=Mgap%6VF0Yiklu&v(ADUJWKbw*H@4MWy!-s}hlgzW|8ui(D&Gd=ri209m!r z^3YxEkXrO^wm+Nr?~6lm0gQEI4bQ3C5&?+Gh6^G!?SYeQw!L3?07j0a6RV8mE0gOX z)(Z__WJ=mbAp4&w{Mh2B*^aR^Jj(LAN}iu2ww4tT_8w??D2(mTO=S_q?`Mt%zqA3X zBW1r6f9rkHTmnG21fMJvF$&Za0D30;fsu1VXL$u$=@hs`PvXx2gh>rNkU%7Y2Exk) z=y>OVI@C@`>!>3kcwbzF1E`w5+yuvuK9xnkM+`XR8*cYiWag>BBDu5v45l_U(7|1LEAE-!44zSP@ z>`t)sZ{Yh^71ma=p%iVkSAyQ1m>U|&w2@73Nrm;qc!%DtZn6j?ZR1^|E70I~i zgJaIz9JhJc{h-Y#DEt9K11M600ELvqk@O!)mz*NWVFka4SgG2Y0f>%Fq&?Y-o>;g9 z=xJ$7+*`m{j>mHxOr;^?Xx-%}TRzRmz|P|TglVodP6Ox7B7BZ=Fw8irU=7j+QtD#C zChRZ5(0C^fsd-PiqVNbsrg_`|1b^>em{K~>`3kNq8!PHOU}IyaB@~EpknzU zH6V-?x^Q`z`hqP427KyDZW-Bbw$t`&u5K4RuJA;!_3vRcSXF@`=@{r%djv9)-2)p{ zH})7uq6(&?O2X#6e0^MT(NC{8;R`@!BYu18V8D}02looBvqK{9d)S{EaomHU$tGE1 zd!fXhMVhO7WuF&6*|a7KWFR6l%qiPy&re41=@q2*j5j~7 zl{8f|Jf561# zr(24FD;kN>xP?D6)%i6-bQPS<@uRTvc_{CMsTW}QZsd>egzt=EkgOCtHeE={9UKQ8b|VGzM~-hA(puSqSMrWGidYynJ)C7yX09pV zlE262;<|vL;~DS)bfg(L+WX7)PnZ}xWqWEgyy%XxbWe!9p}{?JPMoxS|J|01`g=w^ zxDZl5k6okygWijjjn+ItAWl!yHbx@0#T8>=m`<_J9*XXJhrNLBv*x&T0 zFIfvNT#7VFgK> z3;ToUM$B3y7(=k86G_78XA42F6m&%VgD)(K_gtOl^7%*uuIzi6^Y*oYF?muAkH*vD zU}K3FNWn{QQXYX2(VjWxV`@?q6`<(gskfZQJ#|nF&$=qd5lFJ$N)Y_5*KM)bTh~}I zOoU(&=kIQlqV5^-P!)@dO+eU@$N>WvMs+{*_S1uvo2Sdq>6_EVkE@*>@q)^|T7Iu( zf4-f64y!WTve2Y-s(GV;DQzdobux~#9tS{5KN`#RO&H%v6(q$y>zt~7QSpPkDwYjL zos+<8LYthT8j%UG0P&Uwvh>oimtUik$WcNV(cnVIb&ERUD(Aa14P1Xy?nc4%F+LcV81-2%$ai z2K|iyJcZoTRnKcB_nwRI+wfi-uKZh(qrSgsw}DtVmWATpsbjVN_MB)J`C6=UM`P;2 zCkWg8O(8LY3lCqT%y-IUMkW)~?HZb=nhRjloYG1+B5qyH>v?0m zcIvs4 z&HA#&B zqna^XJ=XB7{q_x|_^8IOp_;Fx@iJ5|!ti?3t!ZZI_8)7!+Fs)jIUl%=0kPYJEy7LTYwxx+U-}@lhH&awf;e9H zHlR=!pJ@8Qk7r1MLpw|fN`t)nx>9J21LS$e!kTgd9jd#t~I1u?q9d&GQM{keLRUjn} zZrmk?h$j1UE&C1~De|R2WME>pNNzAbFf>GWZiaHFz#lJ0*vX%R&iy@OuGRW(mA357 zmKdKUYMAZowRX0?tmMr!T36(~2-f_m`c>9q>40I9wjzqpR^xmCh|L@{8JEd!MwHBR zNope8tI}UdG!esye)P z6uSHaO@q3^fWX*fz9{3vHXhcL}MF?q922gy2Hsc`7;7E^l=j^wkAuqPDX%~~{a zL=@zHWSqu49&04u`OsQp0-|%!tQUysCx>nj)zIiy`^R$kGoz9R?51+set>lArABA; z&$DD|ahp*c_j79&YX`Yo+UUrySY}&dG;kDJ?8ntYnvVqg!o8fT@A=sj&DcRB5|um6 z!s&nepjf?G>w#yykg}}Nlhi@87R$6(pWxg0jG1tXB5c{3)6APBETi+K-HWmTGH$2> zrdFY_eVvk5UGrnj(^!bNlJFsX&$ljDRqSpT)}$kq5h>>13pVJ%k>3`TB1QSKq~kCYLe%4ckVumfbvj(j7Bu%gL&Y0H&i zjW8zDvgm>&?CIk$)A!BaOlR{^i{<-W*I}&Gx&2(+Nb{?oUuVpmHq&ASuTJFb)=e-y z<8Q{b`qPbR+LsZ+-Q^;SJu8huMqqcb#aV%6K`169x^Ot*IQUtU!H;gmq+Bu`V`j>i zNahEj(3g^T3CrA{Eml8J8oVUI&+o*LpUP=R3g8ByI)XO>Ok{3PPZ*2N!cHa!8SxQ| ztV=nxW;=%CR+kGRPiq?AxhccmkTLFa&0Mw;+b`6SiAv_4>>W0M4k~PYQxln@2c|=* zLb-IC{g`!;Q*GyGs~bO9(}>mT^I{&tt{Joyp^KfNmmK@HXcm(e?HbYp`R1ctrmJ*c z>1U7X4EqfxK4EI|YbvQ?f1xqw`80wzKKF;FV6@IJ)Zx6ssQZY9tl!I^>;-+J zAMr7#SC}M)BHgYdw*8(Y;LVfXVh5)I6Jz=L>n*y+Vms%DbhMgovY=sX%h1X2iKK%GmB~V~nb+1#f$Uo*VWa zaV`W)E}Cnnglb1T+;8_YI2iSMu4@ELw>q<9OBTGt630wywkGj+&UikCn_2F?XAZK1 zRAn|BESHeV=D-_~8DvXNpKp>>o!C_Oqdx!4RLz^A>uD;92WjS+eb)wC0HwhF*HYTr z&mMNR|6ySvsUjUsDw@MB{$+kI6PU=Z?yeK`S#8BS#GlCNSyW+eeF2$1_nVBHrG;^# zM!dJd!t zgwUu@4OQ8|4k7RIhe$C8RW6+cx*AYc$cUWr_o73ahBc%%9G-7!U}dAzVw(tMn@YMm zY#U1~mb=$!FEwnanuuG5uByLtbSi|O=>+kjCY?tntwP4|pwscu0^O4Dw&jL*cm#Sx zZ>5Vu1e}FoM{6Vew@$3BgppN*zGJso#|8UXUvB8PZ0sXN!l|JiJ*Jbx5+a*o&4bIT z6Ulo&X8NQ@NTf{#SYAkn!o1bE&rLt{1;f5CO~nDN`syn8o<(tJB*DK>q-|xOjmNw_o~B z8LI;*8Q+<-GDEupJj!bFB-vl<$8-FM4`dXERpl~7; z_A`$uWnq*II%(*cfjQZut6$Bb5Q5Hk6&vGw;5~xZ9#co}lNw%o4as`}=b)3fMy&Ja z=PoUwyN`61IQLiQo6ttDS7%%R*|@bHnK>*YhcEiNAKY1%GMT z23V%H6yqvEodosQyfU!3TsKzVn#~qqUDSL^B!|aAhsNz^`hXH&i2JS;jus|uCQfaE zi*|C+{vo?J@iqvSH~;7Dx1VmVM!qPlRfuw&z3j{8bjUpqRTeCvH|7g{j~2A1K{t^z zjj-%vy0Hm{*C0-n&8QRaEz9GA-XK9QCWZ#S^H$va=ig3)@y)Ta6IKMrxV;xSddvYA@LN)&=4HxI={ zF%aBPU&`6VBEfD40Cyf%KgGM9EQ3h$8c9V3kTm@v4{Q-HaD(Z0#@F+FC#_LXN08bv zS5%YAzrC590Mt8K8)I_;PE?u6hf6WV`bFj%jrs=~4t*E36g!9`H{xE-L)6w@drORG zIf!_eD($EK@I*N-fkfxC#QA_0XjCH?kk}bpmBjU}Z^`Z(7sWCvB42$+K6c54OT53R z1N2yC=+H63p6lgvrd=TcZ7-d3hw(^wjsT)+6FL_jc9sZW40X`EkExlAzVfBR1Yg6> zxI(#{OJ7a4PC6$`_c7nhc(5$MIa*?5UP#9JGshZ|Y6wtL)#_R8$^n{w^AT&BNo*{K zt_x_lmo!7*wfqE`oq0mQti!Jo_Kg$m+Aq2{A&7#tczt)sc~WCtM3YkC`tVH>Pjw(l zaA}B^j_cv;gUccH;I8;^IRAd@+^=zq;v&s!!mefWJQweNlYQLw6~7nTunC3N5W^&YNz?aTO<%}@TR9}X@2>Zkpc zyei|ZW8rZE|C!gpmk%HVIp|>M3g3f0R!MP~0j*W?n{!$pFiR@DibwyX|5M!2Cn`sX zGb6g{IIDQNyH`yXJIA+iYSX;~Gfoz7fMO57Xek z?{tLNiy5w;sWN5X1mDd>EMK)d2;3w_7!)}gU%Vp*0VFUtr-r^rO^Upq$js$+t{93s$ z9Vi4Wht9{BS$kC`Sx3QrMt`#Gu#K6yKOVmCVj|R%4*ayz{8yxky81Vt=j(U)uLJfo zr|`h;O&Xp#R<;l+i^Ck8!mz!+2rW@q08Ql{CgtYeEf>s)4hm(?%2=^KjcL6kTb;hP zUlZ!zDy@YzivxE@GisbSA(DXP;|fHOy!Zr zp;Hf!Z(rwQzQ6a4U3cM|O0?!u>a0FY2?z&+s#nE492+CZ%uF;??0;bal!wW`f9 z!N*e=)Yi7K<*w-%JVJWQ;LXQt>rZAW-m{^v4ai}Oz_efZ8?X8UWcn%~iJ7#%q-#1Y zJU4(h*NFD*pVV(H$pKp1<0_;PE| zW!Y{YM&V8u?Dx?1OzQzpE5GmIv*HEJQt4XSpRg>#XOmvx$kM%sf6=TTNlT7$=JNc5 zV*zaK_iUTDc9GDXP?a%bHCL{8ci~)p#vlXkZEP3`5B~`{O@nji&-H2q&_Qbrd!9CKwV~R|7YtK}(sd z&@|2={%rr7M5>jx62Hu)I4$Hat9WO%b@R`pp;`>jQ0hTM)e7@W;a2j*vZI4BIdma7 zBXy%CaCEENEKj|Ov@D1l7G;g|x8yS}FR58!+Gx{AU7-gN`EHJj!CXL=g^Q*!zl;tE zxXQQzRq6jibl3JXH56Diw8ftewQ}+#%(2>4nyy~f@HW*~JnXJQZqvS#pW8U>nP-gJ zq#enUh1?BAswJ2Q55mWfXuRV!)Wi8_2hGyRIbYzgbz!Ib%Uw_V($1uhPrvBj2OnIzEuudblsP8T z<98XS8S7XBPMozuK*yyFk#C%hr&e0^oT;qhLa?XL5+9yahcTQzI2Q8fez;??vqN4K zi1m9SPlNfmr_%O_YD|wMJFAc$rht>o)EbfVrmV)x8kwnQanEDO;H}FOy=mxTuCi?h zErGPJ~ zIl02y3d=^+ku(@1mlPYiDBb*6D^tOfmr`tPZ|dLta)Piy7$<>ZjYQlJ4i)FFM_

    1%oyswJC%xM^?SiFxBldW*uQA4mF?n|ro9i@9z_t3BB>yAf4f z=AUVBwZIqFv6jUAR+>PPbdCgyG;EAP$tB%EE%-PI~b*??=RsPbsHHKOM*{ZD4`T@ zr6m(85tj`QV?O)==n6km4YSZAo|^K`l}z5vKi#ehzRb#>aoYWB;S|EGR$!>Y+Z^v# zg7;&Hw;-2S&3Ijo9QNIffbT9}!%MIrc0DZaTBGJIU#icZ^E=?330MD^46BrgF_n8H zwwgem`g6$lwQ5>LSI96>3PiWLMv23l4Yw(&Vc&HOEuySBS08{NT*F)Q1`|4!jp@RqV>XB9zgTSZ0aFMg5uoqT@nuaL7= zJ#`*AQfKm8WIZ3PFjzW`GOd5im*S-=|D(XO-ipPyKw=@_+?2aQVG$wNA|1OM^&(** z2f$9)F z#`m^xT)e$Pl@n`JaZSIK;W7~I7PeE{j2yuk{*8oV(V10c!o%S(bqlEEdiNwRNthRK zIOeqau!lzM$qn(J*0W5Is?yv^kp%UfBLNqvd#Hs-&}WjmLp3}Z2lAxPEs zwG`Rr$TO+QBZmoErJtl_f(%3~AHy@8!^~$|aU=r>P*zI`i5V8LRXDR;ru%gY6jL)u zm>vxe>u3kA(YKM)T9%*##tvMf1%6~PV0C#{IlB7iSE%g@enD{%z8REn?c`&N1kZ>v$ghwC~}_bc>yraf=2+%*(UQk}Gw zQIh_tdblM)DUJc<{_X3_IWEoJ_Sar#@(!Fv*9ty-J`f2?J>p*=dWK=(oj<%L+(LMQ zJB1z~l)q^{d=l9gxFseIcD9L2D$~+Fr>%VOl~A*fj~-LPdBv~EDuCg@z_ndG{^UKf zf_x?T+LNsF9ZPTQTq7txsT{@evr?eRsrK;2gH_-F`&bk9eeO{15UaQyV3$=qu%uTp z2R@~e?2fkl{aPwl;hCcGx|sRIx81O>D;Fs1m~M+YH3Sgs-&47d2bAMr?gX|v9hllOILr{MV{~f z&1fJ=E3MP?`eN)!eX_6eb6|m>3tzInB2voiM<7|T17Sd?EM;LD5 zmtNHUEcLgQ^zi*k)*xpFSLnEg zSJ0EQ$q0LOY*)DxgD2&X8oYwV(UnfK_ZoOwMetD+q+tH+!j*TdttA&8ewHmEyQGr_ zl5vDYH}q_`O>x;X0M^v^54=w+By%6&uav;om4zaF1vKkG>Pw0?9P{^4x7$Cb`?U1i z$+*eP1YrxAd)&l4dGL=#n&B2de|y#^{XOT(;si^X#HeM_L$(buq#t~#!4kTQ^V5+N z)kp74+#pho$4rIg`{jbY<|f=)EZj%Ug1-GLTS}BS$MeSf!TB(~14Gu|d8F)t9WJFZ z$3HPf%b%l&HjF1zYHdF7z?dF|j368Wt`K#gm>a|wEP4_ARt6yI*^xS4j0koG-#q*l zaLis86Y8c!6xC1xj6tI#8ZH+oh0avc5nr_-@ImF&g~NOGrL06L5$Q=%&8(|eb$;@? zME9$&f2A+)4$?B%#FTH`zTDIPXBi(_Sj{ES(F1gCDa09TQMz*zc7qrm*>$*_;R8Z3 zq#lY-s>6C?XmYuznJA{;a=D$W!Kf(Cok4))_eTH%(JsMUrf)ms8e z{s=;*aeZ@+8T32V+&RwknoYe{wo)i3L0K0ubG5c0Pkz5LzCW>v&Rf+Dd(=<6!YTeB zFmqdW3PqEBWKtp<4~zftPu^a(dn19P&|KKY_g#7OMqo?V_V&%pIDm=|f?F0#otEgJ zm1D(fq`X5lmZTpW7=PPF{C`+B8cv8ScnWmiHltp##OLp&&>xA2pI zQq!w1UiMkRUa^K(yX-|78ZXWKeA~v_e%K&th(cyN6|>KC5?~pa=25&C85HqLImIVTv@=^4Zv!R?scoR0R#9P3m6R-_kjMd->XGO zAZPNY(MwxI*qhm|px@<#*i})jp_}Y!Xa3s*k*vV-ty7%t39|SLbUtC$dV#64>xdG)#%)pIm17(mzxhH}SYxVV(}ur# zlnwtRsXntz;0P@FC1V$bhFBOJN2|U`8kthp#Dzm{nozfBM(l{;X{jCS+~L*9Z1;Wl zpVVc`$D7gyhRou|Ed=Y?p2Xe?G1A_+?sn-vqObJB0y9DR9}z}rM>*w_k&8ndGx^m* z95)*2Un~TKGAcZFIN3sO#mLpW`jyZI_V{Eh+I}<>cp1T4E<8@hPF+2Mts?h#>7WBE z6N(DAVM9SfKbA-)r^~ns2Ym7#2j!ZQ#6=J#EVBp-G0UA5C2GsuOiuEwp)wWhsOv5k zVl_FN{06Res7Uv8;edi>nQi*%*IJI4@#O)#aPh~4h2_##-)JZ zU-~t3UPcJG)4;<$BJS+L)69G#S}i(Ak+P_DSr(nfwy!_2hAOYvq+$k*{>dKj66L{CIQAhYkOIRXafV%VS4RH84 z%Yjd{weE^8oVAk5_YLLSrNHmB|1dB_j__a{drXq5wt~3be|`{ENPgbyzRUg%xy$g> ztPjgnxiX7G)k=V*rBcXoWwETZ>;4w@TvMPt=;8bWp0XbjxDj78jgQo@X+U+Jb(5w99r2dBT8Y)yH)#~*1(qvt#xVoeF7nE94u~zb^dPT z_R9}0G5B>un$aUNLhc5xR)n&w!XD>ZjaN>tU2e)i#gakC0K>v>C7To0K&RineVwd& zlS9fTNs;`tOB!5`x8k&RoHr4{=pv|#@HTWQNM6&ahwY0<{di!8aV#+7FIf9ljL3H7JwdXCy8i+FI+Fvq1Dhr2`%^#yQizJ4*yR7y=FrVDx!)Y5I7Z2J93aj@CF2e<${;Tqbus-S5 z4{VrTZBZhOMXA62IK5Lkut-3;qt7VAI+ zC7|XW{_7lqr6Q8Y_-lG4V(A-AylPxjz-MoFsZxEx1B%J#Ku1v{5(fyj zdOdHT2V^&YPZ`wV6z(5&z0Qi-If((Ew#$JpHUcAV4>mKjy!66ebj-HR_3&ZPl`ZN& zp_Q0c5$c6{ln(TJ@`a4&t-nu{5tjxTF zr)F0o)UT2bWr6mQEUQx(mt;(iO{S_|i@CckI?AAt$x-o1eUMqrIOK+B!jv$S#~56A zwBz`q??sy>bHGycH*M7R1xDohUOZIk_jRVO%AniQOv*a%@iqJ>69( zP3td;lPaNxpr7~Vyc3+%>J>k5bK%}%aXSa%kVH1gPJ!3Au~wn2!Qhz-Uz2S8!6b@_ zbFTdv=24v0lyjrDuQyha<%EKu>ZCRi*a}M8;0YExjLPgibF*TpRUg8TewWq7b$dTt z+TVR*9!4Nd{n0McKc*t#kPhnCJWN=>s1PQeyQaQD+j{?c=PIhJt1N%d8fTWEiv4OR ziI>StHh(;32FcS=|E@#}r3LLkOAh@*baa@|qrr1%^K_gk^7p}v*Sdh^S+TaBaIv;3 zA^g6&K!oTHXR};_i_Cq=GXPrs=M{Az3tNhi$~f_Ekqjmg)lJKpi}H};pu66$%HS;2 z?(o@gm)mkZZ2H%azVFsOR^^S=SH3E(4mmki+j)085~s9t(RczE)KF|S-cu<%L_iE$ zQ0BVDwl}n;_Ei#`10$Nnh&i8AuYu!*8w1u|rLjm^fp=ka-R7GwiGwLon{&8q$mF|@ zJ=zwcjypg7Gj)J=*Sr2Yta*gG)Xhh1cjR{Qkqekl4B4byDx71L!%!kki0j+jW0Gs7 z>Ke0Vji6{5@$~uP&ZD(J0T!Xkr=y1Bb^Fd#Cnx~hAv^ln8ubhP(%fWj8udx_ZjkVm zx~*$bmHE^2kh8+gKwL}4#*bTpHsL|>1x8QHW$No(v!595E(b~XGfP?QnSVUd`C;=n z+oddE!wiQ`4PVw5d5dOGqpFZxV6?c7cAW+aGIfYhc37POh_`&{+z5OFp?A`fC-8c1 zSMld}z&9-dSi?c!7al%r3f0%F^W(PrRMVjKSNwTabH#d^^`%}EmSV=<;gEBGI9ubL z!&Ce^&64razp<6_wm0!O#-L~^{smW;F*c3eWN5>N`6QMRMm};IYl7o0H1u4ma@v;v z31kIxHvGX_^Tx{>JDQxOymWB$FUZIr406}UpgYS|=W8DxZBuJ6*CT8wv`Ub$@Zvv| z+wrIj5nvTJVtf5h4ee>W%d=a=oU;TC^$rHFYHY3}@_f-E|`#~7T*kl@*rP}vbSo7KWQ@9o% z^-gEhQ?-_b#gov1f6Twhf_;X>bBPYtQ9AVza(tiOrK!Q+&d36iemb$1mLhr5kDDow z&QvHl)x(?1yLQU!N6F&F+~H(={V(f*%hB0Le<7pO+vw)5L(3vxmP15g)1Ldo=<{S@@VS2fs5$S%V@b^N zxAm2e>7EDSX&+CsAPzSakUkl{T=;%!+ir6LMaM1~bZ%CekxiQEhWzAriGH_HaDt_U zEKTTMYHp$L7u$PvDH`qX4g$W4wcFBZ`JhptD))Yc0BjXc=-ncoAyS{~oy)<{TVZpl z-nyno0hWN!@4>^H$ym)%1+H>~;)5mz%tmTB$&`(_Wj7}cxCScOrt+gep=qBbU$DAA zSJqnY8U-LzKkRIB2sKMk|LSds7rC{>vFrKaj>3Yp3vsIzBxC<$fEZ2!nBDEGVd)!; z0}_V-dCDU`#-n}moc(_~)aawTUlZtJ6*ABC`0{T0mM8z=15FvFNi`;Q-^x7s`iZ2A zNd7z>vs5FSR_0C_1W=tx*+ngn$n(I5(SShkclstriO(PF2?nQ(`|6$swdFn$UYlqa zlNe0F(7gBp}xdE+SZW}4{Rjoxy?;-`F;jI=ei@a_%#GTbO zwzhnpeTSbQB?kKi(p-%%_}~CtTTV-VTPsAq&)s#sZU_Y(I!2uH^|zf%{pgXkBwkY)u5odZr8h3L3f)G8iy`_0q2JoXDI zE4q=U_db>kL9dlg29pB6>zN(|f@^?p1o6rOpAY%7OHN9=*Umx~;JJBZShsj*Z&9ng z;S5jbbg6rW0(PIzo1mt!%%#<+=iAsjZ?PO<2N!OY0|#_^dE*d#P1oUU`CD=1dW+w+M%2IGo~O=Vzxr!m z6y~7Fx_4Th;)AGuhgv##=i)DrtN4Sl5VWOS>?O!84ptx?rcAu&%+{uaxbVdCu03;9 z;mAbF(mh&lV1h4es0g5EmCMU~lvl6#fm|kcXVM06PrB`bKk~pTHUh`P7s^KbFy}`L ziMwy@L44p{fb2i#ub?!`QxzhXF7qu>*E=aEtZBjoETe@r=FSkC?dAigS-;ypU=`DD zYV1?I`Eb^zpH%3GmrD;x7(+!MQ7M#R!9!Uq&+<)qcXVbzvS9o=DIy*q;0C&Qm(5h*wa%o~^g~Y7$_2U4XYmJ+}LUnLAXG zKku&Fye~*n0*INGrr zOYUb=pF?;pTSbO&i3-9ojXqhCD^@408XA0dj#NjsWtwbfje7F;&-PK3KJB;(!ZpLD zEt5r6>zQP5dcKbf1!Mtsj@~3p>o4xymFS)gqj+=I-kk)#<@n!G%ySXB*82rUCbN!t zV{Bks5yl{q=r;YgG>@};oerdwzqN#kqovNt#_kJ?4z~VC{4Xp3-YlyTGr!2^@6r## z-v?Y9BR?e@pI4RS^<<(>rU){()s!WM`11)o1ax#%jAVXNywS-OzEk37b2w*LF1v}V zq(F4`<^6cVKetSrwR|#i11|_S-fI?wZ5aN;O{9n}$8W*##LEDF*$r=bHuh>d9qqdTCwSzYE9|;?<^Jms;c^>6o-AGdP z&v`~X*`buTu_pLl9WN5r3Xw7hdHYIjT~|`G(Gx5*gL9)?_#lw-Dels@1L7)qc4~ap zG7pd%uA_oS;RZN6fg1}Q;;kfU68a4u>QoJ)nT#0H*cVnTc0QyLYnm%~-D@%Fih!qc z^0L<^hN#3>Q*_{SR8|(&uU#OP(P(__6B@!Gjb8L{@?Vw3M*J!E#e?*No^Q^-&^ZZq zqv#^~PbRY1D)fPu1XzUwoF8P~ThPSh5~~qo?HuJc*$z74EVFIVYa4uO8dEV|JIq_t zL5faYW+iK!xdO@_{BGZFWvO&8?yDEAd=9RxIpY#i=>4mzthK3e@iRODDrNe-l})yERQLjJG;W z_vXiv@z?8s)$^AF<4b&jeBkyB>|3?pb^oKg^NwdTeE)syz1pI7l~&cJHdPd@U9D2P zsJ(ZMAT~wS-bL-bw+OWxqjrtNrdEg%B>bY^bIxDq-`_dsb@Eq|`@Zh=B+q@nuIF>T zFUE_rP6_qV;LR9?{zGM)na63?8z>gHH3^+I52Z)*3EI313Fu+T{^lg;&qK(s7l}9N z8yp+*A*<>7@`CAbg}!|qh+j|B=%O}$CgH@96gEmnO>RM4 z_o07eAS`3sm&^pRYGe2V@BHfe6Nv%^6<2&pInu22COH^}`Cj8_sC?Ca4-TG?A4&!OyXBk?>W^cCntLK)ZEWY6v=m(*i`5^sJF} zN1({$^~47Y{mIM~Cil04CmRjE98<~POz{N8&8j*jB-GKGl|SDtSq3es&5J_?s6tpE zQ;Xs2!6lo2252}Nz2C|VROiPh9WjAq@I|eGvf!zRq8YYO>LX}-8@q6L%XyS*|Io`6 z%$tSMQ!C``N%1vr1V+@Hpj($@S)%)wfL6Hr4MD~@_fclq zlvCnj6He3PIhriW^9(cYa^W8Cvb>+w8kOD7!~to@9PaQhuyy$n`5ljwWD)UhoeHZa z&h$8$3I@<4ki6A*LU#T4_uN6Y%TEXW`aUnSU%HQ`ulcJEY}&=UyV;ZdGC2_sL_2%4 z;&Bc19cPjg$Q6l%Ib>s9ex*aU0#b;&AFMx)2|wDYFq$#Ben#!$rR+4){EWw8#5!$j zltkq%`LkOIfKjgwzC~J+?~{mN6vS<;{|AspCVxD{~q&FMiqcXVqZ%VC=P zUrzj9t<8QqZrx%!HuPuQ@kH01@A7r%6wg}OByD&P_Jh~u#0RRyATxwod?0)IBXRw3 zk;wXcC#QLcYn$j7m{OLtT65`4tQ=U&;k#tB!DaGl`RlC?{1mwPy`BQb5UMPtD1I8| zkn(BHUCHqVfxP zg9QVHhqT020tV2&@<)ro8N+-wIm)!Z|G+@zpTf{}A--*fa ziCjN#eQ`0EjtzT|fsG`%_?Enrfqzu_PQO9 z7a8RXs6erl=!6(wJ35j?CDX`6Qf!K`KhMBNa;zqo%?WSnvBaQRr-Tla_`t`N-$*TE zl;>K1SNYz9)DvrE{=`i;Q$olS&M9B;b|N8v*SF7#LE8_RlW%O-OVDk>f2z_Lrm%4I> zwvw*>kLTo1WTQ>+5Fj2rC~#-MO>4~*qW4^7(6s^I#a32Vy~4jE)Jk=G!D!0vY1njE zcH>&3y2sgW*gQbL?F~bd6?*3G2bd>{p-xlQ3+vj<8*rOEAkS=sEaMMYmU6ugZx3}I zJI#MC?C$vqdo;`~fT3^wB;XDRlU1r!UNVl@St_&5z6S}oQfiz%w>gTV^&zBTQ|MKs zFvQA1ti@u3x8-$(Wsn-0G8*=k>c)zMKWnfpE|J6pRl^YQ!qzQeXM@U)ir5)Irvj>urN_GpvP_Zp0`1W$#G6YrA+^PjxY?h?Bc8vb zWx%HmomU2f@dqjzLAYQMZ%DJ7{gtuU9+flh$Wb|3T~{es8l>SEm-QS4#gBM!H*}Bg zXWCqp*J~bs-TA5|0Ii(!@5EQl{>@js-61VsB*AZq_vHrc|7?ldckVp#MpR9Tb0|+n zz9U;*Lsph0Jrmlq8YtD;@jw1t;U2l;-kK+xJ}&p`dMzEdlw8SMu5bWVlq07s2b}af z$zN+d%EyzGY>4ov?(g>VEs!Z(Ck?y{3d=ou-D8R#U<-6loVV5l;=r|6^)9DvfwI% z&${0t+9Oeu?zX|UzA_(W)SeqREFOsh?TW3=h<{H6%!YBIJC-qf)oWm_2e5;UgIz!q zx=cVt6Z_QIP`tZf7?4Qw-kEuf`0S&?6Qg$;&$Pr^vy>+ggq@!(bdq6(Lyt8%M&cCp zF^=HHcd^SE@KW%~-?TX4?lod@ewxD64@F_lx=%iN%R)};V8gfrTqG);T@XS_O(2lm z2<{CQC)B43>**Xd?&L`v|D~ZJt=fo$>4zmU26?@ z`$@TUw%Hk0XlE0aNf)II8iG&`K_g>TCl=g$7q8w`JT-xC{6r6qZXG%!?%m-6H_%IM z%`%vc9dg`<|9Lrsx;zR-z3XlD8O`{_;AjK1zRUaU*^1svfa=sQr7eDw>kn=@YePM9|Gx(h` zcaQ-l*7qLJIs!so_~&aO4t03;sqw2S2cRFgZd5khzL5+a{yEg~OmdMK0=Z)pyPRp( zD6MqAsP`U6ta|>WJJy%9YO;FHPv@fsNX2429FCymh-Be_yR?UX9@}%ITI3^w66_Du z`V_U%qs6)opC-gAMY>1OqcmB<{x)%f-)k} z67G%Dzi1~$xY)e+65T}UGKBy3D1C+f324&rPI9)%WC9e)G>oPrN4VwL8NVhe zyE8mo9EZOv`zCKjk-TAtQ$^#>_C1Kl8{aeSY6g~?=we09*J^$(?qt>a8&`utu7;7fmePQ(q zUH?YRDPdYf_=XX*JV?JWdzR$=&q~1_A@8aElEdQraqZ72a#&rNs`F%t&k7ZBT`FLE z1?0_BML1sQ@DD&X8$ur2bhFEJnyfFw-)Kx$#r@<3J_vT+&)u>$VXYPQDhn0VSiIn) zyHxr~RISID%}1Ei1!-_X z!Dw|Zkg};%79Wfa5{jc~+sT)x%H;3~U&j7LhtR$tz034r{rAL8y`KUo(%)_hXM1pF zmMeU1Ew{ANXn5xYNm78Nm=PfOC$TX_h1eiZUhrcC-m#(WVz0K3wN#^!ZOo89lwW6b z#SorKuXCP`^Sn$SXkxeVi9AF8^V1R~36;+eBIcZa2yB$qC&axJE|KCWGM|=~a^vxT zx5UhYgPLWtyhMx&H1Z&%r}axsSQB7w$hh8?9*91{;;$`YFXe&k@;Ot+7a2<~D>isC z(HBx6Q^z+Hkb+@+vf)Rdt^PURzhz|W+~r#3Eq1c%3;gFE$!@exqGSPVd{6}y;B@s- zu6}Zp`Mdq+)L>l@5+hq0d!%G%W#vLVHc@_YDlPG3rIP@K5B$WnT}!dZ^pT%9;jLkK zMmPjLQ)cjl&G^r+5rBIvN^0Xv=??E-mH4VGiw4`Eh%d0(;XB~Xercl1V}{OD)gK8Q zyHviQ4INv@Y`Nq|Tr)!M?%$A3@7J`}#IugR$BFi!IcoMfI5KFm;>c-1(8uG<8=wJ^_*eCUfKaox|WD z+Z>L$hem3JlVf-9T~Gk!E_cvzQg|OnMH~&t*;@z-We!Z#U9SC8>busMViMOXf1T^| z9UX^gz`m%T`9Tr&jol33UU}4XCE^WH_v=UR)J7XQ()b(kXA=cCy%S*aY%-1dm-8KW z3$*bGPIbdyGrMo{(s$Y*#dfyi?zS3fcIh|%jH}Oo-}nFCdQ-?nXU z6o5_&h$5Vsd^?^!xf()LkK|&gD*oa5r#dQKP{?D6L{CX$UgPQD=f$tGEsre2Eo7dG zt#xd|iyl9m^c_VV`&FHxwL^SyO30NIMr*2ml^*-TvW?^`0a;(v9;Cj`_H`lh)d`-` zW^X~*GFXI;;4cJSNL>}O*rXnb+#e<87phR3K;AV}>@aC>|C2}Auq@r5SR?wDq^G7p zob^Y}N&}-osWM;&-S(cxai3hz0qI5owA1adF^{8Sm4ksIzBj*2)26)|8QXmMRA+>Z zf1rA4&tKKSm$cIxPdm!%33Z16!NI<0_BANhw0E*#C5~#TOtcBl<+8=imXHT?+Ks-X zIs8gI`UUa5=oE@{_f1K~1*hYfT+{`ngQms|kmBxYegbki#4)fB ze8~^{CO)efebSS6AaajjLM#BfPv#2W?IG92=jzyA*W`=}L1%*9TxLCut*yToaJR97 zrLInJC&uRVE@IJ54+WxM1v)DNLXV z+JJ-i{RF!VqNc(!^vc9UIy18sba6`QArTLo7TbB^6|nc2k=2+q9cPGzoMvy1qR^`d zk|Lwz?|dS$67YgS$@J|^tCF81ZNZ}H{yNR5seXETF@YX$e zBz(8U^T_)wu{i9Q+_may$^ge6hN15uEAMM$(SwWT$5r`+fcKOQ?L1S9IaJ_iGg}V@ z!GcQSCc+0?`nl7P)~Y_hz@YQcVHCGbsC%iS{v@r^m;}=iBU{l!7O0)xnhaJ$Ih7S^ ziq#M2aDdruwggzB`rlBe6s6r|w&_S{)Q@RDNgf5{N@M&_l{;V67*L7ruIcuf*#GUI zV+ORYE8lLy5|?b{As4#S3Q)%;HUC#1M((57nR~J40?t@O-cJDn9T@xZT<+JS-I%+> z;}pj-J!ToBas1m z3*%R67i?8W`W_cA=0={!@tc|m3r+UN?_3*|d#D-`%^i)fHuRsj9x;^!JWa8wR!Hp) zNRv;?uv4ziq*=p3?4XzLz`kmv-XEgQ7rxfP3TbvAriH3odsojn|Df=(|0Va!cF#8I z?&7XVH;V2!*v?@{MYF7;e~2+Gy`h=dzJ+Rpm?}>YrBNL6xv7c($wM;pZ3^jA=xvpj zo#^`QE1*bhj{bh!05f>@5lR67#-ODDT*XT9*0}RAVGIzJ)PgCdj|(o85yE|FU|KMT zD0Eq3d@BQ%dCWA!xH4EHyF0hAy8(Z&km*NMyWE+V->SLujek=Cyu81RNu0>l>!8CP zp7Zen#?dB^ks4)cu&0*$pMPXPjM3%*cD~r@W*?|CxtoD~2T|8ImuXTz?E+GwQo>4i1C--`zV2k{wYV=t@eLZ_pndxAvwqnWN_y~8y z%SzSHPZIAz>Ozc~f8OcL6I&DBE}cW7WLMhAhT=&ZF1vbaU|(##H2uWp$s-jjg)=s{f;6m5>0)13Tx?>8rk-3w1%SI@7HT0I<`U4iVSs>p0NizvexrY ztX@jE|Ga=(G*Y7ZtQ4#Jn$Jy5IQI1%Z!!^d%$DJVpwJv@g2M6gsj7V$Z#mdSqzJ)Niid!OEd7w*T~ zeTsijXcxX`lQK908g@YY%*ejp&+nS&gr?x6kna30cqKmc*226(ruS@*WP;LHbx)tl z*Zw4~?3_CwYK0fRt~BuURB@3R#-uT6ga>B>8|R`c2;QT;T)y-CHu})pM#U9tDEY@l z7@R56Rl(RhuiX;)0Gwbcf;Pd!qOJ_USq*;+y;#T*S>zwmz5O3TEQ6p4o~cf$%O%3S z8LvcQ7q4DmqoRHLAKTbJFYP>6FvWudf_B|(TGhb*%{k~L)X z|7~-qfFCWHrossUR(Ks7Vy;@rb8h%-A3P<&JmfXan9TQ*)iXXb#H>Yph1m@wjNmKG z^o1in9DpZNOllMj=h#Ym48$Zz28oPy;v~Ce#XBM$8T>M`$11Bu!3_wHX&nbPI3+;9 zHoU6#?CF(cTvYY99-#!MHzMTjK|P;_@#%SeE*GkpOf?LN(#lFY`(4$bjdv~?KTsMf zg~31S;y3diZ6wjYFkEn}-CJhxHYP1#TWKpY07wME9zn$tUn06Jh4hZ3=MgHQ;@kox zz52WvdE&+vi0QHCMi-q@nI=SZE{4tzXJ>R2U)SsS8u{UaJ@NcE%$GDz-R2dnrtkbh zx>Q?Anb0?D5Eh=o=O-%_A{ihHGVb@UnPZGo3f@uf{wIuX9T7jKx#G0l}0i z-SUg6MSXc(Wt@Q)NS=e@AI%m^@yj)iL3qsD77a6miEgHC{f9_GiAFFkGFcu zj0PSv0bYmB$PZ{QF>vIm_zOKDp|4EbuosR1|Bx)1pqX^IFEzsOO|ltV<4Ki_v5E%3KPF2id znW<_3*o0@Rwyyb?$%h3Zl(OV!=E|4x)O>lQ{_fLTwNI<@JLPkFW^U^%4N%LFhq*GN z_-yypJz93WKZ#KYqGUDfFOZ2J+*R^UH9cDLXqKhA#Yct|cO*c%Hs^PLOZ7xiir4oT z65c07Sytu@J(Y_GV#vixRsAZa=jvgqBtWfMQp&f~@OA@H#>3Zw0H8Ksz6~y5S+}fl z&=)FePv*bo%_Nhy8H`_5ToS#8v2&jUC|Z~PDKm4_nm)T-nhN0(M9P@eT?d;=x0v6cHfi?T4j;Br-4^o~wBP@THBSA_ zLVa6J$WvV9)|y~?Ded-qdR?wI$mMN+WaaK{RtC2w)rLo8*cJ@h`t-3?{|Bj;e`qZJ z2K^q`ff>jJ8zx}q{awUE64(X2iRxbxh+4^g{tq2Ug*7BM{(^-YmC)z*!?4X&RjVB# zZxwO^H|Wh6u7`o5ECB340*s?`_1e#i*bk}LxNawk|Gd69p1f&)n>C-hB(b13 zTWg%)i44~TbZR}jz%NqayJj4fx0rltHzMnVeVbv|KZqZ&A~LP`j)iohCC7b!Z0i5j zx9laK|GP6wz~7$urk*T!y1SJv1F!4B6EHdSWhp1y^=Zz$q(&L_J}lubL6Fu&`DW(G zE=w~;y!MH}^LG1i&4i~fue{e^;=u2oOsWW6yBx}76?26sIo{mr=x-Q-DF0cb^mpuk zz#PS-fZXqgrd?M{ok*9sWngP!(~X@t?dJYgEQ7$?$eF{z9V}^kTf@R}Y3Gpb(2Grb z;by16_#_(^Dfb7Y&TatauqMVfG24FDACu2zY3e`R(lzwTNuh~47M9?SAEY&2o{PCL z?O5D@jvnb0ar*|m#O8D$X|DDjy6`{F3-lawVBs>1>^~fo#O)r~Ej`z=E9v72U`kpE zCv=n|v?T0<_recdG_qs#(%ZmW4ePKSK(r#El_mOYC8b_6$ zBlOBfmaaSAMMd)-;JKn!j$t{=wFS;EJ5*fO6M%m>Ba@gNmfK75Z{^0`_&MfGp*d$t zdVYJh|64HkDJOT^00!GT0K#tTQizzAT>!_xk9@MFzbuk(04Sf@*$d3b<{ugEt)|+_ zq=IAD7rp=N)=nSGwjigL#M{HJHIUfg?lt9xz<*;f(Sok`6|;3<5{xQ|GeV= zpC>f|z6wC@E;*eeVFAT~K-AUA?m+c(pUaC?`ar&LOgky|(e9G9+!ru6Z-XcfTxDw4 zcxvog41*TN_Y+TISpIfh}*}eE*CCCz`tJ%@G)g{UJG{ zFG9BiG5j4E)1xiyRKzlrx?)EyZS}P!BepP#W*Y4`S1?~j?8N+h_m+FNX))YUcI0I zESCTfcz>Z1+^3G0M`uXt2qSRP1fYUXPe-^&r(3*|(Eg6!Pd*9}Iw=BBM?V+>jzjkE zP&2I;Yint@)m-pC11w{y?|9KdoFa@2*=C>2VS9VRcfve(y8%86xZPAGT*!-2)77TI z1hAf~08*Sy>t0v%Rb7|5A2+hbi;M1`IY)G}^o<+3?<&*u%d_7VC(<{pm5z^i_rnOg z7w7=MR~ST}n#m%C?Z){Q_{){(GVsF9_cAhTM`w;|O#smG-+oX1?@b1Tadv3CBGwzyHvj+tOXm*=D)rg6Zto2|0RZCM|1y%2cUT$# zKn+lmlh*OeJMKpB+>&c4KOAc!t1Q7d5SZO`4Ci$UODzeqPCt;bt+dAxLfV#0BbBuXghSq$lr?dvSFd09-&_HUOqH0R}+! z!@&RLBF8cS^vMZgKa1whwzaEyETryLps4c6AviO$H4+&&VAKI4)U-* zogwKq>cjOamDk0frd)|E92 zE_ZTqI!2gP>sx}2sh;@5_k;G9aSEg-mpUYS>m-*_kelm#j-)G?=8DZ(Mc*D5kLsR0 zi_H`#fxlK4Jnd#?SGq_9zmm2+JOMZ&kX<-^_%hOjm$GfY;9SZ??C*~l&xsCwecCWb z=5GGN2b?SFL|MsRZhhL_PjW3p5fe9rvg94%1>VaFOUUsa*rxSotX z|Jm2^(I~8z9rsKeApaoVA==Bii0BS_@D15t+;=`Aib$oXU904Agd&Dq#XULuQZB0s z=5Ow$)?ZhzP#stvJinQ}J}L!a>XzyPoSX}|a)j@`)Rd7N@D$Hfo5pY+8wf1+;5z93 z!PWVEf?a=_*K<+FQ~upfMg8542&voswg$B9$(giFK}6pLS(scCVEGoKO3@cp|8=Sa zLUwbIk?9I|KGERm$!u)_MaMoZ!0DY_A*z1+>Hn&a5*vI!LE+j#MOqk-bb^N12YFLd zTAb8r)i-|DYas{7&K*1fL~kziCP?3lCR=IP0G@^mpU=#m%gMKye}8%Py7$AjAxdxU zAq@Nnv~U%yOC==yt)6bGOH0hJtd#BQGbnTlHS%D373pcavu^F?=j3QDDZ07_BP)AA z?!Gj=>P)qA>7+p@_ZzIa(m<4zi2A`RX#c^+@CJH?CJUadv zcnF3{-oBMmXyeiAzQdt9LRF$iYCB{t#lY14$`8of+wMMsv-(YbFfnB4&8O)asa+B6 zR>gsg&%HzHnQ$yVy@iJs@iwc6o?e>n>2dXbuzq=^^3i)9z1Vt20lF3G$U&K|bdQ(u zG#H zt?<7{TtJhe?c2NSM^Hj%QuM|G74+%`eHg_YtwSpA{K8}R>azVAE0kvM-Y~XMuX9y2 z~t>t0;1VD_I$ zea&>YaXh`9`Xg2V2&L8t$_ic(&rtpUXm@0MKML+$F)=~@YmAx7i`ARj@5_FV=O_E? zFUzWliOTs5_k*ay?QW8W74nOX7Q(IFxgU(zf93zP*pacdo9QZ{^Rwq}hvcPA%@M2b z|Bn}B+sYWPQ-o9!D?rSMyC;;mqY!W=w!QxfHkl6$wXFoO5=Wje0>li$@{ld|IFNg_ z`60|`ktZ|&F-_1J5av1edR3I_We=b+Ehq5#%&Yn1&A58aOEEqYRa`MmXN8+_?R4bc zt=PcUEt3tSzg3?GMj`NvSD}j5$>fC(uV9wHH{L`}yaiCEA~&`L^k==r75k3=jrx`x z32uR&@Y?8tZvWS3I8r)G1fGN}z)v3?dOkdp;>GqFNW>q{j8^c{Zf4qs$=$O4l^q$B za3Ygw;v#Cla==+AX}>Fn99f|QL0{{zm0Avj39WzuU`*IxKjw_}J zXk+eo6_6{?#WkLmSD{6tBmg8bV0(E%jIb}f4cu7Q2`>6tiriGv=Pv$soWM=>N7;o|4 zNS{Rm&XiC!Bh4gpteL1zH+LmjF7kT}p| z8_+D88jW(+5+x{lE@l2=InVs#>69ib9V*#dm^yTsa22kC1niX!Fb{3sVDK*TSKk*R zS?zTNJ+aA?(qV(TfW6dhm5Q%~Q0g%9(4iY%WT2%qUzVQ=9l?GO&RrY;&Ym>V_*C^B zKiZH)gI5ACcNqMA<`ybQtSAa7q*Aw`7sYyMkBTNBkoy$y0g_pS1I)aN2H5U~i*rYX zU<9y*UWDm&N3X9OGCY<=D5N#?F@O+$tMKi56qvvG+g|G+RC2qXHr-N#{egR}lUGBX znUrHdP9+M!_`zoYB^MNQd&O?o`}`48kh+cN`_9#s5C8`*I*BA8`Nx821=p!oQ2lZX zw+oK;ae31|d9EKI_Vd&ZRR}?vsDPKp4P*Q^H0j~l%TCO(uL+>+^ZkONhMOpkM*1j2 z87m`yCB^86zVauY@Yf%oOKJelzeC1fQkvYQixDiR*2sp9TTftGlQ2EYmEuFbXz#hQ@aTAE7s62X0BetE>wBL>S) z0NnY2x1p%&ws&L1=8u7Yvy*e+L!Kqs%@=kfW@r#gaX|0ZlV=BM;|j{h6m{ZJ9`z;( zasCV4D&4aJ;Y*zkAW-p-L@yn}!IOp5qe!=_A7wcOtA%N((WJ&>Yw!mNN7OZw6qo%4 zK%)s-N&#=`#snQvy&2kSaP?4RZ#5yy+xC`#p;#Eg4Z!l5B-UcVx5jg_d)BtPLKVMH7r>oKXvFYTFkBZl~ zV4a~sBN+7Q=q4@EaSOZAeg2jE##-lMR=8Z)Wqr;n&qIaf3t*iwLx&Z5O-WG1=rlj4 z7GRT9xO!p^Ib|F;<-y%KqP`>g?GFJs`2vpRax;qc@%R0a%7%nB9nSCETNxrPIYyik zaK%RC!r;y*VjZFVYVJk6gY;#B)K30Rd@v3d*ID^BKtH;7Y3YZ7AKHP#yfUsvWUp@# z*k@e53_;q2vMYaLe9o7!aP#nmMc(jR6;?0^F%&CK`XEv63O*Yys#@xxejj2(MVG6X zcz^UN^l_(@WN38Z4CTAJ0dHEqy!CV>~vy!1)-YZz+mt;3U3G9!b~cz8^)NTlbEZ*SsBvvJ}> z3||YikXAAsf3L)TbKYjUE*XyO@v8hf#iL>Dy}wX{;*UDC>e7daz~4c4h5C8^Q~kGXPx z>-#zl!xeFXn3(%D`5k^3-lEv_h4-rBO4l#gAW@2~&xpFe`9{&(`kvDaA4$v!VxkMa z{GReRe!?l?%n4K4txgSD4EDKT4TZynZ1(H#WPR5FPvDJ&7pNlHri4(jBUp>6ocet+QA1pQC;S9cBj$9cqQ!(C?=?&r?WTL)= z>t$%5oxKHD2v0typakpdY>oISVAQF8or?ab0<36{X#zt~ZGxsjOEkN^!7~3Ako<(CECAJ95nlC|?}AK}v#o_l(@yHHOQ+mj@N396kiZy#%&mXg zeYSXZd3&e~el*~%Gl-siE>k#z`8gb-_p&6iOYtx}OSb zv&K3zcXA17c?9-iTz}R8hHy*X4ImW=K=@&R8$jw0V*d#%YK&T|x82lij6(O6e%A!P ztPFnf>;A8WjJ@nXQqD)2CKnQ==It=wl_3>KKnN%_?!1xAeM;yq0#%`x#XE`gNFE*e zS#ah@Bgzy{lEirsAOFHcX4lNEf*3{V6SO*T<|0$co%_W z`s;Ififu&Qb$E7_63{n<0?oo2Qcdrdw+@6WX{sXy3&CD`6<~g`WjM@yYj&k|>9U(AT%8vqo#$quZhDO5Hb(5?7A zQF{{0Umm&IA3RnNJ()9ItTQcOA)fSHBckgrbKPY9Am=X;&@TsR{4@SJ+3Rwzt~X{C z`am@`Hoj-!W-lkgKjDco4M7ME>AL_O5#Na+kuQXZP!Q>FH+60;r4X; zuTWN|p%#Cuu*`rAK@V;@>wE_a!S*!j%@5BT$^Jy;!(&{%zKpkqh@7QPUZzyaB_I<5 zftU-q4}^-JErfK+|BFKs3kI?ZTijxaIDm)bJ{+6^a#Jn%GiFXt>~6oJ3x5^G7mJ9$ zP^`bb!DqZ}Kuf&y-)}|oc?c|&fJ*;UK^7w~vJ3T(Ls}1voV*}|V$Zd3M_5wHX29V> zBed)yI_R*}wzgS7)X2`xn0OP2;{4*^r?X_><%n-#-j7Z@pMNSyK~HEIrqe4bXl!st zW&uj~GZm=yA z>3ivDUMtkUg*s^2g|GK~TcWIS_?crqb9ziG{t938$i^$|RPKxqdRana7rZL3epz}q zNoIf%oQ-tt`&g84YT7xWo?z#lsSh3#9WnZ2P+C(D_Bo5SyDlp=u1$i+sE%G0{g^W4 z!p|QWyl%z{Wy0jg5}qt(;r28E(Sn03d+U0*hECU@#&B&o>&3w>D@PxI_8^X>Pm`Fdkc5JVYg<&}KzorxmpHY-V>A3-inakQDxl#N550 z<|^Ti;;e90LZhBn?U&$Hxh7|@uM=eM9((w}F2?n}+bon>I!|a)O;hBLF@)ML@)LOW z!NRrov&(S`KmUxk?{ycd*cbj1$Tkk33R{H%c0ByX64dYF=ZbdsFn1W!79wkqUT_n@| zY0Cm_4bZENS#JT^P2hvRYYaEjBF=W;N%@Av%B=*p4Hxe4<-lDjl$fmc`D=nwMzBm` zLSf-_U-)2r=Hc2bx(CVaMKhH%bR77VAi2VdMJ@Pq4Kvyw}*Mo$g*(Yr2L%4fWvFb_q#ycX1*I=p_ z-j^Xns7)?CD$C4mZmbcy|>d?5Db1`>!w?t}SKx&0BQGrQVYluZIwZe+>L? z_=DJn?I5kT{A+eLSPVpdeo+!8zy_)P#Il{HJNdc8%U>sVLyzJ&Uj+{|@uPfHT(-&m z+(fR|1?*D|doQZ2hBj*NqG5-@_S7rB zZ(QezVxiG+P+yglr{QTMQ1Lb~GSlPe#SKt4VVu?5;kzgt`(1iFi9+aiJv271^u!a& zL~P#5RNv){c|0=Ff8ZAYPTiH5AtR)eOK}X_a?kWk=(177CV|v|sDc12DF!Rt6y(U8a{O+K&X0e!Gxymmpfy{qTLG zj0JB~uvOxng-zY;V`A-DZLw?5XY+`ziO2xvFe-A~e@+N+vTQsiCxGK21%&y-r}%r!j83 z!V$pDKfB;}WkT3pEu*8}TKjb&onX7m3frOHOXZ?R<8JEZuBVx8+ZjTI5s5|R-U@^A zlJ9Jr?R8vqFr1?wV=$8d+$H7c!XBPEJy%66!N))Ac{gW;!VEN1M?Cb9ij`Rcz2YK? z!EB(se-|Tyr-k(a4~(bYQ2gF$D?|H>zYWuYG|RYQn}TvIh<~+Z#1#B@j+6vd)*^0x_OydJdtW!|J|+-52j|tf3A)fLWRFF$oDmH3H<7 zbnUsjSq3kRGKHY`MvzsWIomJ3ztXer`PDH|i{%!#Ulfd!VP?OVV~VX}u=jL~V-K3e z?G5&7z_SS#c12CS{iZ70vsZeWt`A9JzzM>2~D)q`z`Tq1E>iZi!}d ztD6Om1?wMk%|iZ4At=#RsO+N$HUo7sBkWCx|nmN;yc<7!qF`Cezc?hz<{UHQeBgnV9o&X zZddOh>`ed{5cP7ine`h%%htRV#FltN5!jY172AA}uFnGfLpwd$0P5c)4(MCB7=aBx zDTr>qg+588m{s7;GYVmv=YC^XA3Ylu5ZiQp5nH))bx)RHY`w3O?tG42*Me*OO zpwZ@LblHh#fIb{ch-YVtOE#h%uuPUQDO(-9_}TM-k+&z|P2KI4;?fAe6Bkr-I%O|@ ztM$`4G{ODr>QoZ)ewoT6TI~dzU@%G*M^KPU>?J|QI&pqUmMM}I=ZKzh6E6MRutvxL}gYEQjn-+85p* z8e+&NY_j>)$3Iv_QFw4YYj>pcFsknI`?ydY6D*}i%o;a_*%BvN(MGm6POh_Cp72nI zamgPW)O1B~oK7;z^$bKv!1D;3*L8j39}yYR$hUkFy|86=0Ek|-w>*wTI32w(}A zqBFhNWc5hV6+C%33PEa?`cc2mbCuFh!pn3L#%8eIfmGY|SY@49*kDQMZu}fg9eON1 zk!Hx1&~C9^T$e7vZs+O@{QZ0s1~BhmLz39eJq9N6UWW?zn`-A{M|RnND<%1YBWVo% z<}h4aE{;Ns{pnPjaP#1KUkRBM6{5?DQn!?q?)c4Faa6{stS-ZPF*KG?e5quKz=fop9X>ZM=wYTuR7Wte5p3IkDANGWCB zT7ySOeq4TeL@VV_+)2|Ziu~l{Pd)}xwZMcGSfo}U|CFF(Xq)la9!ryMld8jHUnY~A z7?jX`!#Xt_R^MA^89o<{tmnaJK*d1u6odvc-V)#8;U;K5_OfP$2iV$7_bj zU$ANbJ*7XdN1K0pyo&qM;LhEk!_UQW5TqISzM=H36a0$kzhqF!ykN=ltqFyP`{Ho)D!GX z`1qyQ_1Wu)#jLz|I(;Vu+K5EvLLG^W6nf!C0N+td_9=G{-Elw*{>c zB`h1C`EB?3H$jwJa^Dd7q&MAsBkkelb9E!2pkKq=Yadc8`~dKeoS-cS-sUxtobz!# zWhmpo{@(0maw-uUCVo(nbTEN)jQMb>0BmVduqdr?F2rYNkszB%(p#=7j^{C1()qm`dgisP=~ll zxq}D186o_=8?M}ac?9W#7>Ua7ORG_+>}b5>8$z=`3%L#l1BX=g(y5e%!PXbB&t?{1 z#VFJD#`W=|GMN@vuE=2rZz!tod;|ZNB~-)0v`oRuPqysP!Qke7VJf#2PBRc;Dms70FbRCOcmWMK<0`zN|fYvfc)GtaZumgHDhVV8ci z19cOGpwc#ES7>CLD{^$H6t46GTXUISoKDC@-1V_}bQwo7EHnQTH`L#!U&i`znsrBT z!iF;<2qDAN9Q)qz!y#1L4$Y-Za=#*g4l-sq8Af?OeJHBR&#*HlQh!;eK{vuhFg*29 zMRRXPBp~_E&zl`_FP(Fq-7z^vlLHpuZlTcBmLggPo0I0b*x7+3=Wi5!y7HuaTYsUO z#JnHn3-V?($sg;9z*sr%k#GMEi_mp^niy%wn|SX#W(qo*4Ug9d8)GCAqiu7?>*xO2 zS6{3r*${8vsPmrKf5(0HZLz_2Wt>X^3k_CC-vr53!?wtrtf`loBRVWiE5qCw@`HP! zc10%98|4U-^!^)rl4qwk4qA!+urWrS_ZJo-7|xNhOEWyoTCIncbe(fMK#6V$FnPAf_GlMGi6TJ=qK7g z$|Ut6tp~C=`fzWssSXK6<_h8ItyceWq+ht1?X9(^XTeI@vBMeT-e|p7hsv6mW&@Z%zT+6$w}HgbNj98Hi3|`Wg~)E zu^`Vrb=7(0=(e%9E>Xh%=+&uku6L?Q14Eh@7Yx;x3nzKnyoopO?WkLCD>NGAfjnyF z+|LxPcS?w9eK$R&IT)wjOWB)a^GT?kAc)%Qm5h_S+5k|+V$bLH*Y(O&Vu6V|6TRmo z8G{fnPS^ZIoCg{InD#hTlH%%Jg2;%X$3x#L`L-aA&7WCM7pf)? zy2P(gXPJ63y2a6|rcq9uAnr)7o{cEn^oY2x$2kqKLHEUrzs=zA%HL>!!vpkzEUEhP zMvNXo;0Qa0h35|?@?}{-*V;tf{Z4T~^OM5GBR<&V3}I|Z;zDqa?)$eSqW6I<%Y&u$ zAM=OUTG~b8QVwCpD{96?*8*iUfv_oonexaluN)*OXclh}x{oA61Os`Y|03J&DdgSJJwJTeg5lf#!Ky!OUOyDa3Pe_U{>wBLv%I@ z%-|VDzem9C9l^z>YjGCw#HsYfvJ!V*Z3!XOB$L*4p}gWF?e>Wj-fGdK>8br*%<4sU zcLAo)XE-=|PO;ADjv99PR++3iODq$c;0`}qOWSYTy0xn{tZr?lxBg%y8Y6cEwPu}| zR_J=woA6HJcy5<;*4a54&iJ)ue~$cROD_pup!|t-b3v5^ z%hvenv$m}WXMeiu$;wfd`L^5yOcN=;|henoIA!S-x zA=_XIocmL?lDye9V@iN-n9zsmFX=1{)hF`%s2+*x>vcr@zBY{^lD!!6y&^Z70;AVwr?DxMS~5lhV!$}NJEoC^+r{bfGu zUb8TLDGnY77@g86a&1+MDzOzdHN`M0*85F8id|<6HOyny_X(bnL2E{pCU{paP9oC0 zb}MVL&KJLyy?f3^!L$`A(W9b_^ee=5Dq!4{i-NeH{Brkt1#wo?Kd(mLabogePPHcs zu8xeL;2iLB3iVvt)8_OERg)Qv%cw{piQDPthRv!g3$(?k)i0;LSR>obR4dxlbIAo3 zj-K+}2$$&%NC3_Yh8mdnKL!GOSgzaCok!-~S41mtTL#=Tuk^ziRQ$ot>fV2QkoVC+ z#3!{v3OF(0>uH%y(@j`At|EuTmd_BRM6t?n^C68eEY3<}{@xWaWa#xgypQ2$9C z{@#y)lkVDO^9_1CzFB7SuHavHLQ?L7K(fU}U~3JHzJi%99Xqa5PGxw~ZNiV9B!-H< zi=-NpLPw9o8;-^R#*GtYHM5>+E3cKloKijIMkbrU@U7p)qjr#Qd`hn!<`0m3hA^Rn zNn+D|z|4(SEW|zQn;l8=8AH~c z|3#7{)BQ-k**6fcIoc1zZ+uvR*%cDKdy(gf=U*%A3(@>F8T6psxZu5L^C8D_Z*`WN zLF^&mu2Ds8D=xLGQ(4+nM<%nJ`AAYV1LDms4R8F}hq-Tc8+-on#nK{VVf9$O6nX}3 z;K=t`1tjp}`9Y6**0!GI_YU>JSK6)0!jm}@j}kiz5)>Y!M|ar2c0?IrIpOt^Mb1VS zJ&J1e2CEd-m7{gb7jhmc#w@nCDzA7p48Msf(~&xsuDln{wdn;^8!a}jn{cGopg(HZ zFdI&Rt?e(#DLE7TFoO*mS_Op4T^!3Jm{=d%k3E#r(wI&S#r8MhC!$;``9-6oO zt6WDTi0Gt^U%qo_Gjq<%jCa}y#z?`(ps;Jt(h4+{1i~S8$V@Q-Gw8Mq86U>ju9}_q z_We~9?+gq<)V{k6TzvdDAtz}pc{kNOSqyvVTxWck=s$}ow4Z|nMzKS+4x3AV#q@`BzeOSIiI+Q-S(iUxv3`fc~e)SgDqPX@z`xU_V`SQ35nlin!DX4U7 z`9#IvvHT2UFSIZRUu_F3P56?4)##XpQf6HDXKX(~@<+MsostlA6h7~M%QGYfUTvV_ ztX5-kG0i?Lp(!FFfwV^*S-Hko0ta@)aRpLbdIlqP?~9Nb0fOi2Mm#VU$s^^E=Za^Z zA2^7l=cgr9rr_&mHOd}J6n!!{8+3q0uSYS~tihTaT6URj%B$v4d_5RDpu#mL*zl?- zGN&E)JKMg+8`zpY!vt$w{mz1c=OAHXj-(`dQn8Jf-BV?~GNWnbhINt~JMk|YT-DRg zkpZYY#1h;SEa8iLxLbF5yYQ1JARh4jR-CJ+spGS%K18abMbLVKlL^7|CeSqO!_S+d zbCX0f@${dTg5^Lb$iO9klO%`Y8CoA{R8wz`xsTWAjO?ya2IL^hqOVRvt4fcu)1BY2 z=dX3THd?v1u{;gNMrQ0s2Err}W1~_P3=Zv|6B;?|28AE@heJfN*HiIMp7So1N6=Xt zMDBd#wV@W<^cT5{+~R{|q+ho60>4Dui`xYeZ7&=tm*}gVq@&w($^ca|`1|(<6?8c$ z3Erh=p%H>jtiTWJH1fllo?Yim=<10$yBy@LzzWJ*hBnp?nue zA|S1&1DADMg~hOSn5si#t(OR+#Q3iLx^o|=D`3m?J+5W0qHw^e zM(!Xp!=^SOD8r!6n8zlOJJ2y>ZtiXjY`9%!d%7L}vf0FFE)UMK{)rqFa#w2Vv;Ece z@$*XgMr(x)W89D5U;QR8m80A(z|EiLIItsB0nfb-txb z>K%;ruIBwUYK{V^q>*0phb?^X3uDjk!Cs3BycGwCKU=TTHY1RTFrVXlNrL_d?p_M- zjm{EDag9@y3Mv`aU{ZF26Mo7&*lpBGv~|C-Uqqq@GDeHvyRLui)P24N;B-(;pdGND zc2Qn<9Pj9^Oj@GR2)$d8sPkv!MwnpVwXs}XYK-2ov~AVmcH_xqbgKE_wFXOk2i`hpvR`zQ}}pliPI`>wsX)xfx$&tZJs_xvGMvpvc~s7CT&c)K_}kNN z6R6{F#pR}ALC0TIbO{+#az7lI9k{M}_6d6*oD)0$H8vK636eyBmjWlAI>R}4Rq0Hu z-~JKi6_`=VIi=au!`g|2B2xz(_$HgBo_OEsZt2_i>*a5KAm{BO2RVJsPY>@w?w^_p zH>FUiRv63=aQPF#;SUZLdaWI}-VynTL~w=~kHd33XJnB+SF5~lq@zclReiK`(aZGX z!J##9_s9D9L&s9J9i`vR-Pga0K6KnYPf~5t;?T9vKC5F~VQ>5DRPM^MM*c>I^Y<*k z^%5-ifm!BDIa84ck=2+YHXEThwDF^YSoF1#;*As(rYqK9)!N1tZN62Am(Jy+GnWd}n{rMV^R?rRU@czr;B()Fo08t~%`>EiCh zrz^DoJe^nFm607wGXD-^K*6@mt7;Tl*jmUk7gk2m8W)=4>66PQrOOJ+_>3Uia{O3M zvE{5R!)0VnO1QwS^~oMp2z!pWKTYs!$G%F11Wi`h&nd4ZuUL!xPLyT1%(n5nV9(mL zaJ{~X+~?K1vGpEkV9v9*43zM`e_&oFs=U%S-KQ1K%vySXt>Nf??57URE7)ab+6rU^ z4*+xdE&;RIz~!MebM#re=5oQMEqDnx^OCVsWww!-fg1zz%*v%{js2 zNe~v$9D$qu0DMu6NQh(4y|q^?mZOLI&AxXRVkUxk7~6((;BJGvt(>MS*imSNf~)by z?Z4EN;@xJ1)Z9|PhwgZS(0v|LeFb37G~u*<8mt=G8ywYYs%QLz4T-IP^`M}`8t4$` zV8@MU17b`IaWIf}B!wD!wNi!Y{chJEVL_F9{*zld=!!Kj}xR*DBV- zJDs}xYbfE-W)*i=;}x{Jr{^(u-eDgGIsUTWGJx`OsQn2z(q|jc6YpDcx|y%j;J+>% z4i8_TgUKoLI+ZWTC8qZ+#MdG|vQd1}=H50*^v4WY?|CV#1z=#X>TdVc$*&EOm(FZW zIlEA~dDCe&f2k!pQ5TdChhH+v97}mt&y0;VEB)Xg-uQ~@M;2tSD77goT7gt9;4=xt zc)_pQ1ewQ1Mmg!g+u#rSLGID8DK~zNequ=eeP0U0Vp&w9@&PkSSU0s#iP0P*gy!SN z#ph+BQBa=7mDAMToCi0y<5-x!vq~Y6(k=gMp-nyhmf3e@b~Y~`hYi$eN6Xo^{fEM? zV988DapFo0XwalKaYLeg^D_Zjx2EmnVG_Nn<4GkSd#D5EWwv#<(~W#M$B`{=GrN== z;9AEmxn0E9T0lUFBO(~f_Ba-xKv3`1OW#n z$sM#=BcD2c{T*ksg}6F^O~8U$lTD9uM2wP+ggHpp&z9isQk#A6-}l#vn(LF(Lf@<@ zcrVuo*YQB#MSxG7hGQ^BI^*)+A7mEu+BE(c6>zXlXElkKnkjY7)kTwMsz6Md`; z+toJw`r^S8x)QSN>nD9Yh`%*x)v~*{4sGY2o{e&G&0DCXmJerNUwyTbi28(C>A_s3dT0A?X111dV>fp~ z;^Am!x56w~A>jF>bP^A0723aGnl2tQ>IyoJph{LgzP|MN6uR}eeTz|2};G0R+eo%MZS%tqo~G8SX=Q6HI;Mw z79Q`BRZUrebypU=bMi1A+t+r2j}v$YcXCZKlDf{YFDfVriJiG{wBC}aw)RCB;W2r2PxBY z@?9DP64|I-sUY3=f5Tw?t*fXatKZRIfKT2&Do~!bxrin>Fdj-PWU6f7Rxe~`^Z3z^ zAeppsXYHXKs13<>GF#u|l4n!GE{TKXR0P2wL#lOjt$h@2b zS3vVAUbRJ2XV3DWavmA?l9pc@A|ZjR1{i-q(_G+7h}(?C^hir7XL*>)F*hp0W6-rY zaIVASnEO?PwoX5BhkDScycWa1FHbtcAi0Qojrbk=aMD{)k?i+D;Y_#sD=U6Bd=ZVl zre=Ey&J8KGDK+{5bqihZ5|yF!!u+bt`nk0s$sm8>*PG==tL5$|t9~!P()&qF!D9dR zIJELb-l8?g`cYu9Yo%tWzw+1WShtIB1;Lio&kGB>vZ+4_VpQE$!bfqO!vYD=D4SFr z?B}_l`xgI-QhzXRn(I3A9pDEx+vrymy56h0=`fnvE1l5}Xw_WCqpLaf5RFaQNOhz4 z9G;*Y{>FOUCb|+hIsQ*Y1@bLh?-ds(Pc)hf2x4@Cx=icQ@EC&xN?ZL#HIPPu_2IRU z#GK;z`EMsIs9@BV>SoJibzd5qz_?r`ki#=?JrY%tmjI^p4fZ{o-8OBV#67<{x{ydP zON3__$H;uY=yGnuwTGv7cCBxO<+@fGOb23HY7KE;`Xh%2WBJM0juftP8>zfn@wyF! zcVySWpBAa@^4EgQtXiaB07p1n?eo`KW#H}up~xl%+D>$19a=X5l)KlpXHERkg`e!+ z`goGtG1Q+&>fFc#r){Qy$rcm#yRXSXTu~the*PDmf!FwNt5fKM-A_u&*(kNQVH?u9 zNn-AYWY!|yy|?Z^%a|ZrnlHY4P#CA_>WOPvXA~- zrgAVYSSLlAAE5&(JG$x$w$){k!&2$Ppm;Frpkct!x3jR`R(+iME}%RwF&gDB?SJzU z%L!ICjhsvFV07Cw+thUlZQt))oQ>B5H`Ss7=;i#8S>e>D)lO_8yWGA+MTDz&pu$n0J*pU)Y(c{CONb)*>)`xi#M!n%knRw_9QlDXoj|DA(N z)XT?&H=KNONX|1w<=+f$oPLp$WG6b;*nS8`6FQHs=hv>HPic z%n`M|YFqGMv4N612dz*a2V4ijXM!<#KdM6~hQqdR zBl{{3*Mc83{r`}d%Xi~TPNXfb#`rN9}`a0qo;?ebyW2XgFJ-#svQ2ODlR znj>g*!CQ|l^3VO zQ;3eN^;oPkFOZnJn}569PFp*i+;4yU(#&BT|ND9$f7$?ZwM39u+BVa~8z9xTy+)-% z-Rk(I@&k!Ww_&_0Y|_;7R8oa<8nPa~ZY4N<5|_A%z3S=;mrgP=&nC0mGs480xPHNB z=%O55>eMr9(=%ozRc2`QTH-?)>ycY2xQ zS6U)Bm>U>13(qhiOCcN=xm{B?hQE&$0`{Rtj~)bdvv?D%+Y2%70zZDHJ5=F}N&Eu9 zvR@_12dSu#GoaLr2&0nAQvDo7TmCfg@m4?JH=57V2Ax1(zd+XRJE4ta{n*-wtaqi) zQBeHkx+W#WJ&*OFGs_EFvio2DdSSuoDyjfNfE_BRcpk`?v{-e=esnb~k@g0d8GlxP z$G$B4Tk2(a53aZTDNb5+%u(QFt5ay?&Ou^kyt4b7mBs^G)y$C+eB7W3c(utW(8sZz zbS8elcg)K=E5wQDDDVJ85y`ASHa8Yi%|0%*>bbbankm`_>SDXCjay@+;~RUGj+k)I zIYjBXWBxnL+gMn7eJpGBI+|tbQ9?wi>E4)%E`m|>x?~vG%6^*ASSWSO6#Hd~Z@_I+ zVY!hB@kepEU`=K7S`aQ6OgBX3Z}hy1^pUK&V@T|RjF8v?+zOZW&B5eqpSn+G)XgFv z5PTBN1g{_QW`dwKYMWVWxmHsVbXnhzt-&h5z{oqDFRN?7+ysNy6UiVoF5fXy7mJQ+ z!q?w)8$1!pczXgz`}^)A&6Avgr+4z}=wSaFd-}0D(!ERqH;GxF+cCoqnFeIoYc+n; zBMqE*DkGZ_p!P+}*#Fbrc?U(+L<{~7GvpvS2gyl-WCcW$s3Z}A0R)De1V)ey!$=ZP zK?Ouaf*?WC3@VZt1`s4?0SQBt3`5S$8^5n=tG0Ik*jHPx-q!wk`*!y^xBK)xxB8y* z>w8QLTr)<)t%jvh6sH+dy>Y!I`L1HA9BlZ#mW^E{Zq=PS zBYY;vH~%~}b~zmJKJ0bHOdVI0u8C+I-J)}cs9BFIxR5^cn^*xIzW0vwQ-aEPd$Z5Z z{pc8bBrSBU|5U6r+NVr%YjMI~dN6usS)k`r2?msW|f<~HGVsRIDSOUyU{<&mht<=TZG2y0j*L7>JK|y+-~O$+&x<^px*a0uf;FRHIM7aS+G*j zN%G%E_#eo{LwaM`Tr=J!QewVH>*p8J^TKl{etxowt&1q7^v<-(*Y}cA6SO`tng%e} z>k=bt&o6$v2+uC{5H`>L_~3Br;ZLHJyXit#QiHbmy7U4@L4NV?Vz=D;GKy9{y8 zKIF`w@6cQYw#+Uwp?f%IjABd*3|u}m%UQFg!X2lBEd-!-l;18y1yuZVX|aY{@W78B zmG4Yj;jHm>t5dhHAu?z%)+9m1O>V^W%}18{84V(V_4{Nh_>BHFD!OkL@f`-m`8mT$ zNiI)Y$9rx3)rvo?Hlnjqlps}V-VHcU$t#ed)-S=`0v<26ncp^wXWVE%pFs5Xi1 zItFB6#*E7oMxq~PzoEVY3J4HUq2Rqi6M#Y)u_KNl5& zcUG@%y=%{7!459Vo$ZYIv6b_D-W2|He7v}}G_|?G6~=H!SYwj>z--a8zXIHVlf`^} zR#Ct)+jhoD$t}DN>K(N1<(zt->)Jg>|FXfng)^l2*<{QYS)p3!3zQ^%sqOD!##QFa ztJH^@%o*kJzZ`xz_DP5?ev!HSqpt+bwDNWM90{`PP~qCWS*np>jYneb=lm+0qSvUd9M4A^r%kza8-Ae+p@lJb}2x!TYcRB?65 zdz1nfegBm6g=@Ee(h z0iCp#x4V;Ycg9v0X<6a$9YK9@TFf-CCVFiCcL|VS%eOjccgKqYRHVp@336yw`!}Ei z&Rpd$e!`3NtdV8yq1}w!R!nx8jO)x;-n)q0cM{z@T+0pV`x~uiKRcJQz0uV1$$VSj zlHht8OvY}G%`_yGy%iAYGj;MgRsi|S5ESx%)c=%_r_qg<1f zRk_iC;vwf18Y7Lo^T!U2RhfO2}2%VF5WkLAj6`2i~n5 zWUm2}+5}mWYp&;Da6&IUN3=hJl>hvY|$Jp?~MJPO{$`$F{fV`pfr$X95b~}U5>^d_I{An+9 zEk_M|)8Wk;afbC5Q+uxhFb30#Sk~DEafu3NC1@)?%Vc`|KCs0&b(#s4R_XWd14B8; zL-GJz1}rn`lN9e=GL<1%UO>3Hk?%V1@If%AjQQ5$V-KkQU_nJlnlMyJ_y@COR=$wo zRlkE)4(F^Zpra~2p%eTj@T^k^ye>z#N2cz^#(Qr!b2-ZLJKUb^1)GnR)O1DFIO-^O|EIQXWnLbfr2-?%JRj`7|=B!^6f%NRf{PqRG0b_<*(OUjt_H)putea*mo@CV}O^Bd- zw)+!Z4?1H(S-S8eeFMDk$e^h0oQ2D)O|tUdZfs0Gcc+)x*sbTPLdjDYuUHsDW&HaH zYJV_xdi>cKee+_jg&vi<6k#T*+9dC@Z(cos&zXu@eBEqK9ZlRSrQOtf>l(vyG(kr=O8))-m zKE!^I348a>GbwDqZGB6F)wcs34cR+x&U}Vl6|HBnCLXRuQm$Kft>l|7X4$_3Rh%%& z3QGj}hvhKn#i>K29`|xC=!Q(CzJDCO5yg!*0gc~Gk9waoZTyJf-PqOqE-zlb1tr!v}$CS^{T@$+bJPbIDPX)Td!%A~=5iML=fAaF)IMxNeW&>@d$mc!it zs$kNsxiv^?tK9Sw-<9g&;WTuXV3KhQeOCPfHdh7UJ89seB2Z&-%H$BCS{?KwbE>u2 z+ZQf|fzOI*$RVU-SfUb@n@Wab0T;}Js(JjlG=V|K{zuIVt+yh1IIQnF% z29l=QG^b9tu#32FBu!ATee#FXF)B2@+$+dRJZyrdY!-S$W7N*L#uv%=8_1ZGh-`mW zF**LX)!-?Y{)tg1{i9z_&e9c-WOb3q!#RbC&A28@{2jWg=D}Z}D5kZ`TRnHW!d1kK_QzYij%^g1t|9okfDA@z?2rMT zL+Kq2JWOr$zW(QFGmap)#3}$y|ESA8w2lMG(h~ASG5}m&mI|IEWGo)?)4-j~+bO@3 zS4$ZSSHqAjn8ylhbED&wJgB_V{BFB9nd`IDs7ihbT1{foi_M29Pmdlz^;pa4(C0zd zB{2NyOa(gg1(*8O3N=j3ZS!`YHi~4nDMGSviMW{!+wW1m>(S2Uu)xBtr(2z%gU$dX zUrST~gTT73@sr#o2DNP5sdSTs$Ge$089VnH{+m7s=M41Yq>M4m<0 za4qxIFUAjReaCET!KzSK8z!TpR8~s{OrnL9=|MD1b&NSeNb2F{O8$+nqEPe4PRZR@ zwyWb=NscC~?i!zcyIV-E*hDF;4RMW^gQR&%t=;58NG=1(!wJhbp6hXR_)0sx1E1`m z_csDnjxedT((deAYwr9=Tv)IdlJ7CaZ^<^Dz|OYj1BVt_9b(>3g;U(y$f3m16)aW%tG*`WzjN*c&Rh8&7uIr(5U+t9` zAy}{nW~%A;5_}NzMk<-i(|lvDEZ=Xo>Y<7=`oN-5Bic{DlCcA!ELQD+Rqo#_U$nB^ZuxRI8g08zvKfA9HQk@MvIH|v9Q{~NnROR#=SE2J z9Naw=4eHr#x+59phG?fuCh0Vd9g+!24j~$dOqp@(LGW4TvoFGSoTx!4&iN7NK_D z7~CR-QFczgCRqNJztLM!&qZJ@dnPb}ax+!-1OI!G+XaOWB{BN+22(Sicw;HN%lo#9 zK>_d_M?>K;7Jj9xJ#&Za2B@3bz$Jl#V*j|Ab@qMQb>f>)i3F2Lj9Rk)8a~%fM4E)7 zmKZ+lZTJqgKEagP2MQFjUb=B#*q82f?>@CbH)7e9ae+-pGd1iZP zHc$!BAfm`%cUOzp53uV#g>qQOThQXlN=S*-074B!<^0tZVP6KB8);^d8}(ve%O-^0NLR`vdyk+3KD@Km#uI z7sn?3BG6hz!o1_(+ka^*dy`j&9rdm?BZ@C0dzX-X%mLI1CS5(}ayN+#Rb;iduTJVE zkW$ki9BJ>faLtOr-Q1Fg#_2FE;AT_uyooDVrOOQ&^Q=-;j7U^=adqL4fj2#F`_A~|=zYu;&**Cj;PCc8xoSyn=RgbKsz?G=_^eqH z$D4us3`wJxW-MLP-(ABjhun$Ps|-M*G+vvRw9$Jy_Tb}{6HpmwSr0jEdd!mH(5Ew7 zOGO|oqx32VC_k_UyofU>Iv1x`@(iMwr~+aeH!<2RgHr$JPygybt= z<+AkQtujC?K`l4kPit}1Nf%W09F<`N&$9PUcAubOJ6^40z^suUxmbQSNw!ZW)n;n; z%D}llqCFb;O(B{VM<79Bx2i?9+a4s&9a9_`?RmGqL~mab4q_VF0r!EUaFm>SMv6t6 zk@Ih>Yz)`4SvkC!qP=dLC0lHfmUGNV_T_l#IF5}E8S)M_&%RuhO`2hBUJxw6YT4W} z-L@Dg2E~fF0}Yx``C3hHi;tfjTiY31Ks`#Aj>UJlwyBX-IV1>S3BJr}qapJ6q;`QH znA+tf?;mUdibi_tMVm*$oBP_Xln%swvXeX31NlW!6AF1Gcz#s6K|Z{mVm_ zkyXPFt};M9&(rB^?=cS~^knQq_(FJq=`7@?PG;5Ez(Fu=iSn~5CLosA?D-W7BV@w} zXXj;rM!oc{Ae6mvM1+iyc*~-zzksq)5d*M?I7!`s_uckEBLDdknyi@?eOK#q;0+>3Xu0@1EBI*}Y|}xEcDMm!nP~*z#;81pAsF zWBH7o2-+io;KE2$h-k_FMV{GE;=}X*v@yU>9g#NC53j%}n-AyN0PRt2WR@u7p7}F@7C|`9oY>FKbunSR%?w2b zAT}qLPIyYy@h_EE+e*HHj;JW4jKN0cKS}AedXsH;aU69Pw3~!EQ{fLLHfM9YMvR;! z=*({lIuQNOKZGKpZ0UZ7v--(k_3+Jze^7{T=a&9%sM-;Z&n-j+B8K>Ye}IQS`iMbZ z;c16U#w1u`t8!G#QSk2K5Z?-Fs(d&19|$7#b{>3#;(~;zveY-VCLXM)AI(1y#_pKS zQt$pXW21jzi$n>Fn>LnJ+b8o=Lm1FMG{m_=$AiEZ_&&bupAe!vFR8Y^5?90Zj_1-q z{qxEPWS5sgmE0Pbu-%UW2R+Jte<6%s_R5S9vr3=2rxKt55sgOMPj{VWpfLAVkQ8IONrZ`Za zxU6JCG2B5q+sh2t>OIL2gRCw@!diX0<#ia+G08gzD+_n#+^vM3PdR zH&e{b%!l-w2A~;#ovL`P93yFpKq4aXdhUb{|2XL-fa)$vD`d0&8#_b8>1+R}Ag3|;10wZwR(M6bAH3#^WJTgNE8~l``6WgL)6TWL za#!!gb?*Ok#@x#&y3U;ItL{54Gb~a}7gO{w>EQwOe@j*VqLBZ2j{i5){(o6C>GMz(gfj#}# z?#C1n5G7d_`^i{-U)pS6Y~^mJ`nA7=& zU3mO-SVQu6g2O1=pPsZ-4jI$9-&;S4?dpPj;e1wfaeI={zV{+?0O&0+HGaN{rwqG;@4i{X9y-WBaa#igS>i7}C>M+mPP_BgjSp z^o=%DVZJXs^5b9&8~GWmY*42Y$0QSyu}Zt=ldq zdC7bY9AOQ7m1z98ptJU+6&GpsoT@L;l7)*=J;}vF+(fHHm^x;$eT2sqOgUakL1=2e>>%}eG5tR7HF25#FK?Frzlx?mH4-+w zt3po?HCD6vF8I$*7BemxX=EeLs~(MQJs2Yzu-)0@c>%irHw0N#l%|TRx|k-MT|Wz} zdbT&>cT{sKKzkb7j2Mnl2c4x~I^SzoWg+Ec1*UV1CjHOC59>owr@>l#8ieKPGd{vD z5uF!ke6ZJ3)u;Z|WQWr?Gp&aNtZ9#>op1fJ# z>B7rXopSl_6fV&pk=j7Y41l1h5O=tsjw($h&�i7Fp|iKFob60DqShsa#|+l{0*4 zwmm}z9L>3?j3ca=;woOYFwV);qNgsK$1!Bi_)`HsCNd|F3+)J%r>9Q(x(z%V?dicz zcb~nqCvPfY1Bjy%j$=9rCW9HTqb~4X$iY|^q_I5+ze*HPtW4Op)-e5)v%c?Jwfo0B zX910F8lePyptu{^Vh_%L8}01oKb50hvHL2mehdI0uD@pl zbe)}xs>cxjDVL&JtU47+ZQ_Y;L<*?a-S%Bdsb`c^*fSlP#m+TLC2UqK@K zL;$*4&02H!)&$@2KBrG3Vl$BMwR|S^=|=)7(&9h+=|TJ$`hVzTfl>msW0w_e)647l Qzb8rD(KXU3*Mdd<2WF_C#{d8T diff --git a/docs/reference/figures/README-unnamed-chunk-29-1.png b/docs/reference/figures/README-unnamed-chunk-29-1.png index 3130eb315aa8b7966ff29fe7643bef527e9ad6e4..12c86784c1bcb83da88de3f68ce43aab0d8fb90d 100644 GIT binary patch literal 15240 zcmeIZbyytFw>LPz;O_1oG(m$y@Zb>K2@b)+;O-8=JxGGP`(Po#2{OQ7!GpWYPV&9K zySwi`cc1s&d;i#d_EvXSPn|k-x~gUR)aP?LN=-!$6O9ZF003Yr$V+Pg00>~%20%f8 zNtV{0C}F#EH6<+>*d7270syQ4LP7u`Se^*5YKE1C09Jnle-i9RqL7u9kQFR%7D|Mz zP^-TUto|y&Dy)PO|J46UiLk{g5tcVw!PJ_Yt(sx^a{@DSq7WbvX6Uaftoo12pVSOn z5}RQ;G!fdI2!-X(g=%WeR)A(Jq2@%`YW1fcrtx=cZiY5PVe51A^K+Z8?@(qYG*Jke zXa#MCtuOg;@Owt9vpK0}+IVWK~cVEHqpay$q&XjEr;JvRV=B>T?> zr{Erv0szne6r?4!JaZ0nZ7r7g)2j7OHFSOse7GN8PV4ZiS)#J`jVhHc$crIrI)-7vLZW4B$qBM*x$cU;r#= zxB;>M6@tt%Ff?87%6v~sKo4|0Jrf4M)~AGMY`s7%u4-g+T6Jo(Ck5whmIoi;Pa*T= z!QSF@>|zk!bW8-%c<|+K?@Y_<5-uWuy%nqT6x>iN8OM0R6e5DksK(lZ7XSF5O=B=z ztpygmiRceiqlUpB;(IDByMfSn=bMqUqK9N*Z1HAlUr+axfKQa-Hww)oIfu}V^@%LU zy_M!A$d3;1>~#w7yIvkZWfa%R&U9r#Gbp*qdUC@ABvyVuEH(Hf7u>V>=(FH^aiV#y z6Z7oFIzPMFQUj=EY6lxV+AVAA@uV@_SWbxwXpvV5K~t_!pUOpEe_-jM@Fs7XJBmRH zM3_S4Y=?3^F+UG&)u)wc?I&%fe=(1NTr!7&25p@dDvbG6(4Xuyqwl9b+}BhZC^ico z`!-gH486w!N9@AaEFL-e?JOjO30qR%OP!5KLCQ59jXEB$6tR;02t?o?m0I)9Z}HGN8F7aiT!puL8zem2HHfEI8y?wqEE+&r$pJ{x z#I5auUH1u(8LmUkQ(VF&kPx^M=y5(Tq-Dbhlv?d`B)fT+91kWLg!hf)Jn`rLy?MFI z3%VFN!qJ{ios zxhc#zpUdg(p}ih=t|%DucqVJhN87XYZ0`eT%AVf_fg!WUs!ykyJJMdYZ}qS-g5cb? zX-=wJgZ=c$bPVr7)j@JS2R4w&B^@#>V|NeM4kRknSbI}&%r5+@ahFhetnJYONH%z= zhhnUe<$hFgKz91nV^AxE}k<*CU#kF;+*b+Yg^Jfj2f zIk5Awb4225InyqxO!RQ(y>MGR`C*!T_JtVk!|YMv`49hMZ-$c>{pX>9_)~~0jwVf3 z98V^<3cqZYG2;W;Iu`c5T6}qHUEEHev&$%hd+@~Kc=1S7>EWyfh+A8CG)2enJH zIbvTvY*l;BUyp}uv#wxoo%h}%-Q#lhnmG1U@!z*{y=QQCsfvAT3XXh@B4SQiLA|tw zL3U!E22V_BmQvzM&+!#GkfVV>aJ+sJw?`0A`#uj|PM_F21dD{*A`hO}=;Wfs;?xQW z9G{6sv9&A@d5a;5U^S{`3IHJful)xwHG}I$kOTRW5QkrpU<8WdkO00(m;y);g5XRs zfJlKa{}Td>wTY`1z~CEG0EOD!`K`-N+$CfLP*W2D2DC~Lw_b-NLRZC(0_LCYHkhSO zVFyAke(Dqz7WQd3^!1u^PANm|78!ONrQ*lh_v4CzwGyPc-0{xD^eSGQYG1K&F@A*I za3~2&`7s+CovK}KOU`G8?uwm1>N}48?@!7vDc})ssP6b`v)+MvF7CG*`APl=zKBC> z@^Fy~hdE3*yKSFREeG{@fk-qWc@MvL^+_J2I8Szm7gZ4fg7T41yW7qm-N!J;J1j21 zfKa)eiLr|3bGKjCS8L3(R&9-3i_~KI+eokh_7$C4=calDxCKG)-_&CsA9AIij}bqM z0D=OXqKxpJOG_UYHdoR-5=?^$35?C4a`Yc=4sEODMuZ0J}JR+bn#&v5n{kKxK78TO<2xUKtoA z=}Gq66nOQu=I5{ZDxiYoagb&}TjrlmXCU42oxJFv{(RGhag76EmcCfS`<`SV$EW4KZI%gq7W?PldRmNYq!2Q$(F>Nax*)IZ%9+h#v zHDW_ov!~imnLC zF0?Z7im4c1g=58+9Aa7E=DXpoR0E7KIZu~s(;|rE-o)iA%OJ-K#!|LqUHcPS#sXCj zY%cFNn@K&Fc9gclS@uF_o4ptl02I6Nz8T_bq z{X-e=&}NIG*&01JPfn!0pUQUMalm^i2}Q^e)1cOc@RKSA2(HR%ltgNnly&iXMBFE{ zDveJ{;JU^YdiYP7Ha0{`W~WG-a4C-Bw|9jfVSz@Jeicg78yHTN*;}3tNXAG9*AO%A zpmiNL&3g2l_vRs^O)xV526^^_jVxl`MA&07Tzab~eFsPsbT6G!1B?UXXN-D7CJCyldm4Y_3w7SSJVz;rrE&3iSjC)87nKf3~dDEfSP-%x5Hkw;+NG&`HqL0GN zLf_qG;r5RW(;B}|n3Q6IVU)nxH!Q0L?c+GrHN;Jd`32p}_=~3@Z;Ur7iAA+M4a2LL zc?JXpwR<7j{Z2o}(enOi(ROu7&Je!0t+^2hHWq}7Qno0RY@j!C^xZl1UAy*H?_mEl zUv%K({+pTIMG#*tr{+-+#oMeIZ9kYFC6x55Tv5pLQZ90*F_&GoqP~yc*XS3?!i*P$ zDh0$?UpOu&OYL{Wy{zH#Au;;QniIx@_)_txQe$?xee9HZ-;G+{5YPl{^lw}iVlB)x zc!+E(DPcw|QO%a_)Y?dAUD)+!e&&I+w71iLsdNYg#*ZJEaP6h2zw(J2&#p?&R;w$t zqYJaGA&HOFHtgyMx&7djrAkSutt~8%Cug~$O5bMrj!W}ECFhXG(4a@oAHV0AzL;+4LoeRbJ4tDz6|GkKA` zK>j+&t?&||q_SmKtu4sAD*L7XEFaFo0g6i6QgUJ-_$M#fp0EngjOtE3NPo-EGHgRH zS?lLFZOP8dqo;QvT?0(CS?nDpfi2+Z_jvOa9v-m8Q-a+mkzxLJSLPXNy(ziYupVg?S-rhUG&?XsT&zy=H8+ zbWKQQZ)zd=saCP&HI=OsnG04p1DCd(y%y#DKPOew)`Nbr)C%>cTt(OO#AZv&Dys$D zDzUtjSxjo<=luDU@#5vIMDT1phhrywI=Qz&mAn@7 z@kxC|6MDLD=0K&@8sbf@?-LFw(&Sd;#)rP;g9U2ZYs_fJmtGO-raJY9)Es&DquP$w zzAmbvwe#SKYA%9Gb&oP0rP92-)V=@lP%3Y7^0<#ppYph8dCK`kX611^*ZEfUXTw`2 zc(&;eo}=%skhG>;70O+*SyYW$qaD6h$s4z~$#%>V7p&eEuvB_>l}?R}Ri`g3L++_- zRBU5(KOt&cuTB~dW;UdnVh!cDm#B|~|9FchIse|rsNsR(0|E6_p9wB^v+wa6dr0-;2u!5;eOKDrKZPp!vWo@4S7V5LsSzNWpOEv_%yQW{QZ(%)AOa*MuL2Jedm5`vW2E0iD94Ya^J6d zAv?iG>;}ENDmT_yuR3-|jY13V9e&r@dF}nmNugisXIK1qZm6zy5=G(<%)A#diWk@y z0?d=t-OtHqWH;T<_NH-N41PP7ACNV}QXk`UziT+AZsRR|$+V}fZ;!9{o;stQe|cGJ z@tQ1XB>T;jYyqR3$HyBXxzXk2-{FjxX!ew8qdWvLU(RNAjjjbI=DjN`IV68^L;C9Q z6gf`ZAtsj<@AyOR!3(d;JU@YhH%g9ucPc-`te6d6r!AVJ+iZusrB~Kf^yl%=Sn2Q zOJqy(VMYTj$K-oA3p?jbmsXynj+R@2YUfzk+yXRz-^rS*u8?->1-t8f|B}Tl6~?wk zlG1^|@aC;-YCl0#9O2im10ou+Cw8gsd=yQ2PnU&-Z@x67Z$Y7!sRTPO-$}leEi@>5 ztKtMfTY&K@;scz*-uWO5B4&Yle6YJ*D+Lh!J)j?ZR_9lu6+M?nQ;B9 zkUYC>UNKy}I};ACJud`23q>6fmP!I%&D?s|c%d-3>lD|hi84F!9U&#_%lNCkl;+)8a(-$2J5WCBvx;$9BvI)S=EVxBU(6VLnqM3% z0oK0rWbD)m@_5Ixa@w+}58mdXm0i$K1f8SbTZY5QFCWz0w$5ZtzUXh&HdAA*CYn!3 zPRsD%+iMy>S2yC(hK3mq$iP&3S9;tLOB+Z$n4i+Zc>aihc3D}g6 zdcRY&{XRX{5}5IW=@nU_>!50y!J4vpYQM@DzSawy!cjfbuI@8I6-cOBqT72#H|si* z&vgUq{<>3ay3Lvz1)pu{OlFRTRQpp8zvDAtMnlkjopX<=LXoVq+a!McS znCv9oq`R5sh{dsqzh&Kt)tZh5;TasK#zyLm1GUn#Ml_2`YX;2BR2|OwWTW)-qCS(p zvJUbfq7PrOCn2An!7MmZ+H#ykAKKQ98+trc5aGOg6N+a~$={%R z6-LVY8UwiUMD*FS5S&tcX40`>n%lxTulN4`d%WED;G}O&7jz>7aa_*Fw}^|clD`fn z1HTrhUYC!dSH!x5WhtnYPm#y?PZt_@s}korQL{)s1{H~_p!lJ)pSv3$ku`lsV2EHW zncmQ;%&su_B~0io|LEld0$ss;mJlPnk;2^ z>@kYHDt@{kE@sd4SD@7Ra9cC$P^UEKd~}D^{f?3)GFvGL9ZRj2-MD+P**OB_d{_;jD#m7Yop*0m&hkgzmG-mR6n z*?beUtYCKUk65X5MMJ@R%Rv-b32LD;&6#<-=X=RMz!SQ>t^hALT(DrCT6-y;>nbk0 zDf-S6P{4J>D(|7!Xa+vnog1L*GU+Yw30K(WG*12+t5VBrjq#XOqL>yQ#Y*DeTL1L z<0KZ}76~|P`MQq0lUaHn#lj#3@p4FKP?ElY$kQi@BTvTXvk54p6B5itib`Q>De)Q}%lhBA{3g9IKAX8X|GPj>CBr3EIN3T9$Y-k!I09Mei!BneS$ zOdy1~lWP$IJ#$J)XoXl<{DXw}xnUNTDk~cU2uk5%*FhZ-((E*ceZideR?`4JEu8Lj-G)r3!qgcM);?OyG_);clw3%mN*wuMR^gnF6|YX}3~TX}FSX zDXLLnj0K^ik13tRa0ZIF6FEUmibzQ?!AJSi!g~<6j zDqtf`cm;~a@z9c_x!LS4$TU}3$dW7KQIr0yxu)%ZQ;I+agHp@=b##^#tuWooyFaptGj*I2>$lI0d z=|xi%3<=Loc&=^{Hm`Pvr%NTV7w{Kk}Abo4Ze$v#imKWfH>V&Tbzt#y0ucNc?jFE5EU<&jf^&NA@X)Co0TZj1C?5g>m0L(n_kN$`{ zgmpqXJ$Kc_01>eb5@PHkN}o`S@Z#i)3AHJlr;QZoJ}U6iC28xrfR#NMqb3=rBBk}s z2H^yjQyHYvrRni(!w8X=KI;6xtq~>Q>Awo}`yYTq@;SY+$9cXw%losK{Oo{Lksk)G zXPTpXx<73ZpWm1x1DnkT#SG^3vhT9XS!0OR+1|^P5I$f>QR2)8Pb3hp4pfJbdj-rE zKV81+xSl@Rw)|G3oU45z&X6Wyie8<5EjCykf)0&w$iJ(obQry2Z0W9mpdCdFkfAvA zh8t90w+W5aZ!leoi;tJP?TkHrOhN3@b{1#2g0-F_?cX0vGh7(-s@S)B{|fuA%G6(; zA`nbe*?n`YGr}(HMchHB?d$(=GQ9$I*UtCZ-kD4=*B(jqXUm|*L#C;HeVZPDSrWT? z?gIJksY4m0mm7Aa-}{(2j}SE0W^5I+lMiYkj-CEO?_6{koeoBHWYZ9207;m-@$32Z zHktDuP1C*%()=qzKEoHNUcHV&UFy3@oQDgdTmvo4)4mHLrN$GcsYSkfaW(GFT$ z;amN4(m+8@&9yyoTJS-%wdfSE%17yVykD%mkUy3DC8GPC#%Ck9S#>Q-Up0tgxqu{p z&AiUO>&<_v)`~mD- z5O`^bAp}stfU=J&8CHatkV~;A&IhT8zb#fhR(idXR4tpc6SBy9%)(G@;YAT$J z1N_vVJ!?`vHdF?T8ppOQ^Fzhho5v8vDw>Ub@yl2xFo7zGOC5bZ6_%i$o0mEl*!du6 zfR4Dof6nsA{q*5h{YOykVYybzScL(Sj&11DV5||J|i9&QQsa$YHRB4=}D~DZ5kdLDScKm+l)l+i} zWkQq6j+);r(4N5PK?PSYEmChzoYq%YBarl_lt;&F_#LR!+5$olzUBR4@}7#i-0&y& zw0Fyg#={_k3oz``qq?ZZ zp0e-)^8{dH(8tXF(CFHj(!>W!zI3AJgJK;ayjk;t9fILl?6|w)s|?XoRe9SewaQy` zo!QRH7;nxkPw0~pJBo-CYygeZxzt4BP3PIfVR2)n7s~SNLGe0nP5{ zxEnvtjhOX~I~=U{y(@j4N#y9G@dymE#{N%o75|U#wErAM^8ew(;v1~ZZy|uQzQbFR zVjzL3{?~Y?{|j9$yALB*ieS!=NB;ATX5!y>z0Jdd@n&=?y!g0rC=1M=S_}M^|1NF$ z@%$CB=lv@KU;NLWFh>BvE`UF*DW7@=o)}3SO%3K(f#I6OE2I_`*9^CP@*n=VX3i47 zCw7JgZQVGWAH^sBQc{yBhJxrpa2aeDR5#wJupgus_G|Az;u3$EsEf)4HdE%BH$;DXc{nkf>6b)& z>S9=Wf{Tow%U}G3eB4JsEwQ#bq^=hsMcOE@SvVHPl!QV%} zs&b>tGYf3T5qGiz1kgzx0&1RkvcOb_Vf{2O<>4Wa-e+738LZ>GKJ!Ez@1T%)X?q}+ zC6_c()MwnA{)(R~rsuEM(J^9jB`N3&^S>u8dr^JhpHl+LKIsJuev@T(miO^+!zW?2 zfj1XKPI+?ZxhHAA$wZ3^RN}v+y++4L9QPp%q&2YvJOjC87Q3ws4qb6~0XoITVQ5dskA0}^@z_qFxB>1o;Qus{W$9!22=G}> zxuObujjsj`i7WFcelp~eb9(7b@cG6IMF}z=fU>P%V~@>K4wv|Un5{~Q%yF{?*^=F3 z_l;)s&4-}daqmLFX3-_+5B?IoG5xX(beap^re>Hicecefd0~Dp5tP>o+Ub~51s#;k zxpPa<%#mqd6C<+D-ghgMRGXC5Gee;Mu0sKbAXYVO1x-Hl&jQ5tMF}KIKOGSA4 zt6Q?{fv4yDLRnj2_d&djPa6$YoMQ$56
    %^zPEc~!{pgjxJEsuk>l?yo-`DL;ug z>r@F)e!UVLRLYi?LpL89M9^%O=Qw#`@b4&E!(a@~;69>%kriD8{s=GiSG`!u#7IhV zIi?SZ-UN4+SB15$YS*s@q}g-9WL_aYIi-Cn{;w0LccUn&eZD%yZ;PF*XD@%qUFP!F zmCJ~leR)wsD4qR?nmg~+Sfz=Gv?rubA*`4-V1sE!H}tjrrps6*0CUNPtylH95-OOh zGXL$%s;G#nxw_SXS|)xO2W%p@gF-J7S3Cz%v%troxT5-Gs%x`(s>eP3$wF=im?-%+kl?=18*J{Y?nlZxL&X?Ip5 z^Q$LR)=#wrg3YX=tUkw<#XlzFuc8fM^N|o9SIzV zjs$%AK;E$`O9vVTVNh<{aEnfre#4VH^pmF$_Vg=lq8i|}$^Gb7(6UNs-JdSEuwHQ1 zD0p0P3|gV_bj<%c3y7eZr z7L1Pfedzxg5_I!0FkzEWZa>YQZx*i({Q7{IkI2$JiDR7Kdeq}DM`9e z%;M4TO#I~bqY)0IM!dl%pF^G;!{qX=UX<-7rdN^ASH6TQ(RvzcIUJ z;6+sABU@G9&e{;9y-OrOD#5`Cp|6K1fyL&SG&!zFRnl3a`&r`;=2v>YQG|^nGA)wt zx=6Kvvm_R6eNv>6Dvm6EO4&fXHMG9v)-<(#qq}$aTxUTuXB|g%c|X#;Na;tn$LQXD zFTbps5k=8m=&)UFo?m3#>c&`EMZ=f2t*oPyZCdk_i<(Z8@he5n+h@l^9EpSqnT{42cZ=$iN$()#d~fLew(nJC!aC+w18{w*bzv5gT$Eh1Kl!kDy&XXK*&SVJ`@QR#TU!%%a^c%1znRe~0t96@@uQ?mo7l zHmM_vXQvs}8p-LsDp=iLjg>p&OY^*{uh`WqaS-NlP(eq^PB@f0+rTo zp9EGCBBaWhC_~U9R1__F`n7!mf|BB*S7h7Ev9&Dn<8K zt#FDHk(tfq&N$x@X|=>5wjbRP3YR8p*}PT3{S%adghc6>jUZ7|CFP+DgZ!|+T55(& zfA^=3EK6NLSlLlL-P=Rox4!RN32NRf8Zi-iS|8Qcz+Xju-U|&wo*Tx*zRC(8Zm<5f zesO@S!0wp*GSmszMMmjz>&3}cg>~plt_gub8!Dd_uWal?T5X2RWZZ%GIty>vSFr+! z6gWU087H%};`p8xACC+-UUm)HJhpkcYZ*THKhZl{h1;HXBXX+6iFwVp2|A4cNh~u3 zBOG|uin9v?xLM}7jB`H8&#Zp`0{GHp?sfkqIldwyB@GsY<)fZp?B}18H1{1A`w|M~ zkc4M>3%Sk>6S^AG%hO`Atx**4dX`YAM*U2}1W{s19@;6r>z(;tad(u640d|L{8wZW z6~csQ;v6^6}seU-| zwYHfoei(CZeE6)p^1uOi+bR<~w}|ugoXXjY`xUSKjv+;hr2g)7`owl&PFtd@BY92M z{nO1c)7c7I+O*VMp5S6%E}i*4Gxy=RX(e54d2GtMs6bCWTo1R|GkuS4{LbI;C%hUQ zwcFiliI$euaWvG(uVr%w(it;D6}(TF~#&VyYP0P}O%Qj>y+nzF@1(IK6)lmMq_b0_ zeE+GE@_z10i0?H4K@_1;*>}Ztt4|?(rJ<{di$y)yzB|8NPp?bbY|Ay*Lk@#Hg40O^ z7Wm|Gd^}h!YCw11Hm=Se(S$oq)aND96Ta0V4U_pOb72Yva4wR+!A=!O>SJdc2~lru z`oX72NbVK(R%pcfVyg0FFBtZok#a;t)LN5fpJt=#(!{_ zjSKWMk);wle=K`wXZbem=6ndGr{_c%Im|uSZp)}jw^f0mbclHs?{cpeD!IpfDpShq z&Y{hnDLBb^rc?32FV#UOS8HiW%B@sutT817AJy?GOk0kWzo?Q7I3TVO_5+V?mJllZ zc!>&kJ2F;}>t;CfK^EhueWJ!d!)pVdov$?*CP-}UW>o`19)rmaRxD0%z^iX89Z0v* zB+5x2KL4n@-Ga@j;g9>-wdRQmI(T3YId942^Kd<~$j-HVM07 zi(*7$jFt|WZVy*PrHL93@7tzb$!wiTRT3R2ho%m znEpVj6{@SFYU9=KL33kaE2{ZRu&DhEqWlyvLr4=I8|U2a0--RT)`PGE?Mnk64<;@F z9=~bQs+&fjHd$p>!An<&^6HJ3r34`2Hy+#47bUwGN@0`(a!Kt=JXuk(@>YdF~VIk<&6dpmJ)ow9Cd<`FbB{Af^# zdJn1~?fZstqMbwWH=TC8uY*|8*eIDmgy-Ys;86Drt7Aj>DzC2H5q5(dzsLR-)%47K zEKgnEMfi$iExaYZJT07#OHJHiv%;=()W#2H*N;H!%ZsZ)qp4#yP8) z28?CU%>_UhK&<}VN%TgB40OLs;7N*l4y`lIH#w7n(&Vm&(F%prL)H@RH*0E<8Z@C@ z=c5%-r!QVqzyzi!)8Lk_2Ib1KQ|lKsEN|AFBQ@dfkovMKD+?X|iQp|^ujT#XyCA$X z5FJRZmnoC^B*J}YDfe}dnWJ_q<(~Hy8LO)vl-%#En_KrWH zycF0M&^6Zlc}r~(tQP|?Y=(QV1Qt&jVj&QLfJ|U|SqL%_MX$q$dnJ?+B%kB&7 zN9AI2RRUbZ_0tZdZBJZ5sQocCA0$x@`q$=_*J9YyY(wAeOw0y68upZP4^$*!$(ZVd zSm=l&;>8uhkR_M%7F|RBQK$^ItSNJtg%0H?%rD5+fbLs@0zA&~u7h#|yJ!IIE%-z~ zt4F4H_ALWbm$Btd$zdi)N2$jA*7}wnFxu6K-3pe2y1+c4Q53hN7e$o7EBFIMe_9m7 zT*(cBMf^l!Pw8v#DY-Gyk54`KaM9u-L8)j%)nseoAcDK`dQS}7dl2cS?1>~=XR;tg zhejYRSpa7=IoJ!?P-*MLjhOY6*f$&C6~wccscUUr6GOZEd{6Uz9~E2Q6p+)~j{)Fj z3KZ8-O;F7XVE79vf%C+L~RN z>7(~FA! z>A2+YiEnGTeTOn8YaPYoEDPy4SFLxO zgNnE<#R9S4u&4p*F0A|Fpzv{awv~+s;6iB+phE*;&bM{poww z|3nEEQ1BmXmQwylbrRSP%6NLo{}7)^>8V>v|6U>qgCXZI5h9=!$4gHS5QzRy!5N(X z3^-v91vhRT0084a9KlCc3c%=p{8>Y9xv^G-&75(+9O`SF~IbE-@5q2$!&< zL}9e1`?nMCIz}Ck%gSCmY369izvx873a+R7*;gYfD}&XMg!$Cs4~^HL<<9xn;t~D? z4f^312E7l7f`Fj0A3YEDf|d_?>$Vg8m;cQ>{x|RV-@N1hA9%-SbiwjQL+zocVE`;C M$f!tHOPL1$Zz|tZ)Bpeg literal 15152 zcmeHubx>T-x98v%BzSNO1h?Rx;2KD9f(3ViGuQ+O0fG}CXo9;lI81^C2<{9F7TjHD z*dgEdwsx!bw^eW7+p7Izd+zO_&*?t5yP4ba`J9e?rKyCEON9#n0Pt0m<#hl6Gzjtr zV51==3(E*v#zgdy$hb#{P zjQqrdkufwL3XX>&ZyUujn~O2armk z;AEtCFJn6z1Cst6!?c@!+uxLwu!xr&;Fw6-v=j2qBt~y@bn62O8!{>RCB}oFs=^$w zr!2QjI5O~h#?t$w5j;^LzWi26^v(jVdp*?Nm*Z^~5a979=rxVZjS6@$@qFF=+!5+L z4+Fzy`ft56c4+)>eh31}BYBS&?Q04eymj}6zxB!N1x#Ih`4R=MLho$2z6`jXS{s2b zrNc)Ye^jz|24aK=jbR+@%2b(7@Gm z>SEwr|2%sqxM6zwV2z2gnh^(d8wi7G{~%0lh1H5oPC@2&2wgYb!R%V9GAxkCFY&yVER-9rd~emt(bH;pB>F1(OalXLB1Z7ly&WO&?h)_ z_ioQ8at{QlA2+7Q2CE6^ccIgkJZys?ASuAYx8n@h%^r#&`X-pSTF6+Ilh zSZHYE>phCd*zfANq;t+$g&WAwo48cduMpo&-#~5Zv~FK0qUz5KG@)aDM!p7*2MyrM zxVEDq6e_qTUSZnV12Oe!bO105yIZF9cV@&20Fw9|BetIB440PATrnM0|LxIPgYgP-gUsm`dmuh3+|&SZTok}zPr`1%NAekMMsqJkeplp#lUcZTHWi%UAoi*UxdkAxSggXaxQy`b*hLQ+$~!#wWn3P@-4r?>2GZpBL9 z%^F1_ILH^Jy?;Bvgus%~!v^Nx+u|wZAxkD((7~kPk(tzdTly=U@?;9)(8%L!zEF+h zHgwiGyoev3Tbkc5XWBW>+3T&3Kcfp*Q{aY1zPhdBvT=n52c?zK+f;L9M?(rPURdzq zI0Tm(>YkH?k8CP@B1nsd=-s@qAfk(r`SOFC@ot^5x}oD0Wtigb$k0rm^&#+XH85>; zf?`(1?AfEAA9UHLM0fE*<&+t!ap@n*5y9EdGW_|=TV*(q58;uv1_f^8h0F1Ih8j>P z2$o$Rl)UGt_d4Fj-FuBRfcpK|R-5$l-b5qHiSFdwEFc&47EFN|%D0uRI4_lMMiszE zB37)57zc#QJ)cByao9suMk55jBsv{XQa&nFIOTikHNSux@QhG!7OIvY>b)y#LzJy3 z{tUFZ@Kl+m6~w^1C3S?-w(vWtohss8Bk><}IF+xqYB zdAt@Te1VX}Y_E1D5~DQ=cHu3%M8IBG?Yfu+;G$CRa=PhT^ZQ%8{DXyFL(Oz*8+aW@ zBy~`Hb%mO-UFNCpz+XEG_|WkQM(|Z;=oi`be%N$RANj1ZS#CQfL7#KL`&Ww!SKiMs z2n2lc%mPe6+c#9rc;Q3*UKA^i@px_RAX4yE8fwIp&mN!7tEhsGPdNcZj{N=!yxVWt z3wxAE(@Lu}$9>3N&C+23AIp}=%$&AiuV4|9urepK^&ylBiGnKc(su+(S5bt+ zh|T3WQy|X+@fW`sm+N00>5QhfMo@K<-?S$DB&C08?g(T*7-0GMlU8yNXt%PP+eVnV z?#v<)_%tPGN{OBS5iCsmGJaLW^5hnh$LY9)QJg><;I&zH>>W0}@>2bW>^zFPaS z&aaMSNwBB=qZ?JcV-UtEI7A`Gi|PPzJiSl@>ekfvk>;1A@ycJ<%6B^M)%p zxy>$Az(;!Ne@^_h*OJF()e`j6EFB`IvZ}R%E~x1lj4Z0hru!{ruD@^@wwX?fdh}-H zCA8nr26pyh^g>v{WqFTE@>F1VPvwE zA*pXPNQbK^8V0^;FR3-m2n-UKSYXMhj5@6FS|o*T?<#N${u(yjJ3fT9s`AqayQMf)b{li1?vrM7)D*{X~_7d*jRf(KVk3Ohu&ypakUnOG($>1*VfOZKJHfaDdQ|DcK@sbqn&~d7z}MUWw_N>sLOTJLI72SEvi?Y}_#TFm z`}U4bW4;QPU8Lkq(z>q!a+>)Kc1Pqp92WDx2=5nZyEA90v`^)fVq-n%8n^H}VjDb( z_a(cU>CB`}&4h2pP1>gxqL#hZG_N{Q7068UM0bADz<3u*ZgcRFKehg4dl#nCoYHWg z;?0LcvtY{a((2j)}v+O|=juj_NN*nfA;1wdgYJI6I#Hftn1!gm9^8 z9CZ>|V^+^|ZFogmOHDrtbG9zkl2qQS_+O36nty2536vTvb57YNXuuuJ_N_mjRW>SV z`j}ODnL7z&<5X7}&p&>8bl%o;t+>1g$8nT%8L<45Q zTuw^o-L->pdB^xzf2ESb_5A!5x#Z1xal6|V-1YeRr>XMnsc>*uim7=)#|Jd1Sfc5k zSEOncqc=fZ-ERs`vEr8ieO2Ai72ZA_(LGqJFNtq)nbYIJvB+l2DrP@?&8)2b zbCNWvLIR%*_94SV@6jn*=Pe_OB>(w~u9dh8^skdI?`7{V&~Mf*gA;v9Ec}t3f*v@u zh)@1rE&K}swB((Ag>{hxLXAtJ{ETCQHd}oqvaUpt*-Z+p{-oQ8ln`!)HW()`2m1pn ze3$PQjPL(~xA<5kuOi4aIkHvNk^3#Hs#8&Q*Y~(oZ3j?QD}uwUg4l}G=)HMg#9@}z z!hrf>{{g!JJC{MKEKd!)xVy%18h5vl&fKC!Cp(cyh3D>z5!0Z1&x@0Y!Pkp1i&M+e zZtj{K*$mZJSLcLO%s^w$sRW7g_PkYXN1DS43)KQ>tnG4(C4&%k)H+A2}!X)b4OPY^M

    KpO-aWfupB*odYM^roGp#uJ z$Q$6X#O(Fbc78#YQjv5D5!j0V=!982NGxNx})fj)zmcghf1nA?eU4}n_#EQ zqJyB+FCN1*i+}4E4bK2yn!M82P45~fQKp}FSoAWocsnMq6j{Lix!7&=&zK3Ch$~w; zRx&g0Uc>1*43n_fvHaI^hns2nRAgD=4EGo<_p}O^Gsw8&99@I<{MlKpG|&a6*7OFZ zSj%n7S>1HlFfju>m&z?~5)Z~v9UqM(|?2g7_|u%1~$-9+m(6y)IN=rR4sQGRc;7nRUeO@A3M`ka<47C3QZ)X3WtBY z=(VjRsjfB{e;k*hc(hn5H}!#4Z5);G-i>Nk!cgMQGWi$(LJXMZTSeDuoxLGYYKGUY z@)t$J?eVFbwZzFCN9d|9YHPLxuxdXn&ALDNWZt$>RuuNxEKA|e|yr=Uc z-aCyzdV|Y89kN%4LRmCxo;Z~*#3wG=(-Xfe&Ly1oIBS^g((`$aEV3jnYxyHN*~Y3$<-U-QcuWbX!`^s_=5)OSaC%Udc-!98p1%4tm*O&)%lC~#A-<#331W@ z5F-g9?ViOqRb*x{c=_8m#D#J@(SWJWG6T6?yn0S7RMw`?OItqS&E$txF29DUYq>2{ zQ|0x3sU0tw7+)utXJmLdd&Jf(+gU6%P{lA9`u+J^v{nh-fqPcp=+|o zjsNga%!pSj+a{KCM$ z`8GgQHnlwiSOp?y@efv;?ZqQ*8zYK$6e)ZIwSSw+1HYNM$G7Q+v1d;hDC`vu9L>sq z=n>ux#&qu3AQj&^g^a&jYp2RQPJ`fDHtNLmeRLQp(vWl!#-I26hzhJi50+$gBS5(v zwMp!j{{Yqv#HC#ZA;!=(dcc196QsV%hB!6GHgS%F_EPTis91e(misw+31?N(=2$pUfpBoL1dO zQ|!KahPZh^k6c4@)mfh|>Sk^QA@qu_aG@)9=)Q#MIqMJJMLTwxzBD&Q{`f@!=FNM?bdB71U_!dL&Z^ zMdgJy*xGKgc4C51+k zGrn9a@eu+D>r0ZkEtz=w@4&{@Nm1jLlOKxItpw7dXvbYi=3<=AlH}7$OPq%qWyqBI z&CH%~88IE%IYIR?0HU&Y*B-z*+5%Iv;W0EcBC2v#9KgF5S01-2okQTiFb>Kczh4L? zD%vvYzeJaorIBd%4|Og8Wl}BV5SDNuxA3SHud`Ls=&`+zx2*YIY+#Mw-Y^07=fxUc z;kd=Q$7beYhcNbFr=};~6hS_I^_Js{V$^?LzKmE6#lmjQaC;EVFE&&C>3JD(f+A{_ ziE(1FVv(q@Rcj~DT2Z|kl5wC){(Ug_@z?sFQD`nLoQ7dM(TY~%xSRw{+m%+2Tezqa zR5;5;mkV3}pDP47`oF>gV4^~+xs2#~D5xM!!dh|`|TeC)a)+*yvdy{LgW@x*98q#9PTuHxMi%tL^ZBnP1y~U&Lr zhhw2;cu4Wu@XENl@KP43DJ@rk@k~+m_ly#{7;Df_GwL|z@hUOu+;a%N;$;36NxaH# za)$$RzCt7@>4_y6s?ipBs3rbz@U1;`g*V7zxbcX-yOe05bp!a&Ydl9oYQKN%#z_7{twEHysbBFhBIaT`gSnJ8|yX#>2zt2=3TPk%q*lZuS1SJ=h|Dva3QZvVW^SGQB@>Il|4h=HBSJhP*ql z@}-wBgO==a$#wePN&3TC2;@nv)9w7a-q`8QuI^$SPb2)K7A`t_p|Tkb2Y6? zt8Rd{voXG91F&1cEnRk*#&B{?GY+PI&vQF2*a9W6j)3%|f$IM36!V{% zFu1+jOLeU>V!wqRVDL1CKd1z);rn$Pn%YVO>DJoM7xzsE7QtJfITVoKhJ&fmY;$GB zY_Q2iK8;JXqdA@I^4*rWQ8w14E6Tq3pZ8@t13$oP+IHBP!bGAky{TMU$9l(%rn73w za)YVuTlbNJFuEo+b|$0srQdy^Ab0JF>)3B=gs+itlih~(+j`(ieE$$mo_V7^e#~xOFJ}j1mMuTUWudx#`=7!62TDhC>#lkBJUI@&B>w@qB>R58 zd2v!)zX!`>c>Nt&UCm{CmVaol&l}Q5@J7bU014!>5I{4EZG!84B5d`S+nPiK`05eL zMtF$kLpo>Bp;7>xZ|6l`S7Wz)J=8dNz}@`bfu#b`DYB3=1|%Z}+x~?K06dv_@C9(A z`fZU5k*8kYcwrgOR!`st-?y);jlEoDN8Qc3%i7@K!fck43WXn;C7=sGC!q=r{lMY| zq`jl(*ZYIb&gY4_Fos9t$zsHO#=Dak*T(osPFox>~CRe9Ogm??y9Ch+U7M8DP%v&LIpCV@F5671_L{+b9< z9|Eyz6Uk=8ws25}H&^slxdiVb`Gx2t2v$zeC(94jRNXfPp*c=34ie-TlDhxd_7>sZ zMMo{M3C;(jH-)?^#93Ll;pT_MyrH)*Xnhm!&2tq+m%B~d0^x^gZuOg1Wdq~ncEV~e zU#)FZl*pvo+S-n6*71&jX%r~KvklDB`(UB*&oqqDc7d-RZ>Ut1%`*RetE%#;k4hZ_(aeGp0motzC)x35c$|fKBjlF0ii3Jz&Xm|? zktZOPG{C{?js4*<*m|cZp(E(=Mb9H6(3cad=l#T=yipfalH@}F9K%`-)_k#=mut}_>G_YZ zN+rmp;La>ds7Z|Mds0-d`M-SD>n4b$D0ECPT1K?zVRbOCefJ9qfoZJ@GrOKFOlh^4pBJl(+T_1s@Q=QqV3W9MIGGVx2yv%+KPEU zq^3iaMO<4NGwI;+oY_3p^AczU`1=&keltxNsTbfdRyO>s37xT|>XMTUoz?)-H|=@r zE4bh98IFCn?k_G1_&spYxEHn?oOmGaM;R`BIcsq3V-(Kr90M{ed^{F==I5EFb@hiI z-$-Fdy<9gC-a4w)&7s@54i%&FV5X-Z}YAqYd{hA=+ifW zQaQ(x{{be8`@%LF{R8LXrlF+^My^Fa+XXyvgUfvZM5`t-v^Q;`9-mp$;5LxLCS-tkwd1F!XQ?K;qQ8w7d3u^AY19LWeSEg{X zNTo+1k1cA;GaN15dwixAxHMl_M1F0=hxJh-wOcH=aI8RQFC2E&PdzWR=mdxT8*GgZIq@KPmV%8@`vS zc9rjQ_nB3`OkypeoHLDS%{6HlH*lymU8Th3T+mfFdp&onmQN=32!r5EbmdK7%*SPO zT=5lUApx+y1CJ0;L%r~#_heo^sv!3`@mK7w))9oRM5b}-YU*GeB2@aA`&N64pqAeA zXJ+?hR;c(*hX%NRcVhguLlBINlC1OLo;rTj!N)=3beA26RyW_I55u57G^{;8Zh-c{ zh~tHRP6vJKDm$6H0M<`(z0l#}I1+LWE91yD`or7BCF`-vyfta_T7oodWwAC7U5R?OlP>r=L7jgDdK5#H}S^FfbKPD75@=dMs+ zx3N)wEKvJqN*S%xC$SzLomVPX8x^-Zzo@I568WN+$kc_r-Zw)=Nt)mrXZy=`spPIT zihN~fFwQ=$Q{FFAqY})oRbT@t<$W`YGS*+5<#%cm(-WP-v`Dv+7i}a>`fU@}VO{Q? zML-BJ&N z+b#wu93Qqta}MI1_G9H$%yIeo{B`Cc#&bF6ut}@0-L>St%8f$5j%%sYUoBJ#3Ctof4Asv zq84sMwP;$tAZQ}T2WnR@$X|<(=DFRol3g+(_;8{tv{6fH4tjGh^)(&kktn+=} za=*?xEV#kVTjlTSLnlcyXj^KXe-i;e@J%Id#j}8KXImf~$2Ee$PgW8DJ_$i7pMS;B z3WE*IzG<2&9CG4(T6#qP?R;}%NZacec&Ri$$uY4Sh_}!K6#c@^DL8v=rIqTMCm(HJ z^-N$`uY_#6&#)ypv8}X6RT^ z35#Uq;`^)TvTgr}KAo}A02G{^si(ULf)YwQP4PFuM)#V^O@mQ&sBlOkoXz zzuKVi8-+(dZ^$vxYul|E2%c^#m7U?-*%RAki2348obW}IgqcU+TPQVlVmB_e0-c&L zsS~FJRo=iAK?QA#_SR~fc1;UoIc19YB%Og(wYmj!B-u7wzYs|vyg`&fK62f`;fXzu z6wR7L@$Lb8Gxqqq;TUXQMcprhov^(`>q(OU{BOnvwms!OL6g!Vh>{E{|bM7h8(ZFsq=rUGBV{JwvFP; zy7^2ryFLe?-oDE;2@Kbu(aSj<)8X`%{NuZmaBG2W?^=4}p!NOUkTedVjkufyfWfLBY@bWHq6Zz2lN2$mU6K=V;H7e7wygIWAA5QSN~ zC|@BKQ7!#pM*AbRX<3JeC#$-7U-7uIT+CN1SGxFWpfVUJPi?FZ6>t5=W)%1(ZuP<3!07o8Y$liY?!)`*Hum3sv0wqe9|97c z=mIpvMu|kROIetdou&-CT|7wdDDCC-npm5Yoz~b{?pQ@4m1}e=)CddD z1qD6gb!&d+XLJbKby7QQnoq~yQ)f#;-|1<5c2yC>KxTU3cGWeTVQHihtFQ4Ozih24w3;qEYtD_as?AlhI9 zv?FN!2}WSo@*aDu>_iS$VSB~z`l~h!;jH&LYI+LYJvy=Oy-_rBV;dhE+Ei?HP0Cr; zsqFu!owS9aA$5Q)Nko3sFp7fF&d7N{{S`jlRwKlg$6ckAR5V$15Z){*EzJ=H>@(Ih zT?GYkw&fF-<*SB;Vn6@O=_2uUtMCcdRZhJOvPj`vl zG4+u`U{_XD=IJuKX2Dnd>c!W+bR7WXacUb~~qB&ORyBQjmnBE)( zuhT{&6XD-b1wtirHKdd(KNdM~S3F?CP0fBWw-6VI*)shi6o=D3^?dvEoTf_89qk15 z(Cz?DeCJhMaOIXa9#IvIW`}e@m|JF|rRTEc zQt$mJzg=~a7!+{`F^#BL-#e@n&udiitO5>J5R6 zPl6&LyZ;=gmiNXBQ}ak~*6F!9r~~#*ung{r|IaRRN`U?m9~$5@&hkjaW*-}`%;V?> zzvtzVob&Z#6+iHzW+tmCKN4XwIocR;fPMDijVWIIa$DenxE^3ZK(-?4KVIg(=bK2^F07NH+BLbqcp8#E zJS~)PjBX0Sda&n;Fwu=88UFX(IV%W>@|qm2k05=ymY(<_+@kt$klx$8!Q`Ql)ZHo! z4_zX8J<+C6GI&lyCv=m2!4UBZaho?SXKvsPIG>u$a4H^^!)%0c|_@V_rLwq|3yA$ z0~dV)%hr>PoAV&>(2!uIBZHUGkNfyp6p*t)^+<|!jT&5cf;84OZ@2!#{R0nY%xBu0 zO>G_ApaI|YJ6`U9%M@++Ah7D18Y3|2;eL>4Ue`PKU_1q15h(wBaU5Hl8=F< zMN&Q`om<$ycev{R-TLr(TUz^FTXVa4CJ!yBah}H)$E3zlf#BaLK0Dqf^54CI;#Nq1 zkO$G8tlw(y`C*_9>Y;hS1Eojc*6OquUk3S17)eVsi}6ux>1Qxe*$cPB^uvcRn!fuFbt$pimVG*Sol?`dP>A$B=0*R9uM{i0_>px|B?WzQ z#)%*lbn@SPj3jB1_A>?4Y&J87hU|Y_R>4ipd*etBjQ^oQjbE*+z#rZD?WG$`h*@;3 z-pby0kUgP!U_bG92lE8<>D*1i3k!ffgFY%*nw(b;yy$=75w-s#TJhniT;@~yGJOOL zc-?$^{Kxrr`{JZ&t4+qApebA*gXIwB`YzhR=()W^SS-2P+yjU}bvSrbm zjzD85pk}C%NE**-Zo;|DuE3&^p7v_teyBDlX#Cg@14M#>EMH2Md@~tj(CPAYue1&6 z=X1L8)4OS3?^vP1S?JT$!DEUa_NX8aEA2Q5DStC~>z>->B-~DFxQ+Vjj*CPxEh-x! z`fy@dUhk*}2oh6c*3s@zu;GRSCxF;IFc@*K+Eo!qA=#!2xRwx=3?1kp%15( z`Po}+wty|~-RF|tH*r^j{E(wS-maY=-9jfu{cikVg(^E1G*;<5quV@^9-Xsq+E=7j zay0bmt&BoA=kJ4&I3JOyGlSd5K(NXQ`gB0-VCEn|eEGw|2Kbv+X;_?v`8k%YvVL{X7M5x&QgIG4fyE0Q>$G@N{# z6`kQTRuOKGh0jsvzu3-yF-~BAFK6di_;8Me?`6&~P8ob2KNk{;RV0aZRy={gu)kMq zY#DsSmcjSY*wM1s(c^d5ua}gRlsS`>IV+aM!l(1U;AQY<6h6vE;rnsf@o{B9Kuc26 zXsqIBtn+9Ye8L1yFizknpX1Tv4xx?0g0D?L$fHl1Q|rQ6BH68G?l6Rk)FpDINr_P=PO3TLtJOJ zc-?@aZog!Mxq;@B6eT+YB88tpc>gLL5)pG0CW-mlPwBkkW7vZv_H**e+dr}^k0e)S`69$r9?lhdqU>F#I3g`yrt2` zSdjlqDgWRa^5COjy7fKN@VKx#P~oberYsvsil(I->XxpjmB0zs2TIQT`h8P#!W&N7_?wVaX^?boY(pFSi}I?oP>yPoZxR z@B^ho;}hr~oN$%&eQ@G6WY2Eh-uEL+Te_W+_s&-Y*QWU+=xJZ}7tC3Tu+CG637cG( zAyOFT#=?ugAnN=GQYY|Q7@)vVNb@?GCV_{@BPtYzw@iRWw~K-Xu14IrgGzpnI#^k) zV`j|UB+r6nQkS+N@X)x=2&cE-=!hCj9;iPV-3b+tbT_#y!eg~CoqzixqoV>ZqFoB1 z+Wx-gTXMJgqSc$I)6^%bwr2oVSIOUt&FR^ER;pzDJ1uyD+g%^T=KPhsK(!iWmBT5z z<`aus#6tTlrS6P-jtwm9%S%g8OZiL)B>UYKUNBpbycBKxFTXpx; z-lsCK1r#H|k{fdzi~J=!zi%#TW6P%Lj&ZSL)#(ALKaQhD8cFHd8ZOn_Q39*Bw>IzG zB)x5{;JtE|*;u%nR%R7xEUZpnjH>qc_1hEW2sz68sd<0vRn+OiL8s514&CO&{4zrAI^kB2tI2m~H3WC#-f{Wx%MoNVXdMO6B$*#1m0{Y_ll>0IZr#i}{KOMy_pjWG&?PMh)F@O_9U>I$NZ z`&uP;@Q7=nb{iLU;QDOuEoTSt+*t;ByJ!wjytts_(biVqr)TaU!X=+*5)Lt* zypnlw7=@;@MAkZ9Nl|(MknAGvExB3MOQj3&il=Yl#TL*7I3K*@kA_v8#wLC@4z`?% zz7(r`6|eG?Q)Vu_DwT^-V97otS8G#rv~D%Q$GdNJ?aK?rjF#I*RcSR6U`+N(*W zHal0Jut-jNntypN2Ugs+uzylRHk~PxU6JJ9h5n8em-cr;z;+ip|9;zZl8eZINP5AFW*#7Ph zlFpf*H%}p)&r+Zq9K{5jf;Cx({b72>q6udZvao;0e63BqEnNH>A?vS{;Q~XX>E&An zM=AB;dCPW#wsb^Sj0=pOG`PbC3ywleIIb>-Il~(4c>R&`%$s`J34t9>C^F0>F?~YOyrJD)e7gjZ62kT#Tc1@VX;1IGwN>if`M5aXw zg8Ht?ADg;RbHG6T@b{$-48sS@Vdjg!W=f`8eChhX;u+ZV)Cts99zx1@pW*JMpPPr- zMgzAk{FLnXEtOqqu&_MdNG_4Pe^72aJ`G!s5=ZFSfKXvniv9d@SU*Haj!vr&^^KN6 z&~{*~j#325=gC41MbY`w9$A1inkG%1@GMRF-eldLsYFKm*FeJMdCEU1>ToxD`ONri z-{9i{oNU63L)M;NzEVdMkj;ZN*q7}M63+N8y}ad>u`0>RJ{AfoEJt#FEOUw2+FF5E z4!tBQrEk|cJgRy(;4|zt5mdmex0v%4tDdAUum^giPDm;I9p*x{HxUCPU*ymaW#uQ< zA`5}<*~qp&ZIbNj0> zRL8lCI|9B#y~f2G2hqkDu$@w_L@Rur6EUG@NCiqai3yE$u$=x-V$KQ{?D5@Im~t-r zCV2)iA??NLtqslxMmcMPp;E*C!Uk`4R39zacQA5@K7#x?FJ@?o3SGub@etEy9Kz#! z3HMpwB`|hb9X5K?;|zyFg7|KU!SHz)UbqPfUP=B2)-|XTR8qT}q%MtkY9Ls;ZV)i*q4XpNy74a@0nP^yXk@` z(E{>8>o&mNo(CIj8KpxQhu7KBbwi!86QVQ#tEi7c#)_*E3LOYikc&M)(zX)biwpJJ z($cEi8)NPTH?r*XwZH6WT7AG38P9uHffr~e2dUmX9I2I;--+K!jzgR<{(}drzQ6fS zcP+86ug{}5oxS^k9IaY8l>D%v@p3NU@oLK=97@z(+pOIhJ9@!?wJ$0Aak??)8si@f zIc*{>csIo~cU-zt1h-#Txi_R1c zy2XjkX*-fM2yr%x=&a8dUH19YE8-8Y7}ToVSXS>oFKLRmps#?;Xab74Ki8hy>#@|z z?+s16MxX(roI@dG!XC8iuS=)aznx}GI0Hoe#!b;zgwLPzzVX1^m567RHbG2uc#=p) zCLw9R5eoMq-;Gr=*2CXd%N3S>hwZJC@bJ@DH1+D`FTbo_5DU8XBnM=$IES+CRbcf? z%{K_@vA9;Dq-->+VaCk{J~m>-Wq!K01bEmTWvOgeYLulAAE-W!FVc7+iMBZ!>+nQK zK5lbL7R7^gyy%o|%ktp;uKu6x8wX{W}SO}5>+X zc9TLaM@frXU zIS&=C-DDfCJ|s?sYM&4A0Y8Rlg+Ky2!G(jee`h%0?(#Ji zIL=b#K!_J_y7TuD)lt=_hnavZzfNZcdCpLdB37BY=v!<-C$x~g)j`Qe`Yn;Vm}A&2 zZhW+nMx;p}hyot@L7}0(^gECPa%CR@Tq2O6o_N6Ce!6l27U1J5?iKHk!W>H!` z&>xPj4bjh`w{!saCCo_A+8xU3`SFcQlOad)$cftE&AddS7iz5fXL6@o(P;`kJ#F4) zH0QJW0_B?heUIIr1pbf8)8jTfl?ZpvCO3~KBxJIvfVYPhKh}`2`(->U$%eTYUQ7*2 zc-<=+Y+WATWNdEvsfXr%1pQvPeM|v3^AO_(^Gu~&B-Uou2lmWT7GX2XqXM!Pe>=NS zDH;#8{3OsLK2VC$AXIxlzg4@ZJ~_%O8HNV9=TG4#Lu~aJ71gMZbx6O$biOhwd;;^{ zAybcfa8*ezJCca5qq###h$%BtK8jwR<8f_qS6W+bVCB|*J{&EmR48X$eEEB|H7bBV zSi$~p*fKV$^+uoYM@_wAm}$6Y5`&zmQBny^piw{GT)E2)tGiU4z(-}>(Zh#b_n;T$ zMR7i@M~&^vp#rkP^9h)YA9zRo`m7Z;Cphi}XB#<#INZ+yxu?8lii;)8lB6 zeKPW=eohj?Y@aVIav)N^n9^;`H7Hr8*4$+?*{or===m!+6r2lznB6E-e9}Brm4X7c zFWoyU2!zU_tTP5E%yQ*NQv^2OUwe9uSL0O0p*iXlqOgbkv8MU9?CNJ6V_{yqoTgQ=Yu8UQ5kZ?oG?;Ci9{E71 zKgj|mdInM0yEO}Yzc44q&gm=#5Y=MNxYx-M2_z3fMhT2(@i=A51MPRv*FemLsMGWo%BkkA)tvK` z2ZB0j(1*+(hXh7i^w^;UJ=0-hY~%g|wDMBXC2;*8Ki6IaGyAwFF!gIuS`6edk;CRD zpk!Pu!+5RjgwYs(aI%^~6s!6#SLa{!H1@_E7%m00LzR$67?so7hyEL~3=aq>F=E)0L&P;LDiPI2QR0k)7As zd&yc}-ge$Bd!7w9Kshct@(#%pBQ^6ASDIT}6LmeOvwn5a-F*HF6|69ICG|OUc8;}T zy4&&D{`o5en#Gl5QX;b+zjoM z3>K<^_ndrzZ4TuN=gs7qW={g%56AwdTC=~MrC6k?A8TSLH*5ql^M;I!@X*6;--h;1 zeo-OL+9s4JX*S@yH|jxb%D1S01D$duOhr9|PF*4>>IADgwLgDm=Pu}Qvd>b0i^FR= zP3JZ$AhKg>b;$^bm!mrCcbH@NSv(1Sg+aR7&GVFA4R!|dKG6&oB;v@G_3|M?seOIu>ZQW{K< zpTsF()lDT%(@_UOF1B}mq&RO#hQ{{Cv=IwJ5BtBsY3d~_|54!MGZt+EoDcPDL7CC zIUo%32>ii?H&?@})+j{k8lM*m4)958$u#lU(FzmK}Wm;jNojrqy-zSN}2RUkj~ zvFSQQdC{Mz2LtPJwoTV+GsT`0b}U^>M>fXsGA&TfhRYd$Jnxn9puwNPqNdkN48O=0CtU*Z`h<+q zefG!gm`-Q-e4VPHbo0NK89FQDimuWV$SANK_2q@HAQPTEXb zgjdUd1TyR@w|!lJsu%_ZzS~`&pxN0|$gT;AJ*V7(=+%u$ao1B55fJ;m^S++eQoS#ZtOG zBcgulb4FEi&yT(bN8>sieis0b1Rm_0qDM&gGv-C`kb&e862vX7V(R(zK)TiKt+UuI zp2p~fui{9bGmg%(6u~w&CRM=p=eOP6`$*a%nsMcU+q$0XYJ(r)lvtN3>hwjbSA3PS z`k)OWDPGyw9m%ES(Re(jn9l`vcSlgu+7Q}1Mh-dK`Uz};o``eUFjL|OXx>q-#UPmm z?6yKogu54LfAM{dC|D1|OcM){g9WEJ(M!tTp1lH;mdTVDE9#Eo1&Ol(G+16NJX`}k zjhA0$XUxVr9I(nDI69W7+iQv~%Mqty6x6Hn2N}-^9^ZG){)sXHZ#x z1d9f#m~oEBY(DJ_!{hX+PoYB&Q4PXP?j6w=LY{Mv@pcCzcDyTXJDi+;!Z9>lhC|m0 zQ!L(%gdWBEf*W&LIF&m-n!|_D7&^e?qTDtQ*4h+nLrBdAFD;9iAXc_~`w8<8rL(71 ziP7-paC{)!S-6iL4u!sKf}6cVGS67zp$Ly0DPz=9T!NZJ8^GG?sWIMrD^Tjl0a2*W zJWlQA@$DIqPIU^mJ?~VTLM*H|nfs5d{lJ+>K=@#}rMCn(3S~NYObNEZI*7DBjK9<7 z-p;v4Oj^g&tQB7Fp}t^h+Kid)Pe%DMk&4~xRgHYb-Vdt`414}Fn@5OV1Ru-><}|JL zw5&^(hB|A-n>nZ4GUUA>4VoUrpC#U&F27)1@G`kOhI>-wx)plL8q@jdmJK0o=RVaE zzdzc=l``Ly6xN~l%2!LrpBr0|y*y>C;DfSqJ5paR&>UQrJHH^RPFPn5BdC4ce1|U6 zl8u;_k0=)oBPT>J5n?#M+|g8G#r4<;!)XYA-l}cI5%QiWev$T*09X>) z$GZj6jCiuN+j=0EvZ8+kGr4>4?J`*Wex`p4H#`|9yK$ZEH=oqI`}W%&yW-z*^}cU2 zd&rTkwm%lPhi)@lbA{$%Qy-QdBj3MxYi5!MY+Ef@V!XsTwn4`C9Bowe!w;A~XJT2q zjD_rk)zyGSllsO(N2-c9aESIS$-)bE>CtkaoX!~X`eELtB;z|-1lPKG2$XJ{WjY(p z-7zG&G^;U5c}Ki71NyS>ecjS_h}Fq2_P)rG;?p4s{J^6UDz|=0t`+Xlw?7RhP+cSS zE9rv%)T?HgOov;UbIjAVhm;RlhHa{AjYYKxLBZ*2=@XP&!bH=B)$#PB-GV{F`Y+-N za;wBR)QC{e^D^_9SB`%wI)B}F^!~HZ7|Mf#-S31Aqc@*30?`3+0dd<_#&P=T6lcaf z8!8cIulIjx5jv{@t7kb0DOzAUH&VRty*h^<-rp@k^Yo~yaQa&>`>k^^^l*%XwItS1 zxhcH6>G~D$-M3;B)g(;!x8!|pB^wX5Hjwva9J&AMLd=ok-A~)u92HP7E&A`+jpfBm zU~~dMQX#G}zh9e=SWLPsZX5i`r%uY6a%?;#s89l%n5|jkXf=FF{@d>`XRU7rtsL#I z{lP`KPt{aza__7_|HDpd)c}sWt#>);wXT&rlZZEgu;Ed&66*r9gOr4uZp@uVn)Ngr!b(w|2g*eVv|#!* z26>kZV@8UK6s$AIEStpcOai|rnXwNS+_(i+oh(B+A+eRYi|-q)4A{z`!aNLj(KR-X zi%&HP;-M|bl~oR_=3F&s zuloMB|3VfV0BbLZzga@71RCD|D!0UpD+SD0DrQ{sfpW!>uCu)OMV#X#7x~hfo6d6Jc25C&AyqE6P{RC%%)nM*yw$cnL$EuqH2Ke8GI7S6Q zCN4W*|6Y&TjDqU-qUh(jm-Dy0!F7 zG#K$b7E?kLetuhZP{5Y|J$%K@sH(w;6pg*m2DxkmY0K?9o>EC~u z=|TGVaTKhR98kFlXK9N(1@3btg0cAN+v#RL|ycK z(PqyHobnqq$e6msaAJ7CrM zmd8}q?}f36b@QL+rR0skP}qpI5bfm1XduZ;KjvI@&ai&n%Q}QY^bWz}&!!>|KDU16 zv^nocIpbA&-0i!c>VA@1Fyn{=hGv?ywV7Yf!Tv13O_dv&b`zO=+xoFZBBR0nLb}EM zoRxc(`bux`&A8m<<9XgqKlVO^`<{|DvPB55jw{NPuk{&Xz-h28doxtL=>Ta z2f6vM!8>e7v+dpt$h}c`k}R3iXx%;e1GGu*%^Le1Vn*eak96%bn~hA*r)_Ed{e37!Z_di-voiG+kv`J@)$_fB5#RMKq+ zUTpWIShI0in-O#Vm(NBOX)GI4RcDJrwzpBPa-o?lJMX?7=2iq=EP{-qa_@lq($67< z2OtMC))JYGUZv%;8aKu2og}E8!GSv}Rq>_4Dm&G{;@HEvhD>PY{>JnubvEv|Xjs26 z-__e2JlM}b(7_JT=1;YDFf->%=(kDRBE{o+FLeI)`|)P}l8al+=kYC^3(KnN@V1Zp zhN+P)wJ&2X{?)yutKj9ie@l(>S{d}RZCna5$aW{4$yl279(X>1Yp+HVxVT+Cf`|OEF|lTUYoL-WFdQXKFlEkl64$mt*8Q4 zddu_B6LKqU{`D6q-B?sjz)r^R#=+!ZcFX!}tz|M<`U=Myjq>_ki7LHGuV|5B`PHkJ z;dozT!Cq$(c>XIW+)LULqom}G9&^1^j!^Y5sgIt2g<8@koHqV0G46c7qk)g8j(Lx+ z$V3myob+xI!V3r}Q@Yil;Z$Y%wKm|pa^o*2L|;EJ-Delp>@ZvAAn82Uzef#w%C zV?`cP%dAhb)Va zxuLO6wWMf^0DMjV8o_E1!6h>+x%jk65MO{Et{6@#mC*l5%`bP4>^=QW-7ryX-&G1z zy!{|^DK2i@8MPmd4dHD@*IJ*c;5&T#~r1H{g*5A&T&k?J2b?I?N%25S3 z;}1)H`GT91@?pcK^K-~bai$fu=1*W2!kjLFBidgqK73fq^mTsh#VON-i#b@ zE{GcMM~W}@1qEA?C!5rhpB~~-1aBL3I+B${OMr(<7pKmb9@{00&G{k6*2-P+F3kDq z_s=+-8g@mB-oQN8q5LRQLO~S8|FAu*qA`Qc9LdtSo78(SQ4e;9&@xcwZ?)kbG*RZi z=rRFq`k(r2vriQ85-aL#$QMoP$t`<$*g-Mn$WNdlxJj1uH7ygMy+-guDlfoWTZt`R zo#o;sf^GGHOalC<@9b-R%<{Ni-Ecp`Y`eUhuor|QEwYojh z6J*1T-HL5h4}MP0VOlTv@Hz$Pe?d5(%m0bZ#~eXN&Ys66s*az}6W$F|?~OX*Z!#Zz z<)>R{I*Sh#EG;J$_6L;c*d9YI4EbI*AP4!7$f|qbBo7{)+}Vp9%zxAgu+wdDq+MMs zeu}QZ5(#kT^*B(|6k9yoBmEA>JGCo7H8sWc6OA6!B>$QglJ}@;>!nhQGaX;`1|{a;`n-MH!qMvV;QMx2F-RRo{mL613U9dp(T$`K`S_i{!L+nCU1*actq_v;(Sg&TrGlaX*isnKfwh zYcEJJspnha=r5f{L)PJ>x^Tds@}kURN>lubZHvn1t<)J0ot#?|*v82kOwFFp=>Us< zZ2lt(55DAI8hmx`FS%*dZV=$cxH@v-ZUKBEU#ese_cQ3@WBuTL_U=aVSySxphX(sl zeb0;3qJ>m5kyXW{SYtRC2Wy zsft6Bo9os&Jm!Sxm%H7}%4p>pv=2w$)4CCIt7sFnTh8jE`emVOL$aC#cQ@}gZAo@T z87ikEyz{#AlRe5(pF-xo;+|4ha>W3SVMVoX4loxJnJFr(YGi?5uo zOjBb22(*gx)BYJHPSY}Pl}z=1!%JWgMAX{6+n=p%n8OU{sYf3&V#?!xo$ zn1e@RHluzb5v1K3lhdm#G%GpbC3X5;Z9D+dNAb8a(l1K^k%r^CswC&M>&_j*2vQh( zeV^B%`URc_9AGz|0eX?wS*l&7pdM(7tz zO&qRr+>MLTb$`Q*KNFgF_oa_cWS&KbV*-$QOkOQI07HFFvd+#ouJ)&U04Uo!1VBe#@+SEL1w;ub8rD zB4ERd?DMF7m7zHUZ z2oNvXb@FOD<%;90P2T34=F4h80B7G_*4=X<{%IdAZt5n z+u~#z2E~`9E$(*PY$O}0NGjQz^c8!1W#1Q+Gj++9JMX7q)>~xTxz=5#`M`#AQ;+8S z7$5Qbt=VSNH&D#1nr|=5-C&ZkQL+VctD=0@7EFodclC#D>={et1)}eBjHtM!Ojqf+ z-wdwM^Ai8OSyhu)$)aV~s_d02@ef3YwlJ33S(?VwyOz8Q6?f5O!I@0SMTp?cm+83e z#(sWkYCDA!Um!2P`gTAbt@}lcg$r%-qqz{hL^wNo?Y`dB+El{lnGFTNT+Z8{r?DSV z7_Zn)!4d+g)`_=Y7jJ176_70?7Jlb0lr2c*)gmPQU@DNcxfue{Llf^`*rhu5jR9O)n5+tXF=j?7@&0lb=K1<)7CmXg)u!3~ zPV~0xVY3H%>NiuXLd=HzTbXvw-ijydOO}ikAMfr*&dB{+_c6%{5z>SX?@&<-c>!hUU6NZY4NZ0vg@t4v@)J*n^o&AGkbEa}L zs(LObs?F_HHXF!#=E04m=rtxj;=4?7k&+u}4hUQCek~{2HsfbdRLqy04(*3e8F1fk zu*Uy5XLtdSP+WK?#qnEMo1mrhe@N_p4?qS<{ll;1#v!7d@j0)Ku%*gF! zC)y1*?6j?qUR+wpQwxaDue@0lw8g%8R=8qW+Le8FUQyRw`M@H`n?=?Hl-SM=-27(u zE$SB!K7B56@f~)2{j|*CJCUCUOEPW@BVPR_U!dBxy|RkZa@8-i961nNbu+j)zWK+m zO6agq9J$4)679KeS0$>q_RX$8U$2PkgFQFXkIjd<60~+4Y43t+?XFFl+Zx+@)K1(B z7Os`E4yQ38lpOk+??nfW8bZrazs|uUJ4L65w>Ca(^Sb$FZ8fTUdt0Wi#W*!wyd7WO zF|lW{J16Y=P^douLl}6uTOs8=2NQ8WC8rC{o}^OqsoeM zSU>j%YN=dv-K_09!M%|NZd}_>i@>F?25ganA{!ea_o0rFlY=HCRz%#+bY)o5Q}ej9PRbkC{f1G=By5WPAgB0nab3h?ltZ& zZOfzG*pJ$~lRTbV^#?nv?3M#ex*yJ@wENBWSZ$PwR4*&I1_{kCKHtQ|G}_*3Fdb1^)D+tX>V=W2~6l@Y|U{nPR#_Elzt;JDfS(OrQO9eIHfj zacMPx&f$#0dg74hb;sG?OcBEPRVxt%=`roS10G#2mb(3JFWa2MFqM4aa~}l!yYpMB zxn?RJQgVENCWK`AL;RwG0_&ve#{JW_H^FqgJ{Wl0rzj>nr{(EjqcEIitr`p8Ee_D? zo(Vp*KKv!HU|AD7vu$FxmwNT#x4a02Xl8K{f!56v%;TujJ_CJ=LVIP!ip|Dp=gZC3 zh_;5C?~EB^sjmCwN*sy{ zb*#UUNZqJ%kgh59J^r>zrli&kqO1KEgVlrIgVTI__utql^mQAjmBf`Scp(DP7DA!4 zcebn#ZB#Z+KPdOVk@B-BC4$D3aGL9*@p1<4Nsy`P^Xa)4*~+u)-sZkFYOS};nTL)0 zm)jq%?fG-fChg;b-yQ6S4M5r)+XIqC!_Y*Kzu+CCdZ zimIljmp7uvo#w%2@erkQP}Qqs!L{kiUxME7pUmF1bi2T@cHv6jQUem9;^52VBHvM=)}vX=7ti(W_*;j#eMgTi zh014@t*;~h_O?4HJAQS1ZEx51Xx`q-A9WgGOKtw`D!;>vca-4A!|j1u-93sNWnz#9rR;is;bDhYLZ(rPLmu4n;<6=yfVy1 z_gLYf$xK1tD&HTjSsZqU7rO6<2>!Qj1OL6hPC4ejUHCAr#&B&M{-F(tu9m^&LJdsF F{{YLKY*qjO literal 13581 zcmeHuXH*o=_8>Mh!whkdC^;w~k`&1~iwG!D@_+(L93*F(s3J*JPy_@6C}~iV#0FGA zBq);8Ad&|dB!!MM`~FoUJvwR*Y6=PpI{i!9 zCKMEu5PVUfDdCz?;vqL&EL^=}rURE06p9oSE)-`$)=2Wy;7=-qougKYpxqp{R6GtW1GVmw&fc!oLyts2qXsN0moMpTfdgpFJB% zQ5;Ee8L5O%7{M{bar^P_XyoW zuxB1$C-nWJA5&29QRr)Hm<7F9%AyG!(S3@`-EK-8H6jHFeLKBq8R#N69&@L*_1UHt zQ|P0?M;?EVjQZQ0KKB3L{C|Zk4^6>|qo9E2zMBW7ytZDf6ezqfd84=J z>zHMiEG>nWJkxfSdC8Lg`2I{HerHP1(gt;x-xd>A@y$zBDI#o(Pibf9$J-M)v?Y+^ zTE#I?pD8@#sh0@@abfm%B5IrJt;1J`J1b!bSD?y&=@3O>t3?B^ci;e2^$CSS)4l4U zi1G>G-TvUuD<3-N){e=B1A%oiB_s zW;BrKFW+DFplNX}-{)ig7sVmWlXNgYW<2Y~FtS5&|3iTixneo#^pa|ei6h#xl zSor&J_0WmCn4d-N%;(R- z=IPiFlRKCO`IG@IcI==*5F$>Bk9_eplV&+PTC5586XSSlj(Xq65lAyaUyFubNu^T$ zMuB?pt8mfE_w0m#o+&ZefGMMjN%L0*S`5NjA_FtO%i4e-d znm7d?=B7s4JpNex}1;8qnNIKe%mHE?}oG%aHk^nQ|&T>t@^w+KpoZq-9r z&?Q4yUfyYTl81!fY?j_B-&_rm4yK?r1jv8tsW3SpG}XDvUiRvKJS3c z7(E=C5(ve>ouUw%Ct*-pH0jJSg&rdh??D{Luy-N*W)%^x8{+ zUi}Be39$Y@@#%m{hq_);K+6SnoaFxu7Gq+!xXK2$!ni*p0QWdO+`ap%;44{n@I(?H z!38E#hB~ejp2~R;I-Z^r0LmN_>A%C;gE#&Y_If3>5~-}zsjz21-I-T=OxzzUD;E$A z5!R8lTVs}PFbV;uCg7;@o3nCz=0qK%M5I}Wl@y?LMa+^|XdbXOv^rHw<>oD_jYG#? zw&TRgJ4M^=_-2o}*=~t8h_QqG%xLB2*}WyymfOY`_gJ_G$E%m;90-u7U2Wt1@w%Z9 zJkhM|0#u-$LbsPM9WCQA7g5vsL_<@ymCKZ_3{UI3weDJqCnTxvdsFUy&x?o1Z;=EoqA z4jz&=B~Xa)U<#q4KwYmp2D|z6AFvlX#~9GA-zWYcT?D8uxtbBL)2VK+?L@c+oi%;d zSr_l8nUdrI`c8=ql2e312o``JX?0L+(`7+pl^#Ir&y{Wk ztRy~yztE>|BnBRB<{5O+Ej!+anp&e`8pNeH&jZ3?xxMxg4SN2E;3EIUS1qrhsY3yL zuR}jP{uPHlUzPwdvcy$jJH}_F@ITgJq4UV`1h-RA;v@ z&tHI75KF^Y{i35Rhpkwq@W$*?dw2TIk+JdG(b=(Ux;XS_m|Mgu>aC}D?bO&+OZpR!3-)+2wopbfS+sg0&BHG4 zfxnx2NSDwf}AJ*W#|IjK6=6#=(d(f;^z}kdm?ZeYkRHL_H(Z3gc5h1~A@F_F7;>S1L z3&$csbsKH#BDj=)-ob@q=+awQ2!Hcoz(CXITfpLJY4-Sk;XeE=1GE6oHZ9|z3fAl5 zIc*nU6~z3SA3w#hJ-V%WfzSJ{MRb-1A0vA$fe&6O2zxigD0D~t!b6&(-;%)Av7Xaf0KC;$O4kq8 z^|-&J?+^b|_ZR49I@Y2I*r2sPe;fy4N_{QzXSI)k`pzXa!=#jQDgH>-L~N>g^}!>+ zeYbXXqyk!R;a6xHC}ABarBk{rrbX;rBmGf=``afi`z?s8?GI=pW>lpvod6B6?Aj)M z*NSE0jxz2+SN>4&&(SEyJ#PdM^gKLZ6K(pT0Kq2+fs)2nf1V$~{M*l{|4WtuqR-PW z8Yu#qjalT~+u{2LtM`@Bv~P>5o|`J@Ued!&RWTj@r*8bo3pPFW2VZ%f5hSdRU`j29 zI$c|nS9l8M;bDKH1@vwa3agm1t5~}>EQ5{hJr81%*WYW0N zpq+)MCjw>KPfus0hij=~`Uz;=!d63lBbc?=PpG&QdFJbV6Wd7H2qk{lg0dqd@S6e6 z9sS|NEAx}qXxg|UeyqUEgum=O=B6& zv5-%n^EjP_6+nRoyFW2&%j9}-*bk6_5eWa6SQCmEt6v{Pt<)`zZM|eEb=rcJo5tBO z9b)#iInKf&!uFTTi@H+qteFwxKO{__J$x(&eKDgiwnTOq2-|kEo+2rr>nv;?`2p{V ztSpstaW9YFXC|GN$il1G+$6Z>O8`n6dKQY4A(d^o?kj+vEBVgH)aqT<#7aoepAPf~ zDlzqx8)F&5vhwNePJ})@Gb9eu zdhL7+&dv(k`k)!C*=J#^n7h2j#U}y7)zXY*ye;a>dHMwI`-28iWf?L4;IgnbZipSN ze0|{L$)LUYWW~r`2DK_^F}OMUj6XQwRtReX;^ZvzV5hcnMs&+NQ`Ptu=@o2H>rCXg zq_vIYi5G{{M!yhC8ZY>B9uJ)tr^7n9CrGa!SGrVrp%Y&qGof?IPN9)Q9?;h{J#*rxM@czNVxhOC^ff$?aJ2y$XRi+@D6j~ zcg;sq)OJT~H?JvqqitLLm}_jMYj+MhjzS(~k-Rj|o?&g}BZoXyq2R<;=dGxcxuf@> zV9x!QsqL>fad$r<-(sF(0L$v<_sz+By?qgVoN6LM7dlT9nv^N-VGt#ASv2+EjEu}# zJj!;alGQGL&bdaMGG0^&IN_mAe4zDARx;wJr;lAsjt%ZPE|m}eCHKm--9+a^1C9H6 zAQ~eijDJ}&zsp$x%_KjOfo;dj?%_$y6+I$p(gbOrEJn>}qUKsDEX4wLa9$GMA5m_E zE;a$TUwrHVTAj&1atc|1Xj<&HdS^~&M`T2;;@J;7=k}9tbqbO>K<8+P%C?@f{o=j{ zAg5YH#TLu1L8L4mNRXJ4HCcNsNRY>FLjpN8iBL0KkA4XKRfmi3Is|3xHU&)Fj+SYW z*A39MQx74u7(@DiI@*IJf*u@k7+T!0U5Td<>_>;;-T_qsPL-B*cTc#eh*%C?LfbOH zlSniG>GpMq*4t=AiAzNM1fx{TB_e40q5#U=l8mH-U2Y9dgzC?KRFgzn^v9yjhk=ok zg4hg+@{8E*OIu|h`fMV!ZZZi-vEPOCY8V2#VGqT*s%pTPIcLd(MHK}mjG-IZa95I{ zMNlVMo>^WfTB+3H?CXC!DEc#$TRAJs-h39r!dUQJfTUcN7RKJI@p}5N%XLqjGTW9veKe5COgO_=**c*`vAovF{?vK(s9UiV}7B z4f8r{*ezlCt&7(Nsv@b%ek$0&Eny0d;}mSB3i}f}4|L#_*7q}F1qOlw12&7;qYf9x zEcs!NbM8VT#CWQ%?q=Nh@&$kf0Nv#`W)G5G^A%htj@~PVsiZ+}jWP1`EJ0(nw-O`3 z&izDNqMB&=_-gn;`Jn~t7kYVk9Ajy*5ETcj&hjn&!7 zvfxl&zLP!n)Q3(PU&45u9&P(dn%Xl%Q^bXt1ANol8-Ibf`H~^gxY1cS&`>wGD!q6Q z8qzu*@ALI6QN;K)Ril0n0X=u2{;cb+PW%KvY;}?nSk-4cr*y45Ru?zVhtCRN+f7!q z_RZ~t>3Ay&@@Gvqk{7^Ftne#_AZ3g7(6)M-ijye?XtCIAY3F?}I@8Fh^VK#B#*#(} zlYdtHdE58}v+#sBI=HhL)T33}A%J%_FW3I%#Uw(CU$cfW<8|sWY4g6p)s3h8n zjW4pY!qbil*UYTWGAUrME5pQ-NO=LJTWxNXOpfgf_CB*X3vVXCFE<8b?c<Nd8VX<8@R7GQvi{ zlKA&uno9F0hVi;GKf>b2puQu?N0zCO?+}g}uo}yQt#knw-M)=}@vo(1J1Z+VGr`ZfRXrbRpj4Zv1TqEGbLv92hc|-L6ZxV?#(x;zlP(9W0YaBLV zXR#)@6DZz}Utu3_-T#`Y<5puaC zNQOqjWE?9IjNPOK zMovZDKx2b;1@1rNTAjK^!kXN^A7iV+S3q$Fp6t(%Xm zskvgCx_I81Dx12hEwjw>S%?99$tf3n(Omvaqw|`)rJ<5CH9g2+!8*<@O(LUaW2g9e zY_(3|6}BP$C#LIOZ`LklJvy?7!!tUfgm1`_NU${r1Eg&;1r0jr1G9#B3)O+;5%af0 z6l}I?A{>*qkO5^6xzQf&VgSP_(rfLfe&dPjf21B1t*itLppV!9hO6Axr5cY=ppD<+ z&y9%(VdK3kht8Evb&UOOTH3fCr|mI$H0ePdW0EoMO=z88uAnQ4yu%y>;pAdJwCFk4 zSVUg5zY0EKeQy5^g{XA8Ox*ZfQ|xedkJE>VwD9cu+sRiaIH4^tk^n*&{@;aEWeBT^xxa)zR(P#MSQ zvgVOs$MWIhqrJoVg+GoacDJf%p06O;nr4ESf`;L3gv2LnZhO(7vEb>_WU>arBJgXz zZJ#|K;XHaYce*=x>OPmK_jUy>?-ksD0sJDs84YodsxWnk!FEkC4PZE`pi%)t=_Be4 z+t>DT15lG%=%OE0)Mp5#e7B{2h_>kcx1ciE5kH)Du>Lp4g`uLCf%h^lQO7*JZ{mK% z<{|p?UbuX(T3`=zbvLf?w|wr})!O{{+guJiTXKrvLA&_~{u@v_z|&n|1BOb1GRW)+ zVs`wn%E5(!g|C5Mz1jMx8=1j@1Z;KBz?5`!6ph$RhWfi6uYYUAx%b6}QAL)o^(u_Baw0 zKO7$~zKA^D`}2o4l&(g2uaO&&{l(XKkefU=b^Al>ROJR5A@0a&Ojx$F+)?-wn!4ae zZ&JSBg)|Bfn;~=_!g$w4GY;bIXzs@y5Bkd*#EQl`bHCFWISS}8+s*m^2GXZu_B3~u zUR|SBu4>BicpVzA-&3iw3Uc4tBY1jTJP&TgZ@(n>o6fs1ZYPR>YUv74C}^th z(nB+8U$Sg@=_e4%nU^_A-Ug_Ft(|j*#O9%LguS~2&m~-|hRYwR@5CYEd}j!od~*UZ zm37a;G*O5W1Sf2eL9r7m0K$e$1E;nUHt)3HWvS_F#0S19^x0Zo|%^Tn@KdL+DGm2RNdepu`qbzg!%2 zn}+lzhmxJ8)T3L`rqef)yhrcd z=9*v0B%J(5eDtaYwwgMxM$6^b!OpsJV^IC7)?G^h?iNXNqPihDcWFbE(6u7oe8syv z9ol)v%!gN?HGimmO3hHV#;^Gk!XjgjS(~^~2Pi!(sFb+@3a^WIziHATe@1?wN%AL& zZfz|aAMF&66W3DN;eS)A|B6&YNrH-OLFFe7o#SgD%BLunZGpYK#}aHqH)Smz&d0bE z-))g7pA|9XI`ALklhvX<{Nl-FY4C&=y>Afxyiq24iaBWQbx2fKZ2Lz--itOzi}**3 z+k@aHn|IJhuf_{bC$E2EP>Bd9#c7>U65_QjrsbLAaaPRz1fdEmGDI^sZ$BhYy>fugH*vykNf{)l zG(|i_@Jt|&d@gS0Z|ZkW9H{#>>}THp#HDiL42BCH+wCkv3*6SK5GPJ=Hc%Ff4EEJF zCI0BR;aYuC{_C~5Q%H-RGgsJ#eU&u;*M7i#GuIizbwhFTJ8(|SiPI%!2$@t&qasGm zXgn~)zW{Rfr;GlKm~Zq3DpsZaHV`gn9K5Ad-;JlNC^iI9f=NhTz1(#UyESDUc-a-rM5M4AA zt9*lB^D`tpR@Zw3tt?6=G`M1;1pTt6`5Kr4??6v{UF zJAT1%IVk4pOqVT>iWaZ<(@Mrbz47h2P`|+@>_0^JGY8eVFLCIxh&10sWquR1C#qJx zaPT$u?!IoJwl81SG5V;w`SsX~!OhXcR{nY|HNNbH-+F%@XemSqh z*}6NWfjblFj#}Kx^)ygRs&yx}{lpZ9ct71R60cm5C?A$wa=PLvsRC|f;zoWZr;$X; z&HH@#$m=F&(Ilr+a;ZXWeN5Xv?bn%JWE|7tt0bYdYI9RANgCt9ZR#p0m=J&{u>-c+ z_T(M*SECR~;#pUtAREiHgT4Uhz9H4u2`=dd;gC5GEuWz#)b{FBbc1u+5`>$&b1s!M zf+2#JZCDq;P_yWLhCHQ%@xZG7Nxa(GcTl=issCd9 zL@KaI$1;eq4ajsq?9a@9+>EE7V5&dP1;8Pe>3IE^g?}x4a}PZkG?&n1CqEsE%R`h@ z)Wieya!vD?{rP0IWM0`7^W7i%)J5Zj5avN|d2z7V$!%O>fVp~zVt`|;W$UYt$Z$EP z^6bII<^7$dj=awf=JeglOzvJFWz3I>q85qT59X`X$~_b-bR`_b)_y~R;e5W&O!t?D zb>Y1cJv2$_VUr7znp8>?j@=GAVe1_gD7Ui^7@fun+eNR##pH92D`1NOR z%1UscR$}k%k`hVsk6#CYUnIGsd)cbrx;v5u=K-5OC4`swEf!PXa88hSrKYp-A;$~L zqH?4JZCB>hDP%uaHR(&<@VuE7FOd8>aKM=%Fl)ttICBQC6qq|f+^mi2Wt30f+{V^+ z>xlmR0E@)eTbU)lZ-+5`7RDP>D*yJLx*%@_Ra-NJweU(XM{z52Gd7?7gz&Or67_!jKM~DuZd{9u| z@*Y^c2yF-j4SdofiiSN0sL(g6bzEC@!_V~twN{gS_*$y5MQ`cu#>(%Rp1G2M<)jLl z^!5oxgkZ(>k**8x@fj1Af$zIey<_Pdo!C*LodnQpt%wMMp#yX1(Z!Wa zp>RXOvft(2yu#FM$k%qpswkrYl08pn^!7d!UhJLRq?bYk+Djtf)!1 zp1g%>dDhJ+ZKVh6FtTDb0__;mLf!>O&~s|uOF#lFL{$rs?=>1mGgdQ=CqN~YH$LRv z?M%BCgz#E_8OpR7N+;_TMVC-=$qlG=yPH^;rN1P5{|3jn>WfXD%=n86@|S@vS?J)9 zp0j8hNB=Re@KGN0(Mvy6CKYfm#j*C@)DZ_mdpD?Pb%_mR^os^)=6p0-dA{^blkOQy zq4OYjz$G1O<%4E{MLa5AUI>imAfAt0L!`rlv0pEM!q?ZVBfluriJ4m&hw9jY z=KD)Gxfj?yOz!yqJUQq{`Qkm)zY5ThJl-Th;glWJs4a}L8$rLlPv4jrT=nLN<@d6I z-qJPAMRKyDlz5&gSfvLl(ZQT@U?>IDvJ5&?dQ_L)T{5LQ1A69I{4Tdyyisxgi5tM{ zM_ToteUm0M_>#zRTA2LZCesvmM!^ov<#I;NA-9;vFQ?Hvxtvb+cGLzqifrI#RxDajYeYf>sNoJd^*r;5C@uE6WLzB9Q zx9#Gl7{FQV5@P!n;Ux8InVXH&jOwuu(FmGS`U9|*9EGFQ|C3cu2;qU!yX-h6Yb z51>?DT6x?w1ub_om_aCmtnnYd7x>C6t@N(DrHdf*+9S{~bmh5r8i$ho+Ql%4DPtZ%XKRtIp zKzo~2MRKnW>DfmYBU)joTzTj7%A+?_LH~u?Tu#=BR1{-k^0#Ve1GP;ot!bhHc>~9P z_LyvwhYGOYUh@-l^6^fEhn7C&Th=3J2|^RChcBq7xr7*>pbdG&j~^gTC3GncbkjvL z20gFv0PQX|h3G+ZK|>FjIErqET-DW@c9P*B$}Lqrks0}ME!rJOw%5pH)_heRA*Xg~ zJQm8{mnqPUQ~G@g*Ui{M?Ga`~r8V6+CI{(7Qk8%s>1F=W4APs93coYW z3v)nje+(mw^KNWv6{-#~ovdyWdeb9PI?-tySH)aiS321~p>FNL{m==y^WMsac0JQS zH!DsQxx8A{)pPUxiD=*0s~w6LxOH=Kk}9eRw== z$?}^Zrdx<+RkG=Xmuan?Xn0p^C?T z7fcH3827wq&Vw5p#pi6Lw|$bES`B$sGt)JZO+ab*X{ld5rMebCX7TN7L(w!v?u6b; zdxp#Vef^dlL{`=>SJg`(cS#Jb3_$HMf#CdVM!WFUVY*X(+l7aDJMo(-ew~&lhakgR7Rf60NiG~~#Z=1X?(p8>oV>Ut36H7}V z*3P)Zn3*T_rmcEUef^4_RQ`EYJI;E2WPDY&`oK>dk_=hJw}w<^=~NA0Oi8@ko!d{&hf^BxMA64ehaav!snvny6`-m~V^E^1vm z9JTwbteY^;9pLY_IAX<%Qr_C-i41VTZ)8t8EJSJ%$Nfj`9vkLy-ByW*p0?(GSi9O- zTZ>bB@yp3AeJos#x61U;%>8aB(rW^HIGt`JINGFR6~`z{&i%PFn8jn(YS%CAmn(j5 zPh;2-6mNKfx-O@u8uUZ*a$0Xt(O-y zmW1;*eo15|z2|>r{=Oe$XEU}pNSA)<4;#DQXg|Z^Ox9$`Q@!db5Gud18!bF z4q_WJ+iZI&bBfb?{1>vM;`?~Y8M5s~y5(Q$`5?3Ge3dn#z_0I2K)uW+{?VAH&*jOg zJx!UKUTF2J=%Tn(Kd33i8{7L> zGL+=F$SgOQ&`7=(=r0W&h}bx_`~DU+t+aG5xpK8hu*>bYcVS&f)}K!Aadf(xstL8E zAyKNSa_lTiMQIA3(h1Qkm0z6@4gWnvl9IJwbkhDFBt6>pHzJeSHZ=;G9V-6nzcQmA zU~{JKF^59D3LWU$$VPwdcY$tL!-N;U)WV_80xg+;xvMO{;zY5+Ov+oG=X%}G{z(cO zqVkw>q5AncI7Z&W;JGxX_^Qq z`GsIp;#KDZ&qz1#a5A^72?%G<6kCogPVHeI7qA4+90sY5ecnkQv z7j{(0&^pDXxLaZopH#DQIi4o8V)wWI8GJ#(tiyhzll*p9W95lgl~v0!9&j9G-~rbk zf$HivcY;YaafuQ3D0;4qvG+dH+<%(MKXQFfiMWmb>7&|h(Frd<>(w_FRK39?YXN!( zM*Qt^Ui&R|eZB5%9k;w&u<-mMLnkh~#hy7+4R(XvB5oN+Y!eRF!(8#z1q?aAyaa>k z5+Ev)JhMYh^J?+B&k!eZ9~i1R_b8jKnBBU=~Q@)tG z+Fe><@?oAFw53}FQ1N^g&A5SGob%qkVEIH*d(e(5gfj%Y*cM#)h7PPcl$#66U8foT1HI~)_2IwD6vJyB%2g?QMkfPv;=Pv<_5Oh*G8h# zg9mtGFe9w;evW|)hzB7awJ!p11YTS@4@}ZG}l3Lr8&Si;%S0Wb#%-n6xTWU-FRtCtz!=wXYhFqct_IY z^f)XMW9~(~n6d0!r!kvx`crhs1*XLB^5I_=4D5Z#R;E4WUmM<__SqqrfwK^jRyN6x zh&{=-YrdhJ^vVG4s;gJ!6X(9Z>PQU)=6TtFH|?M3kni4)Pqe^MWc)w>jl(u4V%8|11n_ZZ;{H(*8ggE|(j{Dm0L?)70s0g{wDVCj1dSNRuB zb)xf25qzpj*j8V_-X5jUoi++E9efXEx=E~K^p6CN+eOI%dnIkUHLHC&Yb0Sf?cx8~ duUXcPPRLm-%n2EIfybXU>FXG2muTXm{u_HW)tvwU diff --git a/docs/reference/figures/README-unnamed-chunk-31-1.png b/docs/reference/figures/README-unnamed-chunk-31-1.png index 9ce32c1c7696fff15bb98570da70b11d937de7ed..134966102fabb12efb33163e9fedef46cdf1c565 100644 GIT binary patch literal 22258 zcmeGEXIN9g*Dnl*(7W^wDou(MsZs?5qzgz>N&rFWy+{k8N^jByq$)iWLni?Qlp?)` z5bN@qAO`?A0_5ZXa=2?Mz!8Rf{`d6naFmlvm2-5I zbHrU?a;Z3nbo@_fM>zn_59i@1m-^5D-;s*@Ii}*SFh>~D5r$3S=TDUbq~cioClJo# zpC|5s;T$X#hD=4mQjyq_=g(n|0GOj3EEVS*|9RrP|8v4%NEj05urMsPEikYxB&0t* zeK0q7skA*g*AjJAeG=r#7Qvbt@9{_%@QY&0IyMYrwwfQ z0KG}vmyL(3YGzDWASDFPT!9agGMHZycxsL6NFk*o0(japwn|^-`;y`TCjD2JK}Z96SCnaUe<(kkEI}vni|e6;qN42SAvz1JRNM3qYbLUIj57-<6-V+P&J^g%ej zAg@4I$8ZEdm;uXq=}wNTc4o{RVs1W(05R!#pwa%8u+D>ILjzZ$zEG~qp6dP0vHEx* zhZv6E*AI;raWhAR?)UMak{?})mEplg3paocQatm!xcL87?*lwXYo8C5W)CGxLt?8z zfUIaO)aHueiID^qqc;F5_ODd-okSS4%dIl}d6-^~2q2s|=Ns^@J-dhFyk(g-2>>L^ z*^veS==9qwivd8Dmz^j!0QC7DkZXl8zaE;3A6~xBth%8j2GIFWBcI=s{Kxt2Kc7Sh z0`Qt*MW5u!0BS$#|Kjh+k_Z1cRayX_*a?y}0Z4=|R+zi0PXfWq=^gRlk3s-+Z8ux! zR6&3Wu_om^%;5t6WNToosL$XKo$0T=<~q!~cybWj|_$2 zBi-jfJG#yI*SF({!>Yr5jqw@q{XIun0f>(?Q>leF#olV5y~dc3#(qe5L5v}W;<=V;w~3NlLJ^u1hB7j&GoA_5&=E&pAC59Gg>y(tEH zyoiSOy&^n63P|%Kf*7ajxG;|iKMX@1y8&;mIuLS^2-5H6;<}(LM&+YRMo8$bm36HO z>he7$2tE%JgIFxyjBn%?LZ6Fk`Q`JJpAZy|F_Vzc?AVop) zfISzO%^{1g&+4=G@ zfxa1+95|qQH$o~mQOQ`Q;yi+^^F!XrJTyTzTlX66r(ieH&(Z%?9BG)!r6i7)os#;!L-cJ zPHuFkXJo8h@djEbz?rz*Qa97(j<%$%>&WSM3wk1!w7<;IzZ!YF43hdy>Cl^#E2g1( znqGdoz@SjwxM#NvlvJ#b6ulXP!MOu8FU8^>e?8EUmH&uXV0xSu%`WjlN>TXuqA`Mn zy~BTld-M5u%aB79pKgMm-Exwj_Z?dwQ7Pp1w?YcjpI+WUH<;nv;3fVD-3h!r|X?wq4%| z1Y+-qoe2J%OJMBx7#kad*I?Mz+76BhrL%Ud>#*a$9}?OzAzU7re=i+a9YT!*s~Kb$ zQI&Srv?3?0AF2JZR>)&cj4A!JgBM+YnsYV?nN);4^m$LQ$ffJv{TtRG*^B`>Q_^RyYV=>TE)3Nff-T z+A1xcK9_wqtM@vLQsEPG|I1<>$`4g!sp7PT$JxxCM39FV>*#_3+MPyH0ak?_bL}Y- zchB&T`9DG!7pnm?f`(b-aefSU?aP1K@QHcs`+WzjIfgUV&#qpls0@y)M*II!=>g5* zJ#+DqO#MV=FxK|a;5=pb1~HZu%oX?%E>BrZ>F8Biw`61IxyPCuy>*zmB|7Z*-KoZi z;)hJkX|<7+I0aDtw&2Ur=||+>*Vy?0-mK>1@!$(vASCpZmyDQk{+H;@hBJX9hOC?w zO3vu)JD8RDJaV7-F57kNwfqlMB}>bjp|j|*!$S9j(W(0VU{dP(KX(GtyN%3x=&1yu zTlMoWq?cbEZd^jLvX?z~0N)f?jiAzS&+_VPaV!C^hmJ1#I^YzqZbFRdQ&z~giV&rN zN|OCiDj4m*B;@{)Y$N&7ZcE;ui+q@bNo&qpFv9c9FAqh<1H%z9e6(8si^pc&;hKTX z)vFK*$1In0L^oz=yN=ymr;rl!NnOk&!EYgGEZl7&mQ^j=?y2`!o6J0msu1+c zmq0=4vZJz)4k(#|>;Aym`!@$q8O)Jqw4tI>WW@BXDdm^LbeXy+lz1Qu8`?oTsx5=( zMHR}!ruiVq9+;2LWYfMI$^ROeWPw_@`-GVBJ3__n2;d6nGHVv~fc?{WFr@xhf?7ix zPkS1DF~{+vgT{N;I^J6CC{nFd^s-f)-&{b?to>U8*gTv5+Hu=CVr%T|$f6Qyca*?> zpKPRBokPqe8%;`-qR*g{AL64vcQ@UVVDPPGXKJqQH=Bl6FEudE|85Nvn9hBDUyXeKgN7Rf>-f$ zPDs)b9ZoXyNf@KZ0&ad2P<9tlbkm*7z(DMU8B(t+AN~fBm=$pO1t{~|fcS@W@ItNv z;-garRA{FjhMz3zSr+q+aLaA-201;(yB)!=g#KFn!q)!%Tj>6S0z^EV3c@d>ATn0? z`o^871upMhH+#{Nr=P1x=x7An`LM5mcCg>lnsEK`ek#2c@K?~|ozs=lQzqdnd4K!& z!q9rSF#~7j8=Jj)CJt{lC(Fw~Ao5l!rCM$8*oBZUjiUChHxqj`uOT=fOI|j2OC`t_3ka!8ohPzcF&&to#7z&kQ+zGO7mnY&4?s+y>JSFU=B``%^ zSbrSIJKB3ZVH5TfBqj44rGn8n40II_Zs3FbriIh`ew|0kL}A#B2gmh>YA}t`(=DB( z|MDyVt-zm^I#A4Y<;o`MfMbYcfUj;d83_p<1%{{ur&c1;;fsF{Lg}jqER~ z=$-5xX-6jZ+J|2F*DS(q(FqnG=Lx4g<^8AH$RE5|x&xWXDz!F=e%^XL8CBw+(Saah zuu#`|DtSpOCpi+CZt81f?c ztDD28p8bG|4_`AB2siufCDZ)jYA6E;OHs8o$j@nQ2}m3w67wir`s;R=WRld*f=Q^= z1wI>Rs%btP5dkL(zNMGe9#JYXU7~u#Wd7!E*E+|ZN9se>E`)ZMi}T}Ib!f2(A=1o1 z4%7j!Azw+^jo`qLDK;TNJtEX#lV~ZT-LaQ<=HCYzWlfh)nbdsyS~ZmUgrZO~#?iX{ zHfffy+AD&*vy=l`E5B}a^!{n-AB$)~9Ad^<~i4N2ys-wFnOLb9_->8Cs{TiobB$S$&eE`8kvm zFhDW68M-Rs88xcv{ZoxhR~{#(c_Q-?9Lr-#m?0u+hWX-pJzJ8csG|Ev`Yp4$AHI%P z5s@j_Qdl*5HN?Vi13u@MGp3Dq4kp?p#jZ3_<-i=IJj!4nMCOI=EvJlP(iMWpUC+&e zrKI1nE0%W_$i|F=h2sB!D={}y`TLu8G-_{+T;kz&kA;%7Ma-)WH#$(5JJvlVzCF${ z9e+vq#R_^FFLe?R2YLQ7p-Xaa9TxTsq6SKDbr{W`n-qk08!59o9DVrfZ+G#>eYmjU zc)K4p=yn;!B`8+eTmZFD5wNo=^|>fTX*@Lbwq+^K*(aRkK~k?K>vgT552u!?qtC`( zf_403pd^+sARTx#@(&)_u2e-)d%Pd*J5pWe>ceoU=pFl{Os&w8qhLzy7@Pv*l(90k zz&fXpC84AY)g%_i)?7Tdhfc_@#rlI6SbDu%HBiNv9ePtr*m_+P>3q@m<2;IDk9bWV zWx52I9!8k2LE$z?Q9ff}{P%On_MGOorVlh1EmNb8P>Js6m)Yp|RN&tt^Q)+XH({8p z^4rE0MkZE;$Wi<5#-5rdm>E3t>%UM(HdH!NX){6LlX{+o^1wV(5Z zyW|x-i}JT;cUqm@bV1Z$H35ZYD&n=Et}QlLV&8Sp#KamgiLms&HvAQ~(}(@5*WwNo z4@b1y@|?EBB_DE2hxTiP%Qy9G(rXu0b3g+`+^nDnlM(3eeKwEM#eaRG3k-+b(sLT8 zt;pV9oo;Gn9unJxa`AV<5vs@!=w-IEhnYn;Vz%O@kH6qo*lz)d$Q{Zqk)j9FW&L^I zO1DHsLu|n6kLB}pz*a4yjEb7eVZKI5qKP7Ol!d_UDt6)%XccAwAxegCc6fuu8WKdQ{hdG?s)WfX>)bJP#byy#8p`qP{l zqSdi_5&ZCGb3leV%`P4M=Go`6X=dFU3#CsdB6d3?y=3!B^I# zhXImANIF3lUXs21!O~)K|5`)tDQj4U1UAg<^!mup1-X9-yz9v3_7qb99i&ZNAY`;L zl-<=9E_QN8&rD)qblza@XOiUwA9IPc7ds2@DP%lLM$f$!I`FQn%LeoGy1s}vEBh89u_c}4uoUH7NC{owe_#g(XHhH(tD+Hf8&n^YyE<)3MWCh$6p zzgT43)~T%E-8^*$PmtH_7Qcd&t2SKkmP7m3Fl?pH(b1@Nt6tM zZ;9C}$g`xlFXTG>wJD_OKf370`6K#nIb6laH{1LdOX)t`T^=|E^0 zc62m=2a#7oo~CQsh>HX}epD)Gy68??;nAnBnfu6KXMFU%60r6=<3>0H|;@W=QY zd~VRF#g=4k$j<4_CtIiNlEM=hFa063^G-CM6K4bNJW_I(-l@ zSxZ~Y@^=_C!<^7_JNEe!m#-mNQ~g93zJKO@4($8ieT1fk6!k*y@rYbFtcQe8?GEr= z(3Bw;?-9C779Airos0d}a{M?CE|x+|=iIg0qF^7cDvyy#rmd90%y+?M1+Sq?q{iTW zs`-trryyJI;T2)1bd!Iy8QP=2eO_2Zc`Wb}Zw@0-@;tY;9 zPU?Zpj&wtjX;u^)L!I)o`rUo%_6eU^z3YzT6uL+lXX8yZ_Xx7kQZuD}pgDO;rhCxS zuuO|N)tf6eL923m3b!w3jqE<8As=T6$@P+NgsitG#xhl!$945;EpCRzog8j*n~4%I zf2rnM=(p9ytegi3{JV7xNBjZN#2>~y8yAv3OxyfP;_)fBNoEY(lVo&rlds5KuWwBK zn0e2ophDX1dhO`Zp_P$o?w1P7v~^}r-(x-i*2ixITm?j)@~Yd5%^R<&@JfCNA@ILp z6SJxj*wXCFV&#&EP)eUz1x51y_(l$DDA-ZwaWh`6A}o)AbE<3AIu=?kKOZM%qm42P z2YGUxU|-0t@D^8&3y`&}vY0>ZI|{n5>31BAjeU^v>xjwxZ@_%g?AnJ}Hm$7d!n;Rb z#G83?M{RB`8^=Zb)Q6Sk{1AQKKRQ4&pgK>Xf$zO{KGW_LHKu+=e6wlk#T7z9IKpFIJaSZ2Ie7f~>^}-&JnG_*x^k zMfAxX3@zk`kK5D8HaNcK_@YSbFXPoNMC9qif&%C|6upg7WsT@7+ARsZ9CYJ7TJsa% z?MTak8_|&$l`-D`Ks)eqft!#MNl0#e&`f9UY){YS%qyv7l|35lcEvb3uFI)NVS3BK z3;nonio&|EI?j8sjh$f`csM@WuXmtutNoRhjnMRC9X^q<)D{Ix5oK^bl{9}_mxp(X68l7{9GgnF{>oh*@|$H2*_b8pzYoY0h>Wi@L^|LSQu z^HLbMC9!ThXsvllXylgTt4QZ-ru#g#T?j1tk23$I{32?C_je>#>gcRf^wRXz>&t19 z554M8sMv~S^@b>25MMd)>oWSv#NlNW zRbURn&QRl762ODZ5t7-i`#{V9Xq;%JwWBFy*W00qOwFczKomfkrW7UobUULL`Gd^h zG@Jguh0tQAfzZ+004Wpq*_<%B@|usW=y$`?bU)Glz0;VT!ST(ZU!gNw)0t`mL1i$MvV;djwImo34;Bu|8M{ z?y{nPxztVna`EwAS7_i?|a8&k<>iq-7tiI<7t|&<- z0=*8-g;lK#Z3x;VK#ZL1LZ(zxL+~mm_u)@htRcC=4@;|M z(U+*c-O=bnhuzgc`$_@dPcEyX1#v=CXHcyh*0z~ zFX2C3a{KY~(|~5gG-#H^g>bf95ZZ$`G@Ll7N@Y{Ei|Pr;iy>E#>?O!S{4I?eT|R84 z${9hJ4~{Evl)!_j!3>cBz;7raTQ^5`2t(wJtM2<3=@aS_#mo6MH1j!isbmHs583>| zR2~VVW-ClzTl!iksObYy6Q7N;hVVI~@{G?oE{r_IO9GeOE*T}D9_8166c)m)<1a)n zUaLIo;1eu_?|?LPzeiEE3aL#JHdWi2fLw+mSQKi%u=9XxY93kaUv->b3o`W(fwy12 zFF3&CRO3Eiw|~1}v!++ARIRs-7u6smE?WgRjpV-`9vBZ@@Kqx-0i}G?Gn4i27~O0e z_ZfeYb|2byQ=9*zS$c(iRXk>Md%SBq6K*5pwi8LACMqeiHMw%g*03p*@Y{|+Mv5-er*~P0d?%(E@Fq4 z58ZcoJy(Ox2XIZ44)4oLdYwE@Zk>CZ#0||!{ZV|){r6)tgBk&6=J$rgpYN$L7mzNQ z(|R4y_I>liLx!_}m(iJ)p#7deIRZ#5j8*+3#^wd;3ntGri}>xuGM)v~k^_WPK`w2B zxrl}uO?ZCptq!ba>RGZeS*wR?Y9%Ayzrj(|+n9(cp$4Z5)o8dDrD3$qs zM8~5Y!ou_+aoz86Y^BPFKgY&w++^U2hws+q$-6Wl!TH~1ji+vj=;mc(HfxvBb#8F! zzOQLKc9C0K80UaDF(my|bDL$NrTVD2O7@>0YGlQ)eOgQo<_oVlyxo8q;*v#M;+JeF zn2kVE@mEpiND!@2l_Hbn8% zc3*R+EJrv0Huk&nj(4Gv={5wz0a{;0C#dKrAH^`rp|tj&uC4?{(p|9`qbh283twv9 z`R|Y^Z=$K@Q666g-ms{hSRpb*JI*NUxB?IO3%LgPxPOU9CMRhKvfr&^A=&#>#?<2u zjwE$uS98I!Olzh&7r4!wq&ZEsz2$i0nTp{1m$WrO$1UYqC)oyb5Em35#v<$>bUsDj ztGWJ;G{}-fIL4+Eae6;zRV99>-WWBEiF)+7qWA~zMRpm_5ni81R1`uoLIggj$$RU~L@qyM`KBQU{W>hXl;&NR+oasxlT*-{&PQ54&TR6og9;^DSsD?9Gv zd}vDa=uY4sawsOorW=92Z_fTi^VAGCvx8E}YMkVhk`8cNQ{DCCQsRb)W?Ts+7xRME ztnpm%>kU!wW39g+mhW79s2`(6XTac~re({In|Jb3-uwW(^eN(ftCxAYY0^$LKQ4wp z_)PN~yRbDXrsHAoT<_<5qH-tHMVW|B{Nz2+6alsoIh1*ly&i_MoSneU&4MIE&ssK6 z9zCkbxps1=l}(NRWKJPwB`#x1#lG>o%W<|t#f{ngY!(Eu!RajXAcP2bl7PZE8ij!M zfQMx?zVn|#f6ZJ9t>oo37Ow`nlCYz5dIS~%v#bGwwY;1@{Ip1$HY*L%wB#J%4J*53 zMdEE7d;O0)*A;=1o5$?QN4caU#N%l~l}ejopUK#}@RbHS!E*RK)IEgfxaCb<(%@wG z_))?exY`QC9*2?yBpAFgm!=Mqj%HAD<_eO+3^2@(p%CKg?1#i*R`mHN@J{SawHr+- z{!cZKH@~bQHu!_7C*OW}=}M>;_1IGaNEZbahcP0pv=3(i+DIV5IPx47S_AmM6dMK8 z2n(;jr^zC;Nq|Q&1GyC0lka3~j7)r%F{lbrzTCNyT|1!(94rdYEQ#2`7qZ`y!Vjo1PU_11M3Z8%+o~|*3%+~)>yeEy)sb0$IiSv3)1B5# zfm--$iiel^CHP7)D@@H4>;6nS46U51*v;6DTdtDCVhLLFi%%^%U#A8-KWI(j)o17q z1owIB*>&y1?k&UbwnX8_jFmnc1!^W)>=3NPzKa|t^^OPHF!lE-&w89Ib&BZwN%Wj1MB}?;Zu}KS%ApTy&>7-Txs{ zuHgTu{H%pd?Xd2_Q2_8W|50cYaVy=WuZ#ry8IYfp4ASQn51jj{3KH?u1}|LGOxTbp zWEs=voFW2{Q;e;;`=a?b6^K>RUz3Y5C@^J6XqCaQx2XjB3{6YJ7*)^{um4klJ)xC# z!Uj+K^&Bz1|DTGetSH3zrkX5~iuoB%lT6r;qWqEN@m=LY*Xj{vp&%aU7-w)p*DdH@ zqCd3I&5ocvl>Iay@F#$dG=*F>6gL48715>7C9mow1))A0JqE~zNy${)zClPR@@uoG zse$fB{87Dm6bX+LnB-ZoCz^c^1z;lR3}{t3yYY=XiaX7dI(+qQvC(w3icXH}5P zST;lr6!4scJ^tg%e9<*;-@uF0g%+;-mWE3ku|F@$np*L}`02(jC;eR?{$?i^VNc-5 zfvJ|!vboZfIrWCCePf$QAHhkBB?w|owu|z1a3jT6WYJ#*hh%zCXu5*&@3=ajS4f`S zy_e-8JPAdtf^f~g-o=Ad+h1%U1_$+Yo*}XDf%}x?1XKg0WFc0r-Iy_^{Q6aRu!XDZ z%@uY1E3d0kp+lGwb%UjSS_~nOc;l2nsk5%A*K1iJenWGRr2Y03qh4RT`tXYsqmwzx zLrmWQbzbZ*vk$r)kbc-t5Jn2Y$A_r>lMq_}KD*r<^H7hzq&XkdoOu}p0xy;|fpmmM zor|1R%v+9w!Sg}OnlJ6sh=_J#)=vrCKUXY5n$=K2w?x>^?#f?h_p_uJ1*wOnsx*ll1fx5f%zr6u2C=J~}#$k~%>_02`t z2>SdklnbAb2o;s<%tk;2(&t;;yuAG^s`bD?lvwfo8<;mfh%_+Yj`sU?Wov<048nA? z%`SIajx^WGW&Vp{0g|)`{wCy)3^gT0f-Kl5*UFwnepWT*U8M}c&j)*24*p3F>>CY@ z_y_n%3)^?15C4m_H$QUcrfuBc)O8gb&N36)Q*T8WQ)3>u)(ixMbP?51Q2l zq?#(H>t5hULONeV?_cYe^BF^Xti$tuT$cfr<>mhe-()W?S?2#Esux$_J;StxnV5nz zR^|)H9LIkrKcWi19K8@Pl{f$Y7RHrJ6?^LbO5w&C<<0|mB52t(-n2qY1epH^=Ni#v z;s%7@`QM;EJ_xmP=taYI(FOg8Dn3+97bsKxKs=5R(fBWP;xTLMyGP4^Y#tOBnh*m> z2>2QR-*fPAK)|?c3IKu`eSyE~=0!JF|4VsvF!&Y}VeuA_6=MiG z?vJ8;LpntWI6^2yh25NPXOsjYipXxI813+&VvM)X>2z{ z2wyE0HhwvT)o}2V1y8L$efLpv@3RcDB+zrhCPE`&=gwt&_f>FUL72p(+pDeosIl_y zwa2>jxBfyapLFP8)%yM#`WDkBd(*b{>JYl<+lJ~zO)hTDujC=fx4|v7kFeW*LpKPM z@0zP~;!|fgGHCkD2SE&*Ys$%fAJ4C@;(D!_&UA{DyY?FMo4zvDKUzhP1he`+h_ z#Tf=xK-bEG)G<&RcNTAPnj(Zs!&cAx}^ODc~MM^Zg$^Dzs)gJByiUp*NPpN3B_Zd zw0yS;zg*`Q-JG82pz~jcE}uu>J$5#HAX8Db zL;fdcgByQZYI~e|O;tp#Gmy{3OXUvm;rq0PMc;n{V_}{~Kr?AS<4jxuu^1;m>oCp^ zFVbcMU#*8nZUG6&N#3-imh>~~7NIWO=ama>w7Y0DGKlQ@V$4`1UXB++ed~t$mU}QT zURffIzjX?fSnP1zCQx$0*vNw=KO;^&Re^Ju!gA{1J^9Zs3_TW0$M`&huX1%!2PHBX zC;Lhuf1yTIt^;ktO}@fZXof!RS1^y=j+XFGzxE~n4Awz<2Ujpup7-}A>X(eS^JZ(3 zFShZ4NISMjVM;GUpFYz~V9S*EbNyOW+dflU`FrQkuiA7cIIL(qSnJ8(a(dNq-wEZe zySqr^H|_gWwCb6J`qq85@=m>flcmF0ijnJ)GJalgT%woNy zTd(s&`fq7WiAFD_llGev;qs4WsMCCw(Lr#*d)_*Cv z_t)y*AV+|6vj=38?6 z3&@+mGODg8S~OOHz8H%}s7d{_g3+IMJH%I#o)F_`#m;=*7G)XR?j%mX1|U9Q>3@%O zIK1h90Ii7@sDl~A9!F0-3`dH#Wo&)^55Y@Oim*{K2_(W{co~P6s3`zPz<;3U{}qdZ zfat$K#P|@r@67)L7yW+|Byis{fm&LA*SeW>7LUMM{!ZY`6Vwz+`gg)h6}h`dP5_7* z8G#bz-6L%X;xisiYZp;B*f8W|Th9=uBm}x*Zu$q$?YH}3paopCC;Uh7uO7_cr7kD5 zp}i;8`AU=PjqbxEB481b93&xjm5aJQ;T%4vE+G?YOb@>aR6x(c0u|nPLqzXfN{*8* zb?#POo1JK#9X4&+F#WygNyjA$(MMIJ>|4hl7z5s5hzt-XRs|a zt=C0O2d`vW$^Jur`=)poObR3y&Fn|M_5t8hz7trE%NybqswtP2WB?ChfUgWe<_f3M z;L<$8LCcdMK92ta7^6DE@QAP1b;EIqeny-fto>Q#N>PS?Q%zR*N2*7}hCMtb%EvVQ z6i67qWJ%(IsYFv%zq2T|I6k7LZ)-t2n*$v02UHWPt@@u@tCRq z^@;Qw;1Ti!|u9Q)Df;TleRh* zCnT7nu46o-*m`gTf&V!*V#eXrNwbwb7VzicBw#vH+#}^@Wt<99DI9#HFl6)=mjaLK z^~qJX&6P5ha_FB42VDLu?))s`Dw4$CU$MnaEB@6b@{|;M+GFP{2kO_5ceZrug&F!|s8!=oX zDCvXcVvDeS*R_4SVJ*1jtFFrpUqX?4V$a^=>XBNsfQrt_B@!-9-g(Xxk}bx}^9_f& zU$uc5%!;e{xpA#{wJYM-Y#*Kd>BB`IuKn`G9FDt~#Fh zE|EWuC$EXeu~QQaAE)aEc6jX9_&R!VYCLOWamfA5o$1X`fB$sIps!$%1jn@$G7Kt zS^)#Nw-gDiCCg*lrX=x%e~}OoSj)=!HJQ!d22F(B`#pxeS`{aED`iu$e>iB=K+0a< zeZPeuR#|zn?d_6A<0M(JW~eO=4|t}1#1Q>7KJ9rI8OqrH zZnf9%WHOq|KJn8W?-4JJY+jF3UbK8j2@e6qFK*8dD@xPiUvVNlcgWr;z&VF)?a>w% zTITh%7}$?6W_wLlcpvZHMj)wzqG@MF1S3w947!&7ZT zZaKJwCs}%uV-d?rs(TuZk1`Mf{2A#jW1kGGf))JJ zIuCSwnSBDNRz?hf$)$Ht%dLKsNxVtzI7ak?9j zZhNLiCgQO2Za%lc94_}}pFlET7NNkAB1=A6^C@&M@#Hs#(@Z)VQ65UE{lJ@LcV$(( z)hH2T)W(|fj@Lz7k>}f~ z4YIH`h*O+={P)k)4@ViJAyqFP)f-Ya6&W{P2txIQoI{IL=<=K1dy{)S)@;tsAFiKw z6zJP3$Bk;SpCH432_7jBy>ga-Alwodk)K|&_aww-Kb|u)kp(^B%=jqG7c?>RgCKg4 z4)&IZ{Q|-j#ulInwg%>xX6S(UjvVMA0Y=LA%N}UpHQ>iz3zEggYepP6)j!rsYy`iI zFJ|Jbtl(17(HJ<3I4lV~cN;k>CG@A)In9^-%RjPOT1QT0m~tlm<;hQ&jMUwPm$2eo z12eO1Gakw{q(H(vfdq@fR`~4+(Qi5sFcP0JF@Cv-+D7_h?3lgqF4V{Q-qUMKC(zzQ zAaT`qKHcR{^>qZX_R<{bDpekohO&Wb``o63hh_P1#h6-U%)RD~66r|IL|8v!e5sVN znjeo036f1b%iHpjfW+0``G&&ghWdE?r4&~qUq!$m@}cs<<;QPPz(X~E3@at4_me_r z|LY8P7{dmSDnkMzHJFOaTEi!>6;W2hv6?7G?pn90V~E0N7$NdpAHg?9p&9cFr|4ui z(wE*~!qCcITk=lwALs&CPqTYw@jZ*AJ>vv|42oeG9KzW9Ky&AG|Lx%;S?h_oYO<&A z;mzb!W|?l7fayZhwL3)eLyc!<4cYSSvnUas+Y)AqQ zW71;`jA$lNMyF^t2L^2GK?TmMn>zOd&tG-lzdkcNmjsl`D(8!vX&qvZyq8xowVlCI}a05m>eQSlYkd5&uo~PIz~;3JXU^a z6S=(Xi0$!*RKittvgwM&1AR>^;iv4qcGg3@?#i!mb)qxnmENmbK-3su3ZcdxyG*0h z2)oO+>e>Sz|AkdM=)Syq2`F#OoPBXV#pm`?-Dcj#>h{Ge$Gi`j z%R{@}4b>c(AK%|0%KqifqG)jhPo=o-8Zcp}A|;Qf9E7pF?E+xbgIGl=i3&qTHZ1 z_Ch~?s9BEM)0l6I4;08hBi3b0d<_jNkM1HrNYK+V*J4U$UTjGxXd$XOt(I8`-3wI~^z9z5|8{&~Gh6p-lGkBymgOZG{4q4(l~Bj!dR&Lf zRMxd=9~1sx0%{T7m8uRj31zfibt6$FmE^t)Z*|`mVHW!9S5rodx96pe?Q~TAwWXUo zKl29E(g!ooUeUknYGcSkrdBdHpR1x6S5g=6JG-QPsC^!2Rz~_j-Q#RQ_u`<3gT=%M zQeN>Q{Z`b?s7)s_-%r37VaIJGZ*6Oddeo|zv#Fh1B>5tA#$T6`@%(Y}cY%&q11a}e zL)07p97GHoS(-Hc`5b6rE9c8Ls&5Noq3GKh`xAtT?_zJg*PA$d7gGOhfs9C}e6UJg z(%e0KgW$ZAosQ6basm@(*~BOh`klzTJ&a7#K^;7kKhw^AgVL_9x2#y7k-b?*eLVjx z=m%NQU(()25@w@m98RBi^`iZQNTN-G-_XfY;`XMRS+1T7FS6Cp7tQBg4Bh9==uIY& z9DO2_=R?-%A}@O|iEtbh(I`&{OLvnGtgET6;fhEzZ(AdoOI0 zJ;#{SB#{qki0wF;6!27zP!fzaVqoMZfc}%=dKo6eQtB@15kbE(N4Z~(bYE$OBBn<@ zBVR$1h=$>!3yjl0SG|3iYWBm`1N^JHPw6rc%PNxTO?0U`HtAFosO9$}IZreDw9W?C z+uBi>)X}+VwdkGbvmKZw*9!u*<3M@a=_56Q3b(fge*~qjt8`G&hfZvzQcC$h_ELDS ztD8%^*HS@C89l(=+uu8usI*=m!d|3Ho|QZFertuD zrCSn7jb-Y-B>66q5k@B$TvGg|4#`c*0kvI|8BY6~`}m7_Vl(-H$=|u`O!DgJ9xKm< zB0Y*Z+2F@goK|AP@1Z58Sz~q3u;chRp=dlmMfU&N5h(Vv#Yqc;(kSioG2W zLf?U8UQe@*3|mW@cP^C7CY071LQEp1;3BUePVIw!J$b7vtT5Peeh2DcutqnK?{W;i zzn`HhXZxqE>So3;zRJda?#%}@a+&aAkX}dM#L(xJd6Q3HoadXg4V#6?)E-_y8sF{rXw`{xuyYm7s#^hPI`N3gT06K}3;xbau``Q`=;0d!uS7 zm+jxBv2)gwpuF4CFcM*&7sy{o|v)%O`NE6z)jO!cR!e5jjS zY4RJL`osJbdwqlXkB%Au07KHh?*ja(&-)1@-NjggdC*NQ8gSjqA7e_O8Z3ac9@!hWSpwBM4Q+PqTbSC^=h&2S+fZ94--A4sXg! z!>k;Nm|#~%TLUX%rDP8exl*c_X3;w-_68|0mAViyhr`=%fYfr`*8z@DkM8Rzs+;bB zch=6g4*Rb~TZm`Vo;h(%o45XZux##=cN74 zyOC87>=x3VIYmNDvD04S6fw#2rGw0L1op>l3cty=Sqa{~-JA(#n%}+o^-xAz&Tl^| zF)|vSvDSDRdQSfPa9OxnpdiDGbMN0?{rwkukv4Cm3n(Jjda`@4B|eK(Kcohrt;BZ z681-MR!;M397O1SE!__%j(QZ(b82kmBv3hTLGNz|4X}pfmw#9e`CIGz*-Wj2@!A5n zLFwh`EbHR?1AG#E!d(TnBzu(0M##x3(cp0ZCpB_77}T zF|d<0j9fb?OW=xjVM${^&=rPzmmu4I>!XV0+0eZPAJdz@2+bw0(X9l!>X~x?e_A>7 zaH#&bk88}J8T+0kSwhhuSt=2}N)02l$udMqw(&(HON=a)n2-=6S&ED;Mz%S|R+bQ& zgl148WUP&4W`3u-uHSP#zkiwdrPyCQJry4Xh&0*R`H z^subEPkOki_!6T(SQ(D5Q%qNRhqCqN*@72o%hum%Vi)F9 zVC&j-Lv!78iFyhv()B~|mzhQH!!^-P|>82n`z~3rs zvslrl)9!Qqp?h{TSgK$~(1lMdma@{LT4YA{aggQO^q!4IZ6@pAG#9_&mI7{OtT)}e zT(-fyHNLKNVM5z{;}*u<4<8Z#b~64urbl)=h$cwa61YAS+Le0;>p^SF9kLoofddMd0a|2w8ZGw z0B#j|Rb&;3#uo3B1@4!tj@^AMRUU;1@dm&=wO}^d+B0(xJH<=Wp4ZAT{Ei^=S{QOoyRZRp=I`vf44TF3A65WdG* zgQ4Z@$4{^qdMnaL9swSZk9)8gD7tcPhp0%{vGZ`ZBd(!?j?4Hp@?YbX?5fwHp`^ya ze#7XinB~BbmrY^^zb0%9?h=weCt|{ zxGu216*UD$S{D;--PQ|Lu$-QwqgurpKDM|M_`*&%iE$!@KH({qLCp`~mk$!0dw&0E zB2T>JMV*TVBE+zPk%xIK)W{uJ0Y^XyOM`Wb{k<-7Xe+;%5}KF;E`fOlUz2b>ODMWS z*H=jNyAhqQKJ~5@=7qfW9LX#gpbSI&w_8|XJ#WN5zWMnm0@31l(bGzSHFfvuud(iY zEK+_5JN-M^q-n$tdH!$=arS!mDx3z$S5zX3h9gzFE27)Sx|`y&hmjI3GV({yRc25S zy3u+;2jiv_?B<2$^1S$qE7ql_R=(oLa~lqfwsZD%g{3@F)OIF4%M?gduLzBQNDX}> z^2)`vCOD0yy~on(=1%EFcI&1FuEjTCvw6puAA>8_`eeof9RrZ158wE*aG7crAGP!4 zNat=Ry7F8`NTEjWo_W4{S@Y4ObfPq*_H_!bg+g~;$A!whhvB}?Qg;hRZ*;HA$E*`ZvEu1RSai@K^QfIqTui_WJO-ljQUi3;~o;9(LXWS08 zEg*eT+IWC>lUWq_l0wXVr_Pwr+hsH?_ws}%>Agr^^=z9ZDqtuf2U;V zG@rkdfV8L0T$107b(mvp_x_6$Tfvb^o*PTnTy z2gFO(`I+vB%i3Xxn=?fR(58ZNrq%9kicUy9Ll>>hdUbuU2

    In addition, the following extended families from the mgcv package are supported:

    • betar for proportional data on (0,1)

    • nb for count data

    • -

    Finally, mvgam supports the three extended families described here:

    • lognormal for non-negative real-valued data

    • +

    Finally, mvgam supports the three extended families described here:

    • lognormal for non-negative real-valued data

    • tweedie for count data (power parameter p fixed at 1.5)

    • student-t for real-valued data

    Note that only poisson(), nb(), and tweedie() are available if diff --git a/docs/reference/mvgam_marginaleffects.html b/docs/reference/mvgam_marginaleffects.html new file mode 100644 index 00000000..056c37eb --- /dev/null +++ b/docs/reference/mvgam_marginaleffects.html @@ -0,0 +1,233 @@ + +Helper functions for mvgam marginaleffects calculations — mvgam_marginaleffects • mvgam + Skip to contents + + +

    +
    +
    + +
    +

    Helper functions for mvgam marginaleffects calculations

    +

    Functions needed for working with marginaleffects

    +

    Functions needed for getting data / objects with insight

    +
    + +
    +

    Usage

    +
    # S3 method for mvgam
    +get_coef(model, trend_effects = FALSE, ...)
    +
    +# S3 method for mvgam
    +set_coef(model, coefs, trend_effects = FALSE, ...)
    +
    +# S3 method for mvgam
    +get_vcov(model, vcov = NULL, ...)
    +
    +# S3 method for mvgam
    +get_predict(
    +  model,
    +  newdata,
    +  type = "response",
    +  process_error = FALSE,
    +  n_cores = 1,
    +  ...
    +)
    +
    +# S3 method for mvgam
    +get_data(x, source = "environment", verbose = TRUE, ...)
    +
    +# S3 method for mvgam
    +find_predictors(
    +  x,
    +  effects = c("fixed", "random", "all"),
    +  component = c("all", "conditional", "zi", "zero_inflated", "dispersion", "instruments",
    +    "correlation", "smooth_terms"),
    +  flatten = FALSE,
    +  verbose = TRUE,
    +  ...
    +)
    +
    + +
    +

    Arguments

    +
    model
    +

    Model object

    + + +
    ...
    +

    Additional arguments are passed to the predict() method +supplied by the modeling package.These arguments are particularly useful +for mixed-effects or bayesian models (see the online vignettes on the +marginaleffects website). Available arguments can vary from model to +model, depending on the range of supported arguments by each modeling +package. See the "Model-Specific Arguments" section of the +?marginaleffects documentation for a non-exhaustive list of available +arguments.

    + + +
    coefs
    +

    vector of coefficients to insert in the model object

    + + +
    vcov
    +

    Type of uncertainty estimates to report (e.g., for robust standard errors). Acceptable values:

    • FALSE: Do not compute standard errors. This can speed up computation considerably.

    • +
    • TRUE: Unit-level standard errors using the default vcov(model) variance-covariance matrix.

    • +
    • String which indicates the kind of uncertainty estimates to return.

      • Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See ?sandwich::vcovHC

      • +
      • Heteroskedasticity and autocorrelation consistent: "HAC"

      • +
      • Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"

      • +
      • Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package documentation.

      • +
    • +
    • One-sided formula which indicates the name of cluster variables (e.g., ~unit_id). This formula is passed to the cluster argument of the sandwich::vcovCL function.

    • +
    • Square covariance matrix

    • +
    • Function which returns a covariance matrix (e.g., stats::vcov(model))

    • +
    + + +
    newdata
    +

    Grid of predictor values at which we evaluate the slopes.

    • NULL (default): Unit-level slopes for each observed value in the original dataset. See insight::get_data()

    • +
    • data frame: Unit-level slopes for each row of the newdata data frame.

    • +
    • datagrid() call to specify a custom grid of regressors. For example:

      • newdata = datagrid(cyl = c(4, 6)): cyl variable equal to 4 and 6 and other regressors fixed at their means or modes.

      • +
      • See the Examples section and the datagrid() documentation.

      • +
    • +
    • string:

      • "mean": Marginal Effects at the Mean. Slopes when each predictor is held at its mean or mode.

      • +
      • "median": Marginal Effects at the Median. Slopes when each predictor is held at its median or mode.

      • +
      • "marginalmeans": Marginal Effects at Marginal Means. See Details section below.

      • +
      • "tukey": Marginal Effects at Tukey's 5 numbers.

      • +
      • "grid": Marginal Effects on a grid of representative numbers (Tukey's 5 numbers and unique values of categorical predictors).

      • +
    • +
    + + +
    type
    +

    string indicates the type (scale) of the predictions used to +compute contrasts or slopes. This can differ based on the model +type, but will typically be a string such as: "response", "link", "probs", +or "zero". When an unsupported string is entered, the model-specific list of +acceptable values is returned in an error message. When type is NULL, the +default value is used. This default is the first model-related row in +the marginaleffects:::type_dictionary dataframe.

    + + +
    process_error
    +

    logical. If TRUE, uncertainty in the latent +process (or trend) model is incorporated in predictions

    + + +
    n_cores
    +

    Integer specifying number of cores to use for +generating predictions

    + + +
    x
    +

    A fitted model.

    + + +
    source
    +

    String, indicating from where data should be recovered. If +source = "environment" (default), data is recovered from the environment +(e.g. if the data is in the workspace). This option is usually the fastest +way of getting data and ensures that the original variables used for model +fitting are returned. Note that always the current data is recovered from +the environment. Hence, if the data was modified after model fitting +(e.g., variables were recoded or rows filtered), the returned data may no +longer equal the model data. If source = "frame" (or "mf"), the data +is taken from the model frame. Any transformed variables are back-transformed, +if possible. This option returns the data even if it is not available in +the environment, however, in certain edge cases back-transforming to the +original data may fail. If source = "environment" fails to recover the +data, it tries to extract the data from the model frame; if +source = "frame" and data cannot be extracted from the model frame, data +will be recovered from the environment. Both ways only returns observations +that have no missing data in the variables used for model fitting.

    + + +
    verbose
    +

    Toggle messages and warnings.

    + + +
    effects
    +

    Should model data for fixed effects ("fixed"), random +effects ("random") or both ("all") be returned? Only applies to mixed +or gee models.

    + + +
    component
    +

    Should all predictor variables, predictor variables for the +conditional model, the zero-inflated part of the model, the dispersion +term or the instrumental variables be returned? Applies to models +with zero-inflated and/or dispersion formula, or to models with instrumental +variable (so called fixed-effects regressions). May be abbreviated. Note that the +conditional component is also called count or mean +component, depending on the model.

    + + +
    flatten
    +

    Logical, if TRUE, the values are returned +as character vector, not as list. Duplicated values are removed.

    + +
    +
    +

    Author

    +

    Nicholas J Clark

    +
    + +
    + + +
    + + + +
    + + + + + + + diff --git a/docs/reference/predict.mvgam.html b/docs/reference/predict.mvgam.html index c62e62ca..7d9d53a0 100644 --- a/docs/reference/predict.mvgam.html +++ b/docs/reference/predict.mvgam.html @@ -49,7 +49,15 @@

    Usage

    # S3 method for mvgam
    -predict(object, newdata, data_test, type = "link", n_cores = 1, ...)
    +predict( + object, + newdata, + data_test, + type = "link", + process_error = TRUE, + n_cores = 1, + ... +)
    @@ -72,10 +80,18 @@

    ArgumentsValue

    Details

    -

    Note that for all types of predictions, expected uncertainty in the process model is -accounted for only by using draws from the trend SD parameters. If a trend_formula -was supplied in the model, predictions for this component will -also be incorporated. But the trend predictions will ignore autocorrelation +

    Note that for all types of predictions for models that did not include +a trend_formula, uncertainty in the dynamic trend +component can be ignored by setting process_error = FALSE. However, +if a trend_formula was supplied in the model, predictions for this component cannot be +ignored. If process_error = TRUE, trend predictions will ignore autocorrelation coefficients or GP length scale coefficients, ultimately assuming the process is stationary. This method is similar to the types of posterior predictions returned from brms models when using autocorrelated error predictions for newdata. diff --git a/docs/reference/series_to_mvgam.html b/docs/reference/series_to_mvgam.html index 424bb9a4..858852d7 100644 --- a/docs/reference/series_to_mvgam.html +++ b/docs/reference/series_to_mvgam.html @@ -5757,77 +5757,77 @@

    Exampleshead(series) #> gas oil #> 2001-05-01 2 2 -#> 2001-08-01 1 1 -#> 2001-11-01 1 2 -#> 2002-02-01 1 3 -#> 2002-05-01 4 1 -#> 2002-08-01 1 3 +#> 2001-08-01 0 2 +#> 2001-11-01 4 1 +#> 2002-02-01 4 2 +#> 2002-05-01 2 0 +#> 2002-08-01 4 3 series_to_mvgam(series, freq = 4, train_prop = 0.85) #> $data_train #> y season year date series time #> 1 2 2 2001 2001-05-01 gas 1 #> 2 2 2 2001 2001-05-01 oil 1 -#> 3 1 3 2001 2001-08-01 gas 2 -#> 4 1 3 2001 2001-08-01 oil 2 -#> 5 1 4 2001 2001-11-01 gas 3 -#> 6 2 4 2001 2001-11-01 oil 3 -#> 7 1 1 2002 2002-02-01 gas 4 -#> 8 3 1 2002 2002-02-01 oil 4 -#> 9 4 2 2002 2002-05-01 gas 5 -#> 10 1 2 2002 2002-05-01 oil 5 -#> 11 1 3 2002 2002-08-01 gas 6 +#> 3 0 3 2001 2001-08-01 gas 2 +#> 4 2 3 2001 2001-08-01 oil 2 +#> 5 4 4 2001 2001-11-01 gas 3 +#> 6 1 4 2001 2001-11-01 oil 3 +#> 7 4 1 2002 2002-02-01 gas 4 +#> 8 2 1 2002 2002-02-01 oil 4 +#> 9 2 2 2002 2002-05-01 gas 5 +#> 10 0 2 2002 2002-05-01 oil 5 +#> 11 4 3 2002 2002-08-01 gas 6 #> 12 3 3 2002 2002-08-01 oil 6 -#> 13 0 4 2002 2002-11-01 gas 7 +#> 13 3 4 2002 2002-11-01 gas 7 #> 14 1 4 2002 2002-11-01 oil 7 -#> 15 0 1 2003 2003-02-01 gas 8 +#> 15 1 1 2003 2003-02-01 gas 8 #> 16 2 1 2003 2003-02-01 oil 8 -#> 17 3 2 2003 2003-05-01 gas 9 -#> 18 3 2 2003 2003-05-01 oil 9 +#> 17 2 2 2003 2003-05-01 gas 9 +#> 18 2 2 2003 2003-05-01 oil 9 #> 19 0 3 2003 2003-08-01 gas 10 -#> 20 0 3 2003 2003-08-01 oil 10 -#> 21 1 4 2003 2003-11-01 gas 11 +#> 20 1 3 2003 2003-08-01 oil 10 +#> 21 2 4 2003 2003-11-01 gas 11 #> 22 0 4 2003 2003-11-01 oil 11 -#> 23 2 1 2004 2004-02-01 gas 12 -#> 24 0 1 2004 2004-02-01 oil 12 +#> 23 0 1 2004 2004-02-01 gas 12 +#> 24 5 1 2004 2004-02-01 oil 12 #> 25 1 2 2004 2004-05-01 gas 13 -#> 26 1 2 2004 2004-05-01 oil 13 -#> 27 0 3 2004 2004-08-01 gas 14 -#> 28 2 3 2004 2004-08-01 oil 14 +#> 26 0 2 2004 2004-05-01 oil 13 +#> 27 1 3 2004 2004-08-01 gas 14 +#> 28 4 3 2004 2004-08-01 oil 14 #> 29 0 4 2004 2004-11-01 gas 15 -#> 30 2 4 2004 2004-11-01 oil 15 +#> 30 1 4 2004 2004-11-01 oil 15 #> 31 0 1 2005 2005-02-01 gas 16 -#> 32 1 1 2005 2005-02-01 oil 16 +#> 32 0 1 2005 2005-02-01 oil 16 #> 33 1 2 2005 2005-05-01 gas 17 -#> 34 2 2 2005 2005-05-01 oil 17 +#> 34 3 2 2005 2005-05-01 oil 17 #> 35 0 3 2005 2005-08-01 gas 18 -#> 36 0 3 2005 2005-08-01 oil 18 +#> 36 1 3 2005 2005-08-01 oil 18 #> 37 1 4 2005 2005-11-01 gas 19 -#> 38 0 4 2005 2005-11-01 oil 19 +#> 38 1 4 2005 2005-11-01 oil 19 #> 39 1 1 2006 2006-02-01 gas 20 -#> 40 0 1 2006 2006-02-01 oil 20 -#> 41 1 2 2006 2006-05-01 gas 21 -#> 42 4 2 2006 2006-05-01 oil 21 -#> 43 0 3 2006 2006-08-01 gas 22 -#> 44 0 3 2006 2006-08-01 oil 22 +#> 40 3 1 2006 2006-02-01 oil 20 +#> 41 3 2 2006 2006-05-01 gas 21 +#> 42 2 2 2006 2006-05-01 oil 21 +#> 43 2 3 2006 2006-08-01 gas 22 +#> 44 2 3 2006 2006-08-01 oil 22 #> 45 0 4 2006 2006-11-01 gas 23 -#> 46 1 4 2006 2006-11-01 oil 23 +#> 46 0 4 2006 2006-11-01 oil 23 #> 47 1 1 2007 2007-02-01 gas 24 -#> 48 2 1 2007 2007-02-01 oil 24 +#> 48 0 1 2007 2007-02-01 oil 24 #> 49 1 2 2007 2007-05-01 gas 25 #> 50 0 2 2007 2007-05-01 oil 25 #> #> $data_test #> y season year date series time #> 1 0 3 2007 2007-08-01 gas 26 -#> 2 3 3 2007 2007-08-01 oil 26 -#> 3 3 4 2007 2007-11-01 gas 27 -#> 4 2 4 2007 2007-11-01 oil 27 -#> 5 0 1 2008 2008-02-01 gas 28 -#> 6 1 1 2008 2008-02-01 oil 28 -#> 7 0 2 2008 2008-05-01 gas 29 -#> 8 1 2 2008 2008-05-01 oil 29 -#> 9 0 3 2008 2008-08-01 gas 30 -#> 10 3 3 2008 2008-08-01 oil 30 +#> 2 0 3 2007 2007-08-01 oil 26 +#> 3 2 4 2007 2007-11-01 gas 27 +#> 4 0 4 2007 2007-11-01 oil 27 +#> 5 4 1 2008 2008-02-01 gas 28 +#> 6 0 1 2008 2008-02-01 oil 28 +#> 7 3 2 2008 2008-05-01 gas 29 +#> 8 3 2 2008 2008-05-01 oil 29 +#> 9 2 3 2008 2008-08-01 gas 30 +#> 10 1 3 2008 2008-08-01 oil 30 #>

    diff --git a/docs/reference/sim_mvgam-1.png b/docs/reference/sim_mvgam-1.png index 6f46567c9f3533aa692545c38b8f4a074cc88cd6..d4ad240bdefe4eb40b1b5a3baa263c5e65c62275 100644 GIT binary patch literal 150465 zcmeFYS6Gu>*DZ|l2#+A3qIARpq97o>gNh1BQ$R|n8mgfvE%b;D5kz_~DoskLh8hxz z1d%4igkl0xr6u$Lfn+b<_y7L0eY%f6uPX*Za^G2H&N=27V@2IJ*5zOmU}Iup;?UQ- zZOX)SERczb`SHIj;Fa-|PpjaG<*|Y8ZSV~K?dmikz|--kde**7Ou~_ek0T#u*PNM{ z&NJ!XzG)tqwM+~Owe!zrtWl}IMLj>M+qr%EDWyM@QcaOKbLzo^;engx_n#5c2L^7= z&%aQ+H2rr{PU7zsiHmGszFhh4HA;~7)AvcuKkk|6;+}BXDDiRwH57rExttTy*D#tf zcX?rHH*n?%H6(@B>ls3x5ACPYcJ==A-TwE#|DA#Voq_+iGY}V0m+#fzpWLuw+}CWJ zp4*B39l#2{Lga$m2e|MSt{xkg6gPae*nTi9LF>GGFu4)rmFELbKZq{v2En|V63t@s zzsPBGu>>ArV!B+Lr%JLDTR7`Xr_*z#g~MKwm~N>wkiqrxCc6{f`4W$VA05wJi~p)K zsQ+@=^8A8H0_o|ukbl6-LN{~GcVbvvR*!!wrY-VqakZ%2=Co(hZ3^Auxx7;l{4)RLBGT9fNm~5M5Or@o**~injLaVw zTQSZRFDF?S^183Wyqe`o|1lWsNXRjymYNR2MSG3C1&ts6X7g`B!6sNb(w67N?U%=+{od?h3s@rnk9b6xtZ`>OTFFzsBv8C&r$ zbtl_y%#VB`y*NI)L-Tp|UA0lvNS~rTT+$XfUN^9xb+_FgLk%@;uJKQAWoKfFiwcB4 z#x?1z2|I5uE&gY{9G8t!hs!@5dlsf`>7+_{yruO=u3T>15N*Sef*-5y2eb;iO^=-^wqfnhE!i(N4Pjdyr6rWD2{LfVv^q~K9wV!)R52lD( z6tnAOP1VQ)uma!H;gUP~;cNf)ZD27QXw~j;$uL@&n3D*iC8Yg4Mf3l55j*|8xEHb% zao@2^V4n+Rd?xWT)0v7PgNS>Lw+El;sPtP*tX*}s*ju6L?`@Bt^pQriWFp_*&TTzP z8u&Zz7G|s~z>EeXN(b|4iKa2mEKeimzv_Zlrdw>cSm5*6smJ09Ba zFU+sAqIo$68Hblx9Cr)-pG(~Q*2Jw%QcS=I4(3*H`JH59Y8fcJKd7t_xJ5L1C8VD4 ze6U2BZ)<}UUBod+IsEi;re9$0P&|$a%;}8)@Ns#PzbNtCIz3k)j|##%?din?={UdW zeB;-wzOFm5qYLBVe;%Q++LLyQ-{~)pq4P$SE8_qEFYxjbNjPKeBt<}9n>}cvGL0AcNRGR z@zqPMy82rikZ!O?^_^k=#WK&-s;t{4BURJOo8<=kCQ8_UCAkZSvt?<@=u0L!x z=uL^49NEqL&C4{Mg$n4y1n$q9AZX*>{zAIF4OYUQp!w0-#zuW#=l!!OxI;k zQjYSa+`jlM{2Gts`;N!sr=z~{>#ic-!jH@d$p?x@-qXL6U@X*HRq?>PI*>{C2yCUy z6-#Y~HI0wc#?@>fXBbNk+Frh{!UbBQeueN<3TP_9*j zkF!oW?H|X%3#4q(GSsnz;22pYLRjmJxrIeQH7WpEw6M=1s5FCgz-pz}7(Z&eMCu4U zj98&NV@pdD=2)oi$L3FH+XQ36U#?Zm#jDpp#&n4Zyq6BJqiR8W{Pgb?m{#cRdBipy zW8!lyLk&^yr)30RbY7*u`GI*NG zX@ruJlF^1m?#tN(a`5(OnV?Nci3NAQqe>a-6tsuymQru|moI6`bHYcNVhr$*qP^mx zaI3AI=?G8SV_D73-F`%4Q{HrLC&o1`=JUW`h(7!NO8JspOY|eKn73P*WUh0Xo10&| zuSY)zTNxvh$szX)4A^~sN*T%-MSV+_`t^(1Q`_QFsc~$c`NjC1kFs+ym7c}sC2nOj zW+uKO(_%R0X}46zs1hZ3+uCzy(UL*9oM;*ATz6enHI`ei|NK_pBnmIb^5W5j!~1n` z@UbRz&G06t_jfKOpwVcXbnB@0M@U7*Ol8)Tk|4#TlzXObt4DV{$7?-fQQKIS5wWHB z`vZLt!O{9>(C~8F5hiFWBvS;j^M^tvRy(&G{2(_IG~gS(*gAYpSQ@1c9nhUpltXLf z3a%xFQRz;u^Zt>(T84U`n9&I?7GSJ`LphGOK)q0%B35-W$;3gy3a87?P3IJP!B*a5 zh~-foj~TK86yE3#(%BE4b-H;24ir*z$e3FeH}@_56$6=G0k_D)+qb%OBKw3&IUhaF zlym-p&{OLhGG8H*RXF7ZZY3orXA6DkG;r-n8#o)?;q~1g!8EDo+tjGF-`1-vBk%(w z^V`ROwB1Aw9)>i9ic*}BiVsaR)(8`rdCiJodZczw$nqOO7tPg%{(~M!$bep7WR!UG zy6jReTq60R5%ZgvK)BOexG%`D=RvAsT(~;1v8P*Vf!s@woy)`=V9rE$Xoad!9zq~$ zmV-$A7z&pL7tsievvt*FCp7yJeET`-4N8i1{m1LD!7;(Fj+dd)`)BlXR~5vBI~&HD zKA=+gIWDZPuWNlGjh?$ZnA%mt>G-7#1*3YA_O13?S?lVQ6++t~A%^8N1wPn{Yyp)- zb1*u4Ho~)%v_JO~O5e_9sMf4kb>@7;H6SH)<`fL1k^KVU;bkUiDCsrSuR^rvFtd?^hSB)SC+&0T>sjgqZCRWp@ ztSJaz$Nj#d|N8Z7hd94fN}Nb?YAQB7pTZk;yDwgRQWjSxve0n7YS?3Ry*9S6@Fo>j zUS_MzLTvrV1*y1ji<`tZgF-ACL~=@XS-UbB^5MtYc*FOn zQz^mJCYc6?SuTW@S%*ECSgQ4;8I;o$({wyNbHmnjwb{zfLqc)@Sz59dM z-a^yh)x9N?5#IN7pL)vt<-~cyoBS7UF?X#$`E7pJ>vu#R)OxEge7}BWirB96|Bdx+ z=QJg0lUZLx0r$Jfe+ds|Rd><2jtkXkHbL$EHn*}GNh8gv#cqV_n*`VD3U%%lqm<+l zsJ=p-+B?16%X!aHN)_bU)P9j4nBKEzeUT{hmv=0{>}BKlD1)79ozM16zkkzQk<<-F zX3WU>F!-T6R2Ikk$R;>~-jV4Y`yHY`*owRBxjQQ(Q-#mTm@apAMrJon!?Cosh~^OH z@xFr@@jRa_1mYK#zSLx4_w0^ih>32bJ-yePh&9ktB6%+{KRZW>j5r*!VOM#%B(-B2{?*))(F19E@^9ox${Z6jI_(-d{?F7^ zv%;*znw%34G|nO3=PL(i2!MNIQGc+W`~aY>ZiLL&)K*5>w&*dljLx6UG|ie2txqJxk#yp28Lp zU&Gb{{~8kgLVd@c_Pvf0kJsx-@+&WLAIeaKWgt-`cj9lxdC4i_M`nM2hy8AG?cE}W z=G|UO!-0`^Bl)$B*XWh`|@;tk~3SOO(zt>XqQU1Zm}DUsJJO9B_;Lt zZk~wt)5#lm)RgPt#VZ?k?%aWIHdo?(Tk&z z6HS-Id7_&;_@?dT9Fh$$ADA4cp=xWjzVz5?dkcGgUe8vCODCPFSN*AyjdVx)H>#^^ zqo;F17HjtxEqjq6+xy=k>Y9XujJHp~{g9g3+5DbnE`8>IW>X1ggfe&g%Zu`Kz?Pg| zcUf}-+4-={)OAj;o$4La7Q&C|DF}pl+uPeW$jaZz-jxZIWaVkygp42EowFqEHlm7`P<~mFnIo0@yHhEJK_qak}DhLPA^Ws2d4^7XY zz?2@iFtCY`KP@i^>#ENbr$8hU4<0)F>R8i{*g2MF7||DqKvOS?>~>vp*lBC)#L~A^;h1S*k#XJ+jB5m9h8w`1 zAaSdAOkifv8#A{rPGmZmo>nPTjpxfnh{wt;C`i{CG~)b;AqEBpA4E#2(qL-OedrWX z#_iu5^kD=*dnk4U&8GVLz|uP6v#fe=tp2Ih%cr9h6SO3+It&ICn?KP3Yw`n))8-qWEd{Zhz^aB9cb&8k)hTdLM%nf@7?2w5I*H}jnYqL z*Os>D0z-dyDC5Vz(=|irlnxQb&ZPXruCWiL)-$sV^{FOKRt4Gv)0AlfbG#iRDwfz4 zbHpCDQcr7o`V};)+HF(BzP>(o8~6&_vLIseNQ0f-CrML)EFzEC&lpN1tC^WHJpLj0 z>za#R)YjHse$jXc6zb!*SM=U>JTB6MOuLUkY;8m59XqXI-W$!~6HiIXq6{wwTK$Qq z63QMs8Oq2Tt_IOR7(1Qt`{$t}_RUKT^G6AL-2JLWc7vXef&w#3OL*SbWp)gld4E^t znv4wA@e3_AHPt~Vx&w1My5o)MeaB%d7)@k~4;tGA@{rrd16?zFd(ybrF&8y!mx$P7HRTX2saBz*JDEv*9PULe}NuEFmJ3_0;Oo#MGsn z2X&q{cN2{YhD{&DE5aY~bVxmX_(^b3-lB8dU(vbAg+jKa7QA6t5>2ZX)|mYOGW@V#b&ma{Qv z68?F@!MB$`q|T#3@-RUR2KhHrtxROBtMkng@MYF!;$1c?-nJx0%;hO!>nVy0TQr>O zoXYB9WHQqN6cmg1(p|NZW&t!(Z3D4`<1?EI(fnNWYt)A{Gdug5(`_zeT7@n%mKkQC zbqfhWJ;}^Z)imNwN=@b3b^pT@6lDooy1pOPQsQMOGr=F-><23$bzc5{XZ~@@E6%H0 zdr!|a(1-Zp_)Ykr+r4%T)m>O*6@0t99{D3o1)wjiAT%dHXg=LdVQ;r}+eGxVt4eIm z%|S~sPh-*3&>-&YD$!qj+&jvr3QJ0!EIM{z-n1a>!btwaEr3Xa!}Rs_9p@hAZr=Nc za^+io+JGZcQ#pV4Ho>1EnSYSYe65C~$L%_9^(R|eKBT0ye_8G6`Jbdwyi%DUF&2k2 z<5W_5;{_Y3((xfaOU@`m6}lYIE$xqg%?;>P#LDADtA*!h<|nMz@pXm!E3*i?Zv<#d zPHbanEW5E@F?Yq>iH`I925YS6c6@yA++i%ueA0PGL@+w=W3rhYD%St)JM%CEk~O-! z)^l8G{$Kc2*SGMH@b_#ta~_t%+4=A-qc`#j82UA`bIdPSmK({lIjKXY#ls?! z5)wQ@@i{?BDJgx)N%4?&h`L*g;D=6aJdxNebMAxq)LP)k(8edoR9L*>ja>Kcz4?b|b?~Ai+Vjd{ofpTZEBQxq2Fj@`mqo3QZ>V~G&_HCfPTA7p z2_agBWqmu?8aA&aewsO4yGX?GLuS-b{FpNeba;Eeht((5ud>A85@au5LX@JmA51L8 zC~zD*b}X^srvjkhPJ+$PY0PN@RZxp{PI7ZhlYS`l>sN8xTcx=cd(-Z z9r644==Rq4w42Zv)vM`-^nhvH``x@T)m%N%)3vr9EzgxT6aOGYg(clzqqZd@2ab6U zyvq4iYN_l*9O~pttV;4+94?lO4E9hPIVc=#7!f^asIFem|8x!^ns2ERm?}w5q6jRe zN*TRGr99_Vxn~74f*Bc&V1xWoC?gT$o5R}Gocy^k3vjZ|j zHI+x!HVp20ss34>tT5aCe#zAemdg3`FaK6S0do#*5)<|$Xg2wRjI{{!5?q@R`mqXG zYms1lZi8g#xR9Q8z>LPFrA$pt#T>Ege764@j~hSe|8kxr%riy&>aph42{3si#OC3_ zOd?@-JnFwS;r5*&>|FfvFvhu;; zK~5nzchtAN*4Xa;eriAIAe-6|*xerTv348HY>hF5NJw@*bm(j_2+*W?e0;XX@2bED zEfKxyy*QjYclMZglmhPYGmUx$XhGuhZtYW7wx{0CreL+fH zkNeqabh+P)&*`~k!ZzRqsUM1>9fP4*1g{%4G982@91td(UQrJEh7VSlavM&VK; zLLTRI?UAn?yoQRBbulfsSc-9Wog3@^}mL1PS)-A z$+~5{i5u;K8$6++&sn}K1i8oBb%8vAS`vkMPEt5ufP_3TIMcO+pMO=;7yNz0r+Yu{ z7EB6YVHDo@xJOz`87hMRgr}z`^Bn!$$Am3y0BLWgqJ>!y@yz-e%0DGop)uGixb@A! zx<~rj&o}zq_*AMlp4llw@4lQ?c_}TA!e`vRxMrsxF{MuWD61=%QfduzxOVkw&~Ltt zlq0d}nE(n@nfrk9tq9N-cs>w^>5|P4Z_NfzYM{ zHFBhsm)<6)q!?SK2yOvdu&hR4|FvYn&r#aTcb(In`s*ZXR)cxY7C!khevXCo6BBj# zaEb0+pFQeNe`1XGG@zMp?O|W`-tN{LigRwr5G}5$Nwnr@nW<^K+Rfzc>RZDpq_Vnj zA*ZOmpyWx5u)sZo*#P*5==5TL8SH*zPG8S4PS8CKx0x9S1%8=V*{+`shwSVTSjVQh zG%D{~yDTYoPV4Mp#(AS>uln-)l$Vtdzg~sKPlIH6;cUh&>`m6d_p*4tX(_AbCvu!B zs;r!$3nm2n(!XKUtHBdtdmH|QtAix^)=kb!Bry_4G~BY5d~OH2pcQ!kmx<;U9TVyO z-=)FX?ujsNM19j%8+KZtvlq+aat#r-9IN-%IaeWI_W8)i!QLG5L>{1u+#yfmezf7z z=>4sbCdur@*33u=lfnD02}16G@OXS|REZqjDdr$Y*8&Y+b6gIED98*RJba zicBGRjGeKf2Mr$M)f;?+A>jDbLq@AxGH`F6S-f>h%KGd5)DGUlk6xbS?=L0_@|o3V(M=jBGnwVD!6pPYy{2b8A-xD_Ay= zBWm&y0+UIq?14xWj?cGzeybdGS;P7XAR;y0f|tm|rlKHw*8_WByVU2rX-*J0MJunS zLDkO&B*GY3%M)TG|HQ6`hwLzUXlUTm-r!)g?qL6b6H*bBsg`Q$Gy$2In9AG3pZr?Z zMfZ<$YRAC}nAU<6OZ(lx@3eDu6`wCY6}IzxQi&rzWk*`WEDM5zz1&KX&BV)zg#3-n zb6SKjPb)f6i&aptt5yBBppwV;#2Gsh{l~krlDBfpci51sD=RC^eID7MyEBsz30-Y7 zH!(rjtpB_qM#eHw__2t0&reZKQ&^_$2zCvOWJ?xJ%=&;X?*fJJaEd7O_&G1M{PX82 z4UVjrVkU!#6SKDTf|HmC6L+E6KSrz~q|vj^k``tE&hQDo(-ZZ{1c`X=V08Qa-MnZq zsrBV1eKv~(qXN@*fu8Y0V)|lypf4a4%&o0QKevA1s~!@##a6cEKH6YL6c&yssl!9e z>O9AxaC`q>GU4G}V!8Dz@4fdYG-c403s;QipWY4ba(M%0tyBTGyiqF!sU!1GJB14i zjWk)ZK7n!LFo??ln1S|Qd6m&w=c>%hJX9> z)J{3>Ls|d%*Wzs{zOnhMv551bRtES%c_*~;T*o5=uoa9o&N1RqctlNjQNFH5g-Pt) zJoz_6kprjS-!(}YcDOS}yWhuG^Ej^E)h{4mTf0Zd?e5F(1}uhZ%x5K6+@64Ka*E>u z$+NgbO*824&yN(snGYW#BdaBs;LB-bZw>menOTAo$NX&rhm8!8KC2{t`!Vx-$saV< zx8ov8ex|whs=wF}*`|yY0C<1I^%4ZOfkZJXX&t-{p)&>!64=?Y8q9Xh)>6eTkw$`t zbW2w3KT*NzDuvW}hIF@v(W85cL(e@s*@uY{meD zR_C#BqYT9#6lh1t_6Q2JEU^6J{Dt_n>&k}KSCKU@ZBRrpfpy427b9xx%a`XIfM}vN zGVF)Ejn0IfST*L{O~4e8qQ5;w(EZEQmm0|-tmB;!8re;u(d%EDbI+u|(7d%i$=}1( zx%-zQ-dN?&E7T%#d(>5Q7cQm`5NW9OV1UU`DRCYc^7k_@VG*Is2AhE%jYFeeJVw+WTj-Q*LcCrt}3RaM$Z0i-W;WbQ9g%Nk$%Z} zDk=s8K4<=nzGci^?BxvdOI8yun$QP_rfqk`cv8B&LspH(P9+NSRRJbF6ZM^sJFS3h z;xIMaNIpt|K@II5J$jTkt>SIw5`o;XB}hegPFsG!ZCx&#e5L#MxnJtb7O#H+>*t@KHRUOf+i$F`-G;!B%CBRDI=i~qm;rL!{f;h` zW)YlBmK#!V;s`V=9{xhSek5_^)jPNib-8QL8&irj!i`<%XaXriC*v1NCO*v-*}H|B z*#{{69|2IAEcu`;A_dz|*EbMmKC{UYFLYCR8 z_8~%QN{)zI5}=)jN5}R=)WfMwZ<@**7pYk6TtAZ zxO=+A>?%ltU4Q5&_-tcp{T{BBzNsvg#r;-!b%5sGAty^(S_ndwg2#9)!1Sg#&%an| z!iy(AYLCf<@DMfSYn}(oWuBY$;@Z~?dF?`W0Ho| z0_dT=w$-8@nv*HV#9AZ&&`L|$Su-@{j=YxQ|B(?XlWype?_G(<8<;+N^oIxVb74*W zHF)}Eo@k93)4N>;yJP0vBk4Fb8x3ebXvs z0*}$^PZqr5BDnm0-WJy#oo&)x-Ds{_cDs4AbxG{l`ipH@T%gRdHtA z>QC$xJID(*b9<$_oGA`Nx|f#-DDdLxc1=7Gm^|6*iIO))!D9lztB8~+LxF;Vf}!cP zoy;HI-5(P357go1TNL?6#Dp!Gi&RT$*_>Bj&ks>aOMHbjq)js|)9rW}QZHEvTVw288{a#VmlfIbls zEp6S>?91a;_T^5o?8p^jt*lG7C9Bklhy!|;34*JE0KjAHYrKYgx zD!*wpy6n(IdmYjJ^y|v#C1?K0Y}v5ACbOzE2|!~BhyFR%o2gEHA32m8^|`ou-4#LK z=@dDvj^V50K$jymu8cEMVo`D~t2}4Uc=Y?Q9a=Stdu|OaDS7=?aeoq^a650_CG(1z zgMBz;EX)bzV=VP2Nx2H#uR+M*1dU-POiUCNG% z6p=;%vqocp7CkT>rS!D_T|D$Td_53y$)=jesys}T@Mmp}U&u%50TUE#gtZv&oWDtU3`7S!T`8XEcom2=~ zJXV%#Whi9>wi$GC(kV?o=-o>WOP}X%UtBKscvDEa1v_wfjvs4yUr_L=;|eEvTzRUf zo4ex>r_RpLd)MMg^D4%7baZqc8Tk88va4#g2>u)VUY4BY+It+*$l*d+IQ^(cn7qJV83eVcTfUT2GU@M^lAjA$3|8Iy*{aiXpbbhw;hXSYUheJ- zzvHH>SXbJh3{!3xwe+h5IIkhdQx1%rjWB=V(GrPJj(CcRWAL@lNh|Fr=~7Y zhLYdzcx-U65^bz)ClCawX0>cyFk;<*UqJnxckuAxgdUcH4vV^de$Ki+04dt60y@za z){)65Z}7=`fS6|xG;Rc6$KtB1eYsqtf_n>%ECYh*`|XGDvx`iw9DN=gz?hY(2>QFX zgaV52(6j@iQ7LR*-Mbo(@yb6)|F;a~ihjD$OIZ0`c@yw#B}BCK2gJb=Z_$u{AZwt5 zb*;zf^Sn)rn&`2iA``Ce1+@z+h}q;atN{^^G!r|zrXZQ$h%^3{DvPWodQ@5uiCehk{+QgMmu zm;@kIulUvyd~s-AFsR#BHCHu=_)jS*$36*Ojt9z}q-MvzF2FI< zuYh~e&oy_=2JaYi9C#Q8+fXoOWd~q9TlDbiTk!ZekZ{hCJu}QpO-=1q#VK6cYYf4k z9(M2Ey(y43d5h~L$TuhGsetTY5T5QW^y`AgAV&`8Bx(j&Hm;s0*KsHOeC5huA7yds zd7oTF2_?X16Z4$FH>90+A|ZA|lehQX)B7JK+S!fybP6-#$~&I9=(xL2jx5r-@zld)(?+hS~*+Js0Gp#IK<|yk^Kz*|bc< zaE}eoI_J>70>sYC(_EUH1~5%NUtwI_5vh7&Tv&|QFl9PeJncgXs zD2rz#hzk4m$Sz7q{nDfa6HF2JI;61sv*!BVJa>;Vqxs~EN#bQMkDc2P4eKCmr&kKw z5w^5{#p(}&&K5GuAEbT8UjceCN&GckrZHx;7b8CM z=tv)Sw-zCvZYXVydh#pPqTIG&972n6-RJ=XpjFf#fJ*HuWtI25!cW@Ya0KBY-VRe> zZxwI!y2ULuKI+D!{cI0Jwuyos>$g5@KtScMx^yuG8L&V-spC%@mFk=;fUiZzHoi9m+&9 zxkeCl^}UkPq$~Qq##+0h(0OO$RsTf&U)~dR37BX2as(^=;Kp}X^rDpaz<4-)1DP5& zEf^8MH`be35MOjzJ)}QchUWw()6bDYx{*;9_Ul)wzmhWRcGzO(gzfOa;QH*TZTH`$ zqv+i&FS$5Ro%dB~*z>C&nbA7+jPx(~Lh;sDi*8R$p+Q0CoBv%a2TD|UP9Xfw5_z&y zZe?d0*cSZP#Zv#NT?wZLJ)H1QWy{D^48dRPO_R-ggdZ+0UYR&3KS%#Pf2P*w!k{2~ z9jlV#ZQv+LtHRrJ6Yb}7hq#!yTwe> z5)%{q1u|tts$XPL(A;pbS-WY`KSGH8wW53L#%F`&h#wBKAve!zFl!|@X|ynb2iO8n zTz#nDxaZCIGOfpE92l4@SGL?F-Q{bikL}EU#3~5ge=UytT3so785W@kHN-J_OC+xs z@vfKOj?d>Z0EEa7Z;#>J2^tATX_$J4eg{l2@`cCbUWtkw7y$WmyGem*It8_zu^ne^ z5)L$#4WZ7pxo7`=Yobl94LQqq-gUhO$uF*P0kyf~T}$Rn_0KVql#M+vPrH@Fx+RyFJq*iC#_!N zYhjjuPjA(ZK|J?H`?V(H!uj8)8 z%|Kv?>Cw(AJf;`nsK+#fc&3PR>M{4XQ!a7`K#0^T28%gQ2fVb4yEVeER|+FeUs)<^$WQ8~*-|-~QGo zOFn$sBb#}!a?Tkjb4T-Lw$uZJF1Z^rzrXb8<0LSTY_zkTfWVrMP(ICer*dUoH)-aw z6Fq1l?Em?+IRIpZXBkDJKxW*_+XBsuomId3m6ORb$6D@JMBv9_UU0`w$GF|q$$&qX zV|?Q_(NGNwTVp|M5{X2__rX+KOP*~OG?Ii~z@;UVgfGRvWk6JHnh~7*g(m5rBP+1> zz#6#t1U9tYM8W5F0Aq$CZ>1fK7GNmDZskci)`VZ9iuYpa?~f4>gR%*<*E2J}4b zu|n^>87gm9I+>S5^8FA%U-6E(`Oz-|g`u>10!(mdQY^^{UB?RQn7+&o-ugA0Ku*kG zVCSWK0&zJa3{+%0?PZ7Cro9F-cB4b1=>tm6bB0n}=^TWCpVxZ@bFE;#5t<>@edO`= zXouV2?ag6w8fjEjUrLJ9r#m@RFJeitnLN*1PPLct(Q4;N(V(KRTqS-sB#J=D{bjE` zIZ_5_6P3Qykd#2nZ%sK2$_IF+q$G23+o2$DzV``AYkesZ4Bg&~6*e-GIA|A1lCm49 z+L&K@Cql0*-0AhkeCHeTQNc3NV~^O!L^;U?q4Fyo^Lijl2bS83Jkdrb1*TXk*$Ej| z#JJJ<41LqvOkY2WdMc4I5ZK2OIApShZm12&XSL9MEsGO?%DJpTVBS}NB`=uefaQ~hd$}%0NF`yfpMDfBUv&J!@mBO6%hC}5DAH+$M@!`oU1G; z+lrPJ#;ITL4+be_Dmgc&fU$P_6A|F(0r%&7%_t?t{Scb#W9o!M)e5<3DYLW`@fg_) z2`n!vnh)Kjd#-R5|IU`KOi}!+h}-P3tGamqQ9iKn4*wbpUU?cGxdu4JdVMk!nf>s= zgHtJOt%9p~F8?TZ(0?2J*e{bY6g{oOFWUbv;9SE@6D%t1?J9Z-4ET>!U_V!)YJW50 z4AKc7%S?-twEv1cYk|ddednHP^m+!YQw{6p$AG)O9yl0(e(dunWVbAD|BH-3g-7PVuOjPO6M^B#R(#&@sD!h6+YM&z8Ddg({a&6$PXH3)f za_Q*Cj~`nUB15@o{tC*lz0C#wmtRSN1V|>q!X^aGsK*>3HFT$F@}~rU^rCG?>y8|> zKR7(o;25;MR+N*GpzyPO_JS;KxU6ZhB-c1y_EH|vs9}G9ofEVjjAI^@f3MSHnqaEKbVV$Jg~4`NOdxDhC3T-()i3P3V ztZi*Ip8B_AH;il3Wqs#*x;gWrr*A=nc0W>^P|b=4`;yX8Ap6obJDUKjWk;Ss;1k3a z$>abrAa=X&p0!k%H4+YAqyR%1p^1#4;geJCAx<&J4d1qWmu-obeH0VqZPkRTwKc^- zv-L!)Kj!D>o2S?0;zL;ff)fWO53XMIb$8I-0(uF?(S~dXAOsu3l7f{UIcvs;9&veDG{@|!SwNV9~OS7t%KH|v+8iN z?cWLSD~*kf_S{O*kICz^G#6>Ru?26F`7{WDIPmNl5x-no1su14uT>^OXh>iKyaq&K zJJchc{c<>ZdK_`k<7%N1(9Xdg&d8yL20ADNQ<);2^Id@~W@)BJM^3Y`H;HjrT@3Ep zooC=34D*2(Gx>w&c0?tAId>FFDR4fiLGxPkTPiMi^6IH`3z5=w!Q-}sgURz0ie4}f z_NXO5K3-7I6{VEDxizsY#OR?OvT$$T8SSwd3*i$0Un@_)2!Ta|&0RP03K-5L$Jc6H zdL=Bq1#&Udo!2H;78bg8`c|cmB%x{%huv5LMl0BLC#TwH_6Kc!V)P1UV zq;B-H(hW@j6+b+z>U)&g5XchiJTDY+=&;I2R#c`^@iG^pz5}8z?m-L8Alf{5P$kC` zec+&R4qFGDgFPO!UtYxEAb3dNJ7eW!(-43EiEd$B+G>_3ecDzzZzLI|v}y1Exe}jo z&=kOtk(1X@Z3^~s^Dw~>4d_xTNhY7M^p)`I*gCF9Yu5=F8tF3iwjbNh{f`$wXLmQg zZvU^Yvv^imtrH9Ot6{pVPAVx7x|HeFxUilsp0)Z2YS?*YUtl%ur}A|LJ>2hP$+|xK z+H3a@K3|QGvxO5$Mwz6vdrsTygqA{8MfY){PJOBwwmvp47&_g<7W=&MR(O= zMn@aKVFz5=5!a_SFnO&`z%>;oxCGU5sZJ*6gQE__Pd%fV6a&%IX4NaXIX8djvi=05 zmp996<;lbRKER;8GCvb5ZBy%kRZbnfA8mA4qZDpmjBmHDPFdp};Hw$q+xU=E*arrw z?W!KQHq{~gBlL=FiUD5EYwS|I9)rny&)0S#hzPG+>1|gB9(ySWCNwAvs0t=xszZfF zX1%yc-&&w!C2Ksr0Zg>F%H)_%mdlXdTb0&kw7eR4-bWhU-(YQ!xGgRx-a*qy$DgU0aW28>PI9plo5 z8WOKs+WB`6TfZcTWMH2>#B~IOKU*833t=7|YjVl;OL%8bZ4^9s`D(+mf-}GU%LK*_ z2)7m6bzJ$SsIBVCh}G9i_>~OI(?=+5GqMmTV(FlfH2SAMl-eY31ABsz(gzl|VlvqT zyS_Oj)4Vy98{h>_Qj7!nYu8>{GX5+MA+iu;yJT9$2l87%vZWNeUN7dC%)d8&v*b-bFgsdEj;8DWqbWwQ#1tj z{}2Bqr{DQEIk{$_bZdc_^AW8-OFXTr`m;9T|CyRmSE7QZsL8= z>+QFHhqoC&Gq0^MhW$4fY@@xxFYv3qp|6WXRTf1PySQ0LZ0A&r|I^|?;^-BOt`g;E zO^62nr?(B(S>W=ItE{X(Z(pdvX8=2Btkt#cPn)TK;&!6d8_Lxe!67Si;5e)o^**1y zMo}L>K{A&}KIIO$eyRRMTWC*ibaZr$bT;7db8S3tzs7Uo3D`Zrk@I`Tzc>oK8hhzb zUK!~P8OC2=IW$s-V@iO_dGk+%r3tK5vmd}JI}uL zetWkKvXl?p6eDxvUZt1~VM@J(&C$J#_kudEQNS+Av%@_-uWJ0a=M(11AhRq^)WSa4 z-BG}Q%gm(MlS<~|2-ptf61 zsXu`^Bb}e~avxtSH*r9ZKd=!T;ZeFWI`I2i1Gx=|7E5n9SNpUU^5wu4{Ce%GK96CW z!)XETuZp|MQ1jmCExeR=!)jaq{>-lm`nN-e{B(A2uLIw5eWU02QLdl!XL%OWb~keQ z^tG#11L*sL{W~qJjjUs?KYG$LEN!#aFvj+zxuDWputaB-l`+_O_EocRvbT14Z$@Nc zZ&%jI%;iN>;#_Zq2&6w`C1{~QxhPmp{DO$OcaDp+1AQc`z<}A|q$dg`H&`52(PU#| zvf$B`W$2MLxv~$05KYDb1#y0xfF%cSb~})QmO6M5R4!nCw>FvZ8yXhJti6ZQcRq22 zl{A-=L)sT;Zu+99Q~lv^@6^qQ&c^twWo2b2t{qP`HwAX?^RF{4iM5^?a?bB!WciuV zcnCO&QVPeew#gq_2joV7{X)nzgdgnX18%g`r(~%yB14Az`&HU4i`CtsdOcH}pxtWB z=0$oS;aL{$5BlmFIsZM}^6Q&3?Acm~aHKXV`76kIgcS3|2{vQRUs-D%GK(dw=YGyk z?8f5J)54Hv3k8jvI6;5UBAR8m@2fXMj413 zOO@+~hYt`2{nb0}a5$CQrp`-v(9F~!0yPKvxJwrNM95NZ$9P3ik+=fu*y68Js>H_e zfV(f`VJnOin>hfM1V2dsKRkV9Sd`uO_0V0?9V*>JBRzz4r-UF~3KG)Y-9t(!4I(8S z1|mZ@NOyyD|IhPY*YEwnH@)DVIqU4b*IIksEi8%x7?8wSca@1+aV0#x8!mCh9Qg=ogCX|e;0 zjHq8Dt?jRkFMJbPV-aKGdx>+EWAxK z{KSeaHut9nbENz)dT}1Fdh)zJ!yF_~LOe+p3mMgdr{C~%p?xg#^PQU)tVm1y`|3@4 z2D>rBl-nSGe5ZZfrFluqz<~V1npJ!=OX?FTE7zk4q4b*gQ7*Y$@)^$E&+)GlBiY;|b!5g)@hT`Qx8WD*V!MC7FDPg! zSQCDD-I^Ga`9wyL+)@w|C!3hkZn|GLHfBTW^CQr`G0+pVc@oiR#l0Su=6nzN!ef#= zc-n)6T|2LZA4W$9o*sNhP%hv{MtmpbHbzyg=b|L?7?gUv!$@&=V{(D|F20Z^oUjVw zx)zghbbGe7-t9SM6gc8cNfwrf?cwL$Mw1YZsH%H4f&#UDzduu0&YxLj7|d62)Y8!Y zqI8a#gI5S$!?hL-@`~Hw7w{jq?B2UqR=yVB;~c!+HTS`Kyd6zc_LRKL{dL<>TaHDo zU;BUrb-W9*#m0{;o>_T&Cr9#gnsF~A`6(f$-G>-fy3*-;CdD?A1~N=k5;U`dY2O2! zrH700VRN6I(cyfr#doy}Z@;@+6&D-Oi8NdZPZr{v=b&rlF0Ex-}STtc4enh)(0-0On_w3fp(7kXI-c zQo3xH=Fb3w;$5Y`$FD`gp&R__cF^Y3q6C?Thz~koi;4$3(~~Ctf-XZSAg{wT_i@ff zS+X7Bm$1J<6dfHs9A|**WM}sqgP|bajK1>S{Tqw=SxF|Qj*Q5K#>U1DEzd~}Zpf4g zCt0-&99P@qrFS5cu^3S}6tX{CUs^Q0F-GF>X=1H9SlXhRh^)bB=8J4c)yYBg$%Cnv#E@jcTr)K6>0Fb`BqyS_`XDEUo%;!ZP(a)I9}bD+ zsR5KJS%#v++}+(WwgViV*58?FaLSjHt<`Twnc^Q^fmj|5vE&M)U1|^LP&hF2`$3eO zntDoxTF6$cwD)V{a61bR643R?+R-1HyX!#nZoxwnVey~_8nMf|c_oEKx& z=iX!A`(idSOB4qJjwv&1o3z2~!G%(WU4i}C;i7+umnMA0SyfqfaMsqb>0qV~#p?Ta z7Klt|PHrx4-&*3@V2(>~Y2X9&!To%4GjCX`E5A7G#Q@P(TY*%k_@<{x#9ZTGY|G@N zc=3tp`9(k%y;&_eBBoi`Y&lQnKkyV1cDF&EKqio`@*Nfi#)gNHzc47h*CF&Mn#Q}jfs71=Q~0MS0yQ$*@w!gKbg2847nH(1ZV9dN?W*bBqNL@;z?KL%U+gZTn0 zsQ~Hr~O96Whm;NpkN zoyL3=X?4BH0H(19`3+rt2OjMZJ~phzt=v-*A`eB8Ql4Q4z2@h|&ZjogBvxOUsdsk8 z0CBoWnAK<@Q=69jg{AnLVVk+4;=i_|PDfQ`WidV1e+;ExpWK`AB(xs3mWkpxd||ab z@W14eVK|PD-WS%2J3BYM9f}uTyt_jqr^uJOeC5=3Bw6ygBq+)=rpTKr?S(v4fA4P- z7jwZHQYrM~lX}1YlRq5U$Qz&g=u|FnaqmzuPX$_H3>b&;^ z2PMSsFN$kzeEDMkL&6IB&SNQIZeh~!*GJTz%XfG|I79;Im&g?INi+p`%P&#;|GhS% zfpfvwiv^LeX`fO(` z%X|P2{HJ5eGx)VHe&pIOrCY3!w`mTylsw1A)l(Ws?M&v(F_sg^JW$6Ha@hJ;Lrx;R z6}`TK6oT3w3lSBK{%ljNy4a|1O--I6#qFpm5e(r4Zek|DHE1RU4lr;2^4Md_u3&FM=V4;WY_lrT@liXp(P3U zfu7OZ*ysLH@L~N9{f0^;ptpDk2O-Te)xUqCwhY^jjE+zf5)|BEH2jEVx~GfGBHK5j zClFP16}RXn_~glx{iI}1Cb8`>;WSpx&>Hzr0cir__e|LwjfeW#s7MD|B<=ocYP@h& zpT*F3Ki=_z>rAKbuNkdNim8!kRq68i#pM=?aiiEr9@Yzab@1d(&Oi8@RVP2qkpe}BM+4%;ua=$PP+U7NPk=UaL){rFVQ-= zG?g_EvvZ&XMcDZX|I*ot?|Mm-D&O8sO)aaiB8B{syFHiVo}Miz2c z23P}Gw_gXctG@LoV}7?zo2Sd~GY3c=2L1XyH{scY#C;sK6hxSQrX6?nxHdvjMPx z^OzWH0-}D!2B^BXyjB{qS)hYMMK4AKe1rW^t8#LV*_X>8>N)5i*de5$@$s$E2aLFf zO9Y|+TF4Y>B9Y&9ip$5fES%nW%x%{zt4OJiY90Haqkl!>S`vh-Ds%)jg452;gl(V` z{X0`f?^8Le7ixMD@dn=~(3fcmd+%-LxL<(HOi8FMzxxv?&%T?80C55M6p=zco?zs2 z6KXyFbsxIU6N54|w^DtuIpy%V&C=Eu+Vu!cX0Uj;-s-CGnX*gD%75tDH$He;)=|S< zR2B>;j+mQ&JpPjyaCW3Y7hqVNz-?5A40dPVR8OUv8J4Y>$yHZ_yMX2SvuE4tbS3Gi z;)9V9kx=#4^C_>5Kb!0OPKf)t>9=zdmkp*jL*j*4$Y@gwfq_kJZMO!=0g-G>r2{V0 zBzDtMXGwLXg)59ZpK?pz%p7=LLoc$X)Qsbm&)Md(eQukaAzx@P=b-!7$KQDrTg%iE zrSjJ)DZU{=ILQWFAZ|bVEHeiL*Irp=YmJW2l-0EkRM%V(5D*-3Pp};~IWJ^GmeV3K z&BXMM+@IgvQ`p%@i+;R&yV3UKbJg;F`^mye4Y%6CQ>b?>mT58fQvAupJG3KQCbQ*u zJjRXB`H}Wf)$&jbY|5ZtFK{kCgt5lNEET}z*t+8^lrT!Bch7FNbZaM}l|(q8ci4_5 zMSU&1+eU~S9MoD?yj^X(*);)#R0^MkiHWpzw-z$Fmo;8Ip_a9fWdBvWz5)M19&rlE6vB$HS{;DdITuv#K8$ zNX|_q=8mEs8@t#kH=p$Frq>m-~#xOo|`U=_Z|fD7@IJSPD) z=#k3#!i#--sriW2t5o(IevgGTuzL4i9L(>XIyed{ALUz&7|&2^^aXkySh$}iA97nO z1X=Jh1Rnl9K6&PgzThcr(}@R(vMT|C%wrkpll$9?*Go6&k?H)Eot>R2Q4=d~xrk)P z0hSow=oRigeF=N+Gf*51r`Mxhn^!MAWs)J>hj8nen}86BXXT~2$Da@88Xbkwf{6*` zwGKRBGD0e>wRb+eLxz=MS`4qM2kgMx|lHTqaGbYt|H4 z?B-vQjb=6*ifd|yV6c^BLa1wIt4wc_i2$KiaeGG+oRq5@J@mCCk)Efsj-iEPcTv63siBH(;(M8PzlIdPVy=E4v^u&8U7+bxP+LAJ01MDkb+QTa|g6)EgQTE0~@& zd%9`wl!M7YYVnop0* z@EdQ??+f$skdnB#wl2RV|F$Pkeh4axbz;}fXEF-hz{D@HE+g636FPhY4jo((IssLc zVO5m_RyG~nU7}!u@xQqf?z(=YTJ)B?40^6eAHTA)A{@Nz&1wzYN|%mr9|I_GBL-H^ zsU~R>anYX*;tSJIMx>_Je!JSp4D|g)|6n1t70oi`f7@~CayRB0=t#<$QG0<)ur^ch zpzDrzSi|iUuo}IWWmG(qgO2!jcIilVBSBYndw(=+xye)RypD@5XNcgPnDUGrd2&8EEp1u9j=pkzgiKJdi?{RFNug#5l{I?Z-#P2?| z{BTd@n~F$DfdtvuQ{ydxT6YVV{(l7z3iF}=HGV5x!SYKZ^x5-TR&k{1(A!I;Dwlj$M%!=I}&=u&MxlnVG z`=_QVj7?DR#qSu4VUXFlsbk7Ltu=Q3!q_crlYjJTNL&T}p;vxL4lT6jBOl9~&3jl$ z=`tD-t%-qwt)-3WBexa_%U#>NQ&Y1pF@vpgDAqajQv!VWzf?njzTQmWg3LzxO^Syi zC@2`S%zeJu`FksfgusUOt%tHimbmEoGA86Ob4H4J_ge6( zwp9ef@c^jb6pvmR{LbGBVPM^--1qbqdt=JX=o>*8rBs+fF8}VGwzhV8KJv?W;PZ`p zX%;~9PL+Js&nt$)&SgrM(7mDpVqxXx*<|xkYHpqb@*6qLZ(16)gS+@|1^b|rme1=I zn?Y0&=na@3M>^aP2Q_cK_KZhB>LtyO`R2v!oBpSXn%{F=En$>za3ERMbs|wpRs}+N z3`NOB&sEgFtyVW5iaZ_#J|2HHFz@Kv|F*U%FM722N3W7(SgXhGN3RO^HSE4B?rmph zdp6aeZJYA|8AS7aP2I59?nP-q&Eqtw0cXrJW>(REN^f|KR_UpzuoEN4Y=)yCs!PY36EMwBXIfl3r9U zz*?@PQN5kGb+IQQD|l|mnIWF_p^yP{QYeQj<%W@pq}m&d^5b7O-CCXixP8ZzJRXBE zFft;UiXl0E(61!m_qf>J-rh9I*j^0@LBmPPEvPk;{5y*kRTNTkcCaX6Ui}p-l=A%X z3IohFht5t;6W+^eXb7k6rFuo3yP?W*tWR-fQoOt)rPSGDGpqz^$>iR*jt&m{prqL+ zI@TjedrSXDY?TXr(0l+FjAqWF_~y9A^o*s5xj$(@;?|cF7Au6l&U<-n)h2CB|rscNuARpC~oV_1} z>aizmq9}Ln9qfjb{d3Ze8Ty|Wz)`J#P~KQ3*i6$ZFbZ1&z6%c?H5;dyn{>0{J99u1z7SguwA1x3p5p1jNZAaCAP11HX&282k*a<`!N z-CZY^$&Cgj&y3TG$~Jl$1SVj-pC?|R%M zPTL%e{H3fhrEAhEmJRp9)VL8*UEgidgmRqQW}OmtWyr8X{y3^_NX2b#Zmvr+9E$}x zt`DT9rbf2Dzq70VGeEsT*B#K+CD|rc#7Y6tYnpXB^S)i zd^Qo1b|xTTm!{W3hC@X~b%88xYHEr^)UVequF5_G=FJU=4A|k>s^81NoP&Mp~xQyiC2|7$m*H^RxWr`#P4hSW6R<6j5 zxczyIrR^&`BEXBFe&qaR&X^!#^WQ)xnB_}FCGaz;>g!iVrd>X38;7f+5*OTI)yS)w z8e`~oK}Fw(9RBy%?cekAh)$oL@lGt(VEyjrWb1(wNE&8-N_8c~avv7OU~6efCBjCC zurjWE|Cwp3?|;1qGPQF+{sZ1#X4i|zC`vwXMqagPk6G7J=uJeQ?pD#-3-qz6~0t^P)jLQ~LjPjr4HU&&M;NQL-|QiaQ=% zB#43~oaOXcF|>i9)>d7}(s;eCCWj%C1qg49F822qMhaq$2~4fE+LW^#??%*TeV~Mz zSl*kQ2@96DaJzAlQK)@B4`Fx@LNzR2`-OmWrVP{UCV}FUcT#VhvB6%t676>RuH?lIXZxfMp1Hf$iKn2Wk*7{@vg zFQ&46EQyssw6nycuz?95#T%J8VP)inB<~zQwpcNCYdO~ zZfBpQYg;(HhiK~PtdYo{aA@94Hlldv!08!^jsQOzH|b#NB9vp>pm(4t_fIRumpBrq z9pMCSs1Mmu>Y4{l+|cJ6Y!dE|ptq1`$XhyEN;MQ$ynHxD5R+(jQ~(;p{`xx6pl0lSU*XB1@BrLsy4aH$D7%?L zTH(bBAF@qmyK@8?egBihJqp z?yb{utfQTZy@{bTRH6(!LM>$(nc%4~-Y8LEC$%%`GV`*&ovPk&z{xYTs56wbb9Uxx zHsrjvsW)1R;>8Bl3Z>@@u%gR(-v>NCqP+DBo9uv{DasIL{1I1!NR!CR2Txn@ZmUIw z>*2w|4rz^hOf7v{ZH&xyh>?T4SIG9C^ljn%hbx4hmlQ;LGgmYol9ZcQz1d2U&gLD= zu=KoWK~C%fR|~t{_nf31e4MH_QwIt_q|ivTSuQX$jGDN+iyiV_4!%sSuP;6<(ANyI zUV0GH_j|m(e3JYSx((5x9ohuJehyQvYa&xk?Z?MxoJloQUI8sBC z%gghs>bP7S3Jly5r#8Fo*Pz)0v6S!kmL8^#eAePyFKEThF7OE+6X0FXwt5k{GfRJ~ zuC0_!6UAX#PUP}L_3y<{`a1G0wpYW#@FH=R;@xiaQfW{9&8}QDbjCx1Gl%2nfe}x4E-dkSQnBq)0N0nb+|7PdXV+}!*naL5e#h>UgXG~&X7&2YLEO=oKCLAwSm7-?8PSbGS)x_;s>VYBflT?InBX>!E-SO`Xc&Vy)v|YHv zCec{(!BtQtg2Ok7wh{ncN79&LVl0@ZR#AAdD!ZJBAv ziv{a(X6A)Ny0wePxjsZ`aB!01G4Ve+?FZ1K&n5GYXF(n0V-ZZ*@kVzPaQ$Rx6MX{-tY1X*_}~EtCLTemK$8nxB<@RyYU7c zj}Ha4K1Ur#bRewWz?y{g{#k}Q-Df*i;Qp{Oo@=#^{bE0uo!Ru_JneACXK}h~XzO8v zrx~9rz7{nt*I6L!UmKPv|&N7*q(Yt}gRE`B|X) z#*%^RZ%2o_eBiU3NroTNkiElJ4ju_LzUIy<=hID{N%_wc?Jw46ooZu?zVUWcC_|aI zm)gk13j)o)7r3)?XaU1%;FtVDXV_f3O}u?W^QA3VxhjU8wL9r$u*S@-Z&D&d3(hXM zn(r*viWA532_%E=(+!Sy3LfLUz)~>6pr*s~5DEkYcp|5X=bHP{-R54N=PfmY#-Xm> zQ#@~ODEQAG2$4s`mCNU!Pu}68p-yf%D4{K4nWWO<`w9Qq*_t`HC^O9;ef#aiw0`!^ zU+_OIVQS`F$&^ORo#p+Pav)n#%tgOsXJdnByz`(j2C_48C{9n0vuMx&rk9;&f7|s{WqQRw5CL*s)t*gEO#Txb*2 z`Ey+nBnbI3>m-L%RHx(|@b#E4*q^XP6IP}kHyT4o`F|GHYSU$ z?f0Y%bQ`lm+hM}&m%=%NW=z^;-bjBHV6W=jHXJ$_Vn2H=w(MJ=X#znpfL@w)c_7My z?=>mZJenccZ_G|$N<2^9BdHkASgPzELWqfK$$eaL?=!iATUP{vJ-Zzm7i}7iT^o(7 z=N{%~K31=)M3vZS5}Qew^Y6GCy=eFKf{6#aloEq6Gk(ueST3o#dZXo4O*TC)+%<#`|cmw}he2&dJ7q z0SqnvgJG~sn?JlYD?K+aJ}xCi4U(j9SjI>P`Y&KqL9_2499$?gU{&Ygbc)s$Q5qZ= zf1!gO!qrsgSwo87*zB0U1Fp!YFaa3s`?a88X~0IZVnXX#*Q3NyE=xYh?kRZmn<`S_ z?&p+R3ES8~Lo*;Abzr)ARoNUJb?PKE$Z0oFTCn=v_i%Ir#sPHy?RD`(LwIhUe;aFz zo1B%6jfY*nOK>x|GDCMQEST1fIqBtQ@oQ&WfRKb1l&dMkf0|d`*vKlb?+9(%y1z_i zz(V`<@W^aB6Im|Eb9y@^*xuMa=V{wR5NAvdHyE+>a@Vw3 z+aDM^`t4>85H8iH(KJlfL%b=CYA+=z+w+6jVz~Wq zW%=u}IY}@_JvXbJCW+2P7w$Eq zyquxPu7{tmxVHQylsd<@zGv&ypFL((FzJwzE)l~=#?e1M{uJ^X1CttIQ{U`$=@S1q z#aT(Z_)&NsTf!Ipx=FI&2y1fvCp*v)+u1FEBt>2Ug)?HRpQPCmyerjA+)^%FMs%|*Q8y^Mp_IGJE@#=MSa&lrx>slh(b@n`% zOV@y5<*kJUA1r;-qVDo1l!jrO^LH&t+3SVEGB(iC!JZuHy>!wQD3?njc|-9)&F>R) z_W3uuZq|Wn$ArDq)_!nsjE~PgMV*?$+t%din~|`g3SN$}+dl#*lQck?U`Zcc=My9F z%P=514h}hU`Qh?Jat8-7J@1W;vkT1?dvdglsgeV2NXQ*;E-_g2m$_)Q$qA84);Ir1 zkiny-h(}LhXGlc;jPiKlIArawwJX$!UVidHcuapFH*@Phft^W02$TOVR*c%z^ z(w*|~cVzK(;z*~47xgl79Mj=;4j?wD>3#PPGCOZg=Y6}b)p~IZ%vvl4QZ-yGY&f8$ z_>GPBewojM(^vg7PZuz+2qCC4QRLnPOsi;%BKTzMp;G~kt~IPNc@@*y*m*F{C4H`Z zc~}8xiK4g!U?l;VX?>pkGS8kpV~r67617MOuztKEV5s6A<$D#_@6Z@v{#lxhegf-B zKP&ekQ&IAWW90X`+$cI~YHB%`Fl5(<-f#d53M#6(+?1S3wkbR>Pi#mCOowC;MQrn= zGT>STuZ8k(TY9V2gAjGaZV;as6-s_4BxF;TxivXqVP|It2LE_s87aBA_;^Ownx?67 zJ@bOxq$GweuUhNPiH8nfK{B)tLME(!-?5kH|9LnJq|VLF@yQSd6t^zUN7-p?ykxOY zaS``A=$$IfZ!Lfq`%r3-dbUaA!8e|yBB5eMEZXfF0!&$N1H)c6b_)Y0m$XP6X_x%rXjTE^EJ?MNLUG+QQBl#NM;A=MD4txQ<>Yv-iZFS+zZF|`zF8oQu;A^^DhSkl)|sQDr&p@aoB%|mhAye8 zq#5mUT9e?3+4{9y1GJtuH=4Cy%6|2NIDkxZk4Ym~11aX58d8$GpjuAL_|B^gW6h70 z1$!Sxm3Jq7SaDLaZKD`4^(vHxQIEbgC8?%{68uDRa{6{H_=*Wi@iZ^8RQ;PB<=gpFIt2NCPLL41pWY{7`8 zYLkN9hWW&?JzP~Kjam%+W7Dps#93f(NJve}jgw!xrBi4(E7{z1m;&Zn@%$tQ1>RIY zuXcCh(LbS+pUQsqEVluwxfe*@blh(BtgE5oN2+seo(F+Qh{+sYB@Wi@=S)BMqjQgT zL8DZa9^e#KCCR`D*bqk0%)LX1JbUVW{rz=j>rYPbMZH3+ZD?1qeTN=o0BS?L&*yDe zgJPqdEVfyr@zGm@V<7>7G{88UZr`C1&4zGR=G@sG7`xxPsV6At@&6q~Qu@*CI-LJumoh-d zft??**}0plF-7CMmo2EIqL$|^7EFfI28=jg2W`07*z7SNsr_drsPkJ%R+DZO33=kl z&s30^iy9%DJ7`rKS%XO*I=E5}>UDVjqayCnWPa*nasV|f_g``1!#!u7IOs3m*}B|Y4BQ|1Gh^MhGdH}O4>eFx6W?HQ*vR&q#egT z0Uc)7I1I&Rih+4QMN<#E@YT7{=B2>hCAi6jg(5kdOnL?>@84coSs?#GubuZla0eNT z(QX$sh6%kwY8ZzWAJkWvZCQRP9@GGf>Xm(|A#8^=n?oUpX^ZmVbtj% zP8K>r@9qu9S%7%vs4_R~;A+NZaN|L)+DNiWx-C>xu%V93!K(m8!!OuxsHg=QKhBbp z7K?oRvadSI_A&0_l7rdK_Z7F=Bzt`WNr09r4D~;opTk6b>8_(gOf`oz$-vo_q5jL4 zKZJIM#cYy}T-aZ=8y0^}|L(V2F7gmT&0QQ8c3eMw;91%7o$fl8a7k@wAa=*tJ=AXo z-#S=W-rv~ zhY7q82fwI=7o)sf+DEr(wPSLKwY4?Bd7o5*68ucbs>LbC`R`ttzv@~+J;bSgbJ~*`CGeY~9p#GRK}LXw z1P0@g&A`qrEcO{FuZhUY!h|e9l2THOlM8XZJdw47n*)!`;>qP~?Ad_DtbPkPD6-dp zRo23Lx+d-OXXg04A25cS``B~rc1luGtHR@8;9LTh@=X3yrPiUNx%nB)mb=llld99( z`@U^j18l=_Y3E@=+5Z+cpi)J17q}F-8nln&1#^?THeJ)Pm*5wq2iMi%cxVXVS=fXN zDliaw1Ahpsrm5+IQ=>6Ggn`A~2t0_Hy?IBGpJD4D!tHCaJwKcsRVJ$sL0>skj!BeN zg>m#=8jz7;!Vdg(tTD9%=D;mhaVJQW4)#4XZ$&EkX2wEX+V1xaYtrFpeJVWn6(*Z_ z(_OCgG+;4`fVpDT+J@!Lx-WYV@$N9FlH%4@MXV3?b#;8HQ4=+ou?VlN-Ea#)DjZ})Q@zJ&&wmK`*;{yj zD+rwhFf2^SRq|_Qb5Ce;;rl!F`S}wu3I|u=N|w&}moJrgSVcH-+M)ek(Z8Vs4wFL_ zDp~b@qUx>p7X_55siXll=%F&B_p-1REDzBowLh_gZqWLMhRCRhkJyXUl$2V!;QX5^ zDm^Zr`)IZMwQSDZ3cCm(kJMy=s*~Joo_bHNjobBQb|^`W;avY8lLn5M#=v-Q__!RJjTLM}h64_CFXamA!h2!kDVJCIRLzz-Jaq)I_MQ_6Jil;CdrLZcU=3azc24uQ(RC#7$1F9D_YlU&kCx@O@! zHDq{>rpKOskit>>m0{)jD?MPEGQXv>_r2U^1X7#R)8|<78i7TnA zOR}u;(4n-_Bv|=9eHvr^xk2FB`Z_DcTQ#*oF(zXNB{k=M&B4$0td@rVHlG&d;gE4| zQy*@N$Z4}i%AliYzYh^Bxd-PG0!)}@$z5Q_1efVwCY{HGFqyeqG&54O^>_4rzlUon z=&7z8M8LvE`vW~erGI{O6q?Kx-J2CDgkRnG&I}5)1cw?=!4~u5s#7PI)2;&q;cua4oASLAFjt?2yU&gLdN&p_6RskL>Z@}BYz;4tA znPMv$9^l81Z+{{v{e3ST($oMXkJ(t3CjchpO1r_Cis_eX=xQ-ar7F@rGaGy(}JO`{m#Tz;_i48 zkut-oH=6Q1_~PQ?Jrj0whVQRmMRNjg40Jzwuk;G;ZU9!_q`2;-rNZgWxh)^msCo(m z>G$)-`gnyke?HS~)E-3roRI6(i_3uoQS^}hGbSR@=xr$#?yfuig&}&04S(zB3W|!~ zX`cS@LJ5Yn!{NOKV6xheeK@a;tp`!cKe^&n{3PioR)!$FWAi!gtes2HpI-7>6Sv)X zD4Kq@EXK>}oQAz*VzBqCU_C(mwaVAf9xp{-Unsup%>TRq=ij&?7Dsc9nu&VgTKmn- zGtITm?_Pp@gz*nJ;59p@T>Im#{#>a_#7XsCNkP1n9&M04AzO@P4q4k>U5F9E@Iw68 zNzd6U80oPbvD;I8v;%Y&S5L1KkdKQT#`S=GY9%M4BzNYiiPUqn+Tkr767K`g+n=yA z3L?`UgfNn~E@2q>o1Fmn?E)q>V0sL6WuBk00u=o&^-Wj|XI=NvWfz2DVt#ZGQL0kE zLUp!tCH9G&RE8IR@$FR&2K;*Ozk4orbX1G;ad!CazD7XEHTkO`D4h=`d>|tjE(6;D z3YR_n)2Hm-*tSxPfW*=;IC13syx`NSsxj>=Kgn+kE{L{eB;VZWzkfr6wUg?9FN9I|w2D}3(i1ARp4l4cGJNDzM#dxy=OR;q zx#wr85mE^_D(mi-Hg6qwhL6<#9-cQB7Os#0ts)&XN?_g4Z~eWPFBl3GfPpQ3GJ|0u zawBY-`_c{AUo0`91$_vqWF9C5E&%9QnM^kgfbh;4WajfqUAo+D*V8c{xp%oiQC?q!cq}7}KZFI7~xjFX8FhkQrvI+nZr*wY0RrT)QtlXJE|h|z`+srFob&0~~CQd&sa z{a&;k0W>xH=;kh9n{;pTccZafIB9r@f$6dyo3{jH?9JXos+smz2|l@NqLcVI)!9fO zJ#x|?OvYTRQBr=_u8C>0>rW{jx}9I5`{E~RnWjtuYUtFhpX5*KwR0bj&?#Bo0-p-j zX4|Bd$rxgd3C_Q5p3Y=J@-SdDTrts%P&CswHxI0^DJ@?k=^*S#A?5I4-18CqRJ!Ee zI~+(??amq(_s?x=t!-?0ro*>+bi?gKA1Je{xLPC@gM_X?S(q^KC^J)Qk4?S3 zuYPEh@iHwnwNA5%Yi)HkZIdCVImU6BU-+nF z_w!LLB#9(e-C7Q%CQ5)gLvSVj$|8%?!O=1DlhEZj(!`9DkeajsCg4XmcC9Jp<$-le zBpBXRYV6TAYWE5c66zw%uOWi80p5d`mj3!o+9Va!q7{zM6BGW~O*}SdNAm_~A7zJ4 zSgnR=qI!}-R=`v~_zd>g=?~_#R2KuQ%`~uGq}KQ!MElmF-`v(c?`qN~W}Y%Khztt@ z)!>*Bs$;H`x_O&o+t|BxY9CXWyiX~cg#P^Bt?a+wzke%3l!gX7&VQKS$+}mAUB0X3 z!?vzJ0gnyrZze8qVQ0oA&Oo@9fUJip)!NqjZ~RGL0dm}2um$IxiPWR$i~D;*6eNL; zOS*h;b?p1!*uN<)xq`e|?JhxsylH(^Be#=UQR)yi!%Y=(a}UshfzD2s_(`Xf;lnyX zz(=F0_5cZn7~^^eQe$CP$$2R6N2A3yUtw5RV6VKY$8p$1#3gHxBZOuUF^g!|CHZNt zAf^D4eEC8Ghe!A(FQ`W+T(Bn+{CFtD_;K&RnD_l%R&YyMyxjG+7CJ z)R8qed*%?J7V!2sU#wF*W*N_S;PbuQ3EbY~MpHuWMqZEpbn+=1;PjA*Q-2Nr|JDZ(cY~drF9= znPEm^U<7DYf~Swn&D(WfOA$b}%PLJcbG);7!Mspgx~!(Eg2VHysO~Hzgg)TE(Yz^bH*^)>|ip=vPwO8hf9R+w=euuq$xZ^{@Ix***o+5_bde5 zuwHzCHow=OKk!tu9n%G$O5XhV$LhR6(SN@m`&qD~ej5b*eU~|rPuv05++B9xJ6Ryi zx;97LwKHHU{wDK!wzcW-)urV4r<`6~PC#enQuw71g!feZt5pfGZalSWSLdx)IN`?Z z{bm`3*_X`+Xi#(wka8gT-N@Qn8r6g!*mbYzknDi#zq;a}sjMlwyzN;+^nd!f)h`*C zQ=MUeRh?mm5od;PkrO-5v5kPBV0pp67&;oJImUY)?2zNHezed^lR*;6_NPyu@|AX1 zlCo>Qh2|agEA`g+*!q;bnm0G| zwO+*~Cnt00#u}J#X3QgOP8o>Kk$Nb%r5PYLpOix2Jg8r!1kJ@~U;Ldl!vCnuLn|Qf zpkfJ@O*lBDv{?3mC?|X7js01Af74_3AiK-IW)iz=X{o3gh3NV#2Zvx)EtH}`h#d_p z?X2}xHeu|mSTwpsMLEl&S!fsoW{3}iUqnM~v)g2a>qLI#V78slk;MMZaNt8P$ka$r z1^*-lxpvM#1;1bFs%?!%yV`9B5_HIABCuFbgZUqWyc&Kwq_XsI*>yB9_(%Jehn_zN z-44q&cF=};Y(X0xe8vHfy+^LDrVE@N*zWrFY@DS9ozoWD*c1vrJ|j&Ydj`dMv2bFs zCRZt0*Sw`Q84bBmp-F3+GAvgTm=lK{3-(@^?4MZV0?3tlm|WwocT8k*L4j1M{BWSx z;a>$N?CUX+vpFu1yA*FC@PnxDH9C`nsn5=*(g2V1-GjcntG@i&YO@aam7nDFFJUo8 zH9yYYtNm2b7TrYY)^yx+Yiz`!#Qj|$?se}C7Vo9Zp}rD?a>1GK@rArRw%z{(Hl`pU z1|TFQISQG7n35x)z0FIMyt$aB^W9%>&(4NMD-{Rf21l)1C2HA7lJ~qM64fUsBU`MR z=6bHEu1AWFfg$&^I0|hM?p$i(ku2$jKH zK}ne%jmb~-*u30}Q@!=#T-P8$JaAD_G^0p)$w`d_A~(qB@mmHP4-!^TKC z9+IID5KUT=vI&#K}IYjah$vkmlQ{4fS8JVLFlRG{1IiYp!vXyxJO?ct

    DJZMf_Lk(&lE4$md%5V954~|TVY_zl7XOvoSY$HqsRH`N~~*YY8i{fbau@{7Y00oo}qT+6WZECbTQDFK6#eNSLL)9j&2Ll z?v@N?i7qZzzEUM1>^#g<4hRl{x?pWna)z62A5}7@~LfTz!jeo-#|QmRz7u` z2xA&ZFO{kk$$^cm@)g|SI`|w0HT@1_Vp|nU<4yPRY+DbsN6{agbab*r07&hF6 zXuUfAGqn0)Ds~^7pI;}U5YHVHu3VDap%>%*|J}V5Q@^Dk*C&jgi5 z3Z$p2B(l25AFAV-fRF@94ido^1U;YAg^(r0tC(FPhOCV!mTxYqCXL!}_cRqA9^~cG zV{}2(Mh~KsnVDHB2m}EwxKSzf=p@PoikyQsRz8TJBl(>;xUQ$Kub%d^#D9{0*gXZr zTZC)W7N-51mMJj&XY!y5Kk)U~2&N_f_`%)Fs?eGF9AeuxHeq90DU(upA~H378(@9XC#zGe zyf4)DolXB%DeJeAo{v1A(MbYwDVoZkMdTfsAQ8l4y|7Rf;SIt-&e}>+<#^hsf4M)_ z<0o01=Dz1gq+21GoOXOxbxEKAD7+cXE6)&}!cHY|s_`I+h8k`Uuo#}xT#B!B(rLx+duN<+txnb6~+s9$GK#>R-gV;0aM7+2TU?i_k6>V49=vWL=azDE!bxi1B3 z<_>_+tvT~My7Rwe2hXP;u+m?z-=_^*vIjX+#YDY1^zcn%EF>gYbiP*!EIaKb1=0iH zooW1(o)Gizt_QPW!5=Z?YG#Z_y4EVOd;j8*;5Nq~=*_02^dTT_$Cz8n$A8)p8@Bw# zynYWHo3#XnXLk>yuya=Fe~sW6a;EI(pr?7i3)2p{_g8#LN-Eg7e-WTL8ra}``j;2- zl;*mTlo7o3h(nf)D>JuFK_+DL6oG@sZtDE>I1&Bqo~|o^C+H9&N?9O=J5GpxySc=& z!i$S8oe?#zM1UH!wr0}X5fL>HL=6qV!39ZN3GEodd+<#EIeW2{NgD1NpoBAVcD~u> zTmfP~Nb9tpmRm9SYcWsx|EkiAcot&}=<1S=KB$87rNDk*4^-gtD1U%oxxA%iBr)%x z$$uP9?0oxhb!BwD=&JImQs)B!jK>+9~4C&KE#F}uv+`lR$@O^3^CH^#09@==nz>C&3gVBk9U zkbYf)H{Q_#e6`90Nw-G`z|{@lnd~xu?yFZK(22=GlrJtv%R>B7Njc>1zYe}NZRgxM z_K#48o2vCNBnX@Cl$EP*m?#oX4toNBi+u^fq4Yn;Us_*_ii*%WwC45*0SY@=T`UkW>F@69$Q+n?#NvEGqR7Mha(Mq{n=wu$^oDSe^VKf|->-hgL^wlq zY88gcVH(aeFDz4w5#g174ulbU;h=_^zR{^%1&up{Q%W6n)q)7yKn~#3=9B>Xn1L49*`V&011kba;Atr zjnS*!U4`A1W^MIPzq7c|0@RSXBFXn~d~AdAS1)q-K|va`X|S{O0M@WotN5~2liNjKq)UWZk|>GGHYTK(RtTIbQUPOl-l0A#*AeZXMnN=O^t63L$_V0?{6FPZ7gUZhSju#0+c?gkfRehcH>qe=uqa0HQORCRP4dh@R1IS=( ze|i_pYoY_ng)->K9K6EcbmT*V{@wer-lQ6Hrh7n6e1*vy<78Derz#K5&YbYZg9bO7 zkbYd@igy@u_;qieA2xth0O+1QxF)?q&CGGFygSxh_yRy9eZme?PX@Gwk@mK`?Me8uSPo|=f%?S-UbI=OX4uUfu9N&xl z6rzRHh}7vE;#)VanqF=QrZg`5Jd^pS;hn zyEr2=$p;7Yrk7!xZbdU@Sj|-+eOPO z9;6}sf_~>UX;?rJE0%ZWf2o3SZS>KflztlAR|dhI5+^Z^Z{NRspZmx?G`8;1ZCfp^ zal+YmeQwvMg{&^2Klk)H$P?insA6#a=BcTGc7Zu0oCE?fJ6OCF@kMq?+jOJ;TCzh3 zVdOuoCBB|!UHOGR?|IC7u|`+WI3g8UfEs==GlhWHGC&^@*(Q! z*C7)dCmbNM=?0>FbRKmhVbj|?42L~D2)|fykk4jV-jZu-D%euK?(2U$OkiL`N0%QO zeY#{8R=}9_h+5>wSJ$YcI6v75(ji)u)xYjxaiKIJx&WpC;b9##G~DJwf^|oxr(VKVkn73-{k~b|XOU*PWo5Z!2#DLF z|8Uv-Ht^ox9@PA5Uq!t3lN|Zp;i-;=l{>6Y9nezmxndwEy>C(fyOAOcKzf*WqK8f z)Z){R%WT``E<^>y+RF|OYDSH`m)s*NTYuDy$`*B>exIubsHzobAGQ{k^gn%nLp-!@ z?-It}@N<6CG}3;()mGw8`~wz96(SVrL=O3L3WcrD-b*RO6X77T+WrKZ#utsaorHfi zAOrJH=e4J!f31Vp1d&Bp#n9RNo}ecvhJ8AX9iUCderzr)!vx=^Jt}vDnJw)Pi($(( zIz+@fLn}BHODD9fY#5@dsrk7uoF;6H0yI$Jr^e$2GNQUE?BUSa^S2EP4+=Fiez+VM z*-?#6PZDM>)+Jd^OQy+Tjc_V-h50i_%^eSx6C)ViHSG10;cfhVJ&YG zvtalS&S06kgIOv9dIaN(I6l-E?TXvl$=$_>yfRxs`9#_Q=Z_WNz8x6DcZdD8LB$9? zb+lC*zhJIvRz}Y_YdOR8c}DTr%e|r>v~b84uH5+x>MQgv?{ojU?%JtW!2X5L1*Tb9 zNy&AxR^nv$cTNL6Jwcd;5xduW3oVV+T8euJvB)L#TH1;SSKQbdJt~orMd5|Y^m$o% z`S$ypZ8yQEJ)nFO${u-&mn=jkAS8_A>g(!tDWBRqm~BugnINvvLxDIU1oc|_n&l`! z-u8Ef4o3a@CiB5!ztUj*-a8beyuJ^Wc`?tV-;&4TiAZ+7t zIPs;n)-5DzdGgSTX+=w0Utb^7Af$0QkQf&W@is-aFRhG;kwv-KRmsMtH1W5Rv_K@U zqhH=sPloBhwpi7Oezhbz!jK#PG18XB&Z+1l-Fx};}3w^b_ z!>EN6OxJ2yU74z;Wy#nlv(}8mM31sOo|DsJ{rX3KpDY9aXn?O4k-dkn6#RIEm5EouzxE7FAOhy+a0KBnSO7lVOsGyF3|fu?=9ED z>9)p)h;KB*tNT9Bymvj#IQEkpDE-#cLdbkF(0tr?a?Nkt{NMRjB4}Cn z_mAi#ukv&^mK^I8XTD{7k;9KVM7Sd3Y}i@;!58G7vf>$tOV8kslf)F*M=Dc>GKEZY zQyfGUpi;-oO60Q|3Ljti$Spcvl2oh`dK%^@I4MEAO=jQ6hMN3ju~~EPWT4%KL~I^dzYY zn~BToTANt+U!|b?^~0X=1jHdXSaT3~4HLA$VMxqcnmndsq=n7xk~FYsJ8xJM_+f8~c}E zEB9|^3WKkuaPd8dZUBg;7cOZ38lB4t35p^g6N?}H{UYsDUYmFbar#|sY(C?g&&!uI zUrXfEEO5AaI&JGhV7%%ShLb^cwJ37!KGaRsMMYcsmh2-UyR_qZgUECgchIcdyTwrw zGk1upn%W0qc)nQ$BxmM66Pu|6)V}qr{yA>>tTG~ab@1<4wk9E}?nWJzvKS;45qCDc z;orV*l4(P)q(CrDLccotsuE;{zJR#Z&}o)42v+oh7_q4AHN_80vXXNAUmBo!fWCYg zR#$>varH4yAb+Wpb6 z=A)#dK?305w%p%lNC$M`OCXEF#0nLv8A8+d$+OwBzu(3ryHBZgY9EOdiy=3n_)uh`7SyED!@8)M>M*L4Y`LrL-Qq$xWf(sZC zSEh_rRX`DKQBK*E3TR)^=oFfsNiEanrYJ4vG6*}uVpARV-k!J5-)^2?XaA7k=|(PC zYqS1YyY0GoQn`8i>weWrMrz`T5Hevm1kyMA1DukmGV|EpGZ>WE=SIvHV4Pq(1tCNf zi82RviIdRJwWQjud%mQm9ESsm?p!@kc35b5Pi&axJu(`2r00ED$Aq!FE5@_lN}jOo zhb$n8E~=1Rx#i-DjXtd6o~DUzfISW)2FtpURen4nCPo?W&oiSde+o!g9r*F81Lb-L zl`~AzMHEH+WH1xa0X=|0+?f+M^qI7Vvh)lf&{&DEoW?4Q@Hh#SXcb=EKli5bD0)jY zo!4OV3*`<9DdzbHMLJGxZ_{Z z>!XEv$kflkJR$#a6on#U;Ko^78$&GRoesK;8ujfxBxu-@tHyfARWQ355~h&PN+WfB z7w_hoN#ykr6B9eY90Fbvk3^?0FAsNv3mJ{!*(8ThZ^dWN*=PKC;*Ry-nR+QodxDa# za=JhVR*R~z#yC1zj}CP1Jv}PYBxtFcJFadr>D6HXd**`!1N2pw&!P2{cZ>~>|?uF2w zYa3&@^B`?U}{Z`wgh`MQl(Aw!E11ENZKGUwpA>>Zqbe9{Eg95GRG zaV4XDW#~4?1D(-fw?;;SSIF>KQ6TClPI{ySGSR<05yUm8t{U^@WARN){aO4P zoOdURZwiXa7_H~3rB+|DrS7jt7ix#6Y;A8FDNC11*TzQ?DanN^NPlyfsXV_v1;5%{ z@a1TRJw?(nXP@Bh?XB#8IzXx^dOu?H`J0@_1%^r^H!H~35q0U5w6ZzoeeHF- zFad!Lz(mQQxX?OqPo?=pDa2K?UICnA26xM?X)noTmx`2T{huC;-YP3kpGyI&+!sPa z984o>P936>GSZ4Dn>29fi|W!`So}P{RjD+7pAEf?y0xq8f}V5q^$jf>mFGjlG~v~` z0x#pOXSgA&B2lK~EfkQgTYA3eys*1T^xLn71tNw>t1`&?^N;XV%o^q_o zWF&TE1_o^%+glBfJ!u@crYC7y ztXw1zpk~Jz4iq8Nq{9tzk&cWi5vVK*3ak3Lz*)QlJ8gK2o=g(jG-BD{tEgQqBqSkS zZuz%)N?o%qf?bbpb2FF@UHA11Jdw>)uWN;6Ux8TaSn+gPlZRKH#{9Tx-%3hwH6k}R zH(7zOkmK7TyIySxeiOGIwO+SMOP2Dsp*3?8spx=HH*~+eWv2k`Z}P{BZdD|Nmp-?< zvEUWZYN)M6r{I3Uy&1QBTn2W>N#1`!S-Hb>w5|ZXce(F3hCCz`6ck}K-T8GQB=5=J zp&kQCm@PD&92t#(HL`zbycA%*J|rlfINtv*1yAh{ty%e$EoF<} z39^y(Ht|RPSX5glr(AGE@xHc#$ioC~M?%Ta>Ye1b-&fZu+OuFprAD=VigcoXrc*?x zw&T{MWZ=gc;M~#Vm6iS8I`x{4Pe{0X!6gk#bFyZ%`u39bC zmqkzzjs7qjDt-TMv8`O?~>=HF!T@hM3k_jdGI8w z?qF7!_zhGwgO`0IQYF zrSSR*hCANU3U*MH18`)Z@Ah`=!z#q^VfjjncJA;?lY>i;bEjM`W5BO(nt4Dehu4Jl zx@y$|e){5f2`|n(=C^>}RuZr|phJ^GdG=8dUxgCP!xx&4@;bdZV06vRc5GO<<8zR_ z8f2$QN9WBvEK3JBiF`6a^hrq6mOV-Z0OONk9uz^7(K|DG9EeW=7+*w02JXGym{8Hv z)AziNM(;+BhD)Ug77@c3r>C&s}%q^NmS2sAwxBWMuoNKCPY<9h1BKon3$4uV?;w& zL}H*TJP3FSV3r|-EC3T-eVQ(}Vm!R?%BQvKDyQ1G6WSQ<$=#M|_@0F&3K$C!%1EQP zH*q}O(6@_37_15!8m?;iGvBcp3!AAMw?eqQiyobrvAX zcy2b7SDTI1R_>1$u_9omSY??FDisCln6=(24knpomS=Uk4t-eX*4Ei>Nm>G$q#s|G zYnx$%{_1wjXykGz8gn$`ds+tSNkk`qe}6W3EX9+@&-dMsu4!gC4Ezwt$}+Nd3Jt^_ zVUHg=QTUy=v*qh`l&25)3ry?%Qln;jI)Z*_hX$V8xL0UuYgd`U{iXN{<&*yr;x7;* zNcR*sTMThG3P+TlN+b>QL$)d9z4{UEUrDeRsv&>$c#1Oqa7Y2EU+rth-%L92)gU zxw&ot%x%&Pj>7rotrGs{Sgne#`_TX*(cDpcJet=~GpAjOa(d*P1{+m^&B@z-92}fe z5N7hk*t|m>edUOysF(+Wc>x-JAno>rWzgNR;m*mhN;^x!I?=*g?-Cp0#Uq8D>(aaw z%cH{mfI*q1EfV=0i*WGY&3XRIx~-ibRu&jxR^RIgwaN*TX-R~eqJRD2`wa7#h?ew_ zGKRONq$LKWc=pbl9sTW{3Ks9+NC%lkrHuR+8YcDA_eae@&Ra9k+36~Dd5C}c^ZLhN zSoLF*pm>$N>XhayG-MMzNZxt}0^H5h$oRGp&qq^A4+L&uLAdMUng1cVW;yE+Z3!Y)Jf7u-!0Zuk`pQjRVzo?*n zCx>WgD#`yEB8Vw8^Y^EEdV@3(6We-U_nLG?iHYS~y~~nBa5M&XZN2QfBtpAhG9(bI z+T@&dQ%S2poPq6h4b0rCJJ70;BS6)geriSSOS2sv;q@2&(&E>ib8Oq+b)L{ApYH-% z*;pdhJuCPt1txalrWILV-*H_{3)|ujsXKkv&$JkRiJXw0;;+F`)Mo}u0bZFA^bom^ zn_FqeBSx)0G@~Z{2`?oEb3{@j$?yEy2zQhJsDo{@>|zZjQk~^|OJRKu3ms?#fTrmW z<#TN1S+559a#Oy6H*aTjj8=}LtaYQ4Fhe7_)kK~UO z@Y~>cQ(iwl3((elA5a(?!WKV>CmdT|&S6xTkXk&cdi6~1-zp9cyxK6p-pebkYNp2- zo;HYBMJVAu{6syQaVZ#IKPMb*yrB0wh=LL-n-pP;HQNsv`dtk40S)s{xrojr@ZLV_ zL|oct6`O=WzW)A;B$>N5|6H>Def+-u=H`oS^LSZ;>mZ&QO#?^>yKa6C$B;(n{`n2| zlnAJa0G+boP;TN&O-&vBQ_N=0mB;5SCZmtS9TcSl(tQRKxOpS`5%KX${CB@z*VosV zl;+Ui#gtg9YPyf0vzvWO^tIO-VurDvY;BwzN+m6SNg@;c7Ka~HA^yF?u4r{LNlPP4 zoN}xVtmmUyR5vIM4-e__`2H1zC>BMU+kmJ01s7Qmb|lTgXB3FE8(m0+2o(zjIr-zt zSd9Jh4~wd~KV7`0*-N@njI-@X^{=c1nEVpvpFVRM5SPU z-UV^p^I_+W-L`d(XYTHJfv-{=cnPvR=E+to6X4bASSkWCsxzMC!ckkE%Qx;Ngw^g> zM=IyLEtgp@S@`elC2YEhy?o2c#YADoBkT%lWA(1v#Y(x{01wOWCpD4UE|bo9oK@`Q794-QXoeM@>1*y9Ey0{ax(5DOJh;+j3qB-!LkYv(!z` zD|e>TlTDL64uC{syi@MwL; z%_pbF@tT~I>4biB6K9nlNJcoBPe!i1gt=^QL_4q9Vq#;lD9ip9pOuAycD(rzlL+GfwVJZa%7JsO84|*a^D!85mJ($;4puA9C>D=Ze#o}hO;G~A=}tr^ z4NzWlQr$+;qIR0cN(Z(xj{CkAwHZ%;{Znr@!%3|-0Tx>iEr{LCjl_}h7PefSbaP~O zX8?%{(!x;-*WnwDgw}P7Z%L8jl1Grd z^RfKK!a~{{hKz?-*sdRzvc6`J@tp`z|2`3Yy4Sw5izA5@apbFi*kIVc>FckGKl#v= zMz=Cdu}^6GElNd&B1_q`4@lk}IM|ZC!CoVkVxR1zv~WI#g0wV~_z&Mu3`rz%E5xWu zw7keVH0J|6sdf}B(VXc*%CT=LW+;R9YXbuhp$Y4ueZG(Y`0BO~W~WC>9K=!j`>SJn zWI{y>xx`h&1Y`70NRU;n|2<~M(Yntc2F57HYKJSw$;->}9P)><S~#d0zr@4IVkfx|Xvh7}w9wEr zx{jxJd24G+sqi9@MGa4ByaSr~_M>ZCowTAoWD7u9=VxKgxLhS=w*^Ng#Vf}%gSg!& z%e#zT|MAXOci}QfeNZqnpBhR)t!+bwEs=sIi$Mw%ga=n=-tOJ1671Gd8DxoAMMphl zI-dBniXlRLwWg0}7TqSpXwg(6dxjLV?)Hru5=tVP=HTc~V0{N#(0B7+LyJ|sD@hclg_X%5qYu>Y6KXkIu^yz5psU@BC zlQ}v?$|UENy{`HtkiNo;tec_&{egwduoQZ6A(@nKJjZz*HS~v~zUS{>Dalz1JYMi- zjGVT$EkrZcov%uCYUNo^y)GmqZ2c8U6z}G4@~xOb_~U^~GmQ@ys8GwTz}GTW^;V5Q z6z9&(LD;l_0|FkvHt-$ed3yy%3=LtGAvW z+S@t%>ZOIIaRKYR{B~7XU`ia~Z+MKcZbl3^Cs6hiP$CeWBxNI1?X4GD$t(>Yz>HIr z)1Y?kC{?Bq>{(l0t^-AeXl7TTFp}WrW)7AQi>bEldo-&A|Dr$`S}a;aUT-c+r=YT{ zw*F;MyW=3b^55qXPnNtA=q_M3QyfiIBm}(3Id3|pEdxEhs#gZTjNMAR7)g*ib5GTw zlf7TdhlTp9J2KKoS!okVvezzyKd=q+F(LJz2r^=h5rcpYDjep)8d6VbHTYx5we#mz zbMu=KezUMZgTo@FiT1#&<_8t~S?AL`GQN;MHqDYy4gq0!Uxj}4zDl6!)9v!r*0KKq zEFV?9*5?A+Xt(|H)Brb$AWjU{*Hrt&hf08ANkSWXc(@7S82dxue)@A}A4P+QnnHAW zl{j7UI|KbQ4>`sYkAsCs;L_{{iiw8iCC4^sDf>x0_OoYg#SZ$z4p!GAvVuZ^)%$IC zira}ePVI33p}eu8jv+eW)o;t>n`c$7Tc4aL$_hN5tLc9uJ+mJX6;;W`%9<^xsT*pE z)HNz%in1)wS54&Qi$`0(BJTV(4@crf8k#X(2&>)rALjh&k2a;3qUQJ5oq55$$okT3 zD9(H#Jy%MA3!M$4>}*BrtS>T$RG`;4Em0qwKCzA1F19Uc5OOY0(r|gW1$&vAQb%g{ z0#CzLII-<20Zt+GJY@f3I`eSDXKofT9qK&NrZTQ z`UO7z(_8hQBp`|&RUvsKU15Qgm=YPPJ-W?Voz2kl-!Vg#Vp!R+p0iGv^-f94WDd~5 z2X4S&2pdCz7--@j3uI!u_)MthQ6Xhz%5OU}_1URMWiS?Yw!DEb1C z4^#dr;0b7}W_;uN*S*IMJt7%sTFFOAS4zg?$1K5|%(C+b)~As=SeFFzD1XGDZu$v) z_3^OjmW}gVvCSB(9Pdr8=fbP42fM`-g&`qAQ)Y}Owq9?qj%gpPFhL2|ZZx}fs+zfD zGdnmQyV+Fw#Ytq~2YYfk@I8PPGSD3Ywx&!L_aA9%NE9}^B|QDbGlgWY(i5qC$r@CW zjwk24zZl08Ikq{02sRcLCKfz+?%)#px&97*X=6(Xd0M4}n%#%ZX>?-!_eq8FHoStO z?7J%}y4?8(H@lK(TNKcsMvlm21wMJnn z6G>imMR4f#!*}VZL~OPw@QG|}K8vPv)8!RvUM_mhGien9R7m+$hE>g+^G=TM_j8ai zd)G%c`$tQRCtd&OXE`S`r*ZubZpPwy-R+4ybK08 zL16xYP&ZwF`3=iKZ+BZ&||7P~x zDan0&2l=kUQiN%!?{YS)0pRZ#7C>Vhc?xD50YG)OjGfvpO}%Xpst$Bu1T3Amc6QZw zqk*!<)IK=O7R$olu5V}5oMXiEi{rXB2UkqtBr!&=J)R(lwE-d+i$yN|2L%#Sz>SKC zK%2Qi5BG2%rYSghy!Gi+*GU-2r+R5)FPtC38!c~LmvOKokME+(4fac!)PDW?B4~ME zFc@~JJ^TU*#68MzJoeQ`_*s7;^olMqJ*G)`Z)SN&*wx99lXxk5yTdF^>qZ*E@wP3~ ziT5dfaA+uPk2EtaZ70leL{3@-_|pRAyrUsXboPxL0R93!6)e84!%ps`=tduTI4c%% zkI+$@T#TpqtA&)F?-rlHiRzjp6>?1q?$MyJ z40Mb8*sONJ(b4L4yqrkM?%}+BIt)RwHC-ECo_tY^ELKx`$`>eax&?ZnLiq$Okl*p# z+~_myp9%_2fnaXZ3=DsRM1gBqeCc&glB__tcHGCC7<<10pkTkDhTZO^sG1P|7~XZ zT7dYXe;t&>(_cTg4R6o*+JEK+oNs+ko)Y7Y2wZX3jt~^^{#yT3g1LPC=g-M0usG85 zZy_FQ`0;&dxj&w(jJn`P_%Rg|b3WRS@?1DbMdXp+g}nvWYT13}F_zqC$9Zn9DE&QN zlHPmx;zwm4Lor@$KVpD2i}xI0Q4V=_Lhb(DJ;<}+R@n64-nl}u?6(LI&tt1casvM}OVHeM8wwiA&W25Wg@WqUbj1q7%WQ>ZcyMHzB{r_5kmb)Vq@KGa#giHkXW=L+w_t`t}4oM*5Y6M7Y7ER_RI6jib z0EoqVh>D8RJ~{hct=mv;(_hpDl}_HBs@wQ4zjhElOfhzI9D$pbCT?tQUgThRYii68 zf?s#yJ2N$fAz@q-rW>2RR>ZM5O<()#D*=&YGOc>m&vfxSLy+eoJacJ}>iZpMptgf7 zH48K~y*XoAVmucTJZ1-|5GH_B?=mqZ3JQ(iF1qUHw*8F>Yzr7{&28587W~}Qz}O`0ON z{rJEDIQSC77HM;9eRTp09&O`eH^J=IMZ2>;A)$O1)`^eZ-8-UwUfFYZZm&dJBA!}6 zVU!;k*YMHV$ZJ;^lkTQi5w^1ylEma>$V(~ z`P&SKz4<-Di-Q&(%`<21*lGA8Us~QOXx+A2*Z$fq z%_(nh(%H@AB&Q{v`uEK?9{uE4K?x!9nw+(eMyaAzsDrFBNFFIrTaeiDGQ=NYg^Q}~F zY&T#(!;w%U0G%*f_Rzr11j^O&UG*TJLV zGfB3n;MEk`+S<98t)jpey61ij#B3HO*nzMkgvn5t(PF<9olKxFj)8EU!6d& z1>=9yV8QD4YS2Y6f2WVc3^moC zdVWwO{?GYWvA{?Jw$$0@d?+ACjLZ$i5@HoLpU`OLl}^Fcy|F>7+_YEr%` zTc`>-Xmc?24)E-6ft48zeBnQfq)|_?kl6j!dRzgxlv}r-gFm-(u^;q->II@|&r4?S z?{EFMurhYOS1ynFS`9nwO5PybxH$39#bkoG%`Xhy>7#D2CoS~NM~d4@FJ=ekBALhlcU}3)#$XP`y5=*?zSAiY&wIJ!pBvUYMNCm(R(c@K21X z4kTExzekr&7taia70qK|g-`n*9^@?Gf+Ibm}rCTxi`nE9jlQat= zC`$@AH*xouQh1mxX05G~bPNJwVh1t_>ph;uJ`eBD3^X+p<{~|t{IsQ_9}&zB-%c(iN&&3It|Vsd(@y=+J5Dou{l{cF3Zti* zTunm|Y}8Lz798a0n@u`9bLoDWl8H1_Ra&ZGGuw1A3P5eDmKhtPr>3TB7g+bO zm}q?9vfE_x?QrJGm5TDRz3CMv4bX4S>vgrunQ9RcXvz?LkVC({6d@%ei+$Y`i?~cf z{SydnOgSvEx%#8I=HP2j$QtcW_k9jYgby?Z28r(FIzY*1K)Kf&1}o}le0RK>!>7Tm zD4hKdeI<=nfi!{*AvKD8N^2wmL;9Z}{7s(9UQV-fA)Slysn-~7>%{(r^6sS9&R9M- zWKGMnPY2CyMg5&A_2r7|sM!^((PJx`R>kdj4jP3p$JCn~5~x{H%j@o*kSKc^5s}?{ zR6V?k4@Ji$Yy7|rv`Fw@@1h}(fl;CMm{M1IjCsQT<|T4AVQnofUIZ@?5!Z{Q zZ4`&3A{?B3wH({fb|o@2I*8RUhp(m=C>6T8lGN&)FQGdO-8YBh&~9#G^fmy)stya0 z!rOjS{wD*4!7VSv_o6sL+1DqRGgF%{)JU($e?HK^{%)Tdi<|#dkn~+lOjyoO z(3%>@aEw7sqt<$4fLic1#OB^hTrH6wMJ&mj1OU`{%?JgjOYr0u`L9eHTVIupT3LUg zEGPsRr^H2iRxX8Mn5dzjCuwsUK45hK&$fBt!+z=0x}ByYqlh)R)=YImgd^>C4ZS7} ze92|=Q55&kN!QSD8OvB+Q*(nYPVYGZ$FdDU++C#1nzy8n;I-*pG|-7v=zIt~8t98) zp;ypxJMC@Un6pyzI_-sKrJ+BGLd}X9XlaF!vqx*%3W5!=1RzsdjqPgsnr@nebIP<4`8M=#rKwp(N z`*LyxQ_sCbWgUwb@C}JdzW?}9%xQyDsMqb$&1wN=AW;&6VEVO_P*jvNL zuWW36K1CJiHJ%vOD?~@%4RaFw+Y#`CehdwzK!Rird(c203jL_uFaxN4-Zs+yM z<4^rMooVIO;Vzy%)4|*vFldhxX-i^R-MW^@4)SK;fRxN?9pv&nsAYmqFki%a%%%UG zDBm)S_Q;QfN09q`0bn7G@eg-_tVc|O;Be1JXCEFO<|{}i>6*HlD#shG_;|3K-1zxM zTf@ys{KQkp^*Z!wh5Y39z#IO}`TI}ZD()(!=!C%L+i>FRVa00eZq$-R7z!eS)Y@CF z-I?;KRA-y^u@SpgX>Z3FW;`Q=vNI(;vWq*g_M2>so&$6=DG)zpp_7I=x8$UI*q_wPp-@kqGZ;u1{bWq$V zM6tnBe@KgxTv>Yo02_D==8n`pfz0lI2zkobksz4Y%co+*DOIr{FMqydWoLIrSC6|eJ#3CMH+mt34a>U5J^0_qL#sG$^2tySQ{U9| zk0XQ=wIck+(bS_pvOT9HCWJ;w>3+{;+*uCIYxexC%j8Rc?6I;dU;mJ2T{W;g0!xq& zuyMLi`Z*yL4R}h4mbD~*uoWw?p#~NGr}v-pXqc?D1{S20jri|mSRDpLJY?W+kF&4P z?D$B9#8XEQZgOT~5>?n>wzZ#jy&i=@;N79q=L(~QPhFCYY>kjq$3=d<55qiAdQ7H; z3vv{O8$VGpGnSU`U@N!WUn6++<;ciLWpF-~;_Ttc*Fxi2{^M-k6-|Oo<&UG=+p#Np zCq^30#kea|@zpR<{aXK5ApN?kpT?P|LVYmkabB;azr zZuoO8BAk82xw{~>?V{qNVbkMnFT0`d;RJD2>*XgovD0Yww!40@Bf5epOpP|KshPR| z11#Y?b}v+K{z=h-`9z>> zY_-PFiu(Gg+JU*f3*vS!vEixD2;8j4QtB7IPM9zvFEb$r+WhYN#ik;q$t*tT)6@zL zB_(0jV&t#6de5U_tG4?MK^oDkg`&*Q-n;Bg4=>|?~|A9h7>(ri*Z%6<&jVf$d!Z#eR zcHR1&{*ode*U$zeB)EOyBC{np$O9)>zRomzmGvk+jhVe1Ev`g@LZ&Jj@aF+K+p1uT z%*zNjY$B7ASGJBzWv5?aq{QiaEki3q~l(G z7$ls81tI$Ly83Er_!aultfppRKc+Z~*%d`u>0lf#NK$e#);}CDHYO&eeWthutAp_7 zc(q_ShpU$65;cSj*$x?E3_syWybTOi2O@gW-Wj3=yU%M^i6BF0L4y&U1xNHkot%*I zT2FP-!m{Vb-vsI&ceXW}sJz(MUw$PNZ^C=s*5t5mcmXZkSXML zxKwtf2^eZ$|MtCy+j>2Rn=>}SrE9~xAfzS>otW*dArMRgu@}&D?nXRX1^U;Zjaw+- z1gF+FdHH}Q`?RHVg^ye4b@RuY={5&az00p$Snb~gqUgd&#dKlXE6Q2 zpy6%|xXM%jCP*CN?%P1u!$9d)S(jWvNr;oq-ncj6(-(Gxn5MbCP<3iR)#-{yf4l3p zl-b93!}*$8h1zWJ_{N$X!ERgz1`d!j)(<06DJCxx6SY0}%2s7Gf%Q1W(4EMj)p>nW zLvVo>cc~+Vn1PAuk+>ZQn4$*zAN}*Tv(n-bnie@1gj5&+MvY+(x)@I|4u5QARoKs+ zf6@The>h&|Q2E{={&jhAF`I^l=(l+}Q;-rQJ=&>%vIwM4S9R;7j;Y#RVG(%oY48EM zZcl!`40nkb56>_2p(3eS&ZzbZ3gOVFYoS{^Tg|r@t*Ut}sjbd?Wks?C;bF&zEmyk2 zmj`zrl9bO;3aoLW0onBX!JKuS9%qR9q8yOW~OqzW7I^FoN zvf^p<^mwIWH(P}ST*otazh0C+7(Jnr0M+($g1P?we#>p$ZY76m2t+64#VsnHDxcXM z*?$QPOR4*b0C()QtO>hkRfbM1VcU&#+1My6D^I8!Ddt;U3ceAUU+3G*c6`*72y!5dL>A(M8L(2ti z_P{78`d|jABa~GrGkU~|laQ`S79{=lI6RjnD##0eG!YIB84bwjq9c3+Bs%W#4SiiC z*|3R1LM!5zwwX^5fouiYx*ryS#l~JCbf6SJmg$}BDhuY>+<8niUy>WP z9{$`QQ&7NbS<=uTVw%>BW}Idp!G{3T^LBZ;fD)q5>(6zM(DnPtl%&woDD)7TIXB=) zCwG~u0GO{BtWIzljur4=_t2ke=nVpQcGHzHq1{fMtH-NdH<0s#+O6_0t>QvIK?$N$z_tOe)}{=4U;Q@o+y0=>f)g8;ENZbhQ z{jVRRNh(wZhln<9fYSnWE-iq7PEX$6B)}I*K2qd-#)fpRJ%KTy?zlma%nZlP-JL9^ z2Yyss>@D25_M^uXO2lgo=8=+?D-Q=4YgDIe+xL5cPC#wF^ioKPk8^Mvf1x3B)+Q5` zc;JRQs9xlEaWUE&!a7=O)`!!Ct-QQh=X`frC!IvNy5kh2m9laBkFPqL%wVx3^q>|p z4tqP2kdSbSL`t*(88I+4)^KYyw2&*@55N6JpoHi_m9Uu(g$}|(XJLwr8^0>c zq@Y%$$?gau`?xXmGA!Cvq&rKBcX=Ra*S;9CKf{JO3X+p32Zp2|cptLgbY$vl!+`w? z7KHxKO2x!t9WE@qLPLR}yfAF*y+!3u!2YmC67Mx2tOuR0prl#6Mze}eA%35wVqDhWXLcZ%R$NgUL^1Z`jkkfG|7c`_6fKEj|=Kop~ul9tM>o>&`pfiibe*&mPB(Z&k(GJKxc94owx z;v_6o*Ycce!t5<51O8Q=)gB9e&+pH5^TW6`f&{^QFfI6x2i}Sn7;hFrgp4UF3RW0Fb++pfLJ`DiJd^}~5jlWZZM1VZ`Ri<|1FL^tT4{_K$Wwhg#s@q2|Y zkDdji_(CKAU_lzl)vg^EFf>Tuz1kV(2l2+g_uv1xO=q%fu{Yf%93aM^fX;Rtx$REh zDXoS-9Pk&f^l5`j?)OwhgncyOdk|&14`p3yj!xQY`tgOyVC*>=nTg_O76FoQS9#T> zAGOxF4-%$AOx@_sP)ZV9JiCuqix?NJY4O}+v;7PNT^{uKpaoEUw(&!zMD^|7F0Gy6 zyMlkNMrKsZb{lw=96!>@3awe8c`WSnU(vW2A~;kABL|Hx6*iWfM|X@46%C)8GmhUF z5i6u`4sUX!#YH1B*qx|?j#FI5-+D`E6k*nmbQM@APl`6E&mT#N=?DUMYNUZ$j2)P0`YJ{GTp41iHV5RWv?Zf|u@;IeXnLT{UHDD-qz=!fLYq z+G~%@j6q@SU?j|OJFj>*(Q-XRS(&rO8FJiu`w}%H^XU#CD7oMIJ$_&!*l`ytkq=G0 zGcz#AL#*hqfq`|4IS&Ndy2@ict7U(m%+G|??KAH=gQ5d$}ST+^IB*$7D8Wv5f(!M5Pl(x3EidodQi0&?b zZL1eZg{c8`1%3>l0P*oWxNzI~bd87F8%jI2-HHG0vvcE0E1)Dt=O~DP#l?N5=4W`> zQmUlQ4)inC2#vI3c2fU9<%FbEW_`N|T|IEKJ`%4r0nuvKYc7?+L1dJJwit@#>{T(# zAE-t|eMgWEF z6q4dg)Q~$eGx5mtS8DIoP#cy!C=g}s#N?~t8_V}hz)u-IFfh=ymB2nwfz;vCy|T?x z8cp2d)ggLSdjC6xBjCE5$`dmw#}%95uz@5kt2-}(Mz(qQvl`M9-I=ViwA+a+^eu@0 z^M_XXfUPYh(C>z~-bC{n$he*`xgnst>5={MZr@p0R&H-NTWWxv1`z=QAnaR63AYe| zGbGT_et#^SBmdx2F-w}zoCk3kprBs?l$0&+8Myph=gNr@&ESrD{}o7I;oh&Wzl$Lb z)Biq$VuX#4pQ!!&k%8tgBC_E#-))ZRfT z{~Jgq`HZ?{q4gb3x4e%J0;Kk6wyVS~PR9_NfeD?MHiMit zn}XmM9|Yv=DL{_)>h*qqq^CeT0-Z1G6EuuGV2jQ#j0o2p2=ODqwx2J$nta^?woB7` zpcc&i&Km2OC+u}>{L?={PWN~9)Em!=ev{fJea<|_cvv+MNk}VAzDGjvGW5S01Fo1f zFLU8+6P%X^HKgdxmbTwc4i87_Iwk%BrQrGW%NFI3GJuX(o~3cto^7E%kecm#0te;d zziNi!|Amx%_-lA(<1Y>fK4z@++6|`UBvN$51csJpKz~IJ&c0e*0Kf_8dR)$y{L?KI zzi&GwDt(-4*yg=je#+(NJQRBrRYS)p;)f1=FQr5sLDTW~dn8vqUj*Pl^R&Z{jePkf zdxHpUIyyQ@Z8|gkV=Bn?!(+25!91yGZNG%|*he)L_c~m@1XWFec2a^3r*Wh|Kg~h~ z!%3xm39mW-h3wGL`>E!3tvXRcaG5+#c6K`Xf!IV1znTi$kP!{&>4L5Qd`Wc(0~SXS zJz7ujrUVv~53r*cH#am6BET5u(S9H5e0}`?v;gb9o<)dwI~>jb_HA>IQqyFh&9TA3 za`WwkUE!q&F(Dx#9B=e9pya34%xH0OrJqR?ZgRk@F3|B3&O)(0{k-g^{yplNIT$TE z_iF+sZa4$YbN-}aNIYfoW{VFIEl+mv{enX;IcOIyhz#4&T4)-|OgIT?XqG9_kmJlx z1vle$R1qN0)S{z8A1mXM`LAKju9n*%U$Uq@jSF4 z8(OH9%K-Go>hQ~RG&T7$FM(<5<~Rl$J8+x;A4=rx?6^&0i8AkrB)N^F3VnWcy{J#< zRKgm+9XBz1E5(c)Fpi*m=pgvSkqe3o0sOI1#k>ye)C6Cz>Qe@7>2>cXqL6 zAedGnjqVo#zaA!C5Ozct*81{^{il@(z|3+Yk^Rtd@fRah;9-Aai#nw~ewy_;6KeSF z9dQ5fN`a~7=&qG1edn#-8w`}F-^DWR7-;l{$XsjT0~^8Kk`+<ZB13Nn-NxwHLCC(I{iK{=*M-UkU%YsBdef9;wZ(HmTET*Ois&X+Ee} z#igO);+d=p2HW2}>->TfLP$*f8G-h%r1E>WB}=Xjc}~i zaM&yEwhe_yJ-?0t;=Hu48;Oar&8#g1WNlyAbqo8tiB^)UipDaRgof5|}-YsM9Tt)T7=5e*N^J->WS%A46rLCmx=W z5iDufar3U1R;mqJHkn&zM4OEV0(UJb{^-x|kN)4ORJ4vcg*z}-K3#K* zc>j^}oV`GIUmtKEgTRXAv{nRVy;n3HBD2dlto&JM{fLo&*vMhle6P4v)IwrBJ;CS9 z5mp$N!X1oxAySH71`dllZ1q<42q?trPq8Ab@mKa z@YB2{Xo8o2V-6zER%T{qE!(6ve=Wiq`2Vu zeq^f{OHhA{y7IWc7)T}|l4lJI10*0$o6&^>E*zTd!#>(<10gD(9k%kR za4C$s(rT=qaWRDWIbO&VshMg#&+W27siGaEo!}RjJdPZw9LD^+m-Fd+u%H+}zkS5O zcf%u|UICPYAHm0W4{9wW$}Izqn0iO3^^v;rIo{OH(to`X}g z>=NxoI_G)VT|132#__VpTPrh@Esf{KU~YUI%S>NJbqal8&2u}H>AUI0;n)k=<40Es zBq#Bh3JZ??Pi9r^q>B4oI+wncb3qvyqC2 z4eCkuF9Z9U|7>A=Cs%s?@uU9sg}1nc>FCOf{AF1o2Pm$sUUYPH*E?5+DoF@IOUu2L zOQBe%UHH3rDQP-OdQnk>Ptpvr9v+3#d$FJ!CI=x<3*r$O6$CIM-oBqrU-#a+_&>7a zg{cS$zn!tK7Yv(9#2p*>ZQL;bB)05|8=sPp%1k8w;=>1_xjFCXG>I~8_Fvk>_}|Fq zeoF_Z!fHW4b>*0(jOr56r8pJ@oTk;z?B*!i1;MHC4uTQB1AP;p84rF42oiE8AjwU5 zr%lRyTdRD2Y1&+56>{8c+F@t?bx`Ha?+?I*u>a%iE#+eUkddLf`CNj)!jk{(;4j#Y zPjo1V?)!Gi-*+si^1DC&zA)I91tA=9*|ds1Dj0MI~xLpA6! z!E$jgEs{&HFjrSM_V7qCa%>cc7HcMs?pf)YpP9La(xWp8&Xby5fl^s!92zmo>UCo{ zE65k787hsk?@wv)eO2o0oHwmFJaA|Bh(0d&g;qZ_s8ZQ93`D_mBZk;1RwL3j1V2X|sHx z4uw(q%~*kL=~i9x=v<9UjQN$sz#5C9!zcaz$Tp)s11g(Q7%7PxO$kK4K!Zumt(1|=iOe8M=GRd zcAnzL?F|tb<`2U^DIAf}(WUCZt%Tn(KuRzafh87HT=D{+`vleE$7=NzIZV7Atrp^$cpTXZ%lGutD+ZWsiH0{Z|(1sYDq5gpGkl!brup z{$uRfOI-7u@{dh&OWu2lmMGG=A=Ef)ZZ&S4IzltDU0vLJ!=!g~kS+zhQHX2Vq0A0JVw?}^WU7j8s5~xhR9yjN z4&qIVhg(2$7BE11N8&IK1CTuC7);&_9tL|Q9`{+5?(<9TkrCRr*QA7;8HHi3_wXv5 zW|wJ$hW&thXSe;iux#=Byo(k&>YH@Z0z^m%b*y$$dkQTIrsA*fWj%v~@YVbm#LfL5 zKaN?wo||RGYtGm50-6IzpufYNGafJ|`%*86WFLR5c+EFKf&7mR zH@Z9NR=t z2RhtfW>XYLpsWb~R#CwfSiUq-RRjL($PhkdjPG6S{rzisbOos?Z^X)^3HwuMk;|7p z@V{6syhUsf09>+jFgYZ_#kJ_-ZYm+D!gHvd)Gn~9q=Zu6=XK1NB@IHxglCRHIwF2T zU}NHsW^8V5QquDfJ})ljeBMzK(8r*ML*Nyd}#6>+-AFpjN zIUlY^TIqkAvwReQBa1(iw8EJG@ws8OcATCT$vL`smW32xgWL#tdZj{H%u406vs=tc zo9?W@?|XU_3zg-lXnS<8dE5Mxt$gOi)b!N#wRlp7IiK6X?0XWziS2BhyqFq*^{zg8 z-!P|XysyE5@cjO57$5A%k0p9{nO!tIWN>%YbR;${ZkG`jk#aD9vVSoh@Yw!drRCx9 zOY9p;z54OUjM#wJgxiCpc1HE~=?v7)!r2Dg&yi6f^xh*oZjWxhE~g{CTz(33{u6sW z?J=O)#3EMv=q)%2t9?YJeYxNSQ6ODX<#^c5!$Z~~8ID-x?P-Je!pltC1%7p|Z<&%{ zSnK~_2hkmZ-xi_7l2#prK{ZEOU9GxxIshkKX~u!e4*}1712}XP$Bt08jpF++ADRhF zQVI$m42fK33lHMe&JZuSrzZs(Q*;l#9~1bjIu7M~zHhd(^2kRD+4rBKRv2HYHV$mK zd?HZ&_O4d944XGtkWpMb0p}nxXuGn&6d_Jcy|O!FC+G zOfgp@Ev`2S!tC3k00)QRymwGg!1+gzbH7 z7UjgFc-w9@6n-xHtVpnEq(Lvs-zF%g?HqBb`kkS~MFdZY32b}xMb1}e55JO@w~58~ z?a2K4G-U>(3xAIWs-!Rt9|#&a3RWzn(X6x*-|IDH8cikVs^T?wczaq~%Pa6cf0n&_ zaDfEk2D=&+M2U0KXNiaQvd}OuI19icu!gkf$kn%UhK5Zw0YUc{+DAtD%}L7Pn$`T|;Rcb|*q_mEb@ZOA zRIbvFqYPRRo!m2^#XZL`j+uAZ6sM?PLV?JrK4SH`yevQUZprLwc_!H*a^UhKBXS!d zRLf<0uM_g0AKO%u@LZ{l4a__?SydIm=gse?TUX2iEp>V70dU<&(#Y}j?qWY2dOo9B zs9ZfXa+p0$-*RX)(R*6$s(|(ew-qTznibFw7_%a zWEY^Q_q}Q&%@#_rDD`|9+O^zG1g~lUEwp74frBb~HK-^he_w?fh~GRv<>6r<_OZ2= z$M0pZuzFTT>7^>C^Y7%wMZ*k({yH*dFd0L{E%8jnt-|3AXO!zJH=x1OLmYdf7;mI^ zCjz0eWIC(~=F!Tk3n?_1s#V@Mj)OYGn@bTOCbGo0Khc%P9T2(c9LAw*Zo*puRRrBX z-S>RqRTYS7nftp56SkIuvsLAsAx2dSP1x!h{J!nY>5ro+DU-Wd-_bzOvVgyb?`z$j zy!3nocvYO#Ts{k{B~lcypuDQGj+c;b8f-NK&n(sWCP-XbvPKSz*A0(yh>nx-VFtf} zub$9Ro2+#B&Ijf3d{*_F`nn{5p4kcsF&TwaH)Ai9UU9|#s(L6)}>Y#Tv&oc!Nz?R5k% z#p#Z;tVd~}o6+VHp+e0>)zCl^z{=PpcZd&D>hI}64Ic;TT7=EF7m>_VDLySr>Yxq= z8o1YZ;VOOpg7g{b4sezrz(64q!I2pC4|n&3D)*C}B5@L{e6NABlCIf?Wq+-hfs5M4 z4~=z1QEwMsM)7D;F|B;aFHuy(kw+jN0Rv!@$q2hKNX}-}$Ni1iPSX4agtV$(3PHPZ zyA;BrLoE!;$mw0xHNv#DAVG08f16)-A?ul$t=mWmgu3OdzC(h5Ru77<+EG0sne<9s z_G%i@!1Mfkg1U@!5?`<(7rIGmgJ5&lL{a&$;x3d)5dNw{nPE&P)_gYA1gQ=YK)Uyj z@BI6g5MJdZ){KEJGsdS(?*%$8p5-lfA<#m_jfzG3ghddPODK;Hl3Tq1lNgvkScEBV zv1j1-5ed$4fgax&rGB(K!@l3fIQWVc4i&4s=EnPu9q|Q4>Y;B{^g;W7+f+iLqXbH< z?v)`$;uI>4MfUZpp>xg`LoNur6?}Gn$!k59Yx$#vjOTf9oLcfMyWs3)PTmm~`*%BBL~X z<&%j*2WiQU@7)JyS*ndpK_udV90a!vRPo};r}^d*qE8tIlzEu2hg+7M3+hPafLU^r{C{TX>95?Qt{ zO?bN^8$Fh)3DD(0b$vXAu)9V@B?Kb$dT&M0ICn5jb3-MF8=W9NQm} zKb4$-SbfE&^+rq`4^)J(C2B?ykT`>mV1pm0N1YCNYe`V1!Yx_y0t5)`*NS2x%WoU) z&R{SHHbGwF7{7BoBT0t9Vbq{MZGI?5OT%3dQ7qCJPS;ZWMoknGHF!!BA#i%HjsQ>P zvfe5743(T*$*21kn`(~bTcB22o%`41q*@`a)@!SL6>#6q&53q@%|v>4Gxe70L*YSr zZ)Mr7``(m-+B;~S_IT|`LFDwFK`-eYje{#O-a~m+)k#AH4$ZK6(1_fBjT!kY;^=pl zF{>)~hVl%#jZOrp}k_rD^{IiPa94`4i<0& z%seb^*u>bFlVqy=?|w;5jby;n^!ABs`0RWQr_uNI7UpccT59VpDhgnJ#dU5;R*P*!@eC1|jG^9jqvM%dR0@U!DSV-q7V_ zlC^7Vk>KOwADY$F9FsMDGLDS?&)fN=*}dPCR{N;8r)L9*;>h?@fb)Bluk6#Zkt!h@ zyyG=SvFF8si5@@kS{H?KONsc_O{YITLVX%|>@)@8U)l66)m)YN#+;uBzr z0H6ly`}bG%&Z>z5>$hi4G7MfS8{S&tf};_FJs>mz6(@ezz%QND%nFUmwSLx4P*6|{ zUv(R&ofN}>mruEAc|R>z#f|WS^WHxo^Uv0QZ-UN?FzIT3&fy%2WN)~=Ih_Jg1>7QH zt=`pbPj?mmdwR+F)sy19A=5`cm{)Ho9DVn*jUG=;oqgU&B7le1NdF)>dckj=SntU&u*)?tw!s zyv?O;$rQjk@bI{7QbKz*!N*}eUa2c&UWK-#-O>~a!)u1J^9y)3bHw^YPgOWF<~u@UrYXp+pLCI!TPBtcVVTV0C?=Pbj&P^*jp$w^h!=<~#2+`xp43|(;92B1p( zjI_(BpIEg;RoB$49*x1a39s_%Le+-*C!}R&g$jraD5CA1dqm*^sFi!WLzA+X^wZVl z@6xYWpjB!)tb z`=`I zj&6drD5$8gj%unTCZ?vSL0MEPs866w9Z3G`B*Y$--wk5WExr}&3WC{C*!)IbIOhB-K90FDYSs<<|8-qcPi6sbB6+LQ6MW*GG%o`di<6#7| z=aTZT!F%V$jnvG~j=;bLvh|kL2scQ8&tbjd{Ho&%$7I2x#`W9GM^S!dUN0NGQ67lb zR<@@-z{|5FNPk-1 za?;zhCw8j}LgVs`FKqR1YjO?-i_2Tpo;X`SX#S=7V2{a&&fD8+bDA*w0>H|3?<_Sm zMzp2_Z%GUT)1tDnQX@c=KxNo1BJFK+ANmrhsZiKEef?%?iEUlL-#~w8c_1PLYbj+v z3oM0nu-$Ti78Lu#EOCvn9r^w%9LMR zY^#11`IoEy10y5jxU{(tPK)LWv*MR>&sXwSy4b30UN_!aMgojp2w8Od4YZ60Qh9eD z-|#L<*XB-_m6sp(R(Z3a8Ro9k^!2qRSdM+-of}=vAR~)s+9W^>>ce}!^uA>Yr7{L; zY5j>g{~gZ5>kH0iLq`WsK<-vOUGsK`tr>abW+Ye_yQ zgKSs^63Y5{R(?@9b|VQ9EF1}oiHTX)Sx9gjb2RE#S`O7)pNgaa8L|C%S%aZV&zIQN zWU^lG!IU%@hv#CQqpzAR!#Oh}V~d>!ChoS2ypqxa+KOp(j~eIz!OAZw}Jw2to(mC zR^^0z+=Quz$ZycxfenGlgN2)vb=~LV^KlR1%b1!*gZI;|R==B}x(y=2*IerA#D2zR zMPs6p%&4GFEasQzYnU7A}! z^db0cGxOv`%dn%T?FOs1vvam90*CAG(OkTyu5d+E6G#p&EGjB`VkpI4ydX0R?^L$l z;ssBTI}^;q=bnfEzav1K?X^`=x~*H4gmh_Pp=CV)ZwdewZ3X(VU0lN9BUW|_%5^ZY zkjHegb3p+IWH5+fM(V+<-gStG2zyUSgmidtg${!b5zdRowyG0M=ryev2Nv1JMpNXr z{K41MR(7#xkiU)kf%*F--@ktxGOZE<23z0?R%U9VhMw_e?H^!amCIBd(}I%Q?kJa6 z5YP|kJ6;f$CVS@Wp|X|3Dp-v8*onA2Gdsk2@5z#l?*^ zXEGw9G+y1hwEFF+0~qjketiQBF{qDC+8_$#H7{=sUOT}8^oa|~x^uM}wc5Nf@PPJT zQV|jH1(w2{m z1jeSA+BBU{zLoEC=dRvteRUVc^X)|Ptoo1u8`L@eXEQ7aEwn*ZcwshJTGoh!rcIiD z(`6+>X&_BVuMbQC96|}f(92?f8nO1W^*+};Z^6;f6)Ibsj>8CQ@4TBH5=I(wgOes} zWL>_I5bK-BPE^P{!mpo}W1*VZ>n$d9fKSTzGR>NwMnP6j8J%j91g_6Buuqehb_cth z!~`;xt7&u*VK0|ZBIxnrnXaEBWifM@*%$Sg+Hk+{0;^Zis;{@e!_JTAg{k%h;FAz5 z*`nyD=W+5RhN2n6At9tW{TdPgn?`-^$DMXrj%_q@)wWz+>)BHCPzXkLTL})(9nRzHAgK z`vYHb7s5R1A}6^jOg9dcQ*+=PzFs4t0j-uB97e4-QF1g7dFct4`|}PInF{jPrH!AV z9uimC*wH|dYy&LBTf4iq{S7{#%Jh+zRfK{jHkszB(G85)M{^M5K2nrKCbMGz#_K>p zE!ZMNivQc=dCX)meDaa2u}%Fo5a|D?}J z@lHqW4RkMZ{e_=SNIEXlC1nqWTmv$RB&i>2Qn{Od2^VU+kNc8AfASj%ah9*ZaNg+pPOIch6 zseK@lWIWbh)fi1TGm{rfm%_mTTT?}&vv9;}3}imh;7%q;Dq&;hR^-wBbr)Kgd#PbI zi~TH@5z-2O#J}LHqr+88?jRdE@IMkLtwoL%2G03H1--A%Fhi&7s9wk zQUE4?0coY%_a+MzfrL`DyPcn(--`_joF6VfEsTSU6?~{O^e?bn9%#cH9iRNcAdMe#;h(f20Tu zcS3ed=^B-nHhJbG?FM>mz}h)B443Za0aWatHqR&jZkiWfM7?QwL+Ton?p;jCj%tQW zt?Uv1p&zADCOJNP#YyrXshT%k<*a=`H?%Wv-nNeO2Z<$c22^@&A0GODf?l#CP9HN< zV)tRJiNUMhLPq$oh)4{rkMD*(gjR%}?rG2?^gFm%qE53ON6!7fwDqIFGDIWZ^|=%q9!d(_%wf=O#V^z-Bg8LT-#2Z$l+ zh^_4L+lwo!p--`j2Cz{UuYVvnno=#sfG=2TOOsbXhLFb+Wj-z;9e&h0Y0G~v0AzPx zxOFpXPeR=byamxTH1rZWahorb2+cJ#BD;4@Y82S66ss94!!Xcro=s1c$+NOt=Qz!S z2Au{Ve4}W!J=x4mJtM|)MM4^PC6KME=Ac9P=#2xw3>>;Ll37iPj_uvpZ)F*c)!cY$a8S^zVcjvR;}%pZ~;DI4&%$$VP6Eh zQBy(4;LuRs8vW=k)%H>YPR23~rtF~L3$KHno%LHEV{UKbRGwm3p&)-UI=AE%ws$!{0eU_UFMz$zpXt@9Av>q8`|sb}#bPS=~s41Trs3V&y_ zDCd3u{=~%7xgg)`F48-#-ZcKP$1@WTU*8^WtD;)5veJD=OXMSSqntcr#{7-W>ea)n zq$EOiFDihja&T1Ymf1i`A+3K%6Lnv^5wgC2Z@p|o*c;>S`Q@al4@BeC^+a_pQzDJ)+dqad)A)he zpaZxWpuwIV#Iu&jjy^tgX6!*QX_^0`AKTnV)+0%er#)BNEf;Ip{R>(Q5*ngcJCl~`*qy9+sky%4>EeXDI|Eg8?fn{v z6d2&`ovbtRPE&cvN5@2JRvK{7ZUpi6!}Stij=H29DfR^*^WJ%6(7$_^umccx_aHe8 zya*N}LEZ>C56%R-@})8hy4Ynmf#c_!-Xh_RP%BDA$5mG%Ck71N)j;DK74{i#O}8qQ*ljR7%nWvu~|tjxx>? z6jvILJ7c5Wb0!_07Hx8F)eo^MnooBqfYf%5f7_1@K@*Rjk|Xjzsmdr$NKS7lg^LlC>(yZ z9549{OzQ{uN$R_tn%!Rl1NwJZ+V)X|fS{G7x3}sUTZKHycJbM8Cd#Ov<(m#?)dLI( z)g&XNG{LW*V1FCkuz}U(PtK#;%2uX;-$4V-!!}W@k^fB>fv9L(#?i+Y02VW33-<)w zMla|@{q$T+@}#2xxz()$N5>j9OKkIrLDiG8?CVXDAy5~b7z=JR<1PE{(4d#`S=9I1 zi4t$)@{p$?&-bXR&zOvyN7?@E@8QGDSZQ%pFdx?=T(d%OM=K|74PZ~45ZapR({}|2 zUnv9;qpFpS{$hl9HOyy&#<>GDO!C~E2=iZr;M-P;DGNO(!UD?^?R+`4xcFD`_juGF zK$b$s{oORq1x#1$Ua42qLb%RRZB|c@e8_}&b#kKA3ZIfxbzaFzBS{#0{PaEBEZbUi zpLPS&J;-))T54$J*Y&;K$%(%7W6Ug&1@aVBzt&jc?BPmrmfjgUlk_7q5h-aSY)*hD zBKfyHx%JL?A|MBxeQ$@8YcqqZIWr0OUD^l>#c_k{ox&AZEXUu^H zeDMenu%5?%#+s_r(g)b8#=Aj(6_?AJYHBvdrG5PObEc#_9)6pq6&AqEm7SZ@gym7+ zUR*jIo^DixouLDnuYqXAgtOKe3SfCQ$gyOD|C1+9ax6^%IWSvF?=ba zeY58q$eUA5azZ|`269J3i2PuGJQI?vhzL}a;j9sePx`Hwp1$iJA?7KVFNuBietLZ9 zAS`#f;1m`X#;1Lzi{i|5Bv^JdFdbJojTq7840vTWer3HK5HN_pp@%LxURxike^&8R zY$+vb_(wr)v_Tid$3TOzJeWf8qs%$#%IUp>H;dih=GN}sUQ@L|#EkLtU3?@$)! zK+#p+-$CB5&a(4%6?CdsV;Y1g|53;Cox}kxjd6mAYNhwZ@{r*_n~W8ZQ+$y&|CtTz zjodb&_s)V{FGp+(Hhe=q%K8%#tWi?n2XI&c?q0MEOWV=7gjAB-?9A(9f87~BRgr&! zjWN1^f{oTd7!zz8?TC#yRFuCi%uy8yQdms-%0)Wk1C6zHd^cglo2+QQ-M#;J7={Nd)*oaf zYZ)1Ee3PN42dGgR7RPfoQ13K+4b${qiRe49Q9VbIP(N z8?PT{SX{7SjNQEaCRr=)TLiBzF4_!Uy!JcX>W?OH8T-W3yN8P4nnn}&LqUDLM~B#k z%--~qYV*`T3{xx(*?<$$H1rGJaqBHs>-yqI>($gO>qVMnQYunlA2~?_b05(w&prT> zP!^pH5eRMl+i_2Fz*83<&5cJyFse^#mpc%uA?XvIi}*6%ePVx~UC-~~;*NfjQP>fvpE!pDLPV&wy$yP0GGV zFvzAw*GyX%gv_f5C~X+R-E`6cn$k&2j*srl1{@AL>;_1=3$fL;$-B3FF?3 zdM72-=>kF10~UIKlw!O^rl?oq#>*VNPVsjRQRY-BHheH(JX zM}7`TPflK!W|)l!p@au`A{$;a@83ILQhB~s(cI&e=1WY-dFsJg^t+lRc{+}00bJZW zcH$)a1sIO+-Mk9!s8N?_ERcI#`1eK;MOoi*zY>CxwQPQhjg?!b`+@nVxSX1n-bR-G zYvu8VeS}+oJ9tl0yy0NIF`W@4Ma?J_rSu&n^%+`qN_&||g6QXB0)YUX>bpwIPqiw` zt6esb--R*M92b8`-AREUn8Cs#OevCsIC`}~PCB3c_MtK@(gY6|h%JQ3M$+xaqy(m> z`!YaYew&_SWZ|76G@1E_k}8bggQG zDM>N=tyRY7{EST}p;J)sFhd6NMK6MwKhG4CcSWu|%rA3KjGZRmEZ6V2_I`4ASD*=h zdn~}TwfV+;8;}h99wOq#-_VH{;ZVdPYh!pA`qF4Q=gx4lj!q=Fj-C0L;01AfGV;jV>R|~viRD8)AqLRdhcKu@!yKBXIbJczy8-H5s%a2{wT{r|fB=uF6% zoSam~j#ziDdU)F{;rAdr$&69qJ3db8%iKOYe10Lhj}4d}g!QO3r^hBqV1EJ?#zv?k z$SYb33JMK!bK;b07#MAB8|6*m2doHkS;aWM5VrE>)5F}gTQ3P|zgO51=Yj{KPLPwn zq{e^20Cf_%bsm7WC12T_mcR*Y`2j?KudB1)vS{x8A5C8w7G>9ki%JLxNH-`c%}BSe zf`F8ChmPdX-6)_mC`gxtATb~@`(5h$H{Ep&KZ>h5mz#e0L`D`>OY=A06qAWF3(N|~6?SS!P#i4aWcLtvZt zuqVw>S69F>du_MdyPN`k*UxSPdGesO$Q=A@TpT&5{r8(|VYt^ZRQ}EHsP>c3B;|nJ zrfMIKW{<*Qv8&?X?66A?Eq~MPcrrE?u+D+$|1ZO>oACvBDRC{IkTxxX4zd@P<+pQ@ ze!5kE83{OUHm+tE#Fs&}qxr0HVT$a)hHCSnGE*fDrPeh}(+YOEvS(=Qss@lVh6F5B z@{~QBL&GPAE1c(lfFi#www+FucL%inS<9&5`eM0m$49@3;vKZg0Y-#}m5%cD?d@^^ zbIVUu*T=7q0ShHFd?8_gCW;hUcwhY&kMJiNDttzOqCcec*1mV|E$MOFO0s#<&Qo3H zv-ixc=2(xKN=xrNCs=pA$GLzm~2Jk`umdcV(~#(QrL|#;+T8 z=oo?Lidha^E<8bf7z=n%Z;iP> z)ntGE(vY@Oup}=g#`>|GoG=Yb?&}=Tpnq=T5n=G1_uI`F%gyDe7?1@yx)Fwk-ODo6 zcN~CXAcYoU^it#a_`|`$4cU4tAQgTpD&oS0URpuHDa{z=@|G12f0O#Fpydh-ZSZ#a z1ZlIr($Z*diQ?NQme;Z-eKXHLn;Ksdzb8ER z2nZu?bF6x7lT=_k&4Cqm=W8^B1dF+o$}6ioN2H`PAbtnLSjA)2-%$xS7^VjrRe3N4 zOP-fKW#JZ`DF^CStX2-kmL@>c$X%VhgB8E`p<}dxag6#X=sy-=re|q40+i1-{mHX{ zu7iN(>F0d;BPT2-Vz*z&|Lu^lyy>wk6v|`Fe+$D^^?7iYHdf(Y^}sVmOs;=p&KbL$ znG`jiRxqH5%GLp#-R&c9X*a9~1hfj8&v)kmwOF}#pzEC+C!4h@-O!z9{=U9Cxu5;->NR?wMfitprx!w_VsHu?{Y84T{Lz>Vd(5$6ixU z-CO)hr}+4}@ay}MquSp6$I$C4t|}!8<3~R9U_SpPVg-c~U}xM)PP;*)`BvqYQd4Qa zX8Z9=9jv5(BDtAUWNO>NV-7X6sN#c=0_Y`3%rB57?M-xM=GXK~9l#7i08P?8k7Tn8 zg-WAaifsvkp>C|Lv0FYmkXuDQ%#QWhDp#Dz&JpFUF_cu)_TPF#;@3HE>(Kp}Gr^5q{_F$?WKG9ctL;IaQ!mjt6IUP3D_n=fVMg zwG6CGsl~-ZS!?)0s8_&DXl(ojnqP4zEGq!Lk)C-y<|6F@H%#}i)6^uy0(@N2aK0y1 zOG~Xs)&C_?BhS0LyXj>OSP0Zhl4Gh7%8R7ymX=B+)tvN#Bj``xh6G5Jah$ZYMr;+$ z2))Wl;>L1Wo@uK01`l9602dOg4_r^?s_{ohN2Tg?|M(TNu~ZnCekOYyEihF&y8iV$ z87JNe1Xb{U??2cJ#n|v0&jFBp+(&0)|CQrWr?4~DnuPNszv>c|4V7L|+)_TO>Hc8i zLSJ7FaIeY->!05Jt0=?$UgLo2LpLGH;7ZB5km4z|{LE%KYu5cG4(?TOVfMS2-j~hZ z4FCXIE~)YJb}z7McQSq8N{!{ZxnV|B92~NzruGK);|W1L2eHctC|*JW$>5F1^I$Xp zE>Zo{6#uRcn*MKvpAYA(3S7m&o|CH%|36g94-5_qkGI;UDa%`VVKw z(n=R*hMJsUk*O%KU3pB&$>rW+QYCpDj7Fm^R8&>cB8;@R?6Kc>mX`hq5Cx0?YOHV@ z*1MrW4|zZnEzTi4Im&739b5}CPPX0;hxiIv3v`hq?X9d<1e1X0ODs4uJg3#fXmyZ< zz?NU`vCv`R8)DcmPjNO6JFxB@yf_UC3bn8KSwl#82mek~G~_RkokWzaaB!;im_GV_ zhZnaLzue`g_w_}CknHVwXhWaC5NpYC54r5V0`6`{Nmmz+R3Oos&u$anXh%nUs;gG3 z`P5!x^uyjW%-bKaQ177s*IQ)+)w*c_Cm!xrbcN0%=R;V~COoP$;3*H!mlmsmytd`g zqoXD(_~V4`@EFF!R3D+1AlNCUDF|>2f?^>Y^wU^0yF1N?t>hY^*Vn2?C%MPt`YomN z)p?&p#q_O{T(b>Lo0zdEN)Y3`F7C(@o4FQ!_n#mKd;!7k9?HWtngA* zBe~g;_8F6}h?*L@=``}~6Cq=@`(|@USzh-_`yTC&)c557ssK-C2U9MC7N&o0f`9rK zosX~Qs&a2(+sHyDbF@D7WC+A})-b$bGY5oL$-` zjs%IpD1juj$M#f6o|;;Gr8%ef_mejAPEzgQ+H!$At_D%qEDhA}ao}qEN$tikD-6z zCg*8}es3S9Qc^};Ge&`;z3KT+{>na`3up%#bqv`55!B^byusm`rvUbEVQ+G+{+*FG z+uqs95RSAA`uk?Ox-+5Mfa6McAM<3xR9IN}>!WW*StL|6oS(k?Qm=*u4inYrTGihZWieX7r6G!7lbyk>RR1L|DH^Mzroi zpDh?mrk?mZ<3M>kwmtFibp5}KR@#jh|9Fv39So#3hA4wtExk{D+5Tj!^KNmzUFCtt zI}PcMk_q9eT@oNKEa2w6oEDo_e$sU{Q^r<7!Q3GF@F{-kJ*+3|>jl`>;^M$|>kXFF z%1m6imAam*HXtmCvt$4k=!~g^kYpNP8Iaf9!44LCPMtm5OxL0OznzmDgM2=_rPZr# zx+NKz){6FtsVXP);yR6GJlR%@BQ8msmuxW`ow%ge{3G?MG130p_34hji$$=q`n}p@ zQ_m?LFHF6cqwmGbKxULdTig8gj&_>`!rA8RdROJ4tbH3rh}o`@%gPL(ejWY!^G)%! zv0cUNfY|V8LI{=%g>*OIorZ#KlVlF1;4_R(n%l3?EoE+A`S_kglG++N|LE0~l?M-c zodd2TryzMH9|5MHe6wZUWEJZEP|^@h#pH>d`S4r!b%3P!luQ4%oJji9lh)9BZZga?71QrkwoKSQQuH z6Y;}cT>L6Ku;E{FA9+nx8nhby+x0vWM0r>8>;fyOPomy)4Ucr>$i7Uhy8{*$&?Mct zGhP&WzG3buV^%)l&Jp!b9TcE#G9c3oh&~XUZahrT#KWHjd1{kpSs587 zBsu?ME4Oq1V@^KbqJ0n=X0V%PDEx4kIb6vydJa3!Rp`EmmePjugYv0YWteRx9{#N4 zv&zE!Ryt;8kHS7s(zrRs#MobOTU(L)Oh~|5wct~dZ#)VxBS&X%dp1_Rc|dML=7&oR z4{Tv3ry?x%@Mw+~8Z=OpU%aRPZ`WRH;yNF2eO{vXkHq4C)-A_WTE7rXvf&Bgj0TMa zwW@e22$;~xU|k9B$(N3f`2W5DKMV6MMw6R`Hye&d=p)wZ0*W`4kk+;b9 z?4V5LB-~=0JMMGfRLZuqk`S^(O%1F<%(910mFnCqqPxUyZcgXz=6&qruNOu&Mq!|` zZy_zWtT~4pn~l(0r$C`{qw?e93CP-Uphxqy_rIP|*-VIs=Z*q?rRfSmds~}{v(Pq| zvhpUe%(eS&PWIJb&e7fGsIU3Yeplo^X~Ghmp5r5}1mpPR)2H6$a}QAsjX5+Osn1^# zqYTVe2QzK|KrGY6Sb@P&WR+8kOsTcTtH5TG_JQShFEIzpGh0O{pHG!lgYD7tB&f+Q z-$hDn^JuC&g7U*pQB)Kh%cqy$AH8=LTH_=&3zmJT0;#y6ac?B;HjMpIJpJGw1?u!M zM35J3t0nj+P8bsKGx9hvm9&Y81vyrnk@;Kp%A_LbaU87WD@l|=tn9EW2Xu=CHJKP) zL2t@GVacBiy9eb}^v_!A+FDz)6KWA+Vr=wmi^f(L;Jr%dSgh+>bhei=qy*7tq-yWb zV@k{~=i5U3e*-(VXmAT?y;nD~7Jir0;<1_URttm+1l==e^&r+!JfuFvo;mL zM&$L>($?0v_nE>3L>A$?Y&a$d0*RXcL3jdoVJieddIj_idSzk%SE0Iz=nf}b1Hu!`eC zIgj}x6unp0&D4x1J1D+{_g4@zfb7TbbWOa;S?GV0lSDZSMVeds%8%6&`fsgY=y+ zwFx{>p4|2Xh9gW^G>*1k!efp`w9Z6`(sCamUe_FEY(Vymx?}anNyJ(XBCCVW4Xugp zc$cgM6Ur_M+QRYP1N`AeJ3=Q?L!$+(4QkbJqr!mEKt72c%3yig26FL{M;$1((>IS{+_eL12v5fFJT=;RS+U_3_9_m zV+}U}WHTzA?TH?bD-1R-xhQ54{I~u2y3i`V8PLvO4rb!j1g%P43j{6_;$<~1eqz)x z^I6Ug4A}3|xc-yj7I@Rz;34OI)J~W!z4tf443)xg?#Hm^WHb5bQ-6d-8g9jAD;agz z)`ne`-Y;!BpT1-j_|JQeV)hvq>5v-R+(u*jRCy5f6wIl5QE6wVny7#A?nUWZ4Cra7 zup#esH7Q=;g#-EsEgh)>fyDhOVL=pcbVU>}Dc|tfFkLI2dHswYx)ltrRr5&n+vo}> zf<7M6`Xp=J3*YD;@^SLz*0y$`nSg(zZXRy^Z2Wh16+Cu>eM&%W- z-J3qM)YawbKRNVm@&s$D?R{@<8Kxn-xbCXn&0}t}@>)Rc7>Jel;6|prb4wtbg_v>a zxjxlMcAO54C!+tkm}Klc&^@^H}hfC3hVIm}=y`-|uZ)VLtm_X{=|X=wrsG)YsdAd;e|vfk@(-)QXDBQ<;k& z!XgGGNaf5|_aOfUAGVI}!lzkdAKyR(LUcO$wpgTa={ACT!i z8=L5{$oQzX0@ogQoHUWhJ!qUK0baL+SYUfRLS#f@YkIjn+D{e2Gc%f#%`4KcOCfRP(#Eg3K|T@>pst3(;tj-AM?^7*&9v{saJO#<9nCrYWOiek6*~gfjt*&s>LM5_*9sKsH6Vj#YX8wjs zZKftCU{(EyN&J0I5|!%F@f*jtcRL&$ypN6NUr8MujRKYSB3XSN3OF`xU-|U_Rq;ob zCj~dOpEb>zWeo4{yep2xA9P9%AEet{?;#^5B13+v8T*FU5N=;M%DM9ojp-C*{$~cE zCa=T73!3-}UE}v{Vaee(QFUF$OsFk?J;Ba^!5ES}{CvfQ*OmT&RX%kI6e zjwkDpln*UiF#Y^v5iHj`-s?BxZkn#4pX7Xd&N6LoU?BcoPV{W=?yqrtFXzjaYyvZz zG`&FqF;UUL>1|IEyEM^z7VjbGewrD)1rO9@RCGl^OiawYX+JsHJ+!czAHy?N;NTQ^ zc6hi=-*VctT?mYAf7PG8?JvmxmREJyEib%#wx|=@^%kELDO6Pj#Ck^4)*C-~t2KW0 z3$xcNL{YFvRy)o~W=}OkGBW;=S28Gm78cZW71FysNGW)e4~OGE)7@C)Ppln+R zLKKHQCFd*I*=W!MYN{5kn{yA>89o^q4?S(f!redJ4G>s&0{Wuyqo11n3RHx8fmcgG zo+keLLXll-v;X!R1r9UKo$T2!pKrf*tEzsA`1v!_DMx8=Ad#YXX>LwQU7d-Y})oMK135bAjoF*vXqYO5bjML?HlAN;UZ;Z2lNqpxp%+#2K^If!7to`UQAwHgKQY=t_LLe-E#~Bo4CWXvnCG) zKi!r54;m~Q_{P<>QkX!i&)n3Mk$Wuy#BVVb!Qt2GqwA%hvgv^Vvge(J@vp?F$;E}| zKQTD(FD@<~d{NS)SZ3ev0xe=mbcHdgjR)pGd6Is&W=(>CX|JkOaHo_hljGd^gMYf2Gd5CP=uHwzdt&c6MBKoEnk=6B&og zBVw$`@dkibJfN|&i_c@10DejGZ13A>jLZUbjkYg-DSp;AzB~r*-OM@xdm$qy7pvJr zc+O^>tGHNdCG>V*B-)NDpT5vcFw$Y;0=eo^AOmSZMO8KQvWvP4=;k|yWC;gW8ws8r zhbz1Kzk0LykW>xWC4gqA2;o$RNVIP-=O$$r6&BXHd-hDlLh$XgE{WCtyJvpRso|gO zY8~g?*I$q@8v1n*iEoyeADe>#YyOU))BRsP#A>5VOUZ!x#Ca6uxZFCGR!d8Z z>G?B}CC*&t)Q@Eu_Q1BomLvBCnAcK8wALJ2!^ECtiQH>-R_XIudMWkrb60RX0%i`v zxZ~qnEYq-S_5sV{o$Uq33`dMv52JPVMF|PoAZL=K~(jW{l3*i+gR{j+wUT>Hwf^9x;%av zSG12&3w`=m&SasVMILJY%FX%q%|ZmLd6_HTmm1i6Jlo@rWEpZy&F+|Xo(W%*1;#r8 zs7ajJ4fU4!+s%dNZ{PkI#d=w{t@sj4S($2*RN@E zcmn(CCPb=K7C0qKXrVc)s~e_(8Lvq@*eC3x#IZ-5rT*hl+5keDy1g z(g*BVmm=zt*IF;NmSR{y+z8`Luz%r_!J7ZOUbm*WvqpL zZ#!CO+>4#Nf;glyAdw=rWF}e>D8VITaem%wFpVm()d&~pk#QWo?!D#G)YOE$kiY!! z?1zV5%Iy7n;h(ikX02+Jvvp{sYIv@D>|1Em&HmTcQ@I!1=R;r#iijJCFYKF0qaC(b z9!23OY@$EHd?Y_xju6O>V9c!kz;OWT&;9^W{WaAg>OMd_8CSAirK?(~+DfDAP&M+kwaxoMk;O>gG5bp?>8V7KXA?B*Txc2-3oJAo zaTXZt66?DGyZ>Qh#@pwv4{B?0BgC=Z1Llzg5O3)=T`un|kEo^Bkdw~;!DX>46~Ej% z7^t1otKKO{k0*QjbVoYz%B!Qz4k3F7de+HF1I>T(D&Mp6$7rYz@D)>+$Q+D`h=>3J z%_a1bPizo2xZUnxX{nXU;m$fv-rIprogu8FAC{Y5n%KAFnU z-dEbeUNd6N|K;i`3)5_Fb@F)4c_jQ(X&&x6L{cg?JylFMGP#Of%8g>7x+&`FQjDY@f#!le7nrQmSd zN2=+{|0t%TY%8&)+ie55eSP1u9qvO<(Zq5-uxu!4{URg(4vlD^7qG{A5NQiy+O_0P z^4eXrXeQ-^`T_QH%k1aHG_U8e5_IKPhGg^H>a1AmoFX@lXABEvf4uei?wg)`;m~$> zN%s#)PaRTg+|P)r85@YdI#M(|3%hIjMUbd)M@)G%S+owDqF9tG!9nv;`;-n4vy|&QhTrrg{q!~}VgOPE(oWI>6^3;`p zB}Ml3HMQ9k!k0l5rRMMjTI3Zf^4*`Cw2 z-KuIo5()|wnPq0uYk86o=q;n#9fRGA%JtD@3W`o$CJzDvbn+R+e>0~j`tIhNqfxHg zf^?<;Vf&dGfvGB6?e-eT__*nZ_Q_Nseec>`qZYGs9~ZH_xWMc3Ak#l{PFww{#iivf zVutk55aSrg+)7v<#m=v2&bN94Hg; z$JSwbaAUjD{xM>l1o~AqL;Q7KM%Zj^TD+?Zk zTpm4reJWFJo1RuEl)VSo;l4^e>E`=MMNiUV2RB{GOru|d1I^~mq;-Hv8k~vB_;AJk z6%4x^;n@Hw=%A^Zb_(*!ekxX5bZ~HhWNrv#^$nwe+wHQWBF(a{mT5ma-ZsN=UeFn}O!X;9XzIj5@a&y9gBcaU$L2($kP25K zMkEbChDqej^Y-w@do#7v_QuW9kIlFKF2yCs2Q3)3+wmIEdnvgzv-AgjC!kIlb6B9%2S=}{c#?Q+)zE)gZCUD&#|EF?`V~;i3MN6 z$LBfv><%&5cMs^-U7QcCBx0+SM}i$>S=)JFFfZ`%?|vz+cS}%@5#Z(0^zk^3x*k1{ zN2Ofnq2e?QGfg6I)G}}3PBP>s)jzCIwuO8t!cLgnNawR?H>ZYmjgRc?_?Io-GY;ni z8nWjp2+_y$-rP>*h6#ch_4d=klu2K&;FZlc-HBWUcDmRhhUxkxKaf`f%d%YDo_yv^ zpx#D5z#|asy#*S{4Be+u?;%#JlN%cQO%f3k z3#zFlsz9T@fBW|iFd{*|r+#3!Jj<8T-31X816Q@@ne%FEN`53aH=C_-Z|3KUwS@uV zm%|L@%v)Vc(QQtSEKt>ao2|)EEQ|ScC%e8r0nRPC=H|dA$Vz4?QJG7X6+7GZT+^En zqmykF8g`y@Y6HT*t0k@{Tf14enY&lj{nmEp{T~TM*6Ws#+LI?A2jy;)KU|%uJ`D5R zMOT6FoUTubOolCfqXpT9Fo7zx*}v0@j_GUxkNIYfQa|*HKqUrVRuhkmSPYQzPG|B{ z-93x$j~O4HF1~F#Mt9B&L0|fJe_AS~-PE?(Zl!l}$8kAF^#@#kq$WE_MOw7cK~)E_ z-Qs~^!qMma07wac($PKT9?4B#9X0V$S||&8I?UL}$bXkx?s8e6gyrFx<7Una>*nLQ zPTB*?Dyyz#HhN>z>oc3|F9-2DOa#iY34(W<SIW9WszXMuwR#CN%GvGu8`sj&4 zP5;@wRd=&r#x`m_xI%Tvb1&8}zj)$>-B$XyW0x{mxjd8l%aqv2^j{AgHZIjDuzZPQ zpYa+<6Ill3WbUSI&=s3yK%ai|SP#hSh+z&}rN}{dyE(PvoAAbH`nDMiCd)ZS4CSqT zp{nW6IhO(Qr4{1;9OU`9ajo8M@vf~a=AN>^RsPp3xLUn_VU0|Gn;eetOkk6UB~K0# z^K5-x`p(B24~kt5gGM@J6X1p@ThrFz;FU+2TEm-)a&q3haiV(*k6{EqYIu0~xONls zK;=nu8H3U=$VeW2a=KgD)MT2d$e8Fl2A2v>CdTk49t1~6lj>2al5=wl%yZb9Y&C52 z=yT^R#4p+WLHcMs`KY!Gk!AxbuET%w=7R@-9!0deqJ2}eOefRchz=0Kws zV{|+d7wA5GBbFC(pD;4YuvJiMR z8{FR+rq*1#TXoUt8_)br7_@)^V^aAndf}M30x=uUj;e_44rneTeFgLT7)v2*j%ug* zm4SjuHIfQgSLE$9)p;FM90|Rka%f|CYD|6jV9}))s+bsZn$Clyo zLP#D|zoxc&tzyXkWuVwklxnskrTH9P>s~zNei=`h+t0i_Xm0+fnktxyRC|veKrZ1w zMRzX!dx_1U{Vo-kQn90nX^&|hlo?l94S)~HObdM}6??c3j;^88kGbW?fZ`aIPjGtP zA}k^@P>XJUvaX;kP*Yp$M2vkmTNriK_~+2`ReUKz*?O4bsspq0~DtT*DSoO%A+O6k=Z10OGMe?2i7 zsODdsU1p`Z70?8AoFOd|<%SWb5D02zb#*BI=v0Z#_4(F(V{NNZA=uzk0v@IxTNg^G z5oGy%L*7P1=w&97)o;lOK00phoH>hM4S>%<&c^4VFM&!i2WK!d{R7<5X63hV5%5nd z7?EnSVxI!JxXO|g`SWcAQSRXPlyQUyl(Qv{qYE;IXG|k;--*85vkF7RJAOW@GLs%5 zV8ZM8vA-ndJK-bc_1(rSRWmVB!}HLU=gQTzxymKa%QvwU!Fokd8WX4P5I9aVs>$@g z%z3}*^ky$#BS`Y;Z6wduN3Z$oZhW^DlLfIv6ipS%Pp)TbH+x{^YWI~m z`ZIZaBGr|q#TVD|0u&?SG9}zvd<{GKO`%qUM+1~kl#f-Cr0O_>q@Vo{RcSu zW)Rr*qt-Clqlip3H4Ot8xtm01`gTE9gtnx|M$#bt3nHw5`r3(KI~^c^Z46qv~83uPG6T_yy4*FqJ-7)O0Tmq{#|s$rj0v;btHJgY-GwM z1B{G}E_c2!iOY+t+I~IqxK`7k$|G2J8Y{TZ+b7yktP;tD7aW!_I|~g;s9S`-kIj0X({3kY}*Zn zE|us=C}0~I9{wV3sXKgHD9x%3NATeBh}p4`O|4a3oS&SWl#JMd`jw15eB3qkna&y> zV1K+ZZc8n04&FIzvRZt44@kJ?r_OEzHlH zexprz#)`28oP`0yDOQ1mtn95RC&;>7CF-wa`yY?9>$b2^BQ`b%T|G5Car^IG|9wMEBE_0FX&*%N0cO@pyVfOoZc*lm5%`py4Ov>EwV&74r zL}b&uKb@hNW7ExvlKgymMtad7>p;$EX5Cv_HQ5bgCr6_FD+%3lt@M zj-w7f_{Pytz>Z`>_N}*9`4=(Qze9r;z4|-6$6P6ORrQ9aK@0b+9sF<3m(kOmSAv-= zUnBwBRP`fgdhQWi1Peau?%gQ&o-ghFZ2%)S34x z<^NZZ@VPA?S+x;cNQr1z$70MnQqRF*TehoTc5kI9dYSL16+8f5o}GGrem*i}ZI2MfY%UxVd@yB8Y3$Gxr@MO<#e*`?=QE)^OtS@v-uzl(*s`$y;AsaIK#< z4H{kgK6+U9#L$RRuFb-^d`X=8)dshP4Lpojg7cO=ESeQzC$Vll`}a2J^J*~ z99s0t#x1}4^3$-&%3)(|O?=qsayrNHU@w+IMzTEdB565{Woka?rRCXa^7@E45zg*F z_${H%`TUkzv{xyq>`b1F>AoAJ8P)Sz{Ft3qx$x^Wycim*IZ(ffNqI>S9u2}vX=E&W zFZt`1V(G0iTwc~*#=*-5S28-WJ|)+A_Zaz=6>*KWK>EZkxSH4ZC5UiCN=gyTdi^agM#Q20Lg2ETE2umC zJD-R^dvR|qc7(}stV^M%jb~rxhOe8;6(h3Rh<}uG1)_U(B ztG`*yTvsJ!l5sE!!N-0lMOOL5y+~qLno-u@U`az-6Q`@oPUbVxyn%&A^~atbDRB!2 zbWleX^ZlMv(|78ivlsId_xX+T(MqAj@ia3v4l~j&e>#bM2;7u<>nVuh$EK$*!rI&0 zV?i%3F7BG2H0x8y)Ur{W-*qQu>Bq)e-tFH;$iq6Xn{L^Y7`dB?AP>s?)XSUG8PE&Q zKNW<>*(O6aPaWrcp))xzCLC_&Z*`}lX(f--U|DoR4%6Rd&YwF*+al0eei*Tq^9}L| zGpU^I*ZyA)loZ2mjuOkGr|Sc+h2UW%x5jPZq_^aa0g7&J&yPfF8jRHcYde_qIA?u1 z+q6~IXfz>rxg~<0jx7QT!;mXd)}4(-IVslq)ulst7%@C(XVd&PJMnaG)eqYE11UWd zHF$^SCCiszR^1Ve3{9LT5r~r^8UG&2tcet!Z2vA<9Q4I(8;^q9>8l3JHKRH(B>YWN z^=#xWR26}!0nNp1nq#3O@9uq!tdbXY`Si?8$=wgn*c66GGjk`}`PS(hh&USw%dMMdTF*Z>40E2Y21kIxeDkaVkmJN^|WxPAbVo+7^+a2P6QTpqx z3&wWiFhe^ zSYF9N`tdr3`lrv$-YgncD5MkbPUWcyAom_Co91m{4!C}T+9|OZ`;qKB;w=DGZTyF` z79r3|X}q>=Ii`*3Q#JnQ?J~wSs>~vev&Q3u)PWORyjLz7u5v4s6r}>Gg8%siaJQ)p zzqjkxR9w$&^7HtH&|U0`LV&=Vleyab;#VKPf5(>yAyj##7n3Dz=qJiKmZ$Vu(j|8# z;9_(d5ft=X(S_f*&iPHFF#{VvsSO)hPY)>)44hMQz>eKo+1dz(7^2BM&0}8IxZP)N zmMH2A`HwO&nX`n+ztyPGM#pk_sHWV6mPy9vAhv;Bg1@PQUuV+32Jh@n62gl1oFK>~fclL1?{%J2GunQ^kds<;k$)u(ktcm#;4sh=&- znIaEQv)5}jnNGhX5WI{cD+1YV5S@(gQBuHV>^lxY z6h)WgP+#BX`lEYJ+kG$J287smuSeQ8&lyP-q_pWN2ZClNCRFtP_6#v8U$Uzm zI65N@&^nsf3zlv-bqdAnpY6kV+DxbZ0?$_KhMH+dYpgq%0J?szk9}i}P zTK0fOxtY{53&F|Uol(|;OQRO^Cg0--fW@4~7j)Yghz`(D){uZ zhlhxQOM(ITuKoIMuD!4i4$C)fU@DVlk}iKxZBCT9z^_y=!=9_C_*H$!KMe8h%lU$M zvA3N|+8XMrn^lWLL1ml$Fk3id1#GS%9|t{hF0(F(GJy75LHnHmUM^>PUFJ0)b8?TF zhEZ}CX<^YB&U}>na|kt}j9&pu-uu%vy<70w1_sl1?upNj7}IvQ7p|MpN(Xo%@3x)d=zI$g|OJLkDMmZ1J>(hKx?@?TlL38RqG zOGl&Dncm~NgQee9c+|`=yLbiT%0aiT(Ee>yirfi%cQRyUJEEJ(uU$dza;k|uPHNCA zd&1oNzo7FKv6gr6ZRBGShlyzfK4T*2@r@|WKjZR)Zmjc)r_A8z8jAiDd`(L=;~9QC zkB>)_sj=1uJ0r+RUcC~vbbtZfPMo727$fD_i(qu&h?BQ4xYx;NFYH|@Kx*%3PGAGw zJ2YM`!b|?U*j&2Ive?+{fmEkU(HuD)K9nZbagjo-u=+30wR(M z4PlLr3kEQA!mthrj}RYpsp0KsVe^Rj^&yy(Q;=21CnDCj`bIEDm_tB+vF=osRcSdv zWK?!}X}N|$wz*FJ7fZ`>lK&C}mHurv4o-gb_MYfS=?rEyP0=Jce%lKYvChsEjLAQb z;2aA)+q;}CoTD}7$zSV4TFWPOfJ>Cs0bO^e=^qMWKx+W-1RL?>_PM$ZP zgP^Vg&?Da!n=S{XW(u<0VcY53VWLRS6WDq8K&aA4a*O`Fk>86bJz(elsIP@dKVxfjBCCW17x zJVl&ct>IqKXgWEJSFcxDfz9Wur8%Grl>ur@KLSF+Ap|;bmc}h1KkDh??#~v`#W8}> z##-f~!g>?}{QH@sOe;LMr)jeciJRAHAFkeVT>M@1*vw`d<9dGbErhz`69g5@ASG(K zUkz&UQb)tg3AJ80pCHDv!|{!H8v~C4#DUbyF)%FxSiASl&6~#W?tkRx)iWxDtnE7g z_PAs&T%PRSc7rMpAbc5}C3*bWf2WKdis8z9+EvSa01&h4zb7-gh<6bu+i^S>uUgZ8 z&9tQ_u+mBbcn+43Pc4~E553`5W_=lRu`^|UIlX`De|sIr*R&Mdf;`3e-8R`zSM!9G z=DcX7fhvAY3cTC`GJ-4Zvig;uF4D}yVC~hoBMDl*SNRB!oidMzdr0o!wiY5SH=!hm zm0Mp5goNQXv3$+6cD}6laB!4I3J zm`^KY#Q<_&oA@XQOpT3=H#66hg*G-fjlq~giJsQzE)zqU)B@+#GUB<|*x0G87y87n z?g;_C;%Qw&L+DTn06DaV9IYOA{BDbS^Sv&&-Kill-$r(DIDxZJ*8)EJs{$Idqc0P1 zEi|NK4D0A2Ckl$s}7Z<>TNmaNBluQ5hpRfeOBklpD3ja!{hPE z%{0)dGTVO>f>twoO+>uP_|MLVEIHM*R8-pEi`_LNfx&A-#5fh7c2=UzIMyM`aUSmO zCZqKjnnTy|42e|@0GDVhf@WSoUokiB>Z*IyH1Hh48MGo4hMYmmp66q{mlJo9bF;{A z*Une(3))AtVlp91%m2Y_aHHf|=KsYEcHdlIj$<%476Ab=d9+v$xM6T`w@j|j$Ut2G z{_3U}kmFH)iZVIsJ4RQ6#iYcC(CA0pPq-vLmsDhYmBw_DqG-UQ@QcbfU?DW*5N2J8KF`B_+mQufxdL$ z6$tqCjSmt-%@+?z^5l$q&y8x7fPK{ICAdaE>by3&dP@>C^o^&i^oWQbHYj^J3~-6M zxAb3>-pv3ktHr$Wo$_omXpYmo`yoL}CsJTl({gi_?iAR>LZPLsn@HtRGdLpj)6FPH}JoZFi63h6ZYg; z9fqb+rd34aZdQv|Us4rv6SN{dE@XWMtp9-mEb25Dzy~NeQg!5 zD=o7{QEc#mkp5(`F`{43DC02#>*j2X+3&JD;%_+CA1j}7`^55jN2iLyC8lZs+GoFw z6w2m@M#~%xO3C#Ia5t1~FMN4`!*_XNyL32Y-V8b_d<>M^dMN3lqILRNQHIFoIkLT7 zVjGfYQ<&kM+Y7UEoFAW+?$y5b%7a)fH^YscrVxSGg*DgPPQCPy=hpsCfcx=FOQR*Yp%wAqz$PFO{Skpf!iTO{4q#V1K9eP-Xb{(p6(c zH00C}b}O=S&K{rj`Ds?CMxNU)|D}x%^Pw;21S{Uq>&{+ff$?xO$m+Cnl@qsp>9L&Zy>LY%$x|HC4 z&;EMkpP>59vLR5NtOk3cq4(~cUG+K<3sPX};_h_=fI+enqb)bGv zh$+`a*QLCIfKs{2#Ros>2F=$d$YH6(Z`xps?|o?d-Li9SxaEf|&zqm=XqoGy&g~LC z_A8=j!jGT)K8Prf{J#T9JmtR)1z&>6j`BMyp>lThmxra)br-SZ@qTFK*40ftEf8NT`6a2d) z*#b1R!tzl7*1miwhELm0Q&oP`PUys2bP!m(wedGbTNH}Aqs$dGa_5;?xEG#sJOxp} zD^jqTIQa@G;Q0uew05wBdY*k3R&J@qX(>o^m1+ESgTLE_3V>CN@n8R){r^UD&=Jj( z;D!XO3v*)BhE$HJ&1k5DqDx9fLB9&x5s~|}>nd5RV0BtmV6s0^7W8fe0sBD|?h z9vb+3)zQ%c+sT(fp-?(=SGGlQ(r|`aZ2p%>^*4knMjY!}%FM~`(fQhx z+kgLaO;=P)`4%FzWG(ye!KM^xGw%)%(n0k^0Lqt6#}w#ov~}STbd?9l3}hz)^fx$Y zHf2NJrVP&YrXBQ10E#x=YTljTwkUm>eD|^^4#HpGh_{IvPnitf&t=80ayDRxl z1{?vP*zisCewh`U3E86a*(Q40=~d*rc0a-n#kL=swf(oh6mJeS%&+Z~y)I)@pMFn0 zrG78_2*W53jz5*wgxWEe3|Wso^u$Chs5aRr>#knoYv2-en^m8m1mEk?^63LnvA9hK z48Y)yoA(`q9%IzvARKSuGG09-fqU|YOL6*CarD-4*9&;N@k_IiF^3l`_rp5+K;%Fm z6yEg9R0Qpk!OYz}6q#!GjKF=bV0A7Mw^53c$V6LBY^r4Kele~>VW}zSx`=|JI8r~0 zpjPSUcQ67v!Hp<(w9Hm|IZZSGioi0T*5AL&w(S`b9SyBU zyr=535`i;R{3erSN5#0O2H;!Sxz=KNDV+b;v+SPC+vurz&%K2Sv--=O^b^N@zBP>xcJw#MC+fI?Z2!Zf2O#OjX7~H@rYfNz*`Y z9O3X{@Hjr_*G5AcKQ*ZRl18Nn7{Zd*e-RZ$L2LaE9q)xJMt(XnS>dNHSv~KzwNb8eRXmbT_?;UO#3$49?B|Ti@7De?;PRm?>tI-YT27JcyzZc>;g)KqIW{>TPr(x z$bwGBB3gpaGh3DWr|8#kFFzCwIRqvAyFLm77M~?w|KR3;!}F0S-Y@ZgkK%#X)QrGT zkXQ2ICFbjvRrD0Kz|A}I!)@tVgZ}FHZtf#vKC>SJ zZB)?z7T=3eKtmQrSl$xY4Pf~_^oZ0hlKb^*XD4%WuW8%DYjMLnwd#%^5MzhmhHXEt zO570;e0D%c=#+gs9Jixh(^=LewO8(S z*6(4XXcthuc0gE;9Uu7G0wdhJ9x0#falz1@aWo8&jra-{_f>vPP0iDOx(#Fa_e4Gx z+xx@_QjDwk94FV}+-CR0+_jS*@x|6*w$vblz!KqqcGTHpTx0M1@M-`4(VZ(j?Dy)p zJR{%@W1NZVrVbCvhuyW<1UpvU={m~>xDoz()*NuWUVpu zG}RwQ>D@}TeYi8Is+#m(eDIu2;OSbb_w*H7;#{3TyfTjFfxP=z?>CyCQt14S*q{-2 zTTW_&ks*qu8j&!AVg*cEhq zbVMSgANHQFCJ^Ascj|!R65WA&zzr4S|E!D~W!bC7FIlwKW?q@?LH5vKu=>g7nxCmn zGGBRdwN{`1$;uw+2{gU=ld{>gq*^1eAsmVds}>Acu`6rx9N+95Pi{B!Sy>%*AHpMB ztsd4Ub{mH*!uezxlQ)a2!Aq@9e&*&`;a;mX!%6Fr1c(gO$jE~hpc;_CcvF(P86cjt zUc{swRA#frM8vojX6vo@y<-a3bj@zJQm~_-Z`w%7CSWeWecJ}$JZhHSP#XKKts^71 zVMP~%_Cs;)pglDK~z*>Q?k809gXJWW1PGZ+biLq1vRKv zh>1Aa2!d}@1xvHzH&)^4Jb0%qg*1Zp{3UQ#QCi#z&4{DUYc?8@Pm1;4M z&;Huli@AyKC&@z< zup1!gRk$ZgmJmB-GZc;RxOLiR$0R`3x`GQKzVE%xb_r@A@4ECE2|=d!u3$s1lf0TE zP4z&OYn!r z6a4{ZY4kgX|cK*f; z`ny~s5ph%}vtINWlg>oh;(MPa|W=SlK^T@0c1P(&n1{a^#Zvp-h@$%yZl(m zV)=%2jB(UXIwOh_+{R0^$q7MH1R1Y{{0?GZ(K|KSSVa+uFU@zDQtvIT#26>+;O%>Y z8%^sN&pFT~m2D#*nPoGuwvArcm-m)Zf0dabyF?Fqi?mh`!T_h6@4UDxDyM5jEPY>KI2ry-VPS`twxV-@){-4wG<`y(C~ z3=s!}fuN`i`TnRhpmd+*kh-5VX5680mmGz2oZoOr_GjIJnXiPzt?RmVyuFSm(R0Vm zLST*1qK9>z(m8Vx#L|RtZ~Y0&4+)(fH$6TujGd3&5&HX?Ech(VIe~I#>$m0l)?0rY z@RiVy$zTs0K$q+EjY|hL$VSxxX2q5VsaZDV<9aqTq9+r8T+jzepq(MeBHtCS)^NWt zdxhCgwts53JbO~Ti!|gcQ8J)C|rgBs=I|YBZNA zdK(Xj$J|x$E<0N6y`hjEwX@MG@JEjL{w`965Z-sJH*j4+PC-O#;Qs!CLd;_}kpZ*H z?COvRV^0awYZns~CcZocOClhURBT{NbnY7qMUV^L$di~IyIl^$p7q83G5U-L9Fz*hg z2L@EZ59!APcV)R;vHPPE3UZuLaj!-=cQCHZWHvdA!U3Pqr!IZo7^2bX(2%seCdHc@ z&dq$N!H~2BLf;x{g#edYlLfuL1A?fcIs&WoB}Pn-+kdE#Z`@C07#gFhwb&@VH`@06 z`r)tHkhHQO^;MS`WM9U6w?@j3?foHXS#r!Lc`<~IDcJA)vU0hp@pnfTaAoE0efH0o z`@fdkrN{L4u}R7dCqvxNc#HI2q}7?oM$bdZd$B+7FR8Nbjm~k(Ep`dK-hVVtTd-&o z=NED#)}DZBNLQcdyOGooaMpCubm^%JaI)v{pj6WORHtw>= z#_w>2+_)_-kd$+6L6pypptL81AV-Nwym*l^MLEQOG<6Y_O3+Gi&eFX13HGSG1~><7 z9m3c~ZKrf7^ZHTPK(xg#3|m~6SS_nJXDz!(Q^_^#o9_ZD{e~I_*8@}}bAAbbeK46= zP#M)FrVzQgG)PPrrWL|+|GoQv=h*a0~T4*A<(R2BZ&6fSsRzND%{DoUQ1%!_T3TM14i-~GW>02X-v3YO8jzb&*`cY(7=eU-1nsOD{`X)ZPM5?2g{#Wp=V zi|GU&;|Ekl8d-g}a7bFDcHb;=eXq!TSgURY(A%~e>3jE!M8zBC2a`~%0QWdK)~c4Q zUTFqB@ephb;4>V~SbBK*hWI^N9}xX=sePPEwr>-PNE;WJ=}}`cEwD!)D4$dGSXP>ReHS)4x4vC}E^Nh`16Hzq zDgI}F0Zqdx0-l@!SgXaHFCoUiinI6Gy&nq1%qx!NekNiGtPL2B z-u7z9WUwf>S>YiI2%4aYQ}+3wR}(uJy}f5fPhG*UJ&-EGo0Ku|uOt`+d-Q{qf(#{C zsh_eO=W9%7Xw2onQrktGJ4+7Ck_rA~*!sDqDDeg&Pv%~a+-0#^|440xPEh;%51&at zBZFldlY#q&^C4kgp+RSWQx+R|B0JD>&+8O;9hS>_^a?ln-;43kJ|fRV-5fRSg7f(lv@SW36bVZ%Hdw5;F*YpfKB6W-3n{~ zam8#{_OS%rc)~33*bpxs1D_G^JFy!cbgPp>F=?u@*?1spy^o05VPn)fIh##^7QJ9N z2yW$`_~X9aVo`o)ftLGnrS^~02tPNLswo+;|4{CO$Kn(|;(L7Y;%8zHbRT+wMe(pY zTRf&lzCmxG?)}L^hy5hmQc&8Ozly6#Kv6bcOxiow`pm%%FahFJ>fD1xgvGAMR*#%K z>v2V$C=LX4tX?}Bxnmoa9mz84FQs1Jhy9-58W3Y%oUI&lcYkUUIPi!G=|3ZjhfQ$c zMabi@?5naw8W)(G)=J^-2@LNvvlqWdcq_qwN_f5IM&DsFdbdTTKlfl=0(qST0Z0gOoeMn6bv-=9 z>VAA*gEWsM7EC^31EEA7k*@AmNNCG+TvUT0Sl>%5oRz9DtQ$1e4 zzE0wAH<2EYac3y3DH4yT^U2~rBZNCkPa9mv9+?o;s5h}Du0oFwQmed%MQWcxyoD|3|0e^)E2sSwpVbX+L z&**uKsjdes*di-obP zS1oT;0uTLpysP6z@4$XP&0UdtfmvuqtDNxw1Q`%X@>@LB`8piegYA8S#!m;a- za)2EK;I_td1(eSHk`nr%K}gY~u*a#e&#E8H$hhRDAPHimZ04A;z5Qx&6EDn|Hue`oeb$c+6efcU1}vmT<-HyRoSsvk>_gF9&zI zJ#4CTYMMwVqQnPH!qjjc;y;xVEL&B7@$rVfqEZ4=C6n^leTO~2bm7TK2EI$yy~6Jj zvq#7LF=aZ&Jz@*O)@j5Fijv#nlR?4%KU}1@Bk`yNeSMwX6ZmHNA#0pE1}S=k1SASg z5PUGbfs&Q^&vm_j5c<5~w7JS@{Wu323H(tudF&*Ldz+j5&((jsTX>x479(TQ2Tw>8 z=l)x6>=6`$&0dxYQ-As)CUUx{OC?DZXnA}n;D8hL_BNept z`=s)t`oEtuUVa+*W5YePCxt6%el@9L=bYw0K)9Y%QbrphHz6|U0ZDYgf*=lfT&Q&k!Vs4h(X^&Q^MsM&u%xrEwua-H z%_@Y?7!cj$p7eru%A=DKJ9j+KT)9I2WwezsIl^5A)wxScUK;mGDreCXHG+Q&o?`bN z<=oIC5D0z7UyyVVao^-GabPpaOWfdlUAmMsYDD_addbO^tGys^o{F9Z&WkQ3UoL7^ zJ$4Dlf$Ggl%}JlGm3oDm`SasoUzDDYUJ@j0O;ENQ4VT*G`FA}1qvqE?Zf)3JU^5bc zF1Ip5s_*Bka2?;5W@eY2YMnz45cWSPNSn)KB3t|30CX(h1s^)duWGZz@SQ4QOOw=(=+HW}@ zj14DG6IE{&rLapbMA?eW-S$NWC*UykVFv!Cu#L#)+iJJ%NH5soOb|~IL)1?Vt&vN< zk_fY8vUFPvL9$&U9>y^_H$3Fuhf#3?XgXRKHObC!Gwj@M|Co9C?`)*EmoC0eoGz5a zf1%va{AS~JuH>hKX$gJ%QcF@#)zI=&c^s@JV3l!R;vViJ)c%|Q!K#EuP%Z9a`|sQH zLiW9>PY@#d%63+yo{?eY>*wQ2NgkA=Y;%o5eh8e{xhF{fOUc0=oGBS-AEH9|d3seX zrJ!?XS?F80lkqSy7q`!8S1*|LwNXW5&hUah_c7j!VIsTs@5oP8Y2R%1$^PYZ&qEpn zFNC~8a~%Uq+W)Zh+l_D|Wgby`@6++0Z|6v{G07`%&RX&^E>FyY8qJgTBmc+vm)9?_ z=?7diB|@xnZEh&~WXa=j-tTTpKhL8z;J*^l-uS z+3gHyg!IVNeTb>lEwINeS7a(Rq*{4yg+Db2pngptquRIb{O^vu zr$1)Th4}Zs!FM~Uy)M&Vm?5_*i4uD2LaDN;|L=!3f!tH#{J)^zpX|9_29w@2F5ACg zggU#}T4p;o^ybYQgS@4Jc-;Kdmn$h3r_ii*q{?^5`(xD)?aN;MnPbuM6Jq~|8p(%? zQtM2;;uJ4>qJtN?85#HSbT2^-rIR>QVWURm^xtKea)wq;R(e~`P9}_0B}O&8r{72p z&djWv3;#QpS|^xmn#BK!=AkCn>)`ns08gC5`0*RJ>!&~x+LV>ylI@2GaQ|)d69)(A%7Xvq7n6X)7ldOtVq)Fhcm8N~kzY>l1Q;{h!*Xq{lLBWd zKYmoqU0T|M)HF8Q_K00#11x?mqu}+H{1f=lD!PumnpVgkek0+pIdUB_#pmj$n*j}e z2seDlm$ViAD)aO6ooi4sK{s=L>do^2I3|9CQDr%uNbpSk>1Q6Hv8T;OL@j%0GyVwDGgjZz~r$|+BFs^Co)Eo8Xd_7%K`d{Ar z*t3I<$y346bzKi5BQZoVwei(IobERZ!U4<4h;6vp`l$WKGb5BqaX~?%q=8+gbY%CO zKK`vivCEeQa;GF&4@AmTjehsz?;=)uW*I*| z_w@X|1nRU#^mK2~zvNf0tg?o1DH<6+wOqT$#+bPWpFGW@j}*VL=aZY2O8|vf!?Xy= z$Q3A~hZtwxuT}pMmj1R#aqxr?XtOJw^RtmVs1JZ}1zeBj`k271j5Cg)lv32v8ghn) z`0A-d5`K-pgjiUkZb9nDkj$bIPd<_n4R@wL+w_2r<3 zQmnk9;-NFB<7s_i{En2gO>txJ6aD_tiQEeuF4*Yd--<3?!cgn(gp2LMq}PHs`BzQFH>%xl|16-RZQSXtRigTG9`uYj63fBLdJwI? zEI8Q601(2;=(=3u5)$(8erE+2t1B8|P$&=d3&TiKP5>O`2`L0-T%L7;RXy&fT3tSz z76mP~xwoEt$jituZ9utzmM>o033Bb|r=`~E%7l)qtHpme4=Fye=Tg)y#w74ys-Q8J zTtc_ok7Mc4Ip-1r$2VsAa;&?2(7pTjk8uz!$tv}=py%tvSBdoY=?A2N2vyc<*hf_6 zD|LAv0`h~nrQiL0bvHyVzU>+)Arp6%?rZjoH>buQzF(VH!DArv>^>o>hLM|FJY@kg z0|#=p_80i0nO*ZuTa|(?M0RfLK`rq{y1Qmk(5kR??^R(W|jv*!~O z|Jrj1P7@&tnmd_(q}>KB>PcJlD!e>-2pVVhkIpWc)|!FF#@FM6Qw&>d2fG=LmsI2T zRJv8fDT*Zbh0$V|3hPJ$)6plz@X~AK)&VXqfnL7lS$I%pVes8Q0{yWakw8j8NhM)I zM@i{1QCz~Lcr$WA6Jih|7C7>477cd+72!dFfq|R^YPM9pF7<}fg5PKog6Yg@z7^)@ z>+&bs^|yUl+0BI>V7PZ4>gnkrgYEgkHjiH1m-*G@C+gm~d0gAPJFH=H{H!9t^TDsW zdDofO@Bklab?x|WUznUS33R>hhk9OIFwMCilRusAC5##$ z`eAx-R{A1>R0>568b^VvKbvPNM_N`MVX9Fek{292;C4cpJDuG9?VERxi%yv_I>UC1 zq@%*r5^JGrObPVLFQzhC!h}I6Ov|4=$C%`_e(1s1X~*&qkBBSL$GKZu)?!@Eb(JLz zhY!gWQl}TV?03D>Pxi_D%hxu$IYq0VpLmaZ$r<@oOBNNc7TI>kYrT(j`#Fr;;1AFf zo7>v9J&sSXBwPTds{JDiuV{eA0OtK*R2t5i3H|8p>DA`H_XuRy5snrkzCcWJwIYAPrz03%9Y2 z+nVI8nu>b*x1UtErKO$uZr6;jV@_*ZSkJoTN4&N_Ryyqr=}hLt7H&m`*}HUfn#|DB z(TPe-jE6=vG`u=gW+GR>>?O2_ZFZE@_7af_ySHq8^N{eG^iwJzj&fxcxgVAjA!IkK+LLK9SDLAFkjwD&Y%(e92N0tfb2Kac5hb)s> z18S_!ZG|PM0V&dRy?@Nvq_qxuzBe}wE#J>6`yNG9O?zS*I+jC6w$wI(oJOItLo4J`=ur=)mb%r zs*Jn=nI`R;&oR|2KOH+op4)A13AJ3(=sFthKW%)BCLuYPF6H|<=pujm{jU%89hkDp zxyJC8V@r&Dz}ZNvXv=A}c8k|`ItzKq2tgwwFU!$Jhkw!z`y;`u(gW8~4lo3M@M zUhmAYNUZ-8nP;oLwnc>^S$0@VR7LZ=Rike^Ndgc1Ps{Kre zlkxd}Ac?9N=xodB(XxSCBYAl5T+;f&iHQwG`&qCK&-I_(G*B}PD>C++=IZp{Evmm{ zYb&X(xch$LUJil!4UXpmksd(TOKHL%zwNrjAolyiQH2s`{ptZ|1G8KKV5*bGgeE7f zDBt&9AXl*2_SOj#vcCVzEyBSr3c$Xp^7XCQ!AOq?hScD2#X9r9(OES2RE}Q%@~(dg zZ18UP@A;#31H7r(YmJ6=2oIILX#t1QVLdgqsgONG0OoWLN;g|9w0Ri`97}ts!_lm@ zDp%OUpm`E|7Td#(hq-jQ*^Kwb23w8@Xg(&5Yot8*owlT>9vj43K2mySYoZj2TmEDH zb@Q8Rh8LIy6>J$z0!Y|EautA<9?%^7f3)=$y*K|7UQ2XU52#@0{ zkoHXsHlT&Ll_k^gR8#c%Sp+@#nMpxb%?+-ASz7bkW%bIhf|+&&1>TT25h5F&$uMmq zbd>&3CWx7!ksn}0dhHjLrNKSyu^r+0qvg{u^0$XR8myMI8@TUXaLUHljBhc%$%>3q zPtLUM<1PgL5`HUDV1^;E8Jq)NJUl$}%V?HxviWBW#^m)~R==Z)?x(_TM&?lkI+~z% zQL*Z`_a|2xZpPeY%egzjHg_v(aQvqQ^(x!}9~vhqB@h+iZ8x%Cc&A!O1_aYu#^T#i zx1j$c=*e-aY2H}JCe#Apbftb3F>9QVNQCy%U6R^Uma(Rp&->$VvycKg^7Givt^ zJy8?apTje|XZvSSf&mhcZ*F7b#P90+D}_ZwNBnJqw_HBL#r{ZNj~_4v^T7Xi7vE1= zH@!x=4&)D zTtq-iGevl0h=O-MEV7e1;GkRHFr@mH$JyT6VrlUOglpcQ?eVAq#)v_Jfr0o!a+QTNu}0i~9!$0!lClDc8_WRRI^!T=VjqiE?c`jL4x z8P9_KS!+@3)tp!-yq1`bjt=P+cPFDhT9&D5&5e*?^YTiUiSRbp76z_KM`?cpt)a<0 z$HD3>pq)sL#4+S|ryO=YBl`U$x{q^>kdRTjyyTV`QgH!v(4W88=aI)@U`4$;R@vF? zvC-9)NQ-S)nM_`go&F!uW{0--dUW8mTGb zAS#sGw@RIGF*qPVJ-=Kbs*QoLtI=POLiP_N1{!3V$W6Z z8=)|qG7x4s$j||2ezZJT>=~8f#?eVam`6kfjke4lfq^*HQK<+{amu28u2T8H=+=>f z3>|m_JKiyL)nTN(?NaN=Cv#PQ|K>F$dv5q}6$XR3lk4WhS6o}|cF@&|uxxB8A^EW@ zE0}kG5pEYsHMUnM>)%4b@Tc0#H0dCB^{RAFJjGjE zgYb<1ghxqCKpAE2WMp)s`@|`EF4&fpK0e^%Vpgz6-@2{0WlgTOQ#WNO+aF7|%?%6frY``JClGS-~Wu+reyJJUmM zCsE7o;~FOLaZI}q|7*AfPQ_9AT4~`uuGnVJM^q#RYuNN1E zzRI8o4E_c8o_axv0chXB)0|M1mKF}*+1;O;?k66U*C~bW<%sx6n79{$cA*zN-w_fJ z^b#WW#>Sjby_f$IQRE7-Cm9J31S8xSVUlPTeMeN{wNg^HoA~Hj&yvhA`S5qxcGG?? z>Hb~>60foTB|th2hn^ElcdAU63=%T2uvk+-=BDC_r$`9#^5si1oK=3})R|px2fX`1 z?PeHL2PH=_rYS8&S&9v9P0jnxNVL#h78cZU!)dYlvJhyHoLXSN`5{)sCB@tf5A*HY zw=h$a*-25lh}1U6qjF}(qVPz$c0bW~C;ks~cdD!3kVyILV{1t~ds>R1sp4e#WA$7& zY_;Eb?d;obF3EFK=M{K#RF>TJI66y4#*ULKlB&ZUHI&Hinc({K=W7zh@uI?yvKIdQ zc8d}f23Rn_!Z*(#n6V|h11)@{bVaG*?Dh+W3`&L6kmAxera%fFc(OBf7@qot-Tkt z83|yF5$v@Lf7t2x@ZrM}_2;2x_dzoo5&Lq!cdkZcAWZm5G7Met&izz1npC=?^TrEf z{v=XPy7@BHp@=MhkrsTf4CMn-DgF}xR1kmT8q~4jT3@=tB6mjdnzAvc{@#R>i=^2d z;KEQtSxW{WlQdJHJNVE(e5s>p?YWlOD*LdV32Id zEx@v{yA2>iKardF+&yV;ANid;`B}p23x$Ueu*64CUfl)t(zo|vp&mikMMc{ZD(ao~CnVhKqOG>VDNQOG{c(Av(FTJMSZwR?<+~LOP{>;c#~>F-C}pfPg^dDtYGv z4ecONU|in^&dbzEUi;SFz2GI5rm6|zV5&fAm#GpgLv11N z`s_ZJ8th>61Uadwr#3yCNW2$<5Yy+54*zCk1TFK>fuK$}LcL?Pi2C54A$Ndk*lY-hj8naGDnNLFH3SJMUa$dkNaU0C&Gg}EFJ zWX{c}FJPr2KQGftG$qr%kP5Q*@ocqkbt|69UPB}hODmyawP-85j}+uh8gF0E%t|tMx&4&K{iN1mOSm zQAR*G$v0<#Z8?oIyLn#>E4G7wB)+`8koD^m5eEy*Z!zP2T1Q9v`_5}uuRc1hD2v^K zq(IU`KK&_q;x3}Lu#oKl5Gn+|%j1q~u-q+!$5am$@9L0}KC2WGJIK*qa)U zMZM;?n|8`$opLBEz3DOg5CU#8V~x#~=#kUm;p^L;&L8j}{(8N2CyhV32ZSOkM6wnS z*J$Co7-D_jo&K(S_kL?^nB^F0*)ODtFEKvTo8+%Rn{s58|0s#28Ex|MAVugJp`zpA z4gs(c8xmk2KbIaJ2CF_888^s{J-mS!Vs!SAm3=d}PxmLvh^7ZV&>fNe^^|E5)x6T$j3m4xZVr)vbiDA>3m{>LF2cFdU8XQky6-}C!KJBvgF0g%q+=v?_T~j z^4Wl&*Fl0_3OS*pqm%dPr;s+QrB{i}=c_ihNmj5vDCcKPI}_8TrGVmCeOg*tJO6M- zg2t!5l61w+he^rpH;MPgdicZj)@c9_AjHXeyx0zcd!aPvc9J5=lc`rVT6xfv_vt|n z6cJhuny`%5<|Pp-aW-`ER`^UxfRsX*mX3!IzwV&sJMBp87r`UdncUx&&@Gd^@9Rt- zMyfx*H{e3$IS|iLNxa7|X!QssiS^%c`{~~PCghY@-_6vZ5~Mz=x0O(NynF62B)Q*XU&gy*~^%4 z9}M!-UEMf5Ijx8%WPC=^C+OO8r zTwMf5S#!7R@O(FPJHfg*0DMq;U`2SxHa%%4j@EZDn+Ejy^(HuiaoZL{B6L_SFL}z! z2-8LQwC~)NhRrh-9}{Oxn|(pOR{k;;z3Y$J9;*#d2*a&oy| z#si<;K&Gtt+KO?YzwU8T_sxLgz^s-X=JbQ#>nLOC&NT68@6EKajnkv}Hp{%UknAUe z>M}n-I_#1!8&SjFdMf4gSQc%`8}tY6d#H6c#qV7g(<8>!6sz;*=k&ZEyRMIB3D~0# zrCpG?IkvjZF!UKUUeAG2Lc{lkTCXNZO)$Fp$?$2aC`XGb@78v7o#V6t;1&&$=QT>M z!1|X+k2C-L>DC0kfkC{q41ocSvK)@!jO64_g=|MuW6<9tVuIZl~6Tei9uYFE!;@D^hS zLMK)|-e`uUC_jIZ8OlmNm6Eya;_O^XEJ1wG06c5?Rs&t#5t0vMj_XgehI;*5&P2KG z^Y1e5$H&FJc`cZf`{qI;qqCHsr^6xk5o%W%(tonO3R9@P!26H|iC!-vvoLbeD_YIG_xXEXa7`Jum!O-ku>C{xm z2Xrta6zT>g4`SWoDF=2A4hNu%5V@sxt{-SiK*37~XghcV z637)`FtbNa?|M_>UPRu0ufCiB>|PsAse=j)h*@!R3m0z9?jK7zIXP*?Ch#{OM5V;U zIQM2#3dy++4UO)rTwI1be3_b>(sjJY7?DxRsYI1rXNq&>?iBr8Sg23_sz&<99TaE4 z;gas6_ejt1-r9&$lGlBgImOS+ERx)lx%g6Wjlr3zKB)qSR=ctC0T40f(u)p<*Saqr zUPWHU{G6DuY4PaD<}fja-CW5pc(IU^aNmWfS2&NTmA0dz?&r_7g8KUS`X1Q+lVeUv zZ;;H3Ka>1sSpSi*)y7d=yNwo>Rb84y15vFqmNS+HTpL!VK8e| z8dQ`SC^GTsQIAWkcV@1_2W4k*(4%k3N%{tp>|*b`4-`EwPVf?ZcZhJO-szMK( z)`e}qi>9kINx9T`!_;xf$w+@m_6ciLsABLc5_!vEV-Uu2^{b3(dxDl3(z1#qU zJvEKzWUN)SGOEldEG%qYb3bdF-4xT%)1zLhIdn8ZR%AOSsDERyGQMbpO6Qlj5zXG- zBd)t6AizP3^$ake^}Tba1LgG)gf7hdk*Z3xnu_5*WlidZIg7{J9IRFgn5KNM?H=q{ z>K(>}zhUuz$W`&&_tM~Z@ z=8_FAJ(!)1PKnc^pN}n{=Q7yK;FFNBu+MH`@Z-oRaTCb9#y(tfgzVY3u17z%Lxa%g z-OqyD6*~tZU3Rvy!q}_OmFNnDhlNG9`9rgeIc#wR8ad0y$EUjJU{hX2uh`SgM`i|2 zBPuE?$j2T27VRX0L)ImC_o2gG(rwdCe98~CwUkM@TJPCB`%x%LBt_URs23YvsVw^7g zB*AZF$AN$+&mTWe$s-#Thg(=!sB1L>73aD=V)OexWBhnixC2eBdfwxPX7y#In~^Lt zjiZ_x8rQJy$TJj>YTOMiklqFPmK)PPLWZq&6D8cwd;*^y?PCKdGPDXQeVQ<_Hht-# zhvQ=(J4M$SZgxmn=T+3&X_s@sgMY`yl6HRx$7g2t;1KRVG@tT6J-C{T>4F>;+i$EK zaV1(>`oyW1Y=8Vn)6*%kzlwwSq#fBgz#_~nL>U@c(aiN@dGk9ZdH1|iR>SfNM_ljM z(NRS18i|L>gQUSFMT495y9XaNRKGM97q^ViIgdK%qv}22Nx|RK7rpO33-CHfltyO= z>7Dbn$*QMF>O-v%qTkGjd}bP5b2sR2yDKFV+dbFtdCfhbJ~#KS#1=IUu;Q*p>01a& zNKr}2gm5Ft?B1^hQA7N)Ni12x6h$-^q9XbntKJ8+uYsT#P0q^UtrenGDa+R~Vg5%H8l~K2JN>t896S)q?VleQ*XF3fk!?F&ddSfRw8Xh!#9> z>n>%$jjwC#=#-U<<~25oX|uZdX4|pnfS?goVz8j0c!K7>Ubb?Wmnj}lN=`mB*>6@5 zAwavn{EbKK`+6mj=R#jC>6lOTuguW<;W|w#s4VNr<}?0C57bcVxUmCAOpoy4q7Ke2 z0j@qfiD7bLPvpu9M+<5|r&!8LFEM9XsIFgscIUdSTK}GMXawV6KWF3omOv0XL{Q-VrbIl1!Y@|QFM`S_I?S1= zkKci9MhUZ$v2?;?HH%eCyC!Y+G%?pySf(ig~p%B{DMfu|Vd@8gJM^Q`9 zKq<{zTibX=eNjc$rm5n}bp?4PBITqGdP7}Z zeUmT=3^G76umKsl46`YJjap*YzI8`3pvkN8%iJeNIDACt!r}Nh$C_3Q9uD@kkRF~I zMZrrHHACdw%CNZD*j}qWIHr%Auc#?xgYH%KrqM9Q3_Tkx69wsqsVvO;L9R<7oOovd-fo)Rhoq@oAfSvo;Lk+9H z-U%g_>9lz9od;qsZC?oh$K{f8oH{mno=y#%aUE1mPXiCaDN^<_UQuBoFAh}^*CY|8 z)sr_dF)<#o>RjV=V@BHA!xFs(bO4--%6oGN@gvtMsh_Ij$u&ZY986DGzQ3Fmo|>LsQvCU5`jZ;4iddr zCmxfy2;i1{`z0ItT>~8RdSn>Q!Jorm)?*(nx$bgYJh_4LlUSXs-*!drhR7QR*cDlt z*PG(QU!jF(pDL0tbLs!&#iUSJr@VN5u+2c~;cKSw)hg%Bsm;EiKnC#pl?*~yU5`)K z;>GBRLPM70)QzC2{Ud2ia6f;EerPxvhEmTQoeQZQuY;M{vc}%2^63ZplR$6p4hNP; ze>Ag25Dwh+2F?g{i$F>kQI;GbPI-Kcz4%&l6S|61eEDXm?1vmw&s%JPFN!NIS%nvO!?=yh=Dat5@HwwI8y&nW?DsqTBq#YFUxe!55LlaWPqYL~RRAQ&hulD|hbu6}aX9{1f!K|GiPyJh|_$#OO zEGlv@SKRJ;=DO+eDh);S+aEovA7aOV+V{GMX5yaMhsn1BEOB~4m*t*m|8n(R#`Yh1 zK*>7=3IwZv)BRG!nj;~!PRZvnH->L-^@^VU2mhJ{MDRD}t9_N)b!s6lKUTXpZ@tZ#z z8=u>Z9VHfN>qS%p146nj%AVJG_oAv{`3D150ee2l%-EEa!p(?GKQoff-4taNnV;V zyYOk+&f2EQB|^Q>3KVFCOQfq(cd$XXI5~UAGI1dOH3nHh2bw}-FH2)}^%$P|eAfH- z>3BhtJNQ1y4%V zJd0Ub8IaKgHNAZh5w`cX5>Zmezp<{EBWF!w(4^F7`ri{17}( zg*~=*D6te1mpqe(L_cbmY$ZolYijr6nWF4O$~-0|x=kN>d;g;33fp;!YsYG@X6Vct z4}c1#$uUxFwM5FIE6d-9PBpB+;j#6igh`jKy4BqQqRU|?Jscb~&}vUtU+uAYl}|fC zw@db~`Dc!fSLScr1pQPnFpi;?$QZLDA(F_X0IIn`3-tE6PJ3t1kI?DxBcf4~G5p*&dV|y7c9~jv}j)lm$3k ze0>3U0{Mp>2B z%#R;YOZ!JHB(0?hTL}PqxJv61LE?DL12?1nn?9=*S;^+qKJs~WhNV&8o|d5uh;Nzi zRH!ennd(}ddX;0^;geTqd_i@E`_99sPy1m|$G6q2Mq_N%u0$$lLtiaZ(hU-jdItfy zTzo=8-wNEWvMNj7upE*|CsQnVYyWv)ed!COM-rhpS0e(X+2F^W0;pp*P#)C>@E>#M z=WYYengnK?6nJ^XZ#aVDf_A#cceC^Ecx}#*#i>g#9UR1OVVnf@y8%>z=K_b}18^Sr z!iA5|SJ7Wo=o8V z&UbpB6x26hH58W$loI|AQ*RxWRn%<{A5x@4LOPZ1Zs|@zKsp|}8)=o05|A!wY3VKz zke2S2mhS$x@BQw3e}6fKjv+kH*=Oyw=A3KJ1KzCpX}eiltfFm0|YjS$ZLwB~tIC~YbWjyy%rZU>M1P!Jo+x&5gAo%+CG~XG>f@8R3#YTh<8pI0! ze1MhY>{uDtb17kL zYe+U;udM+b#F|vnP*}JH)O<-ll%5tbYAZ~pz6|@t1Fa3NgSlCfK~`E?8U_dokn!?o z4}hzW20A)dJx%U=zNrNpX(RXBI}?Y4TGg8J!7;T6D?+Q>-x z9y3uJTSaFwJIl+Er2f1ZUzd%HaW`oHanRCOT9Umgw@7jA_vt~rV-Gz4UW^$#-ozSX zxI2F_fNc3UuF~iGN^hmR2K;UL%t}i1oTy_x$slp*dv^<#dB<413Ou}hkW2*)7@iU_ zmWb>1E|rx=MxF#aW?CdBq%iG`YHNMWK5*D0VQ+FE`S6m}@GpPh!$77JNm&{HdSo$s z8i?^wz$n<<)Vr}&>IDU<%D187aO*sc@9j;fWtkoiym6t4!F9+;iEPPdu1}xr_^P-S zhlaX;|HfY1hhNGh-=qA`16M~x_sZpJimzWRP;x|mtofjXoQofPu34A!{F zK?TwMLc?fkSR_)*@0tJr@s`&rcio)J$;lD59(ci3TrX`M*Slj$0*V22ZSEqXbLwP} zDYx=%AyAu(#q_Q}CnrA`clToo{4n~IYc#X-TSLRuK4{PmlM)l#$gRsY6y7M@yPQ>q z`SQ)IQQH)VwxBUFF?C)11Iv?;x;*!^Pv8J3EP~$yXE1FW6$1n;pOcflQVVngqQb+b zuXM(_=TYrk*_7kgTMZAj)=9-EsZEQ7wG~+8<>VT0pgaFZf^lEhNej7-z0>O@Ov5hH z(opUj^zlrSGl5|+LA)d)7Yq6=I`u}$a$AJVCoL_vDWe?-HZVgG6pG@XG&i$Y6ox;4 z4qEx&?jpNjG+firJY;G-`tfb+C7a%d$t0r()l(8;1_6P@DB7WfcIY!X2zi9q1N!3X z2h*yX${$2LK! zi>HV2&-ls7QcV3$i7l_=vFVksXuUm>qpIp|UK`PWlpTVlWUn99vZPg!A6vRNXAnBY zMo6~qMtLzulx9C+s`Q{PZH|qNjrPOn^CK@SS%F%@sl{Ta@8#S6gp9l(##KGL4;WrsbaYg8C42sdH|LqLK|zmX_nGO83Jmi$E;!eQ($d|< z6B83yCNoybQiDVKQE-ly*4Eb2PKI^XhH`kCIM<~+SB_CwZU&Ei+gthh`SuD$gc!Dl zKw2@B(B-NJ+UESiBJb0l6=D7i6^P&aTgkv!omm_U@z*cK48U>oGAE_^L^JD0evI%* zFUSW>N{O*}hVS>yZfTHR@ok+QN{3bLVIp%{)YP2EAuHFLnSXqkKS3NJOE8<-eR|2> zP50)yx|N(!<&QDF91!TZ5*g*koQlTG%(7TYnl0wz$HKBbTkj}AB0wA-#yhj);myR@dO`d}sD?OCpSpv0 zYzfFzU?P#HT`oe91dLIQ!U_@ap2s0 zFF3v_Ae+Crv6}PlVAgfGtUfb2F8&lhf8x8hik(K>fPR#%<p@o_ z@xp^X_#R%?*66gAg9&ft_FL~^3QpF76hr=2miyGQDK1`bk0~zh_uV)}Lk)#}vaJb@ zN_lyqF+1L5TleOdWJf;^+qZ!@w|O0WX&xTaF#%>nad;}?5dU6$|JQ zVTBMhz>yDKNA1{p``$X?QBf=qdt!%mDuK&6*B;by2?T z`nQ!ACOwoU8gLawHmWx_H^k7_nwp8+y&Gwi{gD=mjuL8@dW~J%rt+-UU{0?5@k2t9 zZazB?q{Tjwc!w8*)Iz-m1PcML8QfEMYN7ydOAjPyK6vwX-;uLM-lPdTk}oyxya3wK z5YqXZEip4gjj`><1QZNrI7)pib;Ze?u2u2z5DfZ&-J;6Mi^XPjFj^a7$NsuBlBMF~ zt0xK(pYQ2&sK2$r;n1%5M;(pw$=lr?{sZIG6zGVt=<{&_FQp9^IKG2!Jwi#X%4*c+ zi`_AzycMZ+{DO{7Bkqj-ea{HT^jz$*^T@mk$$y! z=n$AqQB}T2)y_qV**imGs!%jlvoTO+(Sh8*Dz4!?jcB=2y7X(o58&}5JZacw+fO)fqgO(rxZCFR|^v<%O_ zyyj=Asyea*a=P6WigJ~Dnekhgv`cmV_+6R&U9_6zLj_x(+s;UHEVilIRMeY+e4wFc zh30Xkj}9sV>{DhM?9=c9&;2juLACPOf1b$>lr4*xd&t4P$T9yI$P)qpShT$u)GWss zZk{+JRfP{MunvGXUPwMrs-O2mh5l@8V9@7ha+0P2{I<7Cc%3lMhXi8?G`X~$e$ik>8VcXXloc-tN$C#QH@slhl#BED2(G0>B- z5*Z^abF52}_v?ASHhElc0UdWWyPzUX^Vu{PWu z?2d?>Pw-W1mkADBc}8mVlQM@c9Di;y?`t6GrL(k@3{0)6s#;3^W3IS85}5R#;`8D? z0EWHbN)f)JcM!q}hlpeISS63Y7yots7V+k!0O4vcvfKqzL!pct<715#`x}7&N)-1c zraS$}+UG^{S??j?Y9b*yB#b>Sriy~AFazZtuc=#5r?&3r(Tt1j@$O`a5CHe;iEmLU zqLoO>s90GY%BJ`3g8-hu&q~b)zl??-~=A075l9I_{iqxG;Kh1u*an;3&baZJ9QTb#y}tN z#{sG!4&j78oN;I?L@gycpnHXa*DG;_M|)l*C9Jg8c0^5I|1W$X06eMkCq|SD7rAf3 z8F?f&8a6-diAgy)une6p7qf2eG*#`d?#5Ny{jc#<^%GnN zIb@mg2ls7$Sj+bfk&!w|%$;ofP9OfvH?nDA(VEfpbAnd~@z!%+u$w(@zIxe*M#>bn zY4sNM-&z^?kAt_uHHzgKwD7#^HWsoc($i&5z20fzvxi4bNtv6-0?eYT0Z2HVr+_=# zW3O$+{Y{I}!%5f=*AbSmsF?QN%^`vHG>JBFABYs}*^wV!Yo4Bb-MfK7VXDftzPT8j zEB~{{ByZdyB=8OrMqhD(WZ~q*SL!U0D3O9}8Xc*Amv_3LZJIFBdI1<`Gh?(D!>g;- zdZyW#Ci7;Eu)QjvH@d#JXp=J(70+f|OZ+^b(OeQFU|JXIm9;VUeaN3EkQoTxKvUo|y5YyH;* zO?mvH2BhlnXgxmE@1OrumO2?3HMBM2nbvovhSh90Jz#uz7;b>FU!7MPR`4MOR%%@O zN#0_CJ!TMUc7fjW6f7zR@V0t8hxD!s;6tFUEsI;tN1!n>GE(z>$Pmm5GadHDX$+`Q z<$$j4AI#qE2M7X18(#OBwW++W?qF393tarRGm46^9KuuwCQFIDbx2@uKR|Ch_(r*dGJdJJOQ(u zr^|#^Y33bhUrUEeQGWXI6$ZbvngUGvk9dSD9Vz9e-oYeMsPyP4{ zr3b8Uy$2UVV9Xpb5rVwpT8_1z9NSP$Ufvj=WAl(p+T)C#8yQ$>X&^vR2R@aFfne2f z3TR%i;P0CyF`tWy=`pxdO9XhfvrzZ7varx}?7Uz_-$06-hxC&>KWRJ3;a)l;YZ8;LR3!d@0ZNOt*{m>nM;|EqsiRL6 ziV{3nh;g|%>t4*gKEkZ4M-ZiuK}MG70rYnC2gLQ?ADFxfB>-XGQ2$uSW>nra!3hNl zRo6_6J!BuWUYZ`MXZ;lhk_JRgl=3fnmgv7N`+tm$DQ_;{|GV9aE3yV28t=Y!<> zhR&@nRnalwt4g!{KvFcwWuydu1QVeIy*Vn!WBiooCQ3fOx!D7rw#O0tFWr`_x`@N3 z0oAw%`@K`2kG!(@9(O>X*c--+O+oJl@$7Jq|Y#^*f(T z5(9E-BmR>uF$!~-L3X8Peoc*ASeQ-jU;lYnwE+dAFQJLAul`<$9p)pa0QXr&l;?tT zzWOMWeJnF%wa|d0Qpm-u$Aq+0qed%8y*T>W*f3>3KR-C=SJfRm*E{@M(Z9!DhDm!c#+cxRL<=|49y@dW{DtE}X-UkEYhrD1rvMV5=c)E5MI6%y*cUpJ_P_$OYl z`9=J#2u*d)8f8k(bh2XK$RRcLq!J1ak_!RbR5!BQ-`V%!+1X5RP?f&b*;4&*+LLb| z&%7}(FkCbLe5-vM@(9% zq$<6zA0^8GjC1JtoAL$k?k=pZ)O0(qG6O6z(#zfH_J_ZJwzmnp?8nE)8J|?p%Dduv zh0_0nV778@CfZQXViAUQ%8fYz+tT0xLtl!aV#@r z8#bsxNm_hYQQmqS#mCOU?Pg}Bsbw{^cRt569gZ@u5g>*sdSBzgP#0a9nJMv}Zr=3= zeI`ht^lJ161VkS5K-NT95sta8b~pYre0<#{??17{-!si z*{lCRk>ByAb1Z*^&IWNma3r)YL#P5SFg6-f)>tp&#WTz5pi*u2)59xId1_efhfDF$DDXFL=CV%?mbRMs| zc3$C!fuOA1B#M#7OEtdg^*QBHP6`2yfO-4aOBfFYM)y8ti}r}qHCBT@p0-GuI!a_9!Cu zHDqhTB<0U-OqDw04Sb8QoDn2$Ea~oEyNdXPD~Z0|Lf640%W-iEfEth9hThWCVjMyw zB>`tNpNB%OCSEHsk|sU$$&)TuZNv}WVZ`+2;_fC3P>BC@emQXBOD&<`!nxG2j`>~K zm2}rhHWdHWWtoSBDJ#*_mf};Oc5U7FXikFnLQd5;*!X~eL&k#;A-JSY!VRt--eqUm ze*E@Fk&u_??u|9a=n6_N#+NO0qrYuYy}F);R={Zia+b#+<6(a2Px8=a*1AC|y(tX* zokEbOQrfAKl)jNsKpOLaEZon~=-UP$cHc99*F3zL@g*Js+MoLJ#UGOI_giWcRf>w< zU5F1)Nde^^0fk@)@!=H?2DCdK5y7!gY$PQf_hInUC%+I``LUAj5^WKuzaI%-4`tk5 zj#zG{*DW@?vp)P;(7!?ml7}uOj=eFTwuq(e2hPvU;R23kBi0$W43G^Rw$-+lUq#Ix ze4nSv?__Uo=2b2&EuWK$G`TIC#R$mG&9CEeasG)tICv80>T>YADJ3Q4LhSfMxtggA zFmWNpIOq6eokD?vNKThi|3!K$M~a)WHSZ5SwD<=e%A46&z=t^mqE58NM8v@n+j2M4c2+HV(`o@9DSZ29u)GS4_I`w=Brc)fhN+VGci@tW8$ zKm_d-oW{lq#?uy@Fsrs%JDFRiiWRAh;n&eEbUtJr-|~?lH~3M~(TwCUH@3*}9k*G# zI(&#c%7a=rad}tFzeNud(d|}dZvJ?<^^%%_Lw!<3N|uR{@eGS!3IwK+J^T1Hd^=7} zg)@wvQhv6c{KQGMR)J9ya@bi~6 zG>Gi!&Q9yxzZ2zkd+T0j`BnxQ6iEX9+fXTP=$k4NEAK+Ah8kq6LHsY&0+N?{_1f0u zWR$*_=UKXE=7Gpmm7fr#zboP_;fW>JKlG7#;0YrWQw&0wc{k^&G)PAwuz$1ya;*gD z%RP&LfPic36V*Zjg5C5<*-UTb7_dS=#J1=$zqWt5L=v!#70@w{B}#vP&Xslj$J0#wY3l8&~vy4kB>nk?q5hSDt2vu6aD}zDY~*-WY5h5q{XQZk`rDBHsV2WV-q6y`)Mw z2v6mZj~h1K#DcyRmzD~Xmb8y`+E(iPzV0DuUvOUb3xOYNI`sFPNy@~8g^X-T_T8K} zi4M)znUof8y`bLx{r3|}3rNw0LEXH%fNwlw>fy>z(f8fTxVfBsj_s8)`>S)_a-#nG zcc&jaZcFgzh|-Aiado}@NDjX17;bGB#A|CRtdwB{BiJvvsd8G_Xu$*GS;YXhH<2la zqok)KNdp$?X)eT8>(9fsYpp8Dry)xZ{$96dY#&*; z@IXs2^r>J1Or=~GDJd*c+@CenjENRGDoWAW!`h#c^&$-F#gW5~yEaUq4rrgLLfbBzG)sZW4-+kl5ccKfzZHfj^ws{??}c zuNVHG(qc-9XxQ0|iQ^2Y4lFP(CW399pL%m8ugx@~Da6VR49g6P{eRlkiu!fFX*B(@WsO;vUAWTK+xC#Y9~W8lJw)N1b9c=JaK)>qtPZpqjb%)p5Z6t-~V2pSJbng zmLkP*bz8~G7EM{BLtS7s`0E=Q6@<_(4h>!1YasLFe#V-Bt5)Z?o>|x;znWl9!91xxS8O>7z7?68=>N{#Yp%%aN!i3VU?3@;T{@kpF|LoQMcY zZ{*KUmMApxaUN^33AZFDhzCg6I16Fl!ovLd$3a92tvqAUo5YQ%(VLKy_cZG8FXErd zz&nCj^%+hS?bgPQ{st%&M2!pUV3v{J8wTyY4&ljbT~9| z<0JS{KDsF`xC+llzmo)tzI-89s9xX|Mw5bnqvyhagcNw=7@OT8BqDf|sY?F8PZcpZ zz~Ms&lb2Ywh8cWNphBY=EaCg+({ zgi#-(vow1KaQxYRjZ@Mu0{v|`6x~}|zCTcg8S1N9R-gMjLQhXO z&p-Ot_0oNdx`WHYdf$7V^t~XTgA1$V1{q!*X$e>qPy-(-Kd@1Cn!;L@tgW-nX`{+Q zPehv&OB6cwrBp8;4Va8Jj>FD`XRE3jN=xm;Aa+-bU?%AwgN*fn2BO0o^`7&fPOa{+ zt<$+MfAeN!fkO)1xsX#^mHpSEotC0e^>c5aXVwK#tdO9PkUf720v413i6VVnT)_>w zZl)sUB*k1r4Xnwb7Qe5zqNfru;M?Qn;WV{?mDCyh->aQNg}5~S9-DbL9+MJ5oESRJ z|NG1Ymhg|ZemxKpF2@jk-D2oCQwB>`6quWRZq4nqJj95=3BVGH&S?SRo~hp>V?9G@ zBU2Y_`fa536#Pe5=OZGQmjj2*Bbx5#lRg8?f%U+U=jvWnxH2lmeaox<=;D$D9}AVh zE^cFdC_#h{B#E&|nX4uzcQ6^<;NEF!Hi-^1m3K&cE*wAo6fytI#s>2cj0yCHC44A# zhf7hh7Z-b92^eTFm&7UAmu+f^VTXwoZ|l>-Fw>L@JR_Ih&~Q-Wz$D^mbG?wU)s+gl zaIDRgFTfsp8T3g4^KWwG<%Q{OeS6gKR#t`YMGpzzqfPfG3Srkp_auj#O}+@j>xxGg z(SXyT_H$)rKdOc0RVO95nbHRT*ntg=Sur3Kxa6#^Ygj)-Proeud3ANwje@U?7DZ(v z{5}pCG&sU<^P~+C?d^>2tN!}6je0+4HZUQZk?FK^KK@~F5E1gEpAY+`wqgN0xxF9Z zJgpDk_5`TR=4|Ap^(d0WS@DZ)T#n8X;G!D2<%;-|wf6M;Wye})Jz<+f% zKA++pJNm#iH1S(4QN7vG6kc+Fzq-CB;}tW3qKS_NZmZAjelqcB8dijM`Omq-fJY`+ z$$8ADO_)X2hc(kYf?_ck^8o+DW*S8tt$a!~F^*Tbm8i0+Sxt$eJE=TwRY{5GhaL~g zA#r}TVs%BuN5SZ-2+7qFTK;#%CQGQwdu z5m+?AhFXzx=WBQO07(b>p>>LzA;*iQCbQo6S^oRAy|~qr96zd- zV}=o)P*W`qGDp?a?;YHxU_OCJks#eft?TA0W=}X^&pA0S}civ zukv!4g7I+0fIBl*y|z2NIsd7=JQMqQbF~$o79+I(wwggWg-k~e@UKi<(E>5l-t<4b zp~37xK!I5-VVx6tu^gj-Z% z1~gM;C8ckOhVpSRx}*N8Qe5Zc#)OojqJm9=GHmnc7}?pmT2*ZIpF0+HdRcEz_Z^qj z?z6F;e`;}Da#c0mcO9{xwvf&=N!CpzB9Bhp3tIN*O0 zpVjk{Zn4775~ju4GjqkCj?95^UeT8N`OB9)^qE>N*Q-pvfSN{KPbD8~2HdfwUsp(_j+&taGE@LA}8lNb6U>k)3O#}63_-*-MOKEp$NSoDk8TMKS@FE{=ObB+hWA~q6!oQ_N%vj5st z>F*mYZkr=rn*GTw1r90+F){28-FlrRY};$~WMeDqwsC|m({)@~o{rGSx15D$ec*H6 z?fzDJu29>^zGy^BSHL?(WMX2sfY7ak1ZAo#Ph#jbJR6QQED%suk2s?UkU4D0x>k=O zh8Jw|HbsJkspfADM1*2jlv5%nD7XY{Z37+QShfnE4jiYY)K(_v2mYT)7!{l*QFLSC z4q~VR{s`U+U!U(NH;v=U3GNs`1CI z$v5uKPd1VaKmCl1T(+4X(%#FO^4}85DsH;5>9V!E?Nin0X=-Z2vqv9fR*sJJT|eR) zIXeuvJ08uhtCLL;aOYir!#*-UO?ZCKH??TM35+ap?0Dx-)U*peoyFnmJ3rp5(!pR$ zCQdrlE;QIEU#&6>ZFdE|u!)|l7pFUe7*LZ@^9QGRf9ZGH7IY9PeDFYN{QiZ!eO7iN z0T@(lb40(<1D#TGwo~@){M^yhh<`}mstFihk2ggwXD$GR$}~u-Z1-mK=*6GS&GM7z z=%r#NTA2?E(h>gdAkFzVX6n6tgWm|bc;cJTdP0ElNlW$HW`Y$l_Z&@nMhOPw`IPGd zU85N&X+R6Lqa*?L<%e^VTTQ$Xy%leNUrS|cqjfXB~OH})~CfQi?R|1eio?0$In z@tR^e0ZU|}=7h^;1lK1N@{08 zH2fbn0ZdTrZ&co_+@k`k`4a4BTu(dpQCJQBimPD{2@Kh`P+U<44#1t!T;)H=AR-wN z29iTGP>+PzJBfWZ_$%5#c*Ka%46K#h!}E^E6!sJ)#(afD3k#|D3M*P5?3uDGFHiej z+v=3|FaP$cFWyp!uua{kEprw#FXD^b^UC(8Hp>LLs7R9x=ftICqlV2?c zTlj)_v;{IUzpGrg+()G%JO2C`3b-G%^gro&d^l_=6T49#qo`=TsD7`k%+++x{UTah?{5`aZmWFlx>*`(PFy%Ur5};K``IlmX>#=`XcqJ| z<6p|Zbabs^o=-^uy7~TF^eSyGCPrUKcy*t)+2Aq{qqZh6%=FV+nP<QpY@Z^Zb7GOP|#U+?;)OcM;8bStLlt2Jb2ga>fWDDm*01s%sZS~U&@-b z)Dw#IMi(u8O-)9YUoY0WxXp&$Mt}b5ryv*Smf|9$Alwydd(d{9{#}u8<xwe%cGgCqO450xV)Sk;k%-9 zd9|&rZEm?Rd)g4;E0NKXR#{nmuYHf(bEq5{TU9E{vw1OO*rQtqK1F4V%KqJS5JDhx z1w1r+Xk_J9(U&Y{wDVe9zzZQrJgGn^EG+6k(FCk}Y@j?)Pz~0AvaeqLSItx?1TVA>t*b2-aRSyjSERr?0rL5v6<2t~ zZpT+{If7o2Lx0WPT#Y9G{%zD*fh6H77 zeN|?^C>g0ra!g5Zc8Y%^1a_NRkJf>Thw)n9zp=c1E8&e&czCg%+O@m8d!u#8esL%>O4w=X!no)!AP<^|IUV|wT>aY;jmha8D&SMwFh40-*LXX*`T?&cI zY{?SS4RCMzhro+lSZrXzw1<7ZY;J5ASWbBIT75Lng|}Smt#w?n4~Af6&JhH7VJ{M8`QWpkUK={g^%{{>&`C z0RKVJJ^_J$a7y*;0?LX7z<$`CHD{+Md<7p#=SPVR?uQf#ZHIv>Qmqvvr%IRiVQ0^o ziBFPP7tN#JOkbuEkxF^m@8?6m4?Wl}Rg0C|roKEIWMWy&CCXJ;NuVtvaiu)t+n7$R zT;6x$&uJ>bJ3SGsv5%LO{Cw{p+sX9b_8&Hsg6)+6h9Z;|1;kSgG2FQ}s6!D&hW`$^ zlda=X2?w)8Qq29@yPEbdw&3Mi=t+gNy?t3X=u&_u@c=y=8-@6HCj+AVj*@4}A;2$b z(&!UiUp!0=m?YF{>6W$XHiAs^FN3CG3OKbwA|igRdyWC)Wz*#?yNtS3dXMbmeaugv z#;`VQ5*zS}4_xej_G`l;BCR^Qy4Y`GyTKsglgLcH`K2_i`I&H_Q)pod8LHIE((M?u zmd$$Suw~@X=50MBa;fv^aym5mB-8iA9>(i-qUz?3Z`JJrfZVu!4?hRVu-{`=lP6ZX ziM9jU6;q8ww+jy925QX9=A1)(inyS2sacE#3#hV<8J}aF#nUX9p1>yyJLede3shGz z%OV;^bmI<(O|7Q=8*A@(XC+x!0@P5$Uc~R9KnXOSEpIEt@*S5DHD*bS(z1FKr7E%7KaBn$~B-$3uiGRx32}3cHm)jmy zQK@1E_5AX+YukVOxz2VfOT85>PSh1|#A++CPsS}lh%2rrFnwO?WV2g`=v5^S{2TA$ z=S{2YJtG}D4;IF-K0DrabYmf$+NsIO1S*{xwiYpxFceXh?rd4~bldYCI=Uv?NDoh0 zL_O-U&9k0JYm{(Xg~^86y_L@Sced`<*vSEXbn{_yZ)t}==bVl_M)c*B%Webeqxa#y z2_?q5;!+YI%R9pyOVgo=2F;>8X?t*xxj1%znQ|He^^Z9 z{(0^&O<7qJ^QziJ@PoW|u7+&Nwa!#9QcNhPn-)5`P{H3MEaM0BH-zw_?mj^*GzdH0 z-HuH2VcQus)UE11EhPiA11IS(?84}&k5a?f7qYnyq>1(pdj1`++NGeN!_axqIX}aZ zE?tPDH7Tvu^t4lW1-EWKN{>BCiL+0e!xwJFKEa!)X;4! zQCZobNEp`8dY?Jux#<2krKG%Ry#p%%<>Twxj`iaSJoV7&J(1O8uLCiUzsddtGVcLT z8Wdk>vN`RRbt%3gnVDq7+d=`v6gdaogzcP5(}j2|c-7T_V(UkQX!8n3u2O0(U_TBo zNoLC6vPKGBT2)n4v^!TE=bATGMDWADP5TcE+_38*^))sM^YG;37Kd;9wlBA*rO+0b5+mu2Ppf8nz{kG{k)v%~+_xUi;Pfkjmc}r`G$K|CZvApHgRO)}48yvRo z=ht+M`rncC755U0^CYUVNHF{%VxT3QIVHW*15u}hT|V>x{}uW0aXaKY*Y5^}sX={` zo5o}G$PFXpnBHpK4mwC&3IOwW&-3LJqy!*i&J;#CKm&j=nJRVcQ-r(Gfvk|AMzR2D zH~Y(=`o=~9eAH|PR@U;u%T(pF4_E#%jUK+ zyW}iirrOvXO-?>~CYIm==MjUg%SI4#}TQu{+;CkPT1`2G89^K@QPqEEKRHzx2y zqAj=o{;iRZ%VYU|tr^;d<4zYGEJ_pP>Eh+ZiX;5r9&Kegor~e92d)97)6~`wN`rj) zYYt;jdbso88}K^UY^_mb$n_Cd4!HQEJ>Nf~-QVE_J_hR9MSlG7wc)n#_r=J_QNzQm zx->4kD+3o3nfol2y3|`^<%D(;n>2;tp-Glpa`aD88`+{ja8g)UsO8Xg_T|f;rX<6$ zr&tLTcPog2?Y8s4KG$kPA!BZ?$t?7F=LiB6n6eMl0@C;fdwll6e^34R=ltnt$jG<^ zU*3|CsLosPPt4hD!;{6h9o%F7D`e3ehq4ysvOB;tN6wZUXnE2Z?2~l-%aiDRK936|bv~*MW``E7?@8nB47=e?4H$**f-76$yNq50x zw-i}V;d{gYGsJ|X&gzdu!9~iB%YoupMx z(87{`^99#vqay`)4087$N%mcVKvD=g7IYaMMGPwDh@&CqGx(*Dxe%YJ=lytH`J*zbCu+*bWih zC#|~V4$McmlC}l%b%~^&v*i?`sy$96!jA;Z04$@=UIN}c=FAGOqzmOeb=1! zfS!%ETr#pkvQhS>dE0HlJx7~<^G$9G5-ua-FYnXz)V{v)1CYvHoN4v^*6BWc;6Dgl z#KeyrOX+2V`Nq6m9g+;v)EE%XhFQIym62+rZT3@`_XKhP?GpD!b@DQtelKK*h%ZbV zAdexuO$gA%{Y8Dj`rCTZp20s({Dv=b<{{yf#Ka3lnkSAnuYwHwIANjcn2uXP2t{gt zegVI!XwK8LPpn$!=jW#>vtwtQX?#{(U*L?@?(d@4%?G36&Ij*2brVB@DP?nW+r!4b z*mXF|Upt4{N`zkj$9F|7E&At634U!cKtp386Qs{eADNh(kk42>HO%?HT7bBe&xupy zo@4fQauPPXft?>Dj)<#DS(LtE1!0(QrY!M+&fkL|BcN^679RR;VHrcr{T5268K|Y z2PXpa}-$HiNmXFkBf z=0)&u!4`A}-|-TTmPV)Y-UeFs9g)2geetExtF9_443!(x5a^#^wg%3yYTc9+BC1^Q z>xwSSp?dqwJ%u6&*~mjB#1m;53ObkuT%<~C^vbNf_IV6O3*sW!WE4zRE5IxlTko{$ z%5c3)EJ%v-)o;2ytYf|sxJJsLe-Ni*acpn>l49xRql}I@JY!i}*z4ak@C&f#jWYW$ zcXuIaDLBZ9^1JzOFjkJQ^0SY-1NB8c)DWFQ@r8Eh|`fp5OAF9Ad+E zte8=<(mi+Af|mRc?Z(E=hfDyw05Q^sFJHd=;sjRAbF`q?L;%~C3GjT-Rx$>cc~aQN zrjS{H*-2lL@8fNVbh|!V>uV%qxc^Y;G{D_YGiY?Qp(qwdORUdM#>e?s>6ie5sELOJ z_Lwt>Nc&d}$^k#o=cW&$?&|GZR#;&Yk~HqfQtWx1{x~$M@_(* zyuM_mzG(o9nCnWHQfWh*Qcl!DcSH|5fM7KXac1OjJ5q^?{MnvmD)QeZtn)T)9N!BM zr!@LL0EOT+1L6^7;H-A$1>6;SAOd?O>^7BE+mpgIIA_}?Fmd-iyt_9spx z!6Whz!1*IKEWDiI5Kq+VACOZV(4CX81ll1v2IhrO zT_9}BDk?3#tCD0vajcf@TTP&S3US`i(1e4byZHV^1d{ILWJr#Z#;c%Vm@pV*t7%^) zZbU3Pc;*jm_;lFuda|EZ!1*SIWtLS`#DujgJaGg)SdBn8^f@_x{H^;C&z`pLafG0A z+3hbJNT=A2#KvK&ks^NILyjQABs~!4!eYQMR%zF2tn$Di-Kp_4s{-{HY73v4-Qa9x zua~+6D2ib*F>fv&CBPx52QG;?IDRQ9TB9gZ<~r;un26sWD|=bZHeDsR7z6={CWupO zKFLV5!Nycc`{GApY<8+T5e0>6tp!ncM?uVfNsH-yH`s89EfK0_F8sD zfGW8ya>d-4yZjW01D~4(xDM-DV%U;ItqF26GD6ZpJi3Wd)ZFDI6%~BUw1hHod334v zi@TA}i6T@L$7fewhK8V^uIl_B8E*QI)D%QCC^nM)P9Nvcc!=&sNgqNixV2Qs9=z^H z)JY!_fjziXO{1f>ZHg$pCyVW?V!l3pH-8HEo)<3|4;d$U_NjQI)I578l~n6+>r>-~ zGGzv8dZbJ#utB4>XtGI7NiTZda?e{M-CxSUK>xP+f^QYQw^3Zm9y|%R>#U*qdW5PL zxQ?53$2I}8sZ*!7By*Sh%?#QUFqLFdQl+rTm%gm&%%9vD^Sp0w(7RJW={V!#Eq`4X zRa3W%n4n9b6M>3T`-ep@&$ZKo(Zx$PO1}#q9|(IwkYeMisxW&B3ySC9MJaqGB`I^7 zp$VMPBHoI>-e zWzaVTWc_Iak+8P9`tb_bZfc~Jr;z%-y}1dnt5p+(H(by}>ltnn7P&7FJCBb~zcU=4 z)bF}G-+Pj@;FWv)RDyQn57dc|j{{8SU2!d){{40=+9g_#!LLM~{<*xZJw|7HRVnx} zW%&&}8|_Z5>3jJCpw(1TRh1n;Gwd4#e%w7srkOg{vOn_Y*QyM2>Gj7Rps^BJHM|SQ|Z8 zo4T(P4|i_eeWPazzRiA%30H<1ZA6GS4Z}U)zQm#M^kl$9UcpDW=a}Q)1~?&IwO$w5 z-hs^YY8M5Wm0e5u);H1cA95WIi@vV)q)>(iidY`__K9-C&I%($M>uZ4+A5!p?U=yNeK!L58Ay$-XA8NFrv zlAA_qPbzh$Oub8)Q-~8;1_$Y^uk}O$rXV4K3=VoL)1#6*-B?(65qxwwsI-Ll(k=M4 z+)4&VmriGNuXrvi*xCjLDv&KOau6+!~byid&wcxAp$Kw7$~py3EP#u%Yp2Mb>K- znDobE0dNCv!gtDdqr}I@=T}k_D>*yM_4nJLZ4?pXFZQF!;t@U55fYc`zjWc@%If=3 zP>6)X100ph9XM%gzhi?6GWww#ghptgL*NpwfHGhIM7a^cD(y26((hbreh=S53-5o=NNS7epjVPT0Ly3em z5<`ci3@``+0s`;peZTMXe4lIa%e5Sw>%8{4_py(-K`NBAC8{R>)(+Fdj?T;nwCty5 zvd_Ful@8v<5!?0k$t#fh{!M14idj%-oc>@O>K={*JQ4NYzl+d&|30$O>At)?sDz0I zmfHVYZc^YbosRcz0&5o!IH3}%gZIp;TM!H5!SS4)X=+Oe>hK+EN> z2RNAo1O4wZD4q~t@-0k2v3+l(!_XZv2_h*%3Nfb5>-IG{zatW85Zm2*4PWtBH>R$y z>zg6H00Y2kbN}M}<$8YR^7CvDP$bJe7@_>RS8spC3>u@6^$Vt=q?~YEWYfVxyAMWv zrGdSRa5jTntt&J7_4QQ8fI0FA^k?-ceb|{7Ih4!85yf}m5H(nm)A^rC&No^;ZS^(< z1~dKg|n~LzIN5>FnHp10+wsUY^{Cf7yQ%t*^i(kS2ydR z_fd^!`l)6P4f8q9EfV>ew}$g$BlQU6GNMnJEWK`(|y z@GY>1(r!gCtG>8n!gve-*W8Kb$h2Mwx$Fk_qr>HP5rU9qN8#dmGgVkbZz#|hp3{ihX`h@V=BsUn-&0*MFnc%P_v7gG*MR|=dvI{Z z4=E8&YC`T2EluGbfizG+YNkv6Ys=n|zk@KFa-M!h=KAo4ASwMi#j zaX0!VsbCe*Xt}J%G@~9KMSNYQf3OP^+S>qp#`{l3)E+y-;qbqr#1)Qz00bY`CpbMb z!;OD8ClREwt^y7IY8&_gv4y4}=D`%0J!y_?QXbM!?->W*UVi`^{1hWkVxHEk!}T~a z&b%2xpHdbH)I@r>MItIf1UuaN{2N0>j^)~959qjy&}5&;%gZ-U5+n{-M2fcrJo| z6|ge=aclcOcZ!)#6ffbMU`%j4z{)}@0+>G&`WGEY2K|K@xCeDUdrfQaj3xIa;~yJU zL|QrsyxWZfz$Qon;&}WJZ2<2F6?wp}{CmF4yu`<|R1b?duIjB^92O`zob5@IwL@G;u}AEz)m;9xq9Njdw@fI}0%eMx0EeVG_v zkvC5L3<%3)5ESp?57vE>TQ+V0<@4{h&_JNeY2m0L+%US5gjxhnbbtz$tKs7#YjxF_ zWdcK;G<$t4V#Q%Pr3XZOads2is2`+vObo5ds=uslt~~$-R-X5z{^!`pn!P20-9d2- zB+w0G6ue}AmD#3{g0E31w6#8*#yurwf(C4ub)RW!wy=?s?mkk&Z)xh0kvhN(0dz(k zh?aqYP*9}zbl7yI7N{LrS+THDS~2>7V1NTfB+`b?>a%B#x>lOr;t|`WZ;ogFWqF#X zF`|>*YuUvRYIl0>2Ucp1EG%Gc$!=Pc$m;Q>-<_OrY=x(^u+ zCc7#&I|1_r8A;|c{eFHrP`9l1l-g~Ifk0DP$%Bs1uvMdKJ4|A?XI@RuY7fLcahUM& zp-=H`72)A3Lt{Z~vtsY}y>mM}0T?ttKOd;TEFeI&r8Zn2@Dxlh9nZ==2#N1xhw> zeY;u8-+5+hi=@Z#6`K;!5t+lQG{_?Cg|kopS^j1a(kybHIfomiki8=)1%T@vpN zVuL`_YT@o)FAeO{-$kXIogacUrHv8V3nTuMWLIbB41hRDpxLhacWiBKwb2p+dJ3sVFnYc?LMvMP$wXY8*05WaqGZx?k37p5Y3wB85&PMQ9Kb%X*aRjXp(0`u z?HDCN_sW!%*Yk4(Jqi9lbUgBhNB35=N32hjFu9))Q#4)+}p8ov&N9^3`QSbNImKDGA=|6uEq#NuY{WavO zkHU-MkzqSIM|gNw)P<}~EOUo}`SWipyIC71ycty9VK;%!B7P1I@kXwcPA@sxA5Ys@&^W;h4!<8-fpJ6r@dhA$DGD<_ewQ>7{Rm z@IN!Kc!4PyvFL@J(=ueGS!h$n7j-o-MiYyIF?t^51Ib!gYy>cVmoil-2}~Z2#H0PH z+SZfU6rPJn!obGv(2<=Z%dyd;a5k$SAU+Igb+ z-yRJzs-#EXp$Cj%kETG}F)0e)o!w%!s|0%P3EGq$;|+Zc{p1#VzVtoKGvp|QtSv?BNR_<`6&1vo|$bLdiMI0|P!!sr8D z;b==ZvKMd{!5FEEk01B23yieP^tQ$<`40$gor$K7_BS^z$pwPrqVlY)Q(-b>IF{Dj zdS;#mP)`&cdyH5F>v@r)U`VD7%MliOs5S|VC3frWi`Sng^YYNc4*$2r6v*Si-<(sw zlEfhHxaXCWC&$Q73KTWZ*8n4?>A_3Ok)4x=RV4}tn-5i0{D1xJ)rS5^5Xw|8ta|Md z{X=MF%&nDejTEi(2{l|gDzUS?-~%+RN{x0~z`{wJHJ??QU!IB;+WYP`km zySTowE|z{6>Qh*D;JV9(@%)*=OF(hkrCss>qVm63kXr0pr@%{vKaH_2^xPDsD9jst%oN@Bw|bvA_)(}Eqn+rA)u&pIoLk{bkF zzO~9$XHD%M9!cjhfy3Y+vt8f%MxPy5;>+eH^FG#ng4f?;VxAGbur#l$sNlGB`PYYK z5_6?5X4M~9B|mGD-MqU9_ia-`Mc;p+X!HN;e^-L>ak}xLL(%YH1Y9=^P-Y)Hq}BNV ziMIT6-RAMIg=MnPD7-s>);s&4(a6`&kNPLpojPzw-0LOAn=&@8z`(kw@ee+s@z?>_ z9A5(v{`^hgHtfzC3@yo_9Wm{=?3v=hEGuyBi%D<%kwxMWAi2#gS-}vWm}t@YL|uLZ zSu=n(Azrc$XtB|l(ev{FpPTM8#%pPodpIc8bY-zlM>&{Pp_xBmai`Y#=#SfShmDEq zH&Q5Yt5$pC-SvKhS8FR;zVtd%)#uL|nWOfYs^9ab89NGnKUY=VgQ9jxdN%;(4bW{d z#|KAaoSakQ=}4ec_X;lpvMv~8Wg#WiCgN-V1g(IVQIr!*b=h&O_-zDqKs`mjTDL*& zG*)jZTGkRa2zh0JV|=`<@ZID#I4)AiFdSwCSb5^ZCx`Xx{R& zk{pM|oZucI#9;Ew<;#>`xg@G$V!Yej!rwdIkea%pv66ma7GPR^P*%9J`{K8+Wd3xs zCO-bprFuXn1fbP!+I_;N<}c>awk!?aK*YTSMw%h@>u1w5Xx#%>G@j9r3J<$zP}y4# z#$y|9z1raIJXs~hzBuQ7pe^aJQ@W46ysS9lh+Zo^RQM>=r=azMwrbE(L-k4ha`g}f z3*#;P;>1f+%LVihts895c1@;I{=q!(SFY7OzG%zXgk$o9;Ugnf0}l3{X$#4?ybA6n zE2xt+uKA*65zzQ#<-8=9;sgLPqEmAyP61W2v=njdh3vH7{E8LwUC6;c-u%8?k*W6s zB9Nej1243FPc#hZv#mftI0LE6KF3oZ5mdh`8(?5yy6IP1`X2J^t0gk>Djr?BpmcaAZAysHqsWE7iqsqFJhWq9VarlagW z>lXl;*P>dwI(&*+TkVfNn{av67 zUcO?sSnsrmWu34Y$KN0*CRvH=qdqdCU=S1(Z>dv5o=;7M7Flo1qMG$oL4F0MIUbjL zNkaoVw7(Ow#bf)?arON2Xtyuxc#SXB1Z}J-9n|jCgOtt35_jzQNnpzDZCZMmUTv4}$t`toOxsrXn**n3n(IdbecHz!@>uG#ZNX__co_MOTG z;17YjeN>GV^0Tgv1}Wk^O=lSNvosL$X5HGHwoE~eR$u_0?N`aJ)fy7f>#3=PB!Uh% ziH^qKlkRI%cJJa=j~;#_A>(ObDqg26O4HBFlMQbjUzN9@tPU|*(uTX@{vI5 zD=K*L^76%kN6DRHhP|ePii-=0#_)cC~-wpm4PJ&XLqxX_1H37)0Mhft3c3 zPg=GcTX9=&TlXf|zx<~Q69-B^0N9g2x|~^U0n)1;N`Y4Tvk@9JeS+*VtASvF{Knve zj@V+87@YOJYHBaiy;WLHp(R3iBjbYYpUE9i)2psak8lxBZcJ=0+c)%LgoZp@v)Ufb zVm*i(KES!*#)Lq+;e+wD6NX2%Wq}%=2^Nf(?PZB)qgBAFW!DpPB}hKh$5SvVv+s85 ze>anHQM?3i&fi)LBy6EQ4_XXr2c|wakfr|Ywj(v!L;jIfmLkC6B5^6-heX6F$EFhyA!#VR9^A+wX7<>jCJ8|AJ-j{1l z<%S*%^B?nkmfg9OdZCLwSg!>eq>(916l^XlBS5zmeAKvokT89BNI>ry1HOEy$m6FB z!^q3URZpjX{jTcw?TI`d|NW=wN?uABvevFt=ap$XY+Ks|wu=!427sS7%f6VQe<4~A zbY<=zq&xPI(YvS|I1OaI`?mtIQXe8~ev`*RHMPY23Z6U5mw3J7>u8X~-&N+nz5 z<_29oR+{i{cUvh(1pc^>GQBP3?bGQ(1;Q2+gQgc@Gq2L42Z^uTpaQ!rmTusciwlj! z)>%QHrR#`e`y!Ur1YzI5zcbXazHoNuy!+awhV1a<;tXTXW|(JXR)TEuA6YD&JP!&QqI46x%mK1y2))gL#OB(cHL||M0T0 zv9YVMr9}ji6{WqgAr@P`7NHeG9d2)1513np%C6z-QB=}AWb^?%SeIVX&j31-OMN<@ z6tguPNt}Ob9;Bg+Rim}X0d2d@-AZqx=0mHit7{kM`sEd{_>WKMgnF+C8OZf)u>YGf z)oLD+{_I{2!ol<}GO;Z1%=T58lfUIFKY`Me-L^xVBS!Ag7uwo==AsMB*N11y3|{I^ zKG}XQ>3P|>tCy!Te7t`JQo(O5!y|#9@~?KXdt$n(l2b-jCTpf+WtAl|by-fm|Ffs( zU~!yJhb8<+M&Lr>9Wu zXx#>8)S#@dg~gBuIRe2zo)oqrW_p;+l8{BG?2U>TFc>n&4G}hMQ6P7@CQdhK08kRzr(Qk z0TZ{==6UVRCqXrf{v2sM<8}6_c8A?27 z3Xs6$I_jLDR9rRB!jcfE&%zQ?Hjfcc_ss<1Dcz#Qv>o?ibu3qcZq*GuTZ)#Zre$-} z5nL#aYpzQ~2p{-@qF89;otzFrqB2~RxE)+vT+|#D7?Z4`u-nkSB2f!ZiJ}ITPP|=Q zP}b0O*)m1uwvNO!m+QsWzbw?Cp=WHY@V{9OT-pHw$H&hDCl$Bv6d8ALmt)z}Ow z83Y&&)SryEO!pX1Fa0eak#qR++S3f`X!p)swc#Y08cWp@8#v#03s{LSFp8|O%hj^q zYyfc+bqp4b4r&}8)WehLDpE;8i_5PMF zNCro%t+b|ySK_9Ef6}d?*HO#F_%O_rq!PqV+J@IHp>ZJ3=+0J&b}CmooeO=}a2g}T zSVE$*&gL=TF6f_UQ@%OgJ)%b*^p(n75|4FVdsnuf>Rh`7pMFAZ^O^*F8m^$5k}jJ3 zAk~cv;>E=wE))11HZp$jKF2r&(w&AqMu>JLJaNqauVrd~C>jWSq!D%mUZ_0$LS9$b zH%VL~AhQTBL`-~FPfU_LRt((@c;wgnq-vR>@d-*w?q{W54QU4bu>B-?`trA5hruwN z58Sy%#(ul&_xE(gudV!Zq{M)(5GUZ=_IFG|!U1$i_!P!(IXkbGEdq;sj8k)S>1Mq; zm?rrI1>b6QS$In%9IhB!sP|xbb_{WMXY1W`Fmx`CGXTB3Gs!Oq2VGg5bGOMrjQWVaaEVuEx_zUZztgo8PnPF+5@WP)i{RH z9W*pF5(M20=}aDXBD!plC;DBhx0-4d!)8^1j%Q_Bdp6D>E+*kT;LER#f&6Y;)zl5B zx`7+h<}OG?TJfpuVh{uAO>i${V@F^hVYEukaK!-?JPb&$azRQ;2;yb`4^qS1`vgbU z+dC3v29)_;Hn}wa@oHwI!GhT>aO>Aw;;VaMDsB>|_Z27&39^?ya=a3M(^J6IOAsQ~ zO#|+q$FBfY;KAC7`Vl*cK(Ni@<1@%ycc8rRmD2tMd@yOS9-`1~xSyo6 z+DC!tI=EVu*@$roI%&Lt!!7D2)khNmX)lPF>YE=(gjI5r53?{h>N)e~4H1WSB?3M# zbQWZ?Nzt`hS+%1*2>xZRJaM^uxU8bdpxTH_jV9csW#6PVBt+K?5^e?oz)5IA9Jfm~e9RRZi_W@c+t#C6yP zNN7z(d0=R_KU%iY|_yTGJch1!9_(GePLt7Poo!*F6Fe2xI0S}AeKJkFLw^{`v zE!Si0I`ht*w6n{W&Qo^BP|&ps+PqyEYSQ^!jZ9mpWBiT>(TF&!$M%`agb6hWP42MP zAg=t_NiS(DGk*u4T?AP0;Mq=B3MJm|k7kRo=^WQv5^$;Sl*>M!uEkn=0PaKJd z;ErDTuLO8(jwP1ajbeXUw=ubyOdO*F-BJv)X7y7_+eBW{oX=5#MU02Dub8=-lqor0 zGrVq+JMDgYT55Rm<>e;bvyiCY3iQ6rZzj*b<5+|?MPpho;2JyA(jxcdE-K1FBJqxH zmBGv+SbV+yn2pDb4sQpv>qKs&Hqwd4m$3pJT9Zq0bUdf=qj6bHbQZVwDyT$Eq-#&z(Ot6^A4jMWw=ORgq+I5c zUUR2t1rsGH@O^)ul;rj}OP(oz=cd*LQn zwPT{DWItAOqsLdWRG5=pMySyMjr<|Cs^`E>>nt5AAmG4aX}4# zTFSe!ndR{ablLGdsf69yB;uTphX-lLWo3__>Tc@1q$m`cLbApdpQA^fZGl7QH zK?^OsAK}YYZCKR2mb_`kl3o11&mj1T7I+9>-p_6!Rzc69($9U1BT9Af(c=){T^`8Mf|6y)X zBojkV-|Ed-9r&)sD^g6zD!MW>Od{sB`;}2KZxq?0!;y+O z+0LGw88EXv5_dRDAW8}?Y7z+5W*zL7NUl)F3Yrp)6}chXfJMUtuDg0PrlSi<_*K*-JZ@zkg5uebNX58f&8d z;&qEb&eLAk;t;m_fN8x0qM9+oe(X`{{;3ZgZsmNx*?1OKNb~RCzsFf6u%I_RYfAa! z=LiMgytK45TgG?x;^%jv0(8xXvz#h)y-+2*)2HB6;6~E zKHqHyCorq-GT}W7V?~Pn9VPxDCG?={>+1_=+$y@2Ru3`gH-psPV5Jbh_c_!J+Qcbi zBpGTxY_=WM-{~}V+I7~_g!YT$>~3r#$}1&NAuWl@NY6CCo>bk<>7e$)Ckrc)yX$PB zcst_Fo;{aw%VBkN-iLy+{v-fCoIB%n{8HMF7g^!MelsG%!td|zkD&j#>zcz`^KlQ{ zxT4+}DR;tn%N7VB(2z|vLu<@``YdtOrg-VAHw2V- zBX2yOe0u94>^R4FyuyEZseWY~Rt3VYk!{sA(_Vq4tEk)U&p}N0Pvjznu>lrn@wy(f zbQ;<0bfV`IJt)H_3?AIJtzerD$EhzAjml2|n|4$=wc)>wm%5N!s+P#3QhFgTj-M!0 z*MhemPPhG3GZNk5Zgco7B>S`NW(7z=QcxSr22P9G^lN0qS3U(>5usW`ZX$f-vGJHN zK8y5H&lKJ3c1U$7AtYO_x= zxQo*MA&f8b(3JXDI@i}g1c9 z>s>!uBsQ(P!ObdjnrpPv9@86$3kxJJ5uQ3p_ zoZ8SChODWnscH|&PQD+~B`6F5oDdPAboT$Qnr_-2!zH8^lW+sG$t-`v$9q{KzHuTT zd~EC&<|Nxw1;6Z?wmoB{b4OE+dEdQhQxMZ})i08#GCcTaU17X*YfGvTc51JDm7vUU zYUJ8;XIowNsZO=lo_Y&_c4EoB;!d;rnwrL~(^HsH58f0lEZ7Z)$5$JJ4ZlR3wrlM8E}+gM zSv}|*%=kXz_Md03lN#zrH>7AWq3(lw3*b5xJk0|eb(k>4uX$q90EZ_^%82^=h>2~- z+v4%}lm>?X1|yMBu9fQdz0lRl;Vg*A?`DjcrGw z$Lxp>lz$_jlx8Ht;R3q7J0SkB*v=qy6=e!Y@!HlY9Ho)~t04N!%EYu0@p2&Uy;zt} zFyOun+8=F0+Fa!FZcbIjHyfd@dQju%J0=46aQ#WpX7sqWhYk1Hr?LmXdy&!5gExI~ zWGcs40Cpd3Dem$5oBk=#1#X! zy;X0n>8}OQ4#|Z6cSQQ(YlR;9qi_BZf*v+SGuv>2R6(zUe~n5zT@DZn9)wE zvd`(w=`$=&;YUnz+q$?gTm&`Q9L1<4uA&$&I>8zh^+w3du`ng89{O(}#iZrq?xziJ zs*xK*Ys<|}hAbfs8rLSy_V)G4W5VDdDXy_X(!HLpJz14E_wI~q*M)&0k2KIjYyI0T62*|Gnv}@)L zClctGLYbwgjek(9Bp|R72nYy@xF|jMu^|_0R<*#+6sj=oK0U$x7sS4H^`RvZ5fKR> zHuC;Si6KQZO2!jMLfG+7h}I+Go<>aA6(PN29D&}(H#>cO_K(%{nndo}zS`Q~e^FD- zsZ!iz-R;B2Pu!Yc(e>ksC@!4D90d@gK!T_E)8*~7)cEQ9I%@MsR8SxM^;lUWw#dMT zNC~^FGOy1~v4cz%3Bw~Jj^P|9GZSg4sa}hu`1ooZ{{K4pbbxM}FEmeA1D1XMW0yp- zwL2l8^|5(CbOexaADY;E&tj4^uHm4L|I(ZPc7I)K7(r4n}>F`wXd-%2Dw6}eHO;8semvNQNj zjZmv_JUIgjQ`OdW{#+w+gNF1AzE$SR$0(4}sM8TxDD)no$MoMgC2I_T_RQ8+8KI~_ zp5i=GSsWdJ*iKj>Im~D)m$5w5&{6rfc=wn7{#RtRJi@|YTvfIC1sbQx=TAdK$YZ_q zF8w3sN>Bi(&p`ZAVqz*ZRq=b4xbzs^p)l6%d(iHDL-}my zs@~dRpX`GpZittB7SW#9Cb}Z+o%u%J5@0c2t6S+33qF#+FcVOV=jZ>D#m^ziZ$vVk zHkzFsT`!pYj7rJW!g|t^4>iE1|Kezsz-JTSjHbwk_00I|J^x%e{yOjlhGx zg#!UrEh{0HtbIxVe1Jb?Bp7f(2lmnt{TMRC7U!msFcCG1%BPO8D$GPUqA`6S2o8u1 zM~>a2244KQ-vk^N1}wLzpa-P)QX}LF$KT2oCMq%}#W7ou86#w@T!f{%DgcPVJMR$J zV-$?2@6Iahg-+a-{Hr_<&K~1d9n{X z{+6ApWkNjp+Hxia$FHr87B`#_qF0LwEV+e~VZe#U&1aF0jWf_!{L3dgr)`M8Vc5vnawODv2?;Lq(}=B_SK z+S+fxXj2ea-7@Kai+maYyG6%@sSO1~iR==)>em zDw}c;z-6n{Dp1+Y9zq)a1C%xI<5;@0^YWa(vEyQeMMAWij_2p+6ae>3*zXzZx*>Z$ zyFKznuEfU53k{TJ2m-&nyY=2#I{-17zI4}XXkxcq2F}kFRf*GTHv(6 zI6j!Kzg>)*Z70#W=Ed_@Ghzsx7=++K5AYzzG^&U70$WbBkQVA}3A6{?+#tzMjd)X6 z=PYXQPrbS}S7Vx?j__i=4;lo%`Yxk->-gg9_?^74GP_+L{frvE8~S+yQ3}1M(@Efl zr1EHw%JHe+LuGkpyHNx@O#wW?2_keF+ODhRJ!G?V`f z#aU$kdZgYDPGWLXf=`#VKnkdcOKcR&`*G`&?r!MW?M|=~KvVx!&aCQA>Ybp!8>{3= zHpz6BmdgnW;i*~_fW&q^m{(Yya+%_Eh0ExkUUd+*F}g2spV%X$1%bnpan6~s_wG?? z8aa<~+dxp>a_~iL$6c|~QlPDULpQ!gM-T9jwOzx&?MywtnOD0E)N(J3b1iOfTwzUG zkE(7b9x7jiF2&p{DKAg7EZ^STTry~I&Mi$8VZul)&pH0Q@wFjme8*p${Ba%L!vEs} z#2Rb+Oe!YeSRrD0f0+4SVaJcs{e#E|Kx3>=My86~YlCs?hlqfzU1eGOG+5c$8(i8` zD<9{%kenP^T9kLShLvTqi-_>(sZTM0(`x?FoGm0mlFr+;_5$YAN_X3&tI$9kR-~^4 zSl0}tK(fpv-*Cd^O4nUK^UxCHliUlR4ewna215hK6d$YqyQ_xg13%)6##W7~Mz%P| zlZ!#ENL_`?kwvwN2B7tP?0C!YZ_&e^&B!=ZN`Nv0GsED@e=h}FRzA@9M3mX3feq5j z#b$0aldG3b*`tuFqb*K6!wp~c#i&c?=bKnlBa@ffC+m;Es zPzk2@3=R(38oF)7Yci{;+Jfkuj?-B^kTY}p^SFJ~56q9DRt~dE&MEq}b2ooB(m6}r zUt_|i;3l;5TSglnZGV1uUKb;A&Z{X?POv6XPd;iHy<2C}2f}?r#A8#=$){zu-(H$=|_x)1Jodq&nx*X7_2a_*fy407QKV( z0E+tf^rF3aLptj297ruB$ryUxEnGEM(hGmFdmbtI^QUTC!cc6}pOC+&l!9de_NYVA@i6&Pw1q6E1=ReLR-i%-`E($<78+z=xvN~>c#dXs= zhQafRLBEloP^~t9BCr{jc7m@K5m73U8*8m!HZHutJ5RR-)XBG3f?v%M-8e_UjsEep zL)F){(Gdkzgxj; zNibX=g(Qi17D1;2`&729dso9Ir4SP^n&UcoF7+)lu}|^1AEX zO=f;=u7nRcI^Q@9MhAHscOh<)%Xa9LI*xrSnw!0W85c`){Jz!675i}BMOBJ>*#Zbp zqV67S#38=eASL*3wc36AuUhqYcZW!^i;~pVrrUH=qL~ysA54C2*0Q&XIb>4!O1mb7 zzV_HKU31|w7&HyOwwB#9GuMpA+S=)0KppW(*l9w005Bd-KqP8oA)1_;63Af>ey8T` z_NyR@7WMOIMI^@@6XU~;I!y(VsRU(yd5?5%56nseCB_MhIsl+8?!a>4im~GTv?G$w zsqunZ_B?l_LJxp3@4_390mX~-2I92 zLo}T&6g5Og(SDLX8KKxeFy@7a6!Wl9lawkcd^HND01JA47;tNDMiYIvX;t1Xi2>d= z@z+_0HFgH0+oRdBDOz0^?`-zkFuFC-0&u%2Qnd0Lt=?>dp^TR#T69lO^XuALL5J)K zIb`eThzBZ?s{0(Ad)&;NXX+hVw={Bt|0H4&z+s?xfM{9-8cbHf`Sc>-R>Z59`9F8J z_~U;^{9n&(LM)auCyZDVBG;l`KlS@Jjfm%NbFK6P8g^ObYcsA|>xAUa%9OT#X(5EA zDNyhe8ZUI&tYoa2JDgqYgMs?s;9!))&X%%)-csrHIxz%jqi3&Xme6UK&`dO)dFo>- zqX+BOU+)7a{3gUDSt9nGSPGYcFGuCwR_Uj6H1dQ}Z|4f-&+(k+i<)otbQ8kj`o6MC zN=eti|4!`$>|4A_54=X=e{ycKi-vU&YT8e;O(xHL3eMBjx3inFc>Fb@$^{YkHvk-5 zXAB5n&S5@X<2#FXhYkUqxBF*)Y=t*GaoOTbJ#wWlR1zfy z+{iJ6>Ue8e8F{h8dguY|Lkv>x)>61>2Mo*A6@ZW!zBb1E_?RTRvf;epA9<+Gil;v! zGSV2M^o-*Nl(wa-i}FM|q`lJO$AJI^pv@)OY+Pk=ZGuS6*uKJBawCT$Ut0%@TWUEo zPmC~n(Dgc;Vr4`1X+z^Von%zLQNXVX&847rc&pv}jnDAD*hs~%UXRP&;M>x~^V0Jh zn&KM%wTIj;R1Jnb$t+MUaI>sZQ%GZ7NYx7V!YyMlw0uk+tKlDlFuQ@z#18sRdB2=$ zbfBT3k=Vz+257hyVnuL{0Ap;8(m$ZH!Pxhl5ci-FX09a3~BoqxoGx zV%ampuQtRZBZ|1$C!nMcQi(bzQzr$2u0`PKD%+%=Euh3WK2>~0+Xv66kc{# z-tWP9BIgj10ysMVAg5Iv2rLu*g*4hJLt4pu0HcE&_v5_DV!bBfl#m$-E@^}Bv$JQu z8dKirdR7ZF&OEnfvlA1pvK&@!_^HGrA;&=W+i{o@IF>&vjizf;zdVaI|s^y(*l=`EK zV0k{hN|x01`BYOU^4!w$h+150|LVi|&QtN>2b6fy6)A0_OJymS?tnk?bw#CkAWHyN zT&L%_+2F8*=Rdnu>&vj_WNV9q#%D9P8byi#ZC?r%{J&UqL#j_1wyZWIv=*I7|CO|k ztC2jm?<17M%P;P)ub`D?!*{w^nZojm*D6F;;hD%eLeQy1Fbup801@{qj0(_H0KwW< z@5XmL)JH{fk!YpUXq4I^ikoF%wW`E%iXK7%!HMFPBtYsb*ySWgVCV#p!WH zFy`~#TlDGA8y$nGI4j<%4MB%PCTGS0Zn{_bH;tD2)v_;~xYcwjRdmiQOg@6FMgQ*} z9=8^|u;Y@AFR&1w@@gcCKX~N;w~_^T9yt<3_9~;1W@HiGK}WNh+^~DVNY{)?e~SW4 zsP=wwX|O!f6{VHF-#w%Bo|UmH4j@P1Ojf@f$l@qvrX|S6fWJ#EbN=w39)Nh%``9Q7@QH~h53b|a zRG5?KGEB8M;;dUSKf9Cbfj!uVo|P4p4LNy`_u61m$u&GP)AsX`T+U@7;p$eqvoRBx3NXj?x{qco}4Mme|@1YdvOBqQ0K+Lwm8bzSkPLDW#$-T4X@NrPGDgq{UgoUhwb%Ro*Mq7W#V&Cv!I9w zo5mGcQhBOYdUms>jxUyN)~xf*Uyf35U_#;mu9(javVeF|r^0;fZHzF5-dW_>v<__e z0wm~Q4{#%v^mf3-IXt@IdPM^c`aW)CFCjC(zT)P3c)bd6I-II@T5QfOwOe3N*le`C zR@m(RMoaOZqdNH#u!^l|hNmq{r&$=a9PR!5-h@Vv@_`raqg>&0y9Y$Bf8|Z48ns71 z&BYGh)hw*3sad6qR(PhZ*6|c^DxhG=UD@>ZJ}c>*#)Ma3x>%Si4ECq;M?^%)wa3s9 zQ7pF2=zP#~HI}Nxk4QiEU(_#3pBov*h8Aur0()BvIHb(6SE%*M(2l#U=8l zvZ!d|sZLFhq{FWtHtp^0s5n4rcI3`Y@+>UBP*Hd}zS42-V1nZI6Wm*1Yp*962=(+Z ztUt!P3vOOwjj2vNCicn{_o`tDx_?@Ob=N;aP&p(DHgGGTY}dL}ZWxU?9Sr6A2N6LMcKw6&bh90o$FlJ^PCG^_Cd#98v;A=&>8Jn zFyK0S>q&x_Jp)OC7wgfZM^zJzd(C9#aw21I$htt$E%ByxOjqORatO-@+1;TJy-#ea z)@g3&^ZfXtm@+GmkfSQA{E{*G)h~Lfv@GT-1^shuU*`~t*%VR2BlDiNdy#)EOmCbQm#KM*>w@)Q1wM zI6^Le7u|9D0aTD7yD^k@znu0R(=jkp@qiH33dY!M!Jdqt0wa~f!@~m*SX#cZ5LN@d z4t<1#t}!oxEeU%>+OTO@SXivo)w5iZBF~ii5h*lL(^aeclonwLuLG9IsyUVpc(_J_ zTy&D7B8<9vS2`9+3Znt87j<7-{u`r$JN?#5#HlP7x<(8x0vb$0`==4PL~ zpT&3>w9tup#~5#!s4S9u%7LpZdChP6>CN&YjB=?>@yne)m;W6+Na=2DhLH$pxLpL+ zX_dCI8EqrN+ZgcVGYY-TwcF}Z>B4T>- zU1p0e1akbD(+*K!9)qpcM>Sww(cfQPB8rIH399e+#ZNK4iCSF_JwAE z{XAd$*8?=wuDnWrEs7(e*a1BbEloyrv^_fV%*}7#95nk&2_9p{yZHEOOr@2)P%tu~ zC(d(bsrOM_N=gcjwHS@BZm-WFJKn5=_;!WX7(HnN>95zFyT(gxBw}`Aa-34^5Fg~7 z<9WB1uFe}?g!YHoL7B6+$UQxQmO5)T&IQ+9Tr3#Do{(X8ZND^J((cM&fwc60vP4b{jh@fx_263{ruj`+_aFAm4#mM zBP@S!$19ND@O)6%k2PQKC{z9XUSCKk7O8UH!a@z=A?eWHnZbb$V=t9-hSBGL`sg7< zABFMQr9ROuBfkO<0YTmg#xROCJl4${ zpO`p%1V0ezimC7!Xozvjoi>EPU#Tz{pvh^EV$n~kl=XUW(XtA1SKDHpc}{;#6^Me& z7oCUT9+S_pr}0UJ^2oYFMbfJ0W=O@rw1 ziE?(a;%9G`Jv;$Z{c=OInCHxwR{@RwF>ny-!o!)RbKutbi_hga(f8+C56iI%P+!B| zk}NQG-s`}S$g5h3rO~0bA6f4v&f*yPMxqrPJ|<(IKgq` zg7KjiwJR?KP*nr%ot+CWjh*u&9?|EQ38`butqnA3Z1i*7He7$OFt~s+!Ynnr4d6`? zST?HIeuA|AWKV9hVfk9o!-$@|gvxKPf>3zfzbYzVkLEgs80#Gv_Yy;TSYNgqkT5du zvba)Lw{H~-N3QkD>}nY)2aoPjR~l60N-$~$2Y0dD@L==Ew0CW}Z0cn7{E>cTB@wgC z+9uj;coun-2Y(a7PhC&SX-P?-fQH-3Cjp3Xu!fjcA`9bKR(?BeHdug^1dYr60{xw)@C7%8@fUkcY^l?(V8<>h*XY~}%m9EJG z8#ousZ!FRI;>&a;;yIF7I&cs5P2RzI$UWv%{$z*Z#1uTkUmRlKYaqt6bjHPuCkowLS{|0phEZ~^XI-o0wAU=L!@{zgC;l!%u<`7f8)omm_koq&~MOp;h&tQ7j*~QcGP08mI zKA!S4y5wGostRqm09k*MP>Ie`&Ms1>o9aOb!lt3|>ck73x`nDn-zpJaLf$eOuOB_K zC;cU+)eh!5UX{4Q^-4o!_vJYEDrN(O039ejHTVbScw3Ky?BU{Le3)<265NJYJt)Qb zGEG`85NTtwYOb@5G&1da>aOtL5-*4LbKTi$_chE$yO9H)FTc!ND~M4ZEu7~=WBfGn zcMvO)uHBYPm#ER{bx%~1mKhM4tL%sYq zaU9osTMrKp+F3EKEtzQD$-#&tUZrB)jI zS{-G0u5F|p>7sB-C-e4)2NN&LMiL%q=^JG@hO1#>OpXX}?8TvaCu24s;XY1MTl$p+ zkLYFkwfI&!-)pqC!)mCq*gfHe;o}VLs_Wrl#?HM74#{r2KO|`moHZ&dLx8+UUW0uw z;pcG`e%jzj>}CfzBJA+D0&ASH(9?;I4)IjwWK!KETxMKMu(B!Q7&2nzXp;u)qWs5| zONE7f^EL6}CZ~fnE`1NY!A6QwP?5>>BS6@hl}@m;+W^vKYyHjM?Tboe|Na3?0>0ra6wpdinpmWCLyYB8tWP~t?VQ<{)|b zA^K;z`HiT_vS1xhZ+($}EbYPhj6F^rPrkQv`kt{KTyy(?*SW*{f{Dargq}nSJ2V%C zFn+9fhn3)Ul!Ch0FBi-47HV2@9=L!qL)eJoB?lI-fXfjMb3RB%U982tAaFhNa{PEJ z2j)*0_s{@k4^t{gLYP)Ts7wxcTw>ee|6hpSrt{#Ku%@D}bj~DieD}HTkcUmb)HEz& zfabrP#Uc$i?_JVcSIEIat9NKtYPQoRz4pPe%J zx4?~^C=01Z9B^uw?sxK!kp%jZo;?*n!?nwem9+aCj0F$ZOn^xi5BpqJt<9Id+(Go- zw`0pf^o}j0Duak~b$+mvqg%i((g6i^wynjdhNb<)-~tk~DW(&7N#8+%l;?G6yh)yq z3Z$W^|EgsM;+o*)=r13Zv;$nP9Sp78c=Bd-2Z{4PDjbZRKnCe?pue`4cXl2iK`@)R zBFjkDw}~`x3AtbmQXPC{6j$9qu@Dna)>pvtr3Aa9Jhl_xTqKanZomn zDQaSf$0Yv{_ICsfv6s?1b7C}mLB5}|{2dlim9B|gm|bgpDE6!O4>Sr@Nu37v;63s& zA_6hWdPL>^F9#YVmwEeS>KLNsWDd~SL1h7|{fO_{fD5QZFDSkb25qQ?ZD!pMHXFHd z%iRv=+axsA5G*4CQKYV2K?;aREL45qgIXx{#BQ-0-pL8Jk>N}-kG1{qQM=_4Fvg36K)ax|qC76|q zpGl>M0XGz5N55b-1ySy9uB-Pi?{(PG`ijwQ0nv>g;#JFO!<-;VpiL8dbqkKY(PNn` zaZp86kbHYong)KUx8F^Q=og@hW}F-#D>M!8HqIK>n*H|(93iRU;soPN4W<@cq8oMd zY-E0aRR_TL2n3;g(Dpgy*|yI znHDC@zkN%qE@t>|EdelxPh17ENbyavxr?ym=$OVG+yN|+y&{$ey%3f=#9jX#FTX$d zKmCiz-~~Vg#r!0B5CS}ufU6|ysr!V4MW$7^_=xnePlvIRB%^U3>=C$)ig9I8 zCRjl;rma&B!LZ9x-{Fv}@n7Bc1E0NX+{?Ghe_BVA@h29~itroYIPbA~{I#GI(%!jF zEcL13AHEZ!yP_(pJq6?l^F6aF{gk2Lq#z{qqTRY{sSnP5OL{Z?o(eKUK5mOZb!c9k2Ap0(B-IDh7nonIyOCY zLD5?2`MylvS?>X<#FFSn9`N1w}euSVC{=MH<71(| zJac-0sEvJ0WM`(TU6lPl3^s9%aBzAKtHhrbMej7dnpZI*TTd9m)qgm?pHY3}R^ncq z#cTEsm!&`V6KX%u)RhnLeYD`Datl;z%w-&M{Y|O$3f$Gi8~^^Z-lh8(fwZ^WARSiC zfCzI`K4u20_n)lY26-vT$xJC61G2YgQ*z%zVnc#)#FJIK8ed0Ha2-HKtLhvpPunE&fhP{+K zYT}6H3R@q|aPdN5*{P?2I=BQD^zYR`sZ$Sez!vGO_;Y*fUW~u%I1D>vTHG&7o8aWx)%CzbU-vogVf?=zuG8hgSe7JR}(KQ4K z>opU~G)vBmOHP+^{#_?btI5fF7iBTssZ-vQ$Cg&Qn}l|y6$gT}2``0NIcc zw>P-DX7XhmCBV)9P(Q_<|Jh%bCH1dG>qiZ2{u@$y;HLOm+>)^6oGCIwa5*Wh%9gyH z2ZX$H^iZ}#HhSZsP8!ULuqF^He{MABGZ4{UskBVXZbLP!(I0mCR&OB`BZgmmz^v<5 zBN<%vC^n?cZoIk&dWWOWvPCqmZ5qSflf5MGfS9U2Ld@R5KtiGa8Y58cMsIKo50=O8 zu~iHx>+$(NDs9d$dabT+Z5oN6c_=JofCrs%gOtw`jlr&qxMa|yDC>X5GqPd zo>jfSW{~MlXD|;`{`Q@tlmIuaDgPM7Bm0*twdfE;8 z$A{OVO5Euv@c++ccHvIpA?4%gg!JS}R#+{*mPtQ;P)vPLFl5mgaA+9;06w7Sa}_%< z^O(Q5e7e8z>)4N_q4B(UCE~@ni<;c?!FikQ>0#lz;8NGAHewE`;NP?tK{6W`sg+D+ zDKB%Kx%XP?PG?@-YW%pp_X|~1QG!^S`FhWVwZK_&jEjwXp2id+P!*!Nr!L@pg1TM}c)gqr*bc=BLz}eUy9& z9Mj!jQ3kkrpQlSM5gDSx%7uxN>)&3OTM6{yH3?l8owseV)`@-)GgL4 zw_b0AuTu)RPtR3rB!)QbU+?;7+0$y}VSbQN+)s-FL+-`-WBI}xMQs|pKBDPs@j-pYL+IFC!%3msLuD{NP2XlUrv)xi2R zG#9;TXwF;zOAEX*k&v|o9B8dIRl&d!_&8FoM*xS*Z`4dZXlOV?{(hc|THLm!p}9k& z4t{Frowhy&_qM<%A8wO-kUZosez9djwXag4j2}6>f}cpneSXpMJNVNlXUSCOz%kwr zpXkOOYdljczx+yFl!fum4UK<$Z)jCSL^v1qAX7^0Y73Z)dIAuL*9()iWF5W4ViM73 zZ^mykU0n59iVv}Yh*7=p-@yLw%m2;5|INVvzcY}{#T@N5F~T3>C9S;aA4c`zkowtj zj)vw5cf^7B2*0K1W($b%cC-;g;q7Q5c;Pui@}qak=YjJGZ+-C4foJER>-K6#;M^zH z2reFP;18cy^>dJfnWGyRDO9kJqc%)P=GzBtHaA@7643-(?X1PW=%GWT-U(JMwI6(K2Fy7g!t=g~~)X zgjY1yWfx^jDF=5V=zl!|(?Mx+EK}aOXl8B9e$i15fFHSp%G=m-5C3S*EOG;FOe)4*!#4yaFK zWc{=2CEAtRzZ1eXHx+%0G#u8E1KLRlH4N=Q=LvjR+Y6nSc6r}^k%s1xpso6j>9;8> zE46_U`IYg1@9J^;f&SgbsC@7sm>wjnK<>Pw<&f0BPu|NigucM;2*B9RdQyBa^ zf|31(!UIeAX}|zv-Z3)tq}jdq?#h+?bz~@pShE?(kj$wdr4DxWOhXuB)?WMcvK?lH zBAKG!ho;>Hi93(*U-hQIoT>XBtGdRa9mcr=ETrdupX7h{5CM-pN`c9n2fq;n-b{Jv z5+nP~lC2s(?K(+`8dWfkDcXT+ByDw>*yo->@@n^VQYdw&#l*)*ztOtAby} ziBmm8&h*y=H*5`^Ir!vW^Hmy}8{ytkm1Ple-p1es@wrGJH_ibD;9*|Ny0(%cI&d$yLMFSCPe{0^OYg)0TGdR}!V@+RF7Bm@^3c`7O{4wYtt^k?y1dkY`5-=(& z*jm*8j%wyPMs8=`@*arngCv%M|E?q!mxQnmGSAUwz15btv)ex!@ue?^I$5_$HN`e< z&bc8XwR7E+zJK_ic~%5Mk(G1|UVwA;ow)_=od7d^FVYH(V~oxWS1a{=aL;%uNkl3-KNa?NH|GqZFPCgwovm>Q-=xhNeXg3??L$ z0wYwhsSI6^Ev@ZxKM9_%Q97?s6cxo?P`1BB1n&BMmMSJSW%dS%AOw<<85d@ZZohQs za}N0g$R9|f*xa@2XHsCB`p_P)wCY@eP)c4-K>7TkUi&uZK&75C;*X+YqY`%5N{JsB z{59dfqiOdh>oXjE$=T=z?fj-u1Wx=4jS&XXG1d<`M1>aLjDEk7VgSw^cc03OY&-$! zZ`LfiFqraKcB7D?JxtNeDhmt@wMO8`C`DXnt&NLm4C&rjOy&P9xAPHC4UKgE#TcuP40n{lfe%4feYZzVsq(k4F`?MLmhy(VU|F0B+JUO^=Td7u zFq!UOXA~p_Z$zht_}&Q3L#;imazo5Kff7*j<>kMx;-u&KU_BX6eKv8ptGgM2$5J6z zuGr~V)%`S*lXH9Y;a5e__9V@tv;xQccWrViSQgH?S(;^qIZGh4q}8^#*stUj-Trd| zl|N7h?L?e%UN`hS-c&kywOa(A6jcF(kuv)^)zhaLD4Ya#h+N*M4zgy2rNmfB%{N$` z%&ou!cVhQm4-VCpmn#*nK7(o5x@E902dRMc$LXnQydct^vJwlgp=Z~JlM`mE#*M1M zd+F)rOQ@n9!~K6?T5T_)=$@c&kggkCym&E_eB^J8T8$kW8>7Frn&+fwlYOQC{PnB}J9vbRA`XkGup#5W(@<;M$ncOknVE)+e&JCG?KU<4J@M(p` z*Fh)@r6M!JJm6?iD!gM#VMP-{^`smqVD=N6F!?2=IIHwTGOp*A!07{M`LLtgSt2LB zQktt<_gGCo;<%)mzypHs&rO_r&+xqrwR)-q_1jqC6cPe~7=2HV;ztyzd&&cqM_1lQ zhk3)3E`NT;t%uJnLWOo5zmYyUEw}Ba<$W5Tnb`ydpIU;!5G5-Ulf$2(n8z%AbTln0 zk62EAgv#@QRyZSYXSZLcSNQUPSr+b9N^BMbNR}opD*=gNKX^ zrZUSp=ib9!+__OR#4?Xb_NqhGS&!H}%lh*fWS#jz4qZ_2T0JHteL)(xxw8AuFSUf& zSaB%WZgk=#P$`!6`2$AG6D588-fv@Q?ZE0@sS9+!`4R~9px5~Y{-R8(B()+S%)MH< z`P)wkN#Fg7%_qs{{`;JDr=a{qpk^w2yF?cit`j9GR9DXL}1k_Vsx>e}x=yM0kn@bdfuwG>oQ zpL$--@s}@h9$Y@H9<-lsg>{@-)=Sptn(()4ZzUvr3H|ZTCGG|O=T^AL=`7wYz{$C- z%7rm-Tg7K7!Cca0W5bGLwd`EbOTC=-Yf!!TpyrteK}u;u1*M^;MV=|Vw5`*2J|*tbz&hVCMH?I$CZQqWAjWyf^9r2?90_FS8Afe z^^_sv=`K9psv>`9TJ~!y@jUJQyC7M@QCtF`q*1u~p^{7NOFt>Db zcOr1Vh>AE`H4cZL9#lhIN=inq?I+RP;cA*jM6@0WIv~}3VAIRU3Ac6`PN`-m(}W87 zpwQ5F@7_HEg0r))FH;zFc3VLnN8Ftfi<>`38!L*1oc5O&zsj7MY7Foje-Sln0{+On z%#V_-+`=0x*o%#FUiqAWS{((CJdTT}!g2SacupwtUsL6bzzMR)iZX=#-b>fjoLn|g zHuEi_u+IS=jjq}hav%4{GMXTi>vUs{R0UgCw>_^P9hWnz&bNCCezsoXN8)7iKlSmM z_nS`ru|ZTiD?!yIOr87n$h~2{ri8++F!oxA?Wy_*S!hrgmK+7@`xYJDK`yG}B%Wm#;kn|5?Si{@s`C$}rJG3*odfu#gw& zhh6{tY%L~&zCAc0=+cNJxAcrFx-dB#1r#K7;i@l$nu3B(q(;1>Rrc`ooa`0MVK1R8 zy70unbH8cRXQwl%F1neRaW%97bE%z`WYs6?0Ij z#IIV6!_|nhuO4jF3lRHNV^3X%6XMhcKb+^Tk|>e+nwaD<35t4Q!^n&vjx>}1*Xg9MBaycRm52V)g< z@83Mm9d%q`gB=|DH=em$EIk~2VQBc+6rA9_?|@`AlG=K7-{LYhN9NY$RkaXPk{a&$lmQw;@9n!b}R>>vxik;s|q~ zN3!0Vx34233kVIA^_)uyo^L%}U4N5u3Q>+rZ?v%A&LptvOHziAutyc=8or?fs+IQs zFl#^&mc=+78IJ4S0E#KA%PH9qS5}aegQQOyT5`gNp8;!bfH3g(_shr!43Kp5T95BV z@48M5bQlZv|N=n8ERS&qpTwQ7uaa?#%4vDQIHDd13d*~xJ^u)M=IZL|Yj009 zM;+VP+uQ&6@#Brdjw&4;Ov^6q00^+B3$J@UDLl170!GDKgu7e~|IK6P8rq7(Au3(1 za-X^BUuVQtb0TCv?jS!OalLWtE;JGxl(K`f4ZRqGVCmZ<`>Nm!8J`#441;m$Qx;Yw1OQSu%cC3p^WQCkRl^|fuol7 zFiY%@>u%BS`J4%Qzp{+fm`uKUc z+xWZ6k@cy{5sL~3Y*&04KX~DZtLu|&H^q>T&4V!kB9(c0pdM!yx&(YeoOj0S@g}R* z^0{IDwq?d^v?E?#UPct^=@c-cv()ABu8j$i9TZ*QBPB#S>fo^DCn|Cfhf96Tc!WY_ z3=FpO|0u{>d;Z*FKQ9kArl`CGK*-Kzr`>7Rd%HRc`y$F>cW81_`iSAl|9(SRT@Pu2 zkEf)i7Ez&K9yvM6S5ZD^zsZ$t$v!q;|v6>@5){OxY@Jstvp6b08fR0l&8L^!O0V0TCK zh0I@rX7&*$znqMb$N&PLU!J6n-W5-UJI@f{&Q%_|HtP#Pp4> zpOB5o2OviAima-id-e5_E^iyMN*j(HopwH6tmdqKS6FoVY(GN*1p1D0eD31zZddM> zTa^oLEe9A0C1KVePX8j2O<$K=jA^%rs%P#kt}VG+l5A*d;cL9RXX+(Vhv}2?=w6EJB2SaAX$VXsfMuaL z=P8^qJ}{8k1l(C)$walTteH74x$t{W27l(s2UH|UT?uNowwl0MSfuH#t?gc>3qE!k zREMOOqL_TQ|Ez!6nD{Qs&Yavq_8_2DWG+)B0a*S3G1sPBSp+ca|_~KxaBb+7)3V$5DQ_~f&%I4GStKT zsY7b{R&j;Jh?JpGWRmu9mD_a2?Q673OjkZPCa0##`4zN_>kpBpQXjeF^$ojB8j)qG_ z6asd8`CTY@^g;=s9w?j^>IV3dQr(tvQ@qhVowd0~f3lJ!5oRepO8Z0h6fsGfWnTNa zSp?WdGtDWyqM~BDO3KjCaGimHG9`y*#aOv>Af{QEDy-Ue7Q3&iv^L(HU-m2W2$FzI z^^c923W6BSCqf_gKfz4!Z`*A}u6ABS`C?Fk5XhM&Bue+)#_Y>28v({Jhaw;sjI*%? zx1svx=H^TT9>fpF0wQuNakqr*D1}X%8YBt>5Ne8rX*b0dseX8t!;cijfjzZqQ`C3{ z+-%tZI&Rzi@<;KvZ!^@B6MuNj-ODg7Evh9XPrilbPV-fsexHSolY|sD<9g$rpA#`2 zeN&Fe6~ZFFywm=w9Z`bf@%9AZnfPHZ7(lUV9FL1@78sMu-(&@-dmka!*J+8K_65MTLwA5h0^4<9np zRtjCZj^upMbe^gW(FOpx$jvM1i5fp%Bg2v}J|5~;gm^9;Se+e9xlO|}5z`ZHnz)>( zuBH0TWO4P|J&@(|BX6UiK^y*ikx9$6x>D zI*};Xo6$$uq*#B&>7|b!Kc@PQY6Ag5H0f6Y6b|*rafu=f5n)!g>qCV*VVAf%(&1nH z#HN4dY1*E4@}FTSqbxb?w)Th_OzCP6Jy>u}IV;hsv81uM2j92aElf!j<(nq-?b&u) zP}ip$%&#xmtz&-tuNQzQ2WL)T6)^6KQwbkW->Br}1yN1>-rgx(t*mO<-PzfR;d8xn z)k#y6iI$trvZ6tCu_qYNH@LMkNDeTEd5Raqz@MAFgtb`y8oc)TM-<24fm3!}iGvzN#*n4GN&C^}-UxvW2> zOt4##a?l-lN}B%hN*R-)FKWvsD=VuLd4PDll8X`oB-}OOzLz3{kCe=c;NUxi4Nk~D zZ&HbZy)>SiQ_FUudirc>3T_XGVH)PJ9Ot9{C~RC4nV{QH3c-s4>}0S3Cy|gyzd~$# z`KZPSTpGz$dga1DnQIQ*3P^aplYhH;iPWpplcNW257U5LYYsv0N#os$95$vyMD46p zRol7Rd8siobQk`q4i8nZ)0V=@8@_n46>Atn=wHAz*!1Dn*PY4E^n0uTX$ZrvI*xG8 zY>V4#jMuos{ZASxf$|f2lCwy2x00JpXHf@LGW;2b`Y*MduOFxdG;jz%I6B^J=kmDd zo@}2fR54OQakHnaOE^hh60_bFR9#)o-O5X}m{$~*qjVgyihIdU070Pg{8vx#vQFLs zXTski;4RZ}|0kxZMtb&Q|68scSGyoo2DHLw*Er+29TC@#Q!s{NR`La`4!exsPW#P# z7{+|h6h@Dh%`a9hEs+XVuP{U}UkcLla(*D+XlPG ziGDAoN1bw|TU^vPFnss4oG3J1wNZsiFHOwLVJku%*EzfB1-19_yA%sVJ>0)_YZp?f zDlS@Q>f(|)b=-6&C(tiZ&xM#gIZ7}OoO}U2^@DiwcF0Xk^odN@;rDA~oQBsQV>woO zYiPbj0ippz^eq7+j?Lv|X)ACBV{`-RxGi45IJiOfjq6W4qznLS05$SPwC;qC#KnI; zSn;!TOSW$p&c2aW2CpxAzD0^oId#J%&DiC<)L8bCwLzWw7=P zUXXheQH>|&Z89yO;8ldyNZvm<@=q>2i0%OJ_8?Mpw>}EuN$QFhDB|>!-t%b+1M(gi z;&vcwk31Rxq@c5u%uJF`>^Ji}H>Ay-m5d>Ir<*ja@{irrnBBT_)a3$v(-%G>-_;e0*TQ9R=!!DSz6XTNBnWyk(T4>^<3CA?#&i zONbx{Ei-W*hQ-Li7B$@Y)KFw;x8X1?b4<<4<8oUW5M#x>J%IQJ#s~x=Gv&kZpFeN1 zMfvh|zM}%wz!@CbcO$MPRA%Sr^33w~Uzjb>*g~Nm1a4HePoK=vN8$42Z(ixldZCuP zW=E7~NM`Qnkaoi_CL$^tD);l}8vLejw@18ySmpy{@>17R{JX80-)gEMMGg5i-WjM! zaqQ3BfhbhQ8h%r+Tl1mP;mlkWt+6LdB2`9aEmoe`mFQM4^vd*8{`pHw{IZ!JRr<{u zMQ>+#CfsabW7izMed|bN!8IZbU>B0vT!^~|5$nyBjht8|ZFCDqzjqDrN( z93>A-%RJZea1l#ld^&Np-!sP1a)RfdpbRDWn%V!o5J?a*ZUM$GqUgFR0 z8VdL8g9TOku8iL_27^xm&z^+|O^LF3Z*m%#TL{|P+R6Y>QqEt|Dnrz6Vjxd5lR3H= zfM!z-p=wivhCrY>3Q{>QJ11?3_qj*q>AT8Aj(&>~_&W?4Y%6+ZY4=D`5TvAjfazaY z6LQB6iHLi*M{z6ZS}T2zV}m_rxwaIpM%K<=?@g7u#8@1srU4<{G$;IFF(^VAxFq@y z5qDjBySph1Ks-*VhY1f&bMo{6TtZskie#oE-zd;*Zj0;}W#T(IY-M+4AxEE`^r-_; zRx!>JJKx_sEW^cKvM9e3TI2%6PPq;BxIWFZH@m7&arQ!#T{RGZTf?7BE4(7oZ&x@J zm_&ziT>l)5$=4SHAVB@kp4V#Gr5Jz9avO`?Ead^hc#4elJvPZ<()iB@{gJgG(7@O* zpG=hELxAKTo0^%Wj4+-efwFs7z^&iJbmd5aqo+@bv0lLE+2z$1ooW#$2m}F0cp8DP4SMxR0Gd>8rl$r=82T# zQ!->-MvF z`YV-_6_&<+UAS^&Pe%o{UAiGNkDuPyB&{1BY$ZK<^_zFD)PYc9#fbUvJMZ${(@DBs(fr@WMn*ON4!0+9gvaW%2|JW=6W+;lU}>IMOFLoABO@W z%zKpG&!M531Wzy%hEg9DA(|kXFRG(&gcPM~x3%5ST$CBH^m7S1q()&^h=2Bqi-S6k zlTwl&%;)POjKR+U0%A#ABX34j-)(*~7jGzA2=pOEIx}HVZ9TmmPB%zi!+qBSck#T!jgY)l?8Lq=i zZRN#U?d}eHnFklpfW8hLnU%o$10v_;je6q}vq~jEzY7QLm@<@!2ymcLQMYd2#{DES zC@3Bu8A7I^^Y%Hfr7`uJp&FA8ErjYAVDQ>A1MK*ne?JE)H!4A4IDyEMEc@Rd@s(N!qi5qX!kw ze2gcWU%p7W&aq{2#lEs~s)kb59^>kzZv_<|2uY>`&}wO_@w|P{S9K5KZE5>aFD@C7 z#Oxc5irD(f;URz61Uhi>_)mj3)i)V|WtB?zZlQBhJPNmpi%b@4+aE=xag3F@&r?yd zO_imazcr%FS}R71$HWX5mEJRa^oG9&&;L%k;O0gV!(!%NAJl<=%=3j&E2?!MFLpE%`JnxEdo|}U19QhxRPjtG=B`5ldR$psv;dYPLQ3<>y6mq>{ z{cwDInOlG*0E%*OC{F}Ls9VD%M5<0Ejhf=m za1^^Ss^oXD-k89{r`f)pw#{&Zdg;w&wye0Q{VY9vQ zT%Rx}D!O(Rg%geCQ~0`^k}P0^Nf7NXdVV_HYto2Ou9Hl?p9yf?q9vWF#sF5(obMoq zaQ5f%`6Pdr7vv=AYwme^8qBB5C1qx= zE-~R29d$?P0iM?XzRY)|G#m)2HVY0G@#jnFo(Wo}%ZHP>4lyJ*k3&NIar#23m88G?%W|7(O z$eeIQ`rug%;*O%DifiZKO@2N*|B$=>kOPkgMe#m9>;hG;)K7R;%7A>}l2&qsU9Wgy z^8f46KAWrlHG6|gTy@Cpe!T#e2^wL{03Q{!g((Z^X zOLXX9+l*xmg;SnGHZBuDP19BnL8_#ss8&`C%27i@V-g-_Fl1=p@f@S?(#y+x39{dP zP=y6_=`d_cc6Qu+?&*?V_EV&&LSaklTMYY#+$$g2R2!y;uAUr9cgk#?T3H5(Vsxk! z2c^iFPGZ7;7`8A_>7NG}>Ig4Af z4k+36>GMA;b_Yf_YvzkcN+&#KVlF~CRYUn< zNQIe7q-c|ed|&o5A^^Ywkz=`fU>jT*zlO3wY>!-IcA&+ob1+OuQVt&I@h@;CqnbbT`h6MwNkd{TmLa zLtL{*Ghwu~wPma+zudl~$oXc+&E9GJ-uimDslFscQrX%{e@qe z(GTaba>=szKd}r|S#Q+UJL6v5-wX8f^K$`wLzX+LH4=u9wvy?|7kZ-YBr-Sk+sy7! zZdsAwQwwbfgsLx6m57g@~ZM5nqhOY{?qU)&|rmc54G zWJZgAN*M9w@n%k6jNDH_p-w=IaOL9JClKw<1fl5(%CNcU#!;Ul``1z1l(4kSv%SI6 zYvh5e!e0+c%?i6)i2^$*mecx{8?1Y%)fd!_9!D9LrVHd|jC>PMt)|tB7mxI;6N5J2 zxL$L(>TPViIXZjH+9S7k)8X~&ucm9mwHlWVF=veo(cI4WmW>?TE@HKmFugEdod{ zX=iS`IcJrK=j?i^#g#z8)_yE z>FLE(fG$Wvp-QQ*Y0dWF(*n))V)4gAfX0&dw~Hvs#}`;RwkQp?u&`J^Vtsh;-aH>e zSrkd?Z`v`0*!OOqs-;cLkL+wRTJ^KPolPsf?Q{m&tz-HW;z zqIfe+oNc{gJpc2vtXG^r=x=T;OINQqkl(^xCryC9@0kdSO`Nx^By0A7b|(R+Rc=G!$}%ScqM&%zhk%kWu8wy3g3`M^?fgC` zlk5j1lFOg^J9X;jNI<9pGO-ySF0*OGM_6`V!QokLe$An(OqBfGmt-R=_s=~hWpmRF zTrgy(%>GrY!$#x6;J=jKWwVpNX<&jbg611K?J{(w9nzvKe-oK7g@ zdRs4P=;p1?T=m#UKBvLK!Fpp)>@5Y7ndjp_fDoGhC3FP!7@?`zy=oIh(gWZU&}{y$ z?%V*auTQ5-Pfsreirgx5w1{*Hf=j`8u0~RPjQmyY@hiVQk2KNzA$RqRjma8-XT~Y* zUJPpP=FEF^1%*N};_gTBCA!^YpxAsVGTi4sSSx6f+X8go%Rtw+K1OXmUpw|!lBhdV zaafO8^=AB&U`oTi-SrAvT%G4x`dcLdV{D0~-NZ|6FnFLns&6+X-TOX=j!#(k%P)ko z%4zqhA{64S1rz+Jzf1#CLGasZZc^M{(M9`H<))J{E19P&FbctkXbVv=6Cu5P`az&p z>TgtfVf>UTv8CWQO+4NZPb4a1rR;H&?)8g7)wdc}g$HvJcs=v-)Rp!MRxvYIMQS9e zDF9DnN}wtjm7vkwr1;m)<-FaT?A2<@$}IyneM&TT)jVojl5vTeK=TSS2E=1FN_4*i z6y4#}pPL2+ZctEp*JRH~xFl7DW4q7bnfNZ%HFS z7@>{_lKY4r1WOk{x^3E2F@|0ybO7BxFFE#faqj@d=^xr#j3n%LR3q?U>#tn70{vTq z#BjEvow_isr+a0hMS>F(6Mi?>P^$xf9mlsCcQjl96BW5|)m?$jUnGK4?m(6y%=9zB zi+pI`?vYnKR5{#JEnU>ZSnzp_LNJCcN}j9LoJwJ(Ws%|~>T_jZU*E|FYow^UQp>^r zxE}=ce1e-o)e3VqlD$s0-H=K+IYLsIwF=l7z5(WWEFnJVX{qdU z^n#}#rmL^d>OM#{aflsO#Rjt;hEx0-^^6mX^9z>cNQztUn<%5J>v1DZyXkE}188u{ z$jWHx%CCG*1O}NYGZ_Egv7q>7S#hrB;0Dk=Qwn*O1vpw}`qN*@nVXf4pUwpBBaRah zK7QQ_@1; zUB$6|i%Yw^x-am10RM1;Htgb3WzDSL&c{f4725=y%%Aatn$>rS^>)RQ8`DaJHMXph%ZiHc5U zaXP%T%J=7@kjal<`;DCcUa)4wDAzu46l<;D{@gOF%MNRNg_LP$*;NY+Y!uKVrA?(I zB-}<;wc7|%0})-9p^)@=N-I-6f>IV`xwBqUU3xO5!W`gpwmBs-MwaRTOr?bBJaI#O z!D^!XxS!bCTfn&8tzpGuY4>v2o4;#85ojCGCH0$iVt$>U=9P~1Ov?kQP2|@OrG3?&!zmIO-}8l` z768|1G7ri3=J8Gir2M?{yMr$Q(;d#&#=N4u{2;WWU+9(U1kfMVo~XC&Zet4*@-Z{8 z5cHe&Ax>wH*!+#l)u-ADr`~`ravXlTx0iGfnQ+@d_RXCsB}SrRk+~`?X~}f|hlA?@@tI z>j)yJL*wHqd$d0i0X=X1CIfK_il!UpNqJJ$#BgomZ}WJ&aCN_`<^43NsdHY;Z@~R* zt}T4+uL(@_GEh-@A~oy_`aCIhKY*JD=46vW+zP-sV>AVcMO{D;^lzv_#n(iOK>HbeiW#wSHOaBEov|=bb z45TSiGlS9O_I*uusGbC^H68T^?~>})rnT?<8O*D#w=02ejL)cnZLm9wxZXfVJ`s~Y z3z*Ws7Er3eOhc2*TC|G<7Ho)b9CGskGSS*uuc&iCe-YYu*q^T9a4u!}T0F0Wib^T# zMT6UdulFwg!>yIH5g7{@oApm;V946>1CqO9CQ0D0dkjW&L$Lp_G6wdq=BO$n+Cet9+GyJ-dP-a#?EEdzl%+Az4Wf`aC^mwI_Q(J zwi%ZR*qxoW?Z8ApEo=PYG{`p+@q?+f<{3XOIrgn-df8z9RO9Tygk}SdHB)yf(`(#H zf8#0*Z79&j`00PNgKhMx0S;%~I2<%4Jw3n_{xR=+c2u}&ST0JANxoGv9KN#Dn`%i? zX}Pdn8uIdycUowxV4^Xeef^9(r$RWYF$&M!GJoAXxGy*YwOZOz z5E-azV7|7x`OtTxazlcbx5<-$40Ap7ba;4~5Zu-ESuqoB2+r+IYX7VvjfAH)g!6zWxK;8`JKy=cnx0jV^-v!dK9Of9`+ z>cT%CJXF8{XxYFfb#K4`CB4jVu);OLc1+1BDKheUUn)J&tb+lTJZofaUwN@m^UFV# ztT`UEfGR6GJpydXI`~pT_<`a}Z)U&pS%;Z{qMe5Ux*p823OI+ca@$(a+wT?WJJ*7M zt%0Xnx*FGI6YbpaG%ZWap^!ZVKo^#&S5@HJoRQ+}>u%OYfD_?50|T+V^2wb?j&>5j z<_^oX%CY!RHDD3sR^~5xfXe0TUKt|8c9(92cQmSdSj6_{9sT+cXD0zZbA>sM9aB&H zZk`mXvPJ(k!5 zX>8ezPXL=F5ch%oBujNb9n3Xil0Dwm3LWDu!**VLvUzK z{s_v^cln6eGX9v3Jycx$LguQEET=(>oP%7U8jvPl8Dn2uJ{}_aBDr6;eIS*>PseuWCftiMtO2; zrAfPojY|GujLu0ly!6k9BvuSI$q+V`Oi?<#Gq`2}xW@$3fc75XIqd^*D>mJ>4smwM z#23X*ev@Xv?$kNt{m%8LYq zv~_iL(PRo$KQs5#wK^Y#`W!?}u|v9_I&Ux~VS7>}y5ryBdV95jEtXdBDu6KLT!z|X zoJ@y7Fsu2wCg1}xH+yJp8WgB130R-lVLB^{lGp{HhlYA^OiF64v^C8E0sE8? zE2(bK+ipvCs+!?98+W?2jr=HV==3+=JzWGV-Lh3bR_EpOxxRE{zD8To8cmb>$aQjb zDoSb7hm3j1uX@GGZzH6C%BH?4%Kc)W{BBFo(NXCd0Pq&^awH6<9D|Wyx#o4d;b;l% zc*T+|Vhx~7br@{kv_HA>>>&uT+SpQpO1{{q0I%8=9ZVF86%CKXDj&SJwLTsyyoA+? zoO(U>1)Q7H2sM=8C`q?H`;(+F+U)x9tO?kam*?z`0 z#7d_i2Y38`XgbTVDBG@W4-L{%Lr6+@cgX-smx8no-Q6V!3^0^{G$5N}tpP`oRR1cokCpC@EX)v*skIho?L4_z)X;=nzebm2c#KPaT|i5JRgq zM5D2J&tg@x&56A7n54ZcoNR1+VJi3DFT`ru)1LaT|2W)kQPvw6Ou8~90O=tv0z$lg zaNJgKyXaZh;=JVD=w7!FtcouY#7z?bUY0sVt(ANf@Mt}IQMBZPZIJEr!qM1Om2iK@ zv~rpuRy|=+ZTpf2=r{lfa=e@KQH_EIS04ESNZ+J8bk~p*F*61}Y zQcrZ%mz8mmwR>0QQ&-JC82))8`ZSs&??B%OZk^_MIeHuw6~&whCPZ8iGI?226N30a zc`_dJqX4|-m-!7hKly@?67oOSlV8ZA0FV;yA&@ptlQe! zUPn|_(yXJP5M{+e2oJ?QxzPNGt`@WXJwp3C$|Dy~AI=#;-%*05_i+ib6>(5U5h>ExtMda4F)RPNdp~`wd7%i5j5ES34$nL~tV*{1g)t~7Nv>g8X%uCI z`j5=n?dvX?st_MV&$_L9#@!|K;M=bc4@P@ZErNnUEZ_U*VK70vIX4VP*_?-9Y!4oU zSH3h6J)7WV^0vg~gzGtX3$Z-A?&nDqd>lR9Qn6TGA)(WyPhXv7=%|j1oCtcF{>&e~ zixaJk%JGsRYzD%E2}nfkACJLDV`J(GawXz!lqIV}jVRB)^^c2<_VeP0;vUUpO1l3& zH+b#uWQDSMrNn$j%XCc+%l$4!nZw&2URG$K#T(|x{;N*p-cpNPd1YlI)>5ayANs;{ z+jaQ%5gVB{XP=FoojC+GblDC zK>kW!<9;>VvylCQN>XyCc2*4(w70jHKuZ|9RKZ&)i88TMTr8K^XC_1uy}}qq%wbYy zz3*rRx~gdS6S;EvBKU_MCVoz5@o(xx0+{tCuvh^zSfd@B@Qff%2>jR_1zbhLJT5cDKT&>abkcES?m zuY^oxWeR^U`*AJ!m8Qh#{`frG|7t96 zZH?yS?uAbarJ^XP+E=U*Yc$osptfT0pheT5L)~({ z|NRwA zAcmd1>3t>UaUe5zcNzGa-U!g%c}dFK0jwiB?g|QV)NQGexQ(A|$ zESW%~%r+cb2jCe;b-%K?IpD7jyk2}pmH`GI*ax+cSeVqi+J%z3hjF*>bnVW}$7 zIHcfLG#>&v*r$)QpVa^Bw6QlJHxcmww#6FE?}>-Q~^<~6i->E5(h zAXhsAqFqTW9^buKmOLMD-9N5p$Uln~KDniN3c@dM!W-ox)6&xN+32C87mY~fEN8(E zs~t?&4V^Ovj>Jf8Oi?;Rw8DD11lKe^`?6Q=W<%A`-FVpYBUhN^4aJMa$w}~B1q!@^ zY}5RZcXV{-ZbF+v8Vdw=u&)6H(PB>D&KvquEbHSU&@p(&M&rwgP;rE8iP#!Yj|1W^ zwciQ2$tx%XV5HurrlBU`^b@<-zr4s{F+L2WkM;buPK7@EIjZ@e%9|Fu^tX_X&r5iS znKZ1onl;OcQsqRHN=f2_4v)#0{v9^78Tm&;yE(3H^s2&zaMn zMW*lw{-4{_hz%ggFvo75?3PJ^WJ(iU+5CPr?NQ3T4%$bmezRNT^|s@4MKuqCE69;= zMe$`2u1AyP4BO$CAQfYDM*+oQkH9ayLIg=EH}iSH!NnJZgxp_8`YITSt;n##=jQMP z5(Gn6QJIz1%9Kg1dBDMqh157O80-c+NSa`@Gd@1PP1})~e(L6Sd;5OTPi{3mu&_An zb+9g*0e?ZBTVWl3O&to6nb2GFuP*eHt2Pb_Jy(aa*Qe0)1a*sRH_yP5YoE4q4&pCMMy z)6KJ>|25B+=X)KiyPMI6N!@TH5u22%AcCZCIXqp&aD-8F#hc_aD6r^v}sa zTfl!54iXMA9(dgWwl#;_Yg&E_Cqy6xZDRH`jsKOUI!0CssXF2@uCraeysla0c* zVx{I}ApPd)8w0*;fXr%Da9-&_&O&lvlYFeU7&g1*@Gfm@!K%Z&nVwP~L2 zrr)6?OjK{KrYq9OE9mPdNZfnX=O8am`bjzG6)+cq9FQg8pB0Mc&EEAf|JhmdLn z4VkcjK;B=^<;%7(1@}N}ni>d{yga+ZwEpG4>!Z-KGnc_;UU&$~r(jQ)UeF1aAA2MT zD4=BSD(2#b@#aGvJyHr16_Y(b@(fN;6S61EkG#AMqZ=iMjgMb7fyebY77mwCglwzj z>-d>`_OoJ{F8AEPAVTfBRVl_3n)vNbgJfD*BNzjF^Zof4+RIM?oN)}2%?TSLK6){$ z{;9n5YD3Edmzezhc--uOB68u0x&9#ao)6JqgOMw0YinPDaT<{J ze*{jhzt-hH_Ot+roC?=zt_#QI0KY@q@`{QM*-Zt6Mx~E?p*F^!mCAmC%>1M$iv3+p zVG<;kU0V(AIF!)h57G68vg~4Xk)NI2^wShJ-2ePS189OLQO;c(p%fKgRm16$ap^fPhFoc>d~QYxs}wi>9SnBujeRUB zDEOiijeabl#}$|%G4UU>t!sM=k?nsjc=68hgIc}k+wBD=+o;mwV)jJIHiC}$U(@^C zXVUTeCq-;`Kv$J0?Wk+HL4kwbKwbX~mIltl+?X)Q>sx}`nLIj|Xa(q>?hJ{hMJasH zf4Fw&k~?*-Qx(SBqGr1#|TGNi?&!P+ryn#Xn~puuTJSX8;yr7sCnRm?4%`D z9jP8HgX?!Es&*5+UImgsG5J&SY7n1JuXIZF8_ZiA)Fm(f^RA-jg1bcDeHVK>>t4UV zZaF{|lE5arLqQPrfWEG7GG%tMrM4r@(ZSapm(6goF#SN`u}!6lz>_ce%cpHmHNrK9Etq%@*FVGm z9PSnf9=cAIbQIkm2h#foSdm-#o4x)wB-JD(W|Z!?I$;AU@HQ-S$zpd>F*bJcAOjI5 zrD&EN6z;p2z?^~h^AC9{|b;ve#rQYBVM-Kf4Erz>V zpy*L>P391d=S7eqg$>_uD81Lmx>@pk`^C}GXz`ndn1>uE=T2FfF%zdAOI%!Xftvqs zWe&D6f@*P-fZ2tI%jx+DtEIP=+oix6DifV*R^}p~R)kp19`pRYd7`B{9s*6AmZ73R z4}Jj^{QUK_yK2xeZU?(;K-&-=Q%H@p6Rf)lErfH{5H6*sc5f+Zt^r$4I|{^&n>j!8F10E z*Ludy%?&IGoV`_y|O<2iyS|G-g zmda6|TSXQ|ou9F{v!4fSbqy;XQu&AKcZwCMZ)0Hf0a)7dz|_N=`ApaY>hT9}>DV4u z5rP}lO!B=Hc!hy^gn;3jMBXcYM9M=`P9K<+g~bXOh(=Mfw|GZDpqYDMU6dHg*%qcT zduN*mWx+JAan7LmZwH8sDCyAq^uRg0+VNH8xKn7zq)leM3O^i$^uM%nVw?4VqhzTJ zI!XTaz|`A{x{RsE6+M6FicGq4R7p+FcUiv4Qr(#=OLf$?Cg-tibsNJtyJJj%F3Q{S5N$i?@pD* z_%ASne?(+88y|muhSGnIrW7_V5mMu4WXieeA~NBYSpAAMOt_gqC4$($3{Z@Z&+ir4 zyuC1R(zDJ`>HH`atN1ESUyL`-ybe6Yg+p*1eHmVnkx(3*n zwj+uV)7AI7Ex)2*^+$Qjk4FqpH@A^#4Uer<@Tu1xR8+w*1IPH{c*!5GoAjHKkP^GY zYz)0cDGwNWu|1F^8MfP=>TWY6d6=rdU&kCE%sd9TU=sh>vGX{j$*`6T~) zQb$H&p4EBd;?7*n{sdxJYW!kYzxwTX?Rk>!*U_aVMH^!uYuVVvve|%%n(4+xUfwe= zSG3^}Y$i=FR#tE~(o;!pyXyPaD6kTR@=3;^J5xM_p)7 z6!)9Q7C0DCvtRml@wnDL@U;6`Gd&SJV3C;Rz10SW z%I*1gVy^psb!rxuJLzcx?U@Y%rmuL@VnE+hW0@%}eYfg|f^loz0X%vh1aZ_HP(ua1 zwE*EYc-5K0PoP zjBg6xilf0`HI9o#A34>f4|oQeG}4J1*SpCsnKb>NkAuSdUJ50kINyT`k?n?UrvW3+ zN5`qvaGHMbJrgVIZ+U{RG@$mAUQE)*o1U~spz70Xa#$SB&CTt$2e!oZPK(WqAtUr? zi-GssF}hf~>Y=r5MPz%ww>Q$}TbJ)>Xq-jXe&?k&xebsC6ollU?7Z&pflue#XM08E z)czAA+V2G!u=UVGWaB40!2776Otm`I$pBQ4Nam0>QXw-@2)sfjkX~%Sp)Q+Va;rO^ z#!Dj0J&u!4hUEC)iR&$qEWw*^{cJ3~rs19O+<`;9dI`{IH>qx^j@J}<_Gd5ay~?Kz ztn20-FLXu6!s&7IO-4hcz@U5Si*Ug*jO99x)19x z+(Z9l1xkg5g?%_FTU_Or(I#*RY4Wsf9X@Sn0DCqt4J<|U4Nm5v#=3d@6%=DLnf=cH zquXXZCM_+E2!uNJEdplynh)2Bk%E4Go!u*S+(h!OFibBN9^1njc$c7U&$s0w^5?Vz zWBB3fv_~-8Udfsjuj%2eXW>Y)Pu_;i6vWfh^K5|d##91xs8(0j$rkA@)O9+)5AHkI``e5 z^P$|Gi3tqm#u%QzBE5t$o|XiF5C$wP`Gf`PZV812RAh6p5)-4Acdn+q4^D;+K&rpN zVonnj_^~vJ4~w=j;3}OziH{?x)#-*!lbemJ9TzFy(#GLbZlo<6kw$G|gHogeTjdJI zTSVLAm)AND-98_d)-fqiUip>6V9F-}XMM~*b@MHS=KZA6hDJkc-DaZKhN|5eRc$oG zgg@V|fmB;3)<0W~yDMHX^g zn3fZ<^Qmd^$s~Qy0}XWhCTj6>MYD86G9ltiBu|I9=uPsr*HL@6^0SCVi1JJr>%@*%%CvUVFGGcY6{Z8EY^g-TKn*EOpFb=+?oF&6i} ziQ@8?$eJ@VCnur*wMDyeZEn`Dpe3!Q-H~nbzfiA3V8i_($t)V$#~w``4DS?ueURT6 z3@t4+Ew%0DCwMg9&;vF>Z0vC}zr|saE=5~~>TisVf2Fy3#KwHC&&?%n zUnq-=#0s%+M{p9*dU@&sZDUbc8J?MR_x9FO-9d62)qBcoG&E?6>(#8SocY_Ygota@ zRWHx5RgWg+AO6xcjI8%GXSNg>(t!aQ)|oA6goCBGC!JfHk*RkW8GStVCgbRp1Q8D>K!~_ zk|#w)=Jx627YVPr213o+PhcP6CXaPMez6pL=c1K%vh;uk|{SaMbtPyL>T=ZA8=9 zO}+7yz;7?zH@SP>K{{oHg|INYl5ekBiSr$NTAn!GCWQt-NO@&b3$kF*t4(b{KMXMfm7}6YPM>dAXL{aE?6RKl9I-2 z<>gW|AxOd3N8ruFJqm>Q@L)emr%v%#9!$gh^T6u^kNaqN1t~~XDBa!#Pe)rsV%Vy* z?dPYxvO?oy`Qv4me$mO}=8)P_gVXNp=aTu`G3DnaWn6Rbc5#glAM&F&eh6l@%Ysjk zThEx(&L!H^7LJCc+a@H%ie|usL?H{nFf|g$AJWASG)`DPL~0xy5FMQfw73O*NoxGh zB77LREiJ5CLbV;O9*4L#7%NX<=zdP;gEt3T=@o~|&q77l+#g#g*0nrBSR%jgRPuct zo0L4;EAGi1A3sj4<3&grxa^k(zD*!^2Q+1;4fQ}aF{)P4d{##JTyyb-rI?wS85yir zT1=p!9DQ(DKR>hLLp`3E(KEBF_0gmOJJ_;cNi)&Ae*o6N7MGR9(9yd`eEPDm>DdUj zvF+EbOC=%#I?x)d(9i^Zw|^$Be!@_@#ZTLrbq;(RTYrno^GoETxL(tDH-wlAyw%8a za|(9gME&{Ydhx)~t{Pb+*z%7BJWWrH7f>W{adDY>5v_m@S2=&^iPAc@*jZlxd9~sB zcDO8YECL%GsV+eX2;|N8f#6Sm%LM-=vv0L)ZFJ+`65CZ>W`^VN|5l~-j+_A5pJWHXz8#KL6k-n|>Rxe@utovNoP510ny)c(X-iNs$1QJcWrma_EfC9tK% z6R;PRkpv(c+u|-Uq6*`d)pfe#h^Tpmxp@?(Ui6TkmS5#g5L+8TmT3raMJ?x35767* z;psf)YheLUj^2wEz5DxPS28nn0|PXt-izPCFd&K3V!nFnf%7)tIYy3JHD~f##2sQI zX58Vt+|U7K$g_F?2V!O)UcvG{{rM*0-%1kCrB`y`K)a~B*rFdxO?cg&n^^Z_B5de0 zypP{Y+||V;Ln!?a-MyJTGq&Wz{xX^@iyX|CA6gRV=l77>*Br)!XZICrsc)6{hKj!& z>4Yzlg8LYxhrQwrniKoDq5=vC{~2z1N`dc1plP@{?@nCjuc2GX;Y!^ zbzZ;JTv>zdP$E*8*a<;l;o)r|!xLzrcCffrG_#1kSnjCTYr>C|!VVLtxuMJ%pxoJq z7c1krY{oSnH3oe; zjPINKTDf}V0Ys)!l%&k_3f@(KK4j zZ9YU|43*5+MThBpHFd(=#l^Ipg#%x8v2PsT2Z;_H)s)_Jd}E9S$^6R@^(4vmbLoA0 z*WLZc*iBOqI#4zQJke<5uS2Hy{dFe=QiJN~dhfHOM<%KvMlLKnZYiF;I~Nzc zb@QCrsgJSGNYE0o`@-BUlasY5VXl_V@6P^t7Dlu|okIW(*xq$D2bicQ41lCTtDvB8 zgrYGpOFTL^hEv+$hQ;jKs zOEYw=Zw@x3AcE0bAZ+T7S+xHoI~EfY5BcVQxa^MsTU!G*Jy3$7NTTcrz2}jUk%F^U z;A5XFiir{5^UDVD3cB+EwQTN|k<%BggcmY_{*wF$@zxq$6PK5l)*v+t_)pvY50_=V zhV=yN)UmNv%1Up5mE*D|xkFZ6zXKoHo2{(_T#{isy0V_2ALF}RXc|0xd@pNu=4=HK zx7y9e{^jHKbq(NIR^<aKlAp zWO+d%@W=1nMj)It^nmRg&@Fzr04q#r<64XzS2~&LL-Bya_d?PTbex!&=yw?Sl7!@v zh9#j&fX^_XFT|hV_^&CCK+#aLV8ceyr*KHGZtk7%e&j4CpC zU)qS!)8jy)(9<|3E2bE#ZlFMMgPXr$!vNfK!{Glk9+UCjFa4YUHqAvv8k^Q5Sl%=a z{V>m_@ z6`f?@-MdVU?-k~D0N%$#{uv&jP<87VRo0Ndvj#Z2$-qj`EiidFP0RzM@{{lksstRc z0019~A2ofj77la3sa-tuP)~oIVJ!f7FEa0Z1}xAWhct>2u_Q4^MIg zOl&XJvyU;ldHM%G*l92OdEv`}U4dupz+@HBVp1#MiU2~OwspHP&ohaxjM$)3l2&i<+iHv-~7#R79HJ-3_R}dp8 z3-pJoHHmO=4>Ks?m$Wn$C;(?=_G4=+3dP20#@*4NunCn)S_eLPN0V~PAiq?==smE1 zB?{1@soVmYFj@3kAGYFSVx%Dj1sJYASvY*&sO6%(&Qrn0;hjH+&iY@|3u$*DL*aW; zPxYkj65hVCi+CVcItFCs;Hq+UIU(;whYKNrf%VI5Oq))uOf@or6*OdX+n!_Ze-0>4 z`))%m(lQW0<=H;3 z%l*nY={m{2V_Ljyjd$N|t6 zn%4Vq;-4(MtBc9`PO1Q2kA zOUwF$Mf;$*JbctNNP35gg5uv7ozQM@6Ap+zTA|vnI7voLat#x%T){%vqUE*Vd|WV` zer?zjBiUT~V|+CcgL;QU?6fNv=x+=`o=Am6sH+7(jjJS<&_LmxUqYvidM*JPsW6dv zqujWq)%kGF9Q1i}9z8uR?h{Y@rpu?2CIfylKtB)d-+V(AUhE{||F-A#n)2A4qtm4z`2pUc01BKXGL{b! z@T;hj5<$IasfvEg(cKgv01`12Q)n$QQag!B{QmuJ(_jhp#9-+Q%&IPLkv;io710#% zRv!WE8vXDjS3XU%f9WHgh`Ga|*k zf`)x%iL@d7*PAKsIaH`-P}!aHTW+tsJlxhzpx&zJ1;h+|xWE3-3P(^-RhU8klgO$| zLwy)g04(Q5AgEn6nb!jf423AhV=DUQo-N3y zC1Cd`no=+!Jb1I8kesZ5HVq8Tx`4*IQ>ZY>o5+@jx7nFwol>f7fgr-VZTDqNJRG8z zIKb}lI%gcR*6<3g#QHzB7FY^+=ksU7 zj-ldK99N<yYnpexZLDesk6uVk`PcGUd}Iq-*uQNrN(w#)>aUs*z=8mD5-&O%tLW zM3FgK+VOQ}ebVm-k2wL&6_@fqOsl_}taH-^NhZVWhUM8vB_)+PGUrV)oR_rHE}Bhzz+t z66Ww3{z%$R1KaTq?>s$KNeOU9bk8z+iJsOFyABuLQbASXIo2+H3fRYgz;MZ-`Yly` z>l%@s*m-DYKX!_Wl&1DCT^<(+Ta3$7cwTB=m})0j#EVxHVgd#L4T_A5^XZ37P4YJ} z__!VWGYQ(Xm~Xg1Z(mYIflTvSsVUl`X7m8fh&X`{K^>-cz4ou^_^GS>(pF9B@1FE? z!+537B`>_fqImMIb<#$1&ZfrrbA?{@5tQ#_&B(}t=`2<}X8sw*Uf$K-`_>*{54HxW ztQ^8j!af82Bvg$cDeXmUPsmP2gt_y&tLx~@%nptEo)>wiAWZ;f7I!cepqffxWwXkf zS5DEzc1A`;HG!=9K>$YRL{{DcxJAjlSM|@LgwZeK4cC3LyPEg}{!uee0YOixQu6HD zA>D*@%%;XcHg0+VY&)@knYQd&=rtV+ltTw>tgPNSz$-ZCw0@$J0A!f)P6yC1s2;U- zl8nf&_yVUjsRjyKz%;p?Gm8j4=DY*8nDuO5FPAs)Dk5wfloi$S4b?1L8#7^UfRUeI zOlY@IACI)M%*u>pX=0LP3$Yer1<;_ufsDaQIaSl*>HQk_e%~)M85xcP@BZy^jqc0G z4tiV=<0br@>Ntbe=Y}W`siVGsr{wDGE&7c566pUAK-9^CnK7 zb5$=X0T>!$y}4=0*?jh|@T_Whh`+lBu!H}jFDm7qot5M@9}q-eS6&?+4bkO@ft;Kw zMb}+id5>I9|0P!cZUqfk&$-iC2h%?fY$(`%1Sb1N={CrNTDWzUsSkHYRn{1YUS_~6 zfTaPo7n(YETWrT*Vw>k&icy_Q9dbZ<^^BJ>o~c1vlg664gpPK zIdU}+2zZxjELDHhfEhm_w0(S#rnPliN$Jn;q(>0?iXT6|@lK`Hc{z_1p+I$r>DSio zCJrIQ-(*bTxcrDLn38JC7v8H2$SmcjucwlVB1@U{K(28HoK?WiH`*#uSskfy+UGCW~Zngn{Pz#Zz-@vg8HeT$eODTiuo3`G5D3X zvXIKD7mz0nctnso=ARZlc~Vu*&MG~DdvPWhb$|K0yQlfDpPd^G4h{|@1(^zbID3so zRe2tjlY$L`xUqsz$Cn31@2u)2vMxb3NDIIf0BxV(5v;CT86Mr@$A+G}l#b13A=gVy z^OZL5d7&k|8`v8`WXHfxx;2<>+2}%Gwt*T^q|bz9ey`|`aAZZYjP+%7`g{?1rFOw;vQ1@3gDj%hN`fI_YG{k4oQ9Jfdz2X{t1l1lMk2Py8aKA756x-e&)|qVL8!k9_zREkmkH;LPdbQ+86KFX8 z-G3vVV9)|58cyr-^q`vDdO2mpyy)vVKRRuqZYh1cF*U|Nq}K<=E^P>w(cq(-Fppy6 zAd){d;_8^6Pe;#wVxY306SaO5Acg4Z@!oPScb+pj!5Bizv-`T;Rj$ycc7gO8N83*X8G@%5j>2nbx(k zCLbrh@SXz6mMkh6ajC4}hphJD@?tiFqC| zfqH>a-%yy|lM_)wDsbIZy5dk6$`a3COy~yE*Yy9hBk%6dW z_~D3G_>OgHz@s1nwy4LZzP@zoZQ6X}8Kb8kiRD8nd7yUx$eWXrlCVxV?NDij-=)96 ztMQuV7y6JV^zMD`yoL6T{L9g2=f=TR!sZHcas%BGy;ZWzQni(xftcQlEOKbWw~Iw{ zkSSm4$iV3GpnkQL06V*F(xgodAU(A8UU}}(Gtj7K@^8PbBq*5b~*j2;}lID$4Uk(Q8~w6Pgtdl%Ss3^+la~%NgA2O}cuS+B*3;dv^#U}%? zS={n}d90*C&z-=G+ zJ!UpNS*tO4#u^5_<5McN`tcq!pVCSoK(~Ufub-bexw3OKg_Ec$_1R7+GgQzK!BNus z{YHB^b@_Q7WXEwRB->a*|Qj`iPem_Xp4}a3N-BHtmCHB}9^3 zrkU_RrtVZZgACiHM-^Mv*1h0=4hVfa$je z7dqruKNc{TSug z%**#&zfQ`Bm`LUIjcPXwg(+-qmcV(d<_}2$2v^`sdT!Ia9S?X8O}3rD5)SJh1PXGk zD12XXsH2S-3IX~0x0Od+TqImnL<)UWFziS}@)SH`G4~^ju)hi?_p{-l z7Y>M*oV-_bkEKRJ4n)W_j(xPSFg_SXYQ$&8^U%A0In`Uok03@mHshnndn7iug%DTT zadPpGTkxcl*xLXIFf-k!$k=BJ5YQo(lTigW=i{%qW>CL+waNM7|DJi;K9WADUel~y z>nngXwMx7;hg&-eyriI@(Aw0GhgaxIQmcol6;y$4BK9(TeFIm!)2c}KW8B=FA`Sr* z6ONCM!PruOQam|_!YC?W9;{n1eyT-NwGn2N(A^s8837~IWFkZh4t^v&zM7mKrqjfk z4R1Eana1#{<}IJT|I#>ob8=#6%;cnG{drannX22Y}hF{*}ORPxT-R&AYRDL=ViY@Z7o>W7Y(q3qcG8EH6yyB zf&%d`H%M2%%XHkVak+4z2{NJigyYPg{oe`d0e7RJ*v~hoMxL`;2?-=bYyKq1O7{Xq zX)h+wZ2^=|_N39UOdZK;L)wsQ+Ch`pdtK-MpNeZ-F{F!kfmL7L-k`Qfry-UztK3wj zFyFXV7j4WYrohalpKtj=Pb3Ltr+dLw1>w3m-ILB@r%S%VCJ%GA*Gw*M!RYzr7}%C3 z+4*YXKHss7PcYWVId!4%%kJ$>>kpE?wl-iUF0u;-@f1j>j5ZOEeDL)8DN8G=tiy&O zL{ae>jZc-HUf)<-+g1P1)1Ijw!09j%0myvypX~ve$54Nwb}u&_VlQm^(Ej9Wl$G6T zG*Vs|CSEv{2&$sZv_HLi=_Rr9xHU0Cj`P-_SliPi&00HJYBBzkcVE)ietPV7Sdg4$=S&^Xy{N0s| z8AoJ}*uKKk{3~)Anm{6@!!r1;3cC4Q&%(+^r1p$N;+v!WXar~92m4dGKGuRbQywcE z<%hzeBK@-Q-J*ycx#a%KZ?u?^aCCYt6&PThek-S=#^bedFJ%I_OUjwMBgk3M= zt$Si#Vadki!U!Rn)k(?8p2TEi(>^W6mux4-;!|=Yfq*2hCWe>JmeJB8+q2TKwUz3{ zY18ZO6_xM9y_F<|(!R2?lE`0hEf3(l=ljx6Gqq1K;`(hq8}XWo>ccINym^|_BPZMa zJibg{b~ajan^M4ynl|gcnz6&4ggCqThyg++67n}*A?k$G--Mn=fWqJ$E98h56lC(( z)V;=nPLxfMgxq!8g`d$9nW(!dW>j-WNmGDDs^lDZwyg3a2pUI zA>k;G7Q7+ywZ-wd^F(&TbhdNY z>cGc775@acu8f5B7VT-9=<63v&d04B9JY7^$io)Ckl=s3$#y???$)Gk`DowEuB(sD z`%T7z-iDxG9dmk?mIXPLs!B87CN(A|-rl#EP?dxf(il&CBfz!t4?&$>wxgwNPXeiB zAeNgyHZn;|i5%6=A0Vuj-xxsbIMlpPWPR<_hSZS+&MUEAwX{U+eHj%LvmxJ#i^THw zHUW7>DfWtpi5Dbc{qem%Lfu~ZA-3)~#qZ^fa%#7;-36Q#rN2HlHbL(!gy0^YWQ|l5 zS-3&NgYPfA@;9=I#&;)#&)#7)r>3Un!g<}VHc+zt&LR*z0~S?_rgiha!0ciE+}xZF zh(KQR{1sh}zv_t(u={BrWalg-D65)M3mZQ*vQUvxNuDJbgd{?N?qU6^R2*tI%n_9 z($Z4cgE?CtK*`s;Z0a_z%;3us1bmgOX#WVrG_$GD@!bp^g%D!cKYr)2LyxAMyhK>a zpoM{b)vN=Ul5&4j)o|i%g?`T}e-NOJx+HUW%iEVAgLrp$9qQ&wok?(Pzl9PaO4c-D zJT-yMJS^s?OU#&modJZ|WD;u;<^D? zTya1Kp|w3)xB3x=O4to|b6=c(7!;<#si}L8fC*Tr2f(kcZ5NFn=Np>}HrEMWu;mI0 ziHL~&+G{oa&r#K$BF{YZN`}E}X#6jx=7kqbXD|1PZ}#F9XT+yXo(;TOwhv;xrU9-G zH$O#aw;p=$0W4_(fz-2*PyljFia(-6r>ognR5WcyMgD{oJJ^X1wBsh`W;dI26a$b; zNV0mvO);tMX6r_=J?EAz{LSt_Abc&Qdrw4eZ67*nb+DdFroi+XK9nuJyn5lWiE}FsEV3R5GIQeS?EJYwp4RqsXLz~b z-lNP-o|7Al_r8ks_=Aql>qbMa?yvHE4vEXT9=#ii8yY$^|Bf&|;V$tY18v1U`ZZF$ z?p-?W1ab<>%7*pBqr>+yEWl)S-QWZ&T185s1=k}0Qk+c!zLxN2MrEKx2?OCM6y(8+ zugM)8$v`Yh(|42hUKcr&T@x;a!GwFAYRIz}L=NB*_Js7Z+NX!kg zr!d0QdH?>EZPn}(P#9Nv<+RG8uaOU~pamsX^5K3Io>{=zZf_@SezL(45XQi@Y2hLR zUOrzSB5g-Oijae}pC7d0f@J>j<44`T`x(1h4iJ9F_E}5U`so5D2-0PMD$F^PlGEyv`4xFxZ&drAo@%GS)ajG&5(|(FMaJKaJ_Wo1y+onBvld_waP`lG* z?>Cqdd*E0K`=!|c81}Z5@tPAHcxsyB9 z*+0xg0-)F)6zWltu}Km+hy@6^chfq=CWlM>ihu0c=ly+k$RdE*QVplLw3Y%blbef6 z(8}TN?#C3*yWL*BmGlDsOuVSTJ8j3Q9QkMdj#ZM4AmegrA{ic|hA+UDwM&fIeA&Xv znt%V4q81%Y@J)pNGL)8<#;P)f2><*u!ew#*17>#wJu5uCq5%nW-CTgyu#!{(TooZF zv~-zUU44NK$VvuL-GBM-HF2@?>*rFdXJbJSD@Bp^WO~ zlEkpLb-v^I_5itezCX>?_K-+6Bz3=y3tZwB1rxZor5}sEyvDe+29(hB`Yx+TAabdl zydn6?+9v?Z>1~QtQ4aT{>1ryld)k&Jakjs|I<#79zRmZ4b^KDZ>#c6GMTf|?RcV1M zFn`7)uMoMuzJ7cb!#^>Vk7bw;8HGgBkY^gt145e>PL z=NP)O+JDDgG5`|DId=m@d-A^r4YpQY(?JfU<6lIR)%(5ooYwvM)}Rn7*4QMt{4+iV zPsGMHhu(FD`_fe!jQKEdC=eeOJU03-b`*)$<7 z&^->47V)%vtFhkQS3!eUH~?k-VnY-ew{UmQGlE-b7|fvUQmLS)_0LpiA=E1-Lu<-G zGUy3l4^(TvnEey_)e#Ltl_mIa=J0Ln=H^Qug#wZcfCqkAF+gioCGJ)Srnehpb8wn% zGfz8aGZL%c%jFUL1SSUx`wos%Xgh=J#;9MwdAn7C4Fara&2ZjwmdLt)^S}abAV`8| z&-uSdO5wpPI+0`uP>tJxPj*SvsH;vkmLs9TcJ0il^0QYgQ?AYMEDz zO`XiX%+Is(KH&$VkOks`0Lu~tziftlwTekie@&QxkE%lA^|86>KT;-{x>&g>-|?<@ zltX}-86}vY_sA5UDRAJjTK|0g>@>t)zA{#~Z0rj#7{lB3sKr0Q0HS)_4Vpj@fvWQ^ zAwYV$2c76XBEc*8+1c3O9!-yRVwn!iK{8iy)BBteegD={b6Df_jh}uM?Y5nBH>qeQ z5hP{6|E|Xd2E+cQnSJ_N;pi-k2XK7!g{uBQzu&)KAf(4n5xrL-EOYZxvqPsD!|WdG zgm8J!RlQVeaKFWC9R;8GcJNc?Q>nuY?5*$105O1!?STDi6ZFgkzaYb=}q?G;|l?S66?>r>BX&YOwDX z7mxc{uDQB~19w2@QEGo)Q;R0&Cd|lqp^@1WQpRRKYA{8p=qHiXu%yE~>!tg*;;a>3 zkx@9I6YX#g6zVu)Mx^Th`V$j3Xk2R*!VAAe0`21TJ{pw67r4&wsXO)m(R7tzQFUE= z=%Kp=grP&a8wL<0A5x?n32Eu>ZlpsH5L8k{I;6Wpx@ov%_ac@_Y-EJ4n-c3u5y{%x0)IrZJ@CIWyuj0 z^`{#TXbHsj$*bZDnNg?0(}H=IhO7lp0e(eU^rQWiEs3a)j|@-fZz?KH)@se=-uEJg zZwCx<0N6X-E*Nx17sq{xIp=yITcjW&_`2I%U|{<1-d-&PnMePg_K^-7TmCIQDw)h- zjin=RH(zJ^{J~Etn`wOIJOqw(HmN{4<$_Y}8gKrWma@AoG@dZt90(U+SoHP+{vn76 z$MlfM;J{u_OE~nO?Zf^B`8&s%UO~_Zn%essr11Og1!6M0+NNt^VeFzlw)>d&V3J5eG1;Rkm$+~7*&u+a zqsi;+mfZZbE2b<)Uw;7vKo0N#w434FTSLY__nRi3`~NDt{*>~c z|B{ywSa|Ij_&_4x0R<5wmn>xF(RZl$&TM(e(uqA_c|b>pjy72T%K#*< zs&s4u_#o3j6Q+Ot!Eiklx|H|lkE_pq|HbfOIV)(VPS!pv8~GmefXy7p_+|WOR~Qa; z`p(oAu_{wwl{TAzWw3|9x*_fO(c@aogx4Jirl9BTJ`FLLum^@HG4t=C_r8v{UiBr- zl{GvWW3F$E-+e3L7GV1lKT(%e$}8GY9}j|nn`juAG7|F>I@i`bf(?3^cq-I|82+4)gXC{?P`=I;s;9ZNWX(W2S7tssl7)9jDK{> z$Kln+?Tyl3c!6Zf_EV9J<~YORe_0S35%FA~-@l1o5liFMoO_FV!Y{TuI|~HsX>?fw z2x65}f7)oG`YGhc4|XDdR^}MfLBZh@U?fmC_)Hb0Ao*v8RHMlC*EjYLk-;BUoa4)& zo|}TFENeQwIxSHlMi zPEYf;spRpH-{iuxW z5t77BsBWHvhrIl%f>MlC5Iyi*0^Lp4Aa15Ck{~l*sqN5Egq}XaW^fW?NP1-6g`|7q zV)V*?xk>!QLU*9XWxaWMJUu-tNRS02 z!Q9fiwj-+eyq1%T&6-7mBn)UTEzf@5&DYiFh*|z6QY+Kwai_8Xxjy%3bl)Ex{05|+ zs1O0Ccu~3x#ijuy{7ps@5?hi(VB+Um82f0*r=}A2HQH|e*FczwNYm-Q5iLe6lk?nM zmIW$A;RP#vSY2KmqacVaWp*rydjGvL@()=VH#avEm_^o!!|;E2!880k!7c9=%G%u4 z7CqJq3s-*3um1UgiO$Wr{pakuQeQx(JI0W=GJY(#JorpTJE{J*QI0QcNfHZV_%%fT^}}<| z?v#GO)h#U&6w(re-LtEJ3zJ4KYz|_M zzA1O*M-=)2L@@la`eW!!v2+SmePo&dSmsk_@#lwBMMB92eF=9#KvM=L#zuozwpFbb zHU!We_{VX@5Z`dZzY^m<$aV8^J8tj3uI(JKQ?3b__kg1A=BCBFdg9%DAyqK>s_2K6 zf->?1i+KRR!gKum5L}W|qAr#}eQ4V-5#nunDM-=%=<4CLg@; zz>PqJI&j`j#QW@%>t}Q$;XHtTc|imaq&AR|9RW^>CQZUaW=?BvFA6;3x5KF4~N?<`_>Ce`4J4rRImagC%Z-FY`wywqcMsM)W(cAi-HSPRC|?4 zVyl}OK^?_7 z7#5`1I%gHI=g)$#S7P1Ys|=vY2j6?}WPr?rbIDArrfiBAA*7J~qh_=efm*Nr69;eQ z!C-8`#nAVy*C^9ZTY{cf(QJ5iJ)J7}M~YB)+(m{=7gZ8o@}uX?n`Naq9+x*S414#w z(s9KtC~X{D-$nPJn@iFHPd8N`!~yY`AA%o9C`BFk9P$9^{`8X*;U1$MDTE6G_4Xr7 zs3L!BleCvieA@2|bPz~iD_LOe-Hoe2VyE`LSR%%N<5#Y#T+y(Jl(P5jCp4eNMTam) z0(yB+jY}s`r~=8&d7tlhZ*SWvB!k=}leNL{ef;3r;T7CVpG==h7 zD#a^%ZS8<8L^CEqf@FY6(Z6Aa8-b6!X)!HL5?Gt3-3Ij<+)4xRLy*E+(tw15*ONgD za5j5#SWK8Ckp5w@l$WU-wR$sksi+wSNrebcS}7u}C+m_6-$t zJ>$cJb68y2WRaw_ftoV)@ak>6c~d%rDBvYRY@ntEA$Tt8etr+wz#Q`%39P1(kSFuBv*S1V@9&Au86BKrXsZ6cZNzGh8Q{ab$rt1)D11))@iEef^}|$ zD=8>MT3JCLZXO=iki-TvgtqmQ7eA6F%TE^DAMWao;cub5etsaiO2_QH{CKgif&&)9 z&(DcFoSJ&MU&3fg%f02&E-1>jfuMGE4&COKRV*umefzAC@kIrUfpUL|&HN zg8wdFL2Wsjj!ogclrRg{Z&jm!T;rNpuA~V*CPUeO-?4qfk$Gh6AK>*VtoX3mXZ61! z#+BkzL&e?8^nmN%d-AF|&up!{ea3(hZPKC6xch8TVY{Y(`A0|esiBIf$4a2rBCP6H z;q_%{QYM%p;X*6WYWp}mJ^Pd@2vb( zsWwXqeU=5Whsy1(* zm%8^#f5&-lQ7T3}NPF$KflL5Z5Q@>rDBdSTM`>xn&b~qxl9!Cfz`@IJ$dfmSjUC1` z2KqC@&_w-$9LZhD}Rz@_1Cm-PdjPM9jscVDE-Fp|^pd;i3}D190jD+Ee1fTC3F^)RNoE zx#NR2p-m;^ILpio@j^?ok!OqAa4s^UXSy1SD&{dD$jTY{P=Wwal7w@v9W%z+iG{q$ zm5$Ca`z>L#2?TQX`}Zr~{TX{>WBz=?{#@MA@7my*4Xqj)7;GHTl@K38tI>3HiCeN0 z69euLgsIxHb6cdxsHvZJvcWbJN%sdKz?ivFGh$0s8Z;Vor z+@z@nuavc?Ldc1UJDkC(UAf91Pa>8x#r5`_XnmL`QdfQT(%NqYsr_qKmJ{93WRsZb zAXn@gB_mIsSUi-$_2WBZj^*6Ly)P45dqij|+T7=BF(qWUFM^IV6ekQ4ByLNmBf5fr zETtRK0?pp4GhL^LOu~V?==i?-Y)^OMmXnk^(QXqxfll(#Fb>w&tD#|xc_vX&JLcl? zsx_g<6Q>5mqX<|7(Q@p65HaY=diVM=;xCMbHVp_3l2q17Kv4Aq6$I`TD~L3U=_>O{ z$nCseWO^hnE{vCH`{m1LH|^b9PBdQ%gAM)DK12@2#j(G?sG4PRCjGP{*jN1PnFXTb zN9|d!Ps9Rp>N*SUd&;kb8(zAkP zeS6Mjd6KH3l+IC{>fv;c-$2I_Iz`~gmXZGe!1O(lJg=9(Y^Du-xl2k*ixt1BUuunr zNs!B=1|P0qqrw`uPDg~06jgDucYm&&coy<==%QD_=VWDMLOxIa-9gK)36+WGi4RK%G(QR;yT!$voU5C3!p}aWFm!Lf62Mk8lV0ML9f+`CMbjPPHC@%taxSkT9jCZic=pO|DO5fX|Vp%@v8C_6ow%z z`dqyf^BB(V(!^l4sF{l>H)S%Ji;7ANDw#-8#0AdWhgPZ*GN#Eife zZ+CGw#089pEfGvVGch|ckTZxENKuf^6bttdYP!4dUw4F@4=jYntglCu8rQqPQCol* znF)LY#n?!Pw}jawN^``*diyRs{y8xY>rw-8>Ns!wb8*&GGbSW>6SgS5P-5kof)a zDTgSee{e8XNG5K5C|YPa?rd=)Jc)Q1)2F05%(3?s6hFrT?4E{pyydYs5yn|EgZxK? z5(P5Gl$2z^nu=a`p_aLe4$Ql(qt<|e&5sd(NJ~pvm|Y#z6?wb$^x2JPc!i)&h(~K1 z7L(O86U(jpP2Oy?_5!42(qcM6>D&9M*1o8+HbqEZa;NC8bC7#%ct3j*#(8b)e%KVR z(cfZ)awi5?(7&nQb`ZJyO|4qqypjCOtWL7~aHPBp|5>Y7c*Lr)fq@GhyoH5K)QBVf zh@;!&6681_bCDoaA-5=nwAV>KH6JZjy~P&?nMK^5$15EEjWc@>7BBVw%q~?1h>HcB zsH&|`)AH-$H}wNhsc$%Fqbu2Tp4SoM7goQeDQ9PaB&b8yoM;0Tv>iKJebh4q0P z!)Oj<5zXl{Q|*{-xtf}EP+d(!Ll(#jQL3Ty%Whe#qIy2~f7(-Sbfu|T`|V&-*Mn3d zHrJ--|GyT%^94KmfnX#;s)o*rWseYU#;FLXwXLtUwSC(7`CNr4Ma{g1bWMeXW+|LK zMld;{Ls>Ppwk8v=XWzYg^~yID865O?RpGa{w?<^~arbA#NZDm+tqxS>oUQkQlLj4i ze^0Q$>sm6x$o3i&Ht9(V)8`vwS5}73PitwJjBTexah1%$L4GxI;IX1O>{AjRf%5PG zp{mFiH9Xd@OGU_Rw8t26ijYqm8(3u97U-2*7v3J6s|)+@MF4+Ii{7NvPnVsW`#@5x zrFe)A8{cE)=YOyJVG|YN6&Lp`Fw!tgxQftqiN9`xI}NV`vxz2DHqJ)K>(oL{UteF@ zE5Z3*hHluS2>h4_ezM6b69JtCVJiqj)+z4T&oKDubLG&!ONJg@m|Bb+Lgv2%qkQZZ zJU&O0jFdET!#}LQUb_;%ZpU@-`a7*3^LV-ZWcbiyS8>z7aD4oflCzc*6oSUyddKtF zEF@0#eoazRqGhcFRpu+Ypfp41*BEZXd{R}T;2R@?+Cbu{Bh~Le{MIv{9+tm`MWG`% z8&Td2Ire_^IlO896ao3=`W@`;IDhGUgxDrVcie*GTW6*-Ey^J1k*wj30gV!5wHZ0FL&moRKfxWPNwIX*q9Jd#wroO@7SqtsKmZHc z_ef35J5*f#vd7$|B_EM`_n#tFszw>AW$oPco<)X+o)U}SYZsT(w84rDP+3w3)s#Ew zg)SxTUJ!{#(=vi<+i>Fa_;>5OfWKvtJ=pm|&Zv$8^Hrw5o3=Zng#90R+%}+iSTDbn zY*y3$D>XczS$!uZEXWgFc6f;SBJcIoZ7(Y-s+^hYCn{B$*J3};V0$&!ROVZ3iCjDewlcwTCAyp}J^rj*^q)J#0 z@;G(iezvHIf(Kt9X?z~?W`XzpCOBu}(S;dM&SE#YfoTE)g8sHh1dt5eGQ6Ef*xzKw z(ExRIz3pf$vFT9J(AHj>dOp>z1XVXxcCunF=;1}WM z9-?af3pUvZm%x8V;qj^Lp+e-X7%iy$yev}FOdT9lf4TFi5L#neS-&*}n4YPvQ685l zH{(}s(PAj9bP+0#iHd2dVly5S?VXjKUDx4jEL`RPa9ixQY4ys~7_@?D=i#q-I&)fA}mg=aj4}5tZu4PsfD#t?eL72_5~iism71QglS8h>owX78)be*k&amv z=o}UVd zj#uCL(jA1JyAc7zfKXj>%Ekm-h-SubTueW{FL)8Mv0yOgg`=)m{p%Mrp{I6hqc7!S z7>uyz%)41>cZ??PRnF$tZusnNSBS?V|J`YVKheIV(+aU-+3vFmz9F~V4UoQ4f467s z_;6vFzUZ-!CMgs`E@igan0Z!I1Q(;F)EO}Ve2$PrEWe9KZb;Z@HXoLZN3bDI#aKTD z6qfzy!rKKOi7ETEmXBTL1N= z4!aNKDi4{FvfGKsyt$#@Zg{`VXXIsB#w&aypH))5tgk)s{ee60%&o0bL!SNsQlS1U zS~)6mu!iTwix<%4*3eK81iL9Z4dVCW$fws|$xV_90$mO-)D_L5tj%YCwwfPY=daQS zroj2LWqp@N@vMA>$sgUuCIb_hqi+6yGq65^lObTH7s;CGS97ESsMv(! zwX7~AKw%y=;F}+>SY(ltE2=rD$HuPgKE3^T1rev?3-#y17X>&6dK1X$=TB_pTSkPG zmoK5LRA!Yl@4M7L|GU3Ghz3#IO_xE_P?T&=orztiCU9<{p!)Yy(&hvJ?xycAyYt{AX@#@a=U(>4C2TIWR7Q?cnfm2`nCvtTp&I z3+Dd)OAzXq-xEUD`gnl`;DBf;sqMxyL&I@a#^<#U4`94)+xzXoW@Ul1w6-QkW-cqG zEiF3Pc%2{PErWSZ#MFgHQ63{w7CBG3L{VWNGHE?;prJNuKHzR zKeMGJgAGY1<7ist{TsXal-%4j$RWyaKo-i|0f=D>-V$Yag~^#io?v@@XUc$VL?QtJ z)+z1KvW=!#{7&FEwd zw=XNGe0si#{A=_+&FEvycB4SJuKU^S%B)oT6*yU>&78UI=EPd->ob|2OoP%j8bAS{ zaVJYDO7knQ(L;iqUtBPREkr`3pu%Q+$GY#TmVbN<4@Vuy*~7cRLPlI^Z zdD=YJ(b2&m6)HZbxzfw#8R%DKb$9Lh;^aucmhq9eGWEJyf1?9E3BFh2q;}fqN40GWz1K9}Pdu2+}ZrIn? zm(LWszdBrJczF*HN;#jxdLAx-xx7hB8|gW{4gAinN=?@BudAAwA$1i1BnIgkIo4$3 z;vws$krcFE3=f(EBDASd+axNbT&Q|Zy5(|?`ti3L)lFjMP5)DT2L>EsDWOu$l{YKb z6$lf`zAX4syo-xZ^OtqAPqMDRfA4_(OaazQwdVU9eV-A_tlxeP_R=Ma`QKaqo0X4` zJ{0`9Dieh*0URM7y`MvQoRz^c%506>=82WY@tijhq0`1?7Q%xA$tn?RGqbhXwivT4 z9orzXQqjeE3IfmcP7ju1YYjyY#b?ucW~OF^d5*Wmv-VCF))8UMl`}CNalzBk@um60 zyhaJ0w|8N}DM^(SW0Q$*bf)_qvnNrOJaDOmX_<@UvIS5eU)?oV8O{u2{C+%2(a;&v zey&j%?h6u!NoU~pU31X9>;d}3VrWw{d2un^EyVgQbK1A9{XdOYdm(6Q%}vjsD;r3- zIj>l-&ulM6z?dVwXP%IGm|rwBlp*Rx04VNEvgK^8753SxcKrsqovWCN(mXimc4MnT z5Q_P>ufb9-wV6Eej+Q@49QX_E()qX{XgC>b*WG%072GW;h+8jTnmORLCi}iVyQ8qc z{vtyr?4JXYX#y;b_D-c}oT@yQC4$z;h$jd7!V}CTsHF>wR$K6=df37&^zV+7(N z2w^O~@|a?6jYxy{8* z$OU7Ov=_syjGW6Ij^{%!%iQ0I{1Zn4p~R7|UUZ0v4P>;m`boaYZ~tx72g^f_?B7+9 zs_~(EA8mal1-+@=B$3n!jbFvw@qR9R-a+o8P;O6+UFY8#ki3-SyxV&f8w;KJvX3e} zF^}2E@l*6;0)obIJZkn32?@9kbpq-f$=>|b05$@j}hSa9c0823@ zSf-e!yR5}U#y5lmFO>N=vBEZ-`!s1E{U8NDeq0bhsI3HSLK7)KFHMRLyEA<*S?m=s zad!4hA#s_Qi@yxQ6**Q467vAWOo5U?%N%U<|D(-UL#QFZT zqI7)LdE)?jUo4IaR7gR&Efs{GfkEyWoiYyBtFs>&-K2^(L3^taoNH_{a3^|(pzRIF zXtj?AVKE;)ts|wFuaNEfJQyG^8TIIS|2yUqx{iKbQC4nC0ASYYuR7*!(M%7ZuB{4N zeLnf?a^o;z(HQ#^v3xl}#$)k4gJ31J==-l*h72n}UR(R1-_D+hQq0ij zvhCq|{R;7O?%!SfEeShTHYAf<#@?H~<#v8_F%;{=TCJy6(}X)Vus z-*g0u`8swyXyPC9DW&i=;~+gO_EMv@L(|iYTtJ?3f77m_5jIWW3&%e26 zt9bLi8XlsufBRNQ3TmqK3Ip7jWrMovsq7{dZ1CPQll~JZj5v9Qzf7UK&Hi?@yu2bj z=1SK6n=T5^{Jg#;e#n0!f`d%VJBtT5eNv;_A>QToT`qx4p&2}*z7o`Th&qUlKNcOH z3Z{f(qN7O)Jg%*bx1}LfbM_k9$gs}ju)pA%0QM+42Ep7y6V*U;2sUJNX~_r+r00;@iG|P{hwBWn6#IVdEf>_qL`E!$ zBvhH8wUPjf0!HxQC1&rB83z)Qws-+V6&LvC1hooX%ELSASEPisJAD_TyL!;Iufznc znvahUosi(S5}Q>_S7%#AW@p9WAvvzM0&`%lk zh6cY;NmCIWwo$sUtOaoU*fNs zvn@slXY;x0mwKvVzShkkw2IS_7#7+2*5j~Ma7`M5o&jAnj&kY0``!;r>Bb~j5->83 zKN-rhY<(W3K0aN;5m+QlOmp?kk2xt!?XL?FUuxPis^$4eS}Yv+Uq4bf`mTY^IRWR# z@{+gxZfYaBHRkKO&vi6b-a~#tyw9RgAZiGnrPW8cqXW}C5MLZ`-e~2W8(vb#^&gCu zgsG010?~L>2tAysK{8m?Hy@!2t*v$x{cxnf`g^gov3Mgvo3-(k$9=c7aaJcw9hU$Y zLnkIaIm2I?y+kD{3QfmzL0FI6OUB?SDhlI{c6x1N#2GA+Z&M`BjsJ6Uk_PghV!+7Z zy7@EDkFkI`8)O?|@GUj(YZHZ@lr%j$JUa`?v|L+t z4Y`#sNY&A8Mi?IBTArNb>)DT)^m>d@@6S~UaLgaMLZ->ZYoC4oNCDi};EIj=Z?%|b$Xu0Jf8u!n|) zp%|@T)vJ$K3;sE{1oU=0|0*n0_T66@mV=U1S_VlMMUT;v-otI+tL0O8|7bDY*#B87Fjje%jh zY9}!<@feyRN1(W?_a(j`_RF9`B!gm@5=;+Y7VNS_o}-0GPatNN*f=7sWEkrP7L}pj zyf#AD(+QVrhDB>z20>c5af-j^e~H#jZc~Dqn)`dA39%7e7rcI_3oC?7EG*<~UfsE{sm(Z-<55K!+U#)l#D^x&f`bTOgzKo}CrT?)1Dq$FD0HIA%(zrp0 zxS47Eo)x_*6faGqpCeLGZg-a^j$1=}%H@Z%u&+nQ!IH%Z(Sui3_-hcjBerBO#iDZP zw@Li*i{Dsx9O#Sd^%)@?Shzid9ue8ul48E+pLcJDt`^e+p&XldTixBE#FyvE1juB= zz#8;iVQ}z%X?n!>rIWvRczD&(&-tIdg={=*tXW0P5`okF+H1vb_nZOvKZ)&UA=b9# zVpw2{)r*#ad;8nG^73dtbV!?x*lt%+2HvF zLY59T#N6RZ)G`SfG|ym!rN~fO-Lr6htDt8k#gF|hL98Z5gS7(32|!KwBs-clwX4dn zc2$Q48f*W4Gdp*ipHNFjn5Eetb(S7c;zT#_IS^e6YN%^{cm|JT3V85tZ{~G7XZC%G zQ|V~672V=@N84;o(~TO>)&+);PF^wlDX2tj=Fj8X45;nyw#?o+ygXDFGv@ORM^N<%cx&cYmB*i+z-1iS?#R_z1lc z!m-iLFx4eI7s09a#8sJr`Ux_N)ZA%?bbi=ZC(UVjh|GoDOmyW1f}pOM&r#JkN6%*0 zs=_DR8^LK8n^@+=8r;2Qb=om49N89~x%T>pf&C))3=bzjfYPF4(s`8kF~Ra#yu6Ol z5ThUk%>9I;xvVgQp)RHj28|^HUT9VfNAQ}H z7z6@DUznpkX?Vjnc6N7(<>e*BIu0EK_+Zs|#&*991#_{0qRq}TMA)Yx-Bsgv8P8Oi zqY0E|E*&5W@#7ZkwM~@%ug*y2)W7m%AS@b^b`K5?dfCXy4LnnWb1^E88R!JJDY0M+ zduoz0GKKNXrY;!tV>Use|IE*uGXm(XPv-#v0-_s?c2qm@c<%jM`80wMju4-USN~WV zo8#VP;ML^%3>Pn)?Efytlbo;y*nDsif)XL#?A?Euke`IsLYj$qr~Sa?s{`*%cri?< z9_TDYIRk;#7ukZ^lx5O+atr9Bbzcv;{|pVqk!lk=bkJq>kj-v5Vt;)+evng7{d?2b zSBd*v=y-NvXGf5Hd!Oa=-`3|3>(pUkMYjVSA;JDy6%;05CN92eQ?AmmBgYnEa7C+YIDl9C_ zA*0ffL}{yW;^9F(EC(Rhaz_K4PqF%)&A-;?tWo^`t2dX2v{CV_cXb>)4f=XCl*&7u zd4-1q(HSS-qop*9A#dp!J>hsv%v^ubM-a3B5Sm!uZP+NG+oHX%;&;8|)6Pjdo1?lh zJ>A_wZ1{#C$U|y;@|WiXBSxFvJALvO*++;Fm~3SKt0;}W56Rg|rdzBplzr3jPF2mt zcC7?B``WYBb*4KSO&?rckFjtCH5Aj@XN($0*UB<>cTKl_R`)u2h2EBF@-KVj54Bd| zUHG$pS>wOGK1UGJa6RdQ%gJ3WHA8P7(og3ROdKpWI!*+}Is-0;1eevIUI-A35ux=l zq6*>0zgI<1KV~?P0+(JJ)n^H&RA(FKw`1u@T83z&6rA z)X5%ynNct zi8D-wrs(_RcMN4{eebog%Fqz8gB9p-z|w)+c(7w>;x9HH+@U0uVENO3Y2iRib?w{Y zMq^;*OI<4}Gx5C+DR6brQZDjCcXu~B#}S5mWAg&oeg~{Gd2aOvobaY7418?eVh~Tn z&o6)dj_}>P(O_vz)2~VIe z9BLK+yel-6M$2J-nzA4Mt)e3DV``SHz2a^iL!s^Y)@k#t18mA&~sy9rv+lKZ}!8dTCe`=)bER~&=^^7+3_=i7tT-i%4#Je!p_QLxd zjfR=G2Ij=p_}^BUS|uCgIO1n80n!chsOWhSp`LQG>I|J8nLUQxPfoE3+xPA>6(di( z4SO69i=s;>^}~yehW2?3#i?%1#~s@}hHJ-@$A=!jJrtdo(VUvLIxtZxCQtTjkB5f+ z-(AmE^Z6SO$@!*unz%dR@$&LgyEHDQEo@ehEQ2FAn#%*u9 z2%=|+W2A;nofh@~T7Upakm9a<1t(uFPED>~H7%>Q_+GqeFz1e%R`a%5tCq$~joB(_ z_5e5UDRV^ZcT7l4%@KcE+J8C2gdI3Ipe%q!f5+V!Qg1i&lMt@+t?YRB)R2u{DOUYO z^7Plt+US}UPy;cDIA%nzcE*ZW#+EE1kK$F7eWi3R1f~`jp(f_bEq)yt_#OMlPULt3 z5}OEM%V(RLN1dhipN>vskv#9eDXDv5zs>!94gTwh%cwJgL%+@bJW%!j*e5BO@G%6f zGBMZjc%{9r-Cm+CD;mS%Lz+0zQUUWwn!@cwY@Sf{2MxW6r$2W1>!g!X5JE%4YKzcH z`sHughllarqrFjt3JMC4Vz)|blNExw2l~+ZB>Y{(KeGDS$8$L>EP?fE@|2}P6U3gH z1y9`m5WkBSqBb=e41OJ`6jMZS2upmxb3FL>jju1H-{ewJhRTylDfcq7%W;uepsXI3 zo7npM*Ev03ls=YL+=T%d2XX7uzpo)Q5f`D2Hh%(Xv7G{n+yS!LGQxv{gRw^|qwtLQ zEe}*ROf@g-js%MX45N;KYrdnERlk zMIXMG|93WT{%2^@9*Dur`9_@#oceo2@I(T-0=!hw5LE-&|(@A zb<7%ls~VZQ8Lw8yubafmMhUW1u*F%<9T^v*(R zFd__Mf4!r=aCTW|Tz93v{Flt5k-8u?JPM;Y6$=Y%a{k~_G*{L7In06=7E0~fLHHW* zp4iFCs#|w@Gy_{oy@TIrn`c1Z{`tl;5O0i&)_J}K+FdNmviN*6)qb!?+0ZbT3!T>} zgx%1NFDs!9ti(X$9adLVaelVIPl*q7e^#QvzqbWQ!V+$6_0)`Rt%%?4trZmB_015K ziAyrcX#M~^(g@Gv{IR`@?&o5ZJ+}XDblq3SYc^%oD?Oa2lo506{f#Rk2sGmC*gmbd z+MzX!q>PNm*QFBLY zthZFTwahcez&;B-`I^oHG4ETStxW2XgoLN>54)w=#*Gh`UvA86?Cg^M`_CyEuO?CN zKN`NotlcB|io<;i*m|SfgrDCyqqk;mE`RE{!VoE2+`cwpa@<>X#ogdSW=V^yO+G%~ z6?WFZCVoSo$*VcBf)ZqVtfxWgm$FW|>u*EK{bHN}`x73B9;*B{A?Z7p# zg4rbj%5+9qS=sj|KtvV4FsA^M87-t0F>(9sru@b2iWYM7(tx+I|C?FTU~4C?T#c-y zv9ToVW<6A#2qaD47QTqByQ2{lnirH|QY_jej7%u!t5D&ycKdK#euC+n$gR=4-v$UmA%00Lwc=t{2uJM1)j z5STY`dzZqbmZg)QlAK%-!I5LCPFwP6YZFF>wM8xD)P?{79>I|id=r-9ba1~GD^c2W zB4~K*pqNyMbEFSUjE=5+Og$Y~W_vycf&7=cUh~opJh8o-cW23IzqI^N>LtGw6zB`d zdkE&JGC`!Yr!f3mfqpVX>o;QMqJ!Y(WvCgHNbbg%YY3IOSP=Y%cdqpYf*`TT82p%z z_An5V$TBPrv|Hq3}IR6$7>9p*FJ6C`EQcv95Y{Drx{ z@>eN`C6)!#mLKFFw~lZ&i=Waqz`275Hz1*^dMGO^yJIQF$WQAn5K>g-5mm)@n5~lD zU&HTN{&)HJD8k8Hx3{+bUdQjGjyIYNU*Mb>A{jzfD4rqaJCdJ!pUjp@OmR*Bxn(Y% zs86)T4!gulTr4N6@jM>$eLsfnql@sh2X(o?0re^^~kn}>l}VKFD0$D z1s<1DiMzQD(P7Ca^90|0b2~MO`zj~SGO&GHSxwCcfrg(`?K)oN>XMd)rB9Z|!uPfI zRNMrK*@&*)7pl@*!N}3?ijQ{)IkxdC&>P_+6Nb?9T(95Q#$3n-N*1rRZ6IcP*MlFl zm`{7ZRm$5ME%E+;MX1lm>s`Z^0jDJH+Bffr0A7(ii2D-{{@kr`kqIldxVtGpSe+BhxxDP5C%n)U`Z#QIVhYlGI zokM_RGB7Yvz1o6i{u7V0oMwGy?*A7Dav?RFbmI&Gj-redEQh}O`cXa=z$vl_7%7J> z8H)I-s!UX95XnuOV7Hr$x!#w44)4uK67O;-N*!z$wPZkY&6$+N( zl$STYpRO!f_0Q%GqSEGnzM;ZlCzCxx!d;o;^yj|2Ir3$?Nz17W znsI2Qx@z7Qx2g0!blv^_1(V#yh9*=iLRJDES$t;V?*0>%1Rr~Na8MzCb-9Qy9{oKU zu72$=11l1rjQn?5CAmzZk<@o4?mQU<<>f4Qan7jO|EOqxw3o7Up`EEd_P#%>@Tgo2 z@!@=mETV1lI8~w-zA5V}+S(pmWU24dW`XjjVaL631d_-;hYJ~wkH@jm#G_k_Abwhx zy`ui#QI8J7qm8X^H#s(NI^%)&8k@9x#Gx66;$a=6U%4CPWOWo#KVAQv3kpJ0eY~hl zKe0S2ySeEVQDTOJ9qSs==rF@6N53y^2Nsx<^%oaTB_)q6hAu~jU|}z;b6g5W7)DxB zQYfINhhuANi|V8}ivXk733{EKmxtr3r84og+tUQy*TccWqG(Ku1Iw(|ROQXwJAH?i zHyMe@B&5Y-D64`^@7WN8q);HA(mzCplN##sbOrWaAMWq(4{4HY{^?#`u5lUS6q8~M9kT{5AG8Oqqe`6r)TOZSi&Nc+&p33X}8V%K6CIUw;mVyg;Ne>XhEvgD!(9HHA`Msh9@G9zA+NAeqg)nVygl_wV zCQ7w8yhkjh5ORV@w=RFzJ-YDxnLtSxAda#(-P}1shnbc2{8b-6uDLBuV0ys)`deyr zso5!eayx{tFP3w6c7#$A@)X!!$UcfVN9H&;hM=RPZ@=tcM#1CRJ*k$_uGxt@FQf&m z%yXrma3B>Gj2F^D&fMG#W)JZ9rL1uYIxj3FfvDBachp-%kHZEadVGYRU%-1)K=nca zkR@pc^g>lxxwDFXgmsGME7%n8i!{b}aJ67MqptWS$^0`=!(c){N*roi>MTq2|Izdn z{&c?o|3{mej_GE)XKK2cuIcXXo|qWMOvjj-p6)hGGu@`^9Nqk`_viQc{sA7i&$;gF z^?GJcXE!XyhDl(cNv)dYpo|`d1-MvTHw4C|B}bEGi)3|6S2GE0T?wq!k)$L%nIIKn z@hYP3bj}1qw{3iBF2Pr*)U3YzFN%_xj#%km@NhSqaV&!!a!uavvdd|=t z6F<`gK8hsp{`z0EY5;t~nhSz3M|(227{Av53DFPsI)^ilRkDeH?D%E_NU z6_D?oR=3pG^O-H+Hx*&Tnt8XyK;;?&ScOOFl|6iIU>VoTk!ZyhKjyMYG zt5?XTC)l|YK+#eUhxlfW;C=y>+F?Oo$^7;7is;3ByVvm|b(&B@7&h)f&!`S|S|y|M zbOA{wJw5$4q$k!c{7X|8sVteZdbKi}BzXM>Jcr}}ojRQEsUdkbP}J z=RRyz;$5#WDwWQ4Ubn;KvOK9f47^U7JEJ_RFuSq;1Tnh9*gk*WLq<~>L<}h?FOSfS z?rMD_m_C*&TZM=b)Z5}iDly}Wi&{7yGWH3WnKVVodDh6io5Lxv(k(4r3JS=|*P73# zBS-~gd`NiQ4i47;?y}TFz8LEHO8mo0VKp=5`f5@kdj@}lFYpNZYfmG~hM z?K<1(9|43-iM{@UK*BeXr>I%kDGN+$Zlt8o$P_U(t(r-_OZC!Doq26uvGlB~XzKZft7z4T2@x4!oOqU%Fiee*=U z4&ePwAr*KChZDB6xVGoz3$PMWS|xHME6&mzOn$(2#wP%}94>|Z=WzacxX<-5i#k@> zqC2)3+Bl1|6B90|JLPF0y_FS5!U*GqWu!f401p@;WAK5P5P_RTPMYP|kPwxc_eY&3 zDumR#6)uE)=3Kb9x5pauf zTL!5EBoc#~RM^${KF86~)z%iM_1|Oi`!cjfQYx6kG&CxRf-cKQEB#^JolZbE_=@=z z%`2^GXPiGU&)9A??_SYmj9((&hp6id330yf&ZQM(87?3$Exi+fh*>A7;cx#) zT>Vs98bDJ0t?M3lM6gZBV!#!T7_1m|tm3>K!$;TUtNR|Ss63RupudQ>H!C+c;UIZe zDA&C?`sgOZX^Tb%k#zDMYIn zDr1C!j;?FNCGE`f1$8SN75rL%Pmcspe{@YG4$kb+4kYyMa#dL_;o-h-aA)L=rseJP zCiwJk{4&*$&~s7%eC4sb#BHOmV4P%FC_crnA#|1&7!20d=nM$|bh%nhk=`*|A{klx z`L(1)d=JZ33Ww4D7848#9#w2%78Jp#=d0vbS;fAN8?*GtIJMT zJ>V1hxarX_{6qn)H6Oc%&sQSy^5jTbi3MGIY9<$#2j!4D*?trthQ6Z$yo)z&b}Dww z^O1p5vyhs4p_Bvv*5A2-gCL}k*>Wa$=k7?%Sr%HBkZ(* zl&%=gQ$sDSDsart=H}+s40LoFSUJ_`*j_ z((pmZ^D^0Dj?X4-vU)KL@w*ZOtcZvxa|a=2`u0N|nUTUz_lqrg@nhDvhpg{bTMO!4 z{{2oP`)S<)4ea5U6s~`j2`MK7nBSssSXfWN>#`bL!ML~{v~_@o5sUh1MoDgMkWk1> zKm~RyZS=F1)9VuCPee>o96C#FKy=K#PMH!Qy#mCE=tOg$E58(CIh8%sC%}dsX z3mLTn)tamo>B&CYV)=J;8!$Ck&l`&O# z^+z5sHLDLg?X{}|7Wx;|U5m6lTiCbeBeol9<87*XDtKc?qAC!Y2I zPYRzY-O3_E3@gU?14y$CpmvuvF~V+X`|(54>3Cv%^sB`FA72fPX|nt+*sFwvUz;F{ z@K02>%PkpDjuJHuBn+>n<};;KQtvben3HL@QEbJ>`Al=2c`PU(d)sWptJ~Q@N}163 zvP>L`WKlL+8tgL|$XS}QU`=6QEL!aYx29hhWij5>hH2fy7USOCWz{$QPVhKYN0|zP z;X+UYhz{qfjMIbzbpI*Zn~Ohgr^?#t8DW77YVyzVQbj8*36pMT5C^pdm!N;AzAeEJL3+NQO#bNgd=;Qeq0tD$*8Zm8}@+%#wx54GW_|swq_$Vq| zKwaR6WMb!kb6)YAZn3Y#k!t%~!_E7_6{!J4V4mwd-_4C1dtI-zwioZbrtVmx&U`ua zii`v*G~z9}yn?2&vT|9oBcH6!E%x@cZVj*!d@ntKg5UNdCZ43fKX>(RUlo1r$5FEE)9)IXLV92BRxbkLg?-Z<@9>v+hT>GQR&fsB961AVt+q~a_syEAEaBSeGkeV*A3(Ob^ZAUNqibAhTc1 z3oR`rZ;v#oQ?Q!wSj5Hw`CWpHh$$Ht?IxNbnKP57sc&4g6^%v0- zXC%wrbfPFxVO<<2W)1J7j4wAaMutQ)pkMLF{+k=YJNucEdh7f*0}Ih*BmxT78ya5W zCC|Nhp>P?8h5GuEmF9DFu<6v0JMu3T$1xxpyr32{YV|sHlm4!~N3YGg18TZ-j*%6a z>zh|j)JES^wiUP+^|9f9B5jthPFouF8b1eky8(nS9Q$6XtjR^l~S zc8R<^JuQJQTm?_!E!?scbNl7Ubvu*?h^X%Oz-yIRbNb7dl*sTp-Z$zR8%m0jF0MGE z!MCv!H1JH?JT!>8e)v6SX^~F z4=MV(nEa!i59UXFf@&HX=NYcc@(Ro>X)+Z$-=gNUNt;BsuGpmDUpt zoWx6x8i7FK12~yL&|+G<(1YH@-GRRD1yL5^=wM3oRA_YQo=Bucy<@#(<27=}Bz!O( zm%LduZ!?nK+ue*Kbp}>mL1*UkT({mDSF>g- zW4q5pZ87PyLKG&t)(ZZT+tZ_U6C-``ZX0k*`|}L{$q6$moRvY%10YVWNo_i22XL8` zV?1n`2YJ+ms4Mt%bAmBM`nIjSn=khCD`WP=4=SJ9cdJM1-?4oYwKWleK59FPkq=Bk zMcwP4T62P*63EB1Vsck~9xu-!6w%vczkN#%qZ$3WF4j%d$_HY~6=oI{&J2m$WNAvK zKj-JGKqQRnC!07+yGWye_~ zu;xtp0uH0d&yU9PebhjlaSNQne#58}V}wucFSi z3xPCX(RqCeKF+-PV=gV0J{;0btW^P&QaBHYPY}s-$CbBFC-=qgr1Ni;RWjc2;EMLo zSPH~}0Py^U0G~O1bw1FKjekM?Z?8Xqsi{2!BRO197z9s32@!x(lbG*zzGodmp#n%1 zzhA?8gsC!9CUm$y0f}q&U@(J_kREk@A8oUE;qIql9R@JcR^U#F1gqBv0vg{ub43V{qh54~vY@$(`_@AYv8OSmcQKS&? z2GWj-6>$dC#VN+Pn!>FemTjiXYIkNz3ZZ?09GU9_&&Ft%x0->$p`waPjG894D|k?+*riK`feL{z8L>5Khbzrb3i%UL4+2 z!_4EV%Tyz~ARporDP3J1lYQ-Kl3VyRxG8tVsWF=NeXQks{bQTR~R19fLx{PLxwrqSg=1F@@z$a9qy+ z<2!Lw|AfpR2e)jYh~4xdrT(;7)znzYzotu#udPMphg_d`D2@g zUVBte1?V6v*cw~;Hm{Q*UF<|eiLb{+Kx;rQoNRS_dwU{*_d*WZpq zrQ`k(cG#aY!)Y|MJH^$r6ewXi(cF*$WsnbT;a@rmKN(r1UA2rH4YsT{pMNs8SkU!Q zgj9sCiC^ZaurUp51vE4PC*JI3~K}CICrxTHuCA`zlx^W$Yi< zXXq5ED?HQl@qMev5h4e?8XJxe&!0c~!sq9q!tz*Ees-?dA?zpGS-~AH%fL}>`^&-0 zN4Lafu)GAKy|4dZE&X9V(A@<4u5>1L_{Ms{W&aY9+Jb?PV|>xhgvyYSCG0;U#vOM@ z#=;paBvWYUNW)n;7lugx(Pd)cMyr%EZt7Fvti7ydzY+sgYuK}Eru@X2rg{_HGII( zXQMzn40NT(N=qdkm)4#vam{7d2_lbLjO%@n0k_Xzc)@bSFEJ=PS7}Ik*n@K4=Jd`8 z4f(%JHJ;FS?*lj^>k_D*UT&MQ{~>uQiU%ci_}h=t z*QCmM;3-ES%r~J$m%wvmcG|a5HvS51-GYrKt7|Z%_ioHPHZI+g#{Tsi6ZE;i(am_X z8HLc583K(ox%QiUd^qp9`ub8h*nBVraqox#g*5xWVy$ zdAH!-U<)`2!qXq(u+O;Dh~d*{hlI6+yrPuDG5&KwvwBRDr+@p_(+&`CM0DJ1Cjcnn z7uSN@w>+CDpNNrhBR9A4Gs#=>zjJd5y{thWs9a^w3dbKI*qg0t*m!H%q~t4uLibVm ztbEplAz6Tlvat*5(7mf@buZ+?tgo-H1O7pF*lBc)1shI>}x+XPCh3e3#;aUBz zlG4KvP~MCEt1!M(m!G*hz77APlj0YDl#vm3g_!4q1^Ke{w@#JN-=#$tv%~&Zl?b3> zBZ%nXs00}qA(g5j1i)NPZIf{&fAuS$X$|d>49MDJkxWfN211K>GzZtpG(zi&5!&7) zA9pubdqE%4dR|dk6`^S6eKg}b$*a3Jt&XS9wbv^fuF1PsyV(nd6@IBRvGm7(a8oj? z=trc5B{qZG~ z#wvcltfF4i&Yh4wd~~DQsL!+bTdR+2(+Hj%KPg%&M=;^LS|(2CrsCpx;onBkvqkG1 z+dxpvBhdLgoolp7Mi$EPE{$&BSo%W*Wm zRrq{$S;$$dA%wE)VqLuLYrx_ZYao^XhDHj#Ef@1MLK9jj%5nNrtE5YtD&nvGeQjhL z2??v6r**UvFLR?}f5B0Z-=~l*G*@FLw7i1(+$SX`xb4>LB=ddn5CxV8?Siv?n4s+0$VOeymUuwtP5^dmcp9X_P#!(qF*$(raJcqF5~-@geDjm>uiTb>UQW-(Z*Ygj)S zh9-oAerN4H{J4pv2x|7fvPx#K+kj346R!gSe5W+uXq&YwHiMv92H0zTw_eOgb)}J9 znsz8xc!Wddx5!$g(fMaJ$Q?>aClI#{^d8~ji1!>S5zTGk)z&U)YVi%5F%YrpQfYpU zS$Au0=$3S+gTt0mG5M?@4^LY|{;@5lgb#?EV;=zoi@%#!$#3mz1IxV5ZIw@O<4&wjHPtW>9`ban)XKYOSJXdkv41Lr78b=5)&IlmvCDO?oOG9Tl8q!~I z6zTG!mp*ykqZkZoqZL{24@BEsFE_jU5C8e|)|B5_^qi6ZRT8NaX9==9A)CZhz&|Icx&=)oZrI9*@A*?&Z5I_G zI<=w>Q>?PQZH%%aPms12!D1CspoF7}wQQCxC4~5B58F#<1Q$bWxTuJsw(zSj*DnOf z#{lowN}r$96mAM=l)rcPkA@rY0SdcL7#A$vgKiX0JFz z zT8@!{0w_2eX-q*;imNyO9>>MF;MPn`K%tp%-fi%{j<#e!r=i*i9T!dB};i7qXD&4H6XWby(&6hT~f@GXxHH0Xf&Fs`;5yYhVenHop=r@j~= zh{tk@tlUHF5(8wxalvwWmsRcKtKW3PJ26aY)XeF6E3894i-P{!MY7M0H zKXEZ1bx{mjgv5!D33s^9SGy*Yds@( zjLtl3f%Ok<=d5<`t=+hHG_~4GN$r$zS+BeUO8QI$M zx)|@Xrweq|*J@HR*#G{8)ta^c2Qu8+S~2F!fWU(fWkIygL%8pftlI650qKYnHHcu6 zDrcAu0BW@<**9b5r-oKCW=2MRJ#HIAjJ@gKEcN;*9GpLaS{2B@kME%cZNflU{}S@% z>sQM1ris@@(6WkAtDSXE7U!nn19hC-bV1yUCjLPF;Ms>;!pnf&tK;_s+YMvK+NOa! zZN8pT_*|NAYV$YyT?mtPXiY))4y%4Rz?~3SK=7v~+219RBhNQvDe$0x zf{#cIKMnso1li5qUD8O#DmK!5uR9i8V7q53!js&q_2vU^R$lQh7C+$D)Vl6XNBCVw$Qx+$X|`i$LV23S=Mrg^@NwLth?79!%==`SWPBw5Q)CpH5$4WJ zzaT_{H9VatW9fkb1*K~7ekYUDdO)M|Qkk7tXGjm?d4 zNY!4XCPc?R92Nx<7Z)KW9v=87=i>rx+SLvu>bqlsWbf!bD1OT3tK_IG=>ywSSbAsS zT3po0+*4KXd<9_Hy{MPm^IF14sA1sEiVg-q&$;^hUGZ}(l^V9@EY zFdWRlgL1b47&b7mCd1K+Cpa{qyh|#;yaOj)2T3Jel}kDM3PD3hXYL+?5owh~*Y1!r zFoH}XtFE3DVGH`h2q3J1X;PXqpit3|DpxG{3G#XNwT7X_rC93~5<21MyT_-mT$m>o zuRBNw%jo2bGa4|j8ESLQ@YSSFe|8CGp0rlIAx{2BPTt??)Lw69<^t0`?`vQ)aQgfg zdF|$)j2PrLu3ea0bsUQLz&?k?%_>TtoNY%|V$>|Hm9$(;wVelDvRwaszBCr3)t+%N z0MVxcN^{I2YxMa;&1E`bw(hUaV!6C8?c}^#I}Y>Nn8z0#7;4^4!0VJ~e#u7bSF+h1T19a+2z7J$& zykf$VjpONGH-pzwTc3FYE&0w_#{40(?)-32ueyr{?Qp&U^Nj|J2Ro_0R#f&A5Mz;0G_Ug}(wW{p;ztZL?L!aDpk*ChiUIoL{u=#}lt5aKnI@OS z$-6b5De_|t>u~>$FTkgz<&)UqVUkv&wFL!zH5o*tr1l-$DqVjghesk?K~}&FYRCll z+jR9nYm&?u?egjp`K49g0W6alpWx2IV0LODQc!O(9JXXsMMU#5Z?gATKTk^zlv=VA zUqeEQ;?W;-(r!!G?{*~Q9URK5u?tEMk}E>V6D_IEUfmz<4%s7fP+ zq!rLLaWt(9dPCWntE2azlD91nlc8#b5 zaQ~VY9q;j`9ZVu6+W_@otU{ zD#*ndVqMjO=Dg-Z+Ys=4|7ODE`0pHn&!0O@m%3uX3P|9^xPtNP zWmR4mi~LkwaASt&$2=+}DPTTVs_+2ekO9w{S_FCwA?fB?T7k6yIz72OoLj1cZ!(%8 zZRjdnVA%VHm-yh#R*a8_hj%BER%Om$fIeI=om5~GDiFgY>iB+!%pJ$1uIgoLuFoc6 zyA}dZ>no$cnGD>5Fy{cW(ZgB8@eyiuhn-dtgGQ^2>*3P!@K;3Ediad_t~7Rgdwayl zCLP|+lRI?>D5C)ah1IZ>8SiB-hlDtgS=jVJ_v~Ahu(Z@&Rycp+$Lo**{aU5L5ly%w zl!4qKi$_ad>{~kWcv3J*Hw0i;UbjaYCmg^d!H0@o`qh-=A$J9j9NL}2SquN~Hf-r&*E6Vv?O)=(l{Si9p zS^%{L+D|tFFEjC*HO%-yTF1LMN-1?C3WxoD(BGzBN~P&gC-iPS5=nF{L)CsyD5u>e zPg=yi`WH^`%8IpZCQ|Q;m9+>JJ1uQ_33b*>=q$?UiFH?2>FYi^MuWGLh&F!=>jupX zQ<76ZW!;|VqB<4h6Y6W8AUHaPlt$i|UVoxA!j?A_<9ZX7>fFL?|G47qoI_09gfRWD zwJ^W`cfs;qUGdYU^*;=sX%_|Ko0MM!tYMk*kj!d#(K9D%m5MIz(2r;qng zG3NHR2X2}(yu>`vcyRC;y-lhhO=1}LA?R5TG69@4x*%&C6S6~v8J4l;G5AGbc591H zfxVLqG`Z=ndYidmx3_x#u3UTWtW9Cd>(zJqRt&orc=l4C;T=wEoak9ctmMN}BBmxx2fsl~z@aN9Yqe#2obG>Oh}rgN|e-;0JD-vRx+MGs~UwrQo)BF=| z{wer*mw5lMm8D5!b?td3GF94MPv&nYOoBVaU8(mFLdDNd==d?DVe=ac7dN+A#c$iR zw6toMBom(*&4ARXJ2&9E+#1gDKk2drPO;s`ebuVM)Kp{B44$kn*^W5qQEidgKYxa0 zOf?CJvJ6knig>NRW92aj;9wiDVn1F1$$^X3xyOPN6EOX>ejoIa1_RMtsKbi=-KQul z$8OcCvtt0u8ep#$<-NJdRl25?g z&4#H?7f|B_0*gzByyMe31Ny~ppUoqZ^Yfubr#JtCjju+X&2AezM~!`seu)iOTS{-` z574g7ya(ZOjR#uYG5O_W7q{486}L!5Uukb|9KR5;`U+kA`qi}I0X_SHx!A&6US8MkG(KXYG+NpB6Qd0y?Uo$x?yh%e;-%*QWP~nPpf{A%nTI**5<^U859~y zqr`a{?;%`B8nKqW`6!7Tt2b+C!xZECLK7asv*hOm zZP3m|n!lYlzc|wA^z&Bu@L`V#CluNum9r%8>&qtIAtWdmEhlb|G@Nn^ai|x}9*zFk zb@`N%q5vVbajf9(Oi|ZFlvC&RHcP<)8@cO<+WYsMVp0j_3J3|>nPFq~M=#g4A?R@PX}A7> z$g$33OpAesn4p++L`UIgQ{S@SY-c=H(schj{cw2dV+8XN7ErPdQt`a}YPF5Tg7((y zs7cr3t4C3B0t8h=uB7xXKtg4V`n(OG9^h$WtAV4RMAyra5#6#kUBbfruFLCx~;3NC#XhCF;m|8_%(Cao(o#%-)<;7wkamux=*}wn znG`Mb_*s-OBJecCB`)tDb2WwR!O-p+PL-cPXz0DNWQ8={w@&3HdNn_n-W-y?UF3P_ z1dAh)&d5KhuOt_mX!UQ*Yh@Vp&gLgwTnn75Q3Z4RdwhD;Ev?F9XX=5GHY98-Y5dIH zleNz0mhR~2&s>>tSQpn-faVk%7G@L`63S<^#2)+mSCs1ghZtq$dQ>u*yStE|fm7~> zIl)0oVwG)Y%X3cco?~n5&0FOyyE*>3=^8Z0C=fu;xf6^b!C&KB&3dl@O6zL+`@dF* z5fzP=v8JUV)t+X6_tAQH1feH24j9Z`pD%f-Hd{q=Rp<2tmRGU|NAmr1IT4wyCu!1} z(aK)8cpsxx*kDg?(~M7tcU_z6Z~puP^Df%o z27vGp@woqaZ*AS&|MD$A;fwTi(_^aW!CcRt7p9Wa7lWmxc08`f)pE?QTaGVUPhPn& zpm4AKw=%?5ww^fApcx|4Wmd@75xbWZ((7L9&exlNvV`jo=zNiX{Uf3J@Vax{+pgj5 z#!cnHb*r=(G&u?PC6Hc@$ho)nTK)cS5eI1lHaL0~Sl*uB;JaMBy?@>EjV^M%wo9}8 z?+OoKeUHDb%1J1k;xC-@MbZz9&_#2HhKWoz$7nRo-yvXd-_1bp1;J*H#J!c+EH*fk z0VWv3fg?w6)=zaUiUrY$;JXNO$LHY8b-&(rXVqz~V$;drH7~?!yk>9BD~+%tXdvL*wBaUyd*MB#1Z^ zK5-qEE{U|-(74v|`vIHiYg*I=61u3TKn-xd7eYotImEMmGX0SSy~fZCXvuBD&5O*@ z1|M+CSJe6_M4B_lsFOW(_HO9Lb-|-SLeh(`2GPRu^71el;B_$H%@<2aiOqdgwc`IW zXaWn}xCwerm<5_Q&%|=u3%N`oBGFDUAK{H_xz_l-Xm22!(TL&$bw%c}$Xy4$!y^Kj zMPzCw(M5F6WrI%e5TM*=q8pi8pP!%q`u#pIbEm^*(TG((X=6xIOKVu!dUq`Qw1$^mzy$GK2#lLD#8BFu!={d|C2cLOZR!85-jZIPmvP@xKbVm` z!#IKyQLc{fUxe^oj*B@ni)tJBF;5|h^D6@(9LWgT83*dw%F{}#DZ5c$Q6V)uteTaP zp8my;BcyDT)s2mfmvANxHWDz>jtw+~0A@Ck2tw zMaJX@Ozxf!CE~Y5`})4uss~b+?(efxZFY@&1Dl8gFC=XM%y*O5A7lb<%{P#QtM3)g z`+V4|plSUT4YzUPE;#9jA4w?^7<-qK%E*Vy3u?cZ(Qudd#juZAfsUd=gq!RjrIc+B zrFu#nPf#Ro*L+&v@yIVFD)Xx-<*ib7%U_ZYjvnTAAdnc zYNwNzRr0a7vkMq`SjL~e!kxSZ$>QC?qsLy?UBoV5oN2~KMmPvqjf2K~fdRWXYCioJ ztmTk1e}O;k@k)skA82qf7kJYM+JZWR^^sNqnx;H)3xnrOW1xus==~PJN0HJLT3WSA zOA^n9$5|cXQpogJJRE$Eq?JGadxHBOv;S@J9oqQ)9P(4Ir#qa*iL^_)LCunh&z~8J z@C)ilu8dd2i#_Ulsg#v2l;D_>JyYesBnrMA9?vvL4*d7;29_vW`F3Ld=BrA#q~C1> zk=bfts{Ze5;p?oe+^jZ+CLs3aGizL0gU&k~W3Y=J^M1B{iX0)U{5MGDMwK7=eafZb z#!1P_Dj@BepGuq&HEMjMt^|t@$$9?hMgMNARjyMx}^#aPA87WnPKiYN@5I;^{H8(rIjcYghXrLTZ)@`HT3_m_+EkOWkn%m<6%yx zC)3i^V?WjtL1-$zcCtcDN&LpVu5nJ?a#nK>N6`5VrIE;#f?{G;t}~Wz0xHd`x`Doj zzv)SCJUG#aIHNsez!axs)!-cn>yEH`HuQI3#oZZ|96fF{-*#+_%VeW~nDiQYQ!_JQ zi_mViK4xbVrC-alvH!m53#S%h;$qy5Lk#t)G+E%5!;-E3+CnQRwnn2(3IZUI-qY#} zD~ybaNaeaPj9TMN!aL(rk}f-4{{u3-+>wBf1ON1fN2H{Tt*oeVUeM^)Sz4Ws5{)=C zO)P3?h}Zmb5?WnL_!Wi{SD>J!gNiWwq4K3?%%b*+qO>0p*NY^X`cwb9SyRP9HS8oh zl9b+bL2=HC={gb1i3~dV>t4+OQ+tVOY_Jjvn+I`{taMWTd;HCgpF}sWp>Y{0K@I|X z!+@}eGDAo75f5+A@33MW%`DnWG}5?k#R)q3`x2wZv-=~`UH;%_aVfN-PHy7aPaq=E zJyfUaZh|Nd4`e?mwA0e+oCHp9J|{F=XXRa8Uq3r!?7DyW-rg>f5>@#Z6BBIOw<8bV zP>op;!msba6>8d^h$6ohp1mMg({;(ZDX)R0!Hv z;~a=S+;OY?;buUL#&js@Jt-590p5aDuCfpd!U`~?A1jCnZ7V9i5@e0{lG zQXMlh^FG2J+S*7Py@0?RZc^_Eazw_cRT&%v%y~pD5yi}C*J@HY{jTvBH8q)KbCvbW z*P?g#YqkTRkpuqRN8gs&?CdOiBQQAE-ZsTbK&u1~34i>@ep7-n`K>q;Dzj^oO>Rw)DzGF6svB*|q3!rzg6Frq_ z4UiWP`}4f-bk>m|G;fKD4m;`O$srd3?LX@3JlxkHpNyDg*Qh7f(Xd zXwVysA+lf+s15hBMOvjL4_~dr{~`c%YguS&>IPx;7v~&={Z?jSVeu~hmfYr) z!!y4S-QB=He9a`t@shuI+RQO^->u!O0ZWYl$#AJLSHx@Y3w<+}=_@272;~;L9`2+S z1IK!&P+2}Q&4KEl(R$%?EDsMkh{BznJ)5>gb1aeh)Nb$KUWvYMKLKObT{~2-Tvo=< z|8&DSICegyJu?F6Mm%);EPwX*6O)tAH0Cp5eflS#_|n-(d6XDFbcKqBo}I_N(>H!r zyj`YbgwW$j#`Pi!pcpsv@1#oU0?!3_NC*jhEk=C$V=HTEiGZ1+DcuN z1{tVnMI{B?U!U-?ieLYo&EexRIl^cV%pNqXWAgZCYV}CK+|b-Cs6onTMTlzz5d_3S z>pQ84^ky3-1zSGWPw0z>7!&0rvoWh>d3mOPsD8~SC-0uCWG#+yv(qAoN>6^>eOFUU z*RKBBhG5}#kXBAX36X~g(3krp#ro>%ZlG~cbg}?T@U?#=)kh?}%+bicKBo$K zf}$cCHa1L>%&tRz)X zP$=3)A;tof?-E!&7e*e;t)4!PS`CAw@L~`hZrrkRa>tC?-ciW>De43fMiW8=j=miX ziRKkezU=1Iv@==F!qaqaB3yGhhAU%E)J5(1ljZN`U5Rua*=HD5>k35!_8VT_3sIg= zF`uOhUV`kMxcYHes708~mvn)MUuo$CX%yupK#&DN4R3+ymSz?|8+un5wJ*MefX`dZ z)Q}aO#zT1~hGZ^09fep@bCrXGgYwVlC^>Duv7PyAC2_hIcOC<;EHquBgnYDBru-X^ zu&7r=9|AAej(+`CGVb4%TyfV9{jgn_YG&bqZ=@$PRH~ISM{4X_i24=^{WUu)?5;yF z#64A7b}6}m-xfLRUYkAQ00TD}i7x!*3?{H!cE)#kl0vBDr<$#hI6@vdpM<>;-VHQ3&e=!AVn?>N zZpzYJ;Bku)mIDKelk^5_^7M_L)rku+I#Ebe)qi2`Wf|ZaC1eD zLuJ)}YQg-!=fQ!v6w7vK=kw*` zXF$_DkBF?|;GfbsWggM1ntYSo??U4C|A<_F#OeQ<33>GNBmkt10sO14HMLrM5^K^_ zG{IL7w>W`5yIC$ha5NdVC9q_Z`-&j$5y{@@G1JJzRFj6kbgH5|X4<_EgEn zjwITfC76PM)zBD5U^yDH-mb2o;AMdPNA4y&HQji+4 zv(nSMpBWMo5`tBpGlsVpyGN)Aw3-MLH*zQ>6WxOiSGdo!1R1j+nbRct={$`COfl++ z5Q+qA(a!>NetY`YZ~@NaIU<5I&nujR{P*aYY_G7zyUX-=go#fsZA*Ow2r6`OX5~bp zfO6&L@y_Y^Jy*jR7?M&R{{s-;ynEWQ+s$We3zRCrPNWu&PT)3SL)FqE-83_wygnQD zd1Nu}78AP`6n3AK_PKjF&sHth3mZ@sBTuOO5N*xgdUTMG6HudOQ7kTXNAo#1YW3xH z5SU5r_1FA{r>uFdFQ!cs;<8;^ju|m&?viZxHr9iInd=VBAAG2YzK{4_x8Ry>F*oc> zDW}ly52-giws{!5VB+8iuE@{dj0Z=a(Rx0}8djb}H?-^3$^k+*i2iFPK=-X-%^XP0 zO#TU}7Mt<~wvrn;MVYzx`=>tKvsK22du#$C#Wm%v_C~~)VVFR zdu+@Z;F<%TPAmG3IbR!nxB`AxXS<-^A!FIrE?|fz)pmOaiW<*;<67}wSc6%f9e;+~ z{dWhOLHRd&NbjemFVbkMqL6c}7_>HNX^P=>jJ(oP>FvGq`$RgJ)UmUD?ac^~FB)*m ztH;D{T>4S>51<4)e_9)d4&?3ZR2@GY8ncl{0hlD;rauNs`SPiCS~?jNlCF`zq8zXc zzF(r$S#y`-p%a$I3(zYIIHwpZ!Qe zf&fH6p8wI#L^Ph%796@RN^hLigF3dM-Y#pR)ulm&=4JJv?6obgM#wf>fsW_bS;LZ% z2c0hI$GJ66B6YI(FK^p{vg&8=1{0264c*o*>D$dTUj!WH6Og?7l$_~Ip$f1J0EEA} zChD}2XMTOh@z^nhgfu%oF&UcJ(LqmGwRYoEu(ca(kwe)(`9Ct)90}(a>+rMVD=aOu z?EU?ozmqrRtR-*H{uG5z@9gXdw|}Y_-wm7CYpvptB?|a5r($!B4;t>} z51wUbxdL&|@LjZb(+vv_o#I_3qHh@0OYKH-MEpmL46SDLboCH%9+5+Wg5Aqf1oyQ( zFpN*83N<3>=||GdnP9kTY!I-%YAw{%nx7%PUSCNNjY&>UUZ2X(fnC`RaF&$O%V&Ip zcLrZ6S!j!=&-L@87};VgkvYmsGcyy&*WO-OT!Q4OUw6z$u<5k9?q)L^g14xDx9J7a zYWs+THqob(@LyO1c8MaAL;J-EbPNm~BBZ(UhzSGkMu7SK0WhVa#YO$Zm4QSuo`m#E z<^^St(v+0H;ngYtZpmlRUd0hiX3>$KZw7AR0uXN-Ua+@|Gg*$kN{hq;<#Sa1na{z( zatQzZ`bUk=rLyTbcK9vyCK=?skr6}hXSXjSc#z)rk9&nbz^ zBpR1^;?_5CLUcxc>X{?aB-rbXKiVU3)USeNs!ZT^+iV1|J6!Am|QI{6y>ZV))Hj)=6nv1){{ zYqe95H>RSf#ZuoyEDAz_zkcocUcXqJtKzs;)6d-j%dl^u9v+}`r}^WZ;0$2WJrc5j zpbfsc0=AZ&jK1*lasy>@ZOBC0YbMy$QC&>lS2VQWaAe#GcsSNtTJ6>p(A8$1Js!t* zAN2L5E}gKGMjMPS$j}jUf_eT7Ck&0hZLjkvUNCYyS{J`KTGr#|vMH}$%2Me|MPxts z>&P_H_Ims&u;##fI1^ucIoDZf#>SbHUImh2u?c+e&d=|u*IO+bJB{3XG5hB_9?rIP zL{Iyq>C3d6qXw}(QuQ@8?N5kdadCOpyDGz%+=V5mUkaFZMUemhOsfXwbnT}9N7GkF zMcIAfjv%5UAflvz5(3iFQU={2UCPiyN(?m&@kvNYcStHJIluq|A|Txj1Bi4C-Eoh< zd#`Kxhp-k7?>X<;`#k#z+GvTV3;2UwS|5ESfp6`V|7AD;eyYLVWCc~OD4VV1?9>;- z@FBbj>NIh8f%)ro>2zaM$Qw#I8I61Y>Bi*F(O;IqhRkWV$6wXoY{yjl(}LXHqlvNRQxysHhZ)P^-4=r%X&tl}Bp@1rkVHs$<5l zo~JIJy@smS_%`O2m2=i19tXH7Z2?g`BX##*9ZZgs6>?7D>bknR_vZDt#CDWYd&j`M z#wl#{UQMg93rG6|oCZ+r)eOpMR5O$apItKSU&B_9K>bdJui$HZX%!Be5EKR;Sb zazLQc%{b!vE~CfJL|J4Mcbpo(#ILy%w7ZZF2J~WbRr8Mzy^10aY!mgf(EF1fjFVUa(^&_`^md`fSrd;O`BpP3| z`-bwi@(E;={DBvG3-RLRj3zIT7Z$PI?P*G~{AFeF!Q5QhlwkD%!Abb>aqz9=WRj6l ziHbE{ObSJr4f1&Qo%NAp^egGIq@V*6GQ{U>DhmDNx*G5CQkcwEJLCtZi5_@p^%!yf zL7#7|bKX$}1Hljl#h2?sNNsIkwf@0F%h53#+fV<>GwFWr4NDTk`O8&?>mT8H6qGqW zy(#F!lIhA%Y;%`AJF|#R8JPqeVUZ5147@`>+|5LZC>l1E`KIj8S)UD{r>9Occ@da# z($>?R<GLHq2HoHG8nTd|FgALnBrK^a+o&P=XkB?%=bjcQqDQ< zf3Jh|D``|{J5cTtF`6YAsY7Hm=*Oe@_Ms35nOD6Qr`#RA$a^7jp~)%tu#6n zgayqd2jQOc@RZ5Ca-;CUiDdS}pXUc~Vl;hHcqzI61AU^l2FYCFr7u$5-kTkg%c|M3bUvy_ZS>JN`Q;*Mceg-m6T9~8h^F1-5U_`1gx!-7u zJzz39OgaFaz%m|A1Ojx3RSmmAOK1^5f@99jzXHSx!!H)6kEskt`IAnqT3cJa0l4Rw zrut#-p33PS%jFl&?v7%42`v!ZNpm5^U+|2DC7t*QpNOpV^-Gf9rzXQkaResBXGF0} z=K|??j+&Z7-jD-2`~tFQePTCedNW$(4i7c7Djh%I93&9NThG}vwyB2MM1HE)dH3#K zrC=_9S!t<*3`jT|`}+Kxm+iuwQ2SJ& z7TjS5!>%+WET8HKU;)(>;k zwM9yS1e5gXwpAeRL3E6WRiyqeX6cU~KAiliW^PQ^h3fO)C?2zv=X#!^!xtTL;i4+? z`rEhu(o%YSC*?PvZU}^q91-)Rrrz^wAXmG0hQk9fs6x|Hx>&CbEymPP)OMpVw7Bt- z4w$M-4o<_^zjatyGIC2?=H$$yxw1*tYv9GD6o4{tZ{zscXZ=_IrU$G6pzI%qt||;W zy?yiM=f;P-4V%a3*9?9(Ww$z3mO+d$$<{0pW*mJBQZIEf@4Ekq3k?2%&ri_R*~y8= z{tHBOmN6GISv>O^^8RfL-qwP`b;9Vr?!X98VQ`$@-ssp~s7cFLL344ON5 zw;y>}=x=j&cAq0W4ys3zFUW0si0~R z58LS8dqX5Of;fod;lIvOeP*OQHZ(cGlV-X8*(I%&dU-p1YC0t4zqH0 zA*NPN>(!|K-#<7VBDUuo@xT21*I*$pj_L4VLEtBNu8m`^8YKF@-AH;&^JWDM0qEDn z{nW>S;s1D29e(>CcbKK+a@VrkhWVh+llyGUrY8U_lL zd9zy!0fsqymz|a2Mz+s!Whay?PeOIgSS80 zDMq3EJC)gNPcy%Rm+PtJmH)grN+oaplgO!_+EiuL*kcGVMr+OMDL#G+Jd-~n)Cq(n zC7bAj5w3nVCp&nr7Ct}f|Lv}X5Wi_98s zx%zhf8+a?m{;91MVgB~~Wv1^-+}Fy!vz86iY{ItZ8cS8fA%)4wvhXlm{9wRK)g zw2^w}9GO$^KjTe7znWT`0jQhbEo?J=qJ5ZhRC5C@2&gkl}V^e zqBfnK*(47~r05n$-6R$skwqCnkal)<7elV3-wF#qaPv#~FtfVf8!ViA!q})OmkyX* zI#W`X)-pO0fhh?Ax+9jNvEza7EfKrgx12t$iSX;}BqSzcI(u5UgYiFSi}Macdmb9x zkMwos(TK^_J`-Jbhw3MkAgpMTCLa%{k-RE1AL7Ui2H5?l_0r^kkbC#WSN2N;8tK8Z zk+oUfmKHE_Tg#JDCae0Ln2tD_2A2%_)e&9kDxzkkeeQaBy@zA1$!XzBb5}wi$BO;4 z*&c)wnSg@0lG65WXJT2MH%xBQZg+N~rzgbSyst{&6=)+upu&kvoQojKPZD|2%`wgrU$#_r%Lfr2j0h9Q!mPVwqU#TO_us@S!X zav762o&lr_ZqmEFzN-UybU6Ks<7niR%>;bDS@&E{4##6u{&UZ3C6dl1z}D8~c1*7& zQH2X4Eb_0D$iP|9(=RlynloCG(=KY42yR{={&i%*wd!?^6= zZ84EiXW)euBvS&$0@Rcqq4I73l`kqZhy~@yyy=MU?dl`>2gPl+nKojZR!rF;nbQYi zwn-&z)Qo#cHN=lXzXklGZ+rh}YnOC7GlmOJrv;03P?{noRyd73h#>a|kx%Ytj{vH? zg!JE{+LJ$G70-!FwSRQ9eKlWFO#8Us8=H82ScWq?Z-0Hrw)y|L0JNCimpJio+jVY6 zMgP9AwB-KC&`?hVP`Q7nQR8*O+@_EyslR3*n~P9TEv@bdDiGky$K!$g%Fj2T7y=WX z1zNhxIbisTNdBGj;V>Ou(`IEpL-Jm(MS(RU$<%SSRs+vTc7l8m*Z`RZXX#lVCB-p! z4%c{A0;S2%d2F+NW-`x6R7YD|8@+AK=iB6AVX=^6nP#t7w{`*n4G5=tC~2vzs#;3s z96k~gL;Ak(Jo4Zu0MS&KMT(nmLOfc&)Fh$wUWdFN+W2(p{XG~A$N;Bik2MY`x9=Uof#NPnVQXMq6V=Sguds{?JCo+NnhXD8Yg&s7{ zSH@kWIDfeECgY#~Htk$$>j^}|C_ZQ=29ihOVtSAE6i_po3=SHy2Wja>@BV($&=X?1 zPu5{!sk%}3q&oL+4ih4ijj>heFpe!-#2pM@`tf*Y3RtZ3&Zcf+S~bkI{~p_c(H5@*LUFE3dm-FnD?ZvkV*8A zYtZuZj0zDC=^)Ss_kn=1319|>Nus$TfQAJa%1I`T&tH|VLf3@fY4^@HA-qw{3Q_n2 zV%?5g>+5I9@2_=l{1@{9T(;_dcpasb*X{g`Wj(UT+8tIf21u|F3_OrX_Jku4h|=$R zogFI zm1UypeLfQd1Db|Y8u6q*P^etWSV<-G&4gluQG!<<&C+LO%eoe}o9joQX4@ zTwc+v23$bwxBz0#(EJG?ChUH?P9oo6UCm?=0KQ#6hBU4(F-)yrIO79?=kxAA+?|VG zja7mhMT$w>0HMtSKP2fdK#^l#{YNfs>gid>@>KUfz_M52 z^VfD+=5*HwK9X~5XU?6teyWH6(X_3sw2GM(tMTvm1FNojz%qbpHJaX+cJ+VnAtJP3w#D9P?IxhZd56ki{W;{4=O6If|E04 zntgwyhWs+U(3jR!RVB|?ms%Me*#VcL9o!SfIXcZaOvW{OZWg`0oXVHJviWOsGcxCq zAoH!Cn~a}3&0=D{q@}`CeukOp+}8%==^6i!dKXG=quR4RF&DMQrGz*D?RJN^$aH|7Kiirje@_JtE6W@NQ zhgtquhpn8n(_;4^Qu$uvr_j>f;|cZ}9Dm?^kc4c|K;u=^lcydpB^#O=QfR)SEPcG{ zUoSsV(BvXBHcL6W=a=3zp%<6&;gQ;=&tEbRIIg|O^z6adtmn$XXEe>jOwzI$S1pD9 zQsXjymkC}1OYSufoCMJaE|a$l~y zBAMTB#Y!{ds)!*6g;%BWYqQb<_HJ)@-`gj=za9JD^6dfW(*KckG<4+{`N#} zqmoF38T?p)69hBhkqezTfOzV9^VdHpAroe1PY6bOZZ)MEslUH7O})PUQ||i5-Q}U> zzBUCAgDb_7UD8s1FL8rCy3Me|8<#Ge-bZ~ym!vTJtvYa@`RZ-OEH(f+8XsqR_Ux9l z`OdJ!#Eegn=mk5wFy;CO65IKmo{JwHi^-b)#l7)Q=Z~dFZe{5|#0p@ii6B;ZzaQH= zqITB){xKu)&(@>6|HD+t#c*Z|as6TfI^+O z-;#bk>*8otA$nSu^`zpuN8pR5k+{WeV_N{dDO7frQn*q(DIN!1b}S6-Ophk`dExUxEnGvUHxMsfR%Ltni~dxKT~Ql8QZ*a z+$?&$`7=RV2Rc|O$I7H1X|S2|0C#l(cZ`csNXn|^73swmHIj4brt9wl&!Dor&er7E~Q-Y zE2p=tjWO6g{&cjLpjk|8>vx`eTkxK=seys_N54}aNSi+aj#5;A*9r@1Mp`R4H}Kzb z0?XFtul#lh2h}w+%2{SE)b0WSGZTcf`$~Gm6sUBRF_-_nKS48RvlBH;1-uerd^yaR z#Tza0#(UfOjwK0th^PA_m+MxO0k5i_k0yZ$j=W=$h z0G5-fb(_wmK|`L|z}y_qyRqH}bM{I-)#iBkkUy0b^Q0b)G$#&5US46MY$`V=7n=2@ zu6849M@Dd|CSD~cRl}V7({l)6;`S_oU1y6^(@vl>_SxWi?6LF+Tth*`mpt<;>6vny zSe7bbq0y93cR)NKc^%m%FBhDr`?93?9?;^vWvuVQ9rxeJTH$er^n=%*UF#U=z7z0% z9H9AKX#JMWU;Cp@M|GpWd~u@o+q)Xm>D~ah4hiYp)l-MstZJaNlQytfBW+DH0eu&s z1Nfkr>av;{m4}#o`_kC!o|CDV_oiCii5Ou55Lh!`-<#w|znGtmv07RMBW5Yc1AkRi z476Fi1ePIuA}>Ez@F1yIq;?=bC(XWaGPN$H4E1|F2lS0mvDjFqzQMca8XB#9Z~j4M zRwRITt-~K2989Tg^070<1$kKHV5qEIJNu>5=_!aI|AAq8ykN0hVCm&cGkKRtM&q*z z&Yn${cV8xdYdmE2zq2#1Xe3WaNV5L*{rf!Kd+b^n-#9Twj8D4r@o-pR(W(b2a@9Jr zzUo3ln)Qty4^}Gu_xI)Jz&Ha{UW@cLcPttOr(=}iP-yy#Ef1Swr&KV4OBFRm{wJ~lO zsZrtOMhXd=dCL@^&?QWkZb2V*)AE^Cwv#u=c3Jou5dvmE+M^-%u+P~>_=~OctsQ*q zwvWO~!m3g(?=&~;yeP>MqzY_$BNFh0`|AVK+zQc*mL9{_#^vL43<0!R{ntE6WI1t*_Jz6X4EbB3F87|T2N!h$# zzD>_h>x1IqW0ljZ4ejr`>nu+`x22fGZ`FmLxz~t01;S!n(xr2#H4+=clE9l^1IPNW zA7)t53+FsxUCBiv7HKCAx=qbC0!jZQbCmiG4QZ0wMMQ;#ZD7&9jd^$y*F>g2Zr(j_ zZ=V;lHp+>&pboyNL%wEV@w>m@bPX_2%K%58xqFX**L|HC&m#}SVu%c#a(w>SWNoyF z{%0~p5oHD)spySlAeZ8C)=&L!0noSjt2Xb^_hq1> z0}cw(Rh&xfY`1BDg?`ORv8ALHk@yJi&XzIz(`Jv{HNdC%5mOzSvOKpME}ay0xTdL%lJ~Kp^09 zCi3)lhF@V}hZY(DO3EH>dz2i1WCDA{?Za-_H~nZnw*eB;!6RNC;s?=JPaXbC#)Y|Z zT9O>UDsNf(h|rJ8W$C$KC@cgN7WUB9eF<`KJ=_jl^C}Z7_!jdNY~3U>X&)5uIJp4< zy(qu5tE8VsOX&yCB{1b?{Bsf>E;$IhQ;$~`igSNvZV~E!=j+90WpuS|JmUTP`A1}P zTzX9x?1&^fi1Iy>Y{aw>>`&R9h_WUxG?srtN;Fj0v0fqO{On2hi%nk)2AZnPsqZzW z-%5=)9neAnZIv}LN*iDjsIEQ9YBDSbs(Q7UTo=gdqr0NOxxqkJH_<`V?^f(JH|+XI zG3MY28T*n|<|Wd3ZEO~Gv6mokmo)RM*Ja- zwd_Aa%D-DJyRb0lakM!#@Zi$&&W402sG3Mw`JQ^(c-a{lB%f}66@IDOpcdeB^Q?Pm;G+T9Z}KqK=-#AJ(B;N zKO|!TMM!%#e|EvC_*r(w&seq6x)V6&d_ei*zlIqI@E)R= z(MAlS55iBavC(9Yi%SHn7TLi}V7wIH51&Dwf8-+tH^{W?Qd)NAA~=DKWdgNho2z(h zz!zql?>5sh^zzbfkT)C`Jr~!L=>3!0b+7A194?tz1?4&yQ_5V)yr!x|c{k5aSEDA= z$$4(4a6Z!O5i0ZZXWCNA+7R7_=Tch~YYSUh64;IgN&^&e7Cs2LdAh^o3ROX+CSZ=Ze@IZY5RlhCYlARsx@zSzK_c?O&5(V*jR-g_Ita z50lODjyF+5&5<>17xwuhe=ni$>vB@SG+tdAbU5EF3>-&Dbm}b`H4@!Zh$*giEG;X; zRTc+`&GO}3L{%SI#XKYlM*T7?$F-aBAr(F`4FQQ$a*2y4gsJkz6JA{Ywlrh36fIOW zrfLpuFh+uH=|V4B_TBS|+Krso_QKjz&&d%wYO6%(AP#a~&P+YG=tMsve>NlFxHT2- zk~v#pkykAQtEm9Y%=3Y_)UCnj>FL8@QlD2)61pLm>x&gmS~UhveQm8AePZIddzJ9D-pG5ziO(dl|+y3Lyr|)rPk3!7bBTriUvA!E6 zlzj#@oBzG0X}K~-GIMP*~1x<+5$8aE<(BNsPa+9+sf0?Ez8ezkZ>Co*r9b1TBHMniK9!2>cbfqY9Yjni1zw|lz@n`p>ii|KBT=aT%65y-7u zHn;??%ElXw#l@T@y*}Zd`y=``r5+@ zyMLNSDQ6I{YW`es3eL^&GY{8~v2Te647G1%_Br2cbc6gzm1K=y!6}#a-5(y&dH@T# zgy-kyE+$MK#?)o@V^aao2j`nI%$50o@fs%uny(}H0JB{a{N`(e()QnODsqp@Tb_Kv z5Ee#5tco+`$)zw(2xk9(_joL@&AJ${1^Y>n*-Ns>aCI`iS~`&Y?%LlnUu{A$uSLy- z2Jh>O!wr5}PASio^vGQDbL(wqZ@iCbaTh*6$X}-q9-AWE+H2T}C>1sP&tp&|xP>ttZBCQosr~-({{&(548k@; zz;gH2-u68ESOYB&hd0agwf8Zcw}2EA!AEE%Byclwh)xO`)b;#%M$eM7Yzp5qKHst8 z#@FX>9z7~7EK-`4_|pIj_hf&ke`=})gUy+}`O0x=;drZyYQO83sLNT;2KXxfwR}g` z*FcoWJH@lmm>hxq%PyV!m@Lsqm&EFt(aN>a@4}u?<&E&OGnKNsv-SQA_0mK|nFRoCe7)6kR>d2NC-1}hHlO$pZ+Qk(NGqaL6BdZ7u%DpQPvU)8Or zC%P23POU6G2lT@z9r@cmkc8E48)J82Tfsh3iI@gy$>FgEe_`y{7{vwU=f4Q1^m<@i z*F36LTzyqR@rlAiZq)h~DGt`1mXMGjsT-rf{D7l!(@XL($x7pnxq5Pthq#G4IEFf@ z_Kg_Oj^WabiGO#UuA03UUtQS~KG`AtBF)%x+awG5*Eq9j&p{D9-aK5@)w%|~GdBI5 zR;9$>wRvS~F+@H5KRq?9V0%?$x)9eQzK4Rrb#xS)B>4J~-g;UUSo6?+vE`(2vT|<* z#5+PbPEyR!khHog?GIP~{J8tPUxqiQOM3t5#<-MSxTnKV00H$|7t@I*W9W>V6tL_& z=#jdLE?=MeNleSUR%6#s8zJjhK9(QhC)n=u9SAV&J<_VjGCdvddWl>0Bo#$n{+4@T zm49+&oR=Z<#p|WV+phyc*L<_HvlU}kT&s1z(Sb#J``Zhx!5yj@Qc_Nt=VD3wSwZWM zI2>X-H~TXIXM_2X@^Y_Gy<1;}#kzc-FV*4yih#b950#k3=Vv`B@oo#|k40a4guRW( zMX}WlXg8T&mU0?~{5w?m+G+PF?B|*!((0k%lOKSgfB zyh8Xa=QL7<=rG%@3=YRQ?+?>L5*NdnzFI>zYIAP7?R)8AKz6N&3Bqn*ygF(blEI~ z0$OOI(w-`hx7}og#p~*$7Ze$*(5Wfgxl0W?kB&$>Z*=Ym>+Dv0QqKpr96t>ABzXRm zM{W&#&!*Rh@Yip0a&Vwq=W@Y})Q%`3!eDHQwQ_R`oY{u6gG_ab=cf^TQnbJjkX-M` z-@yEp>Tk5<<&v>(1n%m~ig7`)ovyZ<<=j*fyH*8>byBs5bNjc_PaO

    =6uZIX6QFIvR!}Nr`XFMPes@1+dwcuZ?nPJvQciOrq9}v@aL16swmrN{_LqX< z!_4ES55$bn;>N7{mNaG=vuYN#0W6yp4KV)s)<#)DN$LC$wPf}p_PvvrxLm&w)q2GTd{ zSP*QzkK{7YwB%5X(ZmK;Zi8U0$5eTCtNoMt`FS26X(6zZBrT2jIQ3@xBAV2O`~PPF zZmB-@Br$+G8#-My@=;YwC*p|)+OvCk7*KyJP~bU{o9;q~6&-0<<#Avn|L%{TY3%9M z;vFXu<%RFV7SIz|dD>+kbWS$I|4ntYBR(-8r-FyUXU5nV2ViZbH`LNfzz9Nh zmyN+7+#=a$U6aYGkJCdPOHSrAn}3ZrD*EKFYT9y*Km+C2aAB?-CZs|hBh-L*>qWJx$}Nn|p;dl?fUur>4w2@jq^u9DM4*S%>|meV ze-$f`J~q8nN#*WEFG)op6ALGoc7d(<0-D2O#}H-Bx@ht$^zrfWIdDw`1_LBKRPXpL z&0}-Rpl9GiTR_xhkI&fvr4>qEUS8V~5fP&V&j|aG_@60s#6On_xKRM~Q*L>CEk%GVstab35Zrdo~eTJ7@`9u8~ z3g0BYsVvvSMsM}uL7jc0)NFbIu@@hTK6kOUwf9aJgJ*wS{~hPcmp+(*{!6IH)4XB_ zUfUi`J4oVc0GurYo;*1?=f!lHPtVQgYLAj<9a4bMSc&pUpM|>s*iGG1QIqO%$fy69AdG;kYw`4<_TnILYJ(o4BGgD zv?2W1qx(7oNBYOf(mE5m+)S`O(j#Pms6@{SFW+Du2{0-r^KD&BN=~lll3B8db79D( zfrzc(R-B%mz6K7-Koj_o8S;#1m^qh1NwOSiIci{F;AQY=b*_Pk;HOjXCB2yT<=ef5 zv67N@o0x!a-h|VE0pY#5X@l>dtR`6uD+v{st#+?4Mx3?YS0w z)f7SDySGcceuuEJehY(%3JaSWiVRV^W1nGUFQmRH3sc|1sf_-#hXjC(tNq7w%9YS# zTEad@q1=7`69G=cUyAo3a8U?x5taxjWw7b|Llq<=H<$W5$7wen9%i|l$ozx>)L0KE zItsEpSJKB@{$@pWe!Fh=wX2_9g=GFE`rO=?meIY%JjEJP+IO}uVIQQ3!pfYOa&cF9 z*T?Uq5wGjCLGkZdZ1Uf~MU(fkp7jM~spn!sr0PY_ zKBKkJ^i6)YEl^4ANqK=NK79b!+pCgak?WN?q6UM%hZGHMRX||Ht?`HK#~7>=mho+m zClgQ-2%vvBO(Bjn1HDF$#h@ofi0@ZE;eD5-8c_P+IS5wSp=RKB# zE!~_e-1FO?MqYf`xv9G3)^4Krmvcc3xm#gZMR0!j zHo@tcd!q@jecfy`gOS?wj>k5(CMs~OJ0(PcTl&?46`Lo*>H_rsZ-T&XnIfawqq>Ul zr4PS#rJ1R-(rZIrBMGp2AO-$ROq|=hxt+Qo!8Wj?8MUPp-R6~kOFxxZ2)pw%<5m>2 z#fZ_=P+B$LrKgJ|JI$QB2lX<4*&JOOrJ!ccz1=R+@#!ZExJys_Z1F;dTQde8?-Kn@ zs+BmnXRWZ?9!=uYwmwIMg#K`lh+Suh7{Y*I$+c<#4!&J;%%>wQo#QxsTw9N0k~Pkt z9cH}^)sgrhTr$d=%lw#_B@eyVR;P!RPRXYcNOzis(`FL zsZr+!*3@BZtQj>Zks34eoY(!$s7(_sKFv()oY=vSnzn8V9UW05K*85v-}h=2)~0}LmH#xm5CYIzu~wS2@f)%}Q(Tp@u9>l{nK@+2)knr9)otP2 z)eg04-(yK1Cc`Kx)&C9~x37x;CF$-$jqJlzCEmrDm>A!($tJpvOxZ7>KuI4=&9X~j z29`E1qQ|F$)am$ig3pJukEnL{TjnUpuO^`Mtc1!cDomTh=|#m?%LE%68@}al(!u2c zAB2IE)p95a-y$fmfc4d;Phi21#tHknTg>Ug!ooL|80>wn=2Sk9n*;jhy-Mcv)x6F7 z0gziBtNmkG91Z}jt+k)4zbdB>l9)+Kg0@~<7=uAHaCI1)n%6^YVFCI)uBKj9<@Im& zx$5^C3)AKieKzkK|5i5H|1?(a_lXWGM+Uz9e#h>!U)Afz7thFneOA$WiH0zs1)h&& z`YDc->S1s^KDbP}N50mGxVq~*lZfF!J(4k|#<1XL$qA1JT?>81W|IonNm|e)a~T{Q zbU&4lj^IOoX7#i6f-Jnb=?y`)yZTv-`$%IkxG5c-L8o$BuDoC0(f1ZU2p+-=VKu%s znd1@5n1d<X)|rm9%n6Bl+^y>CAqW8ILK^DpFRdU{RdWX^X~Ub(AeTTe-zFqwZ~AvM znUfO-PqHKD{4YM?z3M?{6oxAfF=x!qwPaAZ-~_wjOK{pcy0urV?KR<87cX5POy##j zr7NKMFk{nHvAeqk?;oHzD`NnQz7!N#!Ormtg<|`Jl&Xy&kZQE{7$bEy`F0_XuMWT;eee;9jpv?lbrwwbN5k`F2>>OoEC8 z&XBcxj&k4QacEa8HEDt#Sf2Jjb`m@~*36tDnb_3KvKf)W*D$dV$($7l%>t~p*uG(q2(7PSb>Fw?sfm~nLazgEjT$MTugjS-@F~Q!}mst_UqTOb#VT4?LVogs(rKs zq*$!MW$Iiwys8=+S0lwuc)O^T!pOnSwwN17EqVXiz@*QI3UqhV=W`nuK8F#|q!LR7 zJ$|0FUl?$m7mHgXHum1{IP9Z4yRegj5!y)JvfW~!cbwh71bU{iX~_nYucj*`$IGhg zgKq7nNYjN67;@3hbvT<-k zp&#e}iskc)pFKl33cJ+LIC{&a@pCJHz2=7uF+QZBvldGJ5c0oCJ9$u#-(YvA05UGA z#jt6dxHUSWC@Y`e#o7N3F8jd0v`@|h0tGT~x4IHx&hB#{gbwJ<)!TtNBkOr?W=z%J zNU=C+5>nC~&}MuCq<}Z3DH9V@N*w7C43t&)@>P4u%FOy`kFYg$Se=R5mDJUpK?+14 zM3n-+kx+{}4DL>DyEvl*|D7g$v~TSN2UC>y2THV`Lp-84;Q4H z?9VnifFQb~^y1=TB}lF~RP8V|HFZl_#AWf~;)}*EkYj)6gxOYr+Y=dz(qBYSnw}>dv8N&#e5(<7coU3-O_WQtDd4dUdT5V<{8n~ z$4QddC1J(Uh7^(l2cyB}DexzAaL1V~MAWX$DCw?x(a`O?vfu3TgBV32V{y_K2q(v}XB=lnkqTkP`SQ zvqDn9IYcu0N`^U5dExt$|09wjGcknXtLlGh6gXQm4WeeIR>S2$PGdf5+~Q(%&rw15 zTc5S3sUL=7^Bb=2RY9k}e>l`T2M{6g&;OUnaM8P)B}UCbpLJ0n6dAeR=I|(gS2b#OpRqcp2f{S$d-pYp#I&N^>2aU+c8Da(~Xq9hXQV_ z=~Y97fvPdMDaCIfk(uIU;p5$)>koe6QlIxFokIM`cdXea-?Fk631qmi`nkBdC3#%R zL0j+l@#k(aK)@$!>4U^t?bnp2+5+8|=7vpPPIqIsx5~gYmYNM79-ie&nov}mTxKTQ zT=hl@xMrrJr7>sHN4#R4H>z%R!;RB7W%L)DN!Lpn#?yPwUy?O z1y|C1*TU#I!~emkoL5FbE$asZ5vccD;u0ukN2TZw)!Kda%{#H!S1q`cX`U=Cu2zBm zsLFpA))Fv~@e;18daiOD7Z+C%%=U&6lKmCMYRD2~fNK~P&FQ1z@QzNk^qj(s-v+Hz zJSjM)rl!5Gamd)Tzk;}G*qAM9Fg?h^Wrv~syBZQml)?)O+vedwKD%xh48TnxYrS4& zev5-Q-H&-GaW*9JYeD)meLVaZh*Q=rsvP<0)YqTk#c-7ZzU->fb?(4Oup`jsHe*V2B!&u|m~`4!oAc zwAN5$&N@R!zd9~*5rrkSJ&J)OOpsJU-wDQ--yYOJCH>~W&!0b=Q7*2)7b0|bR<2h~ zUm%h`))Id~l6Vc>@2@azfc-Y*#dlgrL$O#9C1_pkD63RnZB=ikjac+Q^M(o@UK@g) zARvL};S|UsM9Q<h7zo5&+_7grinh zOHXtnLX4Iy!NlCbbYEu$6UGa}kb+izIy<7q$J;Z1QsfLw>%w+Sv1kyMcJ-Y}ClQLIfTx|WP za)=xZGM(ScjYpXwVa(~|mX?;@0tg;Lgn?7T+}B4UMj8=W)T5n`3P3uNe;`fJv--4v z#FbSr{cjCWGZm@6I{d0Hm6yyyEgo=tM0UT<8b!MHsWHoPT`w$hn=K#umA7M3UjD24 zK)+^&?g}E-9WcSQh?@-+d^;<6;>|C~!C^1kuaBTmyBqNie0jhnkH=S=oV-aq_DkFO z9>hvgLBuSC4C=80jiJSa*5=xR!t&(M3eM@-@Q3C~?YYX*QhT!CByd2@#g!RLJB2&6 zI}a}L`P;Xfr?|C=s6=vZY+w26wj7x~x5i{SDg)WdY5Ej>{?W57S);mJiRfOpxb{bT z21vzD$H$|AxwV>Vi^s*QK-ROA(|rLu;%c5Y1HLJ+9UE)Jz<9!v;b(_H8ke#OV)z>7 z4%%?KyobjY4?SKYvb=F=B(V|yM2Po=X(eEdqNy*#L$LSnRT70n}CV=U@nc+qiz9w%u+*x41|wlV~8bB6B3#JGncN8`rk1l~c?>)8z> zwonf@H|Aiu(y*!BJpo+_3Y-5daYyFA$=pn+nldsaz-QEcu{^Es22?u-Xkua(cLu+y zd7E}vaA73;P9V{SqC?L6XmA)X4OTne4XpSe*4zH~v@+nS?#RRL zgE$>ijCzc{yUMfQ8Yv=qeCK?%+jZ~Xi(#j%j0}~x{m+%rY$*$`uC6wKB=XWR>*?!r zsturlzDv-vgxwlYDs%>U4?&_#-o2nknO%^QMGrNRT)?+O^nU`S!w)o9&w-`TbUtCr z==V^MLlBE0MT>-QX_;#>@Y0E|uyJ$iadKQZG%r+`43jR$diPP?p{|AvQ+_h82`Zg?(H|;Ljr9bz;+NJp6bkOGATl%1|srBOva8G<0@^UkU+Z-j|zE|_d zt(%QpmUPWj4N^RL`LcCaYnUTf;wM#c-X0EpkCFnWsumi?&9Bx5EaFjg8J{! z^R3%kUp;}dwT{bgocfo8)O(i)YXBQ&%UVw*gUXq8OlH}e4_3J{&>w+Ei#BE6#Wrn% zDM=k|0e8=!`9Jed3P&jfsRU_7bN+ds-ruM}J+jRzpB_)HVSI>LYmnhDJ25nTb>YIp z-l^nrg!lP2_v6|xy+AK4%&+GRpteo9b&)##GpIfH+#cbxbwZWt%=vCt9-yG4>})Z1 zMk-1;HHdo*G^lqp%o%6@B!={Q3&eOdUdA=U;g7TWrnDqAvpPB`pyMOBFZPNsp`xzV zV+R^DX=H|99(5!VtinY$2xc(DY~*A1pA=TM(lE`jmp)^VUmjv7xsxvpRG@$ zNJn1kn;*=j*4UH2P2pN8Eh}4VbsDp?BQ*-Gt(e|kW-ub)EI$Tyf26oFBu!Eq;pX+Z z=F+lmK*_BWEG7Jfo)*~8Hud-s6KWxngiGe#=%KIp;XDx86IBrUw0t^K-gB}tp(!-? zEfHbLLkA$N8jqr`ar_ELgi zGN?&vcJ{89SkP*K8r10S@<5|lGRQ6HIMf*!psxmvu1g5XQ7MCj#C-#p!AUie#&=o< zm%!%zudQGT(by3fmNEW-WYY=-G2|OxAprrwQ+csnoMUq?d>yr~`9=D00N@p!<_2Ca zEWfj7L}hokdp7H4$!4`l$%VvYB1R|-TwMDp!1|75f_-$CS#fV@u2V0xmZ-zEuQ|By zFmmk|DG1^sIkM))E=ns^qEU=-d){5LBR-s8<&_j~yY+?xwrp&_bj?($k9&|o1vwCh z2#pp8`zpr(Pbcfkm+`+QMx~`3&Sk|iF0ZkAl8p-cmG=D}eb8p8GSi|cm!2N)Vyet; zge~tfw+};mE37SgqS#=m_!EI{v8c#&lNrr?3KUM ztat}+3QJj;yEkq!7$|d7RxJCikcYlZyz`-c^|`971CWPi9+H7-x$ZCf* zlog`W>gi3h3Bwk<=|2ofVF1E5Ha46A%>P9L37DMd1Nb(I8KlhhUDguMCwz$oDRq|gzh=QEFc&KwXU6pjG{67{eo7Q%Cy>F<3`tXfrh)r@ zU`69TcS)q2gaS@!kcE7U?(lCm54Y1%^pF221(vm?o_~pmh?qu#N&IU#0&`|tdCR>D zjHE}ZHtDNnaqEL0a9{WuBNUX)MG>j9@7^kdP%%%iE4dmbaSEC9JjEa5N{~j{9daLi zU=LPX^~%~BwTk&ZZLdf2mLJi}`2KLdoiA1)EnQMwHBIWFkiPZdauL*{>BVmE0zOd{ zO(GoIx3YFZY5QO=K~f+53C`zSLc^G^==s6R-wHN^YI{If9{D(^Gp0K}F3Y@<_!EdZ z_!Z~of?SEcUZ|N3Ow>)kGCYGu{Fjdaf5k84RevVLKOX>@LjjZ)>zK&PT~M9RJQYL9jmupvc2mbhjr6U;I^s51`g4p$uzIUpdjDuf1}Bm zrV#|8IwiP66n+#P*jZagE24)E9c$7i-wOq$*Kl$1@bmytW80{TiVAfkO_vuGhjbJ) zG5t*&WJ8TREWZ>KI;dl}_l`j3!xrwl)f#- zuRfnw|Gtd|WFN@6+m*;({1Bpe;d!!pH6g_d5MtNBCI5Pjrt--_Twg$;=dubcB4p%p zj`7RAt3nQcyoWeP)3dJRcPVW&!52SQa$#fZ=pyCRyp0dqo?wYH16dKP$r+nG8;fNV zNU3C#-<5#dlN}#O+*{mj=Yf4VxU9DOz+=(imu2WG4!w;q)7D>=qX!mji*V4sDIypc z9DD|jjC`FHM*PbJ$H7NSdYgmeQ3HnFR+;ep8wS?my^nNvzyYuz&_aJyb#`{fAsQx% zC4gve8fsXyaCX@czBhP*7ztBE3cLqPLbmyzuU;WwjBu5aP71!^liZdTe_}vS9367& z0}k%%?Ck7d4>G&7l!5+WCK$-=!?gPFYGzsp`rZ=J{}Faxs$wW7qI=b8K z$U?veXvP|XkL+OyxM*l+HQ@M*u}xVH-eK$ zT+syne6JGZ?ojrXFIh-a3rR@+Byr9~(N8~RDeZYol`zC8quyhOx5?gtyyx3+_H)pO3^4rH=?0RJdd zDhkb>6f<0J&y_#P-0dIm@i|~6*F&oC>T$xnw>VRlHQx{SDzh&Y8BnsCu!Q6PZP6l9 zzrgL^Ek%$4QDNVXkB^zE3*~@KtS1peu4FsS-?fRn#o!LvSpneMxmD4TxpShWC9r>U z1WK|c>5?*tCPdxQrtn_--TL}(wdG%>AZJl)oR8%v$IZQ6t|#`U=e_k?Fl$F$)(^=+nSoh3@OBOE8FQ+ zrptBq|7gDnf8cG&VSx9PB~@RY-^tkVOn`pW|M!dlueDdQZ>Idf-QYjxV#9NDRn$Ek z5&w>m*f{BsK;pd8Z5av@2B4*r{f3F5cl)Q2B{*ZM7};-A-QqCK!)>+i7`OJPG&f5H z1ZIQRk{YGfP_1HWeIE)z0A*A|dMg8Mv3+MSC5ZQ8NPzUg7@r0{ZA)_Ttc#O_;~xE| z{eO@hLo~EB#%)?w~AvoAQ)B2Ah0XL^L zMbXtLEw+p8^hV{oMtk1nZ}!5}i^hw{Fvs`4d+qcaWt6@(ZZTDFC=R z_)}H_(G{>vL#(6@F*4TDT4`0Z&(*_zfyw}LKw=P^f&8tfk@%&$ z$O{%dpT4PPm$v#Kxw#mJA$JkdmNP&m`WHYI{CTDy4~+3)bdUWv#hylnh=vwLVc?RK z?cJ^BO_up1WpLkB#o=1~_euM9f`+>&uq1gPeW6$Km9jf@OG^8*P5xcRXENTIwBR8FpDMgo66$tnyID4 zjSB*+Hy4^;vRJoQg8p^Mk{28+8q?GBoQb4iCH&7&A!IL%RQje>elU3SkSo>iP?@%$!{SNFQ*c^08 z&)lhEtt0Xpt{`=_-v9j)*Y&k{m+>8sAR&2$+~pY?(ty<=>mF`H( zr$mqF@orfYI_ZX;qi++hGfHs3V1ZI2I9`}ll>KI?Y=h0DUFw^+SP(}`l0ce$w9#-$ zNlBu-7bFq$Wvx+pDG;&cQ`Hd;ilP(DPeAzWT>FxnQVGFpvtP$Ju2rurUHi61SK^oT zLfP3%&}GVvGNk`bh4VC4->VCeky17_HLZKG27MG% z@sv|nA4$krgkrv8`i}=P`sgj{%-%n$k<`GtzRqAh27$a{9HcO2f(Vl^K;rmVtY!5i zWnXHfRTDTj_%T~K#=by*OU9l1iDu(WV^|6@;uwBraG~p3+Mh3D=d~81P$L(s3%01= z0wuyQTR>Yvhtle;uyNMzX)Iw281}jQN3-cvr@Qc|SsKG5f>r`D6B83L7zS(wOA`%# z`}nj1NkfA@onoG2kg%12g)B)-0{xLmP!>t$+j;;2hV`{hb628QCTd9fpGgpBP(R zhES?1JXIKvDprAi?RoA?@T=5GP#FAFzVd>m&xbWsNK1J`v`H5mo=W@-qm?}z%i8^; zl(zlK0S%o(#3Toc2f4`pQYB`a4)~;5WXxJICas(=#T{wnVqe&c!=eftrtvRTq{WwN z#9ddq7EY1VyB8L&M_mF@g5Kb~C2;~tz|6zkQZVpoGc9jyOSz$bJ!(12ad@}x4T6AQ z*5|%#4$Do2kuNfH{vi5K0ATpo`}P}>OgSv|sA0XG=x89Gy{kMVAXap+6e;-nj(cde460A29e@hT5ym%rB7+C18_;;_lWjgN^D$+bgSx z>^(n%T_H8N-g)-#h^Smu`SQ({r&Vt=NCO1J9xaa?$|lp)pdwLCxVs)r5h1=Pj4?R> z%~Fn|L*M;?Jv~HBU`7_~O*P(Op!XEU_=1LBc6*h*gTph1x))k_FrTcHN^rnwY(V#^ zqvH%roHzr69M+qvfB5)U%#={h#lb!x#JCU#00qF)t}yVKD@}m)c4sjB5ml>09m*?H zD>gu3Tm>%4#;W_o2x+|lr_-B_WL_N2I*>Yn)e2kC)j~U=R?^QWA0WrGSua4Lh{vdQ zJU;5ZYzIXi=-_(~fcsoHzq^*6imh?aGcxv}hSgDArKF?`O5Uv-6ecGpSHr4MIs#Al zP)Q@7BOmVW8i_wO?U^M!3vQW<1s^JeP4Fzio~Ey4=C#s``SF^cMP@tQ*@7-+`V+d} zC_Z7Lfb{6Gw}RMn`C2-$e9TQy5=60i5mR!hZrF1DtY7(@XM87%EtoF5)SRe7@)()rlE(qiVDc{8`fDVZp;33bBg01;PD=8yl~+{2?>Q&BO*LZ zD6f|u4)t@l%JMn5LX)oD zjLCHuPNAG}!{W4YQGb5#YMn#b_c2Gxy?`*VfL?NbfjEpvOtpQUy9KR$;sjkj)tfdk zh%b?Lyjf$=wg~YNwpAnJXI117mg#i{Na%y~lh2Rx+_yt*YQ4Q*0Ger6EwXqKnnUvK8B%5LECpHkE%H;Y<<&OZE)Gtp_A3z*(%9FiXFTLl z<~|z`h&Co!4g z^qxqE+$D_2F>N6=H7%tVium;Q=uO-T=hk57zA5C8wR#n%vy9f!95(x?EER4Ct*#C&H?K9Wu4Fty|!JmuWfSv7lGyA9L zoCM#Q%z$S3TKw9d#{b+1h&&7o48{nbRL-6W0u>SFY76nv^KNCOtCE;dR+T8P?2}Tc zm*<&uY4557_tdM6ZQ7oBbOkAsih2Qe2$y{eMn;#p8C;DC`LyX?1H3sOiz;g}Ha2!G z=wrqeaSVk$#mZp&>t98_3%Al?aTOIz6p918hU>ZS!Kk2IWImm9+H?g*9K7Fo{%yKn z;0h0BOrW9C`36;N!vYe6D;#-Yt5K)kgBs^6>3tZYqYa2^;XjWGMnFJl09tDj5(SnzIKj*j}A^BT?yV!DQZR5|RVOV4lq{fD(NGy*F;L z5om3IZsAZI6v_Z zql1P%s`b_J+%GVxQb+do{(KgA>v^|A7&)g!l$G_?Y-<2MfBfd_!oOM1uX?_O6U{gW z)YN2I0gQ}{_}HW7Hhc!f^SW>EJqJX@xLN-5e#xO>DahQ++dL@@e(~t7cicHV@ci#3 zga)R)v;u^(_os4SCDOX%(z^i`J(L5b`rAf)IjPJD4`!Bz^L4@K)%nV*T#bVA*SVONe3Xa zxbtzvS{lP<971Xp#-XAITr*St9iX~7nVQnY1`YwCm#K;*n}P<W1txFf#g{QUT9L5^|(Gj?XaS`%{66Qg1*^Ul6_E1lw8rsLy_2q;sJ5o^3zP zA2{_tD0~jyLC3%lWb>S4V9|WzhqWr~)jX57l2Y#R%{}bR=ik}wQq2r)^PjZ_u}A&r z2|*LnvYfR>8TUuGEnej1*Yx~U*E~_&rB9!rCT+}6@yc;a&K5LbJy_m0_hc3ch+Far zob%h?FN@F<^7+`vx)CkXH4}>$Of7%BLx>YSHs1e%HJNrW1wgF}W;GU&;Y$UWy;@@Z zo?01Zj$0f*D|eU@9T|YN#~1j8dUa1(*JM+;F!OlqK~Pabo8#ujhD*_+fDA05@l%yb z2BNfegOxBTw%vGp`ollZP&tMqN^RGh{DHL4e@EU=(@7f}d*^2{;X+lOam8v%KXI5` zUW0os__qcxpuU@< zPOSU#)z#pw$F=F@>~@O4yL|q;*?l#Ooget3L`3}}9y+rBf-#Z0?XqTi&8yxZq-+H? zBOv$5O=;_3_8e^sp~p&5%hElPS34^zDn9GBi_OPf+ak~YNO>^C=f0rRo7@G2T|YYi zUL+WX4fF`#=SX6{NPoNfn2E1VH}BOddFlG5L{-tH1qUPr46!+t#n1&O=qF{4=r5ZCCim6iF+-mRc-X;uN7sReUQAFQ%MLc?6lPv21Jnlt0*}K>a-HbM9zpmn*1d2#W(UgSsKU;KTs=Py( zd0mo`ujGEbLPilaAAJeMOaB^4tp00U*@OfE$Im8mBRk4}lKDf5tmGh5VVmu$>KdVl z_-M*^Yk|akcqj2%myp2#c5GrD_oI~S5U=-zc}a)<4Fd;xqyu5HlyY-+IZtFMLT2e3|34-7CvPMx2e@}=`K|w(bbFdN> z6&3U$Mbzr>@bHLp;StyM)XQYbBuq_3m&=~TxH(dzJlN+A%Pc8EGuZB@_6t8+KyA)L z0-`|_AZGzRwA-@d@-StVUex*vQ$agXC#%|*4L2feZ0vkn<1{$De0;2N#3p3egJfCr zPo}3e3|!9atfRfp0|SM>d_CpzoK0t&B2G(UD6-(Ka%R1Mxc{}jzD`77&`A(o9zPTp z<5M&L!OF`QS&YvV3z|UqdWH5i9gg6#Kk@ib5hOD)Q;r7-)L93XvNkNTXxQ3u6Gszc1W;JCh7Q~v`Udk* zPC$Zf1oi}>U6O}qJK0$)I2()eCau5q2<$r0<-z?cw!ThE=s0iH)K_E3tnL8MFiDFS zyqSFd49zfFgnq58@ufmyV(@T2hm6qeX!sLGpsC;fq9+gbg*gfgCIaI~4Lqcwz?L4h z}np$8o_lZER;_+O2J6dd%OR0;qG3HsCJC&qu zOiWA&BH6jDDKIF$r|2Wgx(hV*Fg4v_hte2`K}n{jrjA!0iYpsLUcS;u!#u^InW<_RFk4!J4oQ) z`npm{j9++PUqyKH*^r|E^N4h#*+K#4&#*WX*s~tZ+TX7jCgUNm0nOjST_L|YIM;Tz z1~JX6)Xj{Q&KFPkkE|kh3)D-*KYhZwe|VS#AAQ>L7}0)W;5p2J8C!t9aoGZsB&zoa z9k^|5Wd>^6Iq3_#&<}jH^9N8u!o)#~!{j4bFDStarPWO;Kq#oFt|F2Fs)5Bn(B%E{ z^ZEimf3B-Lwo9@?Q{%1z`RzxNcbDsB9Xh{)X2ZQCL|_ZE(X>KK7i+=J%A1>+T#;_{ zqU-CCRknHp*r9gup}6??I;{j~GE!1=!vyO=bWB{d+eaiOLp_)BI=>+j5)x__ar(8j zHFY41EP|caXUz9QFqUxs;g9SmhMH_EMj?@-ro}$jdKg_ZMRs;}%uqy3jIsd-q4XF& z6M;gxd(G)KxOIvZqgpRiOH^7mY`G8Hc;eR@0Odr4xBEpsezX z{I?8XjzT=Vl<)qeJIkms`tCBbBzJRkY;5cbz+i5wMb4sBVM7G&9iA+{ZQx8LM1#wz zuMTBpVmgxvVEt>{DkKQ1qd?z6NU<6{l%n%;?%NUzwub{Ww`{rhCd%>)4)*n5M7!N~u zsubOY&CGVO!qyc*rMZ$48YcaqtTKhEYgziqZRKBYbVeK=(eT+mfq_y=hyF2`ac=HQ z8;sNF89RPUvxt0D8qaPfCohu>2ipT~Z*JGF{n2M04{F{$P*NCcU$-K3`K)$q|Ea1% zMfmvP0NX4jl7=ug$e{jv9+*X0DjN>cI!&Wy&cIkfMC<-X3?m`-9`x4eHTqs zq>F#(uT}y`ZxLD(W-I4|=%U$F;JG)&Ejcw}fGl~@2n8PE_PTcgPMxM&k44^Dc!_~p zJE%J-q2T7`rWp()_Qfg|l3%}8m})o}Z*eh%ZjlF&nO3C;qFY#%(ArzRC8$o8$xF43 zt^TFVKqqO`8A2M4k$*0NK*r^5>x~YhdWVnt;)O?9Ny)(xv=HRW*wdX4BYpXOh(_&m z5^||x8BTk(NN+DPncW8)UN7P!D%xcXx=MBboctrOs+=a8K5qNwMVH~MJZ8Utpj;RM zn<(DM8NYX3$EuIKZbsIF-N5z9$ltDZ7PdUfER5_?7c^{vH9;#ARs5{VO1;Nj+P}l8 zuFIYyI}ZJDK5WL;rNs-j|0;(MBc$YOu~TDz%%I{t9!gQ!I3pqnzSZATj`1idmTKe1 z0Hx?&9sJT%S9enbD>fd<#r)}*-&|&sK3wa($Q~t-grV_-o&9b>LPQFidpsY<>94Wr z_R;Hj`?wm=A5JRtSS%aSw8DLu(56cV4^jN&v|eaul&^#*0Fq zCVJN>*B*h}2ACH~oBp<63ZA_fQc$MFo48Uwsp(=T%Nl zLvuInXcjWd-r=Qjc%$3UF%$G6F!aM#qpOLgeTWpR0Y>i=poQl54J~>I8g$#(Y!@g; zXJ^rVVGv^t78aeIp6|Xh3G>gO=*BrJ)yP-+sRy@BvDcGqT@gL#ggb8P1(#xJC8>Bi zXe-o0+oI8U{rC$38B6dh6%GI6bv~qxxN<_IP^kRmz)k%Abh-#xz|7ZtKb++5W_nsX z**33{xPw+kxO=t|^9~95NyBKeS>4LH1m0J5eIHFDU?ujW->>`oeNcEdQ&Us#UTt9% zA4kix#J-`m+>kgH6nuui;9)P>c6%`_;a$^+%cz*u9hwX;Ox0n`nVjvCChzbxNHC8> zN=jO9zuslK%cI{FDyF1_qj*$@+*P7s6ntb&P+I?-fCFXcAEE)1Ld6YS_Gs;o?Hf0< z0X1diSEZw-T{w}Sd{ka7?}~{L!37fJDI&3Avt^HRBS9dK29v!jFc2warjpkCi0`OV zoscks--=M)>5d~$#T$)#U8`YH@F!aw-pl zwXZ3GUC(pT@6X+u@G<=2W#~vCe z7OvpDqVnttS|NP{aG-e|{g7`aFCO*u4lVvNB6W6EcYJuG7xF&-U`FAY@Zks&?FsE= zMSt8(L;ctvFE2CEcRPpGoDRw=@bKcm(0BuG3-mNdTym@%B`5+J=6ZECpu_z1tOW?q)YW-4aurE7xeuKIzJmw-nVf32H60|J z?I*W8HH@fq5c#uKFulL*n_%VQYGzhAp<67UWXK{>N&ddn9;Mt@R4kHP&6SOJLf2>U zHJQV%1MjfnHYro(S*s-{W`%l503honOH@ednVCu8Ay^Lht7YVH;@3lkoj0}BbLxMl zCI*Z`aFb;6-c+gmXKFteh1xME{?nI7I^cL+5rR~@NLxzmUFmAe8?&pTvOV>pUn9!e zVdt6sIzw6zETyD~N8!1-Pvvc)`hMih4_-pxh4D_W)KefsuIIz)Uy!ub!E zx=9AhwUmt>DV*S&54l+L*=3!yl$1DomsHS>Nt1RIc-ye&8 zkxLhU7|oukHYY<%{@cNfGHF>VT{(*P|irY^}_c##yj=Rcb zu%faM^}x~50FD+X*YfT%-I@Qc_-VFJDy5{jGt49nEO^?CPY;r?Vo#*uBgUZYw&Mdq znq2j?N}y3hc3 z(^)&9R%l$IX@tobnV``5e7vm)`7)F~1RlD@L zqU{VW1syM8XlQ5_>zoi1la3_j(7XU17WTI`N^wgz!qDizf*7{y*K2p4IGuU?d^vE{ zj5}$aXZ#M@2{o^S@!Iqw%Ua%ciNnow5}f^Jsc&eIhcP5%!pUhJt(-g5mbyd2ps6#+ zK5CvX`nEOm3@uC~_ZA8I=X94=TFP=)pjJuNB)%w-#)%GRXUA$!tP1?5qf=8(=gXee z=l`7|!)rUE*>(`aYXf<#(U%nJS(E1R#9HMDs7QGKrv=boE0-7g0KRo|43c)tVEpcz zUz7V}E?X!3-UFr_OCMmx46H{D>2F*OR}w4O!4=I;KCG^l6Ul2ZpGsI&wE zCx%s7(cSjd)lyLzj{^$m0arjLOQ%(dgygH2pHrlYR|fm|(D=6j7W3yR)maem+iw?j$EXp-);tLtx# zk~DU9g+>jn14kKfZOqg-6xQpG=N$!_`pjAm(NK_o{=;TH^SdHF-DT~u!fJlR@sdgI z{+7|p<+v?5;N!<4vJqTI>e8~S%f*Y%+CxigufvAF!L-UG+&)8jG_SlbaJ@V?W4Qtg zoZD{SjC}bNK^FUXijMwa?BY~!ibRmORI#x7=KA{HZEu3!Y$09K{y5{`CTVnPC|Cp# zZ!w%wZZeci8|*1}upGYLa(~K7-;lKJN?rXcOK>kDBm|>jF^r`IkJ6^@!-+k6SjSGC zJrVCPGrV-SH<6DlareOs6qGMV&5yv1f-`CEh>Gn={*S3-98L zOkOvE0W$avPPZqh)hyapgOYvC9X@H_)FE#evPUV_L-3_qw%8u0@WHK4+ zU=OT7y0zB5NuB>5QOUuP0Uoar&lDtJ#ZihAR`}QQ&DgWM7@3xpeH61}Yu2ft`ZPXT{(Q*f#y85~AGd}=x!ZmewWQ<6 zFdt%!(T7sMV})!GV378U&$+Q^V%oY!jQ$a?-KGc2+qu!Aa&`e0`Ud+IjuLf9Lv~ll zY{nSF)@me=_oD)|{L9nB>!U8hVl0;N z=h(X%YRqwWSIk-rFHNWe5L}O%(Y%H1axt+7f&8ucv8OBaim|-v-PX_`pWRxg3uITC zcMQY_^D*b_?xN?lc8I$1H3!7qP3UB;@AKF|e6wCUW@*TxRDJQJtLr1Q7E~aWtGK#x zwJi3FP3v}$t6*ptKQ`HnBgwKWp)3srti24rb*`ye9qA^OC*?35QHR=v4<6Un^c7G| zKWi^lRaE=|_>qj%TvkSYBZ*JM;@*m@Hq|>}*k;hQ&eInO%Vm&LU94GXRaD~njqOr? zNqNGym96 z1s&z6A-fhjfSZ~y$ow1~SO1LC@p)~`lvAWKWshESBNi>d&S5~e6Jd1Huuq7y3Sbj; z=#A1V-?rbREdD`##!4K=&jp+@RS|?$RpU9@G;$}+?G5?rN9N{k;h^w{s!4O%f6T{d zKYxna+gDB$e;hR(BmxaRT-ZD+?RWtzSH9)Tz325E#2CmPxH2?rWwr3d@foTpT{G*x zAH!8-W{g?1L#i*GBEvxHsrf`n%@$oRZ!OK^o5E+)_IBPia{1h^mCZN^1T3bU!G5Tk z)rBgY`NhS>20oMj;Vtiv0VDrf{|dz2;t|jOk(?O*ddm?8>d&hvG#kJaB!9L4DlWO{ zbJ=pG{YlkgUktVp+T^~prbY3S{(d9+X3Y6GQa1UMj`Dd@j*UETYCF}mYp}CCQK$`x zc1@{?Eb)~K3C70OMo#N$L^)ibX-}lQU|mgRom%5JwvbdlXHo-8S_lRVh`F(y#fw%} z1w6K`_AHHJ%#X8_~$ zMpnBmO?jC0(mf`9f9>^tnS$reNP~a`@i_{`^Iwc~5zoxQND$aN6o(DT9WL%)nh`9{ z&bpS_64_L0W&YWD6Bh}Wwhe6RY3wqow~Yfm1j5#GLvOi>YowDt*nx#`?&BxxN=aeT zrv)M84ikXC0&*7uHUlL3#2?i1$^Jf>Vn^S;oXrqfvoJC?v^y?&!+(lG$NuXKhk%Ut z%TYfU-`$yOZg1ZJt~FQhAw>7A5}cx<_F8)fRbW`(6*y(CBVUF50rKM(ig z_V(hz#Y_Kl*)lbi`+7BC`sFAAL`IQ*`yD>fUs&0gW`YG1>A?rCEF_gnzH2GQWgJBT zeZ{mubRd!2m7QXI{K({`sPJ`9q;%BNC70S$hsE^Q<|YY!J7U^;mbv}CG``>ZKX&Zr z8|pvRy1n<TVW${|w_zNzSmO~jnAlQIi%WrCG z>OJH~-I7QX-J5OFMSz3UcmZ~CDtm~4S-dcWO+k$tTQ;T?R@c=!@8QV?PKpoR$3z?` zUZtHeW9Dv}nwn?^GUhdh?^{{v>0cx1e#>!H0r|VneYT;D%1Rt5-p0wgx)B}(f8nl~ zCl|f|#vAGh&Jx3rl9<-gcrPpxK1m}F8 zFR2%uGzzs`S_mAacq5ANp0P76K4Cot0Q2wuNszkl=GMvR3RC-is#NmnmX?-o3YNHl z@0ytf2aKV$9qrWtg3BW?DY1B$;N29d&>wp1{srqOR8f;yrp>G9)LOK+em;k~1@B&5 z*4MWne4#X*Dw^EOU+~6KaM2PG331Sweor~RY$O-(h1|D>osI1T4bsr^=7X4~b}x8l zgYg+z;^;CPO3*>l*D#>Or>j)^ifG034KgoJ?B1EYiVi8EmB*l<@a(NwZvI7eGV(?J z`5CwddI^YFX3xKZ1VNWt2aM!bGXt3?Cj@UD3TUw?DXNr(;@R?4iY7@>k}UNMx_UyV zQY=Xoc8fb!T?mA;$LhfIx7|O$Wqi(6v_kSx$QFN(U|UHGK=X75cxDjI?jOo_`Nu@p z6XpJ%k^&>t$k{uj!j4wiZga2Zc}D~ASDjS>}@WXSW+>dfq0 zLl0FTfUoS7ejfN_jqzS7<5TOA0xSk|*?u~9r~V2P&0Wx9lw!26b& z{|9bZi6l0$yw@pC+o^tV2yqBlykUPVI0$X>TpxBm3O(Yt8&`U=7}o7xxDjjDDMl7L z?sQI2iK`OToivunF=)Z2WwAka~c&_TJfLZ_ove5Mk zyB;;TWpFXtE_6oihE*Gj#&?ZL?~gky8e<0;GZ|PhHyfOKzoarxPO`pvyf#o9NOX9( zK#`YjSbnHcFIvQlO{C|uK8U2u4(iFzcbO*QO-`~k9M7X>h}~0M{S?sM`Db%;gRZo5 zi&^IlG47i;-9Z{t`M>EhP>X(o^1U_fzT{(}_F&^G801_hOJ% z&POwdjl!+Cv2md?OI_m&w=4r~?$j<87U|KWlKZcEH^Z&(&)AU*Z?iw@-LD3Czl@x6 zv_v|&dyw()xQ|S__jqmb6^ul-rd4VCInm`xyOk!vYowuNtm4B-7ghi`a^6|J#r+(_c!Uu+E@ZX3WB zm8{Ylv^0yKfooyK8eHSQK9PT}FhVm&LtC6o!T(Huzoek1rUD@YU~4Lh-SZZ$?PYc8 zY9FH>PkbPYqc^{5qdS??7*!;Dyn22|g8Sj@5J7Zo16$Ygag)J03hKKVUOt6-J%n*L zy}bHM+#!tsJjL4{^G*0-}49azFAprDLBY5n9sC%?%A9trFE^y`KQljRaq|aY{sNf zNeu3;lf=A;snH9U()#*q;+3;0-ydDB8ncAj=EKiI7je?P-0T6Qr!B2?_p|Y8858wb z=%XLdF>qHqS^04Ufv+aQV_M5vb{;{BC3LLQAB`3DJD*-_(U;P#y}PJCscd)vZN^8P z*EHZBSzHXot~8>|oULut*(q0+pV(lB*y>TF~qz5Qa044AA#wH`G)20%OGvBV(^ zpP|Uh$Co6e&9#uaO+TkHuq+=njbVEe6zI#Z>)NIJ)N598!fQ;t(359CinZ+PjG%HL4K&K&*KMLLqp0LUDM>{WMuBYu^G$OZY34b z@}Iy=RwBrE(7@rdea;^~g+psN??(eceSo(zvVH-^LURq1Z6a459_>_=(@BSL>uM85TPq@R>nWHs$O+BK9Kv z4OdA~5u=tmHe6s4oM=Tw1eUq!*$E_O1NyXLC4>7{%KqqT#py_iQI8wYLW~ zqr2N&D?O2vWBXQo&=;3C)6G|JkZ5T;Xz5V0t($OXua<=x3Jc9JI=94Z>KvKxM#H`C zmxTe$u2!Pb4T2B>-K%D>Zgv*l7xh>@BuBtyP37(V1R^>i#OpiCtB0$m=Au*8lCj%h zHTQO*A?ZeGSkN7`$PbYDPuM=c*6y_y3icf*{YY262z5@H7}ecWbT`dn50m0H8i z^P)GR!BXu7aTp)sdN89hXn+`Sy9Ux8C=Hl&Mm*j!FiKyh{hDjhLD%&FBzCsI--adI z>+Eo4ukXKvVx=zhXTf2ZqdbZLl}t|3-TtejrJ$rV!5V#!)kzCtwcNi29s*pL5(ftd zR}Ddcx*W>TpJq{he7sB7KdGLc*3s~mN$Y-{lBSJ|gx1|j|wA=)~QBiMi4r=<5317T}BO@nYRZH7urOM)SP4m|H z$}R6d_t#B}oTvaNY;Vsz@?WA;O2;fxBCQEquVw0*!94_}aVnMHYOeiUtun<<$C9bkZ9O!p zt+)4`A+3FzQ5fUh@kdUp@1-W*8Pba<*7io5jL-I`TrY@t{&?_+iizpi|BW-idHK?d z=eiA9RicP3CS%O>?fsZE+au}Ibszw$7idbnj6xO%36dc)Y8sj?gs0zc%a}G=dn8O9 z>NgKvRI^7lkN8}EH@;Bu`4$uec%{Jj&W8AB;jgoYnvVpp{r&ZI^(kmrwSKaAdn+^& zMaEsmDu3!`c6qc$Xv$)gGAKbj%{WnlZ;}gzQOL_xV+I_{!qd~H2vCJK@y z9UpsVmMb(f9d!P|$(L*5J=x9wDC2S3Ta=uX1U8O1j~JspM{$W>=SI$-RDrICN=z7j zfVYe!EH`SqCITjFFMa*2E6fQ5-hWO95$6txL*}x2tF_l6zI&M7=L+F>+glq1{#q`p zvc{D+$f4rVo`xVN{MDxz>&2fFuivHlr7yd4=i}$nWNkwWqnZkAxrLhI4C2b-UGj5> zhvodkXsS+t2tyK=PGIeZYmGg}PYeO=LJ*zP`9Y0NKOb><>2{khM4-kr1MVxHkT(e6?>6F;3^OkYW*#{J-SKc(7pI`U61`ZJ79 zAq5BNG`-2E+Khm((&C&z)Hww4IUk;{a$95fqLV{Dz?QPVVyGVeZ|_hXjCEm86iM!x zrN7^X2A+qo4a3;z=u9^xpFJ!F{`nIP&btcaj3Nh%_-V|dk!3@60TI|TyiaqyBCF>Y zf;pF^<>6r)CZ8r)4v0r(RpaHw@;n=qNa4X@_%@ZOl6^BdJnf7L*_u1P=RV{E1R|xu zK!-3z)?!dlP?<#kUSk`srM&Hv)$UF~?M@qVS^ds8WSVd5L-5yWY*XeOghk{|htHrd zB~w>gmL~LJHFm`8X>QL!BqM;HxEWcDCO{mO9pr?KZNi?YeYo=v))_+|*szIr3m zz~iTFEFvNe)D=C7`mG`!`&alOi`*4h(4ToSP6OHNiextJ#K zIH&^sSvPr{I4@WsYnFXdlAX+Tl`zn+Q)Mn=DBgt&Eku3bgK9qv@@z46pHgiMfi8V| z-|l+R`2&qOw1Pt%!q@yzoiUHwz`3=#+Kv2IF%cvI&^dBCdP^glcq*)@IF>D*ZC9up{h!<^Au4Lj zfU~Hs;&d`C>I(!UPSG43e0NBY&iRD=Pjl+svIK$xQBiKFLBA_J-+xViv`Qs5IXH*S z0IX;efj!YNGP+|5YfgScP!vT5;L<3ycHk!xA-lD{0ieL}s&OeVU??eUB>tdL-6#Pg zO&T<=dt@1AloAHwj5P4gbs)-i1Jy_R%h6R-AUD9}K75tZ40qr&t_0Vr4Y`A0x|XW> z18LhZ-D$*ls_$q^TQN*bOqN(srm=X{(@I-Kn3k-puV>2KWR^vIS&`UmwN=HVHFvQJ zu|@-)zx&}yf>(nG>~4l&Fj`bO=i5m+Nz`Q;V#~(swP0{?gpJ0MGNL_HFqo?~Krp|WBprg_M!vP*zJB@tTM6xwJc4ku( zN#i0*m@|*HJ75{;9^@>IlvKYEIF4?{-vO{znc`)X+U@${nU5EejnEJuNG>t3tdYug zRmdF|Q1e=YO($*{KY%|eX4YN1d3n57Pw8gX;+_WU5*=03g7}1_tb8g)tKC$x+Nqt%eBM&x^_?}+ zL9fF8npb53Z)bf;33F#E)|%@heh}Obl;=iHYU0@nrj5|_uY}{~IFsF!YjQGfmnua` zHDBQusccU2YHEqw0X@UR({Hrnr5&2gXX zz451g2Lb{6t!=<$Ig1v%)7}DXmEEBDPp9eqo`aH7;ELOP-snE5(yoI%dzavG+=3%D zYi_-9yFDW0@~38aeRHO`sp$cpx;Nz4f@V5^yq3)OmCtF;GA@tx5^Aj6aav)H7L57I z->G@%PgRP0Lc+q9kWF+q-t-^j=H_PqIy)(JC%+(I_AAhb|9@D1M-P96GdcEcYH3&YP8#FN;ZK7g^owri#b zFlrxyVw6~_!+#(A8RgF1+>lfd>aq*$8@SJ$#+>{}@WQ{uR!$hEuBBM;N4-Gng;otq zqHSisdDWVwwDezaA$(mns6t0KGoqEdmj>5JuktTqQ0rB07d{s%hhMy}LxV~;Dr_V5 zfZ}~X`PU{`#T&wQ)t)rAwxGt^tJQijufc@J!NrxWwAyU{jvjD3gSOPtmYhWD>Kcsm zb92Op&)_N46_u4YZrHV=_ZCa7Of4*e>E0(c>&bP9n^E^LM*VI3U+E4IhH3sy6F5?N zywnJPAm${(@V;Jk1UZoDNVj)_h9e?Uvv=DdSAUmstsa60F$T~R$4dd`tj_p{ISsick_#pWCui62h9I<{P`j3vtcAQ($vguJWeoKk#92U6f}H9U<-6daB#5IYGI-A?xm9ZRlDlZ zD#FbP|5I&M_Ie+~kG?#S?2o>IuyXuvyXlXhlR1;xk_Tg^$kgQ}az;jrhWkd3vb30Q zfl$7R!ST-M4c2h?Mnc0{GIJmQodJ<3qCtL9o(OJ|MXN&2f04E>lGsm zxzwblj_Np2Q1#?OZbFk4Mx7upjUo+T@@LQ5;F3%sK^jMscBDw1E#mj#h@MZFvE z(nY+#*N{Fb5DR(nhp=7xWCW=eD#wdO7{X`peAY;gtuu|3DXJ|0^Gep$)#zDTRl_advH z7UJnmP|0Rp6eQ*<8+Q|&#mv4A?UI2+ac^h>I_%i6d(ZQ^!`$J8wUv$YEbA%&&Yk(G zacc;bJlB`4 zy8{`JM|~GBV`5{e&-h6>U4UkwTIud;y`VGYna`SYY;rWtYwS0VeVLp6M*nbgA8{L; zGFMmH@F5gcxy11B;raK^jm+3)XQAIXFa4i)+qGatnnp>$1ZZ4xZ7ohf|3$Un@h<1| zSz`xW;Vd$Q*x7}YBts+rm4}0cMHQbcF0{hgv2Bd5;hEuY4vrPT-kpJ_4tuw{>pQ%f znkwKMeA0E`AZ2A`L>u&AFZvGwTPP-ZARx` z9aeG0#`acAUzMvfy|r0-5h_kO@F^|crKbA#vDSw=giQh}Y>aM)l@^>MAaK9GK{#q* z<%{!n;by75*_sAD0OLwjn5mV8*w)(LisnIFT)Kz7B7DN1!ST5CROMrbjpJ;(GjG*G zAZVrbKnksfFU=Kc%q1T1zsYd;w6MR2>G~)c$c0|6uwqN!|QQio-? zY7&CFUfg$mece}2`H>|m)bZSOh5#ql_hHs$`dJu|76@SH{@rzL|8K%S!{Y@T)Qk@jsvRL8e=5IVfS&xjk`oKssnBMe)|@H%dzic&#g&?L>jJWz`H z89XrLKWYA>V>RM$wU3gq+%;FXoo7=1#j}v|J%A*7FVlYcr}vRRyn|8IEu=MPWdA}5 z*Rcs#u*TwKy`*p1%e@9bFte8-b@qH0wl9 zg6XFl4#lxxitvR$ML-An^9`4@mR{SxxWgals6@UldoORdRv2~UN-}v$p!mzD_Wj#_ z)5;#8O|My8-tA`v8N^R=k%cPg~m=6Ha0h!Hgg&}pd(;SI& zv6;1XvuZ{EzNDn&`v|HuO{S%OYO5x%Z5DJ2dW}0&-?mQ}!lq35>#o|r?57zQLcX+Q zie<*6#7N~roh$P9ktfhCnx^WXUrNW@wE!iN@NFMFJR z@5nztHF_yENv2pU7!KA0HWU_D~s1t1t05AIFAlE=q_96w>%_eycM z*?o*jam;-Sytr#+5s@)Kd4|g+oS!TKOS@%Gl?woE-fRQA+XDB*#DwNE2<(_PKq1%& zDc=GYDi_cv5%+En&}5;(2@~NVwTP@erwE2+j&gXxuC!t$q{Yx zrf{CH=x5O^bkCXuw33&qQE6=xfqvaPAmMdvd_=@?l~k@92E3L9bOyLTfnd_-lP{vl zrZ2qYB<*W~Fp4!>Xz745P{L}i`e1Mlz7D>vGe7OSe8hF69Dg`~0RJr*^&2j41AH(7 z>t8mU>Lb+6hEu)`ZPXb%T z9v1bJUks78k08aGN}we9XsY^wjTvZmgT2E%Po8;spABlv?{B=RQf;{;OfXcaZm7cj zo6Mz?g-s>x9_$=Mx4x3}UR65!i@K1I=3@#6qElZ%B8az54ZJ-kHf3OKY2K~n$LC%7 zj<)dRF00|}?B)kQn|Zh*GJMr(mr}jDqmcN;#z6(IzIZARm^n82hl4#nf%A`pgZbcM zHC~&6@A6wLFy=D$Uw$w$n$=KOhv9dDB3yroi7-NMrW7@z9K5Cl-NGRl zs{cAbN5`UavCt1dw;1T}jf~{{9)R(e`^N{2@vCKDLZXjSNuL45c9V2}?;QF(3Sk`> z*bw~DqpKKqxiK9E_jB!tSBk?Nu^sq3g2KbEO3N;3SGY_^&;a8RDZmIuRRq@BmcSkZ z^X{QEl9E3ou~oL@F~36X?Z0N7sT4j!NCDQJMCtu0sv+vh>Di>DLBxN6$CllUr&@@ zEz-V&x8QMoiQBMQ7g~O{t<;d=m;Q>_EjA({;hGUD+Z)MYkug6hnpF|lUoGmG45fQ3 z*BiKd3iNqBs?CLjxF2S!WLZI_xE#~Yj*d+T5D20o1#fLr+ko1W2mtQxjt5j(u8^P2 zujQ8j5r!b}jww37&He)v%F??KeHnP4p+jq!kFw%Dbz)XF zT^}*o2tnT{Slj#&Xy{f!Ms=Y?%d1Qzg!+mqe)_z<=Qsnkdu~ zXSb%R3-HySoHp78qoy8gy)})N+-)@aNSukID|i>(5_$2__RGSY zg920MYHSL*>U<-)7SCg{Le%BtVmgeIXZsT#PhGg2W`4h`>yMY-q}=u9XcQ z8r*qK!OskinrbBL<$;qbOJx_BJ4zl`R~4gtZ5v;KfRCEL;+P93))Epum>VH_0;V=L z-t0Hk^M7v*G?Lm2Bcy@4is3zG@QfhPd5f>TUN>XA89FOA1j}gkYvQ z05>NoD(QQvYG$tgoC}rqk(R!QuugM~H!;-bfY0(3GI`thyR!0~COylqp?;;^i(9$Y z!b*=ZwL@mnnCRE_Sde%K!3nhwPWu_~=`6?dczdPAIL^*a`2A$o;FnbBn!x}e(R6Uw zk#Q53FhEkBhshgFrGSbs7!tc$rh^w)8zRn&A}pk5^F@R|8C zGrVi~H0$CV(C?@22Xq1@D}wvs&cl?qIE|hGNUeOfazl^Lj*O*!qBq}S4CVAnLPuh2 zr=VIXGfY-O{5D@H)YE|PbN6w6)%IR%CVjoO$f3NvSqc-C9-e{%3xv82kbki|LgQ1i zElvAkm{u^q`HG%l_~qd~b@?hPN>gZ1VD;5!U&YJ;Yi=mg3l1pt0k0z$Zyarjn-r)` zK@m1?TK&!`b08b@urH(xHbO939Dd`5L+{S^*nc?tMp;G@SM!ue}q7ns~Ndvj-2aEs@9z zD9T#y*~`Y1l!R3_HY-RDP7d9eo?>h)0~6y>LGSOPrvMsGV+m-_JPDKkvzsLc@>`}? zm$Gm=J>I{$vP*;@NU2cy@N52U#LUba$J+lCUpof+OTV8XVGy!8{<6FS9Pe3G6QYm@= z`IjRvkmy}fRNQatz9qomBM!4^q;^4|ps;K=VKR`Z<=s%*frlCvAG0D*(RJ~B?hw7_ zUmIxC_Ah0O@3Qz`d(Ms9Ysayzau4krGJz;7^fg2#Xa+QB+fkh4T2g;T{@N`tVo8ia zwZIdf54}O)U-kO{+oa6Or;!8X|BR8)t=;1&(5XmbMau7TEjPN&8Ae(4YyK(lS1QtJ zS&7ql+|AbwqxyS{ijxr*g!&t@%RY)~5&zkI4Nn-aHsTuST-L8qF50(t)M}GDvh>$SMHwpMg#!ZF~9c6T1ytdyyGzwvsP3Jjd zj8$PevpCul?Y+Gi;hlE}8`F2j?mriG^)pZ+zi2H0Lk%hMmGM;jj|$i*@D;>(+-%yz zHdq&FzGbS5+%od=X%sk?QBb^)laF^2`>g#2{{F!pPPm_7@72r+f|3#+-~+o|RB{z1 zTRLAXj%4;n)5ymixP!6qy6y`|XSKuQt-!q5cOoC228FoKA58~vOb6Ve7myf#A&-AybN_x;8TL}6 zh3pL}BXGf2)p7s9&(~*8bp7~wqr5DVx8~+5ZQ#Rh-XSQSb;mg8BktbjyzlSu@HCxx zl-=Ud(5pTIY=5sHCqshv92Feu-8WWk!_?Q|_!Fek1o9N@sQIE5BkS%eUjccF8^9M7eR6Z9jdP| z(or>EJ1dd@{)^;$=H~mFMn)(}pynVyN3P~V(6Oz+7?h+YK!`{}5OkflhToO|SPCmh z<;{N^vP3^+dBx@9uv>jUzR z1Mnqj0Ish!<)t6{X^?1{(IayC%9O?C!T0a#A6&Kl{YlH9{uND^6-Na~9v#dad~p`! z>9lMp6ZcjbqA%W~mDDkR9vQg#b5)AG_U0XoO*%CAwgHKn<@sT&0;|%@S$evs4P^7C z?N5DvrEYi=pzNdFhSvO?jErdeT)0Q8jQx^-uedRUO>o*3olFGPea3k*PllJxAiqoK zgz-QM>45w8^oMZa%}FgjTu0~F2}#Z$9u+k#R@s1{Cy~V=Adr;+`Qdm1a`z(3FJe7H z$I5EF0Md8WvHRtE4N+Z+6JSTUt?DkW4=TZ{VouVy+iTKS)9IQ_fg+~2rY67@CqtyB zohszQ=7UeYD>^q8orSJ7z8SBX$OGV_o(;mNLz*2p{j4#b*o7}{lF$EMT@8gwTz851 zB}@7G)f{r>&h5$DX!>i{uK5B%@+1p0n*1eVSKP+$y`k0P$m8B}Uj{CaA6bkal5M^0 z$04@9zCLV+F|V1_eFVR3{#%L@#Eml6^^(!055%M|RanoSdM(p5E(ETQ-ZMp!z(uDS zHReEHEgIV#2wHicH3P*6ZdXo6FeLPf9$`B6Hse-;r(W=)A1*SnSE4WP?=JQ}vF{Zy z#7Qe~%kSb5m6Op*+#Mb^0}BE9jjHe}@6q66v=kg? z>4)*7pHmpu!NKzpD(M?uUbo0i-%cIKa~EXx3|&rem3lRUicmp#9Z2=DVUJFV+Rjksp^$b_Db^lU#St3JDpXDGu9wAg1sO>VGB@*B@xR=>UFk9$-~*f{Du43uaY$+xoV<~Fa{5nZfHtns-f7QFi) zJR@)Ucy_NLxFy65O|QNXYZ zhc!YxXg^KHZ`m|QL7uNTP}Ivng|kc%6PjJc z_X~oaiL!boBRgrg2GTXkp8%{|q@)S0yj2o1bgL)4*+v*qas1SUXUno~4a2g-)60G* z+NQ=YrGJhrUd|#YcNfjc7gk7-Y9Msg6x+xseP9ekxhv1E-qNeQwe<-m$T@nuWr&V6 z@!`xFzF?`q4HcsWYseZaQ`5&Nt|tTMx1?IQRSOCR#2KZwM!vr><` z5b9AEv^f^KUs32cs3VR`O))kt6yXZR@xSq4&nn26`MhnMQ~zWqvn1JddKL%zLD5-> zDG0}CzmOiSup@%9SofO9O(%F2&q>$s&C?XT>&8NI0`E0#8X=_D-nOV96A}!Ix%=|;P zBG%Uienu@gn6bzhc}7m|ajQ4MIW?2w~rTeGgbuWTE7u9k>ES@0Gq_kSw533ZtZ(7Ep_~=p|fZA zGL}rhQg8zWMIM%_-t!%YyR1i-lCUzroj4ehH-5#<2lDOzY)kzf_-@prh7eg^Ue3jZ z9Oz7xaqZ217vk36Ss)<6+wg)IXh53k4xYC$&FgPL?`E7O?)*&&MTGWFQ>jG|nAyX(~rEV_vaM|gH2c z<*BHnlIw84@7_XD?FJL;*kiScZyF!+>bDETRcq~9=NLH7SHwE(5mIyD_~dXN z8jt&RLEF8rta2}3Z!g)57DooQ%i$03R~f{|N1H);t)r@ig$v zN7J!v!&$PD8=FVd;zvZg(Q#c_4MzV z)~ma%;C6JG7)sihpMxC;B1;s6O+C6Ux70APi^$JY>i0Tf2fd>nTq~X(D=(Nf(_sgt zd}1og`Amq=A}^<{NuI>ic4h02Q^#xI1g{*9O!lpM89TN$zidCVvD+=MWzXa^L+=AZ zMUl3emmF>YbhLuG-1FOB>ZjB`XnGlyn^K^QTEW*TIUa3@FBBpVD$17n1G_9H5_t@E z6!0nW_&8eDFHVwNk6cvx_eZ;1E%^P>_C$OgC8M--bBTMUze-FrXicVe=X7D~#l)b; zKe;ch07St7z?=m6pi(6-#PSEa7Tf+cFK#igutEs75ZdY3C`WCjar zL?}CzOkx2uJff&k14@?7NO8zuq15(sZ?jl;vofcFwgr`jv#W9mudr$1;d)CHS4B2H z10&Kd5;!mIsWAPW&0sXhbRs%ctH_$X&5#-}9jFj6W|3r1INI6iuqc5l@do|fJyAU0 zU)05Ru#?iaSx+3T5O*!CyiyS|#pIm&A@Gt`YTzRW&$oD0pg*RV>&WRhf*zLGP%@Up z+}e|2UT}na!eJ?qPe(*ackLDx>w@WzWkgr2VA#~_e0W2)O2%vUQ(s+g_qvC=*A(z( zCtb+A-n40pe1xijyT`|}aLFnsn-|Sw%H~=u7v5vo-aiDnKB=XbDY5w0IF~G=MWx<5 zsC#)P?nP;{uF1`ZdT_!kgm9GL=e81Ev)I9W8*Hdv$hX^^;?v_FYGwz-gFhR1k#?EH zJ0cuamI+aDKPo`N$ijkU$TkAI$A#^w;BdFF&`0(rZP+(i9tV?BIBFK}dI#Iir9t>c zXL%RZ@ApJ^bz$Z2bO#l6&4^V_rqS25dDM!A?DtChcP2)S`mg-n6D=0m4#-ki9jQZ* zP`wkoEpCS+gTKb4Z{%8C-u)iU^A^2T)mImDJSR2roW?%a>L*FO9w?_cs9F_D-haoh zAR%@SW8PUpQ}|GkaIdIswX18U)N|q~r<<0)e^>R=mtaaaC0MAR`)-I=HSNR$4a1KP zX7z;c3(5*ZK+svJ-Rtx}Y)ZoSIX)}a$Vo;u#ft28G%5L6 z#_tzbinJS}%U0e?vd<7@2}sYu`Vit?k05NXSZmd(ABVvlZ;xB}{Z?#g2pl(`QU={e z%N@pL1~ajA#41lDf_Jo>Pz9&w3;&9wZLVQ0yJ%dg+U3#S{kxW5XH}aBN1>riCSYZh z&%RRl9zc2{nEC@~>-*2p0DqO8`}L#`@04{D^6USD1t6avv_|}e@?@>1374WL{b;xbn5|(@U0hyal)IH;Qoibp(J6u{M{i%~;43i4EPW^uIY>^YGWDfY z*ZO^`wF%t&Aege%l|w%4COP+A)mN6(vU=R8Ugqx~g8DmlY368WPwC}i%N{5cX}dV= zNV?FyyfzcvJ`z{A;-A;=QlzuuN5rQ{BNyX-DVyC#C4)|bB#f_*}ek~{Y7g469-(@?Z zg>P5GaK)<3smDJy`AN(B?tGuFw6rY8l>Tbh10ltS%@JIQj&rG{PKIrv0#D+FRM57} znIi2i=*L`xg;q*Kuc`uNQG5dMEF+CYMw{1TBH($P zo*eze=9;E^1*u;%G^AFO<*<7#P#aH6lXK0f{o2yQ+mokwd&wZ;;5*u2e$g{fC#{4a?f9tE)w)-j zp^;{r(M5Xswd&R9%%jiF3zy70h#wGAaf?CcG}ejBq3ayjQDwv7+tk%txU;i^G$6Kj z)quoHPf-Q(7ICM-N?4~`^}uGI>-q!I>bPm9tonGPLyUG;0KxTDEk!|#H=&E2v8*T3 zA7E6GuKi!``JdNVmy2=$e|p|8e%PF9vc7smK9I(y72mZmd(xxf>}eR<+LfX}B6#v` zgra6a2je4nR%xlJ)!THTci6RW6-AZ5(^co*DNzokaNBVDs8Lj=dBLgNvCmG+zjyn< zmZXx;mO%EouH&#iU6!aeKjhur*}=Y<#yog)-NW$Q=mL+oZW^A0Nnif6E)31USL`*X z7lT)u$n-usc-k+iPjL5nT3;GJQz`!B6J^sw=U%X{4IXZ}t>^*#*TCqf`9qfz}s zSNya6=vR(kt;8_PYWBv8TGYpc+t^dadV1C!X=7}_0X5Esp(bX48%AfZ-ol@Vs{D?^39q$Wz>dT?Ao(i_b@yh)d;)gNwY^PntvB5}`xXRW~wY2LI>4TM7 zh@BN&VqATh>E2#@?A-HqF&)#lyi))_uP~J*u7{LvlSPc=*^K9r)KDKCs$3`PL&OP= zXefqpudU>8e4n*h3P-t(ViT+1&DeamC_NRVlT){JZ#)L<2Py$LHEI9#>1F+(My4R_ zj<8KaN`}wkf>2d4a0!YUPl5|>R)Jyb*ttS>wAjx2WH@W6BxcIG4Vq>JoYif(d-6_+ z2&Ke&B^KCG5_4JFd0~?k_{Ki;D*4&|23YEviT2?i&Jv^VW^F{>(`)TCwpowxTCDc< zbdCvj0b2N78o$?7Bg`V$`$*g}9%E`ftc=q`jj+!1$62Bp1*9&z$L#DV&!iA*^9nLD zy6isdg~s@9l~gwOi_sYJh$)T-R;zP z?^X#c$!~Qmp%lNBZQUMiUMi3?&~n{UyC+OJ04*l2PvL1!B-3El)}ca@d88>NP+fBou`Z!r0ESX4jQU3)W2@ zw-JkY=#McEL84xveBvDTTwMq9hriC2^&YtmE6{cl0)DnFsLCsMi{0V1)H%`HuSZx&4vhMPCnQ0+Gyn8Wwh zMRq$Y`G{o;EvE3q@alMt z_W;UT;qj-{8UdS%5HNncO z7fZcIgl&dnwCAdOBK#MUeT<^zA2=zD-V+b_tD6y``BXCC)x30Wl;BR=jZVCxdXYB4 z2tzTR=r+bxMmAc+Iy~9zlZc z7ID0$qB~0ypl(Znk@b&zHN=Avibw|qow|UbJ+M~=!bt_*-cG{e?tGG`_0OK3C$^ss zn%{DWBUiLw)vG(=As-yX{s38z*xX2 zdkZU}hwJ%OTffr8EGt$wUIEOqj?n>C{>k&a^t6k=f5(sZ_hY=}iGe_Yd_J`|B#j3y zq`ciBPE1rBbV7js?ln~VF7F7!&0@WItH?XzV;fc7b+!{-DQ0_P3!txTV0TTWPz0^Y z@zvVRF6xw6gR|Mi&3$@ab|a6-toX-j2Ok8}#zF>SOpjVtu14?jk?X9@Vws5KRevm^ z6?WLPB)IAsvJnI#EDC$SbogK!hno}Izcb$P{ysk3-@k1S{CMdE%`Br~Wi^Q#ExIS%hdyx07|(Uverl|DDee|4MY^Ins#jxL7~6vpy1K(LG_&s zqudpnx**@Q3qc2^&b`@PfcErtX_kz+9$<;h__}7I9){W$4Lv6v$9ag9R@a#56l57gO?ui)w>fk`?%ti-OH! zTk+cko*|xO)B2KpupuY!Z^Th-Nr!u;s|Ah$z=uR=fgf;9vzqBQcK?R=JaGb8huZxq z3y*7U>}n??v#Z{6EX=lx)li83o(_E_meC&KmktHMt$HWo+T- z7^^~Fv~sle?N@r#mE?bEYLFX*N$y^kMssr_L1l$fyOtdS(r0u5h8(~H?;IXyz5lz` z*q|;5w4@Aq_`6ZWymGDM)zJ)0HDEywtKfN5;-IhzHsk6&oj7ZS`^k^V+k@Sfz{O;Y z(RMI3awRrz&Xeam2dzjg1xa!o!l~Q&DuVU9&7PH%Mg|KTrc`^X`rt`Ll>G!H?0Qrn zqTHR!q;5gP{G$x8jRq#Fl)Y{t`uO){Ag$YUJYd{+5Pwid^!35q<~(JO|COacju7^+ zuJ#z;1fB=n=pZ#&1>u*qpj0i=K8<_DyZ-|jGR;N|*d4GiE|*uZS^WJ2CEeWtJm&2h zZ+5Z6ltydP(E$1$CU3KkSHVz*ugLpuNk)9cSQ!_XQI4pcA#HQ>#0UHFL-{HF1K}npuNUSKL z84c>*sN^=+!5_&UJyM;2eH9g_t%{;VKuw*g5u%^I1GXx7%!Vo!Ub8MyCibI`-Uhpe4DjfR)lHa@FD z5UUnS!I==2Y&4FAx!UZMbe8HXF3!DE*%?|pI>Tjyc)jjn7OQo*wKIwhoDqZt`eE{f z4SN{nxRnP{=5%1ltGPC~z))OmY<~2m^wCRDb-OB;% z|EKsM@PW$b+T-{z4(+k6;QThelpn;`4*cD(kEgz=!h%uuAn05JxR$B~s$QMS&1rE; zfFX}MKx~m`r-7E$ji+s5u&1X7v=sbxyavPqNNY{3tg;E#C~Cm3^qtabrAEO3u%Eu} z;H6Wa>noakw|ca?ZE6Faw7Uwo?qd$5{a44jvUK8jpG<_1R21<=oqtye<0b?b{a<=J zUBauV17CRww9Os*x>u<6S`=m89SsT}Q&asyuK!Z;|%l!<-|YAw5iz?Y@6T}$MHsPQu2 z)ar=kFL0kBkoi)|G?p0pQC99?E$9)<-2p!%LCMTIoB z*_#t|*o((oo7D&J8Imz1K;g!2IIF6BCa3Mr%CNM)^7{AY7-gC;2GQdX zUCjfOkG>Co{9UmKfH{d*{$BH8lIP78oHIN%VfN$xOcwl6)hs{sR;dYL+&V zh8+@fDUjVjVZ@ z3@_C4+N2wNQB3**T{b#67V;&k=*RCG5u7wCSOKF`mJqzEyRqGO)=Od>RARrjzPfb< zpJM&J2Avkb(eh&u{ZaA==d-@oH*#>E&FV}`bE~l{F;AfSO5|IZPC?y-Y|nX`fQU0h zeGng9)TmXed+nbfwcqjn1i&#t8fGswGEsk#fWz00QGd}jI$KNq7lQssCruB8SC<*(p2XY6}?p4>-q zK%LWmM@Wdx3j{tuMZYOL(O?`I;2-qg=kbSXDt-U&{pcDv3heoyUZLF#Hu|CBdPWI9 zv?U*EpcVx7EWxQ|MSmj$O4KQN{N6o;J^Q7p;Bee5E5o&%I>DSKbgdkYC6|nxK+j%< z$DS%l*`d#tZf(fbsC^sY@4`kr#@y=(y>?I)q5^OIelO}we8Q~KB37>kt&C0kGn$=| z>w*-HkM)i|!a$!xU^wY$bQKj^-ivSWndg+py!Ho-ai6vddl2;K6z`gKjJ+nR9BN>& zaXVyBOEBLr^1Gw4YlRld@}qf@i4oJYBUOgcgWYUGFd(!XDmQ0qvBR9go{RetsEX;D6nh||%R)3LNGZ>ugqb1?tSO1+HNnNr)mLy)+uPWlGD`$)Z;ah! zU#T)sO#NCV%o~52m(K1k43%|@6r&fZ()PrQMcPkp7s3nb>ZNWbFfBRw$%$;5#b4~Y zT@Y0tJFBt?o9xGBg3g00aXD{Rr zySCOVMn3C;CZU2|!=x;hNz&eHoYSQed!5<^6>ZUd0?9+tH_Zqt3MzS_NGlf=6Z1W7 zR0gWH@Ik`AqSLBX3VGw7qq;8EYjU7&8U`nP+$WRhg-VM-O zY=fP6pJ@(qS0(ny?k;g$R;Z)!&%7fDuOMsk(ZtKD|7gSiFk~!mEq4TF`#_ZTsXV38)erU8j_qF=Lf5--FW9iR=x5^e}v_92bzfZntryv*FQr+@ZEHdQ^ zrgVf@07L4dk`mi?MRfJC;0@jsQJiSg5LhN2t%3@2m^W8;W^Ki@Y;@gkMP!orb4R%1 zySQm{7}i(&`0**J-)nT0&H`2+ERmS#g{1SQ)>kF-nd~xDa5?B&X^eC%N9K0ewki|4 zJFzeH$5`?#metz=sKs_9mtTkr0pE78OyXFuHK6~8)5d9lWWZ_I^uHuqZ6EN{epILp z#llWKLwAlrDIaG0;eJpBQ5h&fPiu8j9?KIOu}JT%_E>vTC7EeM}rjtI$YRs{36LYXIxCE=gCXQY;oCxr_>#mGsd zDA4QcO^6ll|F$%-Y|_y4=sMd%D;m`536cFSS~w?brS^n!h!`h;7g! zI3dg&s-S{XTSQFG<`NdXzp5YwFybXoJ)#^nfc1@idJM0QFfb|VYV@nQ&VUf%`7mpz zFqHJbu-ETj4PajvQ~6$Fj1J(ieI5#9V13?M!3QGiPwv@qMnK?@W%=Q#wP-5W@voO0 zE9EBx*uWSMg=jp}>jd-8=SIm@D8NloN$6T}+_%5}vzS1S6=x_uWdt-1{lD_ZZmJe~ zpc$YfjeEk+5MTWzk+Fn{N_gaO%nPhYc<-lgRoSy2k` z5fhx(1HZub+HB^N!-PTK2k4xyPupge&8WFbw9+rVSjp`97i8em$Xb` z`lT384+-l5OFdhL(K;;GlX7V}Pc&AB^!~O>Be89N#$aL6t);Ufg=JKP*F+CUZ})pm zL)m~Tke;p47kei`M#m^$4Imii*Zxo8YOL0fmtS-@(EBr+#>-O@Lxfi|HhK^U=b3de ziEF?+mEfjSgi=-*3ywn|ku2cDMIb;4Zlp1mLV#**8PC^3El`K9sNosIYv3{dX)D`b zA1066${$??S2&NdWf5x{aK)wNM>!zMiWM|Vv^Pds&Da0}I3=m<%$VNoYk>%(xfQ+x zk^XkvyE9nyrD$~U;rL45GrU*WsHwNaX)xnQV7(irGl)Z)Fv1u~092Z#WXhh=kimt( zRX@xoz{T`Rkk6JFK!((<+W!x{)c-5($NxX+|1%tbOGUx{g9Z3MGvfdLC=KT}hM@-+ zJz#Rh{TKXWpxy9|LEw;-NaH%;s>$|qbOV1@m+c)JT_f2sv817;$h8OiP+w@tP;eTqHASv>6cgYP_rm#nzk1*1jdCv)I+7=CR@i|p;ufh`EeTX zdgG!&EBFxxZFj$-Cphg?vl_hcHX&rUyHCK#wY+$7&!DB+h)Q6?uF^H! z0JA&ypez0G;IF=*h*M?nEYRFa4XTODUWRW&R`hq2tKHnF__vdNjANLkhP8>dTQLz$+M?iH@!G*aU8Ss(B9b@R;U&d81y^_j$k5E*_ zjRHz&h*hacojpYYw*n==yL7zns_iwNt<5m3=m`QN?`(w-J# zv+NFvDBxzlLn{m7&WN@t*Ez!|L*2_{KjW%ii;vFwYpU^2*|Ng<1GF+cGPYHtvJw`P z#zLfU!!wqw)NyQ+EkD$&7{9yF7NQV&<7I!i-cdri^$5? zp3nrjC-?r$uH}}ai;8^`+cOe$?S3ifSLj(>G*9P=L}zbv ziZm)+^yMlbIg9va%N}`rFegsIZWF5u4cuSW$lfglAT9#JmlLpcE|n)(@oXeweM%o2$Q}x&23o z0u6_KL1p#gI2JfN$#~U$F-7PwFMGS&-JEjU1sxit4ruBBhZfCo&1Eo-foo8T6b6T% z9~|UMm_=3yZH`EO`6Eb)u1C<}R6JvY1v(j(S@*f48pJ2g$85WZocz*9VX{P#s-53(kwyf)}+-V0w zV-nG+aZ~(^?NGTa--kPWXI7SnMR%mZqdkBBd35e?sKKdXvGH7%%hY*E@cU-^4f`h8 zYwf3fJ&~R6nB&RXf8;?)wO@rCC@O>?iowZ1cjH^=jwJhkjWN_GV8->gn7_l?nxP;!obt()=`?#Vgw>Ok>qYf0$5#ZMEXYF$NIckh_67lh~ z2F5xKT^DT+inZ6G0mr~<7LDl(;sj@%&qCGcv9#Hdz7{^-cI)rd7Z@~g5!N>7Cf4p`y-0&PzTZx-x*~9cDDfn1YX8dn$@ZSx0vlzr1BmmmtlXDLvo6#BY zSs3u+n03JS6H|5m1R>b~xwf2bCCatVAN~X(B_2QnXkO+7zJ7V$!R(?PXk!D3KTV~s zH+eF}7ocVNR4&UGSts+Ua20a__K7-_>2IpM3|u zA!j=ILu<`}aQ{HmTP=*NgvPzR{^J^kW#<1x zQFTu+;&VR>;|{bc33DGNUt9(^piKLVjWs^h8`nIOf)UUGfV$UY%c1jWm<`Qh$$BLw zAhDGPRv1H_;cGhahWF<+dTgEz{xgq%=0+2=ru`4^ZUNrCre6XmfVqhEe5x(Fd8Ls_ z!d_1$00FwA0KXN;?hKWme+xx4aiyvz+PgM+Gya*}7*(W(#;kaExU8Hq?6XMw!{j{b zzNqUBxUJTAgWeOYV9>#FBnc4VCges>(Ft>ktSQ?45JXGtSy;>>8IF zne1$-=mdZa64rbBF8O^M^}Ef~@BU?BVNpcqX%<@$v{uN8z1X-_45%RSC-he4JL|du zC3MySj63lKvuMD!1Wf!0iyzwiUNxY z4DoH=(?{*Rkl#jOH&*79wCriTC@L71njfg=5;v_nTTCT#UvZ?JtkE7MVz3 z+(*h5KSGO^9WlJrm^-**5Pp?4fcBhHH>Km`>6{4xKwuL_d^r_1!G$$%>@z7aLBhzb z*Z+j*saFzgsM;&I?i}KC?RHeKIBo{Ms=eWa(u0d}cAq?!;TgtT>n|rJ9`Q|rMdGBa z+t6cuRGh3xkO(e{rJFwhsMD23C2ntY@Kwxr!UF0r#6^X4q>3Rud4Sr6cX^I@IG~6E zfrQHbbDX}NjCjz9#zZB6Kj6XEAt`%-Put70Y11r8)_sY)^^Z{a;cKV#EKo$jKx^_I zL1F0a?*()%KQ2um0X-{@7Wv{?dI`s{JO{2jw&eRcI2}6GZut25sahi|t8$&ZyF+c` zsU*TtIv3ehBmi{lU93Y@LGf69$idb$IP-zEjsF~Y4}}3obcN!h-Tc0@3^_x+31%$0yoKM1J)lDuf~? zly-*f{5dpwgd0bDdVuZ#Ek`^;@FmLi6K!Jgxa2f}KnIl4Qa7?RjR2e&gb|m{8m-+O zY#_Wod3NZGo09*>u99#Gg`~jQ5Ob4m3UudAFl#8 z#_y=`lXn~%Pi!?nM?I>=kRSk#byn|_->V-eq7keV~m>HwFa*HC)tg1ZO*szrDztmN?rg zT5e;3r64nGFtp`ap1+)h^tlKT4R?)W9f|?&`srDqg(@~5X6K6w&g+`hovj6+bJi_o zkJbM^tUU_zd9QSzjLFse=%c;JmL zlM!+04=07C3o-XXt`5dej@SDUMg$S508n5}K?G5a;qA3k{ggQKjdIj%5lT6Bwg-w# zGXJ%39)5HQga4Xjob-{901`-M3;TlBJm8`in02MVjcOh0wu9NJ_{pdz0aJHw2n6ss zSsE6YY)=9ebOP(er^uk7b#;cNo%gmE9F=6GvxZ06!%fMoRA-}Lf4>girC%_(%4$^e`~Zfo6~)+h$37_(m(T_fnrGPybtqjb-a5ybO(oy~ z9o0x_EUIv811sn6@4tyVPc`YbBj`zw2|p5*z{v%MVDeGtuQYAcxVk5`=8sv-c+#pTuN-+b6ah+ z7?js-iYO7`u}L`XVCEO=V5aM%qUqE?=V>)VnV1qC0QOH;`0Qy&xKMjZATu7g-6>!} z+*dBgJi~*nedB}D>h1tF&j$D#m_d(;8t(;9y>fL=!*f7EfB<4A`@@0L@~=N(;Ok%} zCKM4KSOVaqz$Vskr2%CAtsvG>h~3g>F3-a_@wzFNC_RCSrvpVI z`^8p((gy_&&(`W@X85b@JEgraa2rNJg|b2RXN zENA#93tA>R0Z5>xCfD&Zo%l>P0KqmRcmY~?LvR%fOMuS&HQ_hv?v1{&BfBczIJ%4k zon8KT8oh}?8742X-4AAlQz<_>9Mk@JbvEBI8A@=p2J#`ACWf@vMmX@|43>xJF7 z&uR1=%9ZJ^nNXK?cqjVOF$e{QAo1{O`L41aA|Cl+gmKqn-SS3bSFGT%!j-f%45&L| zjMv5vQAurjPK=jhbSj-N>>&u_lI)}j&n)=g(5{h>u2sU&Ya z5Q%j1S8+GBD$gfvDhI74dq0|AS#^q<2wYGBrOMeao?4S?xzF6$*|`px{x-Vb+T`0u zbL~T7Vxod8o1LyhWscwyW*}s#ulB^+xBCO%Z#3iyMW}|y(Snj|Eu40d#mA$lzp|?# zkywF%Or)}<7Tf!2DHgZF-5^A7#x_e?S$=X;uI{UO(u>#f;ch{8;|tyqBum4z47>dy*i@B{$UXJG$fC=!@~0;c0^sA+ zRRh&)v<;xvh&ob-Nj7v*Cu#oi7q=;M*}k4Ln9_=RUdTxa?6KMqP-}_yQMi}4x0W*R zJ3dEOJMXZ6Sylc?Pp$zW9R`E^PJUYTHP`!?kjfzXKBWG{C6~u?vsdrkyJsUVCZ;OG zu=&9I=7|qqMrG*&Vs1{tuBV2Wm{bJX1Tl`TR=c*kb-$B@w7;ybPWRi9xdE}G!OP9N z+%nEQwWi6U$#nS#!Ox%e#|fD%O|JHTSZv4C=tElzqhB+IARx*oCT$>xy(#CC%8VhQ z&vPBt9)*_%2!3&THgi&PC*dnom}fYYR@sJ*JM8;P$~HG{tsKgAS( zrpvrPSr#C~xQ9-aTwjtW47X9 z%QWg%b4kUU7tWmjUGCb1jD_Z!jJIB>ZNSppreCZ7xx)`RI%a#q zZjNifPGmH$c<+i$1rOs=p*iLY$4%47VzUcOfS{*L_N3{mrR29cqCs`pLkjGcU zx_<7dGJfK|$r9$@y}`|ybZtL>OmX`qSW0yfuXpKNUa0ZNUmOC-R5!;L`MAf1tV|iC z>$bN~-^x$x#7WBb^~cEI!Q(FxVg4r}z`fBlz4^M_9sjzDTzfX+XFbRWCT zAaP<+3BucQKX!(XW`!os!*&6t7beHaJg~IiKZ=WqiQ#sueEc^|r|FohdrZveHO?F3 z#YLZKjtM0fypg1bT&=6qY2{*T6M&_)w>llGjYyA-Ys|xC#zEg;y)XQ+Pj*ZLy7U1B z5d5>^=7E=xTDnP<&-FHT`MPQ+!^G{})-iV>4xd9-lNtjhWV!mDe!zoNh2OLxiD5vH z3*MJr=;?o1>V66F?9Mgj@9|@fj(+%ef%|rTM?~>yAlk~t&iZ0z{AN{fq+$b?h?tni zTbcW5jd?=aE@j34QKipG9$}{RUynC?g(@&~>o{4>!Pw#mpjP=+M!_AcW0j9~F zpJ_0KPC!H6YoQ5Hu|`Jb{NmywEhNHMZRTs1DgVv5zZa0rEDi<`> zV?W^W8Z%K`tE(+{5QrYj4(EtI8vLWn&jZbaUmy8@kPi3{D-s+M5BzT?jSrld{0o9T z{!{TOc~p(UlRB@=nIr?Ci@A_rFWcJJ+tgSe_}D`oXI{aAl_xjrx*wL36_j-=xE$B4 zA+^>;dWIi=e7n1!{}+V6hy6Yimy%zbe`W7yDpUPzQ_tST> zHH~!J+zbOODpjV1+(z{k2x;3Vy^ak~PR%>^^kzFa66kle(EUs1O0dj0GhQ8X6;jXe ziS8zE7~g}3jaCrO<7;VXn#%#Bo zqyk=?=ANvB?2<$EOg^c)o^GgqLR;I}`9%GkT(7s?O)IOEaUzND{4Hf+_%Hao*3#2R zqSQ+P&Pjr&i=ud%$lrheeV^`Og#oF|K{P@IuO^e^e_nWg(ku zvhM87vti=L{-(Q$9>bn#KtrMpym=!#FJ5W$RDBG|Y-6Vls~)s&R~Is_sHh+@L$ab5$bWa_Q(O6sMeB6E}(m)ymX{lp}9NNh)AvVaa7FxG&fs%hO{CqJK@xbxuO zjY9}*98!Lb)GBKX=27>wZqZo#W*1hUB7)*GJGvDuGD@xXW&?3fzYWP|TgeJD+#t%c zy?rU2rBo8;C+jM$p2k>xT7+w9N$N)8@c_O0(k`Z3ui=hsg#h?@y2n#O{QGj)KaNXz z*pslh;wL{!RyZYalRR#&;YAguJd?(QQy?h*XufNIb|~NIoJQU2%zApyNB-{a(*doV zZl0~TZ6@~DTZ*ss&;{rnd%>Y>gG5FnZEyAp*k8EdI(V_=OPZp5x2|G?@bgO$6~pS@ z<)x*S-qiE|3cQnzd(y#;8&t#b{0R-`kjU5WW-73MO&l+@h^tLPBaI zNOyB6X{5!C(jC%BOLwPqC=!BnO2ekR6afM0ZV>5KI=|(;=iKM}#SeM5oA+I7&N0Ur zb58RyMl#5>kFX9Hi}$vbqW;BX8(1J@5~1Mt#WQg5vW-HJ-@A7^#;kVs(mEY<#lxZlug$(QB)4`DM6FvJAAhZ^ z#9710_+~EHU&31{i*qzq0?*1Yc=<3(B~UwA6>+HN_{IN!^X|;oy6ihz(eN=T3ERxl z;^IE04x=+X+|;wuU^XcXHynTy+Mq37&&Se{sENWh*7cWH*ZgZ7?jpbI9Rw*Xi`vA@ z>o*z$w|5Vb13y<+JI|&M|Dqr}*ye6s3OR9=j6h-a>fzt?24f00%uEvUaC^=GOZ?>q zOPg5>jf==wK=6N`we9Lp=y1;pX~e67`Ab1;#6w>uERxVuK|yAi>O%;F_Jp*RVkP6A z56Q4}(p#W&_tbt2Psu~*L$hzwDh+sGT6A*!u9d6_41MgKShDd%8pgxZ)5#SM@-oWk zfwz56dm2nC>n2G~#m*-PGE~kuvkguh(@p=y9y9*~rn@EKm+eDaRaYRR(P%`y23@F> z&_pSvQ=rEk$i3m=;VnT`W0Yc+LuDg)hCf~Do-+3qIvlDSFxy(d;@$*$&~ntifScqu z2Ui(f08t4H$N)*IO#{1&I|aQuYX)(SebhjX9rsB$XN^UrpiZ}UFJt|+s$V6Ry(6cFNwo^BAyz2B z>@aeY3k@Ih_0#&q#JkU-p+=9TGzM2#6;N7Vy$WjkwR&LRD094hTY=TOPMj{5ZITdPohxc;sLfnwmT1LYn2==NB;j^ z-A?cTP1-|hp3V0i6!s!5U4Aw$%A>cobnp|)X4wgy+Hn-O8fzScs94%;#*OWLBE-*yU^2gS7W@G~K(+4T1~qBZ<#5B& z)wsGtD-y)gdeGdUPIE-{y6WZ)lTl~Wn5N$Kx8;tb(AWlT&1c_v>X)5*ao`$sA&$!D zGk?<ys zjX2&2-#x>+7WVsVT{%j7-0ANw)TEJ2W(0-NmJp-CYEko<8nuboKR#fPg)Q13}#S1;YPy z(b16@THtC8eB01|+6zCiq(vP(!Ag;b*PgrsLrUoPHBB*F2(f>5cHs?NCL5fgK+{U+ z7ycaqcD3!HD!H_TEB>UCSJ|?Gf}BsA2%z}tn$jG+qpq6JHWDa38uuG5uo5 zi)YNfb{?={;tcUX3s6O|=o&kb{1-_Zn;+bZmP17-EU86Vuv~}$`)F!1Hm7T~=+l<(Y>fIc6lr!;uc>vQf{ZlS2_jrRr;*{qYz{_2;*813)VqW6LV1le zy&b~YHI}`88#LnOxg;Rj5ebuGgD|r4v6u3t5F|$k3-I}L%rMI z13!Pa9JZ5n=2>heF>F7A+uS#KQsB3J+|@yJX^ ziJGfZWMr&bt?o_I7ZF-|diw5>JEe!xss~wHceWM)zw6|b7|FroAcyl}^)T!)*FpkF z2`b{(Td)RsLhxp@^ZWOCayfY%)1kd(JeGdV@r-LP8i_>Kl2H|1>);CCZVj3Ed_+en z?oV^&^NT;7!VuU!M#6)6)KmDGA6Zi0#KcX_q9CWEw8Gx+lnvqAQC0S1WO{iaCMhb) zLt4aXtKj2n&haOoAK^$vu$|h)GvJg6td*3OCVvwO*>L;R%K0yiktQhADf09gWb~kt z)Rd9z4Dv*k)Gy1}kUNS4ilSL)EJ%_JIv;emYi+o*1+{u8Rb?WGqo8 zL@Z5T){bq{wzy}0fV-xeY#A{DAkw!?^+KMLwd8c1qbbJCjhzJY+#ypR z90;5+Z~jWhysZ-G{-sN?ebD}UEW>mKwlAn3?UnngD)GDbp6R8l4a6UPI)W|C*tCF zi4{IP&rrrCG4aKoM4DETKEgodJ1y3XE-T+Y@y1yrM(EE{l8t91W{Bk;9@^O^Lcd_D zQZ8Oz6WOo+#L*}BU{nlZ8PwG=TI}a_by*2{KCyP+g2UnhcRZvqR*@a$_!;Voi&G;A7!=^se{5>+#;{D@$T%^6tW zIf^G?nr6RBdI!h}i_jy@|VG=|u zb`Kz0I1M*F{TV$5ldqqjm5}euhc}d0xVq-m0}2m3nKd$z0(0){Bm7rqtfqrzaWMXm zj2hGfFpsnxa)%nRItyGxi3Oe$N~fpRRb<$AWFL5b#{tvh zmGv~M|1FrRE~8Ldd0!$O!2%ya%XqhyUJCK~H<75GvZ^QiFDFS`2@G0a6421*=D|-i z7e8HhMY~qb7P3TH#PQ3+{(jRjF{=)!R%dKrn zG1&XwpbW2Kkp4j%4vwnGM`PG2I^Ny923`do6B=?5ffRPtONAS`LBV+(C7&bT0%-4>{`I0kNHt80tH?Nvx-etO} zRQN{++OfQx26Oy{CIg;h1?2_INx0SL#NBry;d5aeFb(W40n={q$eXSMVfsG4qh8#_)gC_*i}-%#MG|EKL;n3N;s|HYMWAjBw4Oipqnm_L1;T{k(x%&>+Sl=Nv4 zPA$YcdY|^CG+<9ZKA#|`JM3T-rwwf79h&|z?aiY@ElfUJ|HHbPXpYMQEOw4Ipb*~&+01;-*#8!$hMXJ$N}rggmk)`nh+9W{}5}`Q1kPfzqAljE-LLeSS`P2P~-!g z2_!=!Q`0izP~J)4jznjQ$fj(veN!xK|eJZ4c!j9jNcV7*~=< z{XWA@fDV7&+^jVh@b)o1t4j#D2+rXs&xX3h#8Pb)G#&Q`)YEPkoLd&N&>RzBKi3a< zEuB%?XOb<$=ig=WT2`PRl{L44J$!Dit|#1d{RC3JliRL$>Wf+N@jq1v897@O;mrD+ z(~1BmVRz!u;C?dV_hf~6p1XkM$DWHe2qdTs6LWg`XvP!)8{HUD%*1djw~y{Np;|F$ z^#lW%4~eBFVq;h_<86)uN?~9N7l7$l1-!4gMrI zLu@YrN3h_AM_upQB@MnGTBms7_@(siX4k(Eck`j;QT2nqeRpCcPqa=8D2pc7q2xO9 zFP-=a&C`XmeP(1z@J!}P4ssOE7=$M9D?U979?2WD(NxrIao>Lk1;XA&$WZ?pc$i^B zCm{_TxV0=&$MB5Syr?a*sO@Ls+Sn|+S9*%IN$Zl z?+lSD-|#B3=ki`&-1wwKwZhAd`V|exo+O=2bj_uOIjduld(*G9&fNXdmJgQ|;eyCB zO7MUa?>70#+nonJkR-+^dkByk1VY}n(EefS)C<@eF<4#Ugko@UR^OphFN7E$p)hsP zBP4Xu5F8vFl%|Kv?*!891ar+2fe`T^a6nU0wZ`>S znN}eLCdFHIjNHnZJb)zWw`qolza22l=g<#C@_KJDjzpMz&PJMJ$HUFs+?)tsEV9aG z-^IS+daY`s|KBI<0*VORXLPyONZ(8LhZ`5|-BgNbtOGs%SUlG|oT1--0Kxiq)GUvC zd|iQrhJY$%CS9c#jWoc{N_;WuU6M6?sReCSReX-3FRoH`Dw9|WZe|>M?rz(8u@$4S z2D>x5`;yX!>qbKGwwDAByNbDLMuOY;(gGB)yF z@+fcw(*P<)be zb2}x2QdaF~zm@X)oZV!vj?i|^@E`hnPzMHV&#ODTysM*d4Pl`5*qtJF=4|(jZAYB` zlEtpAHx%6N8>WrzbwLS~*(rn}qYMs)b!e+;mp$1dFXIKR>1gCA!DqkcMx&a>@JzlD&K)wxN8yJB}o%g^X^`8t$zk z$4TGF>(xE%roP0u@t1&FoS$K#1$UhIx9VVKR-lJuL#%ij*gN`I^;*Gjc|9j}YySA>FIACmI z6%?CnNS`Vy7-h$Vb8FU}9!qnhdV-~wB1j4)Ki>APd12wV6V?wtpC+*IzKgBD^zW+;%IiW~)0m zbn9*3$Qdr-w3T%C$*7K~=z0&H820Va(#@_NFCgpzd%VT3V{A9*vlM(QafL5)Dl$Gj z6LHqx?}6m`73jTaoqKh2Z@;WeL%uw&N^T#@<08_Tt|5p)wjXJPCuQ0dw~V)R8yhm1 zoGiK-Flv{EOW;kOp=k&P6Lv_D99{Cw4mj&mn6*%nP-zJosV^_xWt@v%GEBB#?F_;b zo6UBozO~o5#ouE>!NI{x>mu&9PjjwsQe!Fgl;9~Kd;rrAFH98&`a0YFo8rp5p$hC0 zXxK@;dn0_bcWD;eo3~V$Q&~B(cIxdjv780Zm*`*ueDX{V6{5xj3`t9JjHI9hZ*VkM zI=UX&lXt51zp9(l5sgbv1!$sxAtJF32zv$oNWmZ=FySZcHA<6`!m4jxIKQv@W(m}& z9mt`)!slzsYYWm=^;K74BlM%(64r71hGlMo-u4mJs7GFe`WQh;V7o?pdG**6`+2*D zIvu=~8^KQ`zs573m$w}EEHs|(F7HiqzCC{kfjUOZ+-}xn z26SKfLyc+}IjlxBAw~3bryd_EFi@kool>2F44`d-1J(?rLHQ+{93eCb*oJL25_vJQMh_&8WuFT>!qX=Nf zF~ygHTQ3(dFndt?{)*$fZH%e2QT5!fGkPR-kw?+*>clq4J%vCJN}XWR4w-?mDP@Ov z52jC2-fyN)@75tTYA?QkXMquRQ96Nw;v9AkOYbSezMGor=&0%G&4UdHb+43>E;6n4 z0DB`2Ttluc(@=zF*lH`@QN54o{B7_k!Ok@qxhg0M141LzPV1U)4GhBA$NxU#9-f{K zynS`lWY4xG8$gXIVmPIgENZ@bMPfKp#<`e(qo8fa(QIv95q`|1S$=1c=#SrOCBe&GF^s`wy_6w5LL}-x8p2Dn2c%B&(2va|L&wO=UR;8zGpC zt;iBANXWv5?LaV!NeiFY3}+r#b)>+T5-qistDChoO8@()fdxa5USnP}o}sq=Y%cep zS-7jwu3_1qtolYF=J{mz!z0~2_g}WNzmvavHQ3*V`zx?Co(=W=2mmgw-?BwJRmd}X zuU=iym%^9_iJ0_Toz35DgyDn{Ze5|E(_rRwU>>_=4WDyBJKfcH84=>SRB(70wpPX; z@y>Zo^_thM+~HI{?5`VJt_McU*HMKeLhmg zKvayGPq6E4AcP%F4%9BNx^xPHF}chcs;X9f&(HWz3?fALoP8?^uLjiJT#Hl$0?e23 zas^N}0I9aPr{W_3`M~nMlZ*6PKRwM|*r_4(v||b)ZPc>mL{(K=PHIzA>joy-ZCL$tiVcW}!!^ z&u4HrNa7gQ*_*3F3vX%R)-cK{w=Mywa~RALZYS@&FY0|XYS--2AF=AoH7W^D0w^8Z zE#ovySj6cDj25-^^=&N(3r7_87Eq^s$i$UaC7VJRE$_Pu2ZUC26Lkq-(B5e`L^mJU z?T?JWk{p(C+j_df$IG-znMgQf)fNGw3$3urC2hSjw)=6_k|X^OmnOd^(c{PbNP+AF zsgT1H5`A`AwY(BmbO=xclhDNM091(=c=sY`wMDpRw_2B-=$8AxpgaVGMh*;s1X1Am zoXFk_V5t=v1UAE=fhu(c(QOi>!(`%XZCwa^`zV=%mwjnM@XX2^2_gjA#q+waqPeJ^ zmZf(Ux~i&iIt+(Wc}`lcY3v3)K7_x zY=sQxt4v{Zk2>z;gsd_X6Hn;jMhqM*A+N|jbM3X_9w9rrYHE`c3D+?(kf2d{{qAe@ zq_x**xb*hkyK*|--X@`>tV5FA@|!^aIk_w-r?0_1NizD`(%;j1#@KaF77$+cCd9r)b_O|Y>o0@B4~@`2%# z2pPIuI=VS&xOQ)EuTkoU4}pmxs1#SlPPet1+J=!JtNU8eedZ%Fw;;0-2{9`-3Xn1A z(8d`3*z`L1b$2=M^%+u$^zzW>sHiAD$fI~Zq~zOIV;`S-|E$DT(b|RvJtT@Bi}iyl zh{o6V{xiKiK6t_zLoy?xA|gH*oqnnXKZERp1PL~M0zC}E=k2UoZw^{$&Fq}35gpVO z%XjV{C#@eqz-5<7oA3zd_{|%d+;lK^N&~`Z%RE)-F&csn~)QW0>fSiCpF|44J|T+u+g*$YUMnpJ0!S^>lmnD#VIP8QtQC8;P#*(Kiu%O2d6^eU8{dQMVD!EvyetnTBCV*hM>-$ zAK6N?eHI!JRrpcM)H)H&VjMVb0hd_1?@`yAx4nW z3m61B$YHc$UR|xy_V!B5zCi>X0y2iK$Nt>o?~C>Oi1_Z`PZ=HSk-r=3k*6xBHzIY? z6Fer^gcRT4}GQ13eg7YK9oS$Q&A>IgOVDv$EA~GPupR1o;wr8Nb5gRq(25+5j;v} zpVhoMyf>T|5okF2gn*@F<`M;N6v)Y`sU3V-Y?+^DV=MQXZ-~V{KV5V$XnOkl1RX!) zk<`T6-r*@4V!CBw)sZB+9tD_cB5LOMk3ka>&&2h+p54R)Rc94*mTzFh ziB33>knKEY&KEcu%ACdSMfbYCkuW4Y0B)-4E)cQh4PJoQ=FjMRGiBM)6Z97^o~)eWg5-27-{BxD8<`c+Uf@71#fL#V zQHTA*nzk_J{8IVlmYW0-25K|xih}tnAu(}c;lSCT6t!+#NxvHPSz5W?LN)P|Iaz^9fZ*dm;ZFu7xJi%V80O~fh8KN#MZs>x_u{97hK>96Zy9!H z5tMX1cf)G9C6ipN$neomkT<ahN8F zkJ+V>`o(3>g0hD_w!8b1_epUf-@T;xUD~p7QNad*#l0hu6ly5U2q{p~flEe}@Ahm$ zVe%$2V`v47lSUjHy$a(~0kX8|~1%ElmrbWhl@{i%+(+`mxwfDW1jj z%z-rU5XF<%;o7|`1jvsB5D9(9T2V!XAsSG4wV(%4xuU|erXhXRH>%KaNdYs+B5QyE zY=L~gTi1mRBw8_;#eCe=BwR=8Gx1^^Hp53u<-H_`{LY6}4@}q7QV|I|0@A7{v+uZ4 z_Q{Ef1#NU%?HhcU1C>pz17Zt2vc&Bgo01M(a}kKcFk`hb0&?+-XVS|7zdbsF2RDPe z&s3Rj|MLQv!~xIQ$ztW_0^}!2{+MXNscOVh7=X?nXa7K?_7eX6N%6-8$0M3O%iy6n zY`~$PxOMfGc9pWep^;Ssc+bD%{$bIQDcxA?vg-|TM`a1|`EEHP{Cw8(bzM(;17Uv; zBQ2Z*ipdnmnKrsFA$7TkWd8N-!c#E~CeOdL4C~X>4;%N7BymJxQ45$K2<*EH9U@_`%p8kb0?p);11O zmhu(dIp61{K>UskfbaGt+}j9D7k^;bzQ!;wMGA!dwBvQNg@9%+yOUZ5HdP*e>T`h; z^iNH2{d0Or^6X>7)Zwzk>Kel5{`!sV>(x!>r{%#Q#=PN_nzfb=>yy%gyE*|X%Vg^6 zwD;5x=ksTbi`#^|GD7L5M}fkB&i_dsFi*7;LQ4IE9{dFzl8n#yfC480&_#2QvS1*p zFRiGs*BP2B4-;;+JUb*F`6!A>AO$#(6=H6!YeJ}5BLEG8jUsaQMAFR3Dl&K8$1~&< z)=zziYs;^MiDxOhdU!0?A9qpTdFkg0An9PDsos4fh=`3fGCd1UDlhj2YvtJNF_Yo+;bA5=!t$I zZ?vWbwA!1yhDmC^BvQ`%b*|Tf{`aL>##UGykI?Ca<7=((WlAWnvHL%XZ9>b55^&lIw z=pk)Idi2Y8`|j5n5RdC%bi@`_%`spe5BJC<98sX}i`5V2#ZQY7ShOabXrGxwtn_@= z-YHvD7~w&cGq#O;6)l7T`U|}96Ll*IEby`nQO@0Sy>G_;G& z4(GMEi&M?bH9ZC+(lK9NgJq89o+NicNQ3@FX*kYmYGxuZjGN)HXigqf0loLsy(&J} zb)!Q@`uaC`fCy&Fy=IhcR=`+QIcJOd{Sc}lE2<$~(d=kIUE!v?dQ(OXx)^9UIdLJQVz6#ppyqf8KacZhRED;-|UZ{0>byZ6#B`NN+ScVnQlf(P~J7o`k za;Xy5pbIYV#qIY+YXvGh5pTkr=H57?^uaX2SUQb43tKW1yO>>@mWtXJKYnA=?wotg zSk$~Z=;xyn_YGccgJ4IODwikYmBn%fAm>dRmY3Wbp*((U#mOa@Avv(xrNTA#hHiQ7 z7*5nvR#x^So?+YI>X}r;{gHQD&r1pD@43*~Qzm}=nDk!F_}`O3(E6RMh2~vMOzU-w z>0ziHCQMdR$maM2|O=0$nX4C{I~z5|2h!tN?VKSf1@i>u#R> zX!kq1^gZl(^~B1+Gp^{&v^RHX^7>~q$RIwSA~-V-=yYfik{_LzLK+{LlCF%a0ihd| zOS!VzFF@M~W?%x7A1~PONr%Jqj2)uMod-OPeG*P3T{Y zVez@1IV{1L+uJxPjEo(GL<0_mJPoxsH+oCg6YA*AfIIpbpWvgeUDl|K;Y0=jX^c@S zLgs@uhLh&)LOb|o?;<#n179adVma=uy_RzfqnEufSN}R6c_Q*LT=6JJ)FcJ=?V=EZHQ^en%`f7Rz3|{ zJP!vBvp3xjLu`}*D))W8h%SEQcnKyDU%qy0GoWkz?Y8FEbkQ9>`DTz6Y@Tm|cI*V^ z4Inkef`lTLele03RsvzZ$%nKne=a{X__eH(l`VHr&rTblLxrxr!bmjwa!h^e&gD-? zO&eEX=En^YBXl9sB?WDlmzQz7SrL1mW5vByYj4^7?|ldZR#1-KJ+Qo2g6}X3(z%7W z@bGBeto|8I__K>g(fRwl6+Jk3blMKPtzH)bF+KT7QxIoJC19=iq0})U@a+arf;#t0 z3RI<4+wo8TEzGzJx=361-cBr!{eDmb$-VkhWqQAQ}soCett*-u|o)_1KvGjjPu4D_`sTnLoUWC~Q=T38=_KmDd(wPuQDBdr!K zl)`Wlgw~==0EeC$=K=?tP7je`I&IMrVH%50UyN0#@m=@;4N)MWbf>q3%t((S_o8Rz z``Bk2?Y7hMv}(|Z>|gT5fJWnxPyDVg=5*Hq5N_+tU;oS{H=cN3v=RTE}a9R>6+jT>H}{r>$sY;qr-pYoyGgqvd=3}wFxLjiYwkDI(O zx9LEky~TZkT9l-2q~Z~F?#=xjo_hgVtSIjKuM;dBq~Ge&jsis^Di{cXxN82}SU~Bp{zq=K!Y=XEIyI?S<2( z=b9X~7lS-0u>-u=@{m5FY4HC_g z{ma`R6z=n_RZ`u5fRmcY|dxg`;Q)iV)!M-@f*zq|DYlrtRpQgEerfn zOAW~EIq>|-%pab5;gGGfd+HHlwDW)(Chg&uTvpeYjN$s4p&AQ{-L z#>K_?Xm#uwbjbDhlbz3C$|uoe>w>#51(NS$E8?DOQv7`_yI$FN!lp}A4UGxBY!t{g zB}GO?c{-hb>pZWaq@SHv^Uo4nlnDk1?n`EX``-1sy*gc7Yh_nNYxWP~H*z=>NyVjp z?*#z?UvlR_3)YOEqlN|Defcs>vCuZp-t|-p6K&K$2lMYmMuU2yDLvWnWvkgG@Q!z0r`LOfRsv!Quxh#u_%EDLk|?S0N&u7>ffFKj z`$_pQkLHNE?A0B(I9ZBdRl7W?*6bXQot&IH;4EvdjX6m4Vqx(eXrE(6tI58sbSPhi z2unrK1O^nRIs@NvBhvA!h^s%}2sMNCz?h11c%`-%{B-TH)z zrwsMbn0~i?;5m5+RxFC&4a)A_4Y#WoV!zu~Vg@Rg5!9$Lm^RnaqV3Rj>)z$r2J{R? zGz9FYx0O871%qs}ASdSmQjxts2Cewcv1gR#nsty$L7gm<*T85VCeR=w3=dW=OmpDG>=j#`W_yY<|<7O4lXrEVyLItsY z^!gP$5n_DXR|n%*F@aY8xu7B+8;e~02}(lM;klqdM)Fd0z^1p&NC*`nuHU47No#a1W_tUWnEDWBa{XQZ zUi#_v*%$koeF&mOor|T)81b*_ms1F0BH+{r_mBhLRBbHUJM~FE>=p6Fr}01rX)q28 z<;gjHR_1^lIB0QQ0i%njm4P3YmXtJqiujde+KU}MWo|cz+VM!%IYZ^ehQf#?BQp0} zo8DOBonRZ)_pJDF%~W7-DPaIFzkd^>7ssJ&T z6bPO&VwuP)DRCZ_2r%5!FRlVt@ApGc9;-G01eo+W*)R&I!d>Fl0CNDGeOpo>pIu&a zPXK_Cii*leNylXlOFz)&s(xs7P(PioCmkZ_uWi>~toJ_Md100H@Cm9XbK2?NvFAhl zl0}NS0OhR>4NsBJ>lep#xBeE(8E%O7sGL-?LAp@5hTy`YpU13eEaOgZ8s!?mRWgc- zev}aCsmcnmjuV))@m6Rspbfd8u9^O;-}q6tDf73_Th#bX+lv18QosIvsd46)cg7wK zTQ*~y;+$rr+7cJpuYEy>!aw&Hy$Jl#*?>_txeB1+v9ihE<6X@qwzhuy({%L(9gw`m zaV_=^N<0PmI}B0 z?oN5Jku{5+jINn@j%F$r*s4&VUz?lf;MXxLFlecu%3|PXc>Zp^b$^~)R1_Q9&(SS* z$t^0{Vt~Mq(dEOJLudP8Rj1eISdey%#}AMqai9s-PDBXN)^)Z0mNw99aF94D2RDf- zI>@on=#g5ikd{JzD9FU0@X~(sncN5D(uSL7EQO97oSQx+p5e{ga8OJ$K(;fLuVFpe zdQ)cBILaZQ!!?aIq5o{?#}5VWQoMH0Q)>)bLuVn1092KNgI#Kp&MD=9xysm7F%Axr z&k7Hq6O;>g&*uSuo?{#vCJ#Iw8hdZH#Kq0}cuZF{C}>JcQNVU%O|iujtE(?Ow=ge(SjxfuPOpr1cY?jx7)&i(+FI;=`t;^ae4 zdDngz-;)o>5XedXbXTeV*!aa+CQu+A*yz%X)9KWO6lB9Fd-bvTnQG!8c&M@WLg@c> z+c*X$4>qd^tTMt~iShj=e{E9HHAh9*jz5hB?FP6j2K!9W>E;!B;Wum*7spZZT>K}L z-g{NwK-cB>wOtfS%FDd2xe(E(oVcvBvk4E6DjHAJei=D+$MQ~-W@+ILkJ{Je{&l5i zfyI<}5kStN&iB_}6DgoUpp zAR5`R4%e{mPU3*)1|OqOQx{im~|Z;8ylMpd>V)s zJWzl(&S2&Iz6V)scFx^G7!t)u!$7>*D?V&!57vX>LK72wkt+FitTcyz}UuWkm|0>>(hXAR(pi9X~ zqfTA^I5LPQ`Iv!NR#wKKUH|^)h~v=;Khvg4);!&SGee7el+JMK`BNB%)zW6r)Rc{$ zawgwit?M5P+slbU?EQD<<|NK7ahaL#8Re5saNOL*-7fl=aTw*&fx6L6ERT-+PcK`T;8|E7(bbpRY1YB^!?m9@CN0i_z+jlOD&Z<6~n~w7D5@S9JXS zPxf}M|FVc*x!L%+NwMhZiZ_3x7`1xe-%?w%aD?i#!D(f`>vvFzbew!notv9;0LF(G zT3*Qv+xeiIL?sph(g<6K4Cg=p2*Yr{;s3P+;?39!cq+d281UFrfqcDo%Nq=xy$=ls ze;)+{+VD7S**7S{pC-iW(82178H|Zj4^1Y%UB%SY+1?&D*BpBgvqcMbdg1)qTEQkX4CGcr;qF2&RG}N@VigG8uDb76H$O9X=mhw7oJ`bAI zydD@7#N!hX@b@w{&NkpL>)UocP?yLB8x(h zEerND?kIbxqy+EcYErox#VImU=Ev|$Wh3e*K`{!+10R7V+;?CK=6vB;S^$ zyzKUSweZH^h<1d7f|AmmQ$WDIB~pmCqfgqvI#68eq`>U_^f!wx8!;Bk;Mh4wvb@B= zXVoL{KFpcB`!v6g8$h}{Py_ex6{S)R%4JEDzR0(fHWb0nVCCeTny3SvB1gI(>gitY z{9cF2%D$?1VII>$gtZg)7&&xM<}`1=fxCY651<{G@%%HmwYT@}H>C*nwIH=v>N7Z7 zD6B9976n?g99jm?lEXGLyZV;zsg8?_XTW~356N7GIXO9aJBEjwuwVw+^S;|#<-5yF zAA8%U{uEEs1lN8ee9Z;%{p9@K{o4xqi4?RV)a+M_oiAPIs3SVwcYeo^QN@;!qX`6s z;nBIs!K;tPRiZd6f~(Zhs!Gj^2eBb|8_rGk@#dEy46+WOvXB}13N8tzv9@nwJUS`4 zfCdIFnzMjIdzaJcWY}Fbb7lnaN;eThXd)smr?)w}EvaOHCo=vy_PJ-%2T7=+oeX@l zW!eyu?=zJ-Qp-jGE6^i?M^8EI_Nn&h-!gQE=*d^>HSL%r~_Xr(ML4X$)=_mSbd

    ;}pq!<`K*a?J5D#Jou=WoCI|LZ!j1Or?yiba97@iF!agbmx z`aUU*EY;G~tW&~RrOQqJxwd8m##+_%l1bo$@^9!V56^GcMCl41a~=O#`-ToxBO{0J zzbb%~NT1sPdgv#>GBKf>nylBAc_`(~N-LovhwL$+`;(y4L9-YAIc z?i)OoU#n@JQ};?(_Pcv8OX1fyvdHv4qJQ?T2X4AY^4KSm!`dX4Dd|;wmh6PFe9Ys= zptK0+DOT88P0fGvpKX^vwYpQ ztjxLWSXoCcY-Q>g{1 zsWz4d-rK8en?ss@njfQ#yri@4E{Emh<<)(AtjQT4n(Q1UB_$c!#H2XHq!{Vyde`OM z78yTz_4C-%!qUu4p#glz+}!ey=94jcZU2+FozfBw9-E|%Wj~MU+S;Ut)W>eG(SHQ| ziX+~TxT!33zx6IRYJFA1*G~{eI(zUPX zqmmH+qL--F>|r$hBJlj|?c2BI$L~^7QrwQCLrG2VwvIiMUQ(kYBjJ#2a%S94zND6o zujz5gUA{$3UR}2F*w4?$YpAL5%V)vjEtCGLowBIVX&gBf%c!}( z14l&NP4Qiik*jKk&5GKm6<1q04~H`hdZ(v*9c*M(n$FH;x}`Pt~S%f?LXVT&@q z&9wD%rz*pi8|Tkc(+*VJCUAKsR~pzSde#qCqWA-7=H^~TEjuLyNgem?Wc9YAV-3qw z*I>qI4#Ro)-?5X>PuNO##p8$X^fHX`tKilhce(?H-m>CZY*jb+K-6vK)U7QF=iV3| zePOe24zMLX{W^wya{g7n9KY>*j@MiAvZ`k@RlJOSB!9llxD0s-wsYE>y44Yh-=26) z%>|v33pQ&h$rG-8%;&tl=8ARTrHbuI_dE0H`Gm*7>a#bK(w;a&V%)Vc_^?cm*r1Z- z#aW}19;4rz7)+d}7c27ftZYthzAbfAMpr%L_u5Yb{1vX}q@y*2ZKe#s@-mU-nU&#+jV_v-(Y(W#0F@%}Ncj6T3)V{UBs3U0 zg-Y7nm)tm-!K4AJ7+Lu`Ei5W81`EBlsq(9ns^0g9|Fuc){S2SGg}U($~pt54JarYb%mfpPmAcuA%mpSahW zFR;hPw2d^a2FXZGO)5r}30L@fYJq(je5`D9U)ALX;P299RBjBV@0iF;-(T;PBHruW z-24&L;4q^4~|LTGv223pMPqLTNk|EN*f{sH(VCpb9i}qW&Ow$n`hqkm!;I< zwRcLiSqPhXo<6-4jBoC>YXM~C-YeO)7;ZU@ z0709*SB&OntyF#s4q1MjY@%ncv^$2W0v7a6C$&8$wKbcpJL?~>>^B{@N7K*i?zw!$ z+|g7SiN{Y#j63$$dTU!5<*_t6$F+dzk#fC%o|%WXXA`G}$4zI>SW!K7=2Ra}Mn0T* zecr+RaN^BD?VC29v9X0xbjGPklC_64FFz(FQPFOrzb|-v%=TSgjRxjv^!^9Gse=4j zT3!A8Ph!Kys%D<{-_ka1KQ2n^-*Go2Cnrgm!+%<6*cy#}M&y8~(ia!TOwV;V3BK5YgUg>!$ufkQr-lal3S_5cZe)^LLn zxT%Qdw>AUG11~s_8>S3fz-B=EC^suLwfH2_%ly)ta0b7preVl7(}tYeS?@PAvW7kK zYK-!4LjSbcQvm<`*YCp|`#mIf1}#%{Rt6wd0E>`S+j4fke9wEz`Si537LBp}92J?{ z7qRb`71<>2UKPg?(DhLbFB6O2IDW<6zC2$>01W&o0amJw;7leoLN8zhgD|`ul76u> z#!-N4{QJ^(Q;zKC0_)^qN5I{4yr!jOhQW@*_AShaq|UrLcZ4+9hgVlTWx#LR_ajBO z#&LC-VZW}bb>Z>IUP@YNf4`h|IgorV$U_HoWmd_?f8&y5FHqkL6&N92cTLzJ+6*Z` z%>9^eRqr^W>vQ~p_W1((vu`t1rfDGbM2C8bW=fEl>h8Qny#p3ROT}+poonGy zbyFcyIplNR8A2YUrf*Tuu!RiN?gV_~KZB`98d?tj=LO&rCKvdad|y^VcOV+Wy=q)b zSUqL<^Z1(jljr5Sz}=tmq*2Rs{F3wk*WPzVHNAB2;;|h;lhgPc; zyls=HRI@9H8Uua(T1)gAKS@TyHtk`2MgcA)E)$55eIHKblvIQy@gQ8oEw2X7_s7>m zN~qK${QT?N(5O_?GGsl~8#SJ9ks+T&8h%o^Q8ZFK@mz%L9mU}0maf+4IV&7g@EQY8 zla`iFajskwh5oYw2&|@lk=V>4OUro^uxeVJ!b?Uj$UG~9s^{w41x#-OOSTA)E)Qs8 zEd*I0(|T?{7w@PX#7`_t){TzxdV}o=(mqW?5m$6;G>W#fK>QkE3y*5QM#&79mXeyg z2=O&Dvyk(j{oA7YRZca1JRe^lq~%)Zo8=)a*jnxrNtyXu`}I}uj>wRA_BmbPgLQ;_ zIxyof?v{1_j=@5+<#zS`h?Wlr=w5chuJFP5~6*0x7xK7SThwM%kgSl)Weob{#t+Jp% zHi=mPcI^5AD~uT-0Uj=&K3wLs6E6Se)<|@8v`nS=pS@1&)Jn_V5<3)7c!)GfMj+epGB_M#3OXg<{J8ubl1J2;~@Q_ab>gwt)U9Z7WVfR8escL|C zu_;Fq2lKgQXVY6m9X@~l+* zYQn9xzsvsC&?iEDqu&^^Xr}yoDV=&>;1GX>@Tvf3f?VkeF=RXXht|CdF=t8@1N412 zu;QPQE8W_R-M5mDHZ89rYWR?iC!q6C1+B8$@uON}_-8@%O34`JpnOMs#z* zXc6d3{{)dGb-l72c|eG&#&G8k{6(D#EY1&&+Z+qvQ1^7C5l`sz>Z289Ek6w`)x%xe zT2RDmN=jN&Lu8d35+LLvpdcsbf<>>ToBBYPzP`TXNn!P>sZbt!p8=X+)&AamFODh{ zHdb?1f~1mHUcOFo+3}i_0nFQCS67$E4m(cn{&RR~X2U7=fo<4YRruXJTy3?O|EnyAfotG*apHKzVlm$!>)%h-oOqg|rDPEmD4v zL$sdkyzbKM1FA4YSd=DdCg?+Ebzc_yIQ5NIifHcimI5L8e6GYsua%l9`eu6fMZI9- zK4|#c)+3$EI~xS8y`DW7IS311zHyvs+}luq+rcwy$xP86QS^O%a-e>`7IPhKpdVjT z;dqiibAD##R`YWZ5>JeYi`y(4tcbZjMCx8%y&tmuV_%9(^_H;F+e~7F{2{5`RGGOk zzvD{}!%qMNVdqhZXzCd~a~g!V&ujS=aM5=jZ1?CGU+_u5Rn(Q2Uwu+?n_?XuV|nl1 zU!2#0wkQ4zZ!{;uwGbhvrL`X=WOG;6V?z>C)plcQp`qc*l`FsB03_GV#U)QyNX2Uz z6{U5lA!GDrWs&Xvf_&Buw7Mplxax1GK;VjxiMjjFrnB5Pb*__k%iEkrDQUB6>hl0J z_m>Wr?Yk5r26#DHkNmL~tZ83pwI3JJ)zOh^TuYGB?Y8*v7SO0wum>RaByu>4-2b_rYD> z*o;fL+8JkJ^m8uB!EMoLz4f)Fgzx~BuL*7RooPADa(2_6y%6h>a);J4M7FFAAV0h9 zzw)aIf=0@PQ9lp%_vg5*&3x`*M6kxkK5dnkshvh4!E`YUbonA41hI;=4Nlt%{%*RVf@*}v-o!{mS|wb408ZphF4b!(&$r(~FP zRSN9f`{!CMFMB)NG>k|vm%)ho*kV&v+()?~i;$=>vdr9I)e{QL2jycB)Ya4JoqXi0 zDJ1Cu@DPuNOzB$aZMFf!#fnNfuffG?%M(x(T5nz94@`0iWc(J-0Kg1_nCR#=lxX~( z&L*bxaVz@iMDM8qvVoD2eZAwf9#P+?qth=tucqUNu-16&cKvEbl<8`_f=k|8xj8}D z7>|9<)_}$S<3cx;xN!MSS5rRdvDlcH@aT0mowf52kiS%H7rAfYsPH7`Sw76Rl$ZMc zo$2O$KHL%(P2@Q{wl>WsS3Y8o99fLRIg5%#3opRd^su$@aci{t3#M<(c-?w9hmQ~9MEpLl%HfOOm*&Cc3Ot-urcFTZ{SraG=9Pdad9!3a{_ zmYfnCs-&`gY;t3-i5CQ(522c>9bL_-}EFUbo&spT~X28a!I)!ihu0Kn~r87H~ zznvA74cvAdxM+{WWgh2L?;uMw9r+U|^$tqr6ecM=`=ky`_t1OjnwcpZEda$%9lg`L zvuQgKESNj2GSstv<1+7V^{+n!dY(r#Q-Tznetmbt8x9VYU?p9Y2(p42zVq!{rDr-e zHW=W%Gjz@=LSAsF4n49V$)mphAuv1J<3nb;_8WK9lnu&_eDA`PtjSMs(1-k^IotdB zM}O5x62Kn;MJzQY1_mAKVR8d;;@iwUk&wN96UsGni)O#Omj^p!%yVX&cs%qB4I?>< zq`6oTaTv`0O=sshB-+r=m2}4PXG_4DpE?6DVp^s9$|EA|afC3lv*M*bIQkn*UH_tb zgLn$4$~>EXjk57^|5~8D%%eAtc^KVASrZzC_vd(7c+#lYfjT5Y{|N@S*$4u|Zj9CV zCNt&^bLc8A(!{sM%O1ckUF9xaV3JfqV{~=@=Q>qTG_KSw*gLIz|WuLEeOpA529&{mE|#YLPM#)}7<7HH={oEB}eoIR)Y#j3B$- z05ww(n&cl|kJGZUvZU{uTL7-eT0-LFRX(VBgz|LEjvCr>#O>#oIICnfo=bP*eV{h+ zFyQ0>ulb>v7#Hj9!vgkq2)$Y30Ri)xoR7dB6>$bOg#$EO(s2F`1`EjAbJ{x0Y(wc_k6 zUU09uOfV59HF)X(h1IPvH&ynwUg0z;8teDsHEnCTrQKI#q3uDaGv`*~-;mAj-7B_2 zouuXrV32`NgMXIoe0eb+n>^y4+FM#$I<-YX`yd{dT&6U7wF2d;5eZE(#ZJ@!J9`G_ zQQ{zS_3c`RIIstk=i}w}=Stz@&o(q>+hhi=DfA6!0#r#CR`vI+w&Gbu%g;Cga?wd| zetwn_Cr`L!Q+0WacT)ClO|i@NYW*)vrM`JwFa)w_b>zh3NMWXzOVm)CDBwDd@aA3yN@w=KvhIth6UqTEY56C!;u)&&wzt_VaadnMVwgoX!T_yu-)Ghq)BIP!c+c zJ+dqzNnIWpn~n#Z%=%s`Jk1=Cr?8Pd9{U2}(BrkF$&Jn*CMMz!o`ydYVgtES4Bw>` z|06A==$fGB7T6^c2Z-L-hZO>Q(87K<54gM} z(XBzT8Dmy3sNo>4*@|ilEbbR8w8NVtM!93PlKizYU-CU)KeK*Raqa5W3u<3?+=oh= z1{4=Zy$2+3)Gr*IcO2Ig)5MyPLxyJeI5EG3lCl;FVgzq^9L(5rUuv0w z`ZafZZ6JR`HdyT!cW{}~VR9Z=i!Co=zQnXRGHD5Ouq_aHoivD94=?+B-y!3bqBM3~ ziH@WLDy$G-t1C+Nc1u_g)-B;>gI=mMhc)~YMb%BrxKmHGWB<0UiE!r&>Qr$nx*`Y3 z)d;*GrBN>dbQ&e5jUh}yTf2^~t`K|lnInpqq~+wgl+O=YZZt#!c-9(C0CTJ1KnHEaad%O|=M z5+(tX<}h2hd56l+&%Y-P0gMTGn$p)Y6!jSvv&$TbypG@M4cbd2J_k4uYwC+ z9b~PVG=?WTXXh^6I4%VnRVG#h^kw;a#N_7HX!Q$=NYe3EGQR(C~{FF67)B zZ3WW6TWVoH63SyjE)&%2>El7Q4OJtGfdh2`xhoMWoRY`H5g$H=d;)61&5n1U6Rq;` zC+3$4?`8Wpm$%q1c@DG;o7xq93fbTBgSojNk$ds)Qtm=<<`|8=D(V9PjzuZ zEx&`=`;_C*c;uQsBfoJ!g?Zaeu0lMlERb%Y{B$)obLXr8*S6hiV7-#Q%ZXA;n8*cL zSsRD&?LbVlA;Tn)j4wiP?=qLhdi$U<91mbo@W%u_bl$snTp@3Li0yYbq%Lg1gMiAb z>nPVA9(^cXb6nLxL5a;5z7N8IV5DhQgv#kH$;pWD%N|Fl>f zACzR9nGd9@eTAfC9O~>MR46IK0HXXL(F@9^R+@^khiojeyVCrBU4_vugWKh(N1-uq z6qS_rZ}$f3jNJEfDmj1hn8X>@uyJ(efB6rZSoYl$8@#IPc`0u><@o%D9ExZd_0@l{ z`lT{{iEf1vavaa7EhsUV1RyIQFIq&O0k@ET!i2`d{+t0qf+8D_oL!yrH>)6R8*lyk zZa~FfV-1nJ6` CDMPR%&BXW4|?j^RWn{_$_r@^>l;~Z0c-sdVo>+>XW$}TmRDLn z=>-83g7o!@zf^frYbHS;@RZOzNz;Q={zCiMsZr_H#IyXIEI7qX%Y(5p6pb^Ucv>@$rK^q{s9CV z+X!vMxBHwE;(fg+)Z1%-OzS>}e*qwEm$*j!Q)^88}TzsBq>+4`hGep&(_cr7>Dyt-GnR^(6N2$@ActyTDv3>a?fF#Tt@Gz3n( zD+dvGmB2BpAY=)5;^yHYU&PW2Qx2c%{zbvS>t8oh%{E`1SftiX0-j@_zaI4WcF#xS4vd&4F4{274>qQwzE*EKDpD%?J4Z zVO6*@JV}tK6W3^4qT4?y^i2!c@&LQaehPwLKwt?#Yy9=X<|YWRh~NYfp0|&koTAvm zZgx&Cxbg?=r>Yx)LEv-b>orycI6*$Nbf_q{pzdM%=+5Dk|=@@otrtU7Px#ZMw2p zD~|wvSx>8_y1JtWqgI}*xN+B%bAXdoN{V+EN_laq2)Kk56`>%HGCym&K;v|k68IIPWt zS|_(ZhD6;GX&xZsK(3h*k6=kKGD?B!X_H*FPt*C6lj0sniC~26|9HGD;PG_X;Y};& z$r;o3#6Et+Sk?X2Kqc!aNruL(uV!|MU&bFVvekBlM05RT+IP3Y=;+?Q*lWn(M%AB$ z1T)1V+4u5KtR;oxq--iJ(Wd0?VlaijkCqZS<8&+nm&W;@wMp$eg!JM%)#v4nt zW^BJjuM|3McrIf^z8T_mN6uaGA&@K;`wEAZ@ zS$Q{7Z5|O8wm+*&PSXfnP@unoARyqO#0#xzT&z^tTqhF@q%kf;Q zr(cR7XJ=+k`8CKzxed2j125>q68r^Lx=jIVRxFGtmH91lT6=XO4&E8bta08 zBH%Bd+9UgXc7DP zk14I4K3lX(EI&Aih3q^#t%5eSB#n@nfw4R97=Y+sU*l6KA3i;#kIlDMnw*N>sa9Qj zoU0KuPwCRgzUW){HpiKry`u}`gC^rX*nUs194!sNa2mE;A@oDg>_;M#pAq=FuvW!i z1}aCsyilE+j>m#vH&>Nm$MEf5s~z|C^h~yXeqP%T7|c@9{gPE&)I<}Fw z1tR2)h@GiH>$R2RNvNEC4s30aU;kXT6Cbof7jUu5@m*?58`C4FtKu48%yZfYI=5!M zeq9+Mk0bCBTY)Y$z#(jWbwb|eQ+pTO>;VtrgcMHq{6K$10|FwYjgIH=kb1JMu(*`8 zbX%-gm5g&Vd1>DySj!%m7?W~!%Os_u`U*;?|5%!sPL{cn5_~pkKCdJB+TO4C8w|6> zsoZcpVxYg@=gG@4VFRww*h~U}Pzziea;7kI$^!^AC{i$SdE>aS=X1cej5T?2K6Q5= z{3sUH-`Ff-0nlyH0dTmV+Ep2!lx)r2kQeW=sm5II-v-=ZDr;xv=4|?DldMq@_C>vk z>%Fhh=zZ>eik8;fuFbJT(S|jQYpv6Jr!z<461nN=6CPle#OH3TUA^K3i+}s$3J3*Q zG6k1F9G^Tf|8e?(yQ^!kW>Dj+jJW!>Nb1ye>jTFXy+tg96V#5b8_$-s@t+XcL-gDZ zRb!}=ZxNm!`cdf}UwP1Ye2V-xoWtlgh3HX;rTfv%u}X(E}ntTB(RD+tE3=JQ-Ol!9N<|@4Zk>x%5EOsdFf@fz7$U zKR55xk1iajJkI7$+K-tGNqu{)-an!XKHDXIBX%+fp=-hUzNrd!cbim|Ol_6m>PtP4H+ zv()}n^uXw-VBh%YXfVCS#4zA;HOzvjS=*Q3-RZ2mG`17BwFy`Ri*V)bsqa!~HAsUz zl~;LY;wXZwqVhUFecIhp*5x;Vi^~Mvs2Yq;5mYdTh70+0--th@GWD0m zzUKD!-;mqr@!6Jyo9Xx7Fladd_31&w^Xm+Z8<2WSeUd$wY7O>LVp<^7WBW$MpsG=0 z>?sk=y4*ti>6Hx+3SH(xLShb*@rvzIj-H-TRBpth@DhL=Y?J8Gkr*{ST90;+P*A}i zC6eVe;PB^m2D$fGy8k}nuXaAEal;_vL=V#i-uU2*l!fvn^&bz(h!ic%zzw8%rjf*vRi6bOuPwdY3@}-cu z&v_ASTmsN>8sHc)R~Yn$?Jqy%$Y#wy{ivz&*@#H3J#J`w))t8SL4%r@E4s|d)S~7O zf6w=>aGp2>qnXic2QNZE8d*dOZ{Ol4ByEU`HLU0#%|F4p53v%HdRkbY_wnP$$6xR} z62FMA_#VE?Qyc33IbJ-9~iQJ#rT1#61Caq%-Pnv)e|8C8JYKgu5#x(YCBYn|c+e3*5imtFDy?siqn+n;#s1wX{36`ck!V)r_I(TUjK?;5e`?BYV|M$u2>T!%}M5fKp=QK{`n z<|&(%L2J5Md)iq2kLQQ{rkt}ohPsFRBMd&A9~Fj%&m|`XuJQC`W6aI&JG>V3(nTy9 zg#;4bwY6>cXaX?fu(dpKvEdesR@Ky{wePo`?BVC^fvT`=12Gf``T*V}OMTFL`KLmJ z{0VX;PSF{-E!r7ggmCSKOH#usShw&%%JjjmSf;4o;0{FLxWeC`W(~uGJJ$Xk6^z@l zfIR_I!EnT{%N&Qp<%5700fjh_W>^wT{D9Xd`FhWVX=#I0Tcc~O4ST-BHF6Cx2KVrd z(J`6r^3azVUCNWB@-&Slcj`s~uHHO&`Rj3gyFjUsA8oWk)#!xgC5xHa9)4h}y2M>{D~M8OEPHv;h&zwQ0K z_|dvlNgooLlpntuvKrmN3|S7HBozmk7q_PEw*xYThNIMa(bu|Tio zJa8CNQ&*2whT;aTZEV#0dHV#J$hOY*UC11p+^C7XlcDj)B6n+}5`A8*1#@%E0-9yW zv<4?>ya)9Guo3k)w}a0!Ea(3TW8=wEYoHuvXV>BBNZIyjs$I&WkHX~CW(vyol1OEg zv$Wt4N7GKszG2UMxyXF0xT*IBh6qezIB<~ZgBF&Ux(|a(W6Zg@X!~Bk8jTRWaz}x zhO7zR5D_Hl@KEr)2pJw8)&N&Z z2Hc#&Wx!qs0&4~V)T%N*U8w`I(%1OS^-B1H*F)7#?^X=`j%*;Sfg4VHfJ)pG3K+`) zqEI#O-o0ZNLeOr69^0_15A-#&wH>Rt#Ej?Kvtv8*$5+q;_qi5WFwf_#EXHvT;Ze8~ zv$HZDH&|p-?WGN_zEtu%7y_1t|MJ7@bRbMXbRVrM(RSiufDG|CkQV#|wT(D9I0#=? zCLhw5Fo-Wt?wmdF<8CQ}e2G;861U6B_{Hl*=MF>iCESdae^O)nwT(lWsQG)07Z)5h<>R>oIQd|F`Wf*d*>A+J5L zt?2;gI6{7>b2e>B0ZzZZTv%l>v5kKWzC8HbZpE%e;otuRe*8@S`^!P<`Gb@RH z(77%1$GWP<=#YOq^qJu)Lf3605s>Xlzk3|?5hgLL=#GV~ zF5%NB1awhXb=!rG%{Cn}OPVKAOn*Z@bQkIfpgw4`GrX2E|z&{sYm_^lTzo zprGP#m9c-PeUxj6Xi+L?pl5XBnrUIh;ktG>Wh1U}ZT03$w>!N~C>oJ~Qy~BD;=+s9 zGP@jz3=;mTQqpO^>B?&t7CyY^O2a17)>Y2+W{>v}N{XF^j3!i)B<5UjLO&hBcnRX- zEaymfFi@_}7T>fl4!=A6Q!V`V{bI3G??$`O{iAm8u644A@)s7xQFi4!u@&%sY0q0;z zwQ`u+`{u`pxwA+&*}7t1tFQA)$k%9UFpVijmq6b{VN|$P8+5qvb;wfEslD6snRmEdA6v20o89maYe{jIbVrf@^9z^abeYg6f?K*-n^f z6i00Ng3ZHmT4BG;WY>qWdVg1y-Uq_QbBQbx39j3n*AH%2aTp_2Llp8L( zhEX(7$)fb={-o+3|GrCJ5ViWxXVlIi+WMSuwFme9I$V(ty(c-x1+kW($;@RaGQ4Dc zG)=_lVq9raSydzUq9a((@{P!H@Ip=QPa*x(5GicA^1tV8_X%((A~HdwT7+zfscS*( zN-($FsYS~v1|Q0A8W&lGYQOcA^>N=jQh946BLS=?_bGgk8X|m>^0dSDKeOVwhUtq& zoB*tU^ONd+_C^m-7>n~qi7teq=et@P?pVyI#Rnv^|3yAjfakiIcH{G^E%GDJmyzw zMOk~pdfc5TwPuCj z1~_>}PmhGq{^oZXt(ZfrzU%WIV;vc$(OmII-I=v9%i9#io}j%wMmgf^*sVi$Z=nuGJwS@^dobKwo2v+0ch~rOuPB75KaY!G{@aCv z_3=OD|Jexq+;RDondRXxAmRLRQvUa2x6)QZqcZk&n>Pp0d%~3(D5h9fgOzb%rV6^# zylUY$I07{Ud-#^$3N6F**`X?&By4H3lXY&We%s#LZm!taewnW@hD66xsECYnSmpxF zAN%i9i*<%A4~=KFFtHN8_x=B_usJwP9Z@@L5}&1l9h*HN$>40gyPRZ{dyOTyypgZ= zjxjhE8>r%+eRgU8Lai@pP^Y8*g_$E~7T{UXowFw@FucR&f0%66j|cxg=D%EO6omokX^r_< zIKJX-_L9bq+Sy{E8Hv&5D%Jwui_$e>l>JZsuGa4ifOy3e*f?SH-ph)u@P|@@3qsu6 z+frfFo%1yVs+)5SwqpMQej`nlwcygrY>fK+5Tvo+R^vAwX2Ey00A%PB6I-shy0*va zwC+w-+#eA+|GRp!$N@eane1p`M)^@M{QmB_IC$i9+M4Io-W`a>$gIMBFKA)awe7LUTh@Z=tnHFBc^WQ-UVmGduDU9u} z4P~Zmx@6R6jChNUB%N{9H&JeZjZ`yr3SZd&{@ddBAHK4&4B7dz5`QvLnND1G{ujmP zWFY%Mt^}eL-CvhX_Usage nu, mu, prop_missing = 0, - train_prop = 0.85 + prop_train = 0.85 )

    $(^NCo7h6XM77y77NtIFREeJx-phQ0_HtqUY^Geq7Dkd z&d`qa?`T|~NBBBOpnK82**&p97S`s=ymqTU|4yj%AMfvC4hpP}=kQOh3q1z+W5W4n z!&F5UB&t~tuNPG_gv;JGo<7&UdJdlX zX*8K;GF&Z_q*nDcsIwhBpYuh|Z&kLo8hC$?xi*<2`ShktD!|=d+spb4#u&YGH7Et& z7%Q=9rEia7xVBKp)Ty|Y0B4pBUKFtcRRX7|cy2yJwT}hKsZmn9zsUK4y@jMzNn;xd zX#`y2SkG;(!B27D*+z{W9frwXz?F~ugt%6p&e@yG1X2~(qk1ItTUl_;k zTD~(hJpb$8LEpXlC8NM<&)(27xi!T2>J#hZj!u>xchSh7sseH+(!!@zTya>ptcJCqrCRnDUY++NeY6)5!!t$pt~ z7LL|R(C8BG{k6U>f$jKSQZk!&@PH^L*F${!8j{=~cJs3!4yYf01zh3ehd}4LzZKV5 z^z8lM<{R1;F^8$Djz9|Ov?f=ZY&81(;LUHeR@6&d*nqXILP~?v*Q2fJ<2`lM*SNtJ zL-7>BAM7w0F=?!6OtZlTX~SsKB_h%~q|GcidvKK!{FMQ{1-@_2?ci2A(0@Ht(4~T6 zX-R^S3#ndEaGDRTFV;J5>S#8W^{xcBE_k!BKM3_v8d}0$wkMUn{yj3lzk=%e`THxTn_LPveoAn%W_6@VJV{@N(>m z3R=w9jvm^+zW3Kz)&R^0kWT{8P5wcKFYd7`I+J&(RDZX3(y)ig$A+13bl&O44fJg8NJD$y~n7D1b zjSFTXwyLLgs>{~iTUizMiZ0CpWGhOSkhAJC&#IEyf7Cs~`wIzw+r?%asT=8Rl*s|7mOWw2TgRT<|IY=e>nHQm-e1m(z!Pf!g-?NRZ)<1Q^NmswOGnd| z0%sjL0seF;0*)r7M8yh<3A+Zae?m!5QT@i1%VbbxBupgy8PcSRuTlK)KmAI9#-^)+ zPcd+g_9!Hyq5V?l{t9fa2_f|a2j(aq8dZ$ZzcD@^%(YxxDuqk(8grN*gkI$r6Q_Wu z+W}VQ9DHBgj#3j}_*g+APt4Ge(ciY%p79Ymd|8e)D-d(h;O|sAjHGLm%vq6??|QbLG0a z(frpG`aeDdc0K1f=ah8}pVUSi4ECR+q!9fQG*Z3|4+YYhqeT{y&-ty~dhM*O_ku(H zrl5235s^Q}u*+gKbIqyp%ws3pR>TeEdYkMDSeaKZWCdz-9((!fhV$ik)f@OL5H*BK zXA4dHgSIA&#bRXLrJvR*eauP3Cpm^iS2a?akw8D}MYQ}(-hqa4=4aU)l(|?FPdgPY zs9%&}ZB3GCMDZsDJZGF6o0|=T=^u$8qSPgxa7)A`%oKTfX!`P8PHJi|2=EwmVzns0M(8 zq5Y1%X^&rAk7&6~#p@P+)Rb-GiTGYP1oG&7*C(qGUd%CrAL@}EBr0hl8ft_+&r?wj z#%Mf>yWPu^0Kwvcl^oAGnCR5ewOk(G-K9=`OC#Rq4%*O$^D+gOm0R0MNi$7x4PvhU zF4&c0UIiuE&mM%bf>{Q)dsvhAoW>NGQj=K!HQ$=Ix3QrHh4Ux;!Vzq_l?&1eo8kQJ zqobp7T4(?TgFF?~x2%V(dQyktsNZ=Xd3H*C81xMTeDLjZ99_Hu`|`vCaVNpLnDg1| z(ec}1aReLVI4zPK_;QI!`k;Olaz%A5UiYtvsw^Rn2#BhWy08Z=MBuljnOhVP7A|{t zhS@K*7ML1-N*^K15dW9BkJS)%?t?fgVY^TS42-cg1BV|+k+$F9u$05wpWYB?M-_hw zXONQIx<>Im+Xx9#XNxPj+Fk%7Ip1ri?slr!5ZN5KOwJ(YKoH>~;8Kv6Ze4QesNfhT z&1g!yCbYys6R{odm{R1pkhKWz%BA}}F?S#c>Ilzqs$o(0uDE_~@uP_xD7=CLj^_^BuMORl=3$=}-&e&8q`@!GYA)zk~hI}sh7c6&{i}k)% zeEwXVCsM)JK7%{}#pC+tIqv%Jd5zua?1wSri!u`%eb6pn4t7CeZLuE6LBy>;?7UH*0|5sU!(*{8^N|+AVf- zW9bx$TrM>{2F@vtqYa*z%*lZ-<(F;23<--OHUx_$)ytD|483dzLa@#U5$WQh_OH>> zjJteuALjP1yzA`uRSi>XK*#ZDa%vKI6tbw*kwANvC9f{EwhnJ$KP$vOlko}8B`|?1 zV_WXFfE-Ul7Kx3?IKdt8@#34#DLLwFFOucx+~SZ2%AKLIImh6vB?9k-+THS;Da5Sr z5Q@vbg$TCwj~;TRN&;CW@*M9))6vmI=Lk9UeAAk|=#Wwj{Wbahd~C{@$8I`7BN4T{ znlm~!mM_itwXZYQt)0|&=OpbBhk(PB0GH^ok@vyr3bKnTb}U+u>v3Na&6Sx}YzA`Y zHG$ice*OA`@z+vXrU3b}gl!=$rX5SRP~vYt^DV#nTU^;BR8q+LT_(+VMJ=6$v#(8ub!AXwUw$hi55#%VIamgb7-xpsXs% zdwFXvE8OYg(00%Eq-Gfcx$@cA+Ot)_ zdg`|7WIPR76uGJo4`W{2?O-r{vL=N%zhatRFJ}iaLEgaDQAeSWLD*p?&065B97Ghe z&aTwAd)qNai?m=Wc53XW^A*sYf zq>nU$FY}OYpJ5wD2ssFAm`;U*wy5v4gW(z$Yb5oxqa}et!sYrB`+^vDB);>ieeP$a zZfQ8Yz8bl>>j6KmvXRR?-p|Ygq*9#ku|lHJkjRI#gR=AfWcttXP6!QFnn06{o@~+M{n;5R1 z`r~6(`w!}S+(w>Dv)kJaDk5jAk-|pE%iaQ0-_t(fi*;QoeUBOEqHsQHOe)*G_N3BX zeyiyn}f@{{wotp)05jk8MRtgKdu_gqV9poQ++Gs!wkom7=A-gC}rVl0AQ zLR;2$cK6bzmR3|diDs5guWGI&qx;WJEG#f{JA+Z!^)ggKh4o@PHw&fS+I4xjD6iG& zUbqI4+MG*NoID8sZU@aEe*(8XfBQlBV}KW#Ca!?%my72B1Lv-Xxcx{O-!s_!p^EN? zOUs=oImEHI?1A{jPU~X4FM@$;_3)Jrw%M@Ge!3=HhIH2EKWwxPDSG&Yh7tX-PbP1> z9RS=-6Alo#*Pv-J@`i{$#pSQef{iy`&rn<7xxS4CqTm7rO*pX0@0X0@+tC@O;5mw< z!j@YPX1hasRN9k@BKZ85ZlqOI1n2+1HrB$fNWXf0(m#^(UT`a61RukWqj0wvt(~_zS&Od1`MLSpb0hlF`K|gsDl8&Mqic5fJt<2Y_8q{p zealZvYibDJ>vYqi;PglZ@QIVa!?#vuDk|+MxFu^apl8!ztD8I zF{PMoW*iCEOOL2?XP3aa18&&DSuC17-m%N7d zFF8A$xsSI6+I;})lMf+N=D*)hy+6Ki=)U7F7P*Lf(rfflgb0Pz$s{Uac@QdfSS=O2 zGEsR^;&_>hJoweqE<4I;c$DKq59`TQK#dd|#FryL^j4Wl#MzfzD+Vt%rp-P(YxP6{ zU*O&sTU;HvsrBqH0FV~a)#4m)|uH^2`-AT!(tHessNDue}^Y|&fw}O z)1+*3aD(A{MF|`Yv>u%47sTJAzq9j5Tvi>4pUh8}R9o~rPS^AxO?nHpZE^CnJYQhg zS+VNUJ`9y}(4XgDi)H<82Gn7=pFhQ)d%E&eS@)eLt&W>M>31 zF~mpJ0Y#a2;Gy(a^;N~WuC2j$5zNP0t~gp;f;8g-&%zfM!ZK#CN=+07-U5luW0`y9 zP|S4-&SxcGv^%j|B+`;gKbu_Y`m`5p=-&OW+vzBG`}VGO!_vC^KT8tcO;5oF`P46Y zu_JKJ=b~GtV`!NAXV=3Hz?F_MBb847@#UWme0{5Xc=#)FG1twNP{nY%&Sk|&0lTJJ zr>v{A8)>We0|2w{j3uuF$Zuj>Rx%6Y__AAck-A^iL&%6_o05D%&_`>S?0K>O77qhgNg!pGQ z-{qW^!_vqVEzjuy{$=|lYO#sb{>biSJ6*(ds{!p^|EAJY93#Y&@JpZnQMJHIB(nGJv9~9k#L0wR^?QyR!}|zG#dmszjo`ClmOT0u+;dX~?MacR8)KKf zn8wBV*Y-{8g(yQpI)f!th9F8TcQ?SPm~N zK9oqbA(i3q<5%m^dAV*?AZ&`u9dp=}u?1=i;*#48@@KaeX<#?d^%L7XJvlj)trc+1!U*HRJ*iVUk%L>pQ)gb7&Pp|HAK2MiJ2+%)h;ef51iks1h7T%x33u|Mh*FKi>`QIUl9i-h2Yupu*`U*G zRE+e9Wu}Je=)t_P!XxbV1Frt(C+q zKi6lnNzZk;B)yk=LXj@N2Cyk}wv4i(A`W{3C1}sBx0w$?fgyu%uow`Ix9KF02<=@zN#Ir$tBHnuJ z!O$%zO#>auFVTmo9c>-o!b)3NS@pRU{euJPwv;#kxVg;p?7^MhG>cYc?oZ{L%70ztO!0=WVPR9%lJ*ZvNE|_qd0?!2P3T z2pt`;YuF~)HJNFba=D?R8Qh$dHP@R#b`B1ryA5*@ZDuMrrla(r&_zUhQihsdNp&n( z>?t;zl9eANk&EvX3-=tlkLzaC)&q5ZUrcAqgiYbsMAfnrQTUuB5pn;vo~|U7{N~+s zxfMRB;1VSYD7gNW3}pZbI929A_rk9)#oRYN96{8)Gtf2h7gu9#R19fpY0r&EnDT&s zmx5-0l_+fM0X)y12M>3juidA^d(PlIbPM1ZObU^U#Rqgs5-%XF5e;Eag?l`YYwBaw zws#!GYpvAU{YN=;m_gEYyQk0+cr=-0VHR66X(-FyZpAWUF#)6%B`N+Fdp4)%N55TIhOMvdPmGT@ei7Gi zQ=(E7VW^{XgiwG=oZ~jPw^fTUsW?0sJ++$$VbRsLI&Zr;=0e5s>|kUnyv@|@2Mhmn zpFvXt&=j*BPurASzLV?+I5&d^uIqQj7`=T-qvjADxT1SP!;hn)d;+RwQmg@zm+)KH zG@6X~E$f5O3uVozyI^L_00cV1&l~BfIqu?9-C?ao{WZRq3^YUSNk;@73`iJvN1suH z2MTrN(DV;h;j_8Au&UU~1WjS4tcwB!+9R_!(iVTv2e3Jm!n*#u34?RE!Ze;LD=wSR zlafjl97)d(ErkbC%)am6%KIkyIkEbPDCSShR7tgCQAr8HlP$BK%B93{_!*9_!+G2F zafcyN7ku*a8|c%k^HU(lff&~&U03@f0Q8!B_BVso>8~HYuNu*7_zdj22`}J8joo+e zY*>1L25n4fkahA(cZ8h~iyv29B38b$g(07^xtcQF%#4ubT;;X*>!f&bydv3CtW zXg#`Qu%@u^rQ}_Ap9hK~;~#+`@-8-=f(%ga8|GHmxA%+^)|^&*##DFef!unICxEiX~=kp`RF9&Vm|o_2?|4!0)A zZGYT0ji;w@0Tfjnnw}o<_?RnyTPA1# z1eRx0g>m;pr}4IX=K{9EPsI-DCp2r~m(b4uK}*eqLyA)zbz`hQ(0MYK!CRZvZWVLq zy0kcSoYs|?N|1-k zxKWs_Z`#sh;8fu4PaKJCbJk(<=`lOf46W7;(dr88TIGEwzVaa9M=2R@Ssm@-`#qko z-zTi(jo^(iZm^ZymCa`B<$9}(dR%* zPx>u%Rg-#mp`k?KFCNp1HhBiI4 zGNkVC;ETFU%k(U4mftD?0J_a~(@m!)?Fn|r`(+=v5F`)L(oaByWTTn)d6{-|sgKvj znQ7O2mkf4KgP)DiYT+rnUiD)on*`c$tCsfgX=;>7cnH9H3TQ-JPc)luc}IhAZ?}60 zGE_gx&3_hX`*n^e=a1Rx^7&ED#mB?x=Jbs!1DN1qOB6}n1K@9gB$ia}duz3F^jkT1 zJwAYt?dIJ`(XCwu#dxH~OvNdkpd+c80sh##dJ1{OTjyO^y8IqhgxOvN@JM)lA zV3MZN4&+uzdGKsql|l3W`sJtNiT2p;MXuzNG8#F`yUXx-rZr?dZ2|4x+`DzX>da%< zSy`!e`Cm1DZOFRN#NuHyJw_`%&--%UL3i^29^eNK%Q=NJf3oa03a9pR(=G*1&6g&R zlh@Y8{YGirPJE9sp69`001en<7RIlCCz`*b`7%z9KA~6u>jG^B-Im_)f;_rN1{#Lt zpB~!_RpIs(5CR$cfyaD#py1=kFirFM8^(d^(L&uEuiz+i=%~xK4UFY4UC*Zdp{OH!oo=dcW#Cj$jcFZZqt6-3JY`jVhyn`XGhuML6G$C z{jx!2#mVhPOiqt+YJ+Vm@GL+g2f%)dqS0IfYeLuOr}~4C1cYMu-C=SAYtiEC6J`vJ z+|*aq={mCtKm3#(8K+aEv<_qb`lP2lLG}s~f-*FKvOqVxVO*4ICb!ysdU~R>0UmGl z^Jm-MOy(nC_)DR2RIQd~XlQ%o6^40J$4C8TZx_x#r#Sp3z)r`Ios~8B9k>^^InDRH zMae>^gw$*(dnR?QaK`Fb#Ff`;0 z(uNeHtM;0K_Z}2fOF`*4H)2rihOv#1$tsX72hRzR1<#R1v$M||Ksm2Skgap9(GMRT z9C*>6KJFxq+~$9z);c4A7X&&OKEk94IsBvx=Pm)qL-Lh|wjPHR6>u_+>QVuS`FZvP z;3#pQHwg0t5s!yx94Iz=lv&4`e|L8^%H}F!c3^T+)C|zZ{W_()0!co&i@{=e3*JD3 zD}dZrk-^6)n+j&U1pJ^VTP#FomHI$0LnGe+5lrUR7KbYQYlCF}T}=JbOpsA(c4UO} zT?j&D2&oSg$kdadm>z+rWw^g{lg7hD@kF=FQL+No`u9Wk@=WNd;y#W<*+LLR!ILag z54#v31aT!rxy2D$e(iOZr;Bz@&wdpRbNe4~!2ly)Y0&N9L9uAp$UjedSNklR3K0M% z7=nTVkOlLMTVIvxqO0n~g%D09?{=Qa8w8GjXyMfxSdP9&^x33QQB7ljn1P?@^V~CM zuh3|h-@Yu%Q6#nm!Dx?YE%|!Gfz!K_WQ2_s^fU!8jO)E#O$7LRJRB%eaBYXx-Nq~g zBlUE@Hsl2T`3j0eh9ZTcZM87p8YDEgf^OfljL&9~zcD$Xv%bg6aQemRyIAzY)~O8= z`+{f*yUtMwW|C%&Ezfk30iu@DTA9w((}*bB%fW5?aY!^B#d0u2K{h`%8Re!(;89cg z?&6DFI*<}sC;Vu@GI~#5H?!%ZJ54Nbf7YUHW1Y*g*`r68Z{ZhH4a8#sIUa(EgP@yC zRvQZosq1Ujv3{q;Vk@W4=cj=qaPYhF#yd9{1mOeRvQD_AaY_`mP3LH*P3NHwendQQ z3-D6B5F-;8Fcx!L8)+<*%7#2%<7KjgpHasD+#FyOPRU+g3sA3Ls@HMH0}BH1E7y;& z4d4ssEike57tn@`%c8%Ugi^C!{7_=&+uYcDclqC3fT9PsbVh51_T7%K zypaYEvRd(|F}s1GN^YDpPp>o2Qk}jh-Z?D0f=kI%hp}4)t z7GXGjtQMZ_G*xmYdUx3;+E>t7>Ef>m*#wbP?=lm+v0 zucxBZR2_Fd(?nM*DuhYu0l6T&Pn9l~AR^!)p50ktw(KM)xJ|~7ze2klS_uB;;v?z* zA@JfIE<;`kQS19f<4OpZWfG+W+4E|B8PlEp_iK>&o}a-)CCB zCvUFkC{zA~g6r<`P5DtpPc5}%uu8?*Ep;Upw;EKb(YN!|2S$&DBUTL(?kOH+XZI+a zo%^Z{)G!S1IMI$$Nixszm)5>>dw^!Q1(Wf0ur2y!e2E@IT%`UW7Zex0uDWMU`F_Vv z=ld_WOd$)Qow4msr9F655zu!x@pt>7bw2qIXI?OH8X#UAr8Q zW%Ksy4cIMnqwgl<%Gb9~p^Lhs6v0I2gpHzpK0>qG%uoH4LE|7qZ^^4LA3ogAMV#`l z`1q#?hpl}^v1{x}vNDt$(oLO8?Ak1XQJ)wwlng#FB}VFFKJS_{lysF~@7Qp;dT}s+|ncxw)GGvueVn*1x64_@JA2V}{C2Zr9X_V~jCnXqRWNT6_eg<5s2|-? z1_ten^g8BckS)Aa_hf)j-fr{d+<)&5@LnCHjrQXYBM$q1V-y9Dm|gH2Tv#{E|<&nf%3_H0*7( zcw*Bymfe7LwH+Jn_gf1urDGRY^_x2pn;4ifDKt9~SYs53H3eTQ7c07s$EtSRj^`|K zOrqK>9_;Drj-Gn>%>+T#!O>N@X-|&$Pv4b~($9fg4?Tnz&`)KfSLe>}Pr3a&*qwK7 zp~N0F&hP#iY}C;Zi(WWoo|{4peNb>IJB8(>#UX?3-Y~Fu9FUlnq%~wh@3xB(_A{@C&lo7j0`4pTyZ2;s4UrajA8$aco z>uY?59rw;6T!?`%oWr8it^5WW{mQdn`*dtHs3wRPz6h`DmG|U}1Y07=#y^{1f#YU> zG5U$ZdFFh;O|_#~jbcHBTD!HeY)LXC^y6TI}fP=?Jd#wVDG89w4UY9yAW^rO-(4R&~&2y5wkB4 zvoxArY~CQ2?Y_GMy=#39sM9km_nKfZyhPA*N#0G~Gcfy6bi7=>U{~1*$IY~wh8o2< zByDO_38wa#bL(aDy6uI;JHWEoa|m;LcBNPl+Ms;;8;D|UZJqreaWBoZMb%C>iseR{ zz}JiX-rkU@=~OVR;8!RXpwz-7n_dIr*7HDV_nqA=c6(Oe+n74p!QH;?laG7rAD!d= z_tfPB+TIv?t}s&WAw3ovcK%gtLA`aDiMotMz99~2yRS%@-YN{nnI0O81Ua@pI)Hj$ zWcE->Q}Zm{RWO*iy6bzn`=6Ir2Efz&)N^2)AYfe4X&PJ7>qx|@6Mfs%DM4_Fju4j2 zfW#1$Ysb6;I_9TaW`egI*wZ>FaWF!b_s(F0JG#c3_|C02f2#=pX9WP@Pwox|>|zdx zu+KWyJE|fYojp&GA65BypyHeN?3blI&t1dbaD}F*-Q8cO8nHl?4QS8Af$3i%T4}V! zsA58L@}kdV8?$bi9ew|I-;!@}r~!cjvlYVLVc2cDcGSEcqrvT{^oTYrn>_YZ7uV;o zguR)dEvp&D>d;7_xiXIH|rW^Eni$hXltumt+C`sf7G-+zH=r4tYC` zy(4}KpIoNqQmUKo48G)Vr8)eye|nPVODl{dAHUDGm5-D=s?4@L{m(xebN3RwsFr!`3_Y~{7 zy3Sgob8$q?>#~i^ggX>G6$U0neYL=qv9w?-LD1WAV;r>d{@&f_dn|Qa(oY8n*7wZz z_r#*xnT0E|o(%Z99p}J$J&HWBH*YCK7;{Bi4N<*HkI_gxj=Xra>lbbgXf{bzh_Ytz z5uQQ1x$ha>EIpr|@|p0Nc<=t*`m#_jQypb_+)k(XI1#vF0KER6E4op7H|!0w%>DW* zD|6PHu1@dSHB6LXvXly@O!ioBAufzgaGpYh*U5CS5kL36QPl#y`*>J;KvABdj&%3; z1bsxO@2;=i#CdHA{??c)$_*CF2fXKu1DD+j36jztiH8prf~W8AA6pMMB$b`7mM*4@ zc~sp5fBcosgIrRcm1-Fmn6lAXlj8KC8#vL$BZEO8QL@GO5+`(9TWi2@|JX$#!hQ*} zdNvDMgaiBiHaIwO-dr_=B*kr=>{O`xFN6s_3IuNBOkWED^tEGnea)OfsmHM!n1*sk z71<80{Y>CbjNbtbdy^WB4?3(>957ZxJy3mfytQGhIR@1 zk<|Zw{$C})7&Q$ojfxj1{rD9oLVz-bd@pC*k|ajhKxcT8hnI>&L;n3($n9faTbo;X zWAME;3E!At(x~}x(}n(#G5pWxLyVUF2XaX%DZa;tkRhzpJ;Wm&SCw$4)uid~AN=|E z+qWJHq~qv`kkj*c`Tq{=K7l0OBy4?6PHROM`i^D)L+HHqiVic$e?E0XC>pfwR^qm; z$@e`6J(|Bi^b5@`03MM1E|@(j;v8F*AOla56Ojs?5zb^m3oks_2~gIs6GBO+mHPq+ zFGxQiGu>$dwqs2Pm6D;<^IZ6`4#*J8c}~sT3r76G)>J(m%kGs}wX~fbv(of}YP@6Z z4iir~-~KCskai;m#G|jpk*l)7wIdJdS*7tB+Fc=rK>b$zF5PtN9oSdJp5|%522W9B z!$o5z@w9CEbW6-!=u6rkyMTdP(}{A9}`TjdX0YJc>UkWR=`1=Hhrve>IH>J2c}BxnVB_`MG<1HTB;V&nDp00OqOk6qZS7`g`Nt<~D)FSQ5pBjedJ)f%rdD$<7*nOhPZ{m7H|nj}p<~y?}HI8~N`$ z&9RY7GETx~T%j)5r7Gb9SS1w*Vil7@r5y>|)CdMSt!NgAAnG^ln1Egnk4tfzJq-9~YL>EN1Lr4-aU{uk?4C+F^VHu&;}1WkQ^8`QoYx)R z&?-Cf*@4_mf~~`(Q6iKVyV|lc_I6$8xUse6mp-cDe?^?yH_}2Aa$*nWj&I#DijW_J zTS`=-6-!`>nrw#0sVBjsJ@e| z2m5~(ET1yPMjEvOg!KDB{y%nRC=An?3F}0^50$Y8e1qP;&hH;t&e|We#+x=ONv#tH zJ)EZMJqG1w(^wlfJ}XtAS9d?Nt4N zR7ubud0Mc2dSeJF)viJ(h9bVV`DHpftJgxM=R0@GOm!BuH8jE$B{hwVnn%hDcgKC2 zLF1&KQJb}PaBOVDB(5mA`G-(5?z@86`pok3EzTQ_e^u3oelw*VtPo`__?GY7LHON9 zEkLLsO@G}(`1%_@*{pun*GYCdBW*_xpmM@IdtXV)8SD5uA_y`I{VI6Rll!kgO#ES- z{S=`7n*Dl|^)5H)I7>fzorLuArFHC5d=$LHp@|dzNOL+phmI+SMb>dzD$AHW8bcR{h5z&5?rK|$!!Wk!>m{qzTjSxD3pDP>BJrtY>Bj%0HjED z1=o)0v^!YT?kh?;!zb!pR&PQTyJeEMRrw!u-T5p>d z^ba=(z)k!2Ip%6PPdn`ebU~h(_S>)4JSo0C7fZ>PF;=Y!RuaNBBi8mbzKVK$8yTYU zc*ZfLT`y0VE0NWGw8V%Ga9a4WaBzrQP3-kbzdDbU`7^ybvvkB#S)ZDkd~pz(<9!uS zT7N_VDE!SOcA+78qL8N-UN$xUtmWiz+b0m8WRu9fC459#dLdXXEiGG$k(FdqV*~5y zIH-r>S`Y2~9DqYmjAxI7$Ou8UR$qkZD1$+S`>@)Ev&&ih+T~gSZFPky zMmXmZNUER_G5>U2W^>G9(dZnfHo@Li-;=OlIS2^Zgoq>)r}^X53TMQ2-LVX9t7SVb zN(Yi`CPoDW1e90E33)CdNBXm58CRWVsdfUT;Qb;`2>#6MUzxFuRi7?M-Y!*_q6Fzo zsb;G8;4l)8*8)Ryp!m~VXJq?Gw5uFhtF$Fy<%&B^hp@>z#fpIa zA$1$-ML|Bk6oEUeney^du_5{#@X-*tPStH|Yip;u&4UWKqn{{kBp)ANY-GoM*@w)U zNzc3osx0MBy|#31Ec`&`&XiQq-xE!l4J^0vd78GiA zPCz&PTIvgFH%kr}6X5nJ32x|Vtp=n9k|4X19cuj0#W}-2!5gyYp_ALx=sdu~>JBsh zdM#3!2(DIZ-Wpug>^ItQ<~vQQExPg9z)gBiHqub!hmE77BL|*p%>8Z^`s*={b4?a} zNqELh({-J-{klTb;xs5~n zW|tr3h0RvmJL1T}to~1S4X@$C{`4M>dwSc%c_B?`FmFV53K~)6Qk+ zDZ@ExY>wY5B@6rt+oALgXqhqQG*hZakgx9%+EXv~ztR0?sO}d-y+eJK9GhuNgb{9p z`ThH($`|dBGOeMZv193!CTP2GMO8|QImebe*lu__7i2ig%n4xIP+nvpkXVEDMh+QQGm82@PSh1gv1i!st44;u-Zr zB0^E(G*cZiM<*we%a@?rKgPy{=i8%vUrzX@&IwIO&8q-zct46GvN0!W^HM|&5~Rks zz1yB+A+=p?@i1|5+5LV+_pjxginw?WbAJcwQQ}xNZOTQzV!8yXqBkKQiS0n?4?7}m zye}T)kGu|>FeP*+ARy3wc$`WW)uX^X@wDR#>Bify%Xlx3YuGs(ceLMhl!)9aVCs0Q z_Dyic6bG}x_Ox_n4JyXrB0}|m9rICTBU+}beu3O@gV43A`tzF(Mc&DU0MLrZznI(* z#X5a}J5K9)Sz1^ab$OgGB*c+=(G~I^>P!ASTY4z!C8`iU$3DK;0`iUJD}?o*Jn0{^ zZ$^CGBmATE`2Ord6I|jNnESofNg9xDCG2C2K{o=g#Nv@JDKecW!cJRZIXN3NxXg#4 zNNg-_&+rRAy%E*3>F$k(cqQQaxzgfVlvDcYf?y4LKfVUJD>!O&-adUg(R_Ngl=;Xg zWyvK~l1FpHF{WzP!N!b&5La7e=;33K6`UY4KrXfyQ%q&@Z!W;=R=Z^j+r2Qx=iJVG zg2&=2^Yioi=%bBR_pJgW>A9@P=X1nlRC5um-ZHu3%$sIdP2M4>LNB37*{*emsM zteP24Nr8b9Jc^=9fT-HWi0X}05-1f^1O-Zq#QS>+%-ZJ$B+tBX|DK*?-~=86UPQYw zmwS-f3PXCGgkazppi^oKKdbu)?1H@IKu}^wjiMUtfR{H^RqevIKj*m;C0AzV1Lj}L zJg4H)FXe?jKwF(cNtLrVasvQicKGz9d#@Oo)Ii6l(=|H@M!5RxT4shrTqLBtjBiNt z1Pse;V$XE!Rh9ztD5m>`rPK8{QogrB+s46C1PNIqH9n8;!9VC4`FhyoZqs<}YaN7> zlad7hn1-1=K%W1yHRpTL*^<2kzarz zA-(l=S$~ovwQNb#=_`j*k4@g*-(<@c5( zl7L7lcmaeIb9s7$5LZH|TT!F(C0g|EU}x6x9y?FR#inmlvl@$5Sv>M{&7M7V)95K~{UW1N}<{_EE1&U-t` zLED~PY3yKmqbv%;|Ja$zG#3ZZ+!X+e*Vi8zvypkxAn>5y*P|jijG9DO++a>w{5eA& z(6tLA>OgxGrPbC11oSI0!@`PrJS%g*<0#+)){892}gcVUL*Zw}2HzY*r3b z#4KUfo7~}K&hWgF63!V9+I>2yY!fD)^ps%j{~jMd?W_>16ndz zpO8d3!B7q<#MoaIBUy9SK_=rW#S39h$_{I2NRj|-zvQZ31F9n72;NzkCfP`(&BVg3 z$2()Fmi_CB4a8@v`1O{eT)$9txt)59b2*fV@S-3}>=5!F?P z-zA3n5LuuDPg;-9$Iqk0hp9KBp5)D>@|b>mSletT5~l`-?~XsUsI_5u4Buj~m@Oo^ zjg86yK8w(ocJJTKihnjnM>vf0iR%ucrlzvexfB}F_V73qheRqfoq#R41)Ka7E*vp8 zDg49bVP>BpR5ad4*-SK2Nl=ev_&A^@f%uoI$=vv3*wC51dr%0qHkVWR_7!&nO@EL$ zA3JHm4h~8j^zR@Pu zUCUH~6hXK3Ns?(J(18}8q|T6P1=K!v!6r=~8vuLUu+-+5=V0&{(|&Y(%xi=Gi+jah znCrin{G~$c-so0`i6bk(ug#Z@l|3bycO^lEYs`MU?NP9eLS9>+fCY9mRiWjg0XyZr zR=w`m;da}(v+nHwln-(SyM*Js}4o_kv2 z$u5k}*M;n&I4>bsj92k(p!dDvo-GGDyu zGR$t$A!YZ-gGBfj7J3M?IpNdphW*1Xg8b&q*rS)FxVKGAF}0fn7e@7|>@_f5Q|V0K`R4;AuQt1?gFJR6fVpnd^n&pauiT|wR9pt%n?7hH~j=lrr4K%wAs z_cLODzLZe%24YcW!(rl5;r^>~kjHKbZB=EG;2~vjIA_jiCRIV7C0ta~^*66>ZLIj* zHpD%DzYbbrP`|8^TLiA}~UY)btQi zB>V&L6muhY_JCRDO+l3lL#SD)Gu=$O3s2`-x3kQ(awAFXBbWEq<&$KN)1*Vkv+EV# zcb)&5;dIo{&_6XIuu;XD!vPwoK9F_V&ZwC<{awK-MQ`_xS&*`0I5NbW5X9)%Z{ETh z%Y+f&kBKB7Ctg+-^>sbI4da9=M@P(F&f4cI24#3c6vdxDEn#P1-nl%)K>|fOXfxrP z*W7$=4@y+V5=*u zdf_5;SGn2D>v(*E=n{#5Z-&yJ( z#A~oYHlLR_QZ=ejReb9bGm#~xPQZfzKh#UeqhoKa%gU!A-Di&o{!=$S6+ilVxS2aGd=D1R-uT(k(flkh=R(rrfOzp?NJ2^gn-$L4hMZXCqnJ#d` z3E!gep*_Z2zi>GFH;qw>e0i z0dCzMV-;Vc%T#3|gh0u`n*Hna4$T(pi9K%%SZzo`OJe~scn_W3Spz_UqRPBWI;UIn zV*9f`(@p%)uYR{$wU_YzV>tu@c(6~VDqys{&^!Z&QX$W)>)W^cGWL1oKJ6=N58@QT z`FtFzJVHhU`foOaMrscL`(g>r@vp}mpoGdOPAy$q!Qeyek+hFbBjYE*0zD^3M|hrt zHj3)>?w zd^H~yHpY23rYN}=gy6IR_(oF5e3k9Q!W9I0u}+{R149~mI+dLrDt*daMFx55HkMfT z42t0XUDHCT1}irV5M*X`KaQjov-9(5G)K-)I*FO!!J`~W5_xD> zlh~x@4aT2wUAv6zFi)c0sAe~)-?pnm%1#$!iDb+x=>rVi}F$DGiuuTo}h3SuwA{Fw8O}W`m6NoAafHiJ|dsaxN zqCtu@)wx?VBWBkd%8A?45@bC>-IXrTv#mH9N9f)KrI25~)K}$JvKRmi+=#r;$)eIW zhtlokk0qp0h>)lLk~1G6Eh}|bP)*%Tv5L;4;Q-88w~j9X*HRh)<~RB+hK{o#R5{yd zZ>*Ztd+s(uwTf{ICFWiE)2C9lov!MSp$oM$Szbs5?Hs50Itz{d@m%3N+%q{2ci;dQ zho_hBNM)4NH2?>F)t&Pxpdy)5Wzrx6>;?u^R+_ziH5&?3#aeVXqSyl`rAmIX8#Vhj zGX74qu+ghAObTh!HwmgRyR(xk=&?}!5?u%t-ujrMR4Z5R60}-`fp6KK9w&^m6|(uH z*!I3lD%hW)(Mk>+I;pWvC)bVNWrm*C+Ry62^iwG%SUEZEzLK-OoH$bzrJV+__yy1y zp1APlYX@)2HEh8LCg+ zgt&pl_=Y(eV14F|5R~w@qm!+=jH^`->;c7KJIf%jaj%oq-F2aWHd4W9@9*K)Z&CS} z*(GQnAF9N^pky_qzh1`+bcT&G@Bsu-evf#Vey!Yl5_d$Ie6oP`v{qT)MsB#|@x*d}yLZlBv5OpJ*T94_SRGf_~;j=$x>|!*Bz?V z1gZHj^X9`IJ;C#xk0a=Cs?CAMeO%fj6rQ-#i_zlg1d$>YnLLRTJS@YUp=^Ah_zufl zDc*FDlBK>QgoqnFpy~<(>kAYVQxz%7$;siO43E!Yv6jG{dC>TQcNac@ zw=8W>y&G0tz%qX*w_cj zzSk~a67_N4-rg>GIbGi7?Eo<>rV+3*E|yIO1mrSTn0u|SE;adRLho)6ei&q&No{%| z@6(yYFOkY)9$`KCrlTLUw5oHOC;<-5Ib-YlszIT>wbp`Ip5|)S?zg5nv9ucsY-HPP zlRqqM@@*z=P3wSG4Yd>~3Cl-#_yh!gX_jZIS|x@wH==6p9`cL8x2k}xwQ$GwZybe> z2^X2gNsRJ_DrT=TDr=Hs+)o@vQLu@2Y>W>^VvYDUXl(fTimtZS%ZW6cBCI}#6nWAO z05XUX%>2{{8nd>xvN|~u!GgeC{iZ4^vYcp|;&lhCs9B_h;!QJbn6oFxt+N%%*;X4- zfHpJ*7e&}TPz(q&K>=oL^ZAxziZpk3fiSF;9-u2!4u`H zw4NOzrL)Bi7yoVa?T%(KF)}tTuz-#@tl&Y_XVbCEpsxMnVGo_63@W*lt!w!H=MrK} zEVH`!(8*_lG;4PK#(Jtw0nUb8jt#RE*@+2rm}FrA!6s0Oi;nmN+%_!%rExLal838E zi6jwPAB|s&iyudK)Sf+?_2SiRWXaKwYzR5PMZ%wpU+GQ}v_l8Ar>L#jmrOhTyoiIf zJ*NxO5-y27YMPdbZ+&85V51GNvNvCMz_Fkgv8em^9EPybvq`X-LCE)~Q!y5*6^giX zC~)QjMPStuplV-3F>+m%ZD{H|r(Rmo1N45ejmL71xio!&QsTXUIUzGS{yZ#02rxvd z0G{P368s=!!);5puJZ6XdCe9t=kqfHVtxV7_Qm3-n|z3#ZLOlW$&2GPHmo4iVE0wo zh4TWO!HQ~|=}LgHhEcTxmTA@*TmHUGAKJ(C*D)7h9c;t&)HU8TXxD_K9~&(V|CzVa zjS`#*YPhcbo{kU~FW(&im2ox`%`PAqrGrinRa+r%pBM*-z7{~~Ojab%pLLaY_YAM- zj+Ati-Ic|~ji3<@5Q`Lxw;ffT8Xc{nT349eIh6%47Ig)_@1zkuw=UoBuHIh1TPR5t zJ>E;(z)AA%~GbBbx}m?jnlq=sRJU!eYt4yul*vjL`5PoeA>4#Uuq^O4Tp%-}uYz|DM+~;tejY;NSjL=_ z4I$|Yw8#VA^szK`)fr)jotXzGvw?J?CX0hAc1d57OX^1W$8`A!WkD7DrJ3wVMm-$6 zRn`)HEC+LIz?>$t8Gxh0oO5IjRBUpMrMxYri@&h%hp$~-#{!6RvM9{_;-VkJpr}a} z3sa8x%g1$3m|bp6p1K_a_uQ;W%)pP;9aX&+*627WMV}F?`;o|W{N{!@ggqP$-^!Gu zFaK7(MhE*u8dY;NncFMm>fL@D?nXJ>u{?6qEcv}D)CbydUEbf`L4!D{OJDUftLbVY z;MYN_srh?5NY$T0$~QMOHXcgd`zd|>)N4dbO>LkccEC^YdtbpgU>h0)J-7SqrDaCpt@zjquT*;}k? zm9ecRy?u*s=ZB{RT)YRhe#N4sNB~SF&kAzDwLj{a^6~TcJlL8xfKa#D1y{l{t(rZA zg@py7gj}N2^4#3^W8=TxpAr`?ax9V9SS@n;_YZ#_rd6lN?d;Flou6Tx zR_HvJq|=FB-5Zy`v5~t(8WM_YO~CctYTVjdEP1`BC~x@@i$+)S{oT&7u0~9@E$9YE zAQs4o06xbpxxEx6k)q7ZXNdrm;lzYPxC%3IYQ))CWpv3-KHmAYwFh}aGEdAxafKpy zU!Yb8{r0(YhGcvsr6OYE;?`jHB9o-GZ5wysN&r(%Wnf@v1X7%mYZ8I?u zgKDmAE6IXj{i?O|L$NE$nmGf^j5i40>NVcBOZ@ye=&?z0H@PIw2 z1G>=yuLLOQW`M+dbt|DFIsn(YLF1G(Jk9)xYf5powRR5#qne}Z{9qxE!E<)LqEyUz9V&ky>z9e(V@;>XCo*#+xr53n0?3YqA7`gn;LI3Y9Oui$w&Pshax>501sf|;6SfZZG2B#^DML8JX}1# zpOB78a{B$1giiuAAsX{>S?_54`0=BL#NL>(k{dttH2zn;QZ5-$o|9*C@G_tu|6aY8 zJm8ZD&9?njtVb;Nv7YMo6L8Fj6yr_&|9Y>fUE zr$R{0>SFwT>sMNb#PI7;K5;LbqT(|?${uwEgY49|Ao|JR`z$%cyB_S(2vZ&M#KjEFRIDEw zIy#3Ur!S3Rj`W(dl#v|; zu-~J-Z$b`{CFfV;lBtFPtF0oeaKP42GxwN=qr(BbUi}4L^nTYNXDAWwxEze}byF%F zZLCQwXVc$EKd-AOXwXYPPak~G=FoV64NVmlF?ILKzE(l$A&vd5Wxt$Q4$?k#%&bZ9 z?F}XZ0C{q_jKKvGlG8rw9KUz?4C=M`*!u~vf;>O-2JBJ>a2^#Y^j$dJfFD|VUd5jE zdKBhI^{F>Vg%d=CRynzX_cN+Ep!|aehuph_jsBf2Sh{(9cQ|Nh}ci3~sxS)eXO8{A;} z*(BaH(MKKzf%ph8A7rF(i}1;#&WG~L@xU~5K4xdJy8L?r@Ar5R;O>i1!^y%SVjbf*@p;MK(k<?Om!?@j(nLxWznctkW)caX^Y8a5Lxq*%Dfj4t!B580s zZ0A0l=a=!L*6U89RW0M8M?b=H6wkR`{2SQI>91RO9GYUTs>Gy(95g1BsbNCd;G@fo zAm7bMf`gND8nWZUg`(5b&l|yXkO6n>jU)0X0t*7R;r)nhB4``BB=w@mSDCp=QwmpC zCM1NFda%`iq#~IJnwbR-&#o_HJg1TGay7=c=0pYKMR#^o7CBo2dLi*MMD?|fxItWc z4kuvoG*g*$?GRDLse!}vxnX3l%rnbz8EZ{0!$MvoShw#yCs}_c1A+hWFyG)(`gkSy5_v})upA{mXj$gL?dV8 zC5q`T;FaICThSPu%ZPO(OLs%lWlomtQlsl`fHP++BC|=rB!*v-z#ZEk#Zv1xHeJk!GZv;g&Rt*>~J!m0$C(P{Hj$G&hwP?^u;{+1}@k> zqYw(v@;k<=VcTJ}6=>Ff|Mq^EUKo3wWNh9kH8)4`J?#aM2xaV376BK@$K3#i0eO)N zShb>q0bmbHApGMm#hXqMor|L))V_HuHiUdN=P~dC_$*p?e3cr(n`3BOEOM)IQG>mK+us+rWa<_SP1QNRok9WgWGZ)k9VK(|``P(-gJ*zJztp zD5+@+kcPVIy|4%l^eF?!OR;KByK^ACbq(ZgkwF0Sc`%4gJQLCz>`3mt74tfDq34(y zdYs7f>to;e6JQM${9v4!+6F#b$y9x;UaoEk>U~ z5kVeB7uF#n_*Y3s;DK4D#(n2&y*&X@KPY$Hr-6Vkj1}$2WQVum2Bk|o3LeTJb#Lv^ zZ5#$3X#5|hzB($(=-v9IySo)sP&%Yb1VI{WzY_I~yTMHLSq4IuLvjTAT0hUt;7>jX1nV?qpuDUtld zelMEfTU7q}#}m6k1)uMnd8X;s08%c4%(Ud6D6>JLeYaTAfNMkz7@YZjw8`qJS1Rf- zID6DDh<1@Xr$Ke)o8ZUU%Rsi%>Vp!H5pREs}X2 zndqN5ZSXx?0+J00xoI_jA42n4yQHSWPm;M6qm3lqo|P4u(7lADBD)IkHUqX)!mV2| zN;%Fm!b8OV-031q2+yH+*4D<_Aqol#EY-&%HnF&5_8c4>`uzHB1Y}F0y z=M+_Ip68BKWX)<%p*GoQa7fQI8X1{feL%ZYGm^DNKoluQf*sMm0`0;}cxks)?veWv z*Sh>4I62Oe6YvW}|1EQG9tW`o2}4tucT5ue#lYMLitgUcHzXRW9BO&@!g%w?n#_~U zAGKHq%?i$nKFGJD^Vt>TLiF+KAlhm^1_+$NZ!1vXpZu*20`lx@2f#g-08={p1ob#*^jZd)!HV6}<<3VM^q9%6L6KYRIl)>O~e-mJ(m zn+x;cfZw+Zf5_3yJJRv{e8b^0$AqQ&xlPwv+u^bm?#M|wlO<2uTuvZ+z&QspjybWZ#`vvE zpVuCvO|DM~;uV&IfbK-5{5vrIQEsOCEzHmg7*fj!<1z;`XXmo{ceX8iL^>HuH}r3` zi|-woHQ$tOt^KJieQVCAKeF&*q(-}^?fY4xCpx`GdZ}65;^vO|!i!By4F^7ege2G~S^(_ctCVz(+ z6No;io;^W5O3h6UW#PPhIBw*z+mIza{llm>r>fyBJL(d>W?28BPI3GenyWAP{7*MM z^;k?zTwGkD%#etzpbIEFlt$@T0K~D0+$LfG-bp;cbI>C@p6P#%Z3b*u2Zh2u$*DGk z#71#KycnW|0~>MzhgUowgI?RB*Si|)i9HAW+AOwtjyR8~b#Jiei){H28RFfkg`h;& znCO4Rh)+-%gc^e8I9XZrl!KVtLSlP({r&x!8RE^y+!+Pkm_|b1X9(qqF5Ms-glD-w>DjJGqn{{?TS5T0(w}ymOb#823 zw7Kmzc_QZ|f<3Q}fbm?3StbZ@ty904m6+QbZ^_C^BwnLu)6&xup)stiN$ zN$*@QK}&ee*0FMV&OuV`tf?Fs?^!la)K^K3AzR$_)--oZxx3%Np&^8puHJazlITdNcC5rPVN3VQb)z^?mFlBv|KjaVRaoX^I|GS^4DhzR3jtYNMC4LF zIf_2Lv}R-e6R6=Znm;JzZTx1Js*^aFMfw2Z=5@rGRB2h6^taFFPtN^%|24G4e^OKM zTxHZ&KDx+E_dVZe&1jjL{cFI8)07o*UCfo0?CX#{6!$Fu#jS#D;X2FdxvL+b=S;)v z;t8M}@KZO#j@V(ohfp(W2|POnS1gOJo*t6XiTS_!fg@J!p}tl=Xs2|cTWA^YtXf}w zIZwey7(*g=r_0(;5)m)r0lefaaQXB09=piNmSB?qd_l0)$!@#wb)((43vK1h$>CwX z#eoi?GEyLUsMu}a!eat*KHL1SOV$8^lDz72EB}D+pnS+*W&Jd1@}V@$vfJslY)dn9 zHP9CmyYbzP7ugl;CV7_sEeH`dqwrOhdJfEyrG6wouwJB}Xu5NRqmJo?AfZ9oXI zTDZJfvC9VSsRrfm^B8sz>N{|MN6lSI!-H$DEup z+4J(|5l?~pw1mQk%%Xfl@49hJI$9dV=Sk@xpsW4P|J9YR7Py<%+Pyy}Y+J7}0vbnn z!{nIEX-?7oCnK=e`d2L{L48FvKoSlz8Fb}$F;SDhQU#lvwF6aCB}5KHI7v?rDph!o z2$BA)sdP%$0b;azGdSJuNyjHA<)PGnx6*$XpgYbJ{ne$kRKyzcb*^mxK3%tElmaTFq~s+KP;Q8R{kC$xGID2W$LSxgTo|11nOhZ zZ(&dpw5-r)t4=~kxviFQ>XMdpoY}N-b0ysUs1nvG7si{d3W9M?1 zN4utH*7e^>zM#!94Cs)#e1nEg01LJUJU}z0xVcB)HeR>GpIL1V+-0@7gTz+>N`^T+ zUnEL#A=tLt9S3lkg6ES9%DhWgSLLq9)1*7$8bQT%=BxcTyK4t{^!?JIR9l;G`Sy5-9de+vw?3&srKDO(DdfRDj2-Pqz3 z^;wR#l?>jdZ9GBpGFdSFH~qm*i47B4)pnhqz#wk=`4d#aJ_Gudo&0OQ+jAxm+Z*&y z5b!2;PJ9G5An=Sn3zN-358ZM;k`C)vns9zwVo8rW|Cf!N+QW~O!$A;7y=Ah&Mh{bv z?jSfKYN`|}Uu#1fGQU3DxCmO^Bse{K4Z>oY#r{==$kbjh(%fXNEY)_Fx2|UqF(5iE z$_EyY*=()@V|sYwEu~PBAlm7A^>%6c<99au#l9z@W1xMDPML4&x)spX2cV~?=Sr>m z-sC@#_aJ^OOl)u!)K*)uH59^wj~(HU)N7?CYRtTCpRqVQ9_%2u3>8_!vify83(mu| zd#T)Fdbr_x8Vkgni5F+znwpHt*WX6hqt7)n2piAL&+as;nY!~Q8T)T&e9_K|#{=8W zo2u5i)#W@-A-)|3douY7Dhy4DAc%9p$dr)u9tu)Ulg~$c3_}BzW&@4qrxgZD5b8Yic?N z{-7WJiLETIIQ(jq9?QtgUj)yOtk5VY_{YAbY+kURc8f45_-xh| zn~;#OpsPM4u}OiV?#~cgxBPJn$U?58dU;#_dF~dl+=v$CH=KoBx!AsZ%e(P+%Xxk} z;FQm>&ZXJmTOinqPPcrL!cwKHuiKF`3T(iN^ zvh<(f_Zy$r8oEWxZ+3l7j*hO-c86bI{4Tf}=oPQRgnj)eolU0su@Km4d7xdadhnEk@| zVIptk4jB9alOI2P-}R(_)>eb7CH-n{|66f0R4}AwQqSiwI7Eqx ziRP@X;c|@faVg>tlBY6kjv@{^&P@zlo@|BfHi}%IbGsT0ANHB${rpJ^5uY8&GN~n5 z$EyG_>a?Ajx0e@TiLHBKC}@-|94};U>9rdP*{ZKHXP1{Pe6Nx@%9zVR}B2 zSVlvp=ehu7Z28VJKs3}N2)Z+#i&s}FO@V)(Lb8DES&LRG^xaOxzFHF;0p{_zhyp^- zpc%oh^)0UNi#es$H*_P2dz}0QRm8q|I(N8h8tI3oUKW{^ZPBfc8Eb+&0A@0fPAuf zg9Q-qahgSTx56zm!e{vK6qi@}CU7WLNP;^}0>cvrV3N1&!3Q8UG!tI)*`1BO&SGwD8=<;Q zb_;udS7)J~cl4iAv{J%VUF&QqQm*xkT_&u`mF2TGo5PT%nOR6MfFa0RQ3~~mjLWS~ zavhDAtB+nc9lP6I`4S#A6IIt*=bKxkQK-#fTJL5nT$f!Hc&4Za;sq=cTKAjga{-Cm zG};YhZFfT@pngoZCjc*gx120{^!#3bIy!Xh@-KzNcLia`IW9f_3I9jdNh%F;YwP0R z&g6)ZP<2tbx{OU*NozsSyJ$k#={?p&*_nExwoi0&HCpa|lV!0@@dH0gWub9Bvn$l2 zY@~CC%yrmYPYG6ag?=d}B;Pq&_~hZZxxoZoFhji#?D{CHBB-Y3{Fx)hj%9z=Z{QEj z4f$WTFq567&inV%e0!?`q@8|8)I^FT%z>UWeOX1?{Sr%Y-7grBL^gL|30)Q`jc%x- z413ThNHwzfI{7FTL{6af;r2Dn%#7^s_pvzo@Bi*8pFf}Ab-ipS2@f(cfkHDiWa5v^ z&U(9JV`C1p2WlYfzm6$azN1`y=M2^Oen7A=l>3yq$-y>|;(vmJz z_f;CMEcI+6@6{G;u_cWbMalCVo}QjHi-vRfbeKQHzlLfZA5pOJ8x#2%3jD@0_hpmG&wxtEYMlrI7?8E+VTWcj_y4S}y*4Ir_=v=)T#S zB}~Nnhm;VrI0$1-q-8|VXSkNE8vEK{TR9}}v*B&L8sm;WbgHwr3yKl{M@J23mtH_* z2yRVNFe!^Z2ZZ}&UU4*>F>6EJurzu-Ye#I1Ar;UsFsQbRZojffE6)@246a+>u98|x z4BYk1jgmfXFHrQ^+0StFU&O1HI=B0vtFZI8N9*AV!)*?i*P{YyG(<}Db`}^}NeuWq z(<~*eov=I4BD>$k{ND%fCv-67Zg(8_M|;Tpmd&Fk0z(I`pAvvee7{ppG0vkG^b8Dw zE|s6!f4OAWZTr^TQmVvFA>bUjd83CBW8Ccy0KSVTBhT9=q{H77OpqnpU-SH`=F<7YYP4JL+VTKR=`)#94;G01c>~nN6H|d&y)Nf^0(~vp}BCCLmoiljAG^mW_ zcZ(2T5kp~T`cKj@Fw&=wYkr5zi?Qh8k(oxDqrt>gY8i;LdIYWC)h#?GTt^~(kK(94 zWDveM`E{Dg&p`#>?0l(qyIJ0?h&Y9Re&n&A3sUJA_@oYXyiYSccD3jUxK6cr17 zP?En$VEnGC_pT7j!;}ByaP*`wc)~Q3B{o-NJlWu3K~&1b*!LF$G>x6w>cK#BkP*RIDldTV80W%agp zlC|%vX>M+AF2#qMIoz5#1?*~nAE^BiwdY|^0vS-&eMyO@@16Q8g@%wM@t;%I=%zgq zJhl&loA)c%Qf+ORpXWc{e=R+TW#=Ll>qka>+$4sx&_ZyeyA zIGE~CDQRVK7&K_p4qNHzEy7@*Qg8lY;_zB-EB@vm9M~JmKcF80deKjQ`prL1Y9`-Y zf7zPA;)+R1Mfo>d^NG%&-6`?Ae$5YtyEN!Ku*e2lD{w>c?rk+-YdoF?`Rk*zl6 z38y>H1yleQ5M)4G6U$PuT)eW{h}No_5sx;Lh=xm#ejK- zVsFu21zN@sMTQS&i$%O1AD3%c^K&gH!X~Q#qRLlpoA*r;84HC8p4bEn{ZRJxNln>C zD%#i-+PKRr(^_`Y&ir~@MCtdz&`DDRgdkU@I2I9D_H!h?WD@hZ_k%Um|4^a0{@tT& zkWyoj-PS*qa;H*!3H`-ibY946b?xQ?6tVT1Rwb=9RPDLBiQyC#PQvMIqI`ViZgVH+ zTRsp2jbMV;u+Wc*dNp||2yx_}-2Pq!9|FpbX(cqWR7_L2es45(rj;rN8I^(eu+Yx^ z6sF9kKVFVmOlh^!=33@Ie&#MH?Kj5!vDZ1}l*}llNbW(bV9o7);naIp81?qeg?M=( zHWaJ_vxr3fC6Anl?zxw8AO@4~Y|1+k5)olnFl!z*Y#YAGz%+%Ph56<+Hu_^j>b^d6 zZs%WV-x<}s>JTKz)YPI}2*~JCTy>)yo8a-vzW>m{>C)c)#V9POlvPwcTk>5#iPW1? zuF?Eu{ijbmN{6S@HW6*Iy_vRbC?9X{6|xamD3G+x7iQ|(OGWoTYXn~QZP>8px?W%+ zkkIy1814{Z=qU6IibKQQaxOt3|2LF1!Gm^0h@8YGYq{W-USv8Kiy4ti>Z zBUoRa|7?LlX7awEQ{Kv>!`jL! z+UFSoXuR!1qAzwp_qXrGj^Hoa7dGtdo@d9~3eSWfh)nHA{leRTQe)VsprB-wvriLK zd$9CEN8AnKiM(7cCs;0_3NMrZ++|V1Ax+rKUD`72F*q3hw3k@+FVr+%rc(LR2*)(uZ{ppKD)2Y7B{?y+o@>%>hVS{||vG?=5s*Ni;dKhgZ z;f;;b!Sk9%3<3fIq_JJ6qR{ACp`rt=9$8?b49$tEp-)0&a~!%WYgX7fF(c{j$VV#9 z_eKV1Gm+}Fv0ZOkv$xOA?sT1JW79P>^gQG?S(g^vH=eC^PWog?$3s&)ALP3pF(h>o zoA>PQ2OLF~0K(DkgeN22A0LHG#!UbI-H7Ux@4b4_(Ggn6T^w3aXrKHmV1>d&->w%b$x&bizR3M6G`JYI&7pdl!q5su{i@a9bZGP#a%|+XoG(I znB?_gw12ORxFTp_BO72x(KEr8fZm*-AuAG@N(P@wygOIdL@l}|#_zTG2JxQ9!6BSY zA|N~WJA0k>B|dEuViF3SbrEUErcgiFn=^g#a^Od4#@)P81vRycv!D)U5=NgUo4Ogb zauco3hD$zR;!1=p2n?e`ExSHVtwY(d0qWLFGQokt0Z#abliD^@>abIro9nAzRo`t6 zY_Jgpk%KDoj|0=;v~PYTi#HBSyKZCnUcZBL9I(5rRp=+hOio%G5u`@Q8@m^NS~=LZcm#{I$XS-GITk zy?MY|{f=BV#+pl%^LltKmIwKfx6Ng-Sv^SGK8h!EB-O%uC%6jL`GR zy?5%*EtgES2V4gZ*E!@OB52ra=`3NVk8oia7#PwiOrfJzUjNYoc*lC6)D0*vl}QiJ zR(ZL3E$*X|K>nouGe15!xLRWJj7f3I3+*3-CG#gGwUuzhYy`39nf&u<6oXlhva!io zJ_~Lkt$F`|=}bl8lh^PX8*3HZwr-klo_rTGj7?Ej0IuEmW$2?}2l4|L>kk75JU%CX zGQZ73)Mi7!OULm$p*%{zut_^T+u~wrW%=KiCh#dQKH5ObFwd;VaTOV(nVG+Q%eEI| z(Q?LzDc!y#6Y%r2Uk88NTZ5Cg&Sy&j(uI6Gnu9_1>dg?lu|!dQJqr}GwdHHQntC*1 zCmPq&CX3u(>1!f2i~m4deg_v=x&+Vc_>_A$&H5Jj-KY&cRL~lHRJgGG`%^=-1|vEY zZAS`KH#C&^pWxP(!Apz-@rm(irthA4{rh*U4E`+vIlvbD=P{jA9n?WIv+UW0CqpnM^6=?mx>cMp3_>kmd}CYvPw5}!!sd72%k<*t0+?6!rT6@!7rEL_u&LmaV)dkM0*zv}CeJ%Y!#s;|M~_^+ETHHGLET=2v65^L9= zul);dl}YD6?$GBdRJFB!b;jhIbDbbT%FWqR*d&ZBU9oq8;N=6Z~JNyi~Ak}B<();>~JlzE=PULg8ky+lR;Tb-WVB~u{=s< z4-+YCGO$zrndcQ6rZ4U@R8i4 zS~9SE!68Iu=jxjmOKLpk}-rPdcIjNtPCGMmY=5*zCS1 zpdW(NW=KVSRP9Xv47)|UdM16wee^>Mp+i}a#t)zO6%yokKch4g{eY`NPfz}3miSAl zK3dku;2cXLFoo9 z8$BGDFo0}Mo`SZmN8Ch(4A}x=VrQ=KAuAUbVvvpr$;!{1U0YRM+03lT+?bU3Md!<0 z&}FEvN&IQxu~bc^qciwvzT7`Gl^3H&{^9+Nocz|2V_E#bVDKv*#+F!qoAXk2P-)JL zjC{~-Y4|@#k--g?J(zyaLM8bwv!ZNtY>FZ&jqnY1n}Id)^@j?zn`v>gqSs2e)B;sQ zX~djiBBG-Dzi2%ncbsxgHVlpV*X+cX2prMN^?bj@;~5d`1m-I=-xPipZEjv(jk+Ea zcRM?dm6KPGNPkj{%%jz#wJB06yq5ezTg=g$^m6T0Tmc&@3;n(Eu9R6|$7{s5g_HXm zR&U5ZJiq;h8Qz{`M$@w{pyuQJBxTZwBCo^vZRk|OD2Yw=3=BNTBl(ZXI?9Y-rbw8= z(0*}AWX5zwR@R%g3!zXRD5Zkbk8`4os#38=pYZD9xY@JCk>_n(TpWE0dut=8x+^ek zv-lyAcUC%fAYOT|csZQdlr;v#H8l%smAMI?ma;?8Up$OTW!g%9hw(NhW#TBmRxE5%G=HcV0$6Qj|x(`QDV(MZwU zoI=N9_Gz#N?K3t;7}kw51v5jRZCt^T>m8FRnygv*F><^}>BEaAq)T(iKw3a67&s5v z4M4TeDT!Y4!)aeP&lyoEY)lC4q=2W?DQ)ThtI`xarDIAJ$b3<=#CI6n>o!NBUNT-~ z;plpbZE@Np%A0rmB{z~YgtMLQa_}6?J9>X=w&6L9n8z90JyuJT7F&p28dSu;pNG z`mPF)W6Dt1pF)H4C*J;>P*!^PIyEK)pAt{(W)tN+swg!6GeqO?XGnpM0M;C>7<8{Y z$-{gN*RtO#w|ZuW04`*gW<%*`3C7AXAaM#JgV9kPnTFj)*Q@pOt@)Fl$CH6IV6gsa z9Dn*&bO zUACDQ%^~$f7bcDBFI=oFq{=sckLLlzv z{SjT%vNQ+i5~qF+`OU+H)C8%;C6Hj>%H{Tgg4*0u)O2m;prrWk8LRPsq25KZ27jk$ z1YVMy-~iA0&w*Fu(pn?AB!258^t>16k76A?YV1V47Ni4N1ivLO`U)LZ9d{f zR{wjI(+s5E@`3FQHxKfVbPUmUoFQCfk$n^8H(5Gb&7(|A_6j}FHvvk7%I`7MPjp$* z)E_CSso$fzitp*@h%nxamtU`~FC~7Wj(uh0L>O?r7P8&ycXPo)>);qLZBrE_Hj>PL zoGR4K`+wI;>}nt`?3oRkBo4w5YJje_=jYH7BGHPXfjDiCF6|XWVL3Oj1+K&!f~z&p zwO3prNuqsySe$G6zJPT|WE9gzc!?i~X9eksmI0IxwbA~w^Z3VY@!ZQg+N{^vyt37- z$NhfZN#VK+Wv^;vaw#JW7@NI@DhbtsSp~#bcv3)jL>2vZjbb>Av5}#>ggX$F+!twL zc7{*hP?ReRHC-Rbq?5+t(N#TZHS^=GjE%{ea>9UeBra8zDad{t`8PkTDy53*_@u{{ z#$}6+rl$4Tme$gwxR`bMgdoVHx6hJlYa)Jcr=>XnugwT3)A{u&H#cqK_Vx&6-b{A| zyf!jo$Y%LK=|^Wd3i>7%!=;ZOL{$~qt3il^v&!gi_ea#_qW~cqZlC2j!Ux}1l#syM zs}V9aS0gpf<(SpYn~%HB94ENIV+ph~mvyV(JW)+oduIb}@z&hyH zriA3ii4lBGUz17oDPlbP#9qqCSvZ|^2!iP7=;AYZVTi>UoJ7WU%eq;gv#FADo<1>8 z*DnTviC~KIe=eS7m>X!Eu|0uWAvdak=E z8_J?vYg>mCF+y*|hnCK(?v^(iy1k7*I)u_zL4aRzzBy@xVghcr+G!xIc(CL{W^yf& z$@|VYKkr! z)AbX13sHxRknt*~AL~74j|$D-_y^e~9GJGAKD+`OKzJcsmrmXwxa*N@l zWGt^nFrfuEKMW}U=qwyA2|^bG{q5M(PoGG&CxTrcE3FEZH+ib^5Mw`VWV; zU(H5U_7s#&S7%<>RPoQ$_8!YGV}t_Ef24GAF@Z4IppMJIF0^AqD5OE`Hf@s_k^lBV ze6%!}y_9+?e_nh`DxfPShCn>RQ(*wouXHMn7ud2RI2oerChw!3!) z=pj;~sJ&jjmT)PvQ*>i_O&uz5M>vGb{vYD_vm*Ddgbpf`H%4Tlp+rOPM=MeWQtin( zc|*Z?<~Y}<`3%HRJ2Y$Hj!=j7XuFJO>ja8&d(b) zrlV|9a8rsnrLLYUfD@Q@YsZ8rrvdpzPn%f+1!tI{=sO+~J`kWM)>CsIUypy&-5r)n zheLKXF>JiM=cn2iN2Sm}`4-3(o6&g-g`?BE)T`NhTrg0eEWFIGi$bhs`gL>sZQzRuy(U_6^v=nXCb zv#$@u@ADCkmIMjh{hTU~>t`Fv71$FS zWo4DXuVWN0On~DfPMiH)NJ7FfEo^;z+X-7F_^L(J^Zj&tUxvD^3UYV$SL7ojLpa)3 zZyAml3v$1Bx&|_}i`Bm*A*cOER9M`;b9C~7_Y>~N@w4W+dJLF3J30Nsxfd(mVl!1& zSyeTMT(pp-0k_M6PF8ET zLxUihTH_;5EN|P(G2q?sOrCwmr>P)fQpaE#&pgVS7`f2#7?0+@<#xX4r`SNxVy;!n zdq_q2ln_~J4E%fXxe8?G;NXCT3U#LmjXE5%8Nr$$SJlus=;}>7%q~QC6i(j>$A^X0 z);b4XSF*9=+~?HYR`rf9fl2m?U|$7)EA|#@>{w8G7D?-_^Ag3+Q?$A9?^S^iJ4QZ=<7bmDh|x4&?6w@$L- zQoo5-6{IUJeqi|oQ2oA~<;^~ujjkaKGc72rf0s)v-ATiw5KlmDbPm65x0IB{mqMBa;#yD3Uf-drOc6XdhztfN)NtNN_5Q%S z9?>UVhr)yfZpeLkxx11l(?hHilP4MnM_{If6Zi=;#pFpkR!tvoP&oYWEhb-i2Y{zy zXad8J)Lm=G8bXc^U5GEz!PFt7!oLOzK}HEQgylJsMXcK$X0R;}+dOrEvLO_AXR<&x zCST~O_CGx+kfm+@j_DnThpX;V&lkTH`}g#|raQdYvcU-Z;ja^*5*TnSo1WQB4|%zF zaD4l^0*D_H0^%31xG*qkz-Nl67nEo>^Vq|C5GDdf-?4MLhrgCJEq`=u9+DhAx?Gc< zY+7r%c#yQbI_Dz!fI8Ly4@OfuOrPAbb?7H)0S_Z?EoJbR?>Id4N|d6uyvCTo?%(+E zK|6o+3%?CXVj=;$^YO>~(0kmc!uYB5kY%9U_gR;l&*L@5D=WXwxA(G`Av;P43oZ^1E%LG`R>LMLOXH_U6{sr^o>( z;Tamzkg|JIQzIjLAHdc7=qDWS@SqYHQ9aCmK_UA|div)yU)e1sS1`yaMiOTjy;#7h zCs#532Ho*IC8erfANTiaEDL?bL;MF97m>%|jpFU%#*GeN%%hm3-O)SP)nP2FNMtz0 zv$%@J-DESDiz}&MC0?ZKF?fnZ`3^Z5EP`~9PDB~Nv&3+!Um z!wT(T5h4#!6XWBNK*bS4&B?2H{FW%?_iwELe}8I!>^&Zo>sFb`(qkV04eS_v`yT_K z#!I7K7JGE`i#XxCtgK%!)!2AgVupDI?SrdpFTua@#B)o~+p5Y+bDia~`tQ%}Fcvw{ z8qNH_$MDzQ8&}x&xoC1PL>V;~+Lw$nX8$itKa&}3z=yF#6EuXx*GJT`>`jFWK*_Ak zBk%w0VVLXRhUfV7J-bNP@v`$zEC&ald!CLFFyy&GSL$qbi9qXZMbSwv2ichJufOsC#~3znh0f zQ#+jYkPrw2yo_E^B1&zy5 zs>}d#CC>ia&i3{{=;?Aqp*_u5a~~}y^Ts;I;*1JUBQ8W-C_ZSQ?GfXezP(jN?nej7 z!{Ip!1BLVbFv;c5N%-M@A7-wW$YUAjUNrfbeCLSSYwU_5Ve!FdqM)(qpE%eo;k`U} zy|(EZ>1OU|aSe*iIxlJUFY3FzQjdu_m%2-d5)}74%0OCu4x4q!MzvlyzQ-`DdMyZi zL<7rwuj!wKCA&v5g`LjN!>?zkMd!o$Sz_|Gqt1{QR>bAfXkJ8+)ffB?Zrt;$XjKiP zXZLASnVG087;k$IpidPP0gecQOpQckzPWN{=z>X@0ejBx>H1A=0MfbXx*eyxv`l1i z4?1`FM2Vt^C$LrfPpkJHIo_ZN!kaZ~{>-~`ws;)c#du$K;YjSx|I&@``L*j4`GtSQ z#klj*6QdCcw%I0pOJgDH!~Q0G81?r@(h8*pXq(dceTJ9z{&lhhoT6S8eM$dp>tM$b z#lNabHL3~BR_OPT^5G`u*IDurqZ^$IELT00YM{cAnc5K4%9a-j6?vG41_`N2z@2#w z5m;`&e=|vxPWEEpv0MMh{qE%Nr@x;3A=#H+Ddy3$+`=D#JSRPwYofKxUK`2<{sw!m z2S0p&7lI!C0MV5)x#aLgVjM@qs<78z+~*IyfoH%F6CXmnWe?%ZnLg1Q|ZTHRSbcrCY^vSoj_Jn+5ZZ;1#dT0*32WJwy} zL!j=bI$X;rEXEVLN!_!fhpT60)ZyN>X6&h`VW$mXRTNSv``)E?qwr^ zd!2*fbO`o2S)!n*N5azkOS<j*#=&Zc+oWuJh6op=#%a4=q3OCl%Z%L(Ed{ zi=8%0!O4Bz-DAVU;jEQeGk^zcG7EbWY8_`X35saP1@jpqNdB`I^jC-|%rbm8EQhy2 zTzqP5jM6G@&!v%odL*Z~*j|=^(ohf&=F>Eb11H`7bg+?<2dm2(oS5^!8Lw8#I z1$RFqL&H_=?J9XK%DKIO5_d4UYO0CjDn#DkHN`4ZJGGNlhie_Iqtm1r?QVn3&(oL8 zKY@{g|1(oe5g$~3g-ND9(|v&#h=mT#r*};;VV|S34*i?E!H2{FipGx$`~D}p%`?g{ z;-h2w8yB!^;woN#O8?T>L<0=RmX+cOiF8nOf4&xTMAO80l8!`aXN+Q6_OBz3_AbDT zLO34{wn_3MisRe9JKx$;%QJcYk{0>u(Rx5+)v4Va(LZGr$9fhOQ@V=w4=K~nv;?KZV?fPIbYMKl zfjZYKH{~vU2DH5YshcEO|U86~6FHB2$E*2{vk#^ID)~~J#!ysj) z_Y^F>^gO`wCc;i&oTkovTx11g9r-;w)R?*yF@G|R9u9iGX}E~y_c7L@ z#Jo6v(*hJGkOto0)kIJ$Z#mKns6`Hw+MYU?tP1-e#cXfQBg#4>o8*tG?M~ zM1NGD`uoF(rRN8E&DZAnOPdBxMb(30A?NlKYLDF9N`EyfxwU5grBJ zLIA&A8k_+3oYt~@^P~eSjK6lQ&UOAlOY>n~ETmAu_0uM&TN#l_CopOHf^sE#z=mK; zp+R-|^OwvAtal>}*1o^xET^rhYd{b)@w$5)H2$0g1vw?mNEg%5APVVh zeooP%s;a7Q&CSik7OTa3-a-)g+Mb7r2ntf%k`Jme1xB?$Hw4vJS9W%G^a{mYE&Bh} zVB(Yq?_|PvUVHe_^v^%esQSX6#K=YFEaS1PgciEo8v~TSe65X!r(B@Cb%IX?hCF{6 z#f3T7A0GZ`S|tfrP!k|5%%?3CptmFBF=Hw*;&AhXpQjQ0bEcC*&Jv^{#8i)C-Y((2 z>wR4QA1y$3`Jld=z!Ok7YSRidyi>x5{qH`x=lr#e^DO_#Xf>N|T@pkBxbe?s35}^?tplQ;}~X zmzxG=?)lI;m;xKNT{uTyB-U%1B~}}a+sx-L%>AQGDQd7U+J37vGH&N}#erB&-LD?X)UI!)ae4MDjR# zL%6&UKnBYeO;fdOP#xjh6+?wa%Q(YG!<7}rUwBT!e7SNR#Z11)rOewHjYc{NORu2x zE2=Lwf$IaM+3N5cjWI5hf`acE#ej-Q<2Eu~nz>ycTh@xaQdv zi32uI*UE#fHwJM+-_4n}(Ef9d$wTeV+SX5w7=G-jb8p@?^Q&Ap%IU5b|KV4n!d>{Ox9~cx%LkF#jSw2Zg_|!MI zWxOXPW@15vNL}8dl}&KVdptp^Y(|dkwZOt?Y*u1+|@n%%sZPNp%hbSvZF$u=((8wZ(CULD~0LpD`Hq~dvmT8e2A%W{Lt#PG5cj} zGI8$$0BF+C9ei?YKkh{=OX7Mywo2qnVdBH9eO}LPMCqo~g>wS(bJ` zu}Ws04VPTh{hulUt`HALu)|X{pl%_nGm;22fpbKl6A0EDAgQt%G zwbA`NB*P4_*>Du^rXN9?sL%jaWH^;RL1N;~C=%IV%gwuuA-l7ZjC_z6x&JH*Aa%KW zn#0H_2af8(Vuzv*7ZP!E$|P6>>?oO^>S z@PUF>?OjvIb#TM&XMUng);Z*;lpdkc}MPBIeusRHfJiwa!{)rv9x3;PQ zNf>DV1w#jKhP{EF!UEo&>Un@(UVv)$Sm`CD?pYYG(_=_Go*W-9=#5i14q>mm!g9Ir zEvpo`tNfH^=LJ4YutA-srm0`qzN;<`H@*Do`zO?yd7fl=6Qnj*rzJ(2?0BeWc|UEmJZB zA<^xI{DOj2A$M_HuXOYVAioxmoxe0^K~K9AE&r@FF+;SLfo~nmz!!iKS8;OCZC_P| zIIz@dVgeO$pdO$wt)Ar-+RLat9+bZ>dv!5Z-;F_CRVwl3cZ>9tv#{yd;|66qOVDLW zyA>?yX;I!)`5gVI!I{O9YqHKY+q&?chMnEFdmo6zgU+k(6t7n>MBKJ5`C@sT1Lt>U z>J(>PPHe#=3J0TVGvM_K5DGZnbwc<_+!UWdct8hj?zhcoz;SOi6 zr-Pdt3T2SxYD#OlbrN`xZpOGnxfC=BY%UDD8ojd(*BRwIJz`=bQ{TL~kaB;RKH#HG z5Q%yBrMKvNGd!r`07Nt9>m(&5bF{Pbo8Iwh&HoC1Zn|hXK4|ui zz4zl6b&WOTiRD(7ka#TFVD} zB0BOBgX)%gYNM*|gd=ud6#X|z`feX(wLUWei)&BYYS3a0SpW-v68vi|f;v8?RzDM{ z>|SM8eZ`FFaPKwHW`)7OV`1I`DP`7PVWHQM)4HoOl}7+4n4$w3u)k>cY(qSfd8i(^ zK9dm7QOFN(bA+)#ph$ZjruV-*#MgLAzZ*&Y1V8Ijy}`wy=8(`mLv1ZB{!Aks>mQ-$ z5ZPv}%M}rs0{+%kh_g;xAutdtSu%O2XJpFCIx#kONGrN#Y^BPF(P5yC-nW7Xlhq~! zLXTtgpB|cTfxaMtmH{-v5I+^hk1&DiaHL-L^P{|l@Kw|!&_0)^v(zOP3^s6Q2`$ms zow_TjSc-oS3kTZ?QbxPuq}6Q7n?(a$-#F_{Vh2+P%8SJ}-Ne8LCR9bZ5=cddAa+$RR z{sId)y5qA3&Z@bp6icyE%sDB%u*<+-w0#?a3z6(3H_Pn5f-1k}q9q6Ke=@t5hp~~- zXHQna_lgwU2ra+|&8-LNyMF~_8M#wV2h{J`@;(%#ix4angKC2mAJe5q{DBDPR!~&P z{-@GN_@FJ8=VXvB@0^|2M|R9sZK$WWSMHWfsL)9^rAK#*=07%}U8Ia&AAI?V_|n&4 zwE8nTZ+3?xM@*7vvbFo~vy_w+QK;=tMW!DwXn%AI8m}r4fZDN0Ba1Ri4KJ<)lN{7c zXra92jg7JMA^@P+-TPSSW(11ct_P$aMCggl7G&9o zC`h~KFS6f#Kx~@acR%j`wuO@RU9347l1nH!#*eGb;-TCdRV36vO>Z7AVfWNuP zJRxFM-Mg?OSZCM`C_m4IUD4nAqDAFY-Lh$0<=0wN_K-ICHUbPe6zFbsUh_ul)v_nW_s znddy`oVC|pd#$$QKW%}s*W6%!WA%htbYC^FUH+L9H-A9^V{~a1-SiGEt=gl~t_8{2 z(TWu3C5Cz_sRUqw^M5MXRat`iAf{f(o2Q>Udx4N@4HdFb_~SXJ;7AjCM+0iYga0GWA!1(k1QgV~WRz$#NdRN^=Pn;?BsG3R(zy9;V)!6sVW*XFE$f%l} z!C_KZe`P-Iu77#t#uMm$_B}bB4jN`EzZMvsdvq!FyY%$*tr&436+m>n&n7zFnQWzg z|J2n@;K8d`p`W+*3>nS2{CpjhIevd>u!zJliH}fj0ksc-QU&5`>x13aD(l$6)t`lM zj`l-em>DQr{TGGOzLCMR&t#A(bKqxtl^_NZ^oT~!zO%e>Jo zoet6i<`Yj*f78VYF$&jGN*-U9XXXeU@UNT^wqH>2cFgtB+?Dbgb*dVdrS?{1mV9vA zwWlCo#?|eJhjJQz%;L4FuSwLo?!I#$wzcUJu?C(cjdkKz^$O)QmzU!0i1t1A}rb|6a<^G-%=+%`zH9kgU4(R<9|_V5AkM@|N&*I|ZMt(kGtOxicIhxOi^}6u|QY6ZRcLF=)A?1^Q zz!>?ob3-mKfw!aZi=rFyy(}<}ygMuIMSubf7A<$pPNjH+jpgE}QLy-6=brlus z>Hb5MvIXPCi>>I+*Q!qcmmbw414xux6l~p-lw34Z^No3Q!yw=_Uvv72GW2u(D4?7w z;BL4*6ioyc50noW#Kj8x@+-El5 zW;CGwHucA>W&X5r+?cvwtHwtlX_iFFk6&0MJaTUC4%A&pkZ!rU77Kt4E%w|lu+x=c z(ZhqK^gZIC=Kdqjg3+v}69%p*pV=X$%`NGM)zj&BY^R->{uG;S@T-|Xk>A_EZ{CuD$V-rq`TO~PjH=DI zEuKNtl)cD7v4yn)K7YZ_2?IepT35cI@p0&@!_?FHz6TsMz(cBAz$l#0Q}_Uc0jIrx z|C#U%vrI|xtL@a`#UdpqltF!NXmOrYO}b?>gPlZ}~!r^DUYx8Z*J zU7(UMGMgh4$AzZ(8Vn~^9i3Q4J5HiwoF$I`tVw4E>@S2L9Op^BI623aKL6Ze-f6_A zn!($_!7qvatJ`#1F_tHF5ZP@b%9Uo1n)SjxOyq7j;tHQNPmYn~CG!wv=mQQ>ghUlp z$ig+r`>ZeI+NUbS5e*Ta;trx#oC695=Z+40av)(4I>m6{+qC9$X`3~`Ry9Z0`+)0q zvCzWNqkH=RIQh>_0I?_rG*ns&Z&RSqyshm#u}^<}FS=A$88qk$*pJsrOK;x(@d8$y z#AA=^|J8=^zZvU&RcjQ;*t3zeRc_tgZP~uAZ>r`da&4z{>SjO8HwU|ySh#K4{he302_t8ko`;`Z15ExMM0Zd)@6gN8_yrvoeQ@?ABfyYB@G34asE%W-gq|Bbz}K>FZskdarY8IQ3x2Uzy$;no$R_4k zr0=p$-rloc$y5lp6>#KNWVQ0Wvq5{$P;w3 zv{mA~a9^~HfMC#jr{WBV2N;)QiLo)&lT5Z5S+gy;dCjA%k{T(YFj9iNsHWVqGUVY7 z(2#S#GA9@0c>iaOiHl?Z)$)Gv&hBpi8bf^^xI3t+YcM2C&e2~$tts1)4g?y1?oE3; z^L({EF*p)V?ZfG@zWBt}MpNf!X0~`y_~+?@ANBjXrk-=p)V@lhu%Nr-8f)tM({zo- zmP&+w;_#3&uYlPX2?Q>0biG?ryBW}3`hQ!P0k1Pc@c(69^v~~8OG;XQVN8# zLFHXx^;pm!5?rUNgV@po%FJdb9;~w-So1R$ppHR;RsI5|aBfE1Ja67$ zjkk$n1be;3Jn%PuM6r%}s+gpR**B+LY5@aF`H{ACo|${^!3y zOOgvrQ1pJ^)iuIUJIPfs1g$=};JXknJB#nnqu@WSI@-jP0hgP1+&cs|bvc!{;hj73 zMRV2}(b+Jvp?Z=zFkk}C=Ysr(Rl5C}0j;}tSk0a1$v!^F zUYDBs$2l`sxaLWB(zgceQal9~-|-iH?d?_WSqxU=3hyD1*p;``n?uee6W_C{3I?9%W$A z;bT|O>AxR*l9bxI{oQBoiN=cwgW|T;)!u9v>n)!L*Hd3nCzt&>K){09UjwFEx;Rc6CinQP+Fe||j@II8(cOdq<1O~SPNaI63zmZ$9* zHup3g?@+6&Yq^m%=g$xf35p8|YU4xErH6B~bv&zQ@=sYAfD4BdILKRQdI%UKYv1mb zyZ2DZERSYuM4z1=Ufk|rFwzIv3jRKE3ZNaU0tMm$Y5R@eVq0Y21_Qu|$2h^?gP*~5 z1v*BeqlrETEsZX<23_M1 zWJBq^%f|G7d%J?2_l&X{9QsmZ3dX-jeSb#1H{9Rfzic9?qVEpJVp#=c+U{a)+Kb}f zyZ3_bEqDtVBCNK0E4-OIeSJR-M1nA46=>TuYRy~KmNPrdT4nVU8%ZN6&wj@4=H<|y z)KM~)+T80NYyF!QW3s6_YHsMl$7ieX&`U|TNUVKr53us{j^($#{rr?@%p`Mdp0#!2uX(ADEG;7$pUZLEIw3~o=!Z7b$W&C57~Wqz?${b30nAR8G&ZQgqg)>&|#q zt$JfafWS$+$oQtG-6%Xlq9V~aBcbjNRO!Deu<&+jYG5Pveo-S55I7yUbl{iyKsF8z z{(@9dML7E!E@z$YUI5|{B=;|M{cZX5<>6Xgtg=}_uI=9>oVgbIm}dwIZy=}hYW>(s z*nHc@Pncv*aJ?)=9iNzJggp>+1s_7a8B&jqdpIA4v@V?cnu)vNGcRRC+x&nas+hU` z;l##cslC0x@X`#Xw5bY0o|~MJ$Gh=yz-iASO9htFRZ>8| zQX&po1I+{hW}KY0_cJp8r=bWhqXDqU2jNmTD~^hsK;) z@k$k5dN^9(brb;nJ>a?7`!`F}uXTX7O6fv4z}7>W92>y4(B2M(CSwfsNnpRgT=sK{ z1bW34h9;H#ElEcbG-UVJ_hPDIj2!0;RAP1PHcd$N3N&+5=i8_|Cd8@4`hz)h-$cw| z$Sw%TY4DCAKDRP!j|@UkC*Xx|Ll%0s1yi=ST6;GTKK^xJ?f}A}l*@7V1p!SB9OG>A zYBDN)^>4F*0+)3k^JsbBE@cc4ihJIsInTJa8k_q=Pf|N9S#MxH+f> z!=rr2gG|QUB~T8JkV*P__;MA|lPaIIbiz`B71IaeAoMu(G(Ugf>qeY-U86atae-J$ zc&n-MIhr1ql#$|r;F!Z4QTxLDH~C?+4RHOWIkFP4gHlVrC*7;e3%xGyH$LmyNd?;+ z^13+u`7_kdxvV7i7`as3!OYf=EL4`)H9j>MkDR3hVloY z@rK%=8yg!eGXihi6+9X=C`d_yWdEKeVL3UnHOl^F7il=U?xW!BQa=r0T=xHA(^aNNyRId!l zHyOK4S{6if`5EEnfN`bIcM;#dje~uu6!Gat?eQ=^^pvl|y{oqm9s98Hy!{DGRjy)M z!|!5c;__l(pnmV~{UAS-mfEc6q@mXxUB`)Ekr4)EwEv?8`1EBkf@72GAtgT+yT6nL zsBH-5IaLr+W*#c$Z~n1f$Bm~c=PANYaE{x)Vx!gf@82f{LJinma$3S7+9q=;7)63Y zZ>ws-vyO?~qlNxe)@)Z@pBmo30=q|?klj^akZ>?D5bQ1Rk7up~kc2NGpi3c0=PmmC zKvguKj^|-cqVOXte_$>n2R5Si%VE%=R0NnJem1E;E%X)rgn*j%!8&cu8xjYKVdfSI{VAo6gb$**w_(pN1ca9 zUI$|1RB^Uzl;e)VbTNT$Uvde^;o zYo^Vt8Tz3`%*nEy=_b8O-;>-X|K&JRrzX^He(%+}eB#3Eg|fO`0_1)()?R;6;T13W zy8#ads^ga`A8vhM@*rZQc2548kU&kvX~xc)oqt(S{K^%)Ede`Yoyl>#W`Ubzp)r1?IHmnKqmjA5DdU%}Nfcfq%ox+! zL$HBG{aH}Zu8f)fPXPqum$KFcevR3T;+_*G+#Cry60(@ZgDG)@RN~-V9P6x#IXlH{ zJ_J6}F%W}rDzQw|=g4!{h z>tca#bAHYV&%P}hmGV`ahHQLv!DpKxqoAO`#J^|E5_TrW>rmGk8HF8YZAF8O3)rOBIxrroo^bJjmkWg8II0sJ5nuLZ=& znqDr==oyDYEDs*`sPB~*6_dnRT3V+_mf4#WvPS>LCL9Fr<3`^qE61!eQgSzx1kd|` zn=3AcccwP;jD+<$K55#P(CpwvhBKF<&+5kA(qArGdU|?%z)@sr+pi_3w{ zeT5d1&@nJ@FhVSea^zs11|1Js#}*m-joKs8PW_bB1}-g1A~XA{fIiH8kdwgFnLmI; zANGU=F=JC3{U~f{iG3eYhJzy|y!Er7tmI}sB=e?|Qq6yV)C(D4b3NXez@xJz9lKQ9 zI%%KKQg=j)4uG+6^N^PM_zW-)w8Ou%NpNo9{uQt`qM)NZ3IGv>@XK&mDqwy~oQJr0TCEUV zRbKPhav+>}ZZPZN(O12q=P6RN?naSva?jJHZ(=jffP7F8^c9RtHyK@pQ%(0lwB$ub z9+m_bRZnD}_kZy|*#p=(-W%V`Cmr^pA{zOKfgQnhRy_ar@K;4+x{x=nzU~WcZ3AF7 zaa{mXywuFC2ULg0Z#fo}gfH!z?me@=q#(}UVUIltYis-c{y8%gdY@e<$ui3+Xc52F z)%IxZZq}eW<_Jq*SOJ}!&FeDLX+Fc?Dqv#ET)|7c4+MqATrgc<;uBE4k_XcbfS~!D zx~zd;aJX@~JIkHgrRFzMv%>J)9M*fno~i9-H6sEbf!z9)b#?v>nSi{y_J~FvVgq5K z!s%ha21XDi_*~c2g|ubeE$_u^N{{W82cS-Qy{%PoadyWOZ@tl6FD${GC)j_*mB6#1 z`VE*YplO(?OM>R#9M64dxj$(?7eIYef4PZWGUJX2_t38@)>V8&x1+FC<%m*k{lFM@ zP+#8vYA;=n8y5aZMn+mm|CfoL3%pGQ#{aW$kWZ8$?vvR$QLTN-rHl0`y%SA3(a^?5 z&X@@@$O*VVih>h%d5sLhiXkZ|)OolmB_!4RvBCmhtgbfNOTj%}lX*R?9~kY8=f!=n zE4mt4*xB9LndMJ8ihgF`}a5z#Ha=a5=yhHVBSaLWB3_g}X2%>BA`i{>W0 zd1lwUZq}u0uPZ~6T&JL7!v4oi^BXKbd2iMKWm||rv_Bk57RQ_%Bc9&hB*s7zprhvu zwCXZBBX{RQ6!Y(6%;1>FWJY}N6-sC;x;aMh#=XgNqEu8;YDf*qNgfM{i8)bSnxePW zR5U&7>9~I8Q=sd`U9*wfU?rU>@1lMC?M#bIIbFpLG4VRcp66iGFff=QM5eTbMda5B zwzk$TWKKF%YC!sS-pPoDYbIzagrh4%`+fC!i81V@k+a705STEBF2nN(`xL8fT zJZQ^?eeX{d;kIOdrU=)z@vq;o*5dK#Pg5kPEh9Oq9{RocgD7ACKEHmA#=a|B%P%N+ z8#P9MDG%HEjToGs7Iz31;pcyS7utJro(x+QV9gnM`SxIMqrY?r?PX{1G9=_--!)Fv z$Ve~r3(v)RKjrFC>~n?u10QB`4M(bZ$=aYMos-qnu!F0k0eK}Q!VjVh$V{Kn7emz7 z8)}3lJ}09}Jig}(ISPopOo8FrR@g9odU8Gwm~;N}1&@HB`)ta2;QgJ4VSOb3E9q<4 zJUEd(w9g8q3_p%_)t%TmjSYGG_E;ud61M0rmL7y<5>0{$&Z?(lnoEdv)OgAG+lI1r zL6swtxg5`=Ti8z*7wgL#Pm?XPHn%=uJ{cR%DOoOj=_=b_W@!aX+qw^TJVgw(fNEeN z_O;j$FoP}>?-l1YiEw|(m2ea0Y#Y`GysMiqqLZud7PW4X7}OUtj|&pZ+uIdh9*Cv_ zHka5CvhwLjQ_ZtYHx*zlEe(f=Zh`9xMMyv}1(^(FNVb4bJ-)kQadAkfL`alIMnfY^ zendz`e+O;Exq`TrpO%A$RQ$!e%A&%$-P69i+|x-R;n5xu_2X60NR3 z`3Uzb$H!4kOY`ioFYD|3@h}>Oaly9!B#iPrhGXz!#WB3C$NDkm%TIwF%};oUpVK8> z`I1gXOHud0UMblVGU&&g(edw!3x{zoD!8S^`AGSlxW%i3E1j<)~+ z3-}2`UrS0#p2E{$WeV^NYI5`C0Ggr4kEc(}!+UzjX~=lhaWja={&NPlDWsXt!C!J0 z+Y5D;?7Sf-|B{;ON7VczPM4e$BRD%d+ZXB>(Q96C7n4@V5Fb~ksq{p!-|`cBRsNEz z$yNF_>G|LJnCA+UODCSl=WpZxg&_%xoVh~IT$iU+(nDU#%oEPLGuOLLx=79-HlisK zrV(oUW0HM#r@8va%}2S}*^9v8{e{uAA0tU;MF!U|AldQ)Phvc#nxsTi(KvkEIizAe zI=U6i^;&Orwkmh4C*dn87vg^0@!^5x0M}w`a7#!}0tGx52gi^6`uZzt#e5AR8O&eO z0GS-;K7lI|-2U~~;8bu1%2Nth&-M2TpvWp zpYHe>a8|hdU~U^YXbCU)8NJbFg%V3Y-yd%xku38n$s&5Un^v~A1ALGtx2MIG%U{L$ zjp?byYAyZNi0tm-9lID*NR?&=?^a1h^u@V``Pj>XZ>4-PoR-xJi=eBe!&D%AimS}Q z@uaC8GY|1N`^i_$Zt-(F440Z+v2XqJ72vAn$eHtMlH7I?z2=>Ai`J}|+$-G~%zD#o zqgGxzVCbz$Ay_a<)=Ux^`M8jI%T}n(-&A~!!M*xgr;6&%ofr;te~w5`6pp?6$Awz7 z(YRHJ(0_+D-9sF2+dm+}F&^uj6k?9(!UFs0W@nNehQuBu`r5tWKDR?#^^!}3Gsj3r zF#vPE3ii5D^Fi*{uOc`xAF%nn zqpj^b^aKFEO3lq1chq(Lj~_PkJ^@~Ry=M)T)Vos^_7g-;q4k{|L)_*y^5w5zSp;?I z%*izL^y<=8*K%r2ts@lfK9(F33~g(_;0o2WixZD<#}0l{{Z>mFl!^5o_uQC8t0M05 zv$YT2CWc^IT0=;r^H`VT7ZCHcp4W)~Y1FPLT3JZ|j(qj=r!rQ(V!n7^F%pSz8%?d6 zJw3hQ*7v+Hw;wk`UrU}js4J$6%nW=N$TRIEi3%K~ATz1tNh87CtaQ+O-1~S9*hbf~ zW(zy6D8h4c(6;eM^wb*p`70P%S+cvIYrI`agVj{~qod)=HgHA7yuhoMjzu`gj!!tO ztgL?e%62dAt7d-K-F13dG)9h%DWrlJU#ReFij0nC@BntYX`XcfIf#ukW^(d4A*L8C z4?36tKM@sP0@SKum0s}p3xZA;1dkwhzxsm~<=w|?Uk6UUKYJHJQ)l_%6BW%% zvxE!e?w6cCA|Ox%pa0&6r;|IUYdfB(va74BJ)d!=UXYhO=2X=QOzQMyWMm?(B|wzv z6ENle4jUU=3CyV$f&EhA%d|3%iD~2}^5RgV$`q^6NUt7NCd$FFj!rsE7Z(ZvEKuhdu`U40GhOc;jDON0QhC&0bFe;<$K1t zlD@e@`O!rzJwH{%nFLsrazaB!sZvD+1*nR@$Nq|s{ym;Awn>lOR>{{fEr!Rf9jxxX zt-iX_B-h&(s-;`x-Te9B}o#lW?=+3>pOj+i2irdD3&{3hvwwbZ`nc-&z1g> zjJ?ZreBcamYnb!1-uDFV*i6wqJpvL=0Tz2kFCT@y+#0&N@|RV>%F%}ZMX23ajuY}! z&xtckTvjzHoJ@m>e+%g^sR*B`tWOlJ`)omIdvtQu?3m@4$?n88`mbU>Z!1n!Wo<3J z-JDM+uaorI43%O42JZOAQzAgP1jvsGVO1Fi$AnTzOeDY4z4eE2w43VuNV~(QB4@^6ps-?--CjHr z;LKqHwqnLY%L=$>6`|jApQSiPJy&r3U0E5pxi(lXfsBao($3X{r^V6IW@5|BqZsCa z?XKEqXK9|C5p%1Uq)R{FV&vueH`dF86tB6zI*KtrmN6m0_%B7txG%X;NZ z8K^HM-!nWBDq-6z?7CJz8vDzw8(Us%jRhzen~Mo@lRWN8yg7hd@Mp02g%j+D-DhL< z7%Q|^Tl80!`~IB<)3ei{?>x+4X>f3`_t|I2+1-cg|QID0Wuz#d|X91;+ z4b3NsH$Q}}J2(hl1tq)a29JMiq5qQdYNsUhgM7<7>g-vxdw4|J4`^@hWoqC4SxrsZ zYZi4dQ$Yi4e!wT2&onqOmxx?rgOIur^WYJ}*BvQ!JT?}_nbU|<@(C+9_M{fGUTV^8 zC^=bn4AraOP)l0NrAM9*Ea=}Nc>E6kdK3VC&HgCRWEw5VQTIhfMHSqMyPJW2s$w_7 zjU{r_G>=<0&=MScTvoBF+7I}Hb7CO@itMVNj-obc9&WfMEe~-LWY7UJ! zA6aljT5mhvu`bU7UORa{pEWlhLu}XG>fVG=vGPGpwoB)v@a697>+5^xW8K8izQ2#p z1y^}UJ;>2|lT(2pMYiQ z%fM`;Jm($tgDLx}sxjKk+sLXw$$9r;+RHq;5p5l-AJeHX4T$Vb=I_H^3yKMpYd1C2 zWMe{B=Z{ygEqNL&egvp{FTCrfW4KD1#Gth3f}8;k4bG)axs~BiT2m8-4Dyr3@|~KB z&QCJ}4(&m;jZ)QCr7XQKqC9`gJPAm~fj|*De9PPX=+JY$bBcuVE%p;_8;%FYL9^dhM{@f4enzCx&{Z+9mB(C@tRUC`s5mloO{YMyix6CBYULFY#^sGH9`<0xZO-9 zN?|Flx?TeGb_R~Hh`(y9iltKXQs*RRX9ZQmVcRJ%h>4Uj{^(L!ns4aPhY zSeZ}CrcW=pq>WEcM~UjLev9q;{ks8{4Yz3co0SKqK;Gfpx^+H+JRvwu!tvG*z?z>{ zX3p^v;PxfNPYvKdgN*uR!dwea361sPX+Ii6WVddCpRzs<4 zv{DXrSwT+=GgBW2vb+wV7cYzPo4x{<45pC{p}Nq_p~kk`80S-A(oDu&k;}I zzi0+Q1^~H!`iS^#Xtv%xz?HhVN7M{1+N(AAvP8k?)Z~!OkJaE`p`lVx<3PRrR0f{3 zOgAWH{vz^Xh09%82xw^N2?IJ@<+Uh%KQPkcalMaVRW~htIcTU8R<&D=^%(?FP5SSs{|a#mKAV(F@TxfTO8O|x?V|GcuE(6@Q| zRx0F7GPQ5@$luq<$mmgd}O4Oa!2oU860{YG39 zKtRkmvOL%fLcat&PP`hh>T%7>%82^TK5S1ep{pyhn94L2?WE4<^Q>Z#ek0DazF~Uo zm67kPPP~>5kG9~;9MCPfXMt4dw(E&ut#w}X{6SwdU)!vy%9`-mUb=tpO+FgLTXh?b zh#-iH6)B2&loAGND5J-dZinC4!6NW_7gmmWcebc--kB(~j?D^{HFM0Bdm z&Mp9i`^*_a{lvpPp;Tl!{A?!VrwCFoy3@k?uJy&C{8d^3w|@jwg1$Pc1N@E|$e{x` zvL5sdzXf_Rmfw$ zg@q=dq}Cu7Y3Zi^4fo2VQQA`~I{GbbyM0}5SVsggl-j3L6fZ^{d}coGse&-_KAZI- z#ux(W7DP~aye1wecSjAW#C(^2IZkABwi~Hr6chZ|av!FeGt#_tK(6y}?tJcS5IO7Ud)+atS%3148U3TFV5=ab6gXuG zS2K@}2@(T9-wq1aywqD4{@TF2so5|@$JZ~5^nFzO+xZdgJ#ITc5L8=PvsMH-h&+^C zcqA%3cK->e_vZGioWbw0f)X+I1LJ*c6&1UyPC)h9?bxV%Ivd{dKJUm1p^dBzX9=s1# zlcy087vYYW7X>lt9+w-c)lN2P1SD_(r2}sqPfoHF^KHtppkDh4+wCYSNg5i47dR!U z3$l6fDT07@Wr*nRqS3f``$8I}r?fd!V=vccj33(p{NWK+Zzh!zVPXPDK^+o33p>#w z`1?$5me+fXom&+DF2AcXLqOW;S2Y`U zDr@DsE+e$p7=i~C%&=``+840LGA3@4zbYdxqi6UgbV|w~#3rqTDrib2Kn|DI<0cfFk zO#v@pbfpw_ISGyTMNFwlH@N=@h}Rs}G<4(;PM5H!`f7`18v{tYp_G9G zkkYF3$}ZZ{{c#}vqxTBDPb40AXYP}u2x`FlMg&}A>2nIO0vYMz`<9de!cXcD;|P1O3W7nZ%a<0-qAe|6OF z)@(+5@@+mPm)K$-Br~Q8v)YTha~N>m+4U)j_Z64m0vH>m&oJe*jxhhZ{P%u^O03l7 zC(TWI@RB=m`^>-5zxG*pH?cn``@?6AF#NN1p28L+56vmwFbQO=5D$)Yc^;-}$ zI*8L>OK1o>8lEOwUlPe#TCjL5{23Z+W6}lQCt;ctve@4AUOW6Vw<7xb-l0ekNlZ&s zuZlq9KpPkWrf>A;{fLNeJ)5f8#KxD4^S4HJ%+(O1rmVea;jK39ZN_Aou=H_lbfAsdUnwNiMgrf29 zbq}<+nFEBMq!Nbt6C->E&b{8uTYPo3_CBQ}ol-#^IVSIqR=rO4YApr)VgtjTYHKO#r4$qpo~$XQ@L@s1#C);% zcVW|1Mu11ae^+b^&UdpFwV+p&WVeqy@iS6l*9*B?W8RtLl0d3?3$5Sc%b4=>`9^G1 zxwxNI72NAd!mI~k$5EG?K38$kplg3w_Kkcl_WPaA)_=g?O!F8w3@Qr?l@R;nmIF{$ zCEMUx%e%LP+)vcCps_GmaG`k3NFnF?gYGa~ zWYx-lK*S9fVkZOitLcIWsXE+dIX4JhV5UFmod;Fs}j3wX|+U zu&8jJyp=*d5*4im-5|AOOHQm{HeRw>FC#$4{6vm%$Sw}|B25UN@yKE{=vxWiwA%4@o0IRrnx}pip zqwX&+r#|y7?uw5`ru$4g?xc*K6sV?1F-A3B^x=X;TIsEDI(lY9&v8RMrRTg3_7gRf zpwW#hz3$}L;8DN!zcM|wq86m@Mdn6Sl?_N}3GK}7d>*Ss?*+xa|Jy$|7qI>E{dKU5 zZqZ8w!~;El0@6#KrJ0JwgQh_`)JO~gJ%Ih!f^gs7hs}P~*^6-=($}T71l#X3ua;i| z-Dd%OIe2qRys4six9`*aOoq{zR4jU7JcAq>qa!8|>?bZeqt^l$NSk6ocG71SmRUV$ z;Es2BNYwTB@5Wr6m$Qn6udh>sLWix50RuybC5F`BzCNL%m<=^xhq9-osoBT{bDNc= z)hRextG%paSsv; zuqwWx&a63e3U{sC2dV9?2j!H< zM^{7ss&e0-a=wVKvl}H9OGzpFOhA|k%Jp-U5EJlYeUX~GFe80U&I9N<-&X-j517xF zDeFDf($7x3JcM4!K4p@ob^Gru&;A=rTQA5K*)=EXGab z0X>J;;PjAdE13D>wdkZWe2oui@m-8x+*`*8;&Jh6OQrXk5A>yr;|ZLK3k64#R)H5gViZiLcoA&@`u*r-@88-u)2eAw&K%#`r%zpWLrDM7S)3z+yT^??QD<|gADeq;exJkt zV`RJNvFZgab9fBS)yn04L3W@*>n~p2;HtS_rfGUuSOt=PlL z1`QX&C=laj4{y8w)tVUJ=eW@L`jE+MN1OTJ;zD$bx@mpfSm`lC?qoKMpKN|d!h3Mg zn}c1PUZb=W`C2SJ&pyR7BO)n57`%!4ty)@r!mNT)fh^4h@pM|A?*FQioRK}Wqb}f1 zB|^d@>Q}5kFC3iTstYL3CG7tvJt%4n{D7Kby;IU~+Ikv>gO=k(OJ6TNBIl%ztNr(K zF?XT2#<5h_=sx@OIsscr_2Rpw)zys6OrJC5<*cpf_@zk`6S10!Akp9Eoto&=30nji z9d*^*@};0yF2>x4urTkO_yH|JaQ25i4{}f?xyQRN3sD1fP$biYK6(n*2E~PS;6~<6 z{oXKmE2qB5 zC*xydr=FP0pKi-ITdz6fXqzZ`RAiNo=g*ip@{`AXBj@ByzdSInsGzIo@B5;e006`4 z)|nE(A^!eX3Vh?OiGVd;UJW%}QDc5rVzwZry&-vp2XT?bS@KOq$Of91sdg3CWUHY(&Bm z#~+hM8zgsDQ)9!}@6GJ)S-`Sknp#a&m%DX9*|1Z=la8uG_N7(&*BBO#bwb;!>Ecy- zLA`)YfK1+vKgQt~dqhR}VPu3xvlpmd75=(T@f3?|FPKH<;__S1*!$+V6l&HpLK&Io$wEEO5HC!~<8x#FXT-u2 zM6qEMMz6y}4I+u$;N=8<^C0x`8IK@qi~41|q4hMX^)vFN4%JsAPm9xD3*L45(06|I zsT?4ANpA4mk;@CZL4}D)EZSjub&oZ(|2x~WwQ#{9k`vjLcd?fC*<*!}XQqC!Uwpb( zEYUCYJ{#?pa2f;dUBoa^i%NhNJM=u`F{K=}@s%ODE&c9ySeZWjniVE4k(>_8)?Dio zh-a~R@UXQs1b5&>%=4>+thzc`N&(R*KG~OKz5B3$*1o%-QD~xWU?2h~ntp0#o&}B# zv?1UZPwO=|E%!=?60G;d`tLVSBauyQ4o!FEKUlP{uF`eHj*dO65)r%#MBH4d{R-3v zbbOaV*>ZU80x5qY7oR^4iNg#Hfl0>MOLLzK7&;JNPVN^DZji%eYju3v^iIdc-lP`M z4e^-gc@JLhP^7Yo&=uC}@u?G%{eF8cp?G3>WhbW^RB2!e49MCtAqEJ_8F6lHZABXG zSCkYPo)&Tm@&wRSa6;&1lvFzA2S9GRkLTnXeWr=v-c| zcS!JfRpoOuY2*x+k%()yyM~U$Lalh zkc~Sj7*hQp-|?C|y!C)2_|1H7MAGOVIb&nwCyvh)#DJwc-yV|Z*|R+<+GI%yLpaqR zXhAn)eGLMZr`wK~M#Fpfr{SS%*H(e^o^K>W<^&D+{ZaJ|y&H`fj4LmAHW%ZiiCR_`fGBcEZ;z z?t1_^g%#*GP(Gm!rh>vT7%&ERm{2s$qzf<1hUC<{F zN~>uq-TGTDNF|T?xf1a4_c8wwiwBPb)3c*^o^>p?8%ttL`tMn#d8U~D3fvmg&e5I% zE^n<+?@6@y)U^IF8wM8!Mg$MX#1H9kY4ELc_}JeJs_UB9F@mq3d*UWv0Hg<*xwc2p z70?W(8EI=S2TObnu&@3FoOj*8JX^ zfmSK+o%sEZFq8Ow#6IoT&ia#`j+i+QZ)zs~{3iO$%%JD+S665W*f8DabjRvQm+E>3 zfVF_8Wr>i0>^Av9WYf{m`hQJ|I;pLY_@_!LeeMIGL!&7R1TckMKsd?YERGFe5Yrhl z83R@(Y5(`rMR`dLJ2z02t-#EbH~!o7F#Z;3uL~Ojaf&Js6ZFd^A|M2V3uoULI>kB< zL3xW|M|5TVI6k&lYg$PNeV7?=`u2#)+r-zvXig5cSfw%H9i^zo!))jG#D;?k7()$2 zbmevWJtEInN|u~fryMa1_p$`uQMOQF#sSIa!aox;1~0L&Vg^o7AaecEcOj<{{b$iZ z_*Pzy45!D;3T-|3#;^Xr_MZG7%I*I%NQ*5=wj$HL)J^uRcTi1flS200&C-yO-7qG~ zlF+?w6rp4Z8RW{8!APMZN(?cK$kH$~6l0t5InwR({Tn{7@BA>Yndf=V`#I;lm-AlF zsipC1V8FVrB~ZTL!%*E&Qfn*>?#nNPI@;Ok^P2>DUo08!WqP#Gr#J_)eMCf?V;IEc zj0E3oiZGXMF~ zlGf)sjV?{pd@9~)ZIiJPdKIRR2M1rl<6w{g+<3aU`}-0j9%ZCXG1QbLNP&S-{Hg%q z6xhypTyX1#-Ost1Q}PYc1m$Zi2QawN)%y>$gef}n=%}RlzU&G62j}kGsa3gh1z)4K zGNz03cwE(h%Ohs!MDrL+rp>8Sv?S=}5u%^ZK>&LWEA@kdLI&)_p0}!&C;gIdYi;xz z!l_+OS6fq;n=<3&4`UqU;9ke~5rYyhhp{W038AnSMN@NDutN?OXbXe8nSxbH;Spc! zm%4cq@C?Ve-V3;;yrXd~m7J)RN;-9g4%yTDwup6J_aJYC8wkkYe{mISVUKioex~qA4 z<8!IA`->z}AK6vW)x7S`6tzb$o_ff;4M(~QoQzxbsc3riE;9!vI-bz-l;&&K4ne-p zh4!M*lJG?kHcqU~6TLLJl9i6a3HSfy*=8H9IcEAjWP(nE*2kWz0q(Q#huLuz?c8Vd zg`&fjR>48m>2B(nNsG~PXKu2DlY%YU{x7e$kKU&$^peEyD=IeTa1Cjp{h!I4MO!T`DsMogeV=x}?#e zF2c>ND)ozFVy=~BO?m2R7ZUrtS;o0uYnN1BdSf#)>c9bebBC-BBN%^zs)mQpyyvDZ zNv-=7=yXvn=!}#wh+UyByQcAtZ|-(3PFj;rY%cfj}w1IR>RzklrQ_PKx_;t z3_o4Y)6z=b_4V6$;6YnCM!U-F5p>BoJc`rV8p~UZ^NY&Pj;s8|Cbs&(h_TiWE}UB9 z!eAyfsX1&#YM{I*QawrO3{;P7h;^*`!W%D>){?bV7n&4ar+KxJ{vgXzuDxik&-opb z?zX}XvB~p;D%w1mx8(TUl!82JcnpUUpV`d*tzdq9d^}^hf7NQ6jLhQxg>!VSU5!i4%Laz=hZM5>YYfBlhjeilDf@ z=KH|+t%==BUuG3n7o?!!(8SC-YuhV!&v(V^=nrz*wT6S@=p}8!8-%TC*j+&zEXRkl zJd{HZf43cpESUe=(ZPGZCsn0xVmMyPQ`OGm7vzB^1$|G23o7=bAH;f~9@E)*HYg+A zz-W=n5)tWvu>sJl|1k;bNgW`}g*7xHNj6%`88*CSQM1%H0PSw_85ct-q;2F#vIE4g zb|%ILfrutebVT#I9~&|!-ojvLWmjS2qYzkk3T=%P5QfhmKhxSVv{ibC&ZyB$$a3Mk zwv1!SdIn2gUaQpTI?3%a`lEP_uEO)FW6j{lN`g<;KD!uRvw>m`1~%AKJdvZkf#-re z>HSBn})A%RY6x>3r6?Si-D&2 zO6GjO*@Nqg<2epUd`*u3cK0uV3$wr`42C z*!uZBt|~XT7;o#-^6M^vp{dra4?Z8~Nh^^sVt?_O{$9;(C$3%dt@(h`2^-e#%q?3fp}^6~X?S zIv0a@sG&31FK&z`=)znAldfh9mpjJ}p;Pu1SgSo<9P?8!W)l=o86kh&@TZTD^5 z>qs=iL&5$Q2Q)z&zzPzO9F7k-On*Iv0{6BMeQ9D~Dvsqbi7vW9VY7pazmCx=S4UE# znsJ6VxFFD`?D?ebP-IzxuU-!3?OpxA_dTHpe*5j?QyhnBoX~24aPel+Cd=aje zCpRQ(EEpgkyzV_%lG@%r4P5Pu6vLZ^H@LPP@{!dS-)G6?+UTUG^GYw$408RLvTc!{ zV!u0t5{_L(48F6JZY$Z7Ii-`Y=Ga>UJHa3KabM-bO{L8GWt*OxH(ShmUYt1(ONVM| zs;hs6l}#|m7nT{FAM9_@BH_qrbT@hV(guRQXTOKv6E4#I2D6K_wREm;zOZoFK}?=p z4VOgf?UylqHZFBSD?`#haI7d8mT1(1&i5KxnsXQ~k@5RYMME6JYFK^QdHc5EnNJ_i z*cBHSX9MExiSQfe54#O3Eo^2hNlI2S87Fq^P*`16jr#U3#R+<2njj6tK%p{tSKFhx zAg%1`<{ubB&+=?o7oCH1yEV^90Nofp2J5tfG^}wczUY%Nm(7z zMMSFgOk&O^Gu0jnB^b(Q-s7?C&`8|`*LD;~yP!R*W=W4x|GxMFOp-MEh8P@`(E>eD z+3LtofI?SY?`g6uKUvvSSdgDQq9|qZQZFaB@JWX+re`NHd^|gh)mTt7@IEb?`E>u$ ze78KMV$e+&Cc%VQ@*_^rV=nxlA7KgA}P(WoQj28=Xz)g)f4+*e6 zyLYnl4ON^E_bn4^$wi+n$5Wj#N;=CVFq z)P$g%zupw`R^R;kah8BN4CDQvn@J(?HoLQxStam6-F)t0> zrG4Vmsibo!i{S=pdn8Z_NLi_Fki&-!%2Pi4UG9&>Bb?uF41?J4{u0Jd(U(AN{ti*r z_)#M+Qov*@VJnaY8{wI)C<*=Ib6@UGY~Bh({vLxvL@jUkl%P#voY}gOsGC#5uSux;S)1{ zc!cE+ikc*MI~v0~mBoB)14rH5b@DQzYJ+mVv&{0A;U%#lK5zmc5m#$n(gsGP5DQsU z4F&#+yHkng1nTfoxE+i2bvPGW#+p+gg$^OIV4Jza)N#N2(whZAVc0*&1JoV1^)QGhf@5Ti&KU7k;Z*v#L z+|{$@nk97h{6HKMxisKG2>m0y)w4HG-LPaL>B3 z0Kc^hpp)Qo17Ir>ltDg%)W$t{*B%TBvfnS5CI5VbQ7Y7rvN_-na2r7v21l8!E^w7{ zs}BcEBpv&nDS%!PiasLnd&2Bm*YozJtVvLCa=_*1o6r(*X6uD8-@z*FgJS6C3)cQk zqA@*n?>{up@gj#KqU*7BKW-bvZv&46cYjBxJL0a$pvn?Cfe$Nc3mwtOofLb3fVX~5 z*#G_ygF|Cr!H^&b%78NhyBYW)m5+KT0c-v+K@$|@aCoREzsZ1l%WReUK}WK zUn&Eof0UmjLh&T=qF5W)hQOz3XUp8W8v~gcb7|wfmB>2L-M*^r7y!1=PM{B2xqd1< z<^l78An#gkBvf&CzUg@W;pP^q!G6FIt5l%kF57Rpw~JF--00V^t}MRtIG4N^LfkL<{L zwe~vIeBO|R+wQbTXH;Mkb zb*}zO(~tQxxCReL+m%|tq}m|9E%vpf{Ted2U><*lup8V0gEH>9J2)71!PPi+mHOf} z%B^ggAT&Ohit}qAy`H(`680bIZ%YE(Kx7~024g*mCumF6nQsE#7W*$Z;D3K%B*~=q zVNqkH&B4cl$oO%d>}z)pMjsR{U=Q{Es|@TxSN_OT75~bgGj1?QHPg$&C&M9cEoap>2dHWrJpw#Y z`VNxjw{!~mkc6>NnmNMp%JMeAxiM=?6dwQly zr6@a%{|~KKK=nkRlh0xz9cqI#MFAiCh+C%zpOX?OgZoJRM5njunmNQ z1i7()nQvWi{r~s>+6=r~^=B~;jh5trlvUk7G*ma?(Ftf_!7kE6+f64Fy}x+-sO^Z! z*7<0A{epp<+#$Y9!mZ-%=*p^7zvi=Jw>Iql3wchW)xIrO_)UNNna8hwF>Fw9Wa7pL zY6A=VK27y6gMUA+=XMc^1EXQ}5$<2);YC~Z+Hog9iE$`N_jhBJO>KnNm;tB0ssh(W zn$5IaV!3ruJR_qt_gK%0HOiX%`@nLx=o&Drl-}7g5f9c~3}UT`MeUf=+GPNAO=G3# zgHPU_>dD#Zo-4{RElKNs`Nc7q91(Pp8)&)swcC_2>yaXCyc!u?yhMz6@TyYcdqW{i zsj2qq@~jXjc%17Dt34weAIU!&{J1;1IO2~{t&CDjxhcC+e6f7)a4p|ji>bZ+-Sj%m zHh-9p7cSm^|4X?dKIHb$BkRl+ua=9!ZVAzPvv-uA4FY`iD~Z}u-8`Z$e)ZwJFPE|2 zd?#$~RB9v*_y4luW&gQ?Il^oSp7AQ2N1-137aO2Phx+p`t-Xk_3u7opUN(iNWPWZ* zaSID+<<_X;BNK85@(ZQn4oYQeN5V-U^uIXO148PJP2E>dJFTMrS`EET)%8vl`6`ta zIe5nn|8QnZ1464X(+)#~)R*eEy2vG#MI%W{?Sn;e3<-*oC#&JgqP+QmP^W26XW_N90QVybp{9_QFdyrGK{yrUv2;tV`zy44l3F_Q4V zNkO9!#n(uFj8ht~Ya2*1u!(Xi8%WGs19HxX&8MEkD)lcxb>I0?a522K%&Mitzm(hE z_hmL)O&mT0T(E7B=gnHpzZ`ttk2>}L5!pA_tOg&$W`)5H z**RUhEXaEIrAkT7xz?I%A7xQzTW8^vZ5g!&>VNx_G#!nOWG#kdwEnX;&=W_`poxcF GWBvml6JAYG(Nw?e22(xnJUF+%7Gy(ktsp?A>;QbG?kG!c-l zAfbmQy@Vb*XR^=t{dec~T>W_-i6m>yHRq`Bc*o%56CE`=8V(vVGBP@-`a?Z3G72Oa z8M*a8l;D%G#Ow|5Mrp07_7J>-*TI9jK=4NGqHf|&M#lC2{NIJ>xy_ekWdD*uAKrV0 zOkbVw_Ir--C!UcIb``~yIAWRzk^19<>kh$JZn<>nOeZ?KI0`xi^}BTyC-u*}1y`zy zADqyH#(#bC$w@tk@zdArw{KNh+PzrDN--0ad|mhkV(RwEi3IOK_g(vnC@J2hT|dR0 zl3r4}>^D_l(z3T`wFRn6#t9$D9Ly1-?}eC2Ev`yK=x?%&2F1KZf315+@^T z>aRr2PWYq5gf|-}kEA~*B<)aM`8R%@nv5*wVxVB&&55}4)9G0ipcf!cY4g>up$zIi zJt2MnfKQE8i3To@$eD5H{}0Rj^(Ue3UIMPhF+~u3aGRk9)lm31Sd7{N{3ar;@HZNE zR*b#_ecUeu4PpUW!Z6NchNa>1aulu+f zt78D!ohwSn3xysgVWL_ao~VvqiVoJ=AV+*~ zC(zw2zFMP%uU@OaZ+1IB&Z7$5zuz!YD5N-9^L5KJwHTp(m~A~s%Vf&BRC9rhERkbo z;wv-JOY_hO8m(D-b4fT1;!=OwTAqPz+P+9e_EX(g+Mjvx$56(ABHpf*<$m(AM5fW} z=C`&ucW;v>n+WyJk31>^2B8ZIRnHo9@;1c!+)tmEzA_g=g4G$X62*Fu2>x}$85|*# zuyihvhWpTyRFf;Ro4ccY(O77y@Uf(K#0{t!N-;|I+hw0_-Rh_;Xp_Q!+to<;c!^kz zMhF{5UZqKM0w}{jr_}X`ks;eGf~KEP6cfoT@Z;{CtV*X zGQK@$$EP%RcfA}X^Mk~!=~HZf=1M{OO_R^DUxD_6UWK;vVLZ81%$w4}YQ8ReYJ9EI zIQ(SYynl)DT(uuRAd;MM3KxC=zh+>|r0LjHVW z*#EAu!Amed+$@USIiu`eVA9V3`zh&<*F5CZZaiGixUkR*`BV``@x_7=L~3)KKR-}s z4RqT#gN5TQs^nGb^gA)yO}5AneE%Y z*w0)tf}dl^ZXyd=BVKmBvY;sIiP238@Mz7;4IcA#%mg+OJx7Pc?eO;9%eqc z2z}3&v3-4eC38(pX)N#ZPP%ty;}iF^t`)G`pdDU9MvB%41n^RXcUyo#zd!9Ujx6zC zU<8Kw)~!Vwfe-ryp`40GT&*G1;y!JfieqQXBMq9Rp&WY6z1zpnxRHs1vq>6pT<<_$RLWEeJmk3=uFhk2;vz*= zC|i=0eCtpytAjFG5agy>>FNEnex<8cS5LxnEaYx1u2h7O4?b{57A8?C>g1CXz&;a- z2kzel(I%N@Q_S!taD8@S1B`yV6s26Qx_yC6u1dcx(9b+?Hjj?%wV< z^mjpSSmUwL?wbZmzIy%+88*3??zlp&#OR{d)le){`* zKDp!~wXa)4aN_Fnym^+Tlc74$Xz1ZLG_Ryz;Rm#laOJ2|hIQ3bI&~kzetTwG_3a$F z!0e0vyV>*5sQwPgD$KRH-v1F1E>-pSJg^#16F&ct4JCr84n(4=ag}(HEa;`^dHim2 zdx4S0k9y)wPb-1!fqoxdO*y?n*5t7|Jlq8fIG#N!Rwg|k$F7||_=CR5z(#hi z>&I9RZIEin)W4>trrMxRANIe3!WrJT6zgoqlaaXsky>TeikbWTR)xX74=*+a9TrLm`Wx%C)ew=zV_tS!$Mjz_7E02u;VppY4LwJc-Ge~%7@)MRFfbn9=hj;-?qUh zy^e5&7i-LV+@anS3##}M!b&#ZY|6Rp_jxsdTPd54YzeEaf!`6e;)d|6o=CF+gcRjWVZjD zi=Dw~p^qm#DvENQlauWy7QcmH0heiVo$ttskDJVjyH?y%8TES7MK_u+L4@!cd>iyf zvMpwcBIxqt^JD!qO&gf_RU$ZY8cVSF*u;8%dpcI;b~6kk9j?qy7Q_J7O0GNM8XSba zG5s&b8!vNka&Ge_P_2fgs{}S!oy%e)9PN8iotk%v8CBUkJ)Wko$Z7?-J8of+;IVKU ztU#t0iey!fo1UIN(a^h|7#CNrp?5aZ`w!XFqY#Amx0oHvrOZnu{g*uvlYb_LlReJV z3#r7<@0*VX_c67*hKx$8quScqG$0U$4;RS7LoN}wo(M15q?$cyp@&xGddM`<{PsFM z#+1n{1)L{Rb@mzafBjMX$d>8brD9~ZWQ@43mTL5wQoH-)&5IURIzTc6*}+pJ1EIe) zg^rA@i(^wPh95uL(soH)VOoy-3 zZQ1t_2>#NV}{&7FIQI?P@ACfESoy5EUa}Cu59i8~~)y3q!>e$oM!SLJX*zMoB z@6#o+%}4GeN`R(f*w3xyy2mqv3B|bC$A^di_<+Sq_)K6-jJT*-K0ag~*jKkI(6wEM zDXf;06Vdl~xHLF;CNvWyQ?e4(acV-WI^R}>Z!WgdBNpiLpZ_j~o7tP27s3CqP5v65 zvifbUb&lfHAuuQP{u@KT4z{+ou0q5r9-o`yf9LUiKSs`CY-aX!nv;`@?PoduP_hx+ zp-NehpFb*=_e)9l^fkBv&@nB1TLqULYITVMZ}(cnLL_=@q6$YJxJ z!<+}+@;`KhX|+5Wlu zOiJ)}BpIpKn^DChbw(z4?;7D|&qFm?$wO^^WTb>SGc&W1Km&qD>h^6_5J?=*UC1u? zbA3)5smgt~$oynFJ>7@6|DVN^iAYFGOW#HD8(pcyXG*sX?~|yh2`+M4|L4X97hg{- zyu@RyaycD^@*>Lpzv%eY_4W|~!Bvh_W2+vcX3ogRnyfGjvLLHi4_&Z%RBUD@tA}O7 zDyL;Re6r)ytcfi!UNX%{>|Tk4oty9HGiN```ysN|Xs)hYR85VYGG~LJI{9|hm({nQ zlcAr$Ud~CZ$Whxo;*`yIIXTn^S}t+tO0N>YE87+wB>1D|Xt@`|mNr zIgyXQP&4D!{qg7iA7fYHkX&z$A_y%FLDqIw$8IiBLnlznd|1u=*qzU<>Hh|W4)`Bz z1rUc*>wO_huWvCfbqfk@Wk~+QSH8HKLrJEZe}#BaI34WQSAp@PqRM9dtQ=UsjqShH z`H=QSPx_;oX>Ex~9>wUx{l*)uLTo~iiTS(mXmmT|1pm3`T2n{~KGDMxXFSg(9u7hF zL6>_4#r85}{|sWirtPW7ns6YyB~R&WScr*>6ElYYdEYXzPJZqQJ6|5PbiajgC3)O# z@VDsyfM&gAII{5;ZG)oWJ9&eyyH;m_G49XOIQ)QyYaD(=C$^@`1;xu>t8N80+#0i{>?;LH4JGum084`%~U`!tsvp?u7;2>yj~tc~BGwpHqxfQfRsbWT`wa zgTCb07*?ft{5#rtD+*pS#{%^cX<$#D;$lCKnjAI}=EEizyGG~PxvK*1*!jcDN>_joQd(pp+~=H3olVqTfo-3NNZ!H4}1m&21>$9ZTm%@;Yt!#DZrXO<>%)= zXk#OV#%J+E|Me7XxWXyQ5p=NP=rBCX75;br6^RS+ZDr;WHd7_51pcjDQY7zTsl|TK z{iVz%#?6}j#>r=|r#}pW0CiG?CaUMhN)--&W~#|_-{w2fJU$9EUHo{_n2k$Xx|rzf zpw1?l9aA~(vl7i;6aL~ZF?ot>HqWWzW!X+Z}5D8Oc4#Qx7$TqD4|BsQFXI^)L ztv!I!ueotONT=-{P&FI#A`UN`*X^YC`OP!X*RMG>gr_~=;$jS?bD1Xp)qQ-w)JleL zDI6sa;@M%Cb%GB(VF%ipPrl4-hMq}+oCKrg%`Id16~dKV$+qn=(nguy^Yq01+BZ}N z)d45b<2H9GC{75ok9~aj7;#O05I&@unwkI;h;E1w+2`iw^*+DtC`5RGPWc3H%zIv6 z$h}8(p0_3!vJ?a9Ntl9g}k0GSCJDngI+hMueilT(RNaltU! z-)?nxb(ul>jwFIoIG2}Afm#KS#eWkLD>X*bT>M0uyGEIkA5svzO`w(rt6o@x&0~7-?Au!3GVuA{Z-@9-lvd6k5W&nMj304NHbV#aI!rl@>xH2pEF>ddzm70wP3DC; z{kHP;jY8mDCgj!hV5h0lMnGJ7Q=wGMxN`dh+{fKy>#7QW*UcPqt88=s^%~i>NmYT+ z@^b84qFKO{l1wfd-J&3)6;5eo!R`Gw_5&Zu2}XUdNFt}TTw9v_w#tvXrp_IjKCk{u z#Z~7yHGyA&rKv)OR8@IM>26fKF4HF0QePiQ@PA-#?)F&C--)Zl?P)WuRci_UaUphk zBy+&;aL0+TsVzH!205O`x7}S+!;jdVVhR9uPZ_>Qb8F6Al}bHLJ52^-WZgZ3u~y%& zmu!2|1F+3%%@NVmrkl5ee#dY_J}S<&RIKFf>vi}hLaxKCzV;EyEiA0)?=@z~YI)Qb z0&J*Kw0Fm@&lJ|L^giJojRjd(Ce{l!&=EJObXwClkzVEFNwiXHZ{P0fT+f_dl9g53 zjTaxO*&QyGfHpMHQLNw(2q|iZhkqlY?6iJ??Ku?}ogRJ++_e=P>9Ul{ z(W(t69JeXjmW-~~!eC|1eRh5a)_Co$X7;a*jgji-rHQvqOwO<_<(3wO*lYk?N#@9@ z;70EC_1=+#vZRyOC)p2(Qf>RrEvD0qEXL({ew=dllW(oA*Gc~&_vBFbgQnH@%&HSl!%eIRln!#91?6)IG}U!LV} z=V$xZluuy6GFKtc54mq(q?5T5372#GYhu$~f>1oai&AdK3?P5}FB$Rg0}Q@xTK$lm(kd5LSk`dO}h;9;jPSH4buq;On{j20xn7 zmfS>fcj{_n!|CMY5up+0w=4+l?-2K2Vul}f8Z{LBU@+d`LrQB?6yK@lF>!Zy4+soA zQvnsE`XTbsqgMZ=OeQib?{7s#0d?3tF(~W(>|Y99U0uHRKF)lM-XEVITmS)2pNoek zw6+i%H-;aL(A+QtspA#q1ckOWh)Tj>&tQ`c{tP-KV-U{I^!w`~B^VNulFmL#wCNz| zi|UY@)=P_viz*tUHkgwx|D(MF(+P}2R5|2Uvl-4&-~V_l@mL!6$N%moFa8Ooe_Og0 zrhb+RSV>lKAfFd`(?{R+nl;bBGZKRdjI`}rUIIMZsz%}P*q@}$hk!tn0yb$4PTK>I z>#;KM+PLC$#RE!snN03Cb+ah$6AP4nEr@#lZysc1u*bTT;U6yt91bj@>QLy-=@;hv zrzChOeqF=u=U66KL&TLqk<Ye{o64A9T>U(3qMZe@0l3oL0z%^pvP@O+=he9=jP z=M&_JQjf-L zobKuFLpLMTXB!)zQ-#UA7!R96JM0}$l9Y^3_^oxbPfh`;nn){4?VRT6RN&_=mE7kk ziTjCWaD!V4M*>itm0nT7O*(qgPJE9`1Fh2o(p;A${WsIz%mg&+rL`5fqjxDuXbY6D zqc9jeW$3ceKQN4Aagp+0uIMuy0k<#N>7ZZfAO~oeZ_jD(zjR{&Ctfj6Yn^sMT8{FQ zlNrlINXTlqSxOye0QP0%`E4)p5*c}U`NQF7RPS4+0Z_{^*l0Tni62d>mFa40Zx^(4S*mw?nTsfNIq?y^mg)feg=%ce>f%~o>iE`5 zhrxRH^eOwsA#nBi8YsUk-xyO+fQi8TdwQxaS6~m?d^tFFjuDN%Nm#t4v+qPWXEYB< zw6hX~b4rL((%Q!Q#A@*@SvfQeBquo_F08EUjQi$Uw}p0un$!TzJqm<&(P z23udmgExQ zP~X<+lxi43QP{l>PUq?uR$=;5%F2W_LT|+-xWB)DDf;5jlQdAKC^<*ux$?j;8F#K; zFUcaUgVK`2M(e&?pKE#w-=tAQaF9i9=*p1h5Ycqyr?~JoR+bIK$DWebQp-Qc{H$3)=5~yrkr6o)PHpmJeNj_oEA|C(JY&-pYfh-XGeY8ZpA8uu!(Q;$2N{6nN!D*EdHCnP-gM`Ez-Ce15yy{t&3EpZ?`Zc@XO zTTf5Z1njPyig`HU_-v0h;Hb*7elO_EIj`vO@RRIpWXA69!9CqyW8>+(g8HU< zwj%a^$Lea@+EWedT}d@gDzQfoMh$EtW|f-Q24)VGRUY_`5vI9rw{6_GN_HFGmTXI1 z-k93FL`~FfOBOsLYV`MJD7=Sgi^;u?=!mzb1Xd#BcotyOZPHf?jf;euDs2#yXk*oX zkPdZ>r0Y?}FkS!~8fb3lQWS$4t`^t+g9*p(zF<20k*PR5Dw1M-#pxA|2>t!#^GJ~H zv|d<{=5__(Zvj4T!WN0Y7-e8!ym{}|8(Qxi&0Pn&EPtvQ!g#+1i1 zT+}kOZlPz^#$b>P^Zal56M#VaZx*0@=&WIE;8#hr=}N}g^xmgs{Z{AZt5rqX1@-yM z!^6Lx03m258NM9FL^;l%#<2X!yoVosn@=b#EYvET@qg6B#>04lY@1Q{K7T=!@5`4j z=hg-k-yWUh73bwG{k@#!b7wj}*j2Ot68zDlM|Egekv|Xt7K=?|HjC+T(gru=T!Y)< zK6zc%e;#A}5q}P;)&sgN%k6%$Ny?RG80pQdD6r{n*gfoqVaz?(c9zi4@nF26B_|D< z1#oj+BhyjF4@hX>z@CQ$-$@(H#PW!zZ%dr+VbrAGfHoKERW9=9>GH4u0MK%isbV2tcuz@8dZg&e9}_?Mnn%h45Y!27Oua0hc+sm74AVzCD=x!tdo!a za0MLAZwD#fe0F|gnEx94Or^@!Pu_;sTYv${bC62CB54dGCO%u>sKw^zFYiKibgS!Z z`A-n${7kqM{2QapOT`j)`Im}2dU}-DcK+=!rT%5@Xoza9_)#knEV{GR*_k>q7Ro6j z<^5j}xGuoUhy!82*okicSn-C%rN2iaVSjD_Y(27En0Hr3COH`v`FCC@JtO0`jEof8 zzVURo$_ysV-&O<=g%EKTL%?blAc&{U9(`#BPo}#3=t+AT?0|AzT^yd`au+}jamnw* zYgq@Y0oie^E>@2y;h*YnhuHQ>DBt;<`R-lQzwB{B@~>Wf@9?7c^7vL&>N@)9so@89 z2ndMOv97nSb$+lKf|!KJmc3}9bT%O;>rRoSW~T|wlxQ2D;|7+HfW@==BE?mE(Pu^B zbpj4g-v!e2=mVT%!w1Q6iut3*HF^dW^9zD4Li>a1z(DK5wypnVKfsPoQ=~8 zd)-wHFXdms8XYkH<=8#0o<7C$-@e`WG3Pk+`&?hbYDkC$aaf&_4;;kqTiqB!I9{PS zP5=3^){-H-iY9OO_<*&RTVQ_qCRP)#} zduK9$Mt~9Sid&Oyb4e2@xo83_$6&?F@Z3>n8D#T6($X)#Z?OjewGpxu0o%9o^xTCb zduatXFaE_U`R=7>wdxCq99B3E?!7)Sue-jnXC7u{64** z3=RHx_O<#~Dpm&cmBO+3#yh*$Bk3={=3L$?%(9EnsB+SLP0L1u{ab7@tI$Xsl|Fl4 z^~er0;kG+sFRSgTB~DGCNP-#-2VGj|%`g*n+?i^A(@Y8`*9WApl4qaN7;g3@Gjr_{ z7jeI1OKq5)U1ZMd%Vo8fM zUb2H^DO?`G!i>I1w1J8s@Q3NqgQ13K(4LsCQRkac*8?3nXB(}Q71sdyu4>-wA-EKW z`PUVRmtf)C=bx}8B^$?6Q=h&df15oildy=zsdVUT@#lX){~avL%>T9baE@v(%+0bu-D}+3Vfg|m8X!Aj!j1{lAMon%TjJt@ zQWNgqQRM=QEc=6X2nJ^7@%_ySx&P!NMXXoKW;ty88a|zxwqI_4T)n zKwWS!H8q9ZUg&GwY6>Rr%UxEn&4Vcgo*J%bJf>VKEa);=CDxw3dO!(kfx{_KKnaA0 zg~^LOuig+oA`w*-PD~{4e7OYYH`?f&%$&A_oSgok^gj+_HQDlx)6{?uF`+E3O;+(|Q8+gI5=HnRv0(Z+hiPv%;UjguUb{5FY66QRrC!WL2?grn;@YaoT_; zYHUFyOTO)C$j7cj(P3EpGhlvNr3HDAs98UCMrw<0Lo3EIz={KetRDzlVeK9FCGyZA z5LD^QRj0phFgp+5F24kKbW8)9V=l`!LEGPMBcN-Hz;2uUa_~azp+6F z9;~nY6h!pw-RX_@Gd%ywJiHmJ0GYT;JPUdGd7=NSBYefJex5yR%IWp%ZqDo1kKbBf zIC}Tw*3J!RW8CNWy89*~qM~$K8|x$Gxy7}$KE`@Q@g~f;EfK3(x!xpDZWHU?sc+cH z%uIBbyq+j4wRI7O3nR7QN7?-o z0ZuMoY7~Y!B`H9!(}dpn{OEzBE zdbjr~l%Xn9B`{4=S$U3WS4vt?SXdbLTEr{20gFeh{MLAh5j||pRat91UjO}6pBG^B z59l-Fw~jqs8ygz|Q15eq^~@pzaVFvgAFXh_z4)(91g5a?wRGF-aCmNg>b=zG&;LS- zvPS`jp`>qazUDlj%G22W7?;K_=6LX<&Nsw5o-jXu2j)~HVJAoD{+*He<3mOvzWVU@ zYZG;(1rTK?OYx_pQVhFaK(0cbF&3C z-dt9dPbx!yeARW`rkf7MKbCcsNSW#fs#-eyXnUkYF=^G3k(y9R%j);$#HiRg6|RZR z?(G#EQg?NvTW(h9AJC7V*H}F1$<;~d{@WB>SxKjfp_tIS1Jty@TzB8o_gGkHi5qH( z+QIRi=88r=h4LiN*1%(TGOqQ$Botx^8aZpxid*V`_r~B^@?S1hSDXu&#IhfPg&BY> z3x(ck^8je#*vrWOSKlZ8(~yjTg9RrhfISIV{;#N5Cdx@VF7_ps;i7f?lBQ- zpW~3F9^ke0`MF{?cSZFC1BGr3e0JR(deUiB=hBDJ=OnkaUFdKl?HND? zCKMtijzl({^>}%Csgy*;df(m8E{`fGX){%DnpWp`Pyngejm}iMjbycN+r|5oL&Het-P znZcU42nl=A>WKRzl<(DRmX}jLf|(im*PJ7gXN_ac;Z{ir6c$pwqN2Ny$5aXmU!^8$ z>@bm1Dx~rMX?PeYAP#9*^)`H7(B!Fa)JCcwmZFC=gc5gPn`^AXhF&V)hSy%J@j=!M zqnO1PABgezNpMn;vl@@pl((=Al>gH=nPD~qe;_qFNhF3fexMv1^)sM=GU8af_EtA{ zlUBcBdJ=bPqk@KH>Pmje$}HyTboTb<4B7W~#9zrI!>7Lgw-|a5k4;nIs`EYP_ z*3ZKB)(1iJRK9+8)7Iy)k<9b+(WX+N$HhRTI{PWqq4x(MNT!>ALG^}L#>J}tg=oBf zFI^*FBf&q7h#=KK!jY`y_{shmO&aaR!eZUIn+eAA-=|%^556E?gwZ-7k;CR6Q}UQ` zUwrpg9d*5|aCZ>*34kH-YHjzgj}#UXDuTL^thQV6KkBH*i>Iq+<(Ss&$BVuBuG8Be zeqIjF5`}cI^B4^Q=fnp|CfY{Ee-<^vu`=;N4?uUzdK&5bw&Dj4Ot}=ll6UDCECXF0=R zKgK)XL3K8mxs>;<+YZf4qxO9B)wFM+J&*Rdblo)aJ?B7a-F|o!&a!miUx+mUt&9d} zD-*7Vuqiz^*N1EewfUfhdHsZfMXgg>=ia{fbCR^I@HGu&+Ks6M887_coG(>ZXV;ek z#M)s40=KgDGID3P-pVyc#=e8`m!R$je?e2q6#yXfLySJIu>(uwadYw^M-Ubgxo6C~ zQ?Zqw&PJsJW3CJ#c9+*%(-{(F;EesQ>5sHGxbM2zKIykDKDvyVa*8sFq}<|f<&FLM zqT_7zJfLo7ep{!lxOZ0nqb`hD`X@6lhm8;ex1t=!8R5u1^>^!K6g|~Mvs`v=scSD{ zY*$K_=pp`E6dF7JoVmzkR=6@2{W+48Gk$o;7>rwSaBJk-X+tve@3&>%v%1-Yx+BFz0KFLD&bu8-;qbD_lpi4&XH%fzsLnRiY5q! zG2^7g7prjVR_m7i{$|>jrBZ1emlp0KcbzRh_uEa+N>L8RfS-{Pj+iNfnTxP56ciNE z+OPl4&6#gq?>ZXqSH*=NjItB&u{o4roNN>&E^2k9y?wq)LqN`Wlxe>KGjN9e8nFkeRu6r zK`vnRVZG|U0(YY8wCq;5bT1b_6@K1mK@)m$^486f5uw+dJDTj&6kP-L**nO@%_Z*Ed}i*19kb1LrEFu}vWw8h8(^yI z=}?UlYCR(GY~8z;yz8NkPOl6Fso;z34Z9y;k}z)kVsYz=CO%F7+24X|Y-=lBW%!(e z_CNE%L6_jpj*c6muuaQ$nPrL#yQ{3-b!}|!ha{Qd`R?}qHvqV? zJW;2sDbKl+N_t*f5qQ;3#{M2{VXOA|Om&Cpk-&LRtrXw82lxKorzLkibL&CstQ;nD zt-@dfkH;737g81Qb+Bze^ka61_Mg|g@y1GhN6+VP5*`VyMHJU^f2*pwtEOk_yT@B@ z0t0h$jgQnGuL}tY`J~iX^soY!DFNC$!p_Bg8WZ`LSb^tvx;i7T+-G{^1zR)6kB;Tu z^}ExY1^{J}n7NQdTQxB;^^Vtvhc_F*Ou*qYyD>2Y`}i>5 zN$QZBGcv%IwElyWIp+gJ^1hnEV2}P95s3aJCS$-{9t?>}n)ANA4+}6EiQu*uE5wR} za>MnQq@vg}E$*xsFplU3qmfh)C4nXDClo|gP0bXn%*j7!woD2YS*s9-+ z4J|UmD&dWPe*G%>`kH8Ae%LC`xQ8%rz_pp0y^dHi@2=^+U-rolbhH;!;QlM6ahAu{ zy`W@p4j8IacEtEcO3Y8QD_0)b+r0+vf6Akp1iBE34m&>1q6y5n$jC@`Ma!WUf8kNo`vwQl^I5nuPaXIw{4i>Hd3hJG_VvCbWkmzCD^=6Iz3iCS znSPX|VNTTO=-cM(q9X5h+(eRi;Nj%t*(t-h3Z8-FV{y0;c*=?&<&2cDx!2C%iD;Z( zEj7H%*HJa|KkSf(u{@JWpk0+&P(5%7k z5OYC%@d5%;?~}RRbVuS*h|%X->H!C5=UzA*9(WTlbTdw4sSy%i2%DgPTnACIjqon4 ztv!s+@r?o>ya5XHhOHqYB--Q5N4kY>Es~-le=y>fX#7AI6O5`-^5;iLI2CxUr9Qo1 z>M>L#2^p)*2>;7xQO(W8_C%^wU?7YEsj#x_yz}3{Z}0j#!(|4B$;MYhVv~Ii#|sBB z2t_7i*aM9_vNl@i_3ZZn`x|O1sRM}J{C9PAyZaLedrQBa-{O5Ud$S!`?69@LB~(@& zg18>@SD7EejKh!q0`wnKTQU`ZD=z_4s^#+@vNI{&wttky7ogsa0YlEWi$7XtUm@On z2_V5<`)si4=3jA9vzYFl=t+OlSgKBX3{&LtXo{rI;v1f4t}n8$x#WUOJ#|3zCkD@E zo%z|Ki**51@YyLot1UVBlUEm~6bx+7Oy#7jQ4x&Ne=TjkH+a0??z5hCc0i6dos_@q zx_$``Rg_WBHGv>!$BQR2UF6b#t@ljmHJNILASlO0#kL}U>nd->_Jaals(-9Nl0+z| zh5N&>D>{uBR&fh0U*BlHN-!x+ft^YIGcf$Eva*uF491hN^90b0mOX!iG1%Dbb!R|H zISM0(3jdoi*zfYOZ#JzvsDTG;2c9#h96a2HV3e7=cBP1%mz7_HEuUn62=h0<5 z&rT~0+x5k-2{&trECp!V~38AN!Xan*&l zqn37dck6`|gbPGEL^m25B@+@7)C#dY$-|ZS({+!&tC5cLH8O=^+;< zbE~E^xdpYsI6Hx`wz-gHd;bPAe8MzoHND?y%#XRx0-zL3!8bYXu!qYbJ|c7iMKpDv z$wB`DU6FMP|v~sk$LCT)iK!5~eyRAb?_Ocxjj%_yV5A{rNI#nsaE$OY z>oX67_rmf7&y)yrGu`wO0uhlq>N? z4PJ*8;+d0PV@`Uvq)h%isdlx&kiZ}}t$hPE!BU+gYwwoT{I{vrbQ4%rBx%P1EnW({ z&nIgH6Bf$c;f6;X2t)S#2uc&2UqFfQz(|UN?)XZg`LjQ>T$=V2a1c)6nFlcZEmTIv zj`D9$D*E)~byp)I0rSLb&k>|OG`&ULJYih!jfGCvNM`S-sbz_gp@nn%tWo2(j1!7l zpy45yaagYNk>0p}pK^mgGb@45CPH2({mB#6anM>t&0Y#n_bABA6HFBL28^toUNEms z#8Liz4Iv~~`^YSNs@o~(S=aGt8_KiWaMzsdjlG$Hz?rWQ-BUiE*Vln-qfvQ#(a{m# zR<`B@lTx+dy(gVwIr2xi3t8+*K_$#o(S{^ zA}AoBrmd?qcjPAxI+fd#$2o2@2r|1@JQntTiY_OYtD2+e9sS0+W?7v^%3ku9`c9p< zmW`;2V;KiBj0{FGVaI7_cc{O>G)UB>{;3z^4MR9#1mDpgQaQHHXAld0Ktm(Ddh z-9u#y*g%ggLL*gcxrk7Iluk-MO=JNDNl(Qvd3ntGm_X2_s9CLqsW~BrobnpdXO(#& zVR55djL>iCz?}U+&F@1mdd?#&^tdAf>B$4d+-Ye2>$m$;rnnrOb|(yFd)8Ds#f5!q zk=uVB{ZrJsB1XwImbIUK({K8FXoaXx!Ug&&ql56z;a;oBmwnnXgZW$ve(e?X-;*bxUvhRMmUP#Oy&Rt!jK@2gmF`H%^rGo58-6;44P6w!L|;*ve;7_#G)2&)6px6`D;w2L~w(jZI;76Jww~j-j?_cV(QRvgv*;jQslJ z;Yd@ak}v;c@$3p*3(MaGv}mBGrza+8hT3v-A4DD_r(F92kH$K=!al^qqoPgY}aThsdY9I6Ap?yf3VxUc77TQr%P_`)p6uT6nPE~@t}4mKmFPN8~3=k9B7*I!~W^9!oBG;`70@;v4r2VH9t3c*IPN(k{+k7O*W4 zo9@KSpi9NV)PjO6I1Zar`9+DGC2~>k0Q$HIy^Ok73E~@^IyNDQlJWskuv;x?be3-p ziRG0|)T!~AC;oYgbBu$(h$iIlKYC7!3B8}q>^nBPI5ib%enBNGbgT&B#KzA4^cRdU z@aswD=Z7yfybDAlBqkX`@7EswBV7czY}FXx-h$Afz6<~tMnzRV1SZq=tr z_jcDDn(_J*L>vTJ&y2(MUFaG+1dL4K68&zFNwV|M%gVxTCHn2~utqNL7&UwbP8orjS}QD2xO4Kfp^jy)d&*fF z0^MLKGDA4#$GK^0`in1G`PNBAD-8J*Kc_DIR`0b}cxYyJmWIGB{rG6)-EIh?79hk< zn}iJyanU3Xd%UIRX{`YfyP)6U4@S0!9rCo40SuYMWYt7V@9LIT%jm%_ZW&5+e>W zRyD+FbKNFF)VQh_fvw5SgBDR-Lo<&j6|Rlf*yu=YM&*Y{!>)DqWsP%la_XDZs5C5t zUZxSsOmN`!9X8oE572VV5)-_|rr_PDbf)5K$vtW4nRAjZJW^(Bwv~uP%qT^b6IHX{ zzPtE<_12ORO-8_1+E7OYr-d()q7M{2-srK(i+&ZG3&z$UQe7Ha;@D;V3*v?$=CoDuFpDbiQU?Jn=U6Zt= z5Vz4HO-QC_39Pkn&ijf%kRR1=eAbkD(2GJbD!-s6yCp2Va^aJ9#E~R5!k8@8)r>J%Ch~_VE^?qI{c5joVk`^_}K959?QMdXG!4 zMS6DRn&}2MR=9<3Pf=XW&|#r_13C@mo#I2qmc-y>54w8}7OXEUN2Jr;|B1y$NbK+^ zakx$%vRVY)$@pOGTlxeAdZpK`i7ebvQ!gVjjLglse&1rHS7K&nhQ>BC3;+E-7}`8$x~<*tR-Z^IA;7cf zLSv!t=GJ(_Vp3d_?$T|EJ2xwp%#p*2Cnxt~va0>=PR3|ZwGCHeKB-FC^#5C5xT?N* z)-f`2zoqhb6g^jS7n_2;!1grWF#DRI`G6IjD$mtsLq39DuFV(e_bo3jKH>J!e%OA& zwnF&~_j`aR&+Y1>q6?Y6^5oa@bn9M7V)M!`iu#DsII+0P+e(uVvky`-GDTFkO%Z6FOnxyq$oT^177gIGcZTN>p<|!G|EHFSOH$j>LWw^EdA!TLdAZrK0xYpe9<#I|N zYwhdL^E~;}7DHPi98Y+7UPpPpoc^~%OdpN*;@v&b7~~HB zXr3=zJu^|ieL{_TtEHt%hTv4wobIs}pS6*CcNR_^i>I#KO$I}QP|d=LX%vAu))F{k zS8Y~Shj(a0cm%7v3 z;{`e64RW)2Icel=V3eoD(u8jh#{WyuirmVmWm#&&h`Hb8@SqVk);0Cm3)ZRFpS;rQR$23z z8X9DyHV+Mw2(V{I{!QbvK}{}dxYWg|DbiX$l9ys@b)xpAwr6Ho#w(yvTbEvwPEAnV z6t*w8Z8}-~<_8rotI!T&dq!cnV&>n>TuAYGhleU){HW1Ct89$PEM;%9ikN?Bc9T5? zM9@`QzSy?#yixDDhlUqq@A*lt50`Lph7+d|)_Qry5j)zI|J}wXp}qS$;Os~@&xZz# z-QEzHfV=jx-K9L8suSAC9h|CjE>JlLK+0_RG|gNDZ$upM+gMmw^d=`3)$!WO$`nzI zL%XTT;`h5_T!q#!^p*%Cu$8shDnyEo778Ds3i`H(4KXf>>OEqjEuX$s zst|LnG;0u(og9Pp_4To?j)o)Qp?w=0em>v2EE+ueZP?d>4iwc@P1gO`q@sHmJV2%; zwK%R1$%S(|>@YwVzd2|^#O&_58Hq9&bkTuB``<5F1ZuXEQ~W4ld&K@nFD zuKupn79Ww7HOF<#FplBZ1iAe4hXMNXFfY4ZKdWQ%1^7AH8x+GL=Y|!Q>S3`uB^X$6 z4hVPwhxvc(`WM5P%CoQ@l{aQvFe7@ul^uT0qVawAZpi+6p$(O}*eVi;llVZ4?CF(g z2iMEE-(CYr<&9u>{H9?TzZn&V@{sv8K#|TXf<@D;>+3W|f9EYAzMV6d|9W1pel|Ye zNrha#al*mDLE!g;9(4@`v?PzVXWNDr+O38HiY_Wp-RjKlgdjBr9w^Bo{>w(_RAL_P z_$ppR82;DSVsB?#(daELX=n5BoaedRAS=&)mxY#W2Kh6 z#?!SmZ(#HS2iX|3FX{4kxW z)nAf`f89NMQEzcf8&5B-EZ2C+W5unaHnfLkGouOi48> zD3n=9(AO0nCY~v4%5w1bcGlK8y18`o)R6V?c&n1Aq@khX39wC3EW;KzOAWpmQ_N#G zc~R7~{YU41-}m;XRDA{qtO$iMxH>X652tPmAknZ&j+||rM4&bbT5ezyMrW?N_6^~y zNF#JvNB6Y{jV}dhcK~%sVEmH4FWqG*XH5B7As;*A_5mYw8`D>5!XfDM)m-Rw&N znvHiXULQ-z7n?ny#@m3BEob|MBDOZOpBG{;c+E+T+g1ykAAvl+@19sdW*&9Aw;Fn9r^2pY($j^yO=24(pY zaFsOu_T`!=1O6uFV+tHBdy+rhPvD_(wVlm?D2-BLauMhp90;Ct<@HE3lZVJY)@D3y zZ}V+yBqtM}?w7!yu?8jFazbKH;Hmv&qJBRN#0StXJdMrKF+@r#`G|UDhed5}dh7B3 z^7Yj@C-4$)DJz?1^MrD0Kff69zOIg5AK8&WriE$=@c$62Fj|+x`8f(1zW;G19<})w z2uWXig`8<4bB{iWo5MH}TN6!z|ETNf9h6sBJIx`YXY}>}`8weIZFbe{LpJ3xy8k2r1P-)@wL8xhUlasVxu9ZxD zigz03K_CXIr;XH(sHlm)?6G)-`=gvWVjDZ({bpbmt}YaFu;Q^8ADVb`){lHE0ad9=4L25fNPiWehC;xagq+?2JJ$gh{ndfb?;h7* z5JAjK&93u*`uZ^B>+Wm4pOcul<<1!Ip793re1=D%HK#2{8v>be`1nLrKfnEel2eH% zVjk9G8elvy&m7b3QBr*Xy%nG@j(z9MIj3fiOXr7wZUs z!^@K+2~;v@$h5remv#9lTH=jQez91XAxx(OEiGUhC-^_JvqtvZ#FC`Q@Gtu6>gP*C zMkiaLk(`T<&(O{f&&%t)px=x2HhT)Eov(t*OqAn#f9B@{qj?(9g3L;qJTL$5mpF>? z5ubG!IA+@V+*{Iha)hbmKUZ+IfBS|MH2y(ZgVqR5S?JSp;JUxrY&hs!RK&%FOVg?& z)&@AlnkBnp%%Hm!7?CUu4-ePh_jP}ZvKGVDq3bXiNkt3^-)Oc%UIY99aNXjQJM9O8 zH}~E)HZ~TBC+NVe$*N*#w{vos=DIXE@}n}gKS+9RcWivFs;bkW^M3dBX_=#GKk3ZB zp`qsW8R|=pImjunZ#F=D33KPFr?+@nXO!H#S%U~0oJ|Z-^z(b-LPJAS*nND&Njw>A zJ;m+7BC)h|ZeG@PxxiIs`m*=1|ZNXTM8K!8(%VX0g?~e-o+yj+Yd`WwGVgt9J#C>Obs?Huj=-K002MF~ z6M!0ZFE7YJRv12iN?F>@x2cw+Jx*Fsx^68V`8zI#<7NMHg7~4UF)e#}k0?0L;XH!X zB8LmLkWyq$b7e-nxRXW5u0O*zJ7LAcUnU+=kxaxl-rqOcF4bP!Bn3Sw#kAjpSz>vN zKzZru>EFxB=Hyuq5%m9+C~|V4XwuA?E{X(g;45s%F;P~b5wMAQGVtkqZTlhqZXsDUYt3^) zV%}Sv^5oHf&anv!Xc9A(5?&=`K1`5f6HwRQWhLU-f%j`t7ing@zM{H%*U>ep{rx>` z_tEK*L7{~OIX~$aN>G$^pS;}#CCkCV)LqTh5VCRgh(LAo_>SASKEsKJ=#+tmtI9+x z)N!wA$9^p~?C;-B1>v?uMjEfx_j|)4Cidt!I6zm8scPyYThVmV85J?MMZ=VvHHKNHMPf#a3&W_5jn8pz9_E2GZb|Dtlv)U(NljPOrc=ZcRlItp!z)rM!@!fB=D| zwr1N{%6{?wP$JIN>>oqMWqB}(ghCwhPFkf?TOzEfT>boTuLW-<%JaIgV0g>N{%_C4 zWR5`}vwpF|s^!*3j$ar(U z>a+c2d-u;Du^BWpJN(eKU`s%>a{Qr@t<0G-7BREBo=e`2F~?!q5izcnQ}O=T|pY6~^uQ z2xl!;zrHm#YR@GYD4sDE|CpF-g#kT`;f8pcTlC3-UCa7tXm<~w@zG?TD5V140UBP9 zk8t3lhZO%>FD}0UgH~Sm-n-aj@z0U|8B<^Jx_m%VptH@5qnPxI5Ps`!H|Y+4N~s@j zP;w{swxbLYVi28!wIvJw16oCFlAyq^6}sfTTV|R79Hq2#dTkZ zB;FfI$6{fj;RMzLyA$4Wus*yy*hxPcnDf6#b_7kFJu>d@0zGa_f5?E;GYW6ukByMq zSf+-DlbiV1`iZ3`Oc3@*!LO$CRSB#zO#T?~uy)C=E|jdTThS#G9GA#wvZOg4UF(aG+R2brawM&F7Nq2Ti z?rK6tCJVQxOc6&}Gq7(@Qogwlh(=ixZ#Z!jBS^_U|82Uw`vio_aaMDC&W+cqWI6M3 zZWcbggM))W<(kFQmNT;T$yJ3+yLt2L)72)P0r`}>J9)dR5-bu&yO}gArDSaVSa)|4 znBRVqstO_VIv+mpW~Y~8B8G0_3@p6jP6-E5rKY9L4d0-_!^+whGAn+Ij##mtula~f zTlI#65Y0leQe?TYo2vfH<>PaC3}?sP%N@P{r|p#am>?zmlglxGZ$K>MjL7qf_iSAy z0*f-@8m_JyNIXBh_>7tcF)$&OmC@>5_>-O-YjPV|7RA62yup#G=9c)7ba`QQlGsCh znXT~wzF$Lahs(-`md>@JT#5QK-Ul#Ez!8~K&3GtMzmRTI6|41k9L&%;n?O4Xpu|H5 z{oM0t<^ju&7MVFBgYE=_Ize}0LG7R$&>bmldJPAnXsDEHzn>UK-iNop>vp+cBPR9? zP^9Vm4v#~E`LadS z^UZQ(Lcw-3N~(#56BAGnALdOwSJUOd%HH1hxxTlj?FKXGHi!Y8or@OJ40M(joKnTt zZyNyUsTg+h&029E7z<>?O++uO0Tam^ivYsuZ+Bhy4}oR2xpx6YmYu^xjwgYcm{)^F z+u7W&Cnx9422Ge1FJ}=_04{a*sPF3XfFCNOlO!O*3mY4^wO_r{R8h=!Sz8iNI)e@F zi<7wi!|?P=gaaefZf<`dsqUv*z?cBB4!-Gw>lWNgLu{>-ue|)}TQ0WNSv@0+%I9ut z1*C9;tHw&Y%F0r33eY9H{|qmyO2%nhtL1T{kn|(iExn*E0_1WvCoWQx0KJ8dodGg9 z$9yiZ2P05bTWSFV;{ulb(eYpE8*J8*jkL6Q86P!Sy^_U5MMn!6JzQlR930A~tp5ZA z%3e;ffn)<0CSlDbfdfzvLM{zVKJoAswQ{P#kwZuO*Rg`m;=ZKDyP_%=Gr#3v_j59L z=0;j6GTe@5&C-p=-Xf%J35_(CkjqM`Ociit(0VgpD5nE^H@#&tJsoO5b**xB`y=FX z=zUJyo+vSdlh!A{+rp>861tZ2cV$I-XI5w3Nm2PJf1_#)=n&4LtR152=XY3>Sx_4$ zSJGR?Yr)?f>eFPw_ED!24o{O3^LEStDh>N9ClWo;zJeGc>y8akMp?xBjd||V&IXDU zddNgEf_=Sp+WJ?T6tlys=&$#E^>&5KgAVui`_<($Cqj#hdK8`J z{r!^pP~?y(P6t;L5XUlK2G(Lo}thRX$a;L8Si9l3hdc}N1Ihqj5oK%96P)cr@pVsQeyvKdEgmqBlbuTO4)63Zw)33pNY$8_y_- zC~q21F@w7$hBYm28@LZs;?8t|GYR^#D-=F#SJjLb#C@LQi0n?ga~8~io|A^_{T0`# z=6c>lD)G}010G0rOo<$zEA8%-i(-N5+x=(`1F5}Nwp3BiC5UP{9*^RK88`92GVfDV z6hwGa0a04vjFa%^cf^;21ImGn0&YwsCELSx@D+FQ^SAI`iX%V?RvsVgXKo7e+F4#7 z`19?_?JEUEP#K|;P@YK1zNp(!-V+dlTy=K869j0{V6HP$#yVedAUg??)Rh8 zm8OmpEiE2I`FF_#;=saEUmy6m^YXo!!3QhGXsM^orbh*Nt6^J$H!QGcwm@2zQ8$Az2C|=X%pO@GE*`cn@7?@Gnq-?jgVAw*j^Ve( z87J)>k^MIBjW8PWT2>Zmt~)AZw3{t=-S@#p<|@JX18l~av|27%tmmuk$Os;? zannp@>&;e-0`OttHv34~e-sxpa^yT~z4hxdGuEmGA{8L6et+@`FAkKSzSx-sjn6n@ z-RlFrOQ%)S^5ZAkPfQi7MysnmK72rSQ%fmH%0MYCh1=NLq3#x&A8sh(i4ss+B+%Ko zg9gSgR^VJVIYr=7y-wRRy&E64mG=s{RT-k;8HMAC3BQMscQJwd&}V*Lkb>4_kNI-B z+=5vY&c^j6xn$DHTgB{QA+|2K|J2^sh)638i}!H9k=Mv0dTVW`sx1y^#<&?dOxE~B zL^4H1M4~oSx7jUec}I7zN8`_T=6mQJ6qWHa8h|Z%=D2Oml$pVSwzi!X>yf6hUw8(5 zXmNUttA$LH*{NGFKSQs#Tw6B}PbBJ~AGO-+A)VF|sSS=s5|Cq+fdv`hA1DI&GmQfa zVzXmlnD9{n_c9s$XXo07M??fAelU4}Sj?J@89QZMW+(Zqg1BZ`=yU7eI5?!OE`;JK zYHO;Rf#pA8nD6da=g6GgzQn~#l~O=r33vut0MQYb(4hNv5@91LZq!x(+c`L>+cYB` zt2&I|1_q?1WfDT=ijiUTcu8cV3C zn0pS(j3Tn}Z4S#TkwvI{4JB{iVz&DDa5H%4^>GLGh14Yv=JOccxMO!wfXcd3$NRX& z>SL^FNx3*Vfi^2|qDSY@wYdL${Wb4;etuo-2bvLV7@NW-8CMQn!i!OIU7Z*Vu-(TM zbHDzU1m`=j6e|`>xdDx@x`_Gd8z=k9R;4yg?{V(9J{M~@n-)O5jed7yvQ>WneqbmI zb2QvJZ}B5)OB`i;G*`Po-yogm(OjqP;Nj7c5cbsQdVVDMlB1yh>sLB_P22py&){$D z2JJpl>&%vZ&e#wNiWcVB$dswLxEhq&)82?p3W|2|l^f@OU}zH~(=z7E(_T*_;Dl=i z97CEO{UjwL*k0Qo+25p`o~rK>4YwW$f5|gpMs$z3nV3 z5y)XXHFYJx^?d!yFp@Z6XAuMM7`-%jbag(xHy()~bxbXVF|&m?tC@$mI*cxj6_B)~ zCeB@mC;&w%q(vmGa6leiNGQ;Yr+Uv#ni_j@3=Wv&giL#Ja&WL(@g#ZtV-1j@O?xEEk_yrvOqtXy93LV?rr zZU7sH?^|UN^H|Px5K!w1jxNzlW57G#B`R>z6;)1|>~7I%R&jJ^{t@3!=@Q~mKXeiO zeEye!?GAm{4_1_-+ZAgFzMc9?wLuzlPU%yJ7^jb&cv`HZb)CZO)qI%rma-LiVGwqOCi<~^ z&FKiC<5Z=9K2+G9B*4WLbdd2~FO7Wm;cK{@p<&Lcw+vXJzFJG`xvF;)yCpB5le*|z zVq;_E#6Ivkb4ko+sa^mpO)Rofv@G<}IAYp1rl>{449>cd1zH$r%SR5B@#ArM<`(q^ z;?Lo$%gU6dtR1G1jcJos>%`UjZ_9)Yc0C-}l>#~gt34or{?7^nE!U#BR@~HDv9Bq> zQqt%?%Mtjgcg*L2>i5Y}LwGY;7W|<|O>4HfI#bJiwV;;PFUn<0INVu!Ptb92@dTj5`CoYn9cXy|~%4DSA!PZo? ziTbI>q%gb3w#h_Da+vRnxvCKV!al5I zg0{B2;;ZlB-C7FLBLSV-bl#xyqS)Ksz5;G${Sg}+B19(_*~dh*7&pH8cIha!LU>J2yIm*HqllOzQFR|mm-F&0W07r zt^FcCZ9Sgr14S6h+9uF_uz-exNzjlToJIGbb%2?!*j=u2RRXM%DSauJ{}{tAau{ds_!mz-x=0-POFj*xA}F#$ zcpc3IUK4YiSI3<~Bq`Vx+FZiqwY{}*iWd_A2!Se79cG8asqRl1Kt*BEtj2t~sTsTV zp?7APtwtaG4d7~G$E%*;4Qi=x;D3Z2UQ2G)DK8xC$J?FJTbDw#NOSO7lY zG2rD_MT6ZY(etOmvO|49o2p?%@m}AS!k5p31<|Rg7$H07t=eqs;+ze7vSD!-lCx3kb7D}k?D5bSF>D)=P9~^As`Vz3< zf32O*$>WR#_>PHU`uXmed8Q}a!o#E$46+yd#2mV?erlflYDIx0S2mFU8{W+jQBv6Cj~fH!~=I7jkf zG-9eqV4q!OmG=QPmm4x>;=a!hbW4a<-Qe!eSw^HV^q;+#o#CBmf(EXpKNOm6sA*`x z^5<@8-f+v%<&F;!2ko4!tnf(Xhg#IySW#QwyYNx8-{fqp)26z@kWnU@)uEi@u<+z@KdPh+PV|LoZx>h;7IGtyM&ZXy^lW+ z--N<+QpwE_l1$TsZ^AKpGFq#-QX}1>9M(d0>=YUzb(Lent+%522XxDK-8VC2bZJ@f-Qilan$wM1SxU+ozy1^*~Be$7eS}fh@95MLM_F! zo0}yoJ2hgtt4N$S9(IwC)!Bvw1lA=ag(Sdc%U6WuUYer$z5GF^s;`kN8a8}4@Coh& z+UB}`AiSygGbM1_IA5c?N}0!WWTdyRFD&j2P?ap2q%i?z^z2&t2dek`&=G==B7ODn zJ84qT021PEIb%vlq;>-^Z`FBN7{N$p5^yhk|IC-`AmQ&1n=MKN_bOtH1eahlj{bVY z@bTkzTXldI@w}U5T068qF5TEx^lDP>^z^I3I(^X_yWjEwukQg@bk1$R8>yWF7+Oxw zZ9SSSEWg97V=O0V23mDJvE6H*3Ah3y?9V6P$RAEeaIs=*r4?ml$O4tsU<58l_sgr- zd3L_o=g#VAzyVr+DvsxL*WS6`br)9v&4T1#z*3ktYV8;&o~e>-n9n1l|D|5z|L7Vn z-0uG4qbaC*_0yp0TF0%i(@ZjO+lj<2dANx`LGhG2Jv}{GlNVe4B53s`0uX6=1CC37 zJTMwn1p<=j^NOVF%Q!;k1Y6IOBrr^U#WS#$KrYJky2=eTDNy(B!yye=JK4e{Jh@miq)kIZIYx-8!c6QmMRO=GZb+h1&)05S$ zL!1EjXUX?WIRXMY9McTBoRcp`&y+tjG6r{XCf*Ua0Y_m+ZPuKmn~lyh_yNiN( z8u$ODW~SK!0sXM8Rb~%?lCmti zOzCU5{FHe2(}P%abF8ev=51AVwF%8JyS~u=+$f9S@(EPpx&HF37fbaDSV-#%#=n6| zgFgWYspo;Ey^S0wGik0li6Jk528ek7EZfM`ed{AIWG+)si}O4o6~Fc|fA#UE{nlr_ z<94m-;Rs$v0*JJURN+2=6SOuoHPswRs{J-OUQZ7aTl)#r&}`5c8y%rS=Q)z5BWyQT zV;ZZ%XlaFcx!v9T$?}g5xg0o0V`r5oC!l8eWFC8Jb>+++)!0;YA7$BX5P;@VNEa?H z)th~9H2@U$SYI+h{A$Fcic=Wc#s(u!wVKL>=@p`*HJi^G?ef`bA1=eu!(}csGHI>t z(UFGEeq;iWKxaxn?BY%0sFQ(uqO2UIaNB6En|OegE?7RZTh1Y~(NQ%1)eQh1Wa--8 z;Y?jLn)NYn@%Ey!DIE4dK&;~;H9gXr4^m;}=cTLm!j9i$KW12@!B_Tfug!MrSxMst@tgx^!iRWe&Nd4)(r%EY)SLcIH z$?i+50heRf0R6HX?mmBd?V|&-=3cZ999jEyPH24nbc(0?cEa}{*YlLIDDYz}$_FG` z^YQJ${MXApNzX*jr5F0bm;1fIhx0*7vRWa5`%gtEe{u-gx}kM~?~}$rGYohCiNJmmdG9 z?oeNUzdx3QgwD%-aW?kZJ&4-jT44Su@9AYk*KoxzU*iWkKt-xw_w0-KT*=aY*gYHy zD3*Qnw2Wg1F+a$wk>{*6q9@vl8@41xg9vN90t zQp`Alo77N^TUTGI!B-@pKrS}6)-SD8ZZKAchAScb_?Z2zQ^zC3GaRrXJ&eKl@Wl|) z*3|%{pxoG6Bw%R*rNn*t7fkRsz~&W;vStd37#=^X=wGI+`%{Gu`loX!;s<8zTAHYH> zKyIm--B1OZphE(0?=+o`YYzU7tE9jDv`Kt?26PV9<>g`~>M3F{SF!Q&uT3ey4*yIg z+`_kMe#-hCZFm{)C2!{Ep$OFU3)6~<2`w%=b*{ohKuZaQ{is!vxd$E)3m2g)-uPlR zq^6^j{vI43%qFvywGf8w4o6C>=zM#PBJ){*3k!g9OcrnYxlrqr27}>-Lx7EOuHV1O9Ac!^``rU;`So#U06zvd?FlOaz}u*TGVz$Bi`u!| zZ%gF0N?W-YzRUrT>eQN>tZd6TQPt@wRa?LyMa$!J*Yj<5&S2bgNaRA_WCHgPl2}Kc zONfx9q$D2bDL~31PqUOw$9(ZKQBMkusOGPh7Ve!(6c1bg^{b}xKCUHkmndb$JYGzO z+t~hbwZ(9Tj_!B=`)mAR%5(L)_s5nWov+JTg}3hH!qo7=|AH2rm(W#KBsxg4c<~KF zm+xna=_jeysw&R*wzd@%=@C?Xn697G)6eJc9&8O>``{5tNj=~vK9brv#g~Ccy#Ge_ zTk{)Bg99t8tK;29Bi0_bsSpC|dTu+Z*w$`40#hx{+$UVdZXqTwaTFo_0Q>#YOQjE( zNK(k2Do*RZPLV4JAU6upu;O{+M=TJZ)#uA|fIS3bDM>8&BC#Z=&3mt>N7U}| zctYbs1X6pvno*oNs+JZdao<;?1r^#q*n?|W^0aN2#U=UaBjI)v zYn&Q}CAeo4fWh5wHNf`|*bCj!Z;RQn;9>oyA5xYR0q|HUYX3)u%C4_zl5B~FI4v;zqL4J5$9<)9+z*MJOUb^r{;AE9Y?ytkxBb*hiI(9~` z{{Vb{JfH8!%Ro8JcZ-CRD$xFPf$;PR_-0I}q4SsrTdTnMy;#B6%BDfHd~tc=R{;=|)qA&O zC;K4HhKxw%F|Kwu&-%Zd8u+?870AnUJO8j0z%ld&5y9Mr%^W;+eh8W0QOuLGbV;=L zcNiPWJm5}OH-4#5F|XEfUh@W>#WPRvJ$HC}hfu}awKygHa*j1K{;!M!K$1nws8OJ2uWt$sMT6SYQ9}bH~#>KMxO$ z^0$vHJ@@nO+ynJ6MxOQGX~qAkWtD%}gL)Pte?O@=?5CxYWAO89=Ac&7(6Uy%oH$7x zxwc+!mqnLFP<0@8Mf@A6$n*r-Yz^eEl)~@WkwDe+F*~W|bjuDv5;AlY!lsH3!}o_` z2w-P877Z3wH{Q^$S^cA#0Z1++-S$RlTtb95xWr~-t?Kej95FQJrr>7wqHyf4QkcY(UImX^G>7XCN6ts~(a?9b-1?Jk%SV2&ilMN0|2bKN8ekH8W% zDayl7?-jtH!gTyKkBt~|`nQ6;u+6sqE8KQyD6F^R$cWqrj~lYlf(ayLbPO|d>$eJ{ zOpJ`8FrzhIv9%|{pOJC3JzXHLv#YBT$zHp2a4`p+Vwah?I414=Y+yR?W4jZqSm1q> zyKHT1rYl*Q?dV8mLIJdNHwn8t`rDw@0BG%xJY4gMr^|^SL#7C!>}w|{Cn^m)J1E0` z=`%Jov}BND;ih-#vB=T6^)lz@rcY0-AoO`Oa(16}Un~Iq_41s=@d1_KBRV!@b*VVsd`K?j73fn^bE)Yh^{9j*e-VKOY`O`%KQ@(&Xr16&saHMMvFU zvQI5F0Sq0$Nb}Rj{qM~5xOKbP@伥msTmA;#_-RQ2+BiNc=lUi67Yxjf)J6Tq zKQAJ}0YIKbP`zr`iRHx5uqlShuG&Kc(DB!706r2;iCTyJR1%6h078_&Rm!08M&tbVb}3GXWgUZ~eO6>cV+o9{U{BQ65ON0*3(%R1Fs15{Gu1CJ5+{pdkJn zf}p*w3>5 zbzF4u%y?w6Hy_tk7}{j>4}Sv940UJaJ;{pQ+T&}+t@J+?HeFknbv zmjta-?k>ljV&ZXtUb20iB2J@@hp(RZ#p6elr~O&2-@qz5r0_4Zv_RTh4gPL~C@MN^ zy=1Ap3%6F`v!1jmP{SSPFExA_R-|qAdr1= zzq_2X&7Hmcu&^*0J@Jq4R6Xsoo8?3MMwMwYC{OmgbUmA#r2uTul$+G#-8doIM0i%V zdsM{J(-R6ve{mZzqW9A<`w-xM*_9k@{`iop`(M4ZjSX%Z++Y` ze1KMe{oj`99?!z#i;={X)N5p^D&j96OpX9cK}BFf-1RY%euxoH1K<9Bi)dndTL2cA{u5&}%MaWm47`dP=;#$C@F-9A#|pqYxI=sW~t zJ^AwQO%{FqG5G7*L8Zu#tbTdZrCAbrqgjtD07n{Zml+<3V#!4UaRS_uk2IO~ z6N&&j&eoRWnG7%=b8T(Ah2!rlNj=tJasefN$#;71k^n~?z_sSroW{&vup*;7rRNjr z9=i~%fn)&8%=jSeuE(N)HSgn>oz^Kzqvl>7Pe-o4pxxu@PEQlkE0r-TTJ2wE*X!0i z4l%7COF9?u(lA&G?>$`xF0Ibr@@<5DmV6HnmBRA>U`tg@biE{U z_p69mG@eJLrcxvBy|Quzyjs4t=3khEl2t+B6B2Dn9^Rie;H3TG#rjfr?>GI5Yk}3B zEu_T_b}(JU$nYIVK{}qPZdzI>hlOu<^rDOEoiPMZVY)V*?OmD;i5!0I5aOEzh{zil z;P@58fQS=a&VrFL=BizWkNT$usn%7%sj;=Bw9(apFZaGVgKpZ^e1M&qn2=ClD=Nqa z>|Z#TEb;joH2Ldo<4l=Wc^Syh3lmx{2VB;`3pti*fB>R;BPVobKlu7DR5 z5%bLf&;<^C`~N@V;d*-=bu5FOB;P*F=EO+0pn>F0Cz4AB3P=e z9e@9J{=JBZF(?Aiem9_II;!yr=mY$lLUh*vI3))2WL7o*8}bieAISJq1`r}njrH~7 zfJotPYpa;uZOk2_Lk5KffK?~J@?M7p0fA3X{;PT`he*lRmtWx+56}zxqeq~8+mdZ$ zL;K9Vhlul>5NV9gSeFUBXVK9B^aP9=84H(}2kPHWipw+oj|Hf(9&9=1%SZ9j)XFwZ zA836yW85gZC2oPxL+smBShy+te#Kx17*fKouqR+AleM#=^j^Pa087LFCSDbVuXvO?@Ad%>|76A2K6+ zU>MVfI{fb=e@RAudlC% z0N~rMl*l-;oHCG{PDSOnVS5X!Z*Mr+9k2mul!^xdAUngkQH^aDz0PQUoRCtbZR8S@ zB&L(%6U+i82Nd49RLgvddvX$#KXF^h%;~RQpbmu*-jveR*B3?H2(p^l1*VJmTIlTf zi5(pXcw^^Q4B@Y0=r-tKMYXitlQX+bnd_HN4kitvMn^Y*8xcZ5^{g_R9iw`kFI-VM zd-h#Wg~9I7OU5uzL1)z|6ZH8!9_QA^_tD|1ok{yaH^lY^p-b7cxQrF?>BXt4^X1{{ zf~}hUo#MM@sxExsMp{cs=k|7h#3~?3V)X?TZ0CA{w2Xd#7^~Ss41%ai4h@Kky-stU z11Gc18(SI=1ngyI3aOI-l3z^ZoHJywwWWm|R3D?A8A6nS>A~{7psV`}-7hucWfOx| z3PaejtYo<4Ss#<``#rQiv)k^_NUXFBo&iZc6O(GTK-X5orr!bc71u{(au|DF@cCLx z4sSpOWrtWWT_@*31cbDfd*e;*BK82dqyQ+b*CPu5OAn9wLPUo}q zPW1Bk#Ey>P>gsL;B!E#?CE2F`VU3T<32NO%{3y!bErKJVqp#2U@cuvbkUmy^yM;T| zvaO;?V06Vg#`K6@cj(u@+17yT@<;-kUJj0u*US7sX>e5Hje#|~pn${P5I#f}_QS;` z)zEUI3iT&3EXr888c1!G6G}Im*N+}%uRZe1VnTx1vsCfCV3^;LH+?%JzM!`R(SR+o z=*K{Sa}b7>wEOcCm;$@`QCRA;HJ*8R?c=1bl}d!dp7kcQtc))(XSQ7DmWCL(bQ!`< z7IXtcT`6vBYdZ|rC3N~$QBiTpV_HWHjb7_3O@*s4`8=#Nz@+2wdvM3r&dbu%;}~gP zpY=lN{6A2ku&|We-3^-LPM7%f_P6qKEd%jGT1yW8n>K+tz`@%2GBSASRO-)~zkf@d zw7N_~{jJ==}B{7Or?oz|WV#|OR`G{4C5T0zzi=>xRt@nSg(gV>18l_+d2}k0Xzr5e4SI$vClL$tr0g45z!9^ zm+!FqD5nvBkL`oI(8?6F$I(j;TVx`-%wRK&W8HLgxC~2+%c^3)XNXS$Z2^0^de83W zz4I$$*(R6>5-2DrCNK%#7oTncnNSEQ9sE1tg1gR53o8731;F3V2nA@kmMqJ4sQyk! ztjr-+k2C6@V zYOJV$H?c>!}osuF_j?%65K=4}2oT$qfWl-`Ds?A9PSGBi>x#E*}zILIT{}u{{lmz#PL`07JTQblb^t zXVDiX5(w}zYqe5Aj&Fd$2$F6z9DgD+R;Y@NO^**Na0@HmWpQ&$E8boA#_e;;O)%i# z#Y7Nyll3NbS=FV&U?b}f=+gHGd$?#;XqVS77nQdfsHrbqT=EDDXJD9$ffA;W?Kso- z8A3klo8eR$Jetdi>3J(EDH#YPie&gcCdQtmJWl=?(KnL_ zcp4fSPqr4jPRSX`bmXI+mZwe2o_FGYmz#LNIBb5WT5cC0LNrY@N;~>!xh()`Sl(8B z%C*a_$pG|PxLU%Ij?wQn(9lSRmp-Ck zZulsy$34&ybuhtj^)M72jru8-;-9>pShHwviE8Tn356E~JP2WyO8BM1o4a8F3LNVT zpV#}tig&K398hImzFSZth@i*8_y*(|UVu#nxDOAJ46n)6bQw07 z%4&Ia;EVd!!BR)NuP)`<4ZiXLZVvE|tsUfVWsp5~udzm5dwb3a4w+BL&EloNBmxr+qg_@VoK8U=C@|%BU`&VOC9inBND%4utp0@f+=8q4v8@7pUUbj^6!e|>9 zAUGE#3BXsXh1e;s8S3eYBwG+WIHu{h+o)ep%I$V6Ev2tN_ELqdQ65!yQl68Ln4oyF z1DF&aUq6y~XMU0C2vNrwA>29kLwFEb15GPc6(X z;58)kt#dev)c(okjTNfX4HwwW-*K>XeB#z+hh2_&V?CbbV+xIG;TqVke2RF5v02| zjkI)kNOws|my|R}cMAyIdG34HKfnUlnsbaV6ZXj_-D)2HYkQble{PuQZp_IH$oT;I zp4^1h6K08F zAAqvqAdWA{t|s+GEET7C`1!BDA5jl{JZ-hDeq`=yM)B`jcF#9gnEnnMw9-x2P*Ga8 zC@Yfzfwcr7hH(JR2eUg(3iplq*d&4JQJ2!ShY1K3C}na1$gN)B@9Q_7*LTa^i+>*+1VTf89+40?v!|_@!+j71 zOL*TG5JO@Bv6t6d9_bO*K(TanMZ$fNb!Lek*odNIIJyHa^`27+;NO$?{^!lsq+^zh zE(-i#|0&iGBvmyvS-ZrRedM68anVfeRuRpKWA7cg2bdN{6?E^0P%t73*Q1F~P11f% z>qi!Zv;H0Cz#K-!{)`d7_=ZEkY`|rViJk*VD7ih~wu1p#bZS zvk$cI_wDh6Hb_-@vDE0jfsW5me!U5tVC3hw%6gK4DPaGd^rWXh=G~2c{~m#N@2w0_ zlMz#q>mfm)X5@f>A~o>O#~|6FaZ$>g5CaTCmwB`P_0z9R%^QuKk1x=MSL<#H*agUCl;N>dDg+9`M4-4F=5)c)O61)*%= z;o;S@1V;kCb=Z!_-1QymYK7}z4EI1Ehp%Tay-fI?2uOr9w)X&Ujl}Xr2q)^PgfI&q zM)H$A^3e^6p|Ozzn!%G-g%3xDv^R=>BjV`>K&+8!l>b}vlaZnI7J7NBm@G^oyQbiB z@B4&`??H#cW;H!}X%K$kfir(eYk)Gy9N$;9)j!7Vvp zxycF$*oGDmynGppr_%N(&BIyep>vupp3Ne$KRMl@84e$+j7}z0P^rhPZfccF9KGPu zi^<6|5EHyqTwm`ZVXClH$PvVSLq>ZKv#|4roy^8>iDz?Wo?gR4woJBcaLaVqY$0hZ zcb(aE;BBV;e{b`o1+yXpJ{!^dJ;tT2bMIi-7i7PB^E(jgq)Iy(pH!Ic9=@l`%&LX9 zEki23o(Bx~Uk##af7MWMc)dr7BXXN|u0$OIzu`t_GH?jCTWNNBSqn-fJM0llfv(_a2i`>Ah6e_%9NBOF0c z&{zMlPz@@ghc-$;?>0}3k0;bJzRIJc{VfTt`@I{?#V_3ATOy~oWto^lg>1o+b91re z1&9u?8fR~a$D+evO+R11qA8~)p&}=+8{Q$C;2wZa-W~~A2#}4lvxS4`DkS~0qBEMDJleCBk{w0@QPrJZZ4KG4O6Vk&jpZMJH1rdu-}8gmxanYU^pZoT$E20Onna5G{ORpW#@#;( z&JU&)bu$p^Fo{s^pd_UxL?Cn8WD+0sy_Z(IN0bRP?g+y&uuNnj*;uSGzg*s&NF7YEVOAUrViK+3qg z8x7*?C_n@cZ!o6Ub~F6@_iu}Q6}J&h5E{0ZXH-4kroBU-keX>f8QlH=27SZ5FDiY%wGhWGH{zMuZG3%&UO8_i#SHvK9~OBIw^%c({j&Tri$>{OR^~%>)+Z zeeN{A@iDivb2TwJS-?dIGZL{$M7Eqx#A35=IH0PkB|bOk+qZ8l&Q3z>LRD#h3KQ$- zo~tiiqmqpJ`VdSjN-rdyt(knbFtxd~t~T@$jVc|ZU{}YW@_H3W>2{gr!q?ApJSHe- zg(nOeE0&A|sv(d)7qT4yeLOxEzMq{|g6sq%t}~JCBKSJ9jGdIX1-wJ82C>fcVid!p zpB&#uo?fOeJJdzHFDJ*xTSLuEqA2DZ70{stJrHVr!I(}~+7R56p*g5vg zec^;3n7-AMcJ*7BOHol8YMr_AkN!v;Mnx5Trsd0?Q9NcMU^vzrYMd)XhM{VAJ8GsM}gco z3I+zND$n|%IMS#R6w8l~f)2VZ7k2~4OV`tqw$(Cq6d;WOyt}pb0!wfZpjl$y6ssAC zPYyk4eZ6>ZDDih4BftN`wL1tuS8mHd>@m%@eQJOImT$>!1bp-ysh*G5-~Ik^7ZmkkT3h`}@~2 z=okf}!^*mgZXjI9(?3AV@T%7kiy}MaHh})sR?7555F*?uyT0ew9=pz;f<@@)Z-%2t z{(W$}J?&*rW|Vz>qa09krZ36c^HJp2B1yR(r*rB=G_x_M4hLeT4K6}^0|XMY1V}bn z-6T=LWqreH)nwj*pB8oYh)y9we5)39itsrxi15_3;~;v3`RB7guBgaoXJ?(`FAr$6 zt%f!BGc{IGXyoE+n2<#`yPA*ANK$bEvhFC|)lMabV=C7h*XJvFd9-dhWmABmqW}oT zDbE0hro+UiWtpDs)=x{rNo9S#e*@wFup9gX@r?lan>9Yy|12%dOCSwWtltH>JM5B1 z%edbh_ZIDDv0^oS{NO&Tu}9`>SX=ZbApV^-W7dM`e(gxS{F?hKqlS|s!)H<-jub5% z#3aiqWE&thBtBAa(346X3f`aByF@m%>yuLi8WV%`v76Wa<$Of*VAf6Y|M&UIvtzQB z_hBRZIivY8wTR!$j3h-3XTb)Q?TUod?8vs)axk=Yx1 zet2zqa{i-*npbQrEC)W2-M<4auPI)4K2xrV5{L%OH2a9$026=Sdjp?qL*QR~fAqx* zyRVkM#!O15(SJ3IQllFcqVVFy8O$u5yD@`XCab51J;R{uojeB$7Gv1S{hz|| ztVa^!HYrm7gWp|LC=@Z5G%wC>`1r-Hd)S*Yif4T^&}$YKnOfHaAG`}MOy(YM!WlEK zw2yDs%ICl}a%dV=+S)Y6;fF7;ViS+m0Zv5=8LrMf%LzVdib9&5`y z%)2x83bMvCkQLG%{^xTGSfj}jcmlSrJqsfcYXLL@@s0=<1tFm7_h)!2ME;Gzd3o## z#Uk3}!Vv_WMf{!f9gmNX)^(Qoo(X#7v+b4>SHYjhTgJD}+mRs*2`>tDHKIqqzV^Do z@u!f&M#}*|K%AaFB=GmJ!x5ox;H;Y)sY7H4P`&^fyWSwY{ zQF>$vUu$w~yOsqix;j@Q|GHDn3uE@;BT8I(ia9ndQ8nmP`l%l2EcUbuObY*3DR=s% zExUHiW-|tXk!+Uwo?dn^t&h z1xLxIDHI_n0&D!hudiE!UT`i^+y6{>cFV%R*2DH# z2U0n^(FYc+CsEJ9-$k)z={Q^JB)2TYKP&Tf=1Ddn#)y6fRSk}2Z8+UkH7jA@UT=Qr z*14guy((IaFkX_TdYN(H@*3aS*}4ALk1!YV_8((Mo~9)vbiG-JoVrET@X*2=8pg&tbS`!&tt7Jx z?IvkWuFUV+*x6k@q@u{vp3A(F0JpKlzKw@_3rNLUF zLXnw_%+7yVUtYb#4&p1w`^6y;pelvNFh$PbPG$ShGQ?~RBN_{J4qvug_&5D$wct+q zP)sc?|HHvu!7{25@>Y_UAExga*N58= z>ZIr7tk!Rle!MyEB4KVmeAEAMTGtAKv7R08(L^%GT?Q6{AQ%udQOelXqSuht!$S=l z^(nFntP7<^S%p29*ZSXW6&e)07vy=rropY2{P`1$7a5_x72WoQ{lbS6ny7t$e>fsT z2CVfhf-ApvA;~Cu%4!L? zl6tyt`$f&`5cE@Re1mqxyto!-T|XKO=zy~X81U_H9|N?}ErA{vME%IS?s+yW*)cfEr>6Wkh$+tSt65#Rmy^#hMxlQ;pJrfMn9wESR*tnmRzlSv)HZuegQae zJhCKQql(#r5>N4_wm$d??kDWy{+|{=HOZbHw^D;`ZSUmt8C+u;Wy58O-*~@z{kC@d z`*&mGVkI>kU!&`KHJQjgEYum|zk64EcIK2=smrKa+*XA}(MyPtq{^+4LpQy?Zba%R z(DnMbtej7yM)%Q{ns@p%W1&$xLJNn`$)!sBF+Ak}Vpc)i)P! z6G(N9s4l1;pv?r1W z#l9(p63TE3LEWphpb^*P}$?3sUaX zQ$~;~#bTac0}*eZjo@DUBY7!a1XYk3@C~8=Q4p+Mr+x_TE2C2&L$c@jMhQ=SwQ#(? zjphpN>!)$Ozq*wbEkOl(m98TR5aO{G^+orSm)p~#yA$wE?#8YIGcxe>a}YfV$fCWxwa3V9x1x>I6;ZXuB$%tSV&@q>yP z3;o0iNRa8>F)xWxGg4!>Ug|8_nHY-5|Nm81q3-w7KxJf{b>LQE3k$s}NFy|0NqFO; zllF{m66GpOPhZ;Z&_+fo^fTQG4uXb`ev1%?Y^Kb?$tn15zGl(xCH@rbGs(cm;-8i9 zKS220An_%uV7QgKhO}wV$G;r@>OWhc?Y$dkg3}2%MR5MWeZnJ!)2Vv21@m!F@_q?1 zjT$O5c72^06%-m0B8J+%7BFfj(52OB-0P!bk_ZmN#he*?oLJWdZ!IojQF(rrb5T(D z7zvTYK};XAA|Q>3%!QhM;*OHZf9AzXhB~*cfb#NY^WX9GoFw`A<|C$cwOmhq_%tkL zNoxTN#HK;v35?|qR&@@|J@!iSo=$uZae=#cVI-!$T`07zx}?oS{coQR#X7$`segF^ znOs|qscl-lr|{R_Jk<&Xw-DSwYT1?^?DWYS2kq=>tsBR`94_N^sKl6aN`81o26-_x zDmsa>szAL)Iy?irK16VE5%hi^UiTSof)LrX0ifkSe>LiWriHhvTzOnk*q)`gta< z5oH1-Sg*-Z6PS=(U#|p#)4i5Y5Vt?ce!(e)Xan9~>~QYWMqtjU9Y>xDlND%wh@{5G zDTQx`>fU1rvhCa2YY5NF78mArbm-qn ziflq0&CJZW4E-fX3JTblE$T{9kxVOCt%nJco>jpF<4>KT1by2!SJeTv{z8R1#mp@9 zxDh51q|{_!D{N|a$$8T0r6Fyc>j>#;z8vpKjf(1uJ%EJ0D9j7k5}J*DMNe-IkxV&l z0Mf|o2Yj*mVwdB!Y8x0~c1l};TLH!si&ZwRqRM3~n?HWc zWnBN=T6UZuq(5}L(XqmJ9bgju31lQE$S94)Da%QR>BP@8DqBB2BGW*-*_PD zAn)4aWkKeF?NKRZw1mIA!FY+d(Nn)zN0sWlos^&Toz*xhX5bsE zW^=Ep$-lzyCQdnc#EtLdCGN~-pUD18FK(MqiHY33hB@1n6b-aKhf(oO=LW_35=@rGz(8(I0{zs*HW*@I%hYSqc z^QFkLu?I$Q21>6TagAB!(9iaw<)+9zu=!B-tsw|69m>IC1>x z>FJob3jT5feDsChTJY8u2a*mBRTXfCU%q^yz-6b-3lokJ`J6H2a(^>h{)*s1a%YIq zbQ9DjpQt6phMZzyV!pLuHufSVb%x6+Dfzi_=+Y{NfKcXo&}1j2pb(XaZOic0JS4 zr({#_C7$bO{qCn_HX<*LS&V%P&kO z_{n6jc~n9DX;-4w;?;HU*ntw<*(&kGO17~8X>^)F*cJ~j7z|PRuREYFx%Auz%_e(Eic*&vjXKe@88JFN4yNnTGHNZ zac7bEn?u>V{Uwb{<}D3}$daodZkGWvL9szJB0rGYCFY}`smV;R znsNL^1aEW8K0G{}MVUH%tP%f$r&%`KDr?L_P5v;D-bX!x^xX4a#nwD#EAh7H)kO@} ze=`F%*T8+a)zfvlz{)E4vun2x;wyRjV960ElMmAHh;?}Q?G~$mcrb=6XV1x@Y3U`-l=gHDQyt0Lqnx$AFDlsS5qbk$w?E@T zxSY<`6_ViNxakN8OW|37uf*dkujOWKti*ui8-(sl_Vqg=h*f0?)585I?=-SX$xcK*1{T`}n`pXc?V4rz4UY)jX=^JzS2T6Atfb`{l{Ec>|HU@?5Do zp)nDm)cbvXx9F6c1E=dNqumis;ui;7 z%e$0sL*7!eB=1vvjh_D`preS;Y3M)~o_?Tz4!6QJRXAk$y1KGZ!omMe@j6Kx)|UGg zXCxG=kiOQn4D6LjUPz60X3+w2hTHr9@{I6@!8*IpG95ZJ9+>>3GWS-PA`u zNN<56y)Cy6TXx}S>L<63JZp{5+KY0P=H{M-yA?fl1MTUK2Kbq2W%7Da$h0cH+W$m~ za1d#vNbPn#4AfRR1hSamA^K2gvvc6SYYW%ps&6O}bL2O!Tpk|r&KKQ<)8});@>c@< z>;uFI?Qv#>n8-mE{`2u)Y1BZX*gfQ*+P|O`2MNq>=^+-(PKPGdD29N9%*+*#z@h=B zVSdhU-Up?{p7sLid^FoyqkR^ZDb(-$1vvy?t_%6aOL}6h?pYCJ_=&TurigGHd2SQ> z07bIIqE1znjnX&a&odu=o?{R<#SWRzl|zEt+bi$S&OR52A5~>hx~OZ}3dCF6*mw#9 z5e*0JFk#rv!tsqE&%kJe2EX4em?F6ynsm$CU2y#+P~5TQ14V7V4AZ8JQ#83r!5-!)l`rWK#Tn~x1YdDS^- zQ%{hdsgEVO^Ef;I8%@ixx=5M8)D9o=Be$&YErhb7wDbi?W5t%AC+xTzBwv1H<|gVy zr&hrUek5m1FS3C5S1M*z9aS5ldwvF?_a84jab@;odEsSL;cSuJefI1fe68lw_>s5W zS6g;z&F3nX3YMMNyyv%_&25=S9ye4UzE zTspio7n<5|8m-r<#0JOCW005_qx_uskv|2e!B0an{;XSO~!KLb>4zTmTj0NBp4_kQ6_B3(Z*VMrcp^*_D5)c&5% z&RT83)skA>lGXYbt`bjwT_EK_Y?TV?(D*W)RlnZwk@3|cw&F_=AznGIFz_PK2?cWX zYhI$&>-aZr!YlZR{6B`z(#`GRJ+N*52p)~vdrdbXS&3ox1ZYTd=71{!JA4!xq4-hW;vMsgR9nW0r)0W3%+>6U+* zopstF+(Nv7Th(x~(W%JkUb*UVYVZrjtE3;U9CWKAoAez)XILP|B=QpCS zwv`nar}oLW+D7DI!GVF50AZtwQuBO?muviRQ^$o2ds1P1F!(I0EH-?|?q9Yyxe<;# zl^?-)gkaw(_S+ z)|%)BkioG)zWO3M1hi)L=~h1Xd_o;JVhSG{*NkowA!mtwXVh%=4R)f1Au&okq7h}S zRJ81H%RITGayc?Gk|br4O_h0Nu;9?36Qoom4ZgQ*MvytgAepy{1gK+B_M-h33s;e- zd|5mmBNpXs$>?GJdpum|R-5WihJ|TotCSI>N}2TQbV1&Mg{{tc0Qc)bR2>V_`htVC zBC<(ZnDRdj#_+!T&1bktNT^uE&f#(@3+M*-U3N-{$W6&< z){smUhN#ND($h6ErbU+vPGLgT!cNSM)l=~bpKPKcYSWX(;KC=h)$+6KAUF@$@9H3z zAiQ7<#CDR|dk~)gGVBrg={+&}T0fW8o(9_lJVXkop0q+ruLy%DW-&}_$St?i z(0@xv!)XGAHtplZ{o#C@=eA?ezDugd<24zHDbMvV00eLg)9~>%&{$OVct3s5-#SXB z4lfL)5XplOzy&0{3x&Z12~Q7kYiX@+h-FGqrrcs- z!qLs!KpE(|t!hftIcPc`E~S~e!3+*hYXb0LG5Z-*ld&joY>i29+8$rGy8bcbGh)6Gzsig5;C!(jSO4OVgXG^Hh!aRw0AV$vr~U>{a!`R6>_;4``L0gJ{|h}x+=S=(A5_K?|P32K4|1H~O@qDn>JAP`48CMJy6zs%_5Cbe<`FwV?k6X=G&X%)aLTeibj) z2x+!rqiWIuZobgZi?RGK$KWqNxo7;ogs9&sn#l6d+75&Goz~y80|3bgM{zG^C>PJL zKRc=;QNUrP11rqnC;9jMYi<-=-MSw>e8BSP@(&64JNoX!g+7GyJ(&j_h_pue-3hn^ zN1f;#MtyH?JT!ET7o{~9E3m#ktZg)L*0_87B_h@k6V+diD`-7i!W5_((Atk|q6j28hQ_sSGOw)|- zyC@MpS5x4WRE7RnB7}?vpT>USA57!7Zy%=}w>JYiL{tMG=y{Zgr84uipP45ypH zvN?v;5BUIEvrxnDI+AI8)&dZA$rs9%z88(A(y*pmM0w<+qjxE$SKcqEwA*OZw^g6U zNbY{(%l*ooEOjoak*ju;!SWU`VPH{K`bpT%Q9erwGo#?Br*wb|cQPv#V)lAPl935&?LBR6)Wc)l%LyrCWoJGo!(5=?~74u>QByhm{dlB?bzlZ^=hrk=Mo+?51>e@IeZB&|ne!$sS#zY&x$jUXK2_^wn z)^bX;PIL?}J-n~=-0FO$N7w-|Qc!e)2P%^&G1A~upr#R!LwG&V2ZaudYzYGdoFjdV z8uf>BSnoM2M2#+Tgf~86@MX1Lsf|t95eQKS7X^Z7H6d|oMUrHcoU)@y)DVjy^i+r0 z>{fB$qt|pIGt0!!R(4$+V;=UZva+;1y)P9`1>P^uZk^)tJiq6^nXMSlh=Y(D`)k$f zO$H0oZ1~Ga7U@LRT{ktB!B2|ge7$(^q>Q&@!}Uo`PcIjEkm&rh0H9l9(=D3QiH*ZT z>TNSo(+bsEOlI+3_qG*Et~fz>vw139AFO_UI@BN6dDwgeheRhH*R$^ni9U9J-@U!E zt-1qM_5$2uc%8ON?+-PrUTHdyJ210rq*%*wEldRziFx@7OXHR5DU`^qt<69R=(`N5 zPT}Ov{|(buqa%d>BsP60;?S<0!y(aIDl{LXr3E9A3@VcQ8=)O)+D4#v$gaBEA)Bq$ zexHJsW@1W3=y*RJ_T~w6gst3l{oD4b(LV6FYuwGASQn#g+0}HtrmIv9LX9j$jNn0k zF=RuMl2mxXC9>z#ZN&A{tW_o-x3IcBzW;p%9fW$+><1uf4g7M-ZJlnW3(G!NKHb}% zDTZb3_F$ZJ7&vybRbl_P?^q=(?rxV37kPPl8D{x_dtvKJKrsI((=8eQYeWH+J%HWE zk*TAtShl}OjYNBVd6Pc^Ox742SfsV9I$anJTDzA0qYH}n@}BIoKJA;B;#8k?<0 zyngkX9w~vN<4R@Vqf`Fw7W%Y;z2q#n>8LUTl9azNv)ne)%36_w5LtFQE2IS8|ElG) zgt;>nugmOgE?7aIfhTVAx_D;4B)?T>mPBaP<}IjJ!l;aV7J)ePuiTFot3GSN2H=Hp10&#!<#3a&*JE2_q=-%rDP-m)owX8#GXn{{zV;M^b|e(;kPYv}6Fu`&BMMxE#b z#4iHZu_-Yzuxx(w)gLXt$W(IU#T{yQyY_s1MFS z*r4l!K5-UL;-xRcIKk#s>^wQ?BBqT5$S#(p-`wn>eSyK%jpiP9%K!g>fPu2#j*HbyAmt_Yih)>y-B8dbWMU%6sPUIxEFj z4eq0UI8z#ogD℞{A*Efd_p|qb{@OVk`5=e)Edz294_gdHHt*_}Tg96FDU7{XZ2k z3r5s{Ar*dz#;tfPOAN<|1Y&ekYp#!6cNdNu6TxzFKyJhZLZyLTv{bWu4rG7^OSk^_g0$mPYw zI743c@++SIW~?tjgMJP9^s`7qqvd+*cWD*l z`TWPf8zi+=SGBbSWfx06T5=hAO9hPfs$Dfv)!6+eAbYTm4_$#Sovc8&2jnn90jN#sK2Y;Rc^L{00U0)sS>l2p^1t4t4@rKh4t?a04jEBrl#$jmhWU_ zwC-F(pdXq@!pk>O6d4hrbM)n5l|*obuk=3M(M-HLh=PL2>vC)fwg)omEoe70ly>#9 zb{{S;FW>iH%6;*Ex*G?SM)uLceow&&$7THB=hg*!0)ce)ByLSmGcH(MP+*13o}?{0 zkgA2De#d|{1?)+F^^0~`5Dfq}(Z|o4{| z<(wDDw~?pU{!mG%ec_NNj2i zsyRu?$(MOt57d+H^}<03V$fb}L83Jm?eLC}lE(c@4CpUmKE8VAgI}dj)DGI(+EG(h zi53Uge`6|V_I+uR3-6M(3m$lF7(p+I5^Y-k6)8A-(WyPK(th+VEggSJBA633hDRnD!9mT}`Sf=X!3P=PU3>9?OKY`zmLSgn5k&IiN8;ZCj;oLR2eV%@e`lR+{V+Aj8WFkG zb4Nj`o=#V&raDi@{*Nm`VGGmie?iNV!0=T6mjkQRlM3Dm6Ozz;a;;Q+Nd?|-rB8;V z4o$4-o}QJObNx?#xO5wVFJ_7~-r%x1RF?RUv$~N0)x$&0RkYyAblLZBt|RPL zj*hYeFBo&Qry!+(87V2%(&vBS|4ahjpK=zHO=ssEL1KA-V<5efwtMsDji8K{z~h_y zb`S5F@l2jY!>va9RPSjyrxv|fyeVdr50>Lq{I;D-m-mM<9Yevw?^7u0^1emYJVK0` zme65L<2DTr#!=@`GdpJXm8-|C*oo7UDw(+-A;bqKPm0a`7xfo(-rn=%BrhIDIJYj9 z#qSK?QZJ#dOF@WJzJ)Iet}f6}wrSSJsQ2h1P`@4V9p`h%xQ`@;BlT_?h|h}I*^vC3 zn-CQfD$K3YZwN=t!d!|K&qBQ(C&A*6S7|R4^AG_`oFfFbPK2KETdT7bkQEdae|<=` zdOggFtbwqCYXpme?vxgr0651$&F(1QUtsOJRqv(G^KF-7iTAS)!!{-92ahC~zWx<8 zm#Md@PWy#>RK$~iLKYVnT~SC$Uw^6kh^yP=!Mk~RxtrPS-LkUp;>&~z59d#f3eMdd z6@YkH7)=klxxS`oPA0O`si7?g)xX%o!&JcSj`)NhSWn zX;7i_{V+-E2iQp{ks&~Z-b{^}PGU+A#KX*x`ozTc+r?AAY+xVBZE7LW&GM8tytrAS z!c~bfZRYKWhIJktAFq5gFmU*A(p6AEhv$FQaf3I74B?UE#uYQ^-C6YD`*%f#)QElC2xaJ7o7(_N@kb*8A@1-Rd_e4 zC$L+Tj^!k?6{#}gsAiBoP`~6VHw(eT)>+j?%wgzy-*K`?%xu z1QE63`DT-zmi7?J-_O5=I^`9dntX)ktnO2;53*7sp4<4c%n<-kF0MSXd>ZD(>B)4vb%d$t9qA>3cu zT=b=I0tL`ikhQ`>Ljzf~2)=oshXx_54y3*9-S$CmfuSa)&~lNlyJDlTytK{?qDCd6 ztp!2SAW1++?EK&5_1CQi(Z8vN98p1jsU0lN29a8oLBSCqZ+%Ub$DU|zzAZmw2O8< zRudLw z6Qf}%jmfXvHzr`C8x~m%%kOam*=S#YIk|J6(~ld-V3GcDz(2NldZ}FZpe$US^~T~% z$@!<9hK7YW>~`HLS`-Yqw8f_L4)`8|P$BTNs?1Ms+2H+Avj!QPRzl}4oN*>%??sci z`Ugxd2(?6eiD!;foansgkH4fhv}a`+`j(Qiwx3A{>zcLVx+A01+-AC|a|bkMkh{3J zt_%}h;17D2@WXa&L5-LOWIVni zZ?lcoq1UN*Q;@{ePlZhv3N^eCeTIv!kupLJ3!4lh|4|b{JvwQFDsVfeJGHuaSLHIg z?L4G;B}NWrrnw=;X94?h@>$=;jx*_BACxCf!}q2j0g~3G0Yza`-QAMq7Woaoe`7!@ zzkdC?aK8MxY#WG`OnIy0<>W!Y~GpUvqB@iru;^835S3Hs?{$=H&=`~Flb74yPDU_Y5jcCS4~D^+U63`Dr0_wy(~nPmrV%TIbNwOTCu9$vQ?&FkfuvA&^uz;w z$cGDT#m+;Q*E4WGp)bY6#0LJ86dr#sZ6@}7Jj(~)k?C67>5ti0r(UB%SiIF;PfGy- z0Vxpb*NiB`7MVb}W3}9JnesF*Cgzshd1paP02>+lG(R^-8T``?&Yzp1P7_sAAXC8Y z#P0{~9|r|MvSYwLBMdC$pLBMLG>SjgkH!bMQ-Y0&ZFA*>6}Bfglt%_=Z=#ecLqA); z@{H*e#|8i7c)a~q-%i^r_wQbnn&R4+n;v#vCoSG*|N1xMrgw~lx|hnnbVSH2RZ+}J zL9NbL08G%Inh>v^jBetjSa;PI|5c^xUkp&Vl>pO-2<%;5klLF!y5A@kT<@eszE*VJ_ePkZg@L|$CKWBTCt zcZ0;-sjjXFdCbrcQ)wzTko(JX424L&-H;M5X*82=olK!S1-iwGQ?HSk_rG49k(k6& z&kh5qt-BaHsh;RoFn*l4vVM-n%}#n*jZiru7;V!Of5t%mhqS z;~Baa2>8c^l^flW3s?Ij>~C^6d@8lzZ<|5_zz)~6s-XM=^FS;n5InM|izTzAd- z6RphZ;-9ycX@#au1ZeKw04@w9v=Qz5_wgEQ!=;Ujft{#nA)cL%vT`!$?QAmC54n`Q z%F&bXnBY6G5M#OZ^0^3be8djy-I+P+<`3dax^`d6;jxAUJC1t?ON3_+>=*!6o97iw zT&bLQ>oJwd?6o<=`T2OKgtG>{Qg3m#gM*8^EyNs*KlEL;-Amk~+^cTj6aP5q5ytkf zJ9TPgoXgzuBV%^CH~NC?iz3~%mw!e%bAthSx3@a?^8Aa4ezXZXywUjB9CtH1MG z?wJuoZUKw+cx5y0H_H#;Fu-*~+=BjeHFYyO?AaGL;0tj-#kPL*HV}x&1|7^i$8PzY zFQrAp;2SxgAuig^&WAVg9^8CMoo-{EVQsyz>*}e^d5!5x;zQcP0z;GomGI#~0pa&VbmpLsWUaZ=d)D-!9t^gkQl<%lWtIvS-Qu zyT+^10xA#uL$1BGu(&ho*cW4C4RZSnrN%!wYSz(eEE5eeL8h@}zK$@ zeKu;L>%R+h%fx_R{TV0cYu4hX-*q$Npr8Qsvf;?F|1jNj)(+2l`fY1jJiKo$*Wm&5 z0r;5u=xi;L0I61zrB`^2rdC}5wR&)qoDF<<4aZP+exmb;-GuKQ$Xl!HzZ97*bY15I zg1Y(|XqiG(>sXcGeHYgOEx37RbeL0>-)eehYD*)I0ItH3s>JV#9nw*{DZv z+ZB0%>O6(~7fR|d*)6Zr59|RXP5sp-_{p@wMc?14YH58M8yVtPCx0`x{uZWuKgWCI z)uRUJd@HG>#%*gy73lUOyc&P~o7rPN`Q&O-4OTI2K=2e=Xrm&2_?nmHv&ZAw>|ejs zG*1cW=t18A-K6&giJn%3$xG18qIoTudASZu<>k#$<->bK47*pLyX+(CQV76(%VFIB z@wMU7S+TS!Ga2EOPI&FM`D<;>A~&Kc4ZGptu6EjlFXveVxDI574jm>6Q)N=wo=cu% z$%%PZYgsoJpGz+M{G@`Z4Ru@(Cj8x7gJ>vJg;qjEw)kKA9zAqPKJs-aPr{*6l-;0 zx`1qR1p9n>`{HR^wY9ULSKUl_bS8`9?ht1Z_nW~X$b2{d?8BQc$zPj>{?r~D4Zmy3 zHE`5IJontzMOirvl*mG#zR8;F0V*^956jaOJa9UeuF~Qo?6&dR<9py!yrq?uBfRl{ zJyF%BUlk1Joojv}wkJ(9cE7E)(ouh10Nv-(r6uqlntBl>XCD>T-uItBm#=b#XG04D?m}o-i=Q(= zJ9Nz2_fcDB4=E_V5QTlYXAfH3Qdd888azI0JvPEK06hcR`4t)!B|#uT6~h}-sAQaT zGuk|lW&(|Xgug{Qz9j@jJ8O-7J#VcRaeM~&l=UFh4(jP_*2SI3>7*rhW9|%$srwIx zyb~eeUfh$OIfT*#UHZWol0k04(B&@9G# zHk{J|AtZ4A+obggJqUl9^!> zRsMQjzNWGoXzIf^f0n~0e(gahc8`RFH}&*nu?GZZ5^BZ>x2oxd9`VbApP>*VxG|oP zs&T3G$frV3%zFr1R|l5Uwl@I^ZNg&pDP4O{cV8dzNdZ*P6LC>(Pa7afAC0%T<-0!}F=B5?l-MEx)Em zQO6GliZg|*#QJyz5|qa4-4AoPLdt(TiDvdD1~{g68DVOAu3UnlTEWbB7<4T3!a5?B)Bsbw@wiC?fb~dB770sXh2JFzT7yM|UhmopA-*0^6BjM)bx@><&_rL;E zX`^2Dg}WK_6N`#^xHsT^pRf)Jx{CK+_*w;K!@j%UD`)+Si~TnjXPX8(cGwQQE2)+S z@C#}5er;!+05F7J$Lvv;*VuV=`0Tn!%|G4h;c1MOj!im`9oLmWcJ>ah(W zzFbA06w5zSIX&m4FUs*cux=NpEJr6{wM5(YUYpIW#St-4(ui>B}( zgEAW=K0F`Z>ix5Skp{Z8wRGWtsrlRf950!Jp6v$^)ZjyxchX(^{o8)}2HsT_*ps$- zffvI2@jwfdYv?{F7nf>3=ZtyiwEdxvmZj8Ew+b21=CJ7Wc^S^8UdOe z%z>iB1!Z8%{4+w|zu(`FNG`3e`dF1sNcc+^DoaN!udd>A$3!K!2jXSAJYtKEiBWzR z%8Ep(w=54*0>9do<>ihd&AORXS!skvy^)2R4eVXVpPX3tDZs0&krpT$+iW{n?t;u( z++<5gmW@~1JTB5l>_(_caB#&qd+*)?J9*lZAJi^&hFPY3G-3T4)j;cE7Jts_o^bb2 z2-ckG(@%hqXVk7pOLC?x9cluQoI7J8Hi+SEsA0I2Hk(3Bw&dKD&de}oxc6z$@-e5#c$A8%YQA$)B?a2#{f0ZWA*D0TPAzzx`t-IXw|j1;rVdW)@kjRWww!W>4YXhSR4<)8I(dXwSXghxvzbM4FH?`I5zS$qk_1 z1@FSRE?UKuhC{k_Yn>Fmye?tigjdubTYQRxtk_I9c+ukJ=20j^5s#ZK{P#gt`cZ9J zb}q0_Ryi)|?qlDttLl61e=%`WI>o6-2|G-UP?AkPFezSh8~)o`*f)vS$;O}zv*ls_0G z$&1!_pfl7wRK#~HBxvoZTT|sUZv`AUbyXG{*>D1iy2rH(BRCXKKW0&Z?tTL;1H;v~ zeLvz+D^?p`_tWLc@&tZA?~?0%tHpJ5z9BKn4Z%7^-4d4*=9COuTmAzU(i3@FoKv5` zrvLPGErYRVcX###eRg(E>4q{|_i#}6Y259(%kxP`g9!*O{eo{#DhA~QL9}~4#B?Z& z^~j?iVGYW@=y_>L_MqF=XOhZn6 z%G9^N=zewmP0_=&u^X2zF23{w)-1#4OiBROI)n(z#E>~mU*qMeU%vW(BoRS$ALQ4 z{oD6y4A$uBZkkwMYqwXVrJ=zn!C)ecpBg1^l2ibt<#R6ln=i+6hH~k6GacRVTq!=? zMV~0czK18;~<{ukY+l z*I0O{GuHohq%;OFwPhD6jb9Xx@&1Fby(yMbw2t}FMi1%-FIX9Ef_q!>zVUheqo6m@ z6rBDge^wA%ZsbB8s_wvLu;3PrI(Vq`MAO6Rb+mcX7c1Sb;>Gp1hyLD>Iiqf;3Pac7 zeF_?O*qq-tK7Zu%eQ)Ys7Q;VnpqY08lb;o-xF;i1q=# zBypC{&_zJ4;#ybD4JJv+#<(EUJVO93NCX5v3@rhSJ;l%x${V*3U*+5FlQjsQUUvVi zeAr+U`$~f30%KL-t*xu;c72KAgAEmtLIj~3E}|Y95mAad#^D;w_$K79GZ84hVfkaq z)JbH!t-h%t9t_W4&>-OsCNFeXvB@_SpAi#p^tKTnpW)n@)Giz~RH@KYFYuKq{pI&a zu{rjejaktwBR}a*LXCOpw@)ymzIGFasOhe5`l2Kc3CEeS!_(-PODzo#-W-T5X#5M2 zN>}q_(cU^av;nEr` z$54}-E3wm<21#sq``Kl9B-eI~r*HB;?QP|{y-vyY2nu2W;Y~k$hU!0hP)Pr&p3~vFgEx>T`g6Z9c&gs@fCl~kSXS&^@OrZeit@oJG?eP>@rPPbn zE#L7D^Utxs?*-Rzb$ULFDEANu(_?35HrZ@saDCCFJ?3y{Td3hMc9dJ!p(;~z>u6i= za!`?As=NAZBlfNPnVWN+%dHKU?ZLT@D8cuGnf}|c7!SMoZ`0FJ$z4Dsd=y)pugI?P zjdbT?<2AmW`N9m)<m_2Zlk8GdHH4xAr#*PWR)`5ofk}#bf`5ctCH{J=Hlgdtt_R zYs)0|az&Ux*rq+rvlPvMm=?r@hC(&O2TMzN(kkA*e5G{Nv9~;Vit$JjMzh;sjSAh* z*8LmbZA{lRp%xYtlZ&g|Hb=|A^*Nw(sm}{WmOvlWIL=sAES)}I`?6avNqv9XQF5Y$ zbA9ODMPFj3;!Baq#w%tiqXUNJ~uDYwE0()l=j8la)j;HY@>0V3l_7!mIecsptF*vOHnt_ z@siJv4_(D99S-QTe*V0*c>DN`NhrU(E%4E>0}PDDtnt2#g>VO}#ku~b5UI!f{Ek1~ zJECfDqtNlulpH4ArR)1E^$(1nDhV<1IJ?}e1V%OPnk6q6EsMo zYBj12NWK)MniPt6maMhN|H3f5osicffa%pZdbC zM)KKmZltTRUv+h=imF>bmVNZ#q<9TCOVk?rF<7Z&t9!U28*GGeE-2mh#~B!tK?U|i z&GY`#{)&$)U+xoVEgacQIIMac&%}+de;m~&^cuaY^|k@jkv>7xg~)NVw6XBA+gNy-!en1v1gfN0G-a9!oqEw zprG(r-Li$(ayXPMZRhvmp%tJv@LFR~r=D#T*>$Sn>Yqrebm5v5@_Q$q#ntu4`LkD* zdPi*mqEB`uCX1Xm%NN6hudj!NdFWgXu-fEwNhpHE^&(z9qXDZI>Nft2-g&o8vZt@l zxL6)lhnSVqQ%Q0$aWla9 zz}$gzxaWDL^}68K+m^|DQn1Ly;f5_ zN(0F$YO|n!==h{HSGsjgL%(t`EW~O;MdzM~v$^!Uvr`RwG@j2`HjR$XasyM`)<;dt zbQf=T-`f>cv_GF6`!bXxUhaOlLC}-0Lp-&FT(BGUy|rCox=*^21Ag!FE#4!>eY7pCllae^MHFOwl;xWGzTx%pduFJqD&!@n{vKZ0SO>It~4 z|BxX-)CV#;M`!h=B>lQ-`X^jxub(6dBa;iSy0mf{0uru3@nh7v45d{&4TqQ<%dg zbH#CadD#w#i>26xia=`n_38#T4@HeLG=bR(MhM;d`WqjbF2;1960F;(@T<@js&1Op zXD@ylf(HsXy?fwHs3?l1c#Kw4ta)+wq6K@5)70n=ntbu-LZvde5jXyqi^sKo=)2YrMBs6=1ng1_s9L($YOr zlkORMYYHo1NGBP$Oz)LY!VtmcE!6z7WYk+OoYypXX?UmOc5vk zO5>A)3RXt3lR4DMfdoUb&QNi~+4AN2F|M^_95@0Q>qwaQvaS2Qhr_=3zT`G6Uu#7G z*BSryHj@ZRBkB@iV&lln?j}DUF@Vkb(>?%!PioWH=W=JqfcKM;G-?VaPK{O2(9@gL z?A?A`yngZCfHJq@0kbY@vtQ!r7?q=$k(-;*#l3*hFSo~33OXEDrb+MIe7`WG#(ogi z+1dF8oaJC6TsYi^QEcf)Kf@bN-X{rpp71UOA(%y=aqN(=w;z<1dwz0UF~Ib6#k|~` z8v`~yjGZE7`xN4b(-AxM!k6_PSnjf>ak6r1H@CBC#KW`6!;WBb_tl*`Md5~+Z(kM5 zis~zw9RJR(t;&0#lI)ivi)w;rPnUVc!++>*vMd92tH@_?b2WAK7aD=|=JnKA8WT(c z&`9HLBd)fzvFOJqmT--!5V9XuA`~abt|+Y5hLcI2TZbj{Eu(uGBF0wh>_(l(SUsz9 z^y~Goyn0KCJ8#i~W96ols(b%}CBc-o_;E6(db6m@#ZI0M<#QI{9j%6V z%onwWZ1Tfzk5~|Y_t6N`2f9pC{l};sT1jZU2VuckH!b0Cc%zCJ&B6=_#?k9j!P&~1 zX12B-+;QssW-LT$h#)ehorv9{;E<4GT9afy1LR23-|BmK?%z=;&lKlerp4GnHZnr5 zVj%I&tZRgQzCDHl2^@l)gMl$pAX|ut!T3>ak=md#;q2G@9G-#sMuRE=lGaJgT^OWO zQl`{d+Qkqjk~quo!pS%1k3|5`21CbZEN17^m}qMmd7pNkynna5CmU|9UTwI*>f~Bp zQIXsKQ|b|>fY$D{q1UA@GFe=sFD@pgo(VQOiRCO^!xlTMYsBp30a30M-*d`r< zj)#UqUPiQ&YHqvW5(S})P^Llr`-9&eDOLPuspJSbm5JLy1Em38XBcgGQzf{CHcszr#~YkuUt!-Mf5X@ z`3q}n&zg%GRKQ#pbOxTc1hvg@SOkp96Ivz+K+9-DA-LtPE=|2J9>y>K?Fah$A3|&DD=Uv^;D!5% z{}@X=QJDa&YiAYNk5@9l?Y2YB4H1UT0(FI5ary6-6=bktv?k^4%P8JEvj>)q+A>25 z&xH~+4GrnjNQFJ$j?%zwJl}nVhJ=Jb`5y|uG)P}f!ZrNr(w#*oFBo#N#rWV3v}cTM-4CD zj+f^@+>{yyOZ8Q_6D)BzrZ{H+V%4K}ZnZ>p{MyKMKE>AfEhrU=jhp5uHLoIHV3{%7 zUqHgl%0YFH=kH*P zpqR>}n>Qp&Y5iH%d$5ycd9Eu)V5e&wi$J{tS+R|1=jZOQaK85KO7i(d>MYTfUxbKCnF_vE$0`QMWE zQ1h{(eX=;&!kzl#-Ye6#VE-}Eqc60+9>k$mvm*8jt?{JWAKU8+3kyA_HEd+UM2^OV zM9e;~Fxt14-SYMs+zvduB)si+$%6?i9Tk-{{~{M$-ky`2ThpbtSx`Sv>%2K?VU_If zs$+lJ&Duf5KdR?pV_rl#;40h+B=HsJ-#o6piUnq1h-7POLs@*g)l-(4!W$x7q;}^F z-#FHv!z5$N)dz8Tq%|35Wz~@cLVPKYs8?mIES#O4l}1j0);PI<{9=~(x+2G{WB;#r z`oO}5K#Q@kq7%As=UAhLM9y=CUxAp?B!r+mCFPARWrP^vBV`Gn&U$-+1TpT4lEx%i-AXHyv{oPF8F>X2cA1lC(AZ#VY6GNWjPa$?={t6YiBq1vZ2Bvo_zG^* z9b^LE?uuelHKKG&`IZ?^vmxQo@!u+UZ|RaLt}M~+{ylHM0a zCQ2T^7lnFMG%lhAU>Y_y+q%eb#8W-WJ2$;ID{aiBMeTf$?@6nyDml5i3$^!fj5g`j zNlN0ZRQIl4*o##Bb7$KX_{xAZ)QIy=f|_SfRl1M%Y=kPm*p5$ zup`ti4}-zNAoqJUNBjM^AOug6y=#@M)4u_c>@P>W@#}uKFE8RZixk(QXV0$A^Sn-% zaV4V~cPImI?C!i=TX!8>&ay$hrbiW}-9;LG-F%=1d^u$6GKD{OQcD=f1wulTf$N99Ddn_~;)E(Oc&EFLrNH)?UQF(VRAd=i*LGD>0P=iCrD zx)gwzHS@HXfAPQxJGcGIVkA8X5eDJPHgsE#+Pz_WotxVocXiGi>VeC2=foWDObOea zwh*&n%Inu2)7Dr{2^wKZ%ZloXT9R9l0*+S~UI|iPremyVtCAJtrn0o3B29!kk}X`{;zM-+0KucfP;W+u(Dr%K7oiFI)Ba`Chg+70&Av zEd0?)#?`Eoa8ZZBOmJDfEEB~)J6n>3ZIic)cWtG+55=hNp{FhW&B?50ncpei_In*{ z!iqbBrqQk@>PXYV%XbDqI^EX;vRlM*dU+K=1|1S%$`*3JO^-@hj68_WTpJF@XH6;o z=)6lp=<|C?HdRhKHZA)G+wLLqDvJfDemm&sZWzSOIj_z=WkoC#xGr|L}F;SFc*GK}la&dQs(qbh&iGm~(rN>5MEfN>)^!8atx^0}6% z22fS$FUyJ=CE6I?@!M9vydM?@P{b}Ck>lys@cZzJ10US+cqlzoWp`vOFu8rl_04Rh z&CqE5)tSaBb6wF+*g@l&i61?l!aG6CRTg(>JtjV|4(xswe@?hF=Z)B{?da81k8+!mY zwfx1n8l^HQ;J9->!M8W1iQfD}JtkQi^>}Co=~d!LpG!_K85Op0rX?fOcIGFNW%@)V zxms&p+rwKGH}tgkcYuM z0u?+}Y+zOvmIK|V`DkvCQvdiGxmAdK-=JQ|+=Xo;7Q_KROC6iFE>4h1nHlAa=1hwQ;-BrRBcx&askx#<; zF?Q_W)?I`BMA079j_CGGqw(h#b4jc~iM(fFeMr;R__a|{DUd3yg=C4#M|fUUWfx2~ z`rvY?jj#6j7QbF{Vo)Ac5@#)p(G4c; z;N31i+fcuk;(@L22k^wdHo<0qYs-dknJ8IIH(pMKElQkEL{HU(j=C%ZI0BRp!go5cEnIjq`bVjU(y%6Rke6jBUI6!>EI^vrDj6Y%aQtUpKltH^b>2 zFAt|^XlSRVCYEvWnJtW1A{vpwLl1?OxhBq3(L;_^K9laFNX_gb)gyPm_OSC`jp#Zg zob!8p9}-Mw9%S^+xVH}wP#H^}s&1hR0AAu_Cy|7L@>@Y)u@-9ce!^1Y%CB!1LmqTX`li` zHpl@Z01zaI8L+w@?^#xei3*0mYpmSsKrMoj0-Ao zpx+JxeKK9-S;f$2-zBwy(kzekzrS5HV_Q9VD#5 zRrt{?o>8TvS6x*5KFDBJ!?`yV1;E!x+g#(RQzqb>GnL`hB)o3pc)JTRvAqjYi;zW1Z5)uxE)S~eSMWmqs&P5OG(Yv0r5qOP(9<|z9{IjmrjJMga1IY0LSrND(3p7J6e=H` zeNcG%YiMi#6dlGWDY46=K&)HxUdCHi7OmGt;dD}w=|^}0WtNomxlr6+#d*k)=cMpC zI69y5_gx4TS3fuNe*->HYjiUH;g*zxqm)n0fkt0LAwj|;7FZ0W!S_LUu~x`pS60Q* z3TT>JWoOZadkOYQHqI9VmWd?S%k0a)frsEfKI@!-;T`ZT%=q=|@7gXMe}b$Sf=UOw zd;#uxmc@g(%5`k>kcc?o6@OtxpJ*I$Pv7kMNrL%Go2q?Wvj~*eVpth@ zuQ>0Eq~g`sGc1dZbBGoMpr1r%BVr??*=`hx_1)75W(ZN6e%nRC?MWD0@kxvWo>2V zJ{4|=yl%s>{^a+{IGuz;WM6IZe@SQS&7|Ze`bX+M%{stNN2(_iDX9idM_e@X}F4mQ){(<>KX4 zRgw*}H8}%3Rn^+E;fl99gb`20q~^aL-#%3Nos|BU@@i*EQqgE8C-CO=&lyTvGxlT9 zfR0gpxGK^~<3hISt(sh_$IdyU*x%p7m(Gw|0WmRY#aq617Yh6lI$I6}oy1?P|mF_F~=Ppzu3V!J*J9Uo5UQ5_7$ehBS|jaEx2 zk9sJ|KZ9v0xnK{F>|c!YDPt1_1vM8J+*VU_=%_lf0ubTP>v3>EC?P{3HbM`o4=*`188Bx}_>fKQtKA4GF5c=n z*Ea8j>+YogN`*pK;nJNdaD*oB4z<O2Z@1^OUz3N8n8c~8ys8ghu;?bNILbpWWX1#VZT{)aN;gn&<+4 z{saJdE};rTc?&i6i8_@V%QN&=>a%yg@J``>L39vMORB)UVpKm_v4O(3tNfbgx`5x2 zHhpWII&f0O2N~Hu88v}*Xw65-}zw2UUi^n>c4z`gvGwL3dDSqv`wCzd}!wBl%QXGgAJtfIhn0_ zH@#*b0`kLCHsiQ3YW^&Y-ucJrg*Y~)`2L^a!1}s}R)jCz;G?>mTlXFLz*#MA?I%Q# z;E!B8D*)|q7UHYi5t7*9H^ulc%q@ zqALr*DF%VtXI7XI)})N$sXWz0k6o zp=HAYmfa$B1Y;wtWT;q2SWwW*?f}xxLMG3Zm!tL%TQCcSoxD(qWyF}7)f)L_tP_b^ z+C6&U%7!E?9NM+*Umg1O^{bZ}KRBp6H!vHhFg0CU3n9g(QvyktW|N4Ru+6t1zi!N` zA>)kA)V)h-mDY7<%~Wr2NN^qL-;kGiJA!)X=kpV_);bWcSyz*z-aOrUmLz0nq~H5@ z9^de9C)NHa5D?ORkNTQmZU$8Q%!>OEJ~~Fl<>dz)Z9RXcrux5|P@v79Mv7TlCW20J z<1h$BkUJD|C}-$25aB2rDnHJafQ(Yn(0gAWvI1cA%z$2B_{xNFQ)JeE;fRyKEA9dzggiFy`MU&KHe6r9NL{KD%FwcUuxJTzCnF(o?n2wK@HJoTp|40!F@OhA)h z>Mvakk(IkTZ)9}BFRpOOfUI!k&UX5XG4yF|Oj8y&ymw?Lt1Zfw#md@DlzwO+3O%s; z^XJdns6di^+WEBjuE-xw9@MjRzcIbK^n!w?W-L--VEHsu98D48aIs{$dO%D$m{%!M zX#&`}J>{@e`A1E~AK9hsRehD-f0246%*)MPuQDF2}*u20njtNc~d8mpB& zsk~5q0IV=wO0u2WS-&H2WY;mf5u1iz}ODWV0)YZ!E2>9n+TG7c~w zPk~@XHZ#Xt_mTNf1e9x#AgvTHRUgF#BYmRu#-{L+H~{K~(1WkaK!c&QSXsaqXWV=t z*`o=5?aDTCv_|9b*QK|GkQmk|KS(+=j(Z=FohP1GoxYuRy*@SSsnv34j0n9~&~ux~ za*q7;^d`XtKxUYMxa}>;awIe6dS9N+dY}Al(b=9T?}$$JbZ8j>Rm9YZCvGgkB=NcZ zdy|7#riF*aUfUIM+T#1&)#ai0=)F2vaqOTv9$v$j0-KjC9G<_euy;}cA0x5@8yl{i zTF`1Z`aUn}?_8pe5%uuMG)(u_t-R-06!#U#gt_&e{ni61h%SFEz~qOF|A47|8{F8X z5Z}{xf4(ub9O-CXmTatN%bk~&3hXxDl?0jxMw4VP(d5|J74U&QK)>?*=U?`ic@dG> zv%gLFtG0#>)2*w}4aGo!75!i)a&y=9VW4#O+^(z3t?QqQZW7j@<8RXnPq*s9xi~q6oR6?O z;ouk`j7r#c`e>&iutKQLyC-q>YX9ndRRBBrvvi_NlEHhcWXu+<_Mc=DtH8sFgPVKX zLevTvnopu$JnAOV@pL~I?(aN2Eq;>PrKQ30ntG?Kh4Xar+mie0{I~Gr-oqBNXf;W-$ji?M02cxgHnSlm!+vCUPyM8v?4R!M*!7pHB_oRf+WmfybqSyhZd z^%efaT$5i_J7vzM0t%W{eR2|}7&~2e_A_p8Pc~vSy2deW8q@z#AIQ7IkYk%Y0Mvws zG$7o;mzh+{C8PN1QVF-mQI7S|md&l9Y~yO1smh3-AMY(3y36^$Nez$X% zmZJ2zc&g{RHid26XPlV>TS%}Jl$1K2DASG%P@t!cq4I~)-TL@sTR6D{-FlPTzo^82 zv{Xgce~yjamwbad8R)^HqKsY}F(iTx+ihK`K$kl9uN9*@nwpNL>||CE#IlrRo`?UK zl_f=4=uq*U>eyTz1N(HCq6beKT&du!%h;$GB)+~`qQ?!GCONwF&bvH0kPJDWlJxX< zc1~{WWRnvyo5S-#h#TD8t3|F$k%5wcistdB+P*1+r{N?nO+es6VB!cU5#Qpb6}qr( zYav#x9JLx`jYCPgj}|zFK@62ehHV0wF=2!OufY1YENZFsl97u0d>+79n6ci{s8{Cg=<;5bZ4$F){Ze!g?p=k?ZuLsKzA9meq6(Pd;% z|I49A5_5*Y-i>9-I}bEBm=n{B3YhP&^c(_val_iA4d4{JLM`I3^Z;HsgK~2$mS$&& zXr}`uddolGt7vF0xJTTV`?M}#vKX!B(DIvg_XEnr?@F7gBNtRfbW~In#QWleWOwMH zhaTt`z5lw0PG`0WkF$Gw^x0`^|wO~N`G|0}`9xpLDj^)-rv%Uvpo>Gj|)V>Y%_xGdVV?`=q zt@L1w)xhHb=$&l?l!&Uej>PG&3#N+2OLEV#EVEJGU2~o=;E)jiw-M|VDa%eboyyB0 z8ZpO)Z1BDlQB}5Z!w3(r-v^cRm(2M)e-Ppt-V0+X6ql%L-3AMcSb=6Fz)MK+EI8BL zeesj~?*ydA${iq6=B1sV8QS9YU`$ zJPFA5s^?mFhG`M10{oZe>AF+^7wHYWPgl$K0gf5h4PT<};^CbUE*K6ph5RBxnsL!x zFciR9VmJ)EN;F4o2eJ*BERmUQNNu_mlb6`KH-q;ABwt9{oRSah_eMGSW@eM6{s?O@ zugIh%+xd3mw&;SP6XovC?^h`3uLsy8uhzO3ylyY&H>z();5zVj{hPNh+giLHJ!jd` ztgbH>oyPZ-TA(DXI&KCp;{D~2`p=&cJ#DSKad(&J?0(-ousQsnuNTMtKyKoHzP!lj zQUCj6zudt8v6t5@o$dS9W-YLv1CAKpSlHoxY(KPrn_iDkG3f!mU3>KPF)SO#7kK{S zqx`*?12_9Ji|6awqn(oye#AS|$AMGSbFz3p2OzlLooDX2|Zu1p=z628{2yrgF zV2HQ&qi^H)E$n;PIueC6Q1GOu6$IkRi!&IV)f8jL}j{bLOM+W&j`3IV(yxfLX|nA`)mMx~t9p0kf} zO&h6ZkFT8k5mFBSkbL*Dg)CrdO$1iO;r3h6<5=0m>FuPY5z?kt%hlg^|1S6T{kM-6 zX~uD2o>{lnUDEFI+>8k=Z{IS=$>_{Nm0JqYKh%#9E;-}o)) z@0gD5(r_*BlnA)1B9J{E3*d+*|VGqd)z7?avFFhr(3U z_ujGxgEv=+5Nn)ly9BH02KCtQt3X%8++)l(E(ig63-P7I&*0lbiL?pT(Mg&gEtJgl z|An2sTw3*@?-HRrt8`>B%=<{<`#MAShXuBQgQj|vlPw$s4FyZvu|eBlhh>ZPQi`OvGcp0H|JC?LB^#-8WEP=;_d zak5}ss2)N`tV zI_(aJVR`&40T{B1GU8S}Rt{Mda^YFq{8EE#_0{Z>`g44(+Dv}(sjS?7@V2%~r?7zR zC*CjT4V)NY%w(yR>;ZBj(IWp{8~7Aps(}%C%Y(c&>*6`@#b1K}7# zI6HFXzI3d~${jKF#WCIPEU#H)rGb0Bg=b67!n)LY;3A6fA)^@_-FljmIdY)D`8b#5>`4@b@X%Oz5mV$Inc)`pK8Y!ERmh%X3+}*jX*fs+J7=NiUT1_=f+*p!BAd#_G0jkDAAzIP^$9W2eP>F& zJtOQz=4OO^Piy{;V3HQE`t}h5jP}&@AO8OiIFS)uD1y1KOv74}#w|Q;!C$qCiLhz{ zLa0M~xcNKqCv9&)L(l5oM}0;aus{@<`=m6iP3R=$9KZcHV*Kw$_3Q!m`U~M`uH>$) zmmN`|IEm68Vd9aO^WT?YlbIju>bWe{*pB86)_iQ$tLwd2O8RmA$Fl(&cT&7 zAw<(Rv;H@ju`L+NgX<&#o3fK%WVz9N$aEXerknzy>?ouC8qr<+CV6*#eBYT+o~QlIGY!1wkS?L|QbA@HS;Kc4 zSQM*`)XXib!5Xh9 z>0gC%gt69-j}0{y$m{Lf-g^rcigam01fn#l3BAJ|&~tv@z4yQS*S+`o=6OybJK1|??U_~H_0F1C z`ZsHgkyk1H?TsJLvPjZj_4og3^Y{P1&Y{Pg^WG0SDrF+r=eM}P__oT2@eUOTc79vGNza1W zfA0c8SoGs(yc}Mqxu?xx;8SmQurSsb{%>xb-@TFyrVG)Q;pZE9_-0-H@!@rdTa)-l zJ#vvxe$Xkp?2==B;sm^~Q62g2{m=#De4?ZRxLX<@Sh?UoT5}6AQZpW!6X)BxUq4PX z=a?~%dVlU!fmTVw9psaCpB-MsXbT=e+ram|##{G5Kg5WCerP(Mjjohh@hyFSKZsgq z>%wA)P+^3EsUZKop9x&CujbCT2TZP{(9f!<_(py_&-UW|ohu9{onFTbZ!5Ec=abSL z`QFe@c?uOO|2ewfM->;M>1}qYjZ8jU4&cDyfrqW*kpht#3R5SD<<{id7}G z>7)syVr}?Os+zx&=1)dCF2ym$wO~qc{V{N~&`P0n;JQH_r`N%c2Z~hS<1|ko)8B63 z`OxDpPVnyWSCW!#(k+M)p;_jChJ$~lf$yNXfwP;|4a^PH!yFJ_riRS?I1s4yYBD^p zUB7CMIL;gKN>|YKFkM;g=#IEQ!a5(RElcqxR`+|`Vp21o;n?u{L2HeEy!$W}MZNTw z2}7=v&wxzPs3Q+jl?_A#zjOAfW_Wj#-rryrQDb}s*rq(Ze)`|+|8WSO-8$+<;BnLg z{_lUc|1E+4ErI_nf&T{*Kp&>o`_M;C2oahO{jBu)?yU?L3*%fY?8;v;<0N@`8BWSl z23I7d2bFP-oVr9ta!FK&e{3@TC?HazKD+5 zSbsI5nKdT_RgzS3V9!CU&>FO52Q5k^v4Vn0f7+d^n-Ig|Jf<9+h$Rdo+HD2+ug<@2 zeTD@GP#m>Y{r7`RXW?*xJLl0RkO2$ZrY0l|9oP?A|G9qrZ}n=@Z9&h@!ttC=$Nlqi<4X3>YS9$$L~tgxYzK1 zTgKcxunMlcTxfH1Aa<^PZwE`cWlL=z4Ti#@AF}ZTfEq8K4m)7&6 za+Y%T;^Y5D{o&hN*o%y^FEu7?t_AuQ0!HC-EwX6Zb2FD!`_tU~H8@N)u=0J?dMhq( z9XcULnQ8G5jrGg_$)xjq08Ib`ie5anfCVBm<3c-~G1r6@MXX+e8pWIaSg=Nf@24Oq zsYvBtToPn@ZT_dQaEK9-f$ruh^)oBtTv8e(x>hq@x-2$V(UZTpOgct?x{7cO=5%3NKfA?N+CdFf z8*+G}2U(l_-|%|vZB#O^4bq(0B;C4%PK4zN{ZjCGfy;uuCuzuh;ZjS|Wl3K5AUxBO znF=L%xe}qMS(*(?IH;vcnER=PRUVQR7Z&+X)Hd9PPc+_~(ckB975cXB@htewEJ-E( z?v*pnA`*B%k0;x#;3iU)2nEdn57E6<9|wml)&Im%dVvZr0(EZAT{=*9 z5&R7C#Ovs1ax!LCQ99-ON_%cKg%y40{u}+U6)B1w9Y7)$i6^eGPe=zgFLPKsA6j8? zhGxF$=*m}aeX*;udS6$gZJUV37Dl2!7{r(8BevJNzxn=8&*@5_$D}BdgEZpn=Bfax z$ir=#r9K*zJk^V%m+0#FAj~gGV2ZSP{|ATIbr|Y9+vcd@Tl)XRIDkC`X4W{hnGCx8 z+{6JVxDR#n@(g>67QFPgfm{b##^|^+r`&S;Cv^F75xa~QEI#*saha0gc}SbqKOLzQcl{8~Z*s(UzZvUL`yY}?2WNb`wRHsYqV9wk>saY61Z^)dlye73Ue-7&O z>KX|8AuyO$NDcYRPjZ$r9#3`OBmv9w;^BEyiS0_KO+G~az0L2E3Z?^<$)yp^;16?i z(Uek$lq&Qhde2kHiEa?jwM>HDWjJI4;Z0vsvSz)cyd6M`FKsp5%%vq0UDE@)a1Xv zGTKjrzcQ#?IA{7ICurm&SJxXF8g`7jts}ob`^91{xVFCbNGs`2|9`t;(eWW4NM5x~ z(n1F$SSqM;xMKe)yVk$Dl?5WNQ&VHc*Ax_f>@UfSH0licJ93uDoB4byYLYx5t4qq`h8$$2*7DaOv1A$Q^592U&6xBh-! z8VM6+?4?=6RXUX-A4M1Y7~a14@5G^|IvUX#L{=Y;#G~|S{NEl}aUFe}@IUvEY663? zc^-qLLH+Ijhl_uoc7nVPo{^(;=C7EHw2wc>rmF_Oh15vt)Hjw!YpX_9|1Q3apbN-( zN^SK^z@B}-+w72P^s|~l_!6tA$-=ePU`twB+IH9reb4KE`(E}^44=&N5b{UP|HB}x zRxnRqZVf>inwlb{&L6`5UC|k2&tZf;F$jPDQsL800Z3l(3I}+QB);4skvjjc(0cP8 zV&#=JU|VJhm40NPld-qeD)^b};@-~J{5L8aeV1q{AP{XtkUr5U?h6?8pJv5;BoXoT z&CS9SMVdHwO=S`I|MIKL_zQ4>RKxn+qK5RChyNq`Fd+In3HCT?(y`Q8jy&+KI*#zX65b^q5ZzTQ}Q#!xlxKKiiM5`pf2-4_Y#Bb0W{4Y@-}h9*wftYku(Gv75WpP0q~msH;JELBmWB;znPkmP z5;St|MMWa$_n+1&@aK`ySSl07UO^NG9oLn9-GR`*mwTUnJQ|5YAFL4hh?gZ?F=5|? z=kd>vWctg0AJCik0LVi(!$N!*IvY325^aKsL5=T{nBXeT{M(7Y-+>Rg%fr5p6fBU~ z$uZZ>KK3>&pH}}nH0q<3m~kp-eSAG~o5ZBO4=?smvtMvE?Zz8TC^BjwM*1 z7Q8$sMT5Fkc?L^>p`_5#6W__9M#z~Qs|001yfB4#Z<%;AhAs7p*WuB8CF8XP z^VF!=|C#MJgKCcypS0hUK>I)n-QN#sp@5TSa%frfm*!;;h@KQBj6RfTcjL{N>meN@ z?X_9E@A0W(QKDd8lgEPWKT%%PC$hAV6Hkf+)q-khBfAF!&=?iaTF+`zDV&2m6Q`i1 zwPrtN>|24(_z)|=H|ch@$XPG-UZ0qK{FeFOb*?LwhZpY31-3_)20sju*Y6uZRXo@% zs2{dPg;wr!^d!gbzVu2uq{4y{c4b#|E@lja1gvv;aXahL@S-1IQLOKzGRgQlOCSV9 zS{ep~b?8aSsZGjMI0Oi>M`-GLJ^CYbsZZ!i*-D>7KRM82$e9F7ApN~rK{#2x&lgRJ zGJQTwiMj{*@?e|A9XYmch%*MQtdHv3B_~z_*5CbYJM{M} z>sby&w&Ko4IXI_%RY{$d7++GhmssY;t#&9chMO$r*W zCJZ_r$U3&Tq19!t|l=< zjnc{Pe~itI`9^9YAAK|L!${sAwfN|TFnieM4TzhB$PW#xzm9}ZTxdn;7i988qjk5t z*&zxPwMS<^(ufHW=%%(!&0l2y4(Jk3(u(1~?Bc)m_m^>EmkpD+d#|NY)LDBjd{5sj z->h#CYBvh(peX(`3s<=XQQ>@0!!r$^=Tl=tGwoRBkWdd@9$;~jLsslovU zq4qc-ObxCTSn13Th1@h-7lAHed|`yiNnV^JLuV2ii*{AzZV$S!lA)OwZ1^f%~ciGXR@#U z)hX1+hM2Sdu;3ELBZyW~5U6uYGSOa|vWkj=Cx?fIk!-5I%ykHU{XeR%_vw)#{eT93 zgB2uWQ|r$Z{^i=PPtAYo#;Umz`!;0jNWn#Nv>5)??9}A4rZ)d~=4w$#5_vM8he(HHjL<6#97`?ka;8RDI6L5bf#d;W1|L z`+nrao)hGxix_2%xPEwz|3Z+XYCH`st?(@j@{lCWSZ!>4cz8R|sN0s#$jN>tA5SJ` zEr^QZR;;mk{CKS$Uc!vMVP5=Q#!iv%c>FbW#lU5lu16`1{R&D*hD@ewmd0aIRP~Cg zV`PKS*<{V`ZD2LFY0!&MT#)agHo~uM-j7`%LBoS|ivzmM=oLI6EBbacp<6jycdihs zRgokh3_$I|J=c~}oYhP;A&w zi0t=D`f4lWO|TZ6fOs3(HMJPz+#|o#`I;}!2-Fdxcz5F=`(A+f^Nh(EHYI9YG$8%{ zU}4%0oZk(a)wAP)o;x?y&ec*~(BsfIyVki=VQJ{K3vzK_i%ODXFK{G9g>(>p!oUbi zfPebjN0kSn4CC}J*-J(_6@2Do4MQn3P^yF%C&HWx^cQ!t^Y2x@RrG}A(-($xv{9K1 zxjWH)?;N5z7H#K|;e5LpgM9F0I9dJ2kD&kq{@BVx5eQTtF+SmZr?#^MzLfPyjkhc{ z8<{i2#=$QAyv*C|uHMs|ysuWbSaRN)q^->?yhiX3ai+ywDe!BwiQK5D|MDX}=GXse zP|EokLI8h9QEHLL()8Gyp&$vZC#tO*Y+U~2`S8}EGTdk(O({8FN*r>#rzq}5IF^f z49VS`#g+9IJ;dl#5LWI~=w~a)z_L<(GE3fbDM?_ZK(rk_^v+<}ajew3`{9Y!KEXIe z^>EfTwt{&A!PIa)q2taN1$iG2`y1*!+coYwZA53bQr+0@KRtGVg{;Sm;w>X^m?R4^ zeYU3Pi||zPA}ySIJ(%X##Z1eMFYkLw^??aJ-$Z>LuZNhTM(Kf589jUc`DjE*e6{-O zSoP~nbsu}CD|c(!vRriRC^%d@09=hn4~g?S{e2Te^QmGidtX-_MW)NQy-{I z-}Uj?9XqvTM33qn8MzYAV$?@k+Q%W|$T>ux2_%5EGt|%4%XEOw!Xx0WuS3d$%bV`D z+T)f^FtF{prAwtgBpqXFE|Ak{ny*j&!Rc|I|BE#3vD(+IsMfu6eX?(8sFFk_r?%Fo zY|t&eJ-*m%U>MY|;6Wn(fk&eXL-w@gH=+*?4#w5sjI6-+4rjy|Whc+TFflRCLk%X4 zz=@PY>rCy@#9oAZvF1H;bR3hHmY)8&%OG~ieof$2?X{(cr6CH62Z20$ya(@iq-2Cm zBj?A~GI!M`rx4l8FL6R@+t+@yi{rV#aZ=I>3cf!_>++p)p7>v`MLO&l4GdQl!rO`dD^Zv!odR+HKEw7pEvG< z4Mw+c`!w;4`Ver?UgrycwAbg7JO_9~H_b&@zt^~_Fgyx69AVLSq()cft5 z_>b}N!@7ckg0YX40*E`unpoY@=XoJ1O2;G6FZVbWw7F!!Dke`{p86T`34$gt+7Yhv0pwL9{-$B%8eRl&23UO#05+aH( z7qZhVv$+c>z($a_Hy2CX?9U%_O-)x#rQXliq%&uN*f8<+=4d5i+;fTeU;&)IG8A`t z%Bwx^g+5~66dW_>l5|@y1vz{apq#*)x7Ljf8pY|gZ914@Yr#%V?2J8_t6mUmDb6kX zDQol7h=Tbs2Ttq1!J1{FEg3->+9DB;X9jp&AcT}iJ{@bXEIv>$rAw@M7^%0s1R`iD zH1kM77w`(U!GtpndS8vYd*en+H&7&=YLl^Kn(GrA8yl*aAC<_jtVA$wJ^@t3293&1 z?7X6WVXLFo?b{BdX`&ASKt=)Clb~<%A_JCgF4^9Q;+eUI^zVyG58*r=9UO}km5!v> z3oydeqLv@BqB9pNLLM6s*LK`CH0~R=m_ALEW zore>V2$7p*RxLDHWU6)q*dQ=NleUj(Kjc(q3}}R<2E7@oGoWQVqT{H z4S;kj63FWUo^)I|7$V)$0dW}KVQlC%qy)n!5)J$qre21`I#W@Lo64tTd- zxqNx~nOt)&`JOL^fXl-(N6Rr1KUV$VI`?F_zhAe|0oR9vJ*aNj=S3g3Iew30W+O(X z$UZpN$GYD3EmPr8Lqp>+hhK`1aQj^62AW*Fdpt)g&v$y&+z^ClD*#xDIuR-Is`AbF z$b!e+L*t0CV9zf{t6889e^0LCpmx|pG_Y!|DnGJiLKs8w@+h;PH51iLyXMZL)fexM#SIKd zoitOZ%~y^C+vGcYOtMTG$7c0OmcE2LXSq@@ff+?#b4b>f+m)OdGw0ysq)dW;Q6XQ} zy?mdE2!rP4=B)M_Kuy^i@`FPI{>-PIMs9Aaa|vDPBx?t?aCmJUfg-}izE9;?8Czzn zVRI89Vk%^E(u@*q;Ej`kyCuxBi7#?gd}?f^j~4kIb^qY!tqY-Ggv3hYR@-i|M0?x@ zS)Ch3o%97-N-O-iBwESApfcn;q-|g@0-rfx6_8*6=B^&W z|K!k%eRZd@%L^tfpB9tzdDr6(&rOTa5R)eA_L4^@U)8Fk!eM-Bahk-gbn(}haPJG# z_w(_$%PT8WsW^V?O7?GXf*zsZQ;|(@)vU5H+IZrr)ml& z{0fz)8F3Xed+^u$`}=~?)sI?qLyy!9Fm~zaA%mtw%`Cf-V3|{)KTZV5=h^#^gE)lx z_wpv^AFtJ};^P20)UAFI&qYCWfCORpRWd~h>%xX7h{>f0==wybI3iH zo#;5;;75afOz4&~YVzsNWv8`x{ww;X1;@+X??#|{RE+D-a@(89@~o(a;-3%RH@6hh zC{&?CLY}e!yZ>u+bd;aqv+Ct7S7v)M(fkYPSW(!j&>xe(w|K@3x3NExY1q_0?)Jy@ z#v#b-+#yF2qMn7(<-HTw_ImTfNR7nj7-)>2^Cs zPG13FkMab!LHALnW{*w*6a_hXfr?cp3@?k7AjFi+T^g*%XxUR0QRlQ^eV~-;HS)>gAfM8+$% zAQ9^uV2PAE_~?KG2uQ&O35r#So4h>g`=NYp6I213`cV z2)o*PqK|Y=B+y+-w+bxC2uJv^$o(p!!jOAFDcDy*8q}QCH=7t?On-ug<0Gb_-vR#6 zYfwM!;7Y2-QS0b9GfM1*i>wHJF#Fopk7asc})67VnSg?*Yd|(PFTVB+X;p=mw0KW>#-UjIx(yk7CE!*QBKs#^3 zbU{2SB`v){jp^TXz(vYO>U8|_Y&fVzWbcwT|Mo+1aJ3l9zY9HvPkWzA_7(kPIm*_a z!kR!B-6<%+`R6Uj+e()Ht@1V1`vqc}K}pI12isM;v@*hZhmH!|<05cEt7CX82i53} zE6EMC@hs1OToDsv6s|j0EeqB>)Ez`9TLMyWRFU=G#n(%$SGOiq(vrk@rv#_ zchp!|CC0rp=uzGL7{_+Ukk(ao3nWhx0`rli|E(LRH4}PTK{Z7L&eKydUIC&7WC6E8 zjkP2|TfVj4H;&PZrW&&l_u@ilp%NpYu{fu?p|5J-W;{y1C{L{R_%*vd#T&lZl(YW538G(qoYK))pUMslU*DR}l{i37Y5Q zBtg&LMkR;T>5f+j9fO*TFX-umQ=Hbemeah1*lIlq1*AQg#SuZc%&d6~a%djsR!3hb zS7|!W5ocLXt5RQ)Yx(IpZ8}fbZ;+okW%IMx((sFJk}5xD^Jo4|vcmbA>0jtda=JAd z8X9|Yu~8=@{&KsSuH>tSjgmI@tN*H;yuo;CrtPYNL{Yq@B@^>07S8Dtb<3!|>yW6V zhv-x02QH*l_)Ai4QkWaT z!#nYVAeEnu4)3Zv_pOVsIaWHF_Ra+E5J(cZ>$d-LA3mHVuanGTi_cn;qFV*JnpaG= z%)#e%gD@PyzrLJSOtzy!+Po?@eqq3htkBZ1d<9oDXS!$ZTgtP84jQMAYX7SDS z_uI^U4C+}GUOPezD$n57uTGSak<2_ME0mML^arr1x_;Cfa$nVNeDswH1^dlh=U!i5 zFX8X@#9;GZF2E>ReV6f2C#!DazUL>PUZ2MQs{$=(P_|vaXJ-xR%y#Hq7-uQcD75!J z#Zytz&>0Wa>lFTSc#BdT`k}Imsv&oq!%c zeyl)gb`AICU)w1T#B2>rQ$m0W{YM@lGU8{1@moj&3J*Jy3RQi{e!4(M|U4*o4S=G2LRvuTI+>!5WD{SrYq^8f1mv?(iqvHB4#GwJScr%hB6 z6DuOcA{Hy?QBk*gyo|SSl0_7Mk`l2m9tylJHkj!i> zQkQmN?OOn2wT_xli;D>*zOqcU3~@R??tM__e5tL7J_eU^lh@>3%+7}f9knr-is@)Wf6xIapWUB{ z-Y*ie>(V8P+^et`-rLs>rvr#BEe*;6M@NNP-RFQHk)$ik-{Z_0R*igr|J?ZCf1iIH z9a6^%Q;eE<$TNoaV5%RZ5KfG6G1bWG+iW_#A}EJ$9 z)L!y&hhVks-wk4(+_02C-X9|y@!OAIxpRq0Nt`4GY*}!1c=SV-r5X;E;EH;AmT*4~ z?30B^UqyFD|Lw>4gPXkK)&i*ZMQf^O`b6%i>+kp?cC}f%lke&N_GQ&dOn)yizFuMc>7dS;Pyv2MXs?^tj9<;RNSn9O!lqssk^j%C1^H{JbB3l^Nge(mC zfr%Mmb`CQJ$dJEN(t$!LINrSAgcyT!V$qB#{@|{V^xK=f->TMNcZ69D1#6#r0&}Gk zIk6Db=;@-3_4)EWTZgP$#{1VZcOt$iN+&@>H)mD~YB$+6Gz3K4Dh#?XKU5eXfHs9$u8)(UFjRjqX$Fvm+oMDWsAgim zctNQUgYIbjy3AO>IBgm`^P_Ocmsv&5PuT8^>}@7SfKh5}US4Opt184IA9s^??Q7Gk z17bwWgah!i)IV1U&F4o>{9p_Ja**XJQ5YE-8tN&4Q6hl=@{j;ZC`|AV=mK;udcLNi zsGX(@tzq{BxZSA$rB1zsNy*|V6`H4Wu=Ft{OAfJr&Imj@;B=D+wtf=WtDD11Kqc`R zqV22ZofRddCR(CpXqop8pWYUO$(v%c_L&j_JoT!AT1sqcoNT;YyHAR*fttS{{>?%C zC5-OqmvGc1&mrS4E0GP^;qfTGhW$n5(E26!p(HuC=?J2~R(J>*UJ5p|`&td|q6)-c zxYF6~K3W@tbb_IE1dTkWVR1!p3y-BB#=Zs}Xz z{VfS0E-PEbeIPJ<71Bmj6Affy*Mfnk(cOZXYrA6cal1VdITt%J4PMLXJ|~Ycst>QI zIW|K!$K_wB9x_H;=jpBRV}5+q4+Y#~>UUoPFPhFX)YB7^vH^}Bdzxs)b8B(q>XU~q z%ylhM=T9XZ_%3@Q5?b!Z-{h@mGM(kT$uC6-eX6g2S$61#Rc+kE_x5iV~>95L=qK7sn&p8C_g7XPUSuZ91(`^$4 zK%Pv+)b*jwSr7vg<|s-DH`***Ly>c~Bk3(QwYAj#zkcc!&5LqY9AiE3j8_1BAA11F zL%uZF@VdpBe%EVn&smWCo^RiJ%OrdrnH_WH$J~=d6XW44l9K&*7rcyzq`H0F;L#_I z)_uE1>U})9&?4rZcVIKV%tQkFq)+kP1wi2+7+7aR%LA;U2jnYpYfs?FA_}V~N=e`d z`5?~3aF|mL@V}f-6LdR~M$v8vwvx?!& zdL>^)Tj6#ppE@gcVoFbgXsvpn48cCY@e<}aC>P`lZ0IxTh3leX0n%V!y!ys?=eO}d z=@~EOKdhjyP3THVTZlm6EG$0oPc5{^gx)dI{OZPreP`)QwtgnR22HdVoAh}P>?lIk zUGowjoToAA0A*71*p|Z8N5xeCoIB=BcRUkNJ?*fC-i>4c--vDsU||rDQNg<#Q5Byb z7B2$TS>)f)*4FlrMNWM4w(Yp+aIL448A=fDjjhdl-mR!8CZAKDbqOKKp8WgwZ`4&G zmV2kdzl}+rb>VvRw)Z!0zp_BxlBbnZJ?W~qFN|?R`1*o)o7xfr^G^32H^XLmxP$K|L5WYHL_4+TY(_du&7Aa6xxK(Z5A|2Woe~CR#s3{}1+HhcUxO7Ku zM!mZiWV*c}8OzF8WSfm-O(j54UL0J2%aA6J4Qk41;;Xx8=p1tk3&))nOi~po(A*9I zcBZD|VMSg+C$JJVR4V+;>;i(ACG>KGgW;eR6!PVv79^Y9eSWguK2um71R)^$ZOD_R zjk8QB++84CEWNVHvc=PP>5=a5WQlO2vy-5$U6Fqk3=@hb4C*A~k zD<^QtRwrZAjh0E_B0A;l@}2YIu2zu$jhA> zqU~0KK5nC)EDT(2i9wD>UVj($2{qpJe9J_y{$QjU4h~>RYF}u&_vnb7A&7c_^Du-t zVT0*aA$-k}Y7fgD=4gY^kOMb`I#3g0`P9m?sZ8s4{rpMX5h zZ@PL5s2rX*QfmfT7*`}tWS-vCDR$HHTyQOjlkIM$*w8*R_BUR*X1;p+O7aGoNWnav zuxW!Y7gSGGGzsYhq=dG*61Ly<5j;PZPlbxXt=A3g++3; zQ*VymU0-#_3ab-!s~DqR-`mq`X23XWF-A{8&Ii~hJxs~2oIx4{hyDG++iE3^l_1@A z6Qhjo*<=6(5i2DglX%h4(K((dlEiC|xQ}jH2cKzK3osv_$cUlx7VS$deGMFZ{%mW> zJw;S{j6fy5li6>LFugqIMBRjS_w?FB8>(zPm-1Bm{Pe9in8u5ipkzk8 zoC-nC$MNu>hsmqntFr0vU63$%LJaA##dm-*y0PCBpf`4W|oV+e}f&_3b zMj@p|zdMW@3&W*s2YOw8O~BE{WL;I?|7mydz|nAU6gs#k?~e)Dvu$H4$Ne+$B%DXJx@9M5V4dh_ao(rET?+&gNrnM_|teE5uSp&Tg1!90y=@!dez4Os0 zpTC}Fe-xi2hhkuw=`s#{iTHm0MkFsx!@~2q-VWi2!rGf+{?^ja(wL0F)szV^)?{mY z0oM3lN!jMG+1S{4_vc}C%3`@;TZ(BD4>4}fw_GR}$y~QXp$G~(S<^q7p~?NGhy%a4 z%kQ}|`C5zn>EH@%6)$!5cq$A4#@osU$=3K7D>HcWBKC}lMSh9l_sxW6>fkHfe!(Gi zg`ic3xD7l5=(L}R;w?};r7(NMVmdO7Y}<;{Y`RwMN-Vv+<*9nx{~B|x)Sh`pLd-ITFv0}q8r5l$}FO9MZ_gU^~mJbyn2jt|X=K`;28~cPGM_ZSE)Rx^gM{ z-={~#gPdmx%idc-67PpI_cN41TJJFw0co2W#8*CLg}OLpdkoWLa>p{$FK|aWQOVvO z+kE->im@v*a5IO_)Ls{EuMsr+ptQMef~AERqI;C;Vr{Bl0g4fG9USROR=DXs$fGmf zs17D10L4ntiE;e_GIk)_@M$BINp`a|HQnE0G6#eTi&IH|n1(FeKsrqDjOX0mznh#! zJ#cP^yG*GzJIlCnx|wiOHC0to?W(7&mwv72y;BeLw_WsEcL5%i+2O&yT)1i{nH3fQ z9^+?JS$2K58`JmzjWc)aaldALV%VKdHlc(Ef+Qg(NDQ-8{KsYXuto=?yy00(yC&Oon6UcNelOG*#YZ}$)~(@bhH8{=#=1ngFB9n6~+CJ_P-RD`17wBJ(iGi`PrF%`eY)1(*D7X|CXE_^xb5|sOFh{_zyFD#v@Z0QK zNU@z>wwoYt^i2f=wF9~Yb?))k8W%gyA_IJ%<3>hA^u6g?nTXPPt-@Vk)^al920eos zGGDh%w!`W;uz-}e34(}s5~+?Zz@*+%pEQOFNS!_5(N%4n5+Fb#KR^rz1D)a*zZ4!q zi=P@^^rgjUWrAUU<5sbh*2E#pxfA{NkOC1!{YD!&<@k}b4;1n>skeTEE+IY~K6v6FUCUC-=et*KUx3a4~+td+Kf-YT4fn^`t$<4F!ARZ<}9@)=xfU zLB&nTPFprfU4Vc6&~QubT`%R9=%E7}4^Lz9SDoAh;GYXdQ$8&rhpF&m4sl%TACq6r zc1ti;BdFhY%-q}9KK-3XuM)NV%e+T`G8Q?MXm0g!zScXwm=JgaRN7kddZ?gOT7qRq zOPOc6x~)IAY&VmVhJX9*)Sak_dC9$MnYQg6ITt$zGPtI)uS4Umsd=#DJQM02vobRs z2P*?v#sMEV07~nVk1SPHB};vm#YxdB^dq}5;I^`+6`3eBeqnzsSlOFxY<|6YU?ywx ztP=_GplBPVycrxZstiJ_nQM-xb{e=qRV*kh-zvaGMQ^7J_>rEovCG2&5{z;Mi-K7c zg~QW)S$^7*?29n5w8fgN{!Jc6uMzXZ713_DzJrQ-{mhSkaN^&65bQ@)ALr@!;JHZw-9VTvpazE{dbtXX=y+-D^NOY?7g_33NLl2Zd*#x#)_)jgEal&6tz zWcLca>wjH5Vb9oHW9*<7uoKpMp7!qScqbuvsYC>1q!nJc1=AT*9Ioa`-76pO?R7bg zJ+t`6so-c6$kPoU6SWe;xpc*cvB*lk*Z-7~kwRw^G{ywr4Rf|Y5xttZagr8rPIxX) zOY_5-hD9Ook?H}LB!d&9O<-XS!BD})wRW3JqwWZP01pV1idVfv54mZR6$-*DVOxyo zfKWB~g+p$ymE{&?j>gTgr2SsjIoXBHbhi2 zSHyA`puQ3zQ}k;DM%o8f;@=o}Zk+UI_bpRA0K+|>zYuIYA{QgFqsX`bq%;Z~s`fZh z(+0YOoEbw(RLk>V8I9Xp;k1i8-g%A=`#(UXJc7N+YoDOK&$E3G6r-}dq8iVXDB-9J zto2lw{X7nnhr^Ig{yV`!;A|MVl{ZRCfP_G|sG1Fs;m^+SXt#j4wv7qX8a ziKz$S^}^=#>Mj>XP@;dt(GG7iFt!bymwu(0<#r91hH!yCEiNwleA2Wqj5AywA%{Q^ z$qqFZE-Hf&4LX3Bx%s`E2$~DyNAcpQDh$Wbf2F(+j}93&dIw$yP@ZQkaUS>J(RV2iEf@OEX#osP45~k^ zDD-|!Ph&3Jq4P7~sG9_%>DB6X?<)Z>Bfel>e_^?8W-pY9qtg%c^Muem8~XfJ7-6gJ zwRaBl-PlIphS5TC?6t=pmvrDP%Z0QsB|9I0Axc3@p!b-RR5+Nr|*TCOS_RRy>6 zQo(G|ua=)Dj^(bQT_pgJ=#zDMtq>#|m*(}j!oMutLCjwDvLCH+FC1#&Jr&vsjh%ix zUNG;-#90576=du&8$Sn9U$cIlT}+M&`9KOP$XW;c@AM^^4>c@DOxzaKKjDx1vxC3_ z>|`ou;L^P4CQuCFJD!lfk@eZAyylo?pkA&)pH!P1au-~fi_4f=8&bvSBIhVf6tzH|lD@;h6B z_%jB^^t7~60EB%{&_UFbqH`S%MTguAFFRh5XRgcAoD%9Px0ynmE$tbI{sMy$0HEz{ zxty6s)%o~J^6C?M?dq2bspt)wo#Lp4vHDs~wGOYX9CHp1jzdnYk;9PR`Owegmv{1| z3ys4Ev)*p=JA02eG=t-ROr!2GQZ9bV?H*1#oSd{U{jNZZ;Fse1c!c@G;c^e&A?NtK zx}q_SO42^z{j=1;Tz24)P=TiQLVS>=A&~OA z-cmdcC$D>DzvM8bKA+=`pjrFrCgH4*u!$0doC^oxN8x7J1RZYpVdeuJe0Oo$%%jN&-DQgbq9+fJ%?9IZ(j zdYtmoeK2*^idhj&J+gTZRKi^$cjMj(7FASKY=`Z|`u`}&lkZv@AGaJE%88`Qvv<-; z*bQc)1RH`R*=w^>Uk`uvU)<|+lODN69zCt2nEEyK`nPF;UsLZTI|FLY^79I*cQ=|o^82~!{KhMg-Lc(TyvD?vhNQwX!~H`p_m@?wxA;^Dalt& zZB5%^Otfrz9U5Q__^K2tz(TAjFHaWZ9+GC`VL2hRWzbK8wi?&L=nlgyfl~%dhQYWs zZUb!Kd5GHxhW);pKJ59}gJjHYCN6Q8CI2oAb?#o@%9LDurKzkxrxBK;>Si+cUG|iv zAm`F%nt1g|uI3Gj7xV@x_D)U&K!K8!tYgB8FK$(i;BcD}oU%n<>k9R_xb9Zi>S+GH zlBAJQ+%U$eye|t111mC0&H$oxEHr2v+;R3hYnK4#8+=8{e7xm#n?>M!4UhN?S(+!P zp4vjXk?2bR)XQ>zd$5}!{DI6`4r<(dq2WAtROR=I{mWZEw+?C1??(3RONH8Hl!x5I z3jley-IvQi5`SAuvtgsR+fO7*uQyEiUeWpmQLj|w+_j#?Kl=Qs7#@>D`#u9y#yJc9 zqjptSet0|}(C&Upp1g!)8B(nyCGl#LQ8A354Lo96mCA}jK9CbVb1tAv5Tmq27A6H~ z<|A}zS8-F+)&OMJ8GC4F$OTZzZGpFZ>{wyOXP7;59 zIuEJIJA!0wA=^w%oBOEKC5-FSo9}LGD5W=j2=Pq=sl=>DhG5?g&mF|R3a%UksCtZE z#TA5@5Z@6SgWfpJEWdNMU_a~h{M`W4H~fsYH-GpL__P)}jZ?u(Yt|kcAnJ#5Ll&i+3S+JTve)e! zk(>aa$}{TFZeJ*!U0fv-DwyxumZpV&I}5+e*fu+4bn~uy^6(L2wsgq~d(wFb%M){( z3ph{CJqnV*!vushEo?yBmM|Q-;!`vsn+xq>DsHKLHs}PIiY$7o|dxPNNgb`F&VcTnJ>*ZSkq$5`d~9v6OzXoy$F9urrW#8kGaoS zeSTr1$0$n;9u59vv28gh2lUV(;6bDDXcnX*1yst{Xr#cVM$;z_sjpUMdy;iOoOef{=qv|qY@phc0 z15&64+qjPhZktmc0ZCB7UQU|&CUthF#JFE}qX#l5b z*WEVKMQy0^{PEwc&<_G6tg*(vzss78ocFeL?HW$kmc`4Oc821)?+ovkTH0o&SaN!X9v~ zI=r45J5-u*uaf+p3f!GKOPbn_JcxyXNJlHHdX|Oz5%Yu1D(rzQ<#CONKR!R$1%vbb zDY1QaY=Hi9shhrhc1eTq?8mf+XEK#WFqREdt%mGn?7H6&-=fBp`8~9U8jpbNfx-R z$rSN6rau>pS>{@=hN>_+f;Ksu`$KPKH5W44oaqxo2Jckg(C_U^49w7fU_{8a)4ft%Ri z!u=^**05}TVs~N$F2vfzXc-q57q0s9rA_-ACpXW9tFer0KaJQqGU#iG5xx7-lfmXb z7G(tMBoCJ}6XCZ7Q4FPw6fw$%Ke-4(@EzSG!_C54d^A|=Px0v>6boXqyYM=}!`sGH zrxbegjMd=NGO1Pd%)5F#;_0SFvbgtaNHv6bdmj}?^nBbRGO)DXd05}j&_0nt%ll4` zKXL@qpS=8a%8uL#Ej{j2I$KM2xSv~F>)~i;S8^xj_!h>`)y3s+;`1qE{#pW2OybkM zT?+K6w4|^*?o+m#kAz96;MNen)PtqolLYg{%|oAp0Sn(*J0T9+%0B)*9Bk~~c=#`5 zRj*2_j=y&w7tVzJX(%bi@bnaO40$PR9{=+MkX3#SMM%YqaOxzdUUp9s!QU!`%x`Z# zBV^WmmA!P#d<#L^uJ-=V;ZG-W?uQRo?n0J0h#@Q4oH4QAQuOgS=1dPnF^*;Wb*j5$ zy=2~5v_{5J!Q|3$HTHq~D!3bNT9Q$Dy7u@XSnqaQ#c$5yA<&`tc7e+gO8%o*cZ@dnBs7zz;c`U5Uw<*B z`-&hxU(fqit`CvEd&jm=zn7lHAd|ylVg2S!79+IoOfHTn99j1>gcsTGEXGuGzMX)| z*}_7`msXKap58R-UhFXBMHvYuEBjX0K4M|1UY{NR(-P*qI5+s zXwt2{fWFRbuR~=q)pcO-jZ@mpc<)PX(olseYKVvm?q~Kac!TV9>_BK{CX@NvVY~a9 zn^=5uG5!x*FG>zaZtqj&zUrCnWR}=d!>9-aF ze4FZMcJ8%ZofRDEX^YyJap_glip^1mgvbB$!ogb?&_Em?XVJ9JKmk&3%fBr#AejhP z|BRxyHbce(9pa}~MqpaMe*G%LhES7r&%M#$C#J8piHW_mne!-#H*_PGm-8*_0zsZM%(5K5_dn7nCfm&|Ta5nhh;2?RhM17`qIvD>+ zMXO2C$`*#9q@V~TpLg|g8=c57Z1b%vYLSwbj(26quJ}Y@{YTBt-oDfeIta zy@Q~Kiv+AGFY>QBH;xgnzVi7lvf@a90OPBxnqifTEV?FtXUO0VO+ zl{LPA2l1kEgZg+hwX_1Ik}f5Ys+gSc3W`BE`qVft$o6=EV*OC+#&dFcY3?aC#Kpe+ zzCVu`-F2O3ABDEByO9wUR8^Vg%Ai+gn^<(vb)uyv_pL-%DYVd!=)YHcB@n{%3S{(w z3`kAT%zoCYyHYXW@1?AULXas_(|93RyEWaZ4|J7bPdauj~uM%4{pVLGSKfbTzyFz4ji5Dh4^I>2ODGk1wL& z$Hw-y|GmG3dk9+%u7MJ6b^z+!e&EQaV9kH~_RR_H9g|x~FY|dtDW%5()Em#y36jG{ z4s$+2^gwvrQ3La}ia0V?;M7mgV2NOc z7hgvkl{5aJbF(b!3$6{Xh!QN@4-}<~jMdWA^y6luWMo|63j0+UUO@mENR7&slIa+G zdMZ2Wr#64)dn@|_rl2Q))0`F&Q3=(th2aDV$|YDIuJpv}1M|7-QscNJSsmH#x}LBH z#N;`}{}vY?Tc)MQEXLmhL=qhrwAva{`Z3`*YL-~*PXiXISf|-$5y<`PmkhQ%Unv-k zd#E-E5Q|^FG%s46u6CxWRwu-$>M6r&Z3;2o?dC^k_dJCa(KnQ zrlzJ2$2nWT1YyC*sUzfRdszyp^Q`+ej@d}kL$kZafjvS4kmJD7HswKeZPE0x!#v4{ zUj`9|s-?5dx`)Ch7lj42*slu?>Hd=p-rnTD`zj=n?p|SGVJc)dy>~Pt%vN`bN03wg zycMMqI~I0;K+FLW^bQt+FJaM5j8Y{->QWRMJoPC%YiumaVDM_+^zh`hBtxjps^CHS zTQe1%n^NO7wx69(R|j3uRg$_oLaEzk=+k7qOT4G`>beWJWtzK8`8u>!J2_T=z0f-Z zs;mibzXoo2hN7w}1L34TXM*D_77c_LSvN4Pc%4qm$>x>ojE0X(UN|+6*PaDqyN!;e zk+xe}tOKU<07AV?d5L8rg53=Ai=j?&4Fh7_6fw{5WgcYgDSE@Pd_M}Jc*$_hh%knj zSXkCor)#-2+w`@U|e`}3{EFB-cpx}+(TEtgg!hnEbXu36XD960!HCASE zg@&-^O{T&$F)W$ZE>mhOZwhlPNEx_r7i?ws&4pHfkd`F$>lD>9i@0X1f7Y^6g z*DJF}LYxzYy_QUl_E@;M?1d5ME%uah6$n0$kC=)M69u7U|ov?U3LAn(B6qFmIKEWaJ!#&&sVG6%>7kvtX7zf=RCZrMdg;i_6p#4OXoOy?JvUe<`-HX+Cx4 zMBwf&X4qJ*(fA|zJ~0h)|9S7PRbp$ME z8nj5AnwVmr8N7KD;S{SVHrV#lFcy}d*DUeu=G&GSmepXehZU9IteC42czRy3!ZZ_YX$oZ9MoQ^?0X_^Zl zLre`1h^6iDN6f`_G(5%82wVL0k6~gZZ(%(qLwh8jp6vbOo1Iim9S(J@WI~}23LA3G z0+f=EiwJ7OJsvutTM`5y2$jU2IDY}Y-q@86+5V{%K-Dl5;+fuq=_ISIw=ACEwgfN{C-IF- zxoo}GW>1w*B?XkhW(7W#+&V1(c@N{-| zemlM-iV3O(`@71)LSeE!barntuI( z`ekUY@8|3e?1jp3G1Tki^YgE`URh}sur+&{8hKRt1c{Mnpmnrz`N%rjBD^O*ZPTsM zH!9J3MzXZD=s1@jG-wCke^4BE*^K9vMcA*1(+m>DyD)gh8kg-ns|IqDtI5CyGvip5 z@b_;)vwhvnHYF6TI#D+UjyL;ur|86PdC9BzN+-+B-r$%A-4R+`0aI30%%CR+HvI4{ zSYS&xxbK}Gba-&k|0-P0{Z5aaP#eK%b}F?;(ah(tO;@Gg*i?r1F)OaGF~zsv2&*2-WGWn4l>Kz5sV9x1+8DySZ}z8D>QOg8`1R|E?c7~RpgnU!Nt%iUg5b(DNv`~;FiCPMxWOKc z{Is1=Mvw$ojkss}!q~$$GdFyk1NoeifuWHQddC*`8yE={ZxVDvr0dm}?CsqhJi0vP zfk%&u8jqJgewPm}(cn+?idV#u!k1j~`|u1)IXZQ@J)e zeo>6NmVm51F4ekydTt({5Iu?-@tb?)dfcWqM8|&GFkvS&@lx0Y{Tu{4?TO%5#+Ix_ zt}fhvBpkTeMb!jjgZRRGde2Z3&i}qXGd8w%rN|Vp!(A)R{+6QRO_I>^xu;~wEKP<4 z?YSfCS6C)YufI_>4cOH5@(YV%9uP}kodng|xMO3I)uc&Te()TQxA+cORe0$%Wir>C5jvwPihFV0 zKaoOQguy!E@Nm-2Y<(PA=bd?GGlg-x1u0mC2{ML11jf;>@0!bR^r)M0v6Q>Ksg2NE zebN$9S6;qL2@QwaTH|xV@TVi4pUw>o6#a#;ZrxIaDpQ&|K7U>fML@dJmd1?8w6x*l zYY}uq=8xv;WMvj>$Z&I7>I*+9($!xj;EL1ScdOd^$H_9I_N8aw3G)oh;3B+o&Y{j2 zk4byD`hlqEDLkS8IclX{K1M;qXq?^ba2Xuz5gGx5olY8S^6L!=U_rnE8T*53KcR!; zynoOA4m)5v1tDum6LX6rKEw2<&(0dw9c%Q)7*}osltc^Bw%Bn`5ZYuk1BK+N64ux% z#?lFmGy8=4)dc4E=&SG#5r#Q6JpYY=Z|O+1g>Er-W&y#gXzxAatC4!ik=Pfg?is8f zm0<7?9ZRxuzBa|DRYBC`{bQCu&pFvaxLaNIY-*EVLvu6_Vy^%hyjPHZW;*))W8L`n z^rIP_7XR}?r0e*|e1Lp}JXhCHaxxb<=igfODrLu82Th+U88Kw5ieLpZZIKca_kj*d z(c+q#!*9UCcyQQ5nPeG0pd}$ik63eaTy-;5LnOK~V8bBWhlpLkPekXd93LNF=O$h4 zIG1&qiZVZXvu4NY_ zi%u$S*B|-D^CpE#Z8miRSDm~2la{Cg(V}O7%8@mG(Jj;T+s$-lvwUzFY54@@0<}BT z(Sj@~O)Y+NbHA3?$QU+pw^VQRGdsI?k$fi8uw7{7tg^nGoSTVqc(t_z^dVd1wUfB* zV7g=$@CBCkrYiWf%zqP=CXiu)5~8EkXQ!qLlS%1lXi|zas&tg349dN`GbP_+VVY%p zR2O?+>%5qlqk_+xR?PNMo#R2+*x2AF07F(tdOE|{d23GA(pF<|2Z#37T&0}!a)Q1p z^tDcmN3BNP_}kVLUHf1N!-szf4*aJe?Y{bbc*dHtwJ~YvWopWU2-7HIde7NDqp1_x zibk_TI#^z~?Sc?CVEjD%6%~8hVnJyvg3-`V3UWs=-Ew>#6~;-1)l;!LTqGH(!6E~);dxL8K2#o)8hk-fmeNT9C{CuTsFrx}}> zk5o)F+V~)fq4W1VmKn~OupR-x-d!lwUKrz-?LrIR0;s((orw-(z{bv=yyPY(4)BxN zkW=bFLa%5PZ|XoQ7_qI^G-eY456=VUCdaUdh%w!@ z8Lm>KGVcZ~HVK#pln+}qk*Fh}Gdn|^^J2uoe{e7c)Qj%CD2CCEK~do?j>l&nm$7PS z>&NUJ^|5O5FxUMB?9R@X@lf}JBco=pj#!G*s3pa{&P$(hXAuysZ!VCcza1P}rI{oy zoS~d18d~kkix-i0+?<>TBkOLg{3v-W88|#gm!o}VZuD+H8Ln3cRg+4iAxEqvA74df zYf+K+OyD)GQEh1hV1h~pwn@zaOAHes=uI*_zFN5Q z2z;(_tDQgv(dPP<4B~zK2=9qwOHHt=R2pA?t4L_Zmd~4T72M2tZAqqoLQnD7nf3=& z&!dF*jPiz0u~24~56*X*M!*}(i-C*U{QZkw&c1j6+jK4Uz^J;_RvX~8%x4M4GCzKh z)0mqp>%AQG@0B2~LkeTePXP0xxx1DQ4GYpKA;$ zLkfzDg>S+YbGUFmy{nlRm#VxxoVbkZR+YlgeFt!b175;q^LNE`^{96sm066Aa(s6> zzG#+0+LZ;FeWK(0f}ql|MSK7FS2o-E##9?4Ua?Nc-?L3BNuPtx=(u@c2jDA~HMTM()s`YZ;@#<{i3qa}HH8qn5TUBS5slv}i)IChUT93@@SV>RW)TA$Y zn^aAuQ^+~rfpaccRLwoKZVPq=?Yuby7Wy030B$BjCCL3wxOvi}aq@c_6GnbQD#cO#PqnY}<5bjfv61;H{%+JE>D#H44#txC^0gUHwPSm7i?oO#fRD)oyl3oP zi(FiO&drAZ8kFunV@>~u2%PEL6&Aw8!=xsUP_!k*g^KPi3>z>&3f0 zr2gtH0s&deI0ZK$yR3U#X;eL<%om@qP_@I9626a8-bIL~z1X6$W_$b%7I?Kk3E1G{ zmPiY#bvLn9Td~};ez>XW-@xWg?l{NU59ycZ8h__JPY##fcjFV_`9sHooP^)H1;stW zHFi?{(4y*Bq^?KDITjdnv3_q~xfa^&Cp8I`sPiwXf{})^XbQrI|FTs#&eZUzJ;2~0 zt;1jwtNENreK{6ZUz-Pa>-z+MZ1M1@CDLKoq0*RvL}38|Wc>9`)5LLYUEdL0jGn)& zt@R^cEgtl%vI@pQsk-6dARjvy;F$*yMg5i?7|QY81|mh>xN}ol=?O!z^#lQ9W?kc% z4*HZxv5NDKS}|EUApWpT8gmP8wp%xVea>@J3p|@mtM4dp-lqC3notLoy`O--ihqK! zadW5RE)J%9pikSvK7D$?Nzq4$KCOx|bN~v#6H$!v-7XB|6?SWIbn{SHA!_^gW@?@1 zrp}maWa<+FzU1VhqtNXcNw`n1P0h=`8*HCGCp4bZ>mVkE=KMGFF&T;RTtKAY;%PAp z9r3<_F%XlUFPzxq@S_KBv$>t;c&x3c=rJY2&AGziedpeXMEHxHt3RD>Y_`h!I_2{2 zM)Smaho8W6&X}$>eK*mSN0#Wmt@mnmr5R#+$pNGi{uoy@Mrj6^i}>z~>5bL>UXJ3s z|GGx%7xeU|8J0L&wD@E-k@98hb$|kVdw1hor0~2*l&e%%OQ4B;KwzU ziED3zNB!Gftb;1mvTEvzck<-lQsX-%(Vv(%1rwXXhofVM>>+VjOG{MA(b3BR_4-fR z^)>jyT&1v~;gJ!LcCTX`F!b~s9x7++jCAG@Ss4%-c>t1zPPvu8pGJQxDLYbqb`C&-q1b4-+N;51*Mx7ixU_a*seYN z%czHC0ODC8F2N$WwYZ9mV!JpPA<*a0R*d;FSAlc1+jbqrL|DEogV-Wny>I*y1S(4f z>{{eL$83ZhEDy^rWQZt1U+?c=kLt-X7^HtCCiGpVt3m2)p_~Vw!X37(83)O4D$WQY_HGR zeeI@i!uhPt_y$@;%*7z8#zys%9#%ay|L?Cs#8okx-w)x;6fwYeAaX*-+Su5<5}eLE z6BFC%*KHJdWjiyD$$0Uh;H?5Iu}Fv?`mUV(R|8aPMZ(|a2U0b_H!cdiDAA3MoAQ1L z;#7?~^S|{H$vr%;p07&E%69e(RWA-17ZiF9%uug4f9x%5%el=Fmnv3yW#IgTpn!k? za0AT4`9I_d(|q6$d{BE z|9L^(HUmp+At^#2UMHa!9I~st{%Twx4{nE7v{}))kRdRF(>WjzJK`9ulH2U>Yg;$M zD=UAF%|-mS9(m=?dh9S4hQQGsuLH{b_oi;<(l+A%@K4MHUcSISV~ge}_fnyr15M1c zClzoos|ihlKDD-}(oO3vj800L>=nJP^ZT;JXMCPCuog%Z%&Tyn>Z3#2)&1_Xx!-u8O zt^xNj7eyM>)P313MK7PhH$U;%SnRo=ZF2?lMKM0-*32+SYvA zb$<%I_$z;TcK*JZrpDeX3Z5OEqvGBHxx}tvT$tgXJ`v11_}bd|_z>OPT-^$%VUgY< zx7Y)mkFIMHEAH)LbLS&vZASMlN~dZ`>ASjyO-^ctw|!c!UZPJw0;4%V^}3!%@(>mv zD<@AkiWkH7h3Ni6mm3hvGT0B7ID)P032UVfFn%jLQPQpDEjs&GL>r#Fs4M%KX)5@j zAP2=Ju0ir7^WL8AuY6VQfqW}AZuwOfcT>;N(L%!unStfp=;&x$?X>?Csl3YF zlp%9Rhq1@ufijQ_)5>xFES+MWH~i3_FD_RV-+V`z&dI~$h;uXBizW-qp}z|mJE4<- z=iynSM)`!a#@UEk)H#vqVQo#v)n0cGa^DLzX;e;c2*Of~UMWdC1N0GM3NsB(oC{aS z4SCc&me^tmj(<7yqhz{K`|$L(v@L~?kI&7-gxcPlR9>ZS8rk!;LT=hR*jZVS2{2G! zBRH4@pE^?wkQkv)qp_Qj`#+jj`>uzlelFIi<%|*aB^pb`2Q0mF4(A(SKQNLYUKFaY zN~eZn?om<>9tpWG7?x|N&9hdtRsQ{$=Ge0O#NTgoI4|Fs73p*Xp^e;MUzm3tOzzDr zHden`rdMT=Vbctlxfev16+@(k&yQl7DNa{uY*2!Lztow>RMtMs*Hp^J#k|mVwt} zqJ0U4HkqNUkKSDM#siszkc807@mPG<;9#?Au(!|O!)ZSPC^3H&{Fg^qkxaV zg?z-b#D~#4ZeoF|hF?w2(ZUOUtqrfz*)sNrm2M@L>2)0h1Qb^r^TG1Hu9|kGa{UG% z6I8Zb-p}>s@h|4#?&7{aJ2QLZ`aHty{PM0wURVV@hG9Z5YZ~jY3PDh&-IjR-c07$U zLK56lJ4KFjlY}!ch zPf~>L1v4pQM;DCMH8q@G&93%oAAZYoF$xe}`8z0eXT0UA(I&M?ptJE$?nC(G$zEc0 zoZ`6t3f<-0UtipSj*brsin`kR#(~>G4i_CQzQ?WfjEv=tSu+1#jgTy$bqVAOPTLjP zefzq%tWOQc(HI(HXV*_+YI`WYvGG&Gn5R^U7&ZA9fj~@O+~de3GQ}h4^jpvS?HL~u zEoX*OPCa_ZCrfRq{i&z-Z;7V#$EN$ZbWSQ$4vvo9t@-)HoR1!nPmGSK*w|PTy1l(*70OTx_SmKOt`oYAn26L+ibY(% zrX}FqL)XI8*|~x`404o_k!d)8p^JbOjEs3vXDGk$zYOu_(D5QRApa*j&koI%wtP#c z1Oay&2zK8`3^6CsmDZx5_tCM<{~fw__Ux(O-o{vwl-Bh@!IcO4+Hhgg z3jDO7b6aB-|H}rkoV}oq)&ndom<5kfN$>aFFXb>vn2A?CMiLhSlio-4260eHuHV=T zX0x>O;hTLtaM?^77Jn;c<^HjqiB2p1rlUgtt_`y(>bm(be-#xg8|#kwl$2b>MB^*Q z)od6PU1c{FH=QP~(tGq)x9VqJKpHWL{4&QA3Lc#~QY*H{!Izum*Il9$oM~8)df{hAF#wGMN-S2{1nJ z=1d}&7Wmq-xGcsVQ&r$cU1b@N>lxp<{`0>3*{`^dhwbBeN?MCx@ z9a<+lBMMe$nPWLQ^)I;hN|PvKB@D+2&ART^_@1d;g;?V*{J`fj!f7J(p4_dy{WWc` z8+H%XsD#Vtb}DZZ6*Lu$DLvWB1Zc9VM0Y<)XF!z=TPzYpeuIX;F6f3qpInga^+hl^ z>y^h5t2VQ3aOKiSz__;pd~2&yvZ<=baA|3T=Lj6Q{%j*rt)@^ z^y$h|HPYW%!|QH+xgAcZNp^})=JOqNojF4e*J>REj9&-}_~uKM5>X#jF`EtLtzyIm z>1@#A(^{g7B@Z%1Zvg7oNvl`Zc}u%IV>swem-m_=T!$Q&NbkD7atc z{f1qfad-rllo&wY%`J1<+Kh!*P_MDzB|N8FRoB_NI;QKx8ka3C8%^Sn2<8?ZqknEP zdwPr05;tT!=G()EI*T2Y*x&h0GUns-!+THe?H47zA1`t1H$U{vV=m+4*%rP&b#E?7 zb=V*xB=&t)v&3|QhcA`dV)fZV_XfZz5}l&bHdUd|o;?d=8k8L;`BOVFDp9!|Av}8M zC^!$N&F~?jcmM0vlsUreb9Qihg1dyp;>=C^lsb>^iG>@^B-x^rwK(QtUefo-Y8;E@ z-|E_!t=-p)3JQeYK=+~Wx5w<;*Hw)vDfuNX6xLv1tddye+P@_wr=4?eFK7@D^>%8K2%XF-T_>+C`o_Z-vuc3cQei_t9d#@c$7)!&b*@SU%O?Dnc zeK`}>E1f(U)q-uGYG~tw8BXMhF`j_8A0c4->K4|c73wy?^D(zdpRc)X&K7V+h^RBg3cO&$Ecf()r| zqU4$mn_tQUon~yyPdR2{*U()_)K45}T^g{{b}p$uQ4~^W&Km1}Y&_g#rb{|x0#n?t zN}S&Y5u3_7@wyoMX^b(O^;6{<`|ah-Q~1$7M!kkjU!0Q5J}jKS`k~wC7GBk6e2FEb zYzl`rQNf3&DgMJ%U7$VZ8&n&pax+Jk`U}!E>9vZ%ar zuh6m@VaXDwFjUeLQBhIK_JSCdB_LpPXNceVuLb1;KG7eBW(7!TQLp+X?oZN8YMBQJ ziu(LIPn=2IMFwcEZGbn5p0um0sNp1QZ;y~lR8#c*0*y6)VLoSFTmnAU2Yd*y78i#T zlrJX=W7GgE!7S!O5F?_Ebqke56`Q=%b`Z`^5BOO?J3 z0O!@YtVGM*jOZlsAjqgZu;kB(+I5z8)syqJ)Z+q!08x@K_O0yBAbZDVXCaJVQTajy zAIql;XSAcX#Q6H**+0^k#N5n|mA$ew^$9Su1ckyA7z0Sg`G8IaizR}VOd!KZMzJS5ZtZ^n8UuXZ@8bH4&Dpgdsig6 zuNLT%Z|t>XY?`mEVLwyhl2>Fet4uP?(|S_4v$Nxyw;jwRArMz$$&O0u6!6?JtkCi| zvcaJS29Md@<=4`db6(39=J{rxO2jXv&q;h*B&MEBE?hH;_9Yfq7A{*3d^-_!O-KSl zAC!yXEp2XWxy^;Rtj^0)f!gPIgkbcO5b>9zQlpl=i)T?#C8Kf;V|tXtd0 z;;o8coSOvryONnq&LV`bvg@aQ-2uF{v?cnsXBsRSnP@EkBWN(h9<(wz42gV?+F8!b z`9i3dr&USGHN8uD_h44Nd*z?3E(YH-)t-y=rywq|9hc|=F;n=dC}x<9PhawJ{zrEfB~R51F%GPQfaF(k!~AXH?lG+Xx=q;^U)w;+XFChE*Fu31yFr zv=K%|9*K>ADb$)to95_KqBW<^OlL{}KW?McDBpY_r5hA5K7x-=D_lV5kXG~9771@^ zs<_;(k+LRL_vl|dtujE#+@Ee6LonWrs-f69<3RKYOb=rHQ8Rx4=L~Xf{b|Op-Qk}0 z9OIOkrC|6=*kw4^rE1DA)2oQdk5Sq+zsPtllKyirlb1eL>0Jn@SK-_C>(^Kr6O?(3B?Ox4#L6-Lax16x)tz4<%Fq`K5S(LH({EPq{{F!p_^$F{HlK~+0ZqH#8JsdRkX0s@;2wc&zZfmA2BxebaazGoX>dI*O;TH zI6tfDvdM25Rs8cO(+8iH*A2dPnVcE7gdFI;p(3^MGe0d?R_c}7PW0NSCX^ZvqWaUh zY)YlNkm%xGAv=*zf`WLTV#G?7?+$X$e0{3>_c;sruqpug%nZC&o5K0TA>ZvXLt4Oe zUzu5()YO%df&jjrGk{xp4K$1VsmZB8uHYG>2y! zK4gfxX3hoyXVkPs6?osWo{7%!+S;MipD1DFEz4x?pY7@%XEa{|6mGZD~5wNHI8{wrW-CT0z7 zSl-P2H-V=++1mQ&$6t8nv_fBOjDW~P7@}%fGF^X5&%FiQ=CV8CC>XhivedfU?!fEj zlO-Mso`ms1)K%}xmDZzaIQVY{KC&5u#1*YlNNTcKee>)SpQ%vNL&yYZHYd*_^!l}~ zPF^^#oa_Z+A(Gg&9MnXQXG;@!+D0W>0ioCN@uQWqxeWnUS<2SXNWM3{*6hJL7i1>4 zE~nwAaPuw4V(YDbQDcKwuMU*;^isx4$p4EZ2sN^x-JkvMIqGL{VVNG~QLXmS#uCw0 z0M?>WJ%v^>-r{YDkz`XLO7cz(#cSH+X!SlSEiPT@$D-a<^9$DoF9w77OZ@5SPgYWF zQO{c^#}R*S+~M7Ld*|mkcj}aJ{upI@dVQf5?I)>oWx-V`mM3?DhfYW#b3~my@Myfa zD`$?FU=RBxZN^pRlT031;kAcry$>FWpU<3o>j)v%z*sSO#_yzM` zTKcw&P2R=3%5>}S4B z9zU_^#S6S9RDtu}O~4)#qEmeD(W6I6tzORX)qEABz8C%Vr)xW5Exu}@o1w8U(tFI# zMrWj+AJ~t7dpFZ3>@Zp~wn#}cZRav(!SKq=252BQvB@Y(2Gg%&nQrs zh44q?Qm8RCe3M|BY8m+9r68O~H$g)L&eBM}{imM(@Z!0O=ldeJVp(Crp6-&5Z7oY= z#u6(sY&>^nD=`Hb7B3x5fo*89iq_$ehdnj~QVDgGK&tktT4)$wZI+Pqb)uy7l~?uw zzO0%phg92kP&h}qUmBkd8IVPhK;PW8Gxir$8%>(xW8om4YuR|r%533Uj2`3}oth|^rVw`D zAn!fv1OCWWonm)t#LTQp06avAIf;TSVB-;uZB40adr>ZRvJ;r9mfqC9{{VtP!h zvjV2^$ac@P+Re?Z<8m5EB^;k3Bb8Hx)vB(4R|~vVO{HK8`*k|(ftvJxZnW4(jG~H4 zmAVw#*R`~EASb+`5r5~8bIC7um~qR?-EzIC{({ld{af*$otr8pf${7CqWqCcPKv%B z8tFV^-&+PDzI?nh#7f8xnYD%M`~!lX@C)?4JTWCClvxv;XdVRJL_cRzfA_>D=5oJw z5_un;Tw$fb?$&r5HHo!4Uf*X)C!BBOYk&PAiAvWxUZb$kQ}v>gQDA`wURmV}{>Fsu z56==!1uMNeQBg0vG-E8pzIK>+k+io9+(k_a%E`&~Y6|>Y5odqIZhr1sbnZLPytAu& zf?3S>A~%#kY-06`zby}cLlgTxmLq?2^YW7Kv7mMfQDR>i_`K&*C%+Hea*^)iX~_M- zM*~RLvd7npAS=zIqcuwK!@hkQrLtZcdkk~07hzs$B^74Elb9Z-NQo!pZPbioTs+7FX zzP{4~GjM*5_49$f*)!~HHBr3mY$q_#O_<-Y@rJT`VBBE+rH9q*$!kmgWC2GfI!@GN zzP0e|*U0siJY=%!`>*x&Aw*m6BItbwZMM{o05N>sIjjI5=Zoik4i z3zw%Rug&O}?q8Pu>gIAyw)*w+3(2(E$fw32Y;t)a-H zAsP%wlk%l+ybax1>b)y9S^h#W((|FcVv0D7f>WvO_x-Ztef>gU?9j1J5q6v~A)bNC zmW)<#tn0JD{i-`1Hq>K<$>QRuswnaS4Hlv>jh+H0cBRKD^1 zgx|(S3e-a`^X^6uQtvghSyM7)^hPkglx z1q7-^4}X2y9n<^q`*o}f@Ia`UdN_;F@p8S+q|T&M1#mJ6cn+hUplIS}sNhHJFr(AZ z@~)Fe78XL0rSd?zRI%5@kW)BSP`_>2=bA_90b&+4GV<*j-Y zNh%VTZn%*&?&^6~RPcDMvie_n(R}dG(ZDlOVG+N0ao%KQalqywa@V~7BTcu_2RtQs zsd$cu$L!pJZNAw2-Zj9{$EWd#n2hPZ=qVbU7~Wijo0XpgKX=m>9%`}!ef9IMHUFF- zNLA#80hRv%THtXKByXR7z{lc91>dZq;5zI1(yHj*FS>*lpTYjt$v81h0WO5(6UPQQ zim&v68-*YG`u$jd&HJrufUv>Sd3p4ydw2ym2qG=Zlynk5jeo93`&^xFQo)U`g+$ZP zU~!MD^o0ZcCB|T-rJ|PepmUM#m`{)bEah}` z&f~k=){G}+N4q$^goEwRC-jfs89oDob!T{Zg)n88Wn`*Sz{yepaP&lNP8YN=XgevB zXkrG-lboilt0b@AtRbtwsyMvHDtrHp-SuSsi!MsWxXTMyF9kc!!TP_wuuia&kT3vP z;BiskzaOww&1`uzRg{-U6%-T{f8uz2;O=46b~zxNsBJ%2lsJBuAq;30xrS~-9xr6S z$Is0X=-3jGlG=ZWh}iyn(F$xygS&pmbNaw1O+E4D)~WvOi;J7W_B0s>-O^HqbEDP$ z`fWdc{HWM|_ip!Yz{MU_Dc)M-Rwk~j3i3mEA5S2w-M6>4&E`BV=t~+R;x^9LH8w^$ zhhHtm7!yE?(`Ub(hKL-C{`z__>UA?%32q7>to1utsv2u(2nDgs6r~N5tnplE4LYX6 zAig=>A~&i;D`=$H~);`^*#C+UXlMmki}61!>lbTDoq)1X1#XB@0d3f zD1PoxMriXB~_RJh-l2)!Nf+u0P^*_YZ_=_#Rt}+ z11}1m737OiyM?ROvg7&G)vev`@1J_Ue@Y*wDJ`{M z|NZ+C)}^_;^yV2BGMT{6(-)IVGS}vRfqUgu%>#Qf+N*u1-D{V^dSpXJEb| zy+?J1CohhOk%>@)z#G(>;R6&{<^ofw-nB&qpdyWCo(bpW)f%7A37)4 zRQRv7CmKMng_Q-LUBHsqx@sV3PlN*S)NwMY%Mj&cGE@kw`rrmi=uf|jKT-Re2@^W} zUg$rD_5kVDuAnZXe^r^b=XVz+MGCOJ2xMlTZfW5yQb5J;;W97Ub)nX?Qi7-8qoUso z5wxG^lL!A7^YQxuPW=xRLJ?BMj$XSGC6j>+l3RS29=k>po8Umi26^<6+F1}0^!<7q z=N}sB$E{;#16!jVuvS(c2z=@A>R01&rl>WH811|5x6%|0R`e@dJi<#UwwPm60(I}|MtxSa8gLLY#4E0saBCU}uD zOAu>4QbyIQ`jjwDa#R+;pE%}0-tfxeawX4eua@SZ1%r`*oVs=a#AFed{VPgxiYQ!PQjvH9onM9 zz!;RslDc&qHUW1g=zLYIUH%imT~eg2guAC-B?6(4t*S3x`olb5^IpgTe$D*v+pfbT z>mR~EKnnB#4^6F27l>dXbM?mcW`4I;kH@15 z_kufhCp$L|2u6XskYx@XiBZhOXv+}%6bB*O1qpzysu+)TX>1f*pXyrb1%y)H=T@Z( z()=5_+u$=O)Mp^CC7lR~NE~IS>{2YQaJeU@d9_~D3WE&U$Yf(T^W+5aTy9crSEfge zVb!O4B)gnk-~*{D5-1(XOwOjclCVM9F1R%c&b`+F*cC{I-!8FqBvnIKF2%MdE=hLi zn>H@nCjAhvG4Tjg&XiM7X94!qDu4AqauT48=$$*m~Jhb**i#mLdla4a7 zHTrIk(1qT3Z1PF;wq|2&flr@#RGM`0k!;2;n zsDzWv$|%pCahyEi7L`Fo5 zwzPS|s)lt+?$K;Kr+yhk8Ka@sfhi#IV^`^Wbw3J@@fgQBYGCY~f_`HjG|UAvuLCWZ z(rAqFt9o!uV5=efNY;)&x=w`ATX68Q=G1MM$qr!V`F(;?w*9MI*<(#CEj8m$2W14WJTa5?EK{r@jFud{HWI2mW{E)W zGy<$5wG7`kUcA=Xa7?nT5Eu0lJ68_}9g=NxC@js^AkHeen+*HiR`{gJlwN}>AT4&x z5y~%6?9F%1sDzaB#Mw2Y6;mVfTC=Liqev_oj(lRC9#kT%sKmh(=s>8%p85e)${8U# z0Dq_t=h8k-I=B59e_fBk6J&WQQ9e zC6(*2FbY{d17{B7efN}cw`dqhR$+76`OP8JaR>t;d`&(vu1<=hm>w4$(I=~1@735R zX4D_HSo@>-y0*@nDX1IPJx?ARp8IX0eaM}>?qtb^p>|r%^Bn791Me=w!1p=shoHDe zFWoN}ugBr)mX+t7F`aIt3dq&NPT9A|g2x6FY9U$d@*3R~N+m#Lw<%mD_dcp~1n2Ke zu{RSR#0K>b;S_}Zx!e~nT^X{CK^97QUVoDgR(!2E2|`_dK`YwSGju%cveU{T^f@ z3GaCEUel1_B=J5Mbau{@2u`v<^0#%~1*hfS+QBRGixaNFs!nOIIhJ^D{z&bR_&|U^ zWj(L;2Stdo1I2?JySo;Wg92;np^Y)VqD7pCw zvq8Og9}sF10)i2K6(XE#u1|RQIZ$>u0ydB(*%Q67!Dre%TCj6bB!G_c6E!YaI)ZHHGxveM3gjjqWf-UJ@?2(Y(A4#$uHVs1eB9R6vK?NKCnb8}lmcNAH5w9M+E6+q50FKvL0QdVkIYv9?uGNY8iB4(rqgHq+=wgn^aJA8N#z zP4b#6^0an7>D_gKON013(@DPyn|8Tq2Os?V1=Q}%lRVhKCDY0DU)xI4k2Qu~Z)rTK zk~?bn`f;(njv~Cr(-mN|#=XuVONk2giQ`j+k=5FrCR!f9`nyid_Bk49=0Yh)bMyW+ zjt=ffF&ptvwS}-=^X56f$0;Rj!yNN;y!zBL1=D9*)tA@X@Yn}zNAx_`CteCX%s6){ zlJ(E{(YgTx@b1(}u@FYA^`pDqsHW}c>xyfNnV2V;f;BNn7y+msDh<{O>%}^bWuQCw zc_f;81wDXwJ2FWcC9ORpk@C%SFn)#%;B4EAiQUnW(NAIz)`ec5uC%I1B&>OGw}Q~9 z3Ha<6J|WG5%LuHTBSj1_oOr7QXH_#Ro41@QOPe01;&^S-ADwqHvpSzmIg z8@bwwG3PB!n~3Xfu8?6@G@MQXANYS>ntPKVS1+8P?OUpLRr&Tv&`6~ugYFy&n`=rAu$FswhECw z#y(@0WsH47_@q-*GUGnR`C>XStU1Jg@7HGP$SA#v;H%Lqo#`(Ys?x zL&Jcep`o+?hY`Fpk&?FoUKs5Sbnk#y@UyRt4FfOCUV0CGXlR6AQ-5g_7B-z|X#S;v z+_`0j$XuHW3U+k0As><-Bp;#^*LP&5e*T>LN#SSo3O_g5b@dbX+l%><6M`RG_A0EO zc=pp>_*aF29dU=B+wttwhg^~SDk}!MH)RzRPb+9n)%!_IWfiDX49q>uOQ3!GAEcJe zVW`f&aS$|NriQYl2=hwyDVz zR$RSco8L|B$VO$I0aH+RE$+acFSMUD))RPJbH(-1pqAbN1R`Utq69wW`syP7aAZUp z+O02{(y_uZ@2i{M1m*~J2i`zU{>?0pVyDo`0($fFqz6;!2G6Dm+jvh{=t}c4| zQ$ex#)Vrm+>yR*s=(Tq|ETJV2VQ~qQ!_Es{E&HCB{@Zn=l0kNa1 z&rA(se?N9zPtvM5vVma5`60qcf}mIT56t5Va9zu*|HMNo3-}i*9RF=)rJ)Je-{$O! zbc2ZoGS+gQ&AfaSRvNF+D2_>xwawk9nx zrmW}Z8xo3>p;ylfk{{Xfd5OwHc9-W^ZOjqXKGKWi628!`?KC^HQfMlREm)Ev7@VKX zGppT|ITAK8z6_R~WEWGwz|Hdw6%yi^a(MmY5dZP*b%%$8c~>ZNY*H`Rx2G!RSeX$j z>KOau>}V&M){M71jD@B0w`sTkZj=AD*{QBL_%^daw4~2HxW~eOV9?qx#!?FZ9+aE9 z9Bb?E)?NR1xl*IU@G`eyJwGHNApY=8!O?PvJ2I3|eF9@y|G;ggv_T6oLOv6lk}LV) z7u*z%;q#HklS|TUWtJ_IS=vY5PBYNZe7}RUuHW>y;knnnq=oU41vj!@JnA|f-Aga@ zplm3gQ8a1C9+E}dq0!-^6_&HGNmx`{CxkoTXvu5~XN0yHaBXSURiVa(cO!T~_Tt?1 zc;Zu*gn;+J77~II+-8EQGw)9L9#(Wb&A7hwHTy6?CuMGZONf#|+kv1XV3q>bf@wYF z7cI((4@%zs@03O-rNjxz1tUL1w~zm%^!@`(j&)etTz;DEZH0bdY5^}~+@|G7W4S)W zG+p|rB1BxHLsP)Zju5Ugae)K2_5YofUmMmlIV_$$G00Cnak?yh1~}nn=aG`+a%z(1 zM}x)sklM=5@WU-e95LDDc>ff^z6ZtETx@!gYPZw6IP3k*ig!CfwA%sj3PCW$nxceQ zqvgIO@u)t0!b2>#MxWt>Eg_te964Mmg_}%=d zsDlaEr0Nq$U+T_%$Pbn?i`k_5o?Mp`R^`p#UtcIu1UYs84& z!O!rHqZtk@*>D!F@fBv87G-484tHVicNK#M>p`79`N~bVu-0mu?wfsM^CSZ$Ox&Mr za0H)r-@sX`g=eRT$vY3St5OXD3%(_==AHr@{^3A9`Rq~0q=f6F&m<*iUHXdaH=k}xG2#0wpQSFASPw3Vhd>7t^slEhWu;P(XwHDp z_~6uXcYlwzKbpw`G6LWx9_I}vG7-9M7Za>k5IXbEYQoDPi^-r#ZgI|>K0EzM2YZ`jeOH*jeM!chrZcZdGLzU6__>pN!rQ zlHvx@G~DeCyejb=*}@h#@nBj*Z{rjVUNg5_CGvHx|Mi<=!~ccJVDXwuGq1qqVeZHkCDPJx{l~*b zW0Gs7IKC`wP+tDj!|^|QPyZ3IbW}F=Y8Hpsf|!e{;4i+z=pf|faI4;gCBqO`^)Xe#I5~z z@7@+@J7shH9f`ohri()Fq%nlM$AXKwoJYF;1W(8B&pe6hqLKnLCeH}W=3t@0VXfmO zn(zn^jKjb9e!K9lMR@z-MXLRRYwCO_s+7qHNv;d{{~f33qBVo3ubbiK!UCsLHaqoR zW{r)Fgkvny>M0vdtvYpOY4KKy0=N!nk8S<)3fxcX`A3)4*5W6!pY#lTzDG~vWqpeG z^zAlzr0tdE4MvYccb#lj6V!G4hf)af%h#?4TJkTQqG`FOjblx^buIn0;f5)&(Fs9j z!ityvV6)qJJ$qh9`SP#s+r z{YqV2(`0CjX861J_3GNEZ@Gj8VO98AJ_nvIRcRU;f0kLB+|xoG%U9d!|KIPveY=w( zh$FGT3FrL|a}8|xaVha3rH`H6poHMa+oc3-+5ar{d$;pUbW>Oe>n~osIN+4H_pM7) zg63xEmCuYc3|5)xW2vw(N5?z)pQ*dR-3`rff2WkFCl;UNcMWVih=1XyzAY~9&5!3) zOp8-veR#A}Y-h@}Q=SsdXgk#mXzf{9v(zZMAE11qS~e9R5Yf=IrF@8>I;oq(UnAIz zjNA+E=sv@iCDQ@+f+pPbyLl@Nr3vk=2NtSJwe?R8HA5-nw8#t<=0GqNlPV2v9Df<= zK6R&f!EsC840bJ1Bg(UKavqkWi-flSo>~uI^$)a~xNAGw2nTp~fgCWeP9XkFW?3JdsQZL1Y{jDzlxM+^u@>vmOm zf@f^{#L7M`jfqUGyfD53?wpqFYcv?LOsX|VmGzUXF6F&>j_u5ub!!`&qihq&on3GY zkH%N_bDx`l zqh}0bls#jvqkYwAhM2Ii=c_pR%E_+%+|N`;{BzxcMQ`JJXF<{HSG~zkZnX5iGd$jK z5Iy>}nQQaI$H!(N8-Vg*DV~`6L$cHqqieqch-Z>7T3cH~+SBYdPm{-xow*mN#`Wiv zGy<0KKG@;iyLX8TX=guiTESq4Cku8r5Zj#+bd(NW9)E^)U@{mPp))RG2o(AjH%|A5 z%EiY^R$w>TAU*5y4u-lZUui|DXK(j70!|*QZmMeA+|>R%oNCpmvDV%|g2?yUFhB3A z#!O&1x$o8D=TOsGad$3!MGB2v<;LB7M-9D~mt9Wzznj)+rJD7P_@DeW-=QWE@F({9 zU!fBw@vgMP-O!2A?fSk(m%zvWuF7w=wWVCU$4nDm>Kxlycdgw!bL?;(>uEmdH*%HP zHuwAOync1DVaB!DXG&buC^ugv6y>WHb*J5`uGS(8zCZFHLsTTC;Nn6$zeytqrp-H} zqDS|8OCv$#y#zyb`ke-GITo!v7ox(&(o@vzhjCTi`t>0JpX6zA(@&6(PgQ!kqk63< zf|uc9tF-`0KWl8VahQ|#Q^1eJ#GpopU3d3!zu%w8qx&I(^(46==dU3?pLkhWAoZmz&ehz0n<^zKGeUJ?>VuWgXjV^h^3ejMBwetpXc|^-t?B~>pQfNbARe-X$_}D!!>ML4I+3)|63Rv!(@j2 z%ELuXB%67?w4Rv%-D$5!fit8K~G% zwdspBJIH}SVXxzHp=oo+6f#ge1iR!9ha7w^5S5-Vq~$W#;Mg>m7{;JW7Fu3N7^!B; zH)$w*SV&J#bjlDiaVkd#$!TnTuav!Kw4kX>H9+NAo5xJsmk^v$cT5=MzzHD;b7P^E z1+WTIJ2g69>t*5ww}0{l*>q{Sxd?+C4+)|k994h{}Pl6G=oPism_mOtRfA5y$G5t&xJ z4Ch;|(?nBz?+v~wm|G_2pv-83ZVfVtAH4yz@2I>00*N#Ja6z&3)vh`~%4M#}RHIr!;mXt`LSF!QNt&d761STyFYI0x=# z)mic>^~~ak5jFocE5)Nml~w}=xlhc?IuQz`@Hlz0M)2>A&+?amsaabal*dGTI&gYo zn{!Mt?+W$-3{4vuI5^Rqy|5?xcBeUM1+`Vd(OqdiNQ7*;yx)Rd-g*>X%4uh{v3tr$ z0?|AW`s?j0%|jlEOJ}TLaq{gcP7ybgz3i(-G>%5Xg!kfef`-d#C_Bp{5SPh0c`3vT zdw}o!RgD?Qney%L3KAuZ?@=fexnFpnD0(o*kdP2|0Ekuv8ibQF1^a4ubVT&rh%e^E zX}V8MF$dThd{FVk8?2a>LT-eg>alG;o=mQGM5 z@Q%*J%45rIDvi_p;wGA!nr=-6h9*ukC@-mHli&n6F{BJRkD6wSyxrvg;^tWnTx8T` zb0rh$%gbX+$HK3Y8q9iNq_nnKV31R72AhZ-kZ@;E%sllNTz; zFk+B2qA^DF)Yzx*&?lid~!>~ArMpOMiy$g}3TcoA~b_wR4!Rj<@AP8NY+q)Dh+ z^o_6_bPIu%k(CXqtAh-*6dvpT3oPpsI58f``ieR(6T7+?ioe{+cx{>__$zdd*_%_75}R zOXIx~7Dmd7+y^8GAO)thWCjQm(4PwA^bfx7?4=cWrY1=eeQCKMuPI0`NU5hQWOsxu zvZ6+GPwtndmPT;HyaHXR0cG}go#&^jY6bgPi2i$bJsFR*^G!8(`dPX9R`1|g*Yu+9 zT$npj1eqw{%;qITLW=+0n|`11uaX0aj}qTaqfn^b>__MEI=8?k_39tgnWmQc6*QlL z98h+S!5kixM$gC>%DM(T8kCdTT~sk$+&?85AK#*bAD<{5B%WauM|^N_fF~hrZ=#oN z|GBqO!Pbjs0&m_AdngwkM|FS64)5z46a0{(hK7c+>&+-@2h_t`qtYIo{wTuOwH zI{_7y{3oV->PA_2DI>-l-0#q8zlbjP+o_-pWw;+oJnPl?8R0FGoscNe9fgu_H|eD3 zx^%U50_V~P?H3%)2TPv!>}GvjP0du7xL8PAZUA;9h-fwpj*P&yF+9ANsJE5mTG>18 zB!)1~R6V!4x@v7v+T3^t(5vOU?t{54ScH@<5(2%_T?s5NZLSvK4!vEy?+{dhmiMpK9()Sg?&y*tR&L zWSV-6r*58+uCBHrRQZbb?;2Q6G+^a|64C)=(c8%HW@Kcv9ROQW)!clt4dM#ZHqrj@ zO>F!@ww%o29+=e|F@6U(_Xj_bl(b|sR_;@FK&EZYpnCT$X2N;OEBRMeyiS&#n;y`+ z5hHv)7pM6+aCPp0FZ}yD`Kd1kUVeU<$@j-oYJn*Eq%BzeNT={%KA% z?8+JNgC1HRkU>O-9(jrt2*s>TPjj*(^2xcajNc#3P zy2n0gWKJ?K?7+IN(|c|Wl{{!N2T+>7uX%6J|6t>S92K-`2fKD+N)s_4GCjS1F8Rrm z;6HlH&Ww&MufGyP2Xrxx7X%-p*ebibYl1qg_tujiF%u3_c!;li_^32kxyQOSs85sf z`(CMl11|X$p)EfgSvrpxX*G9fr|QFkJ&cmt?_TL|Dx8G^hgL*-{NL~3#I zL&Pa3PL@bq*nd;n+SecK{Y;(rXM+uA4JP3Z5M*qrc7m-<*87HFT7^O_;^e(Y`ptda$O{^wywGlJdVv{lG~!v^)XU(VJV%$kg}3Y113)X-UFAVOiG>am*^H=rzf$S zsqZX%SMV>G2`M3m*LZwNT%V>@xIgRC_zsmZGGaJd15ytS9{Pbz3?WWZ4?7NacXej? zZH~Z6JH%3|pMV)qQw&pM%)h7p`klY9^f}@IM=8v8lTCSje4*@$SZmC4mIg;7ZjOyh z78YmZdb)qNPb3J{ukpV(qO|mW(oh%Nsiva|KQ)O9sJ?GHHC{{E@?wYI?phm1$0$jd zC?^Y%i@1}f{e(KKsp$OgIjvo{2fn!IOnmHPIr0V$I7(LuQd(f~^=mQ`&F>JGl~oFJ z!>z0N)}H^j70VH|c6nw8XtU1-o+@4pm~YgWym;}vP6lJr194#B{C&JI8E%~9dn$=G zxm=Du4_Ok+`u<$+&fv(Tbkm1fzjFGTrypVNyU7BzqSt-f)N57c&#U$3arCfll#XUQ z4pddC;~bVFSsQPW-9mz}^?pDpOlrHM(CZzgDw=}dwGr~ZE7!41ZXdm3E zfwxALGZS)I2)_rBTC1!yqi-d0fJY>X$VPsq zlrq8S2ck(Vv9pEV)5m9f4Y}%5crD10?uFilMZ%Kab=->y&B{^ElDh)~1C-+_LE`W3 z;cniCIfBGL&RMbhFc?Y1!EpWMedg;CJP%=OYnlJ3?%n;-6!KnJpo=e-P{4qjBvK9NOANoF>cGUR|+@QR&l6(u2 z<0Dio-yzSQbKP$R?Uc!*59sYo1y8p{Yeu{ZVU7P1aEOmP2$i0r;3$BEWH(lb+ON-` zb|{n%zcLjd1kR(!=*fcOAr^za=N2R4)Gse@qO$KO2_6il+GfesV~fb5Csmtcl|fT6 zVn^DpE|I1N-|VrLsi_L>hLQzEy}jP#Djy%8!w3#s%!3E?jgs|1B2b3xKJ*v;seA^I z{T{o6ETZd1JZ5cbRc|ZXFdg>K(}7P7j%`vOXlVYY7ocY7QT{S5$L6~KEu6K8Co)N? zK4XtlQ&Y1!V6i*B%qfk%s|Bb;)xv4h!hC!PlRT={>3}cawu~mRT zR5zGc;iM<3THg0uLY&w^L=$&D7O?9bz#*GG_gFBb(t?Di4%}=^I_BE<@Z&{tVZXE) za^wv#UUg-@3b*U8#3mfd(gKgY|FNijFY4(!<57}Q=6im#jtlTQG@a&HJ z?&JbJ%4{7uGfF^ReJM^J(&tqJlC%D`^;RoIC=7*CY5%6LYP|O78+PKW`8jgR*X2_Q z>V-om%%$NVZFy(9apNcqrxT}j9-4sw0&}ke88{p!35!ta$(k+%uI;YeddP$fy*Eg= zTv6LUbo(R)s=;E-NXUQp}``b$}@p|4yoPF%W!$x5Y{&;%)j6=77m}jf| zhU_#KOXO#91le06;wL~ASEMuu<^a+WyqsTMccJEJ+ozyLw8i4SwRfUzS`GNx&gDX> zXQ8(SALt)d9U~($9@8byTbV>qT8Rg!@33RaNoXml|2(m2EHAHmA&pNTCN8kM%V0z~ z0V|51%XDAaT6l?8m46~el56`DuGF6PD0y~5bDGU?Lzz6riEu{MmUNDkxrrxFi*M+Z zoF&`qKK1l$)=tl1KOxO`CVEoEed}0x@}^MJ6w%sCupG@#&g*o%cC{52Ti>C+sCo~B z#;5KwM5DgU*+kwxPwsr1$!u#}mgEm}$8R~^91o7LL~B6r!pbZlr?0;@(UYM#L9dCTGRw*X!Ff6zi-Ap#E@uv0 zgYPm&pTfLZEPbW5;h>hmfh`0SQ?E82oq~kPxk5^QjAfrUKGArLg{GycHeO48*Y`kD z2*3V8Hz!4LG<1~6;_)OnSk&dSv|X_G0OgW^S?k2mkgvX}4706UvVO%=tF%mw_f`)( z`N~QvEmxaDUf${$!PNE!bbv?=fc1hlF6P;S(cALoGoo6d!M1~j@ecRLt`W37C+lW{ zDs5umFFi8##NPPbe-0d5A1QxnF2EkuGm+ogXk%%qTON}coi*(jBZZ#bkft)+^|jZY4jHTkomrlweihiy_6#{xHUJ@b;k|9To%ccpn2B`bqQbO@Z{ zz$qyyQS?9o!j0P@7L(taCDeG)#;;mN=dNxDZNPR@h^gd!v+r%w5ZG!B+$|C?G-0sa zoa9yS_GGShKFXeVG=FLIp{DQ53nq~blyDUf+4)v^46Y>dex2^aQrYoPFQH{FDXXE3Jx6|dyqX34H zaObY6W)NhiyntywlG=8ylO0hThw!%bG12;5skS z{+)b2t&Kz|)?Kd9COds|_W^7SYuSaIb|+MKz)ju7Io=7q&gEUW3G8Yy-e##UTXWTD z$4M;s>&(?Ek6o`y^>b;{=GO^509NQ%Am^qODcfQoqwt?x;F2Y<*migauYRTR$S~S? zC9bJEC@N)++F*car8E&cl2;)3E6ciKAv&gmeiH!@t<>XVwhXW~DVu?T`@}*Ks=QRl zV>VEsPR7koiSi34b0&CB6o{~VhKZYVr{&ew2V9;W4HCQjPOsct#Mvq{ZM2pf2m3gS zLacJLwWoPgzNorRY-!h_m2nyhbE|$?Wf7Q)`he1+yz|?kNQg{N@8Zf2MmNSyS$}%t z=Z^h+bDGR+A)aIFom^ZVM`9%yaC^cH7!}(4{ef(0dr7!-P`FH_A26m6;_CtY|h z&7YiYvY{h1f@)AxVvkYKUOA|hRZlwCHlfW4kz+hA&g=EQ%Y#!cec2%mT%2w3cX2VL zDvF9V(jp1)hF2*7oI1qL-RSnICLItWCazw+YC=}MH#c63d3H6V8xTYWW&%e#sD{j) z>>pE_*AFb4OMB-!cJndKNAfTd9jztTI(@PLxx!n^_<60%+X53w#Z}dk)ajI>OKci{ zHn1mq?{p2dgRo6=J)WVd=)L{+v=*JHDh2o22+YI5=mK{A>k`YK3KBkkdTfcb5I?FZ zAdk&!gqt#hG$eX`K6L$bk+rhpo7mXQD>FEgK;iX*qxTJXd~EBT3*MO3!xk38LVf+z zM96uhzT5CsMa7}B2^~3C+yD4Uas@U32#96!6PE|8svHuZLE@zaq!zRh@WAt5PR9ug zH{HO>RxjI*@~7kvkO9f$4Gaouu6(miCpK%dMiX`Ci*?*#1kl5@yx0+(%b4{Ik32DKi{=KV3OvI>f}ZtUv|Q zP%vS9HWp||1;xs0?73o@cV?{|hfc;PK82mw!bs!W5?5QXs`4||s{e3{*F|6o#V`H> z$!j&WOgs^yMBcR%Z&FlySlq4R%hkHFvJxXcl}>QOqi&?BN6WWkr@wt${#ooIR(}$X zS#_$Jis3xob1=ffiQV2AW3QA?eqOFhllraHj%%_?q#Jw#zrPz1Xer=eyA%yq($WgE zL1Oda6PF&C)KO(QdQTIEN_7I8eJoH92y!bAT$FFI;3;hoK0(Q^u!#;pD*ABV4FB3%HEKEG=8zdwo$#l;k`Un z#Q)iUcAZSNvkoRbqn4wBaiAPEJ@G>SoK@>YKR)ID!(TS{>sRR_-c~Y^K(`8PhPIXX&HX< z>p0cxW;#KS6a7s%{OKsVO1UWfkm7*p|&=Uy1Kh!*w0W{5j;^*DyM2`QX zP7`j_mBP0fkCltML9L*9_#5%MRe7ndxer|B^|HE)gQ1Qj`a-K=BNgtAi+9A|^9$ir zo(2a59^C9lD1qE;$x{BjFJoFWXm2gQ;M*hPgv^34&DyrkP60?(lkjL25X;o43_$AC z1SknWo-MCzDXnCQ@^`8-Cbva(sLx@fPK_v$37WNgjc7cd16Y(@i0*6h;ByX~I8aZg zN>Z5^AAPR1;K&$A?e@-ew{%qsJ30W`ThSEOd}I`%`RjL0J(Yc;Qlzl2U%jdeJVoPS zoX2bnzgFmca(q-HR^}BySI7HqXLp({8ZN#YNbZ1QFV1~3t-|AbZJI@X|A7L%>cRTH z8(Kde{?kJp;MJ-;6Upb>fA(9BmX%#J$e%!?%-cwGt;dt+gYdiMM;kL}dh$Vr?nIt8 z9bxW*7(#k{b||TmB@aYdpy{WhNyo>>FY!?L@Yl$_bq^x(%j~!R=2e4fr1E2U|z?u-PT>baaG}xCU9d7g++AUP>Vx20q3@Yzk`|8UjD*J)jR4 zKL3%)^F2H>5?>lCf5|20RW1V1fH--eDiceVU%c?@j|bLt3FhulFHw^$rA9Eql6csV zL*wHDg2yYCbd>vd=z*+u(;wc=&VCp;UgHn{;Vsm;yEqWAHv02Y=Ke8OQ4>Y25{l=D z>)X3h`Hlr~Tne&!s}ducF28u&LAT?lUr!G|#-O4?3Uqtm?mU=!_hn|o6+-xNo4tKn5e?s ztuQT?m*{cvbB{g(xx&EmU*|WIxK5_rSr%wd{UU&IL3Hh9?*U|H z@Ab}PF1dD!P&oFGxLqF3Vmqv?w0}_iZE=aa$uB?dF|VZN?39%ELRa!j%$p!v20%K1_QYRyS8Yu*9 z+OA$|Ix8=ghd z^eEBM=CF1c0_^a|Ah2Oej~|4__=2eLjPf#1k3AW;`q|Ry;WLN*bZ+Os3ZI~QlFx!7 zhqQQl#1|m*!(cEUiw*sT$FWuIX=T~ogrJzGvx9|)?k!)SgT00u7SC|2v&Sb=9|K3A zK})|znr(CZ!mgDBRB%MHGTZ(eVsnd4rM^3Jn8G=XO);RD&eNI}91RR7Q z*S%-&7^c(C`yZYqWF3bi^Qx+SJV-9zi)!n~Fke)-aWtRg)egw|>6;bn4XYKGA?sz5 zwG-f|?CwUu0|El@)moB-WHE9BXH(O`Xx)C9WuM~&=IV_m&JoJTAp{)77JvAh_+?x{ zkKML!Fbr$cX*c8}Hk`$Y5E)=+EH$1k_9Jo|YPdJ{>}Ua^k8b}?zPd*MgZ9t(i& zE`MIjf|z`{M0YT*R{J$_>rd7lkI9dgD_d<5Qja)({Ls4YKl26lm5r_JkX*l{-JTXU zvB4g06eUMxT9YyYA|X2i0+98VRab{t2UO$0=aHNr0Li;nK_p07gphY-)m|x_i(hP53%_)f#%-!sn1ojcq`49x0Zy3%#}a zg6=CeUMQeUzCEW<#t_~Bw|dpy+nWglp`m{KVvtds&IhxNQyJPgtj~hso4Q#WP|pDE z3b_R?1#r)iXKGv?nxKiv<~n@+QLwwZH7?_Zzn8oB&mCoE!UfR16|zhxI-2MnM#Vau zoaRT9VB&H{Mn?xjEiJ6$XGCx}5)Idl#W-MCPiex`GoU~n#>%f#Mt~TWm?|4$7dW$5 zo>ElwxgCcecQM?hG%N8$2@&Aylf+>~<>PGmOLbR-%wK?Z1wy&?tu+#%Hzpi&`%XuD zaH@I@HM0)K{+X1AXtwh$E%yaG-yWo;^zIL_Zpm}MowmtL`yJOD@>P(axwTtqfb4Bt zF_%L}eWRqmf8Xc+r?};=6|84Y^w6prJ~@@2hs7TLhsK9=b~8Y(wU=vv9!l?kz_CJU zZi)eveCWM7+tv%9P);HjwZZAD&ro7T4$elUs0=^@d3^I#gIk(HtI z7oTJpmacZEr{Z>AiU!vfb#A&%FXMa3>#*n*%K7b)5XR;BR@* zT$Djs+oZH_J{?8Fy3}i*1Nj&~ZW0!DVr+2TDR%!?XQISQo)}txf!V1nX}h)w`9e;d zt9C>3G--uIa@Pzw@U7`*0-ZL$KI4z`3-rV|_BTQ(QyraT6gqoasol|x>>LCCi6dtn zqR{Pvp4O)_Xfln3wXzpz*PxbAon%{$vn#CV%y0l)AeO#Sr%I4QH!W z*Nz6XZh9OX-v(vyoVUJGTr5YGpf@b|JW&XAgRGe#dc}rI#APY;iLuT5j7WQ+H zJCH&s^bV+1n`(4yHYXlaWRP9nuL>Z8#bWLSt^T^l+Wtk6QBib+s=cqTUvl7(1)yuC zvI~^#b~iLHEw9##{D4}YP?dE&dcH!;=1)emJX7{=xiJ)mjg$W&xX=ITN!;esAmfBfN@_4}h!}WbksqLk}~h< zg}}7A{%SH&4iFY4^PU)3>lXkT_AxMs=M??#J%Xt`rmaDg@B7;id9AFg zH8iK}sq(Sol|WVa(LqM@)(rcI`m$UQAbJ+hIuj>{Ay#cX$kwX-Df-=*!;=PE%L1Jho!#P;!_gKIj7bS)nADQU2%9E z;Cy$^SnKGT`@gM%!lGI!Z=7UXY<~9Vf*uPp(_K;P2S52LQ09ZXftinNl0A+zm|m8? z!Fzg=;8^8^-Mu}L)TF~iE|a4-aCk*#ayTvXG>|>z7t>e_L5~Z&imZ%GVyuz=B=Xa4wdSVR=`WqZ%55t|so&YmRSjvE}`efy~ilxUog$IWgDqAZcN|Bkq* zb$Hv#l$0~uO1wivQQ&9Aj`+88H6ZI%5;=e5I=jCp#%b)Oz1zvWEh3s6MN{H+5xJhc z;{mDE^KAB#mYBaLw*01G$$dJ;;8%pOktNaj>GIw}Jf3cL?XC{p znd!~-^p(|Zw!3%l`fe)Z1Z1G`m}y@9(u>OE=2={AiR+Peg?u|Ee`8z)b-1_Bp+lhe zl;k?N=alUT(?V=aSF7AuAc=Fa1ZZ8k;raM+E=rF=I-0^JBA8+}`6eFK9)JCej}NM? zM)`*lzt1HcS}YhfuQOOYmx)ctiD$_CorVoP^3C37j0VjFBE{7D6<61ko8jQ|EBGwi zovUA0z8sk6_@&C(^^Rlj9h=XT?OoHIRz62wzpCOf`P6iAR_hi^$+XP(uC6YAr%*;E z(8-AHpZHMMo1!@C!Y35Q;fR)*tjN;#Knr(y8cRf5TecPGD#NyhEjFzsFLxFR%~uyKtm> zgV6j?NR-l8(Pz^vt9C}-le?^o_dgDO{lE;If=6FR#eT@*p#Jo17V& zFkD}}Gjl1QEcYlBt;+txo0~Nl40b}{ci@JUE-r}NNRid=`uOG(K5*{p>=c-v()LJY z&Ug6amv49UvZWcz+SdB}6;5@?*;%Lx$*K|>gZHL z(GJF%yN}3-ZILii1m=yTyYc*@k==RS;3u~RKwXRAZ3dqA6WnGil=|mbf3Qzq;H{Zn z@+GOrIU!bP)#rhnY0YOS8?1=qr=w5J+@`*6SIE(y0R+=DR<0900i|DA&_;Ul34b6W zB+hBoYE2xxCXJ#vLBr-S_=dxGB}Ek;b(g2v5TS_Qb*swkj2a&ORytkCs}nnYsi93M zriblmwh&93*K7Kg7tLj0?ycN7m)=bN#F|-w>rxP^1&vh5GGX?zg#}n}C!hnKE|KPE ziHJ8w_;*Ej_itGlQ2Y-9lxq*65sCvvH^BtwM-Y*;HDgOWf^!fwLV%~Agmc4>v8K+r zviA1&vg{+wwt&Fz&?l&nKKDtcXt8&CjyuKv5{T_KtSf=C7MqCqh82ANc(E%PSLK%S z&9)6dQ(&?p2xMq!vz?!xA43PW({YQ$Vym(9ZDYgBp;nFlPxCs!L8FG(rjAaMRD<^1 z){g}TeRM^Fx>IvCk66NHyi=NAw%98{-Zus&(|dAXY{hyTAVaMN%aWj0tN8_(Xrilm znjpX0s!`~WqTeXC-=ye-;*ZPkHU5%=|_Z=i76BFg~Z@OOA=L~|}mwwUB6-g`0 z+BHqejM)FX%r3|;D!aJ2SSmYelX!gi9XdRtdhc#a+WM{4CO6XP^z?M21M$EDA3gDX zG>yFb9SY;QBtd61HNFzXhZ+HLKd{V7pQB-017a)VL>TdB6%fBNDPO=WtK&c zP)^<(UQ&6`wt5`a;2P`wTv*5sdf-8sU4`9i`m?|?>{!G-%gPGP&T9PW^Yn4mdoh{# zxPSy5?(?b>xMuTbN}xaib(_US^l{`x(C;R>X$4!AMg1psR2(!34KhT=%5MYqCKu?b zqIHeKG@d&Lg%+;1tXzCFrN$HW%R20MsS<-1>GTtdF1q+}8-5hg{cI-EKfcoc`=#%TrY2A!y&(Klro2<>gu|2Slfm_Q#f{kI7$711*$b9$DBO zPPyseFekbIt$E^YZ=ZlQm39wv^i|xrGrYA{?)>_7Nb0+VD!CBXC$EY$gHqz;4Q{D; z1@wDU#pntilZ5Qyw*Tz~Xf2y|WCY#(9^bIT(i5w8j{z$W^;CmCmFs`x{;C{JW=5Rc zVpfY!L`Pu45tjIIgY3Lrdb!PYMzvmrA|}Qy5sNlvLJQipU?>^o?^*(+C%$bg64wYH zaVn9u!$Pk z`_}Y~GIc|!ci7}7UBTc7(6LwzvAbRev;kR8Z^wob7iGrW~_K8239eD z>z0da^KOZ8q)Vl(%!vN5`ujvZ-}d}tov#@U4eerKErKkOREO#7UBAb~R^Pj3X|St5 zO$>H-cdvci{4aqR((vA~Lkv;9BkP-Sn(xOi10Mg(!;Yq1R5|>turQl+Zse_6gGMpe zhUOE0UPI7pX(iksAHpHd>(CvO*jW%Eg_y(eJWTXZXf-gU{T_qBu&9mkPId~Ai|UEi z0)UuoU8)HT4D^>aXKq>)jgwzD#QPi^9@?doLrpY*q6lN~1UNBPp1=<1tnKU+TiP1A zS*t1Sp@P}Z{%Lg&SLeG?$;st9cao(>#uWz-Zo>lRY#a=GBZra}JU4(GC5#L}u>A6scu*scdX#ZW)z3R@1sO0CDz6@$keBLb?AL?6TtKf+G#^4aEVp2Lz zU-{gUy*o?Q`wM3N6WnR0K3hbsvw-r+@7=(CRC)R2Dt~WaNvc?n9oBzMxs0~qXR-wU zdw+6M`s&?OSsU;~bNQSq3)B(yRs_cqs_C&xB9XdxM`^^sQ;4RS<$#bCA%kvQAeIFQ+_bgc|-7t_Bvw}1=f14~qUVKoB zfP;+S64(LwV`2N5K876pv-N{rtnz{Cgn0$pRqXQf-O|R@3T*J0fhW#7+%ssUq&V1e z;MLa|w@N2L{S8L0?D?|kBe}13hwtTz)wXP(cgn;+gv_A7DL34 zkp*@JVNWuCm{tu7^Yd>qq`1F6(+O3dRqf^OtJvlJ4r*;60%5Mo=UFMfN4qRe?ymOP zywC3CV;vs)^-$}0uE_yB+wmrSjdb)DU0cyonb{b2&Mm;Xowr=6pp?O-F(w!yphwBK zc8RSr%F6QDvf>l96yvBT^3C1&aX?0j__&8nw8ijZLh?H^=KZu%BW_%&0F<&Vqddv? zWc?z@&-Jolxn^i)!Xwsl$a_7}xuc^BCftmdl}cYu-##CBHY~bhPR=JmZS(i$_osUZ z--E8?z(O7eDYM5B7$;&=S-l5nZ4vo%GIqH2`(x?$(bD7?5^{+Z@-H*Q3fXyklsN_} zRfmy%+V%`(Zmsfh2#+6!V(W$qp=b~KZ>X)Z3$jNI7PPGlFaG=Q?M>vv&o}o%h?f+6 zh(u8zm%0hVOJ}WH0&e64Kkn6}Ose~kCj4GhW~_$@*_UZ)#A zOqA!@nqfQt-}Jd?xG~*7Vwv{&ecq28auJr{nTGt^{G|g=xh|iir>A?;o=xnmc2l14 zbBN>q@-1Bc()l_>HkmO=$32gOd@9_wGL^{mPDe+l0aVp?ex4_={l^&xAFkzmS6f_h z?|!cO4TT5Eqk>P}vqUDxvaj=%DH|0}_2znnsoF-QMn*=W%v>pO8=r)qUJeY&QR~~P{Nfk(>nOa=RxM<)Ly|PirZL~$nmA$w%nNXiGOc{J;O0D8!oE%4@d0I?q#mYQ|UuC z_wUOygnMG4t;{t4B*d9Zo@0Vq&-h-K?<9=J#-@dINbAL)|+dq zd+SryHLgG39Q`zAPy88B8y(#-k|UpDVPk_@gehH$j*j-F2~M_SW7PJWJ3b0J@F&am zE2>=7n6#{%s}V=g6~6Ws8X;Od-0yv1Y0EDewv_cMFFxLnrezx^H?1TP_mPNInU+5g z5TMCdXmig(qpRskLK!mBbCcOVynN{jc5m=*``N^lqVExJ{h!>>iM5TK_S@NgF&CT{ zXU9-^`NAnP>zHHBptGpq+pCwY&Y3FwclP!_L@8i<_nc$-&6OEq;SAq9ljL*qo?Sk< zU6rTxy@B9~nc(K0*G@y6efQt=f@*~zO+*|V_{W%}93Qu!V8*v?+@01ysdlWx3}SAo zH9mgg2Qi>{rbW8)bd9-1lfj*L`91tL=H@If; z=1}JU(DasJQT<=r_oh3gn?bsykrsxKPU#Y*LwaZgfuRKvkd_VsY3Ux26e;QM?uL8+ z{@3%oLJp3Rnay{vIM2^oyKsK#ALjISap`F~yikZ%^jLmOh4%uC4Zo62Dxy&`9WYtx zWp~>M+dLU^e=?Z|TwGu@EM@V)#`8y;P6tGO@3eg0@el`wG?`%CMXH^cfBGrhjmxL< zM6KI+9*K%$m0y1}`8GBEZ~KUGAj&+@@MMiX`x};($$Tu1ON;AV+g5f837;JYkAjY? z>ra;ylou{H3*JHM(6jZg&T^W4w&vNgS`60#UV9!*FP|$@Lm-pE)2W{|F*LBt2tv!t z87N)REifc@Ojk*I&wv&`6V@kl)Qc;PitDTPE62NT`qfXmrStElpKj`FC(E+wKKp(T z#O_dZ#9{Y~@~f(^7e?%Ow8=nAVydLyTU#Fzy2QuD37<(+VgLw=a02>~oAZWtJf=l~ zN(0}!gH*SZ-Vco?MI`@?Zcz(}iQRGq?*NB`0|U3J<=Ii*-%(e(yT7?Cd5lB8%jCG; zo^FiBfkMZugZ<*^r6m)SZG!=FR{Y>f#|OoT^~D1R+kV_y4ShY*>#;E(V39!dSMcJk zZ?C|Zs2y>wrDdSnG#nnu`C|_Pf%TJ>wql!g@=8{KZ`lzML&=oO_X`moe*QP;9wnJT z3IJ@gV95GyC+H@=0Uco&>BC;!L<>k38rIgErdE0~_>ABY6{WPOGpa=YKpq@Q(^vk? z_~zGwa}YR1dBVeR)~q{IfzHRiX6xu!iy{NQid8uMfD;%Da~g+bRn{4mW6v>4Qy?8H zfIkY2;d^RaU}R&^KWF0+OxVOP4~7Kz1ow&lMD%j<-sBWj^y&h%z+d0Jy@%31 zp9bm$AtCH|bI4y^r=_;LHSr_W70Iv-HExmlV=1Byegv`xovf%Gq4sh3ae1f%47LD9 zK2>t+c>R_$eEo-Ba$ceYYY*H0AIV}ghlbo|QlEP{Kb3@369V?RI$tS?LYfHqYeMB=ia^NSgw7EuR=IO)$ z`MXNJrKRm{TPY$_Gz&_iR)>Z;<~Nk9$p1|Tv(5e*Q#?eLIZ@$d{A&TI^PyFa@7xOo z?*aZ89ezk0yn~b2?-!q-3ee>}MS3Bubsk{3U*G)uX{L8pmXHG(!#@!ZdMTQTmw5H{ zX<(%BC#dPHuTPSBFvZ81{W10a6&`+0d!ym2W9$Kv_E(j?Z~0J;Gb5z;PI%wkB7AOZq4l)I2M+%V(CHu(hWu8EUXL{T}}#E-`vEPfqOq#d{H(o6kQ}; z)-Mnb*GuD|uu44XW2^RxGb%K7Gh2i+n8_GqXlHPKAYZ)E=;-PXHeW&9FhAWF{dcjF z92bW?_4Fij{)&A1Lc$m#^2vo1-tTdp>HYZESik7so1cLJRP%>>O%4t=(XW{RI6OXL zPUrlG7KP&d;Gn#sqF-y`ZeEePUU3t;kr4#0WJuJ%#NlK#tA$7vhe$nE`iLw^Hk41Hv9U2Prixeoz`hgl8V!>6=Js|^BpOTJ5(VFJKJ|IEO7NKNJ*vzX+a>pP zx;I|U0Z73PP&JmUE#@zhu9^iaKKh^2>PphxNs< zm@3n*c8Xd9-LDT}ye$?~JA2L1@HViDu;tQiH6^96xBDp4nh5VgH!?;k97K}QP#d1N zK(IipjOD|+>JVgRD?uWl&gZ-y}!R-8M%#;0Z>>GB&Ve8X}pVZd4@WwezNMQXm7v!;r;vfCO=Oq zUW{nX?BOtIpRba{c_WQ(^-%ahr|wyS#NOSi)rEw%wk49bF*Glm2A(_hoY`{mNR8dHGv1TC4yXppVOm07{GGdNexMdnD0On+=S3WC4q0|;o*~-+W4&>zuAUxq3E|M$y&Q+!g9*)bbZF@- z>5nQ)2~0pvd2zAk0FAnAF$o`1urW7Tw2_{>&xNb_vepq<>F4BN)@AV)&%Gm6mT@^P zEiHLZjw`Pr!S_zJ9}8IkQFGW!CoX0HIG>o-V9vFWcs5$P)S%&d^qkj36jft|CFrw1 zD=y0y2}uejel%X_7dl8(@y+#`agzgSbLUIJPjt--mCAfa5xw-`UMOingNTN86J$E&?$*9J{GbO)EMtb+rKO2 z#zE45AVlJKn!haNqULs5%*vfrOsrXG@D*S5EWVDmSTn7g6|~}AKuK{Z6d8QyoY}GN`3{gmLbY;?|0kvz zSD2fNv+m?-Eg<^kcV7$D+plTSopJcbd3o%>^7ercPBLB~-=A436=>p?=YPlAHN1vA zwzszms7A)8=z1Oc8N&s0iHcC`{xO#Nh|1CBYOcuQ;r7$bv}ut6U99@+kK;S2RzuYD z*B7+W8TTP{O8VXHKNANFcV$`O z;W?!f0>QMf4N~X)hUsYqiTGS{^Lu=v0R4Jjx)4m$$;lMYl6(bbZliO(yZ(MLtuHEh zWA`sRG-HW$3T32{^U81tqvTv^Sn=JM18a_9vaMoqI!~1!;ci}%*UOWqe)=&Fqtfy3 z2_!#tcD_2oIHnBVYn@wgzVZR^f#6AdQ~Ux}GJs;<`6?S}9zrusu6r>(!FI2Ylr!k8 zIJ??w_9Sw_cKciwl#;Q7Z4GPU_`IZ{*(pGz_jmnoe{@V@E(es```CO>dVgmBF!Joy z1o@im7z!IIJnM&LjDKfI6P*PO-;pB47H(u^qzb{EL1I7NplhW4s6Ma6?3R=y7Xn9` zXP<42E^+G^U&}zL(uY~puN>hq@s-FQzW>TL>BJcWF^$S2kuYjuIO#cYEgAV9==bEZ zs-;boRU6X%Q3TyB9;D;C_LKikG2vs1MU3Qr(L*6v8MNEHd#CG4BOYU=d? z9v&WIfL^5n7=5!UBt|(g7c(+4)Pc2X!=E#bOU${vP_-ZqZtjPz7N0ZpK7o-2A`UVv zan!IY*sAHVM39ndeWz9WN_Pp>5pvu0T4i8;w4*ezXNN|Ux;=Psdr1~14zsoU+7 z#U`;Z5p(}HQ|ubY=+BOB%hbB<1V5Lhi63}9H+93J!OvD1y87{E@ASuyAC z!xYc@Vi)f!(1Uy0a5{WKl+%fyJ=0-W?S~gr(V;c#2RJ5Adt;(D%mu{#cpdn3Cj%8| zSn{h3iBJ+>!v%-A=z(Jb9rD^jejWe>NV|2=>2Fl`@tV_a=Lye`i%g|9c)koP@j zc}6oWObiYeA|>Y>x_sv5wv0^>k4DI{dzU-oi2ts-vUHjD@R%Ffc-XooUPvH)`2FV! z!fd~4vm*Smi{ElCZIs9JyH^L@N_wOp98Xz!^Ox10Y=Ct;m$&z|)z$ptZ>v%n{6__; z@R~}?^n%*OoP;TG(O)3cZ!O4ydFKXc<_=F%Qqnd+ZMd0G#$Wf{^9e4D9*UivS2NTu z^Naq+IkL=OME!(`t7}N>`2+Cqz<7qGr>FN4uSLmy z&4}OQWtCAm4gimi_P36Sb+XdtCkKm#&mQ|F!8sW|d*y!j>^7gyLd+`73+iL}3Ss6k zRbR|JNx;+TFK$_7@MhJ3ES$!uVeSD~Ht(cXZQ+z@Tc{+cG`T4(T$ZGJXKfvbrE&6{ zm$*x@PWq_-J-e;>)bG-hDrz<=rvV0|+Kdb50;oQOtflF224 zdQZXE7n!b%K{`m=IE+8RPTN;(^h^Sm!_yFbb{5DYFkoGIC-eEF!rm#(ZZKsq{f}ME zt4jS}RT7YALY0>6x4=z=^cg$ z)$u=JE)uqpGUQJD6|f80}cn3Xd?iWk8bg7^Tz)U)SX3@)XS~XGCF;~YjWp#QSy#nR{lpjT=%t)C{f$& zPBZ-H7Z;KG77<7iq6h=E(q6*ZxmI@hL{gK^LFb}kb}gk$@e&!RPcLt~e?mr%j@*j- zD5De)xPDRAKHKFal&>Bz5?K_C2;^u_S~r3bv~3T7LihI{eptzvDwVypW_P{ za+^*FxToPhm| zf>5w;%iQ>%_k=&nIwCaCjTLM!TG6e!CB-5qUXm?`FDJ|=R2nv*&>BH5^L+xTC2IE z9~nLmuNqWUg4%t*`O}-|jq1lu>(|udwx1JIt{D4V7Z!zsKs8cPk^jF76tm+{{+9mR zxMj_asjVFcx1^4>4^h|a|I;CnB|SakY5Wg_dga*d9{uYMu_+`8#->_YBv^r=Oz{Tl zU>N1pl~spbosbs$K-k0~lj3?=fFZ3{^Qt(7xcepp3qzd*7t7{JZ^L3~F~50(4S~J) zf$yy@hwOzp%4l}cZhNz>R{Pw+<$`ofl}$}e4T`!dg%uOxm#Dn&vW!ESNSH}g2&eg^ zBxM;+1C7MB>c-s>=j>#gN_hnScTfd5gZER%MlG5Dnmdqs7VJ-aOCHgELYTi)Nl%=> zyP#G%e!~m{wc(Y+BMfz-5d8v!(CaM2_cb%g*iZUw*}1WZBa+Q6PDDmVI*vMLrlM#> zc#f9~>qw?Ck$8ab$CiMcI?@c*ub1-`X;fkK8SLy>h566zn23x92U7;_27YP}W59NE zeEvsgo`;L7rw(tTgd7!;^Pz{XR76rec|etwmFb{T&43h07Y4$kPSKtnA$P=3 z3itxo#y8T;Yo@@m&m$T9-T-NTWMIG-J(zz%N15h!FgSue7+EgZdl;N}Y&*ta~|kE;$3x+}6M@0ov@i~X2J#TwkMG#g3h z*1TYYL}=_5c_bo)#>>$2EvAYOYtbSAR#sYSExWsQcQf#nQ?H#B+EbU5l)>$yks(fw z`1I-NSVEemQ+$3QQwCb~Fg$EE)lG4@+ofq!WZ++@T;VsSX+VL`z!tPl_}G9+B*B<* z$&fn~TG{GV?hZ5fTQRotVazJt&^n8$0igx)A0Vls|3=Q5-2gUd-elomj zhAM&qnF~u9N(zU%**rz5M^WRzcI1wk_NRx0#%U9QO#vu1S$I-!^pZfTs@G&lFfA=Z zE-6ZRd6aJD_JnSa4f`JVIgKRM3#amis*|@u?aL)TK64L}SD$hvmxzS)FrSS$%hk@0 z;C;Zy744O~5*C)yJsl0=z|Jix`D~0&r^*0{jPMPP`Yl%erfi5B_dgl(n*JkPkf!f- zR5Cx}F(V~q%R?;l3HZaZTedqc8VA#_Rtx4B>pAlmhW0S3zt9;T<$FX;s7{0j>Y15k zQCOt72tlLd0dO9|3s`M@^#|;qvt)IVmy=?=k#cHl1(7@G-w$8CK)~02VdOlo?VW

    @@ -164,7 +164,7 @@

    Arguments max(training timepoints) - fc_horizon model1 list object returned mvgam representing first model evaluated model2 list object returned mvgam representing second model evaluated","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/evaluate_mvgams.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Evaluate forecasts from fitted mvgam objects — evaluate_mvgams","text":"eval_mvgam, list object containing information specific evaluations series (using drps crps score) vector scores using variogram. roll_eval_mvgam, list object containing information specific evaluations series well total evaluation summary (taken summing forecast score series evaluation averaging coverages evaluation) compare_mvgams, series plots comparing forecast Rank Probability Scores competing model. lower score preferred. Note however possible select model ultimately perform poorly true --sample forecasting. example wiggly smooth function 'year' included model function learned prior evaluating rolling window forecasts, model generate tight predictions result. forecasting ahead timepoints model seen (.e. next year), smooth function end extrapolating, sometimes strange unexpected ways. therefore recommended use smooth functions covariates adequately measured data (.e. 'seasonality', example) reduce possible extrapolation smooths let latent trends mvgam model capture temporal dependencies data. trends time series models provide much stable forecasts","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/evaluate_mvgams.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Evaluate forecasts from fitted mvgam objects — evaluate_mvgams","text":"eval_mvgam generates set samples representing fixed parameters estimated full mvgam model latent trend states given point time. trends rolled forward total fc_horizon timesteps according estimated state space dynamics generate '--sample' forecast evaluated true observations horizon window. function therefore simulates situation model's parameters already estimated observed data evaluation timepoint like generate forecasts latent trends observed timepoint. Evaluation involves calculating appropriate Rank Probability Score binary indicator whether true value lies within forecast's 90% prediction interval roll_eval_mvgam sets sequence evaluation timepoints along rolling window iteratively calls eval_mvgam evaluate '--sample' forecasts. Evaluation involves calculating Discrete Rank Probability Score binary indicator whether true value lies within forecast's 90% prediction interval compare_mvgams automates evaluation compare two fitted models using rolling window forecast evaluation provides series summary plots facilitate model selection. essentially wrapper roll_eval_mvgam","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","title":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","text":"Extract compute hindcasts forecasts fitted mvgam object","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","text":"","code":"forecast(object, ...) # S3 method for mvgam forecast( object, newdata, data_test, series = \"all\", n_cores = 1, type = \"response\", ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","text":"object list object returned mvgam. See mvgam() ... Ignored newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor original formula. included, covariate information newdata used generate forecasts fitted model equations. newdata originally included call mvgam, forecasts already produced generative model simply extracted plotted. However newdata supplied original model call, assumption made newdata supplied comes sequentially data supplied data original model (.e. assume time gap last observation series 1 data first observation series 1 newdata) data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows series Either integer specifying series set forecast, character string '', specifying series forecast. preferable fitted model contained multivariate trends (either dynamic factor VAR process), saves recomputing full set trends series individually n_cores integer specifying number cores generating forecasts parallel type value link, linear predictor calculated log link scale. response used, predictions take uncertainty observation process account return predictions outcome (discrete) scale (default). trend used, forecast distribution latent trend returned","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","text":"object class mvgam_forecast containing hindcast forecast distributions. See mvgam_forecast-class details.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","text":"Posterior predictions drawn fitted mvgam used simulate forecast distribution","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_monitor_pars.html","id":null,"dir":"Reference","previous_headings":"","what":"Return parameters to monitor during modelling — get_monitor_pars","title":"Return parameters to monitor during modelling — get_monitor_pars","text":"Return parameters monitor modelling","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_monitor_pars.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Return parameters to monitor during modelling — get_monitor_pars","text":"","code":"get_monitor_pars(family, smooths_included = TRUE, use_lv, trend_model, drift)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_monitor_pars.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Return parameters to monitor during modelling — get_monitor_pars","text":"family character smooths_included Logical. smooth terms included model formula? use_lv Logical (use latent variable trends ) trend_model type trend model used drift Logical (drift term estimated )","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_monitor_pars.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Return parameters to monitor during modelling — get_monitor_pars","text":"string parameters monitor","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"function lists parameters can prior distributions changed given mvgam model, well listing default distributions","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"","code":"get_mvgam_priors( formula, trend_formula, data, data_train, family = \"poisson\", use_lv = FALSE, n_lv, use_stan = TRUE, trend_model = \"None\", trend_map, drift = FALSE )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"formula character string specifying GAM formula. exactly like formula GLM except smooth terms, s, te, ti t2, can added right hand side specify linear predictor depends smooth functions predictors (linear functionals ) trend_formula optional character string specifying GAM process model formula. supplied, linear predictor modelled latent trends capture process model evolution separately observation model. response variable specified left-hand side formula (.e. valid option ~ season + s(year)). feature experimental, currently available Random Walk trend models. data dataframe list containing model response variable covariates required GAM formula. include columns: 'y' (discrete outcomes; NAs allowed) 'series' (character factor index series IDs) 'time' (numeric index time point observation). variables included linear predictor formula must also present data_train Deprecated. Still works place data users recommended use data instead seamless integration R workflows family family specifying exponential observation family series. Currently supported families : nb() count data poisson() count data tweedie() count data (power parameter p fixed 1.5) gaussian() real-valued data betar() proportional data (0,1) lognormal() non-negative real-valued data student_t() real-valued data Gamma() non-negative real-valued data See mvgam_families details use_lv logical. TRUE, use dynamic factors estimate series' latent trends reduced dimension format. FALSE, estimate independent latent trends series n_lv integer number latent dynamic factors use use_lv == TRUE. >n_series. Defaults arbitrarily min(2, floor(n_series / 2)) use_stan Logical. TRUE rstan installed, model compiled sampled using Hamiltonian Monte Carlo call cmdstan_model , cmdstanr available, call stan. Note functionality still development options available JAGS can used, including: option Tweedie family option dynamic factor trends. However, Stan can estimate Hilbert base approximate Gaussian Processes, much computationally tractable full GPs time series >100 observations, estimation Stan can support latent GP trends estimation JAGS trend_model character specifying time series dynamics latent trend. Options : None (latent trend component; .e. GAM component contributes linear predictor, observation process source error; similarly estimated gam) RW (random walk possible drift) AR1 (possible drift) AR2 (possible drift) AR3 (possible drift) VAR1 (contemporaneously uncorrelated VAR1; available Stan) VAR1cor (contemporaneously correlated VAR1; available Stan) GP (Gaussian Process squared exponential kernel; available Stan) See mvgam_trends details trend_map Optional data.frame specifying series depend latent trends. Useful allowing multiple series depend latent trend process, different observation processes. supplied, latent factor model set setting use_lv = TRUE using mapping set shared trends. Needs column names series trend, integer values trend column state trend series depend . series column single unique entry series data (names perfectly match factor levels series variable data). See examples mvgam details drift logical estimate drift parameter latent trend components. Useful latent trend expected broadly follow non-zero slope. Note latent trend less stationary, drift parameter can become unidentifiable, especially intercept term included GAM linear predictor (default calling jagam). Therefore defaults FALSE","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"either data.frame containing prior definitions (suitable priors can altered user) NULL, indicating priors model can modified mvgam interface","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"Users can supply model formula, prior fitting model, default priors can inspected altered. make alterations, change contents prior column supplying data.frame mvgam function using argument priors. using Stan backend, users can also modify parameter bounds modifying new_lowerbound /new_upperbound columns. necessary using restrictive distributions parameters, Beta distribution trend sd parameters example (Beta support (0,1)), upperbound 1","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"prior, new_lowerbound /new_upperbound columns output altered defining user-defined priors mvgam model. Use familiar underlying probabilistic programming language. sanity checks done ensure code legal (.e. check lower bounds smaller upper bounds, example)","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"","code":"# Simulate three integer-valued time series library(mvgam) dat <- sim_mvgam(trend_rel = 0.5) # Get a model file that uses default mvgam priors for inspection (not always necessary, # but this can be useful for testing whether your updated priors are written correctly) mod_default <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, family = 'nb', data = dat$data_train, trend_model = 'AR2', run_model = FALSE) # Inspect the model file with default mvgam priors mod_default$model_file #> [1] \"\" #> [2] \"// Stan model code generated by package mvgam\" #> [3] \"functions {\" #> [4] \"vector rep_each(vector x, int K) {\" #> [5] \"int N = rows(x);\" #> [6] \"vector[N * K] y;\" #> [7] \"int pos = 1;\" #> [8] \"for (n in 1:N) {\" #> [9] \"for (k in 1:K) {\" #> [10] \"y[pos] = x[n];\" #> [11] \"pos += 1;\" #> [12] \"}\" #> [13] \"}\" #> [14] \"return y;\" #> [15] \"}\" #> [16] \"}\" #> [17] \"data {\" #> [18] \"int total_obs; // total number of observations\" #> [19] \"int n; // number of timepoints per series\" #> [20] \"int n_sp; // number of smoothing parameters\" #> [21] \"int n_series; // number of series\" #> [22] \"int num_basis; // total number of basis coefficients\" #> [23] \"vector[num_basis] zero; // prior locations for basis coefficients\" #> [24] \"matrix[total_obs, num_basis] X; // mgcv GAM design matrix\" #> [25] \"int ytimes[n, n_series]; // time-ordered matrix (which col in X belongs to each [time, series] observation?)\" #> [26] \"matrix[8,8] S1; // mgcv smooth penalty matrix S1\" #> [27] \"int n_nonmissing; // number of nonmissing observations\" #> [28] \"int flat_ys[n_nonmissing]; // flattened nonmissing observations\" #> [29] \"matrix[n_nonmissing, num_basis] flat_xs; // X values for nonmissing observations\" #> [30] \"int obs_ind[n_nonmissing]; // indices of nonmissing observations\" #> [31] \"}\" #> [32] \"parameters {\" #> [33] \"// raw basis coefficients\" #> [34] \"vector[num_basis] b_raw;\" #> [35] \"\" #> [36] \"// random effect variances\" #> [37] \"vector[1] sigma_raw;\" #> [38] \"\" #> [39] \"// random effect means\" #> [40] \"vector[1] mu_raw;\" #> [41] \"\" #> [42] \"// negative binomial overdispersion\" #> [43] \"vector[n_series] phi_inv;\" #> [44] \"\" #> [45] \"// latent trend AR1 terms\" #> [46] \"vector[n_series] ar1;\" #> [47] \"\" #> [48] \"// latent trend AR2 terms\" #> [49] \"vector[n_series] ar2;\" #> [50] \"\" #> [51] \"// latent trend variance parameters\" #> [52] \"vector[n_series] sigma;\" #> [53] \"\" #> [54] \"// latent trends\" #> [55] \"matrix[n, n_series] trend;\" #> [56] \"\" #> [57] \"// smoothing parameters\" #> [58] \"vector[n_sp] lambda;\" #> [59] \"}\" #> [60] \"\" #> [61] \"transformed parameters {\" #> [62] \"// basis coefficients\" #> [63] \"vector[num_basis] b;\" #> [64] \"\" #> [65] \"b[1:8] = b_raw[1:8];\" #> [66] \"b[9:11] = mu_raw[1] + b_raw[9:11] * sigma_raw[1];\" #> [67] \"\" #> [68] \"}\" #> [69] \"\" #> [70] \"model {\" #> [71] \"// prior for random effect population variances\" #> [72] \"sigma_raw ~ exponential(0.5);\" #> [73] \"\" #> [74] \"// prior for random effect population means\" #> [75] \"mu_raw ~ std_normal();\" #> [76] \"\" #> [77] \"// prior for s(season)...\" #> [78] \"b_raw[1:8] ~ multi_normal_prec(zero[1:8],S1[1:8,1:8] * lambda[1]);\" #> [79] \"\" #> [80] \"// prior (non-centred) for s(series)...\" #> [81] \"b_raw[9:11] ~ std_normal();\" #> [82] \"\" #> [83] \"// priors for AR parameters\" #> [84] \"ar1 ~ std_normal();\" #> [85] \"ar2 ~ std_normal();\" #> [86] \"\" #> [87] \"// priors for smoothing parameters\" #> [88] \"lambda ~ normal(10, 25);\" #> [89] \"\" #> [90] \"// priors for overdispersion parameters\" #> [91] \"phi_inv ~ student_t(3, 0, 0.1);\" #> [92] \"\" #> [93] \"// priors for latent trend variance parameters\" #> [94] \"sigma ~ exponential(2);\" #> [95] \"\" #> [96] \"// trend estimates\" #> [97] \"trend[1, 1:n_series] ~ normal(0, sigma);\" #> [98] \"trend[2, 1:n_series] ~ normal(trend[1, 1:n_series] * ar1, sigma);\" #> [99] \"for(s in 1:n_series){\" #> [100] \"trend[3:n, s] ~ normal(ar1[s] * trend[2:(n - 1), s] + ar2[s] * trend[1:(n - 2), s], sigma[s]);\" #> [101] \"}\" #> [102] \"\" #> [103] \"{\" #> [104] \"// likelihood functions\" #> [105] \"vector[n_nonmissing] flat_trends;\" #> [106] \"real flat_phis[n_nonmissing];\" #> [107] \"flat_trends = (to_vector(trend))[obs_ind];\" #> [108] \"flat_phis = to_array_1d(rep_each(phi_inv, n)[obs_ind]);\" #> [109] \"flat_ys ~ neg_binomial_2(\" #> [110] \"exp(append_col(flat_xs, flat_trends) * append_row(b, 1.0)),\" #> [111] \"inv(flat_phis));\" #> [112] \"}\" #> [113] \"}\" #> [114] \"\" #> [115] \"generated quantities {\" #> [116] \"vector[total_obs] eta;\" #> [117] \"matrix[n, n_series] mus;\" #> [118] \"vector[n_sp] rho;\" #> [119] \"vector[n_series] tau;\" #> [120] \"array[n, n_series] int ypred;\" #> [121] \"matrix[n, n_series] phi_vec;\" #> [122] \"vector[n_series] phi;\" #> [123] \"phi = inv(phi_inv);\" #> [124] \"for (s in 1:n_series) {\" #> [125] \"phi_vec[1:n,s] = rep_vector(phi[s], n);\" #> [126] \"}\" #> [127] \"\" #> [128] \"rho = log(lambda);\" #> [129] \"for (s in 1:n_series) {\" #> [130] \"tau[s] = pow(sigma[s], -2.0);\" #> [131] \"}\" #> [132] \"\" #> [133] \"// posterior predictions\" #> [134] \"eta = X * b;\" #> [135] \"for(s in 1:n_series){ \" #> [136] \"mus[1:n, s] = eta[ytimes[1:n, s]] + trend[1:n, s];\" #> [137] \"ypred[1:n, s] = neg_binomial_2_rng(exp(mus[1:n, s]), phi_vec[1:n, s]);\" #> [138] \"}\" #> [139] \"}\" #> [140] \"\" # Look at which priors can be updated in mvgam test_priors <- get_mvgam_priors(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, family = 'nb', data = dat$data_train, trend_model = 'AR2') test_priors #> param_name param_length #> 1 vector[n_sp] lambda; 2 #> 2 vector[1] mu_raw; 1 #> 3 vector[1] sigma_raw; 1 #> 4 vector[n_series] ar1; 3 #> 5 vector[n_series] ar2; 3 #> 6 vector[n_series] sigma; 3 #> 7 vector[n_series] phi_inv; 3 #> param_info prior #> 1 s(season) smooth parameters lambda ~ normal(10, 25); #> 2 s(series) pop mean mu_raw ~ std_normal(); #> 3 s(series) pop sd sigma_raw ~ exponential(0.5); #> 4 trend AR1 coefficient ar1 ~ std_normal(); #> 5 trend AR2 coefficient ar2 ~ std_normal(); #> 6 trend sd sigma ~ exponential(2); #> 7 inverse of NB dispsersion phi_inv ~ student_t(3, 0, 0.1); #> example_change new_lowerbound new_upperbound #> 1 lambda ~ exponential(0.83); NA NA #> 2 mu_raw ~ normal(0.76, 0.67); NA NA #> 3 sigma_raw ~ exponential(0.04); NA NA #> 4 ar1 ~ normal(0.25, 0.74); NA NA #> 5 ar2 ~ normal(-0.25, 0.96); NA NA #> 6 sigma ~ exponential(0.41); NA NA #> 7 phi_inv ~ normal(0.75, 0.14); NA NA # Make a few changes; first, change the population mean for the series-level # random intercepts test_priors$prior[2] <- 'mu_raw ~ normal(0.2, 0.5);' # Now use stronger regularisation for the series-level AR2 coefficients test_priors$prior[5] <- 'ar2 ~ normal(0, 0.25);' # Check that the changes are made to the model file without any warnings by # setting 'run_model = FALSE' mod <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, family = 'nb', data = dat$data_train, trend_model = 'AR2', priors = test_priors, run_model = FALSE) code(mod) #> // Stan model code generated by package mvgam #> functions { #> vector rep_each(vector x, int K) { #> int N = rows(x); #> vector[N * K] y; #> int pos = 1; #> for (n in 1:N) { #> for (k in 1:K) { #> y[pos] = x[n]; #> pos += 1; #> } #> } #> return y; #> } #> } #> data { #> int total_obs; // total number of observations #> int n; // number of timepoints per series #> int n_sp; // number of smoothing parameters #> int n_series; // number of series #> int num_basis; // total number of basis coefficients #> vector[num_basis] zero; // prior locations for basis coefficients #> matrix[total_obs, num_basis] X; // mgcv GAM design matrix #> int ytimes[n, n_series]; // time-ordered matrix (which col in X belongs to each [time, series] observation?) #> matrix[8,8] S1; // mgcv smooth penalty matrix S1 #> int n_nonmissing; // number of nonmissing observations #> int flat_ys[n_nonmissing]; // flattened nonmissing observations #> matrix[n_nonmissing, num_basis] flat_xs; // X values for nonmissing observations #> int obs_ind[n_nonmissing]; // indices of nonmissing observations #> } #> parameters { #> // raw basis coefficients #> vector[num_basis] b_raw; #> // random effect variances #> vector[1] sigma_raw; #> // random effect means #> vector[1] mu_raw; #> // negative binomial overdispersion #> vector[n_series] phi_inv; #> // latent trend AR1 terms #> vector[n_series] ar1; #> // latent trend AR2 terms #> vector[n_series] ar2; #> // latent trend variance parameters #> vector[n_series] sigma; #> // latent trends #> matrix[n, n_series] trend; #> // smoothing parameters #> vector[n_sp] lambda; #> } #> transformed parameters { #> // basis coefficients #> vector[num_basis] b; #> b[1:8] = b_raw[1:8]; #> b[9:11] = mu_raw[1] + b_raw[9:11] * sigma_raw[1]; #> } #> model { #> // prior for random effect population variances #> sigma_raw ~ exponential(0.5); #> // prior for random effect population means #> mu_raw ~ normal(0.2, 0.5); #> // prior for s(season)... #> b_raw[1:8] ~ multi_normal_prec(zero[1:8],S1[1:8,1:8] * lambda[1]); #> // prior (non-centred) for s(series)... #> b_raw[9:11] ~ std_normal(); #> // priors for AR parameters #> ar1 ~ std_normal(); #> ar2 ~ normal(0, 0.25); #> // priors for smoothing parameters #> lambda ~ normal(10, 25); #> // priors for overdispersion parameters #> phi_inv ~ student_t(3, 0, 0.1); #> // priors for latent trend variance parameters #> sigma ~ exponential(2); #> // trend estimates #> trend[1, 1:n_series] ~ normal(0, sigma); #> trend[2, 1:n_series] ~ normal(trend[1, 1:n_series] * ar1, sigma); #> for(s in 1:n_series){ #> trend[3:n, s] ~ normal(ar1[s] * trend[2:(n - 1), s] + ar2[s] * trend[1:(n - 2), s], sigma[s]); #> } #> { #> // likelihood functions #> vector[n_nonmissing] flat_trends; #> real flat_phis[n_nonmissing]; #> flat_trends = (to_vector(trend))[obs_ind]; #> flat_phis = to_array_1d(rep_each(phi_inv, n)[obs_ind]); #> flat_ys ~ neg_binomial_2( #> exp(append_col(flat_xs, flat_trends) * append_row(b, 1.0)), #> inv(flat_phis)); #> } #> } #> generated quantities { #> vector[total_obs] eta; #> matrix[n, n_series] mus; #> vector[n_sp] rho; #> vector[n_series] tau; #> array[n, n_series] int ypred; #> matrix[n, n_series] phi_vec; #> vector[n_series] phi; #> phi = inv(phi_inv); #> for (s in 1:n_series) { #> phi_vec[1:n,s] = rep_vector(phi[s], n); #> } #> rho = log(lambda); #> for (s in 1:n_series) { #> tau[s] = pow(sigma[s], -2.0); #> } #> // posterior predictions #> eta = X * b; #> for(s in 1:n_series){ #> mus[1:n, s] = eta[ytimes[1:n, s]] + trend[1:n, s]; #> ypred[1:n, s] = neg_binomial_2_rng(exp(mus[1:n, s]), phi_vec[1:n, s]); #> } #> } # No warnings, the model is ready for fitting now in the usual way with the addition # of the 'priors' argument # Look at what is returned when an incorrect spelling is used test_priors$prior[5] <- 'ar2_bananas ~ normal(0, 0.25);' mod <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, family = 'nb', data = dat$data_train, trend_model = 'AR2', priors = test_priors, run_model = FALSE) #> Warning: no match found in model_file for parameter: ar2_bananas code(mod) #> // Stan model code generated by package mvgam #> functions { #> vector rep_each(vector x, int K) { #> int N = rows(x); #> vector[N * K] y; #> int pos = 1; #> for (n in 1:N) { #> for (k in 1:K) { #> y[pos] = x[n]; #> pos += 1; #> } #> } #> return y; #> } #> } #> data { #> int total_obs; // total number of observations #> int n; // number of timepoints per series #> int n_sp; // number of smoothing parameters #> int n_series; // number of series #> int num_basis; // total number of basis coefficients #> vector[num_basis] zero; // prior locations for basis coefficients #> matrix[total_obs, num_basis] X; // mgcv GAM design matrix #> int ytimes[n, n_series]; // time-ordered matrix (which col in X belongs to each [time, series] observation?) #> matrix[8,8] S1; // mgcv smooth penalty matrix S1 #> int n_nonmissing; // number of nonmissing observations #> int flat_ys[n_nonmissing]; // flattened nonmissing observations #> matrix[n_nonmissing, num_basis] flat_xs; // X values for nonmissing observations #> int obs_ind[n_nonmissing]; // indices of nonmissing observations #> } #> parameters { #> // raw basis coefficients #> vector[num_basis] b_raw; #> // random effect variances #> vector[1] sigma_raw; #> // random effect means #> vector[1] mu_raw; #> // negative binomial overdispersion #> vector[n_series] phi_inv; #> // latent trend AR1 terms #> vector[n_series] ar1; #> // latent trend AR2 terms #> vector[n_series] ar2; #> // latent trend variance parameters #> vector[n_series] sigma; #> // latent trends #> matrix[n, n_series] trend; #> // smoothing parameters #> vector[n_sp] lambda; #> } #> transformed parameters { #> // basis coefficients #> vector[num_basis] b; #> b[1:8] = b_raw[1:8]; #> b[9:11] = mu_raw[1] + b_raw[9:11] * sigma_raw[1]; #> } #> model { #> // prior for random effect population variances #> sigma_raw ~ exponential(0.5); #> // prior for random effect population means #> mu_raw ~ normal(0.2, 0.5); #> // prior for s(season)... #> b_raw[1:8] ~ multi_normal_prec(zero[1:8],S1[1:8,1:8] * lambda[1]); #> // prior (non-centred) for s(series)... #> b_raw[9:11] ~ std_normal(); #> // priors for AR parameters #> ar1 ~ std_normal(); #> ar2 ~ std_normal(); #> // priors for smoothing parameters #> lambda ~ normal(10, 25); #> // priors for overdispersion parameters #> phi_inv ~ student_t(3, 0, 0.1); #> // priors for latent trend variance parameters #> sigma ~ exponential(2); #> // trend estimates #> trend[1, 1:n_series] ~ normal(0, sigma); #> trend[2, 1:n_series] ~ normal(trend[1, 1:n_series] * ar1, sigma); #> for(s in 1:n_series){ #> trend[3:n, s] ~ normal(ar1[s] * trend[2:(n - 1), s] + ar2[s] * trend[1:(n - 2), s], sigma[s]); #> } #> { #> // likelihood functions #> vector[n_nonmissing] flat_trends; #> real flat_phis[n_nonmissing]; #> flat_trends = (to_vector(trend))[obs_ind]; #> flat_phis = to_array_1d(rep_each(phi_inv, n)[obs_ind]); #> flat_ys ~ neg_binomial_2( #> exp(append_col(flat_xs, flat_trends) * append_row(b, 1.0)), #> inv(flat_phis)); #> } #> } #> generated quantities { #> vector[total_obs] eta; #> matrix[n, n_series] mus; #> vector[n_sp] rho; #> vector[n_series] tau; #> array[n, n_series] int ypred; #> matrix[n, n_series] phi_vec; #> vector[n_series] phi; #> phi = inv(phi_inv); #> for (s in 1:n_series) { #> phi_vec[1:n,s] = rep_vector(phi[s], n); #> } #> rho = log(lambda); #> for (s in 1:n_series) { #> tau[s] = pow(sigma[s], -2.0); #> } #> // posterior predictions #> eta = X * b; #> for(s in 1:n_series){ #> mus[1:n, s] = eta[ytimes[1:n, s]] + trend[1:n, s]; #> ypred[1:n, s] = neg_binomial_2_rng(exp(mus[1:n, s]), phi_vec[1:n, s]); #> } #> }"},{"path":"https://nicholasjclark.github.io/mvgam/reference/hindcast.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","title":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","text":"Extract hindcasts fitted mvgam object","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/hindcast.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","text":"","code":"hindcast(object, ...) # S3 method for mvgam hindcast(object, series = \"all\", type = \"response\", ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/hindcast.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","text":"object list object returned mvgam. See mvgam() ... Ignored series Either integer specifying series set forecast, character string '', specifying series forecast. preferable fitted model contained multivariate trends (either dynamic factor VAR process), saves recomputing full set trends series individually type value link, linear predictor calculated log link scale. response used, predictions take uncertainty observation process account return predictions outcome (discrete) scale (default). trend used, hindcast distribution latent trend returned","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/hindcast.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","text":"object class mvgam_forecast containing hindcast distributions. See mvgam_forecast-class details.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/hindcast.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","text":"Posterior retrodictions drawn fitted mvgam organized convenient format","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/index-mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Index mvgam objects — index-mvgam","title":"Index mvgam objects — index-mvgam","text":"Index mvgam objects","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/index-mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Index mvgam objects — index-mvgam","text":"","code":"# S3 method for mvgam variables(x, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/index-mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Index mvgam objects — index-mvgam","text":"x list object class mvgam ... Arguments passed individual methods (applicable).","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"Approximate leave-future-cross-validation fitted mvgam objects","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"","code":"lfo_cv(object, ...) # S3 method for mvgam lfo_cv( object, data, min_t, fc_horizon = 1, pareto_k_threshold = 0.7, n_cores = 1, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"object list object returned mvgam. See mvgam() ... Ignored data dataframe list containing model response variable covariates required GAM formula. include columns: 'series' (character factor index series IDs) 'time' (numeric index time point observation). variables included linear predictor formula must also present min_t Integer specifying minimum training time required making predictions data. Default either 30, whatever training time allows least 10 lfo-cv calculations (.e. pmin(max(data$time) - 10, 30)) fc_horizon Integer specifying number time steps ahead evaluating forecasts pareto_k_threshold Proportion specifying threshold Pareto shape parameter considered unstable, triggering model refit. Default 0.7 n_cores integer specifying number cores calculating likelihoods parallel","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"list class mvgam_lfo containing approximate ELPD scores, Pareto-k shape values 'specified pareto_k_threshold","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"Approximate leave-future-cross-validation uses expanding training window scheme evaluate model forecasting ability. steps used function mirror laid lfo vignette loo package, written Paul Bürkner, Jonah Gabry, Aki Vehtari. First, refit model using first min_t observations perform single exact fc_horizon-ahead forecast step. forecast evaluated min_t + fc_horizon sample observations using Expected Log Predictive Density (ELPD). Next, approximate successive round expanding window forecasts moving forward one step time 1:N_evaluations re-weighting draws model's posterior predictive distribution using Pareto Smoothed Importance Sampling (PSIS). iteration , PSIS weights obtained next observation included model re-fit (.e. last observation training data, min_t + ). importance ratios stable, consider approximation adequate use re-weighted posterior's forecast evaluating next holdout set testing observations ((min_t + + 1):(min_t + + fc_horizon)). point importance ratio variability become large importance sampling fail. indicated estimated shape parameter k generalized Pareto distribution crossing certain threshold pareto_k_threshold. refit model using observations time failure. restart process iterate forward next refit triggered (Bürkner et al. 2020).","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"Paul-Christian Bürkner, Jonah Gabry & Aki Vehtari (2020). Approximate leave-future-cross-validation Bayesian time series models Journal Statistical Computation Simulation. 90:14, 2499-2523.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/logLik.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute pointwise Log-Likelihoods from fitted mvgam objects — logLik.mvgam","title":"Compute pointwise Log-Likelihoods from fitted mvgam objects — logLik.mvgam","text":"Compute pointwise Log-Likelihoods fitted mvgam objects","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/logLik.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute pointwise Log-Likelihoods from fitted mvgam objects — logLik.mvgam","text":"","code":"# S3 method for mvgam logLik(object, n_cores = 1, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/logLik.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute pointwise Log-Likelihoods from fitted mvgam objects — logLik.mvgam","text":"object list object returned mvgam n_cores integer specifying number cores calculating likelihoods parallel ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/logLik.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute pointwise Log-Likelihoods from fitted mvgam objects — logLik.mvgam","text":"matrix dimension n_samples x n_observations containing pointwise log-likelihood draws observations (training observations , supplied original model via newdata argument mvgam, testing observations)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lv_correlations.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate trend correlations based on mvgam latent factor loadings — lv_correlations","title":"Calculate trend correlations based on mvgam latent factor loadings — lv_correlations","text":"function uses samples latent trends series fitted mvgam model calculates correlations among series' trends","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lv_correlations.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate trend correlations based on mvgam latent factor loadings — lv_correlations","text":"","code":"lv_correlations(object)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/lv_correlations.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate trend correlations based on mvgam latent factor loadings — lv_correlations","text":"object list object returned mvgam","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lv_correlations.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate trend correlations based on mvgam latent factor loadings — lv_correlations","text":"list object containing mean posterior correlations full array posterior correlations","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Fitted mvgam object description — mvgam-class","title":"Fitted mvgam object description — mvgam-class","text":"fitted mvgam object returned function mvgam. Run methods(class = \"mvgam\") see overview available methods.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam-class.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fitted mvgam object description — mvgam-class","text":"mvgam object contains following elements: call original observation model formula trend_call trend_formula supplied, original trend model formula returned. Otherwise NULL family character description observation distribution trend_model character description latent trend model trend_map data.frame describing mapping trend states observations, supplied original model. Otherwise NULL drift Logical specifying whether drift term used trend model priors model priors updated defaults, prior dataframe returned. Otherwise NULL model_output MCMC object returned fitting engine. model fitted using Stan, object class stanfit (see stanfit-class details). JAGS used backend, object class runjags (see runjags-class details) model_file character string model file used describe model either Stan JAGS syntax model_data return_model_data set TRUE fitting model, list object containing data objects needed condition model returned. item list described detail top model_file. Otherwise NULL inits return_model_data set TRUE fitting model, initial value functions used initialise MCMC chains returned. Otherwise NULL monitor_pars parameters monitored MCMC sampling returned character vector sp_names character vector specifying names smoothing parameter mgcv_model object class gam containing mgcv version observation model. object used generating linear predictor matrix making predictions new data. coefficients model object contain posterior median coefficients GAM linear predictor, used generating plots smooth functions mvgam currently handle (plots three-dimensional smooths). model therefore used inference. See gamObject details trend_mgcv_model trend_formula supplied, object class gam containing mgcv version trend model. Otherwise NULL ytimes matrix object used model fitting indexing series timepoints observed row supplied data. Used internally downstream plotting prediction functions resids named list object containing posterior draws Dunn-Smyth randomized quantile residuals use_lv Logical flag indicating whether latent dynamic factors used model n_lv use_lv == TRUE, number latent dynamic factors used model upper_bounds bounds supplied original model fit, returned. Otherwise NULL obs_data original data object (either list dataframe) supplied model fitting. test_data test data supplied (argument newdata original model), returned. Othwerise NULL fit_engine Character describing fit engine, either stan jags max_treedepth model fitted using Stan, value supplied maximum treedepth tuning parameter returned (see stan details). Otherwise NULL adapt_delta model fitted using Stan, value supplied adapt_delta tuning parameter returned (see stan details). Otherwise NULL","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Fitted mvgam object description — mvgam-class","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"function estimates posterior distribution Generalised Additive Models (GAMs) can include smooth spline functions, specified GAM formula, well latent temporal processes, specified trend_model. currently two options specifying structures trends (either latent dynamic factors capture trend dependencies among series reduced dimension format, independent trends)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"","code":"mvgam( formula, trend_formula, knots, trend_knots, data, data_train, newdata, data_test, run_model = TRUE, prior_simulation = FALSE, return_model_data = FALSE, family = \"poisson\", use_lv = FALSE, n_lv, trend_map, trend_model = \"None\", drift = FALSE, chains = 4, burnin = 500, samples = 500, thin = 1, parallel = TRUE, threads = 1, priors, upper_bounds, refit = FALSE, use_stan = TRUE, max_treedepth, adapt_delta, jags_path )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"formula character string specifying GAM observation model formula. exactly like formula GLM except smooth terms, s, te, ti t2, can added right hand side specify linear predictor depends smooth functions predictors (linear functionals ). trend_formula optional character string specifying GAM process model formula. supplied, linear predictor modelled latent trends capture process model evolution separately observation model. response variable specified left-hand side formula (.e. valid option ~ season + s(year)). feature experimental, currently available Random Walk trend models. knots optional list containing user specified knot values used basis construction. bases user simply supplies knots used, must match k value supplied (note number knots always just k). Different terms can use different numbers knots, unless share covariate. trend_knots knots , optional list knot values smooth functions within trend_formula data dataframe list containing model response variable covariates required GAM formula. include columns: series (character factor index series IDs) time (numeric index time point observation). variables included linear predictor formula must also present data_train Deprecated. Still works place data users recommended use data instead seamless integration R workflows newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor formula. included, observations variable y set NA fitting model posterior simulations can obtained data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows run_model logical. FALSE, model fitted instead function return model file data / initial values needed fit model outside mvgam prior_simulation logical. TRUE, observations fed model, instead simulations prior distributions returned return_model_data logical. TRUE, list data needed fit model returned, along initial values smooth AR parameters, model fitted. helpful users wish modify model file add stochastic elements currently avaiable mvgam. Default FALSE reduce size returned object, unless run_model == FALSE family family specifying exponential observation family series. Currently supported families : nb() count data poisson() count data tweedie() count data (power parameter p fixed 1.5) gaussian() real-valued data betar() proportional data (0,1) lognormal() non-negative real-valued data student_t() real-valued data Gamma() non-negative real-valued data See mvgam_families details use_lv logical. TRUE, use dynamic factors estimate series' latent trends reduced dimension format. FALSE, estimate independent latent trends series n_lv integer number latent dynamic factors use use_lv == TRUE. >n_series. Defaults arbitrarily min(2, floor(n_series / 2)) trend_map Optional data.frame specifying series depend latent trends. Useful allowing multiple series depend latent trend process, different observation processes. supplied, latent factor model set setting use_lv = TRUE using mapping set shared trends. Needs column names series trend, integer values trend column state trend series depend . series column single unique entry series data (names perfectly match factor levels series variable data). See examples details trend_model character specifying time series dynamics latent trend. Options : None (latent trend component; .e. GAM component contributes linear predictor, observation process source error; similarly estimated gam) RW (random walk possible drift) AR1 (possible drift) AR2 (possible drift) AR3 (possible drift) VAR1 (contemporaneously uncorrelated VAR1; available Stan) VAR1cor (contemporaneously correlated VAR1; available Stan) GP (Gaussian Process squared exponential kernel; available Stan) See mvgam_trends details drift logical estimate drift parameter latent trend components. Useful latent trend expected broadly follow non-zero slope. Note latent trend less stationary, drift parameter can become unidentifiable, especially intercept term included GAM linear predictor (default calling jagam). Drift parameters also likely unidentifiable using dynamic factor models. Therefore defaults FALSE chains integer specifying number parallel chains model burnin integer specifying number warmup iterations Markov chain run tune sampling algorithms samples integer specifying number post-warmup iterations Markov chain run sampling posterior distribution thin Thinning interval monitors parallel logical specifying whether multiple cores used generating MCMC simulations parallel. TRUE, number cores use min(c(chains, parallel::detectCores() - 1)) threads integer Experimental option use multithreading within-chain parallelisation Stan. recommend use experienced Stan's reduce_sum function slow running model sped means. available using Cmdstan backend priors optional data.frame prior definitions (JAGS Stan syntax). See get_mvgam_priors 'Details' information changing default prior distributions upper_bounds Optional vector integer values specifying upper limits series. supplied, generates modified likelihood values bound given likelihood zero. Note modification computationally expensive JAGS can lead better estimates true bounds exist. Default remove truncation entirely (.e. upper bound series). Currently implemented Stan refit Logical indicating whether refit, called using update.mvgam. Users leave FALSE use_stan Logical. TRUE rstan installed, model compiled sampled using Hamiltonian Monte Carlo call cmdstan_model , cmdstanr available, call stan. Note many options using Stan vs JAGS (\"advantage\" JAGS ability use Tweedie family). max_treedepth positive integer placing cap number simulation steps evaluated iteration use_stan == TRUE. Default 12. Increasing value can sometimes help exploration complex posterior geometries, rarely fruitful go max_treedepth 14 adapt_delta positive numeric 0 1 defining target average proposal acceptance probability Stan's adaptation period, use_stan == TRUE. Default 0.8. general need change adapt_delta unless see warning message divergent transitions, case can increase adapt_delta default value closer 1 (e.g. 0.95 0.99, 0.99 0.999, etc). step size used numerical integrator function adapt_delta increasing adapt_delta result smaller step size fewer divergences. Increasing adapt_delta typically result slower sampler, always lead robust sampler. jags_path Optional character vector specifying path location JAGS executable (.exe) use modelling use_stan == FALSE. missing, path recovered call findjags","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"list object class mvgam containing model output, text representation model file, mgcv model output (easily generating simulations unsampled covariate values), Dunn-Smyth residuals series key information needed functions package. See mvgam-class details.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"Dynamic GAMs useful wish predict future values time series show temporal dependence want rely extrapolating smooth term (can sometimes lead unpredictable unrealistic behaviours). addition, smooths can often try wiggle excessively capture autocorrelation present time series, exacerbates problem forecasting ahead. GAMs naturally viewed Bayesian lens, often must model time series show complex distributional features missing data, parameters mvgam models estimated Bayesian framework using Markov Chain Monte Carlo. Priors: jagam model file generated formula modified include latent temporal processes. Prior distributions important model parameters can altered user inspect model sensitivities given priors (see get_mvgam_priors details). Note latent trends estimated log scale choose tau, AR phi priors accordingly. However control model specification can accomplished first using mvgam baseline, editing returned model accordingly. model file can edited run outside mvgam setting run_model = FALSE encouraged complex modelling tasks. Note, priors formally checked ensure right syntax respective probabilistic modelling framework, user ensure correct (.e. use dnorm normal densities JAGS, mean precision parameterisation; use normal normal densities Stan, mean standard deviation parameterisation) Random effects: smooth terms using random effect basis (smooth.construct.re.smooth.spec), non-centred parameterisation automatically employed avoid degeneracies common hierarchical models. Note however centred versions may perform better series particularly informative, foray Bayesian modelling, worth building understanding model's assumptions limitations following principled workflow. Also note models parameterised using drop.unused.levels = FALSE jagam ensure predictions can made levels supplied factor variable Overdispersion parameters: one series included data_train overdispersed exponential family used, additional observation family parameters (.e. phi nb() sigma gaussian()) estimated independently series. Factor regularisation: using dynamic factor model trends JAGS factor precisions given regularized penalty priors theoretically allow factors dropped model squeezing increasing factors' variances zero. done help protect selecting many latent factors needed capture dependencies data, can often advantageous set n_lv slightly larger number. However larger numbers factors come additional computational costs balanced well. using Stan, factors parameterised sd = 0.1 Residuals: series, randomized quantile (.e. Dunn-Smyth) residuals calculated inspecting model diagnostics fitted model appropriate Dunn-Smyth residuals standard normal distribution autocorrelation evident. particular observation missing, residual calculated comparing independent draws model's posterior distribution Using Stan: mvgam primarily designed use Hamiltonian Monte Carlo parameter estimation via software Stan (using either cmdstanr rstan interface). great advantages using Stan Gibbs / Metropolis Hastings samplers, includes option estimate smooth latent trends via Hilbert space approximate Gaussian Processes. often makes sense ecological series, expect change smoothly. mvgam, latent squared exponential GP trends approximated using default 40 basis functions, saves computational costs compared fitting full GPs adequately estimating GP alpha rho parameters. many advantages Stan JAGS, development package applied Stan. includes planned addition response distributions, plans handle zero-inflation, plans incorporate greater variety trend models. Users strongly encouraged opt Stan JAGS proceeding workflows","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"Nicholas J Clark & Konstans Wells (2020). Dynamic generalised additive models (DGAMs) forecasting discrete ecological time series. Methods Ecology Evolution. 14:3, 771-784.","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"","code":"if (FALSE) { # Simulate a collection of three time series that have shared seasonal dynamics dat <- sim_mvgam(T = 80, n_series = 3, prop_missing = 0.1, trend_rel = 0.6) # Plot key summary statistics for a single series plot_mvgam_series(data = dat$data_train, series = 1) # Plot all series together plot_mvgam_series(data = dat$data_train, series = 'all') # Formulate a model using Stan where series share a cyclic smooth for # seasonality and each series has an independent random walk temporal process; # Set run_model = FALSE to inspect the returned objects mod1 <- mvgam(formula = y ~ s(season, bs = 'cc'), data = dat$data_train, trend_model = 'RW', family = 'poisson', use_stan = TRUE, run_model = FALSE) # View the model code in Stan language code(mod1) # Inspect the data objects needed to condition the model str(mod1$model_data) # Inspect the initial value function used to initialise the MCMC chains mod1$inits # The following code can be used to run the model outside of mvgam; first using rstan model_data <- mod1$model_data library(rstan) fit <- stan(model_code = mod1$model_file, data = model_data, init = mod1$inits) # Now using cmdstanr library(cmdstanr) model_data <- mod1$model_data cmd_mod <- cmdstan_model(write_stan_file(mod1$model_file), stanc_options = list('canonicalize=deprecations,braces,parentheses')) cmd_mod$print() fit <- cmd_mod$sample(data = model_data, chains = 4, parallel_chains = 4, refresh = 100, init = mod1$inits) # Now fit the model using mvgam with the Stan backend mod1 <- mvgam(formula = y ~ s(season, bs = 'cc'), data = dat$data_train, trend_model = 'RW', family = poisson(), use_stan = TRUE) # Extract the model summary summary(mod1) # Plot the estimated historical trend and forecast for one series plot(mod1, type = 'trend', series = 1) plot(mod1, type = 'forecast', series = 1) # Compute the forecast using covariate information in data_test plot(object = mod1, type = 'trend', newdata = dat$data_test, series = 1) plot(object = mod1, type = 'forecast', newdata = dat$data_test, series = 1) # Plot the estimated seasonal smooth function plot(mod1, type = 'smooths') # Plot estimated first derivatives of the smooth plot(mod1, type = 'smooths', derivatives = TRUE) # Plot partial residuals of the smooth plot(mod1, type = 'smooths', residuals = TRUE) # Plot posterior realisations for the smooth plot(mod1, type = 'smooths', realisations = TRUE) # Extract observation model beta coefficient draws as a data.frame beta_draws_df <- as.data.frame(mod1, variable = 'betas') head(beta_draws_df) str(beta_draws_df) # Example of supplying a trend_map so that some series can share # latent trend processes sim <- sim_mvgam(n_series = 3) mod_data <- sim$data_train # Here, we specify only two latent trends; series 1 and 2 share a trend, # while series 3 has it's own unique latent trend trend_map <- data.frame(series = unique(mod_data$series), trend = c(1,1,2)) # Fit the model using AR1 trends mod1 <- mvgam(y ~ s(season, bs = 'cc'), trend_map = trend_map, trend_model = 'AR1', data = mod_data, return_model_data = TRUE) # The mapping matrix is now supplied as data to the model in the 'Z' element mod1$model_data$Z code(mod1) # The first two series share an identical latent trend; the third is different plot(mod1, type = 'trend', series = 1) plot(mod1, type = 'trend', series = 2) plot(mod1, type = 'trend', series = 3) # Example of how to use dynamic coefficients # Simulate a time-varying coefficient for the effect of temperature set.seed(3) N = 200 beta_temp <- vector(length = N) beta_temp[1] <- 0.4 for(i in 2:N){ beta_temp[i] <- rnorm(1, mean = beta_temp[i - 1], sd = 0.025) } # Simulate the temperature covariate temp <- rnorm(N, sd = 1) # Simulate the Gaussian observation process out <- rnorm(N, mean = 4 + beta_temp * temp, sd = 0.5) # Gather necessary data into a data.frame; split into training / testing data = data.frame(out, temp, time = seq_along(temp)) data_train <- data[1:180,] data_test <- data[181:200,] # Fit the model using the dynamic() formula helper mod <- mvgam(formula = out ~ dynamic(temp, rho = 8), family = gaussian(), data = data_train, newdata = data_test) # Inspect the model summary, forecast and time-varying coefficient distribution summary(mod) plot(mod, type = 'smooths') plot(mod, type = 'forecast', newdata = data_test) # Propagating the smooth term shows how the coefficient is expected to evolve plot_mvgam_smooth(mod, smooth = 1, newdata = data) abline(v = 180, lty = 'dashed', lwd = 2) # Example showing how to incorporate an offset; simulate some count data # with different means per series set.seed(100) dat <- sim_mvgam(trend_rel = 0, mu = c(0, 2, 2), seasonality = 'hierarchical') # Add offset terms to the training and testing data dat$data_train$offset <- 0.5 * as.numeric(dat$data_train$series) dat$data_test$offset <- 0.5 * as.numeric(dat$data_test$series) # Fit a model that includes the offset in the linear predictor as well as # hierarchical seasonal smooths mod1 <- mvgam(formula = y ~ offset(offset) + s(series, bs = 're') + s(season, bs = 'cc') + s(season, by = series, m = 1, k = 5), data = dat$data_train, trend_model = 'None', use_stan = TRUE) # Inspect the model file to see the modification to the linear predictor # (eta) mod1$model_file # Forecasts for the first two series will differ in magnitude layout(matrix(1:2, ncol = 2)) plot(mod1, type = 'forecast', series = 1, newdata = dat$data_test, ylim = c(0, 75)) plot(mod1, type = 'forecast', series = 2, newdata = dat$data_test, ylim = c(0, 75)) layout(1) # Changing the offset for the testing data should lead to changes in # the forecast dat$data_test$offset <- dat$data_test$offset - 2 plot(mod1, 'forecast', newdata = dat$data_test) # Relative Risks can be computed by fixing the offset to the same value # for each series dat$data_test$offset <- rep(1, NROW(dat$data_test)) preds_rr <- predict(mod1, type = 'link', newdata = dat$data_test) series1_inds <- which(dat$data_test$series == 'series_1') series2_inds <- which(dat$data_test$series == 'series_2') # Relative Risks are now more comparable among series layout(matrix(1:2, ncol = 2)) plot(preds_rr[1, series1_inds], type = 'l', col = 'grey75', ylim = range(preds_rr), ylab = 'Series1 Relative Risk', xlab = 'Time') for(i in 2:50){ lines(preds_rr[i, series1_inds], col = 'grey75') } plot(preds_rr[1, series2_inds], type = 'l', col = 'darkred', ylim = range(preds_rr), ylab = 'Series2 Relative Risk', xlab = 'Time') for(i in 2:50){ lines(preds_rr[i, series2_inds], col = 'darkred') } layout(1) }"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_draws.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract posterior draws from fitted mvgam objects — mvgam_draws","title":"Extract posterior draws from fitted mvgam objects — mvgam_draws","text":"Extract posterior draws conventional formats data.frames, matrices, arrays.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_draws.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract posterior draws from fitted mvgam objects — mvgam_draws","text":"","code":"# S3 method for mvgam as.data.frame( x, row.names = NULL, optional = TRUE, variable = \"betas\", regex = FALSE, ... ) # S3 method for mvgam as.matrix(x, variable = \"betas\", regex = FALSE, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_draws.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract posterior draws from fitted mvgam objects — mvgam_draws","text":"x list object class mvgam row.names Ignored optional Ignored variable character specifying parameters extract. Can either one following options: obs_params (parameters specific observation model, overdispsersions negative binomial models observation error SD gaussian / student-t models) betas (beta coefficients GAM observation model linear predictor; default) smooth_params (smoothing parameters GAM observation model) linpreds (estimated linear predictors whatever link scale used model) trend_params (parameters governing trend dynamics, AR parameters, trend SD parameters Gaussian Process parameters) trend_betas (beta coefficients GAM latent process model linear predictor; available trend_formula supplied original model) trend_smooth_params (process model GAM smoothing parameters; available trend_formula supplied original model) trend_linpreds (process model linear predictors identity scale; available trend_formula supplied original model) can character vector providing variables extract regex Logical. using one prespecified options extractions, variable treated (vector ) regular expressions? variable x matching least one regular expressions selected. Defaults FALSE. ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_draws.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract posterior draws from fitted mvgam objects — mvgam_draws","text":"data.frame, matrix, array containing posterior draws.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_draws.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract posterior draws from fitted mvgam objects — mvgam_draws","text":"","code":"if (FALSE) { sim <- sim_mvgam(family = Gamma()) mod1 <- mvgam(y ~ s(season, bs = 'cc'), trend_model = 'AR1', data = sim$data_train, family = Gamma()) beta_draws_df <- as.data.frame(mod1, variable = 'betas') head(beta_draws_df) str(beta_draws_df) beta_draws_mat <- as.data.frame(mod1, variable = 'betas') head(beta_draws_mat) str(beta_draws_mat)}"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_families.html","id":null,"dir":"Reference","previous_headings":"","what":"Supported mvgam families — mvgam_families","title":"Supported mvgam families — mvgam_families","text":"Supported mvgam families","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_families.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Supported mvgam families — mvgam_families","text":"","code":"tweedie(link = \"log\") student_t(link = \"identity\")"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_families.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Supported mvgam families — mvgam_families","text":"link specification family link function. present changed","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_families.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Supported mvgam families — mvgam_families","text":"mvgam currently supports following standard observation families: gaussian real-valued data poisson count data Gamma non-negative real-valued data addition, following extended families mgcv package supported: betar proportional data (0,1) nb count data Finally, mvgam supports three extended families described : lognormal non-negative real-valued data tweedie count data (power parameter p fixed 1.5) student-t real-valued data Note poisson(), nb(), tweedie() available using JAGS. families, apart tweedie(), supported using Stan.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_families.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Supported mvgam families — mvgam_families","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_forecast-class.html","id":null,"dir":"Reference","previous_headings":"","what":"mvgam_forecast object description — mvgam_forecast-class","title":"mvgam_forecast object description — mvgam_forecast-class","text":"mvgam_forecast object returned function hindcast forecast. Run methods(class = \"mvgam_forecast\") see overview available methods.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_forecast-class.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"mvgam_forecast object description — mvgam_forecast-class","text":"mvgam_forecast object contains following elements: call original observation model formula trend_call trend_formula supplied, original trend model formula returned. Otherwise NULL family character description observation distribution trend_model character description latent trend model drift Logical specifying whether drift term used trend model use_lv Logical flag indicating whether latent dynamic factors used model fit_engine Character describing fit engine, either stan jags type type predictions included (either link, response trend) series_names Names time series, taken levels(data$series) original model fit train_observations list training observation vectors length n_series test_observations forecast function used, list test observation vectors length n_series. Otherwise NULL hindcasts list posterior hindcast distributions length n_series. forecasts forecast function used, list posterior forecast distributions length n_series. Otherwise NULL","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_forecast-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"mvgam_forecast object description — mvgam_forecast-class","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_trends.html","id":null,"dir":"Reference","previous_headings":"","what":"Supported mvgam trend models — mvgam_trends","title":"Supported mvgam trend models — mvgam_trends","text":"Supported mvgam trend models","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_trends.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Supported mvgam trend models — mvgam_trends","text":"mvgam currently supports following dynamic trend models: RW Random Walk AR1 Autoregressive model AR coefficient lag 1 AR2 Autoregressive model AR coefficients lags 1 2 AR3 Autoregressive model AR coefficients lags 1, 2 3 VAR1 Vector Autoregressive model VAR coefficients lag 1; contemporaneously uncorrelated process errors VAR1cor Vector Autoregressive model VAR coefficients lag 1; contemporaneously correlated process errors GP Squared exponential Gaussian Process None latent trend fitted Dynamic factor models can used latent factors evolve either RW, AR1, AR2, AR3 GP. Note RW, AR1, AR2 AR3 available using JAGS. trend models supported using Stan. multivariate trend models (.e. VAR VARcor models), users can either fix trend error covariances 0 (using VAR) estimate potentially allow contemporaneously correlated errors using VARcor. VAR models, stationarity latent process enforced prior using parameterisation given Heaps (2022). Stationarity enforced using AR1, AR2 AR3 models, though can changed user specifying lower upper bounds autoregressive parameters using functionality get_mvgam_priors priors argument mvgam","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_trends.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Supported mvgam trend models — mvgam_trends","text":"Sarah E. Heaps (2022) Enforcing stationarity prior Vector Autoregressions. Journal Computational Graphical Statistics. 32:1, 1-10.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_fc.html","id":null,"dir":"Reference","previous_headings":"","what":"Forecast from a particle filtered mvgam object — pfilter_mvgam_fc","title":"Forecast from a particle filtered mvgam object — pfilter_mvgam_fc","text":"function generates forecast set particles capture unique proposal current state system modelled mvgam object. covariate timepoint information data_test used generate GAM component forecast, trends run forward time according state space dynamics. forecast weighted ensemble, weights determined particle's proposal likelihood prior recent assimilation step","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_fc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Forecast from a particle filtered mvgam object — pfilter_mvgam_fc","text":"","code":"pfilter_mvgam_fc( file_path = \"pfilter\", n_cores = 2, newdata, data_test, plot_legend = TRUE, legend_position = \"topleft\", ylim, return_forecasts = FALSE )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_fc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Forecast from a particle filtered mvgam object — pfilter_mvgam_fc","text":"file_path character string specifying file path particles saved n_cores integer specifying number cores generating particle forecasts parallel newdata dataframe list test data containing least 'series' time', addition variables included linear predictor formula data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows plot_legend logical stating whether include legend highlight observations used calibration assimilated particle filter legend_position legend location may specified setting x single keyword list \"bottomright\", \"bottom\", \"bottomleft\", \"left\", \"topleft\", \"top\", \"topright\", \"right\" \"center\". places legend inside plot frame given location. ylim Optional vector y-axis limits (min, max). limits used plots return_forecasts logical. TRUE, returned list object contain plots forecasts well forecast objects (matrix dimension n_particles x horizon)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_fc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Forecast from a particle filtered mvgam object — pfilter_mvgam_fc","text":"named list containing functions call base R plots series' forecast. Optionally actual forecasts returned within list separate list matrices","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_init.html","id":null,"dir":"Reference","previous_headings":"","what":"Initiate particles for online filtering from a fitted mvgam object — pfilter_mvgam_init","title":"Initiate particles for online filtering from a fitted mvgam object — pfilter_mvgam_init","text":"function generates set particles captures unique proposal current state system. next observation data_assim assimilated particles weighted proposal's multivariate composite likelihood update model's forecast distribution","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_init.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Initiate particles for online filtering from a fitted mvgam object — pfilter_mvgam_init","text":"","code":"pfilter_mvgam_init( object, newdata, data_assim, n_particles = 1000, file_path = \"pfilter\", n_cores = 2 )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_init.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Initiate particles for online filtering from a fitted mvgam object — pfilter_mvgam_init","text":"object list object returned mvgam newdata dataframe list test data containing least one observation per series (beyond last observation seen model object) assimilated particle filter. least contain 'series' 'time' one-step ahead horizon, addition variables included linear predictor object data_assim Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows n_particles integer specifying number unique particles generate tracking latent system state file_path character string specifying file path saving initiated particles n_cores integer specifying number cores generating particle forecasts parallel","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_init.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Initiate particles for online filtering from a fitted mvgam object — pfilter_mvgam_init","text":"list object length = n_particles containing information parameters current state estimates particle generated saved, along important information original model, .rda object file_path","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_online.html","id":null,"dir":"Reference","previous_headings":"","what":"Automatic online particle filtering for assimilating new observations into a fitted mvgam model — pfilter_mvgam_online","title":"Automatic online particle filtering for assimilating new observations into a fitted mvgam model — pfilter_mvgam_online","text":"function operates sequentially new observations data_assim update posterior forecast distribution. wrapper calls pfilter_mvgam_smooth. iteration, next observation assimilated particles weighted proposal's multivariate composite likelihood","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_online.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Automatic online particle filtering for assimilating new observations into a fitted mvgam model — pfilter_mvgam_online","text":"","code":"pfilter_mvgam_online( newdata, data_assim, file_path = \"pfilter\", threshold = 0.5, use_resampling = FALSE, kernel_lambda = 0.25, n_cores = 1 )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_online.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Automatic online particle filtering for assimilating new observations into a fitted mvgam model — pfilter_mvgam_online","text":"newdata dataframe list test data containing least one observation per series (beyond last observation seen model initialising particles pfilter_mvgam_init previous calls pfilter_mvgam_online. least contain 'series' 'time' one-step ahead horizon, addition variables included linear predictor object data_assim Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows file_path character string specifying file path locating particles threshold proportional numeric specifying Effective Sample Size limit resampling particles triggered (calculated ESS / n_particles) use_resampling == TRUE. 0 1 use_resampling logical specifying whether resampling used ESS falls specified threshold. Default option FALSE, relying instead kernel smoothing maintain particle diversity kernel_lambda proportional numeric specifying strength kernel smoothing use pulling low weight particles toward high likelihood state space. 0 1 n_cores integer specifying number cores generating particle forecasts parallel","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_online.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Automatic online particle filtering for assimilating new observations into a fitted mvgam model — pfilter_mvgam_online","text":"list object length = n_particles containing information parameters current state estimates particle generated saved, along important information original model, .rda object file_path","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_smooth.html","id":null,"dir":"Reference","previous_headings":"","what":"Assimilate new observations into a fitted mvgam model using resampling and kernel smoothing — pfilter_mvgam_smooth","title":"Assimilate new observations into a fitted mvgam model using resampling and kernel smoothing — pfilter_mvgam_smooth","text":"function operates new observation next_assim update posterior forecast distribution. next observation assimilated particle weights updated light recent multivariate composite likelihood. Low weight particles smoothed towards high weight state space using importance sampling, options given using resampling high weight particles Effective Sample Size falls user-specified threshold","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_smooth.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assimilate new observations into a fitted mvgam model using resampling and kernel smoothing — pfilter_mvgam_smooth","text":"","code":"pfilter_mvgam_smooth( particles, mgcv_model, next_assim, threshold = 0.25, n_cores = 1, use_resampling = FALSE, kernel_lambda = 0.5 )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_smooth.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assimilate new observations into a fitted mvgam model using resampling and kernel smoothing — pfilter_mvgam_smooth","text":"particles list particles run one observation prior observation next_assim mgcv_model gam model returned call link{mvgam} next_assim dataframe test data containing one observation per series (beyond last observation seen model initialising particles pfilter_mvgam_init previous calls pfilter_mvgam_online. least contain 'series' 'time' one-step ahead horizon, addition variables included linear predictor object threshold proportional numeric specifying Effective Sample Size limit resampling particles triggered (calculated ESS / n_particles) use_resampling == TRUE. 0 1 n_cores integer specifying number cores generating particle forecasts parallel use_resampling logical specifying whether resampling used ESS falls specified threshold. Note resampling can result loss original model's diversity GAM beta coefficients, may undesirable consequences forecast distribution. use_resampling TRUE, effort made remedy assigning randomly sampled draws GAM beta coefficients original model's distribution particle. however guarantee loss diversity, especially successive resampling take place. Default option therefore FALSE kernel_lambda proportional numeric specifying strength smoothing use pulling low weight particles toward high likelihood state space. 0 1","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_smooth.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assimilate new observations into a fitted mvgam model using resampling and kernel smoothing — pfilter_mvgam_smooth","text":"list object length = n_particles containing information parameters current state estimates particle","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pipe.html","id":null,"dir":"Reference","previous_headings":"","what":"Pipe operator — %>%","title":"Pipe operator — %>%","text":"See magrittr::%>% details.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pipe.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Pipe operator — %>%","text":"","code":"lhs %>% rhs"},{"path":"https://nicholasjclark.github.io/mvgam/reference/pipe.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Pipe operator — %>%","text":"lhs value magrittr placeholder. rhs function call using magrittr semantics.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pipe.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Pipe operator — %>%","text":"result calling rhs(lhs).","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Default mvgam plots — plot.mvgam","title":"Default mvgam plots — plot.mvgam","text":"function takes fitted mvgam object produces plots smooth functions, forecasts, trends uncertainty components","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Default mvgam plots — plot.mvgam","text":"","code":"# S3 method for mvgam plot( x, type = \"residuals\", series = 1, residuals = FALSE, newdata, data_test, trend_effects = FALSE, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Default mvgam plots — plot.mvgam","text":"x list object returned mvgam. See mvgam() type character specifying type plot return. Options : 'series, residuals, smooths, re (random effect smooths), pterms (parametric effects), forecast, trend, uncertainty, factors series integer specifying series set plotted. ignored type == 're' residuals logical. TRUE type = residuals, posterior quantiles partial residuals added plots 1-D smooths series ribbon rectangles. Partial residuals smooth term median Dunn-Smyth residuals obtained dropping term concerned model, leaving estimates fixed (.e. estimates term plus original median Dunn-Smyth residuals). Note mvgam works Dunn-Smyth residuals working residuals, used mgcv, magnitudes partial residuals different expect plot.gam. Interpretation similar though, partial residuals evenly scattered around smooth function function well estimated newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor original formula. argument optional plotting sample forecast period observations (type = forecast) required plotting uncertainty components (type = uncertainty). data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows trend_effects logical. TRUE trend_formula used model fitting, terms trend (.e. process) model plotted ... Additional arguments individual plotting function.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Default mvgam plots — plot.mvgam","text":"base R plot set plots","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Default mvgam plots — plot.mvgam","text":"plots useful getting overview fitted model estimated random effects smooth functions, individual plotting functions generally offer customisation.","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Default mvgam plots — plot.mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam_lfo.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Pareto-k and ELPD values from a leave-future-out object — plot.mvgam_lfo","title":"Plot Pareto-k and ELPD values from a leave-future-out object — plot.mvgam_lfo","text":"function takes object class mvgam_lfo create several informative diagnostic plots","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam_lfo.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Pareto-k and ELPD values from a leave-future-out object — plot.mvgam_lfo","text":"","code":"# S3 method for mvgam_lfo plot(x, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam_lfo.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Pareto-k and ELPD values from a leave-future-out object — plot.mvgam_lfo","text":"x object class mvgam_lfo ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam_lfo.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Pareto-k and ELPD values from a leave-future-out object — plot.mvgam_lfo","text":"base R plot Pareto-k ELPD values evaluation timepoints. Pareto-k plot, dashed red line indicates specified threshold chosen triggering model refits. ELPD plot, dashed red line indicated bottom 10% quantile ELPD values. Points threshold may represent outliers difficult forecast","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":null,"dir":"Reference","previous_headings":"","what":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"function takes fitted mvgam object returns plots summary statistics latent dynamic factors","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"","code":"plot_mvgam_factors(object, plot = TRUE)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"object list object returned mvgam plot logical specifying whether factors plotted","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"dataframe factor contributions , optionally, series base R plots","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"model object estimated using dynamic factors, possible factors contributed estimated trends. due regularisation penalty acts independently factor's Gaussian precision, squeeze un-needed factors white noise process (effectively dropping factor model). function, factor tested null hypothesis white noise calculating sum factor's 2nd derivatives. factor larger contribution larger sum due weaker penalty factor's precision. plot == TRUE, factors also plotted.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_forecasts.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","title":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","text":"Plot mvgam posterior predictions specified series","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_forecasts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","text":"","code":"plot_mvgam_fc( object, series = 1, newdata, data_test, realisations = FALSE, n_realisations = 15, hide_xlabels = FALSE, xlab, ylab, ylim, n_cores = 1, return_forecasts = FALSE, return_score = FALSE, ... ) # S3 method for mvgam_forecast plot( x, series = 1, realisations = FALSE, n_realisations = 15, hide_xlabels = FALSE, xlab, ylab, ylim, return_score = FALSE, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_forecasts.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","text":"object list object returned mvgam series integer specifying series set plotted newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor original formula. included, covariate information newdata used generate forecasts fitted model equations. newdata originally included call mvgam, forecasts already produced generative model simply extracted plotted. However newdata supplied original model call, assumption made newdata supplied comes sequentially data supplied data original model (.e. assume time gap last observation series 1 data first observation series 1 newdata). newdata contains observations column y, observations used compute Discrete Rank Probability Score forecast distribution data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows realisations logical. TRUE, forecast realisations shown spaghetti plot, making easier visualise diversity possible forecasts. FALSE, default, empirical quantiles forecast distribution shown n_realisations integer specifying number posterior realisations plot, realisations = TRUE. Ignored otherwise hide_xlabels logical. TRUE, xlabels printed allow user add custom labels using axis base R xlab label x axis. ylab label y axis. ylim Optional vector y-axis limits (min, max) n_cores integer specifying number cores generating forecasts parallel return_forecasts logical. TRUE, function plot forecast well returning forecast object (matrix dimension n_samples x horizon) return_score logical. TRUE sample test data provided newdata, probabilistic score calculated returned. score used depend observation family fitted model. Discrete families (poisson, negative binomial, tweedie) use Discrete Rank Probability Score. families use Continuous Rank Probability Score. value returned sum scores within sample forecast horizon ... par graphical parameters. x Object class mvgam_forecast","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_forecasts.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","text":"base R graphics plot optional list containing forecast distribution sample probabilistic forecast score","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_forecasts.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","text":"plot_mvgam_fc draws posterior predictions object class mvgam calculates posterior empirical quantiles. plot.mvgam_forecast takes object class mvgam_forecast, forecasts already computed, plots resulting forecast distribution. realisations = FALSE, posterior quantiles plotted along true observed data used train model. Otherwise, spaghetti plot returned show possible forecast paths.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_pterms.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","title":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","text":"function plots posterior empirical quantiles partial effects parametric terms","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_pterms.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","text":"","code":"plot_mvgam_pterms(object, trend_effects = FALSE)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_pterms.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","text":"object list object returned mvgam trend_effects logical. TRUE trend_formula used model fitting, terms trend (.e. process) model plotted","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_pterms.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","text":"base R graphics plot","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_pterms.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","text":"Posterior empirical quantiles parametric term's partial effect estimates (link scale) calculated visualised ribbon plots. effects can interpreted partial effect parametric term contributes terms model set 0","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_randomeffects.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam random effect terms — plot_mvgam_randomeffects","title":"Plot mvgam random effect terms — plot_mvgam_randomeffects","text":"function plots posterior empirical quantiles random effect smooths (bs = re)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_randomeffects.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam random effect terms — plot_mvgam_randomeffects","text":"","code":"plot_mvgam_randomeffects(object, trend_effects = FALSE)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_randomeffects.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam random effect terms — plot_mvgam_randomeffects","text":"object list object returned mvgam trend_effects logical. TRUE trend_formula used model fitting, terms trend (.e. process) model plotted","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_randomeffects.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot mvgam random effect terms — plot_mvgam_randomeffects","text":"base R graphics plot","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_randomeffects.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot mvgam random effect terms — plot_mvgam_randomeffects","text":"Posterior empirical quantiles random effect coefficient estimates (link scale) calculated visualised ribbon plots. Labels coefficients taken levels original factor variable used specify smooth model's formula","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":null,"dir":"Reference","previous_headings":"","what":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"function takes fitted mvgam object returns various residual diagnostic plots","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"","code":"plot_mvgam_resids(object, series = 1, n_bins = 15, newdata, data_test)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"object list object returned mvgam series integer specifying series set plotted n_bins integer specifying number bins use binning fitted values newdata Optional dataframe list test data containing least 'series', 'y', 'time' addition variables included linear predictor formula. included, covariate information newdata used generate forecasts fitted model equations. newdata originally included call mvgam, forecasts already produced generative model simply extracted used calculate residuals. However newdata supplied original model call, assumption made newdata supplied comes sequentially data supplied data original model (.e. assume time gap last observation series 1 data_train first observation series 1 newdata). data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"series base R plots","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"total four base R plots generated examine Dunn-Smyth residuals specified series. Plots include residuals vs fitted values plot, Q-Q plot, two plots check remaining temporal autocorrelation residuals. Note, plots use posterior medians fitted values / residuals, uncertainty represented.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_series.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot observed time series used for mvgam modelling — plot_mvgam_series","title":"Plot observed time series used for mvgam modelling — plot_mvgam_series","text":"function takes either fitted mvgam object data_train object produces plots observed time series, ACF, CDF histograms exploratory data analysis","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_series.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot observed time series used for mvgam modelling — plot_mvgam_series","text":"","code":"plot_mvgam_series( object, data, data_train, newdata, data_test, y = \"y\", lines = TRUE, series = 1, n_bins, log_scale = FALSE )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_series.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot observed time series used for mvgam modelling — plot_mvgam_series","text":"object Optional list object returned mvgam. Either object data_train must supplied. data Optional dataframe list training data containing least 'series' 'time'. Use argument training data gathered correct format mvgam modelling model yet fitted. data_train Deprecated. Still works place data users recommended use data instead seamless integration R workflows newdata Optional dataframe list test data containing least 'series' 'time' forecast horizon, addition variables included linear predictor formula. included, observed values test data compared model's forecast distribution exploring biases model predictions. data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows y Character. name outcome variable supplied data? Defaults 'y' lines Logical. TRUE, line plots used visualising time series. FALSE, points used. series Either integer specifying series set plotted string '', plots series available supplied data n_bins integer specifying number bins use binning observed values plotting histogram. Default use number bins returned call hist base R log_scale logical. series == '', flag used control whether time series plot shown log scale (using log(Y + 1)). can useful visualising many series may different observed ranges. Default FALSE","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_series.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot observed time series used for mvgam modelling — plot_mvgam_series","text":"set base R graphics plots. series integer, plots show observed time series, autocorrelation cumulative distribution functions, histogram series. series == '', set observed time series plots returned series shown plot single focal series highlighted, remaining series shown faint gray lines.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_series.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Plot observed time series used for mvgam modelling — plot_mvgam_series","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_smooth.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam smooth terms — plot_mvgam_smooth","title":"Plot mvgam smooth terms — plot_mvgam_smooth","text":"function plots posterior empirical quantiles series-specific smooth term","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_smooth.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam smooth terms — plot_mvgam_smooth","text":"","code":"plot_mvgam_smooth( object, trend_effects = FALSE, series = 1, smooth, residuals = FALSE, n_resid_bins = 25, realisations = FALSE, n_realisations = 15, derivatives = FALSE, newdata )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_smooth.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam smooth terms — plot_mvgam_smooth","text":"object list object returned mvgam trend_effects logical. TRUE trend_formula used model fitting, terms trend (.e. process) model plotted series integer specifying series set plotted smooth either character integer specifying smooth term plotted residuals logical. TRUE posterior quantiles partial residuals added plots 1-D smooths series ribbon rectangles. Partial residuals smooth term median Dunn-Smyth residuals obtained dropping term concerned model, leaving estimates fixed (.e. estimates term plus original median Dunn-Smyth residuals). Note mvgam works Dunn-Smyth residuals working residuals, used mgcv, magnitudes partial residuals different expect plot.gam. Interpretation similar though, partial residuals evenly scattered around smooth function function well estimated n_resid_bins integer specifying number bins group covariate plotting partial residuals. Setting argument high can make messy plots difficult interpret, setting low likely mask potentially useful patterns partial residuals. Default 25 realisations logical. TRUE, posterior realisations shown spaghetti plot, making easier visualise diversity possible functions. FALSE, default, empirical quantiles posterior distribution shown n_realisations integer specifying number posterior realisations plot, realisations = TRUE. Ignored otherwise derivatives logical. TRUE, additional plot returned show estimated 1st derivative specified smooth (Note, works univariate smooths) newdata Optional dataframe predicting smooth, containing least 'series' addition variables included linear predictor original model's formula. Note currently supported plotting univariate smooths","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_smooth.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot mvgam smooth terms — plot_mvgam_smooth","text":"base R graphics plot","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_smooth.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot mvgam smooth terms — plot_mvgam_smooth","text":"Smooth functions shown empirical quantiles (spaghetti plots) posterior partial expectations across sequence 500 values variable's min max, zeroing effects variables. present, univariate bivariate smooth plots allowed, though note bivariate smooths rely default behaviour plot.gam. nuanced visualisation, supply newdata just predicting gam model","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_trend.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam latent trend for a specified series — plot_mvgam_trend","title":"Plot mvgam latent trend for a specified series — plot_mvgam_trend","text":"Plot mvgam latent trend specified series","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_trend.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam latent trend for a specified series — plot_mvgam_trend","text":"","code":"plot_mvgam_trend( object, series = 1, newdata, data_test, realisations = FALSE, n_realisations = 15, n_cores = 1, derivatives = FALSE, hide_xlabels = FALSE, xlab, ylab, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_trend.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam latent trend for a specified series — plot_mvgam_trend","text":"object list object returned mvgam series integer specifying series set plotted newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor original formula. data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows realisations logical. TRUE, posterior trend realisations shown spaghetti plot, making easier visualise diversity possible trend paths. FALSE, default, empirical quantiles posterior distribution shown n_realisations integer specifying number posterior realisations plot, realisations = TRUE. Ignored otherwise n_cores integer specifying number cores generating trend forecasts parallel derivatives logical. TRUE, additional plot returned show estimated 1st derivative estimated trend hide_xlabels logical. TRUE, xlabels printed allow user add custom labels using axis base R. Ignored derivatives = TRUE xlab label x axis. ylab label y axis. ... par graphical parameters.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_uncertainty.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam forecast uncertainty contributions for a specified series — plot_mvgam_uncertainty","title":"Plot mvgam forecast uncertainty contributions for a specified series — plot_mvgam_uncertainty","text":"Plot mvgam forecast uncertainty contributions specified series","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_uncertainty.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam forecast uncertainty contributions for a specified series — plot_mvgam_uncertainty","text":"","code":"plot_mvgam_uncertainty( object, series = 1, newdata, data_test, legend_position = \"topleft\", hide_xlabels = FALSE )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_uncertainty.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam forecast uncertainty contributions for a specified series — plot_mvgam_uncertainty","text":"object list object returned mvgam series integer specifying series set plotted newdata dataframe list containing least 'series' 'time' forecast horizon, addition variables included linear predictor formula data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows legend_position location may also specified setting x single keyword list: \"none\", \"bottomright\", \"bottom\", \"bottomleft\", \"left\", \"topleft\", \"top\", \"topright\", \"right\" \"center\". places legend inside plot frame given location (\"none\"). hide_xlabels logical. TRUE, xlabels printed allow user add custom labels using axis base R","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/portal_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Portal Project rodent capture survey data — portal_data","title":"Portal Project rodent capture survey data — portal_data","text":"dataset containing timeseries select rodent species captures control plots Portal Project","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/portal_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Portal Project rodent capture survey data — portal_data","text":"","code":"portal_data"},{"path":"https://nicholasjclark.github.io/mvgam/reference/portal_data.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Portal Project rodent capture survey data — portal_data","text":"dataframe containing following fields: moon time sampling lunar cycles DM Total captures species DM Total captures species DM Total captures species PP DM Total captures species OT year Sampling year month Sampling month mintemp Monthly mean minimum temperature precipitation Monthly mean precipitation ndvi Monthly mean Normalised Difference Vegetation Index","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/portal_data.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Portal Project rodent capture survey data — portal_data","text":"https://www.weecology.org/data-projects/portal/","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/ppc.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","title":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","text":"Plot mvgam posterior predictive checks specified series","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/ppc.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","text":"","code":"ppc(object, ...) # S3 method for mvgam ppc( object, newdata, data_test, series = 1, type = \"hist\", n_bins, legend_position, xlab, ylab, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/ppc.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","text":"object list object returned mvgam. See mvgam() ... par graphical parameters. newdata Optional dataframe list test data containing least 'series' 'time' forecast horizon, addition variables included linear predictor formula. included, observed values test data compared model's forecast distribution exploring biases model predictions. Note useful newdata also included fitting original model. data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows series integer specifying series set plotted type character specifying type posterior predictive check calculate plot. Valid options : 'rootogram', 'mean', 'hist', 'density', 'prop_zero', 'pit' 'cdf' n_bins integer specifying number bins use binning observed values plotting rootogram histogram. Default 50 bins rootogram, means >50 unique observed values, bins used prevent overplotting facilitate interpretation. Default histogram use number bins returned call hist base R legend_position location may also specified setting x single keyword list \"bottomright\", \"bottom\", \"bottomleft\", \"left\", \"topleft\", \"top\", \"topright\", \"right\" \"center\". places legend inside plot frame given location. alternatively, use \"none\" hide legend. xlab label x axis. ylab label y axis.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/ppc.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","text":"base R graphics plot showing either posterior rootogram (type == 'rootogram'), predicted vs observed mean series (type == 'mean'), predicted vs observed proportion zeroes series (type == 'prop_zero'),predicted vs observed histogram series (type == 'hist'), kernel density empirical CDF estimates posterior predictions (type == 'density' type == 'cdf') Probability Integral Transform histogram (type == 'pit').","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/ppc.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","text":"Posterior predictions drawn fitted mvgam compared empirical distribution observed data specified series help evaluate model's ability generate unbiased predictions. plots apart 'rootogram', posterior predictions can also compared sample observations long observations included 'data_test' original model fit supplied . Rootograms currently plotted using 'hanging' style","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/predict.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Predict from the GAM component of an mvgam model — predict.mvgam","title":"Predict from the GAM component of an mvgam model — predict.mvgam","text":"Predict GAM component mvgam model","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/predict.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Predict from the GAM component of an mvgam model — predict.mvgam","text":"","code":"# S3 method for mvgam predict(object, newdata, data_test, type = \"link\", n_cores = 1, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/predict.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Predict from the GAM component of an mvgam model — predict.mvgam","text":"object list object returned mvgam newdata Optional dataframe list test data containing variables included linear predictor formula. supplied, predictions generated original observations used model fit. data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows type value link (default) linear predictor calculated link scale. expected used, predictions reflect expectation response (mean) ignore uncertainty observation process. response used, predictions take uncertainty observation process account return predictions outcome scale n_cores integer specifying number cores generating predictions parallel ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/predict.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Predict from the GAM component of an mvgam model — predict.mvgam","text":"matrix dimension n_samples x new_obs, n_samples number posterior samples fitted object n_obs number test observations newdata","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/predict.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Predict from the GAM component of an mvgam model — predict.mvgam","text":"Note types predictions, expected uncertainty process model accounted using draws trend SD parameters. trend_formula supplied model, predictions component also incorporated. trend predictions ignore autocorrelation coefficients GP length scale coefficients, ultimately assuming process stationary. method similar types posterior predictions returned brms models using autocorrelated error predictions newdata. function therefore suited posterior simulation GAM components mvgam model, forecasting functions plot_mvgam_fc forecast.mvgam better suited generate h-step ahead forecasts respect temporal dynamics estimated latent trends.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Summary for a fitted mvgam object — print.mvgam","title":"Summary for a fitted mvgam object — print.mvgam","text":"function takes fitted mvgam object prints quick summary","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summary for a fitted mvgam object — print.mvgam","text":"","code":"# S3 method for mvgam print(x, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summary for a fitted mvgam object — print.mvgam","text":"x list object returned mvgam ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summary for a fitted mvgam object — print.mvgam","text":"list printed -screen","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Summary for a fitted mvgam object — print.mvgam","text":"brief summary model's call printed","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Summary for a fitted mvgam object — print.mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/score.mvgam_forecast.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","title":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","text":"Compute probabilistic forecast scores mvgam objects","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/score.mvgam_forecast.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","text":"","code":"# S3 method for mvgam_forecast score(object, score = \"crps\", log = FALSE, weights, interval_width = 0.9, ...) score(object, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/score.mvgam_forecast.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","text":"object mvgam_forecast object. See forecast.mvgam(). score character specifying type ranked probability score use evaluation. Options : variogram, drps crps log logical. forecasts truths logged prior scoring? often appropriate comparing performance models series vary observation ranges weights optional vector weights (length(weights) == n_series) weighting pairwise correlations evaluating variogram score multivariate forecasts. Useful -weighting series larger magnitude observations less interest forecasting. Ignored score != 'variogram' interval_width proportional value [0.05,0.95] defining forecast interval calculating coverage ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/score.mvgam_forecast.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","text":"list containing scores 90% interval coverages per forecast horizon. score %% c('drps', 'crps'), list also contain return sum series-level scores per horizon. score == 'variogram', series-level scores computed score returned series. scores, in_interval column series-level slot binary indicator whether true value within forecast's corresponding posterior empirical quantiles","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/score.mvgam_forecast.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","text":"","code":"if (FALSE) { #Simulate observations for three count-valued time series data <- sim_mvgam() #Fit a dynamic model using 'newdata' to automatically produce forecasts mod <- mvgam(y ~ 1, trend_model = 'RW', data = data$data_train, newdata = data$data_test) #Extract forecasts into a 'mvgam_forecast' object fc <- forecast(mod) #Score forecasts score(fc, score = 'drps') }"},{"path":"https://nicholasjclark.github.io/mvgam/reference/series_to_mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","title":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","text":"function converts univariate multivariate time series (xts ts objects) format necessary mvgam","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/series_to_mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","text":"","code":"series_to_mvgam(series, freq, train_prop = 0.85)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/series_to_mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","text":"series xts ts object converted mvgam format freq integer. seasonal frequency series train_prop numeric stating proportion data use training. 0.25 0.95","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/series_to_mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","text":"list object containing outputs needed mvgam, including 'data_train' 'data_test'","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/series_to_mvgam.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","text":"","code":"# A ts object example data(\"sunspots\") series <- cbind(sunspots, sunspots) colnames(series) <- c('blood', 'bone') head(series) #> blood bone #> [1,] 58.0 58.0 #> [2,] 62.6 62.6 #> [3,] 70.0 70.0 #> [4,] 55.7 55.7 #> [5,] 85.0 85.0 #> [6,] 83.5 83.5 series_to_mvgam(series, frequency(series), 0.85) #> $data_train #> y season year date series time #> 1 58.0 1 1749 1749-01-01 00:00:00 blood 1 #> 2 58.0 1 1749 1749-01-01 00:00:00 bone 1 #> 3 62.6 2 1749 1749-01-31 10:00:00 blood 2 #> 4 62.6 2 1749 1749-01-31 10:00:00 bone 2 #> 5 70.0 3 1749 1749-03-02 20:00:01 blood 3 #> 6 70.0 3 1749 1749-03-02 20:00:01 bone 3 #> 7 55.7 4 1749 1749-04-02 06:00:00 blood 4 #> 8 55.7 4 1749 1749-04-02 06:00:00 bone 4 #> 9 85.0 5 1749 1749-05-02 16:00:00 blood 5 #> 10 85.0 5 1749 1749-05-02 16:00:00 bone 5 #> 11 83.5 6 1749 1749-06-02 02:00:01 blood 6 #> 12 83.5 6 1749 1749-06-02 02:00:01 bone 6 #> 13 94.8 7 1749 1749-07-02 12:00:00 blood 7 #> 14 94.8 7 1749 1749-07-02 12:00:00 bone 7 #> 15 66.3 8 1749 1749-08-01 22:00:00 blood 8 #> 16 66.3 8 1749 1749-08-01 22:00:00 bone 8 #> 17 75.9 9 1749 1749-09-01 08:00:01 blood 9 #> 18 75.9 9 1749 1749-09-01 08:00:01 bone 9 #> 19 75.5 10 1749 1749-10-01 18:00:00 blood 10 #> 20 75.5 10 1749 1749-10-01 18:00:00 bone 10 #> 21 158.6 11 1749 1749-11-01 04:00:00 blood 11 #> 22 158.6 11 1749 1749-11-01 04:00:00 bone 11 #> 23 85.2 12 1749 1749-12-01 14:00:01 blood 12 #> 24 85.2 12 1749 1749-12-01 14:00:01 bone 12 #> 25 73.3 1 1750 1750-01-01 00:00:00 blood 13 #> 26 73.3 1 1750 1750-01-01 00:00:00 bone 13 #> 27 75.9 2 1750 1750-01-31 10:00:00 blood 14 #> 28 75.9 2 1750 1750-01-31 10:00:00 bone 14 #> 29 89.2 3 1750 1750-03-02 20:00:01 blood 15 #> 30 89.2 3 1750 1750-03-02 20:00:01 bone 15 #> 31 88.3 4 1750 1750-04-02 06:00:00 blood 16 #> 32 88.3 4 1750 1750-04-02 06:00:00 bone 16 #> 33 90.0 5 1750 1750-05-02 16:00:00 blood 17 #> 34 90.0 5 1750 1750-05-02 16:00:00 bone 17 #> 35 100.0 6 1750 1750-06-02 02:00:01 blood 18 #> 36 100.0 6 1750 1750-06-02 02:00:01 bone 18 #> 37 85.4 7 1750 1750-07-02 12:00:00 blood 19 #> 38 85.4 7 1750 1750-07-02 12:00:00 bone 19 #> 39 103.0 8 1750 1750-08-01 22:00:00 blood 20 #> 40 103.0 8 1750 1750-08-01 22:00:00 bone 20 #> 41 91.2 9 1750 1750-09-01 08:00:01 blood 21 #> 42 91.2 9 1750 1750-09-01 08:00:01 bone 21 #> 43 65.7 10 1750 1750-10-01 18:00:00 blood 22 #> 44 65.7 10 1750 1750-10-01 18:00:00 bone 22 #> 45 63.3 11 1750 1750-11-01 04:00:00 blood 23 #> 46 63.3 11 1750 1750-11-01 04:00:00 bone 23 #> 47 75.4 12 1750 1750-12-01 14:00:01 blood 24 #> 48 75.4 12 1750 1750-12-01 14:00:01 bone 24 #> 49 70.0 1 1751 1751-01-01 00:00:00 blood 25 #> 50 70.0 1 1751 1751-01-01 00:00:00 bone 25 #> 51 43.5 2 1751 1751-01-31 10:00:00 blood 26 #> 52 43.5 2 1751 1751-01-31 10:00:00 bone 26 #> 53 45.3 3 1751 1751-03-02 20:00:01 blood 27 #> 54 45.3 3 1751 1751-03-02 20:00:01 bone 27 #> 55 56.4 4 1751 1751-04-02 06:00:00 blood 28 #> 56 56.4 4 1751 1751-04-02 06:00:00 bone 28 #> 57 60.7 5 1751 1751-05-02 16:00:00 blood 29 #> 58 60.7 5 1751 1751-05-02 16:00:00 bone 29 #> 59 50.7 6 1751 1751-06-02 02:00:01 blood 30 #> 60 50.7 6 1751 1751-06-02 02:00:01 bone 30 #> 61 66.3 7 1751 1751-07-02 12:00:00 blood 31 #> 62 66.3 7 1751 1751-07-02 12:00:00 bone 31 #> 63 59.8 8 1751 1751-08-01 22:00:00 blood 32 #> 64 59.8 8 1751 1751-08-01 22:00:00 bone 32 #> 65 23.5 9 1751 1751-09-01 08:00:01 blood 33 #> 66 23.5 9 1751 1751-09-01 08:00:01 bone 33 #> 67 23.2 10 1751 1751-10-01 18:00:00 blood 34 #> 68 23.2 10 1751 1751-10-01 18:00:00 bone 34 #> 69 28.5 11 1751 1751-11-01 04:00:00 blood 35 #> 70 28.5 11 1751 1751-11-01 04:00:00 bone 35 #> 71 44.0 12 1751 1751-12-01 14:00:01 blood 36 #> 72 44.0 12 1751 1751-12-01 14:00:01 bone 36 #> 73 35.0 1 1752 1752-01-01 00:00:00 blood 37 #> 74 35.0 1 1752 1752-01-01 00:00:00 bone 37 #> 75 50.0 2 1752 1752-01-31 12:00:00 blood 38 #> 76 50.0 2 1752 1752-01-31 12:00:00 bone 38 #> 77 71.0 3 1752 1752-03-02 00:00:01 blood 39 #> 78 71.0 3 1752 1752-03-02 00:00:01 bone 39 #> 79 59.3 4 1752 1752-04-01 12:00:00 blood 40 #> 80 59.3 4 1752 1752-04-01 12:00:00 bone 40 #> 81 59.7 5 1752 1752-05-02 00:00:00 blood 41 #> 82 59.7 5 1752 1752-05-02 00:00:00 bone 41 #> 83 39.6 6 1752 1752-06-01 12:00:01 blood 42 #> 84 39.6 6 1752 1752-06-01 12:00:01 bone 42 #> 85 78.4 7 1752 1752-07-02 00:00:00 blood 43 #> 86 78.4 7 1752 1752-07-02 00:00:00 bone 43 #> 87 29.3 8 1752 1752-08-01 12:00:00 blood 44 #> 88 29.3 8 1752 1752-08-01 12:00:00 bone 44 #> 89 27.1 9 1752 1752-09-01 00:00:01 blood 45 #> 90 27.1 9 1752 1752-09-01 00:00:01 bone 45 #> 91 46.6 10 1752 1752-10-01 12:00:00 blood 46 #> 92 46.6 10 1752 1752-10-01 12:00:00 bone 46 #> 93 37.6 11 1752 1752-11-01 00:00:00 blood 47 #> 94 37.6 11 1752 1752-11-01 00:00:00 bone 47 #> 95 40.0 12 1752 1752-12-01 12:00:01 blood 48 #> 96 40.0 12 1752 1752-12-01 12:00:01 bone 48 #> 97 44.0 1 1753 1753-01-01 00:00:00 blood 49 #> 98 44.0 1 1753 1753-01-01 00:00:00 bone 49 #> 99 32.0 2 1753 1753-01-31 10:00:00 blood 50 #> 100 32.0 2 1753 1753-01-31 10:00:00 bone 50 #> 101 45.7 3 1753 1753-03-02 20:00:01 blood 51 #> 102 45.7 3 1753 1753-03-02 20:00:01 bone 51 #> 103 38.0 4 1753 1753-04-02 06:00:00 blood 52 #> 104 38.0 4 1753 1753-04-02 06:00:00 bone 52 #> 105 36.0 5 1753 1753-05-02 16:00:00 blood 53 #> 106 36.0 5 1753 1753-05-02 16:00:00 bone 53 #> 107 31.7 6 1753 1753-06-02 02:00:01 blood 54 #> 108 31.7 6 1753 1753-06-02 02:00:01 bone 54 #> 109 22.2 7 1753 1753-07-02 12:00:00 blood 55 #> 110 22.2 7 1753 1753-07-02 12:00:00 bone 55 #> 111 39.0 8 1753 1753-08-01 22:00:00 blood 56 #> 112 39.0 8 1753 1753-08-01 22:00:00 bone 56 #> 113 28.0 9 1753 1753-09-01 08:00:01 blood 57 #> 114 28.0 9 1753 1753-09-01 08:00:01 bone 57 #> 115 25.0 10 1753 1753-10-01 18:00:00 blood 58 #> 116 25.0 10 1753 1753-10-01 18:00:00 bone 58 #> 117 20.0 11 1753 1753-11-01 04:00:00 blood 59 #> 118 20.0 11 1753 1753-11-01 04:00:00 bone 59 #> 119 6.7 12 1753 1753-12-01 14:00:01 blood 60 #> 120 6.7 12 1753 1753-12-01 14:00:01 bone 60 #> 121 0.0 1 1754 1754-01-01 00:00:00 blood 61 #> 122 0.0 1 1754 1754-01-01 00:00:00 bone 61 #> 123 3.0 2 1754 1754-01-31 10:00:00 blood 62 #> 124 3.0 2 1754 1754-01-31 10:00:00 bone 62 #> 125 1.7 3 1754 1754-03-02 20:00:01 blood 63 #> 126 1.7 3 1754 1754-03-02 20:00:01 bone 63 #> 127 13.7 4 1754 1754-04-02 06:00:00 blood 64 #> 128 13.7 4 1754 1754-04-02 06:00:00 bone 64 #> 129 20.7 5 1754 1754-05-02 16:00:00 blood 65 #> 130 20.7 5 1754 1754-05-02 16:00:00 bone 65 #> 131 26.7 6 1754 1754-06-02 02:00:01 blood 66 #> 132 26.7 6 1754 1754-06-02 02:00:01 bone 66 #> 133 18.8 7 1754 1754-07-02 12:00:00 blood 67 #> 134 18.8 7 1754 1754-07-02 12:00:00 bone 67 #> 135 12.3 8 1754 1754-08-01 22:00:00 blood 68 #> 136 12.3 8 1754 1754-08-01 22:00:00 bone 68 #> 137 8.2 9 1754 1754-09-01 08:00:01 blood 69 #> 138 8.2 9 1754 1754-09-01 08:00:01 bone 69 #> 139 24.1 10 1754 1754-10-01 18:00:00 blood 70 #> 140 24.1 10 1754 1754-10-01 18:00:00 bone 70 #> 141 13.2 11 1754 1754-11-01 04:00:00 blood 71 #> 142 13.2 11 1754 1754-11-01 04:00:00 bone 71 #> 143 4.2 12 1754 1754-12-01 14:00:01 blood 72 #> 144 4.2 12 1754 1754-12-01 14:00:01 bone 72 #> 145 10.2 1 1755 1755-01-01 00:00:00 blood 73 #> 146 10.2 1 1755 1755-01-01 00:00:00 bone 73 #> 147 11.2 2 1755 1755-01-31 10:00:00 blood 74 #> 148 11.2 2 1755 1755-01-31 10:00:00 bone 74 #> 149 6.8 3 1755 1755-03-02 20:00:01 blood 75 #> 150 6.8 3 1755 1755-03-02 20:00:01 bone 75 #> 151 6.5 4 1755 1755-04-02 06:00:00 blood 76 #> 152 6.5 4 1755 1755-04-02 06:00:00 bone 76 #> 153 0.0 5 1755 1755-05-02 16:00:00 blood 77 #> 154 0.0 5 1755 1755-05-02 16:00:00 bone 77 #> 155 0.0 6 1755 1755-06-02 02:00:01 blood 78 #> 156 0.0 6 1755 1755-06-02 02:00:01 bone 78 #> 157 8.6 7 1755 1755-07-02 12:00:00 blood 79 #> 158 8.6 7 1755 1755-07-02 12:00:00 bone 79 #> 159 3.2 8 1755 1755-08-01 22:00:00 blood 80 #> 160 3.2 8 1755 1755-08-01 22:00:00 bone 80 #> 161 17.8 9 1755 1755-09-01 08:00:01 blood 81 #> 162 17.8 9 1755 1755-09-01 08:00:01 bone 81 #> 163 23.7 10 1755 1755-10-01 18:00:00 blood 82 #> 164 23.7 10 1755 1755-10-01 18:00:00 bone 82 #> 165 6.8 11 1755 1755-11-01 04:00:00 blood 83 #> 166 6.8 11 1755 1755-11-01 04:00:00 bone 83 #> 167 20.0 12 1755 1755-12-01 14:00:01 blood 84 #> 168 20.0 12 1755 1755-12-01 14:00:01 bone 84 #> 169 12.5 1 1756 1756-01-01 00:00:00 blood 85 #> 170 12.5 1 1756 1756-01-01 00:00:00 bone 85 #> 171 7.1 2 1756 1756-01-31 12:00:00 blood 86 #> 172 7.1 2 1756 1756-01-31 12:00:00 bone 86 #> 173 5.4 3 1756 1756-03-02 00:00:01 blood 87 #> 174 5.4 3 1756 1756-03-02 00:00:01 bone 87 #> 175 9.4 4 1756 1756-04-01 12:00:00 blood 88 #> 176 9.4 4 1756 1756-04-01 12:00:00 bone 88 #> 177 12.5 5 1756 1756-05-02 00:00:00 blood 89 #> 178 12.5 5 1756 1756-05-02 00:00:00 bone 89 #> 179 12.9 6 1756 1756-06-01 12:00:01 blood 90 #> 180 12.9 6 1756 1756-06-01 12:00:01 bone 90 #> 181 3.6 7 1756 1756-07-02 00:00:00 blood 91 #> 182 3.6 7 1756 1756-07-02 00:00:00 bone 91 #> 183 6.4 8 1756 1756-08-01 12:00:00 blood 92 #> 184 6.4 8 1756 1756-08-01 12:00:00 bone 92 #> 185 11.8 9 1756 1756-09-01 00:00:01 blood 93 #> 186 11.8 9 1756 1756-09-01 00:00:01 bone 93 #> 187 14.3 10 1756 1756-10-01 12:00:00 blood 94 #> 188 14.3 10 1756 1756-10-01 12:00:00 bone 94 #> 189 17.0 11 1756 1756-11-01 00:00:00 blood 95 #> 190 17.0 11 1756 1756-11-01 00:00:00 bone 95 #> 191 9.4 12 1756 1756-12-01 12:00:01 blood 96 #> 192 9.4 12 1756 1756-12-01 12:00:01 bone 96 #> 193 14.1 1 1757 1757-01-01 00:00:00 blood 97 #> 194 14.1 1 1757 1757-01-01 00:00:00 bone 97 #> 195 21.2 2 1757 1757-01-31 10:00:00 blood 98 #> 196 21.2 2 1757 1757-01-31 10:00:00 bone 98 #> 197 26.2 3 1757 1757-03-02 20:00:01 blood 99 #> 198 26.2 3 1757 1757-03-02 20:00:01 bone 99 #> 199 30.0 4 1757 1757-04-02 06:00:00 blood 100 #> 200 30.0 4 1757 1757-04-02 06:00:00 bone 100 #> 201 38.1 5 1757 1757-05-02 16:00:00 blood 101 #> 202 38.1 5 1757 1757-05-02 16:00:00 bone 101 #> 203 12.8 6 1757 1757-06-02 02:00:01 blood 102 #> 204 12.8 6 1757 1757-06-02 02:00:01 bone 102 #> 205 25.0 7 1757 1757-07-02 12:00:00 blood 103 #> 206 25.0 7 1757 1757-07-02 12:00:00 bone 103 #> 207 51.3 8 1757 1757-08-01 22:00:00 blood 104 #> 208 51.3 8 1757 1757-08-01 22:00:00 bone 104 #> 209 39.7 9 1757 1757-09-01 08:00:01 blood 105 #> 210 39.7 9 1757 1757-09-01 08:00:01 bone 105 #> 211 32.5 10 1757 1757-10-01 18:00:00 blood 106 #> 212 32.5 10 1757 1757-10-01 18:00:00 bone 106 #> 213 64.7 11 1757 1757-11-01 04:00:00 blood 107 #> 214 64.7 11 1757 1757-11-01 04:00:00 bone 107 #> 215 33.5 12 1757 1757-12-01 14:00:01 blood 108 #> 216 33.5 12 1757 1757-12-01 14:00:01 bone 108 #> 217 37.6 1 1758 1758-01-01 00:00:00 blood 109 #> 218 37.6 1 1758 1758-01-01 00:00:00 bone 109 #> 219 52.0 2 1758 1758-01-31 10:00:00 blood 110 #> 220 52.0 2 1758 1758-01-31 10:00:00 bone 110 #> 221 49.0 3 1758 1758-03-02 20:00:01 blood 111 #> 222 49.0 3 1758 1758-03-02 20:00:01 bone 111 #> 223 72.3 4 1758 1758-04-02 06:00:00 blood 112 #> 224 72.3 4 1758 1758-04-02 06:00:00 bone 112 #> 225 46.4 5 1758 1758-05-02 16:00:00 blood 113 #> 226 46.4 5 1758 1758-05-02 16:00:00 bone 113 #> 227 45.0 6 1758 1758-06-02 02:00:01 blood 114 #> 228 45.0 6 1758 1758-06-02 02:00:01 bone 114 #> 229 44.0 7 1758 1758-07-02 12:00:00 blood 115 #> 230 44.0 7 1758 1758-07-02 12:00:00 bone 115 #> 231 38.7 8 1758 1758-08-01 22:00:00 blood 116 #> 232 38.7 8 1758 1758-08-01 22:00:00 bone 116 #> 233 62.5 9 1758 1758-09-01 08:00:01 blood 117 #> 234 62.5 9 1758 1758-09-01 08:00:01 bone 117 #> 235 37.7 10 1758 1758-10-01 18:00:00 blood 118 #> 236 37.7 10 1758 1758-10-01 18:00:00 bone 118 #> 237 43.0 11 1758 1758-11-01 04:00:00 blood 119 #> 238 43.0 11 1758 1758-11-01 04:00:00 bone 119 #> 239 43.0 12 1758 1758-12-01 14:00:01 blood 120 #> 240 43.0 12 1758 1758-12-01 14:00:01 bone 120 #> 241 48.3 1 1759 1759-01-01 00:00:00 blood 121 #> 242 48.3 1 1759 1759-01-01 00:00:00 bone 121 #> 243 44.0 2 1759 1759-01-31 10:00:00 blood 122 #> 244 44.0 2 1759 1759-01-31 10:00:00 bone 122 #> 245 46.8 3 1759 1759-03-02 20:00:01 blood 123 #> 246 46.8 3 1759 1759-03-02 20:00:01 bone 123 #> 247 47.0 4 1759 1759-04-02 06:00:00 blood 124 #> 248 47.0 4 1759 1759-04-02 06:00:00 bone 124 #> 249 49.0 5 1759 1759-05-02 16:00:00 blood 125 #> 250 49.0 5 1759 1759-05-02 16:00:00 bone 125 #> 251 50.0 6 1759 1759-06-02 02:00:01 blood 126 #> 252 50.0 6 1759 1759-06-02 02:00:01 bone 126 #> 253 51.0 7 1759 1759-07-02 12:00:00 blood 127 #> 254 51.0 7 1759 1759-07-02 12:00:00 bone 127 #> 255 71.3 8 1759 1759-08-01 22:00:00 blood 128 #> 256 71.3 8 1759 1759-08-01 22:00:00 bone 128 #> 257 77.2 9 1759 1759-09-01 08:00:01 blood 129 #> 258 77.2 9 1759 1759-09-01 08:00:01 bone 129 #> 259 59.7 10 1759 1759-10-01 18:00:00 blood 130 #> 260 59.7 10 1759 1759-10-01 18:00:00 bone 130 #> 261 46.3 11 1759 1759-11-01 04:00:00 blood 131 #> 262 46.3 11 1759 1759-11-01 04:00:00 bone 131 #> 263 57.0 12 1759 1759-12-01 14:00:01 blood 132 #> 264 57.0 12 1759 1759-12-01 14:00:01 bone 132 #> 265 67.3 1 1760 1760-01-01 00:00:00 blood 133 #> 266 67.3 1 1760 1760-01-01 00:00:00 bone 133 #> 267 59.5 2 1760 1760-01-31 12:00:00 blood 134 #> 268 59.5 2 1760 1760-01-31 12:00:00 bone 134 #> 269 74.7 3 1760 1760-03-02 00:00:01 blood 135 #> 270 74.7 3 1760 1760-03-02 00:00:01 bone 135 #> 271 58.3 4 1760 1760-04-01 12:00:00 blood 136 #> 272 58.3 4 1760 1760-04-01 12:00:00 bone 136 #> 273 72.0 5 1760 1760-05-02 00:00:00 blood 137 #> 274 72.0 5 1760 1760-05-02 00:00:00 bone 137 #> 275 48.3 6 1760 1760-06-01 12:00:01 blood 138 #> 276 48.3 6 1760 1760-06-01 12:00:01 bone 138 #> 277 66.0 7 1760 1760-07-02 00:00:00 blood 139 #> 278 66.0 7 1760 1760-07-02 00:00:00 bone 139 #> 279 75.6 8 1760 1760-08-01 12:00:00 blood 140 #> 280 75.6 8 1760 1760-08-01 12:00:00 bone 140 #> 281 61.3 9 1760 1760-09-01 00:00:01 blood 141 #> 282 61.3 9 1760 1760-09-01 00:00:01 bone 141 #> 283 50.6 10 1760 1760-10-01 12:00:00 blood 142 #> 284 50.6 10 1760 1760-10-01 12:00:00 bone 142 #> 285 59.7 11 1760 1760-11-01 00:00:00 blood 143 #> 286 59.7 11 1760 1760-11-01 00:00:00 bone 143 #> 287 61.0 12 1760 1760-12-01 12:00:01 blood 144 #> 288 61.0 12 1760 1760-12-01 12:00:01 bone 144 #> 289 70.0 1 1761 1761-01-01 00:00:00 blood 145 #> 290 70.0 1 1761 1761-01-01 00:00:00 bone 145 #> 291 91.0 2 1761 1761-01-31 10:00:00 blood 146 #> 292 91.0 2 1761 1761-01-31 10:00:00 bone 146 #> 293 80.7 3 1761 1761-03-02 20:00:01 blood 147 #> 294 80.7 3 1761 1761-03-02 20:00:01 bone 147 #> 295 71.7 4 1761 1761-04-02 06:00:00 blood 148 #> 296 71.7 4 1761 1761-04-02 06:00:00 bone 148 #> 297 107.2 5 1761 1761-05-02 16:00:00 blood 149 #> 298 107.2 5 1761 1761-05-02 16:00:00 bone 149 #> 299 99.3 6 1761 1761-06-02 02:00:01 blood 150 #> 300 99.3 6 1761 1761-06-02 02:00:01 bone 150 #> 301 94.1 7 1761 1761-07-02 12:00:00 blood 151 #> 302 94.1 7 1761 1761-07-02 12:00:00 bone 151 #> 303 91.1 8 1761 1761-08-01 22:00:00 blood 152 #> 304 91.1 8 1761 1761-08-01 22:00:00 bone 152 #> 305 100.7 9 1761 1761-09-01 08:00:01 blood 153 #> 306 100.7 9 1761 1761-09-01 08:00:01 bone 153 #> 307 88.7 10 1761 1761-10-01 18:00:00 blood 154 #> 308 88.7 10 1761 1761-10-01 18:00:00 bone 154 #> 309 89.7 11 1761 1761-11-01 04:00:00 blood 155 #> 310 89.7 11 1761 1761-11-01 04:00:00 bone 155 #> 311 46.0 12 1761 1761-12-01 14:00:01 blood 156 #> 312 46.0 12 1761 1761-12-01 14:00:01 bone 156 #> 313 43.8 1 1762 1762-01-01 00:00:00 blood 157 #> 314 43.8 1 1762 1762-01-01 00:00:00 bone 157 #> 315 72.8 2 1762 1762-01-31 10:00:00 blood 158 #> 316 72.8 2 1762 1762-01-31 10:00:00 bone 158 #> 317 45.7 3 1762 1762-03-02 20:00:01 blood 159 #> 318 45.7 3 1762 1762-03-02 20:00:01 bone 159 #> 319 60.2 4 1762 1762-04-02 06:00:00 blood 160 #> 320 60.2 4 1762 1762-04-02 06:00:00 bone 160 #> 321 39.9 5 1762 1762-05-02 16:00:00 blood 161 #> 322 39.9 5 1762 1762-05-02 16:00:00 bone 161 #> 323 77.1 6 1762 1762-06-02 02:00:01 blood 162 #> 324 77.1 6 1762 1762-06-02 02:00:01 bone 162 #> 325 33.8 7 1762 1762-07-02 12:00:00 blood 163 #> 326 33.8 7 1762 1762-07-02 12:00:00 bone 163 #> 327 67.7 8 1762 1762-08-01 22:00:00 blood 164 #> 328 67.7 8 1762 1762-08-01 22:00:00 bone 164 #> 329 68.5 9 1762 1762-09-01 08:00:01 blood 165 #> 330 68.5 9 1762 1762-09-01 08:00:01 bone 165 #> 331 69.3 10 1762 1762-10-01 18:00:00 blood 166 #> 332 69.3 10 1762 1762-10-01 18:00:00 bone 166 #> 333 77.8 11 1762 1762-11-01 04:00:00 blood 167 #> 334 77.8 11 1762 1762-11-01 04:00:00 bone 167 #> 335 77.2 12 1762 1762-12-01 14:00:01 blood 168 #> 336 77.2 12 1762 1762-12-01 14:00:01 bone 168 #> 337 56.5 1 1763 1763-01-01 00:00:00 blood 169 #> 338 56.5 1 1763 1763-01-01 00:00:00 bone 169 #> 339 31.9 2 1763 1763-01-31 10:00:00 blood 170 #> 340 31.9 2 1763 1763-01-31 10:00:00 bone 170 #> 341 34.2 3 1763 1763-03-02 20:00:01 blood 171 #> 342 34.2 3 1763 1763-03-02 20:00:01 bone 171 #> 343 32.9 4 1763 1763-04-02 06:00:00 blood 172 #> 344 32.9 4 1763 1763-04-02 06:00:00 bone 172 #> 345 32.7 5 1763 1763-05-02 16:00:00 blood 173 #> 346 32.7 5 1763 1763-05-02 16:00:00 bone 173 #> 347 35.8 6 1763 1763-06-02 02:00:01 blood 174 #> 348 35.8 6 1763 1763-06-02 02:00:01 bone 174 #> 349 54.2 7 1763 1763-07-02 12:00:00 blood 175 #> 350 54.2 7 1763 1763-07-02 12:00:00 bone 175 #> 351 26.5 8 1763 1763-08-01 22:00:00 blood 176 #> 352 26.5 8 1763 1763-08-01 22:00:00 bone 176 #> 353 68.1 9 1763 1763-09-01 08:00:01 blood 177 #> 354 68.1 9 1763 1763-09-01 08:00:01 bone 177 #> 355 46.3 10 1763 1763-10-01 18:00:00 blood 178 #> 356 46.3 10 1763 1763-10-01 18:00:00 bone 178 #> 357 60.9 11 1763 1763-11-01 04:00:00 blood 179 #> 358 60.9 11 1763 1763-11-01 04:00:00 bone 179 #> 359 61.4 12 1763 1763-12-01 14:00:01 blood 180 #> 360 61.4 12 1763 1763-12-01 14:00:01 bone 180 #> 361 59.7 1 1764 1764-01-01 00:00:00 blood 181 #> 362 59.7 1 1764 1764-01-01 00:00:00 bone 181 #> 363 59.7 2 1764 1764-01-31 12:00:00 blood 182 #> 364 59.7 2 1764 1764-01-31 12:00:00 bone 182 #> 365 40.2 3 1764 1764-03-02 00:00:01 blood 183 #> 366 40.2 3 1764 1764-03-02 00:00:01 bone 183 #> 367 34.4 4 1764 1764-04-01 12:00:00 blood 184 #> 368 34.4 4 1764 1764-04-01 12:00:00 bone 184 #> 369 44.3 5 1764 1764-05-02 00:00:00 blood 185 #> 370 44.3 5 1764 1764-05-02 00:00:00 bone 185 #> 371 30.0 6 1764 1764-06-01 12:00:01 blood 186 #> 372 30.0 6 1764 1764-06-01 12:00:01 bone 186 #> 373 30.0 7 1764 1764-07-02 00:00:00 blood 187 #> 374 30.0 7 1764 1764-07-02 00:00:00 bone 187 #> 375 30.0 8 1764 1764-08-01 12:00:00 blood 188 #> 376 30.0 8 1764 1764-08-01 12:00:00 bone 188 #> 377 28.2 9 1764 1764-09-01 00:00:01 blood 189 #> 378 28.2 9 1764 1764-09-01 00:00:01 bone 189 #> 379 28.0 10 1764 1764-10-01 12:00:00 blood 190 #> 380 28.0 10 1764 1764-10-01 12:00:00 bone 190 #> 381 26.0 11 1764 1764-11-01 00:00:00 blood 191 #> 382 26.0 11 1764 1764-11-01 00:00:00 bone 191 #> 383 25.7 12 1764 1764-12-01 12:00:01 blood 192 #> 384 25.7 12 1764 1764-12-01 12:00:01 bone 192 #> 385 24.0 1 1765 1765-01-01 00:00:00 blood 193 #> 386 24.0 1 1765 1765-01-01 00:00:00 bone 193 #> 387 26.0 2 1765 1765-01-31 10:00:00 blood 194 #> 388 26.0 2 1765 1765-01-31 10:00:00 bone 194 #> 389 25.0 3 1765 1765-03-02 20:00:01 blood 195 #> 390 25.0 3 1765 1765-03-02 20:00:01 bone 195 #> 391 22.0 4 1765 1765-04-02 06:00:00 blood 196 #> 392 22.0 4 1765 1765-04-02 06:00:00 bone 196 #> 393 20.2 5 1765 1765-05-02 16:00:00 blood 197 #> 394 20.2 5 1765 1765-05-02 16:00:00 bone 197 #> 395 20.0 6 1765 1765-06-02 02:00:01 blood 198 #> 396 20.0 6 1765 1765-06-02 02:00:01 bone 198 #> 397 27.0 7 1765 1765-07-02 12:00:00 blood 199 #> 398 27.0 7 1765 1765-07-02 12:00:00 bone 199 #> 399 29.7 8 1765 1765-08-01 22:00:00 blood 200 #> 400 29.7 8 1765 1765-08-01 22:00:00 bone 200 #> 401 16.0 9 1765 1765-09-01 08:00:01 blood 201 #> 402 16.0 9 1765 1765-09-01 08:00:01 bone 201 #> 403 14.0 10 1765 1765-10-01 18:00:00 blood 202 #> 404 14.0 10 1765 1765-10-01 18:00:00 bone 202 #> 405 14.0 11 1765 1765-11-01 04:00:00 blood 203 #> 406 14.0 11 1765 1765-11-01 04:00:00 bone 203 #> 407 13.0 12 1765 1765-12-01 14:00:01 blood 204 #> 408 13.0 12 1765 1765-12-01 14:00:01 bone 204 #> 409 12.0 1 1766 1766-01-01 00:00:00 blood 205 #> 410 12.0 1 1766 1766-01-01 00:00:00 bone 205 #> 411 11.0 2 1766 1766-01-31 10:00:00 blood 206 #> 412 11.0 2 1766 1766-01-31 10:00:00 bone 206 #> 413 36.6 3 1766 1766-03-02 20:00:01 blood 207 #> 414 36.6 3 1766 1766-03-02 20:00:01 bone 207 #> 415 6.0 4 1766 1766-04-02 06:00:00 blood 208 #> 416 6.0 4 1766 1766-04-02 06:00:00 bone 208 #> 417 26.8 5 1766 1766-05-02 16:00:00 blood 209 #> 418 26.8 5 1766 1766-05-02 16:00:00 bone 209 #> 419 3.0 6 1766 1766-06-02 02:00:01 blood 210 #> 420 3.0 6 1766 1766-06-02 02:00:01 bone 210 #> 421 3.3 7 1766 1766-07-02 12:00:00 blood 211 #> 422 3.3 7 1766 1766-07-02 12:00:00 bone 211 #> 423 4.0 8 1766 1766-08-01 22:00:00 blood 212 #> 424 4.0 8 1766 1766-08-01 22:00:00 bone 212 #> 425 4.3 9 1766 1766-09-01 08:00:01 blood 213 #> 426 4.3 9 1766 1766-09-01 08:00:01 bone 213 #> 427 5.0 10 1766 1766-10-01 18:00:00 blood 214 #> 428 5.0 10 1766 1766-10-01 18:00:00 bone 214 #> 429 5.7 11 1766 1766-11-01 04:00:00 blood 215 #> 430 5.7 11 1766 1766-11-01 04:00:00 bone 215 #> 431 19.2 12 1766 1766-12-01 14:00:01 blood 216 #> 432 19.2 12 1766 1766-12-01 14:00:01 bone 216 #> 433 27.4 1 1767 1767-01-01 00:00:00 blood 217 #> 434 27.4 1 1767 1767-01-01 00:00:00 bone 217 #> 435 30.0 2 1767 1767-01-31 10:00:00 blood 218 #> 436 30.0 2 1767 1767-01-31 10:00:00 bone 218 #> 437 43.0 3 1767 1767-03-02 20:00:01 blood 219 #> 438 43.0 3 1767 1767-03-02 20:00:01 bone 219 #> 439 32.9 4 1767 1767-04-02 06:00:00 blood 220 #> 440 32.9 4 1767 1767-04-02 06:00:00 bone 220 #> 441 29.8 5 1767 1767-05-02 16:00:00 blood 221 #> 442 29.8 5 1767 1767-05-02 16:00:00 bone 221 #> 443 33.3 6 1767 1767-06-02 02:00:01 blood 222 #> 444 33.3 6 1767 1767-06-02 02:00:01 bone 222 #> 445 21.9 7 1767 1767-07-02 12:00:00 blood 223 #> 446 21.9 7 1767 1767-07-02 12:00:00 bone 223 #> 447 40.8 8 1767 1767-08-01 22:00:00 blood 224 #> 448 40.8 8 1767 1767-08-01 22:00:00 bone 224 #> 449 42.7 9 1767 1767-09-01 08:00:01 blood 225 #> 450 42.7 9 1767 1767-09-01 08:00:01 bone 225 #> 451 44.1 10 1767 1767-10-01 18:00:00 blood 226 #> 452 44.1 10 1767 1767-10-01 18:00:00 bone 226 #> 453 54.7 11 1767 1767-11-01 04:00:00 blood 227 #> 454 54.7 11 1767 1767-11-01 04:00:00 bone 227 #> 455 53.3 12 1767 1767-12-01 14:00:01 blood 228 #> 456 53.3 12 1767 1767-12-01 14:00:01 bone 228 #> 457 53.5 1 1768 1768-01-01 00:00:00 blood 229 #> 458 53.5 1 1768 1768-01-01 00:00:00 bone 229 #> 459 66.1 2 1768 1768-01-31 12:00:00 blood 230 #> 460 66.1 2 1768 1768-01-31 12:00:00 bone 230 #> 461 46.3 3 1768 1768-03-02 00:00:01 blood 231 #> 462 46.3 3 1768 1768-03-02 00:00:01 bone 231 #> 463 42.7 4 1768 1768-04-01 12:00:00 blood 232 #> 464 42.7 4 1768 1768-04-01 12:00:00 bone 232 #> 465 77.7 5 1768 1768-05-02 00:00:00 blood 233 #> 466 77.7 5 1768 1768-05-02 00:00:00 bone 233 #> 467 77.4 6 1768 1768-06-01 12:00:01 blood 234 #> 468 77.4 6 1768 1768-06-01 12:00:01 bone 234 #> 469 52.6 7 1768 1768-07-02 00:00:00 blood 235 #> 470 52.6 7 1768 1768-07-02 00:00:00 bone 235 #> 471 66.8 8 1768 1768-08-01 12:00:00 blood 236 #> 472 66.8 8 1768 1768-08-01 12:00:00 bone 236 #> 473 74.8 9 1768 1768-09-01 00:00:01 blood 237 #> 474 74.8 9 1768 1768-09-01 00:00:01 bone 237 #> 475 77.8 10 1768 1768-10-01 12:00:00 blood 238 #> 476 77.8 10 1768 1768-10-01 12:00:00 bone 238 #> 477 90.6 11 1768 1768-11-01 00:00:00 blood 239 #> 478 90.6 11 1768 1768-11-01 00:00:00 bone 239 #> 479 111.8 12 1768 1768-12-01 12:00:01 blood 240 #> 480 111.8 12 1768 1768-12-01 12:00:01 bone 240 #> 481 73.9 1 1769 1769-01-01 00:00:00 blood 241 #> 482 73.9 1 1769 1769-01-01 00:00:00 bone 241 #> 483 64.2 2 1769 1769-01-31 10:00:00 blood 242 #> 484 64.2 2 1769 1769-01-31 10:00:00 bone 242 #> 485 64.3 3 1769 1769-03-02 20:00:01 blood 243 #> 486 64.3 3 1769 1769-03-02 20:00:01 bone 243 #> 487 96.7 4 1769 1769-04-02 06:00:00 blood 244 #> 488 96.7 4 1769 1769-04-02 06:00:00 bone 244 #> 489 73.6 5 1769 1769-05-02 16:00:00 blood 245 #> 490 73.6 5 1769 1769-05-02 16:00:00 bone 245 #> 491 94.4 6 1769 1769-06-02 02:00:01 blood 246 #> 492 94.4 6 1769 1769-06-02 02:00:01 bone 246 #> 493 118.6 7 1769 1769-07-02 12:00:00 blood 247 #> 494 118.6 7 1769 1769-07-02 12:00:00 bone 247 #> 495 120.3 8 1769 1769-08-01 22:00:00 blood 248 #> 496 120.3 8 1769 1769-08-01 22:00:00 bone 248 #> 497 148.8 9 1769 1769-09-01 08:00:01 blood 249 #> 498 148.8 9 1769 1769-09-01 08:00:01 bone 249 #> 499 158.2 10 1769 1769-10-01 18:00:00 blood 250 #> 500 158.2 10 1769 1769-10-01 18:00:00 bone 250 #> 501 148.1 11 1769 1769-11-01 04:00:00 blood 251 #> 502 148.1 11 1769 1769-11-01 04:00:00 bone 251 #> 503 112.0 12 1769 1769-12-01 14:00:01 blood 252 #> 504 112.0 12 1769 1769-12-01 14:00:01 bone 252 #> 505 104.0 1 1770 1770-01-01 00:00:00 blood 253 #> 506 104.0 1 1770 1770-01-01 00:00:00 bone 253 #> 507 142.5 2 1770 1770-01-31 10:00:00 blood 254 #> 508 142.5 2 1770 1770-01-31 10:00:00 bone 254 #> 509 80.1 3 1770 1770-03-02 20:00:01 blood 255 #> 510 80.1 3 1770 1770-03-02 20:00:01 bone 255 #> 511 51.0 4 1770 1770-04-02 06:00:00 blood 256 #> 512 51.0 4 1770 1770-04-02 06:00:00 bone 256 #> 513 70.1 5 1770 1770-05-02 16:00:00 blood 257 #> 514 70.1 5 1770 1770-05-02 16:00:00 bone 257 #> 515 83.3 6 1770 1770-06-02 02:00:01 blood 258 #> 516 83.3 6 1770 1770-06-02 02:00:01 bone 258 #> 517 109.8 7 1770 1770-07-02 12:00:00 blood 259 #> 518 109.8 7 1770 1770-07-02 12:00:00 bone 259 #> 519 126.3 8 1770 1770-08-01 22:00:00 blood 260 #> 520 126.3 8 1770 1770-08-01 22:00:00 bone 260 #> 521 104.4 9 1770 1770-09-01 08:00:01 blood 261 #> 522 104.4 9 1770 1770-09-01 08:00:01 bone 261 #> 523 103.6 10 1770 1770-10-01 18:00:00 blood 262 #> 524 103.6 10 1770 1770-10-01 18:00:00 bone 262 #> 525 132.2 11 1770 1770-11-01 04:00:00 blood 263 #> 526 132.2 11 1770 1770-11-01 04:00:00 bone 263 #> 527 102.3 12 1770 1770-12-01 14:00:01 blood 264 #> 528 102.3 12 1770 1770-12-01 14:00:01 bone 264 #> 529 36.0 1 1771 1771-01-01 00:00:00 blood 265 #> 530 36.0 1 1771 1771-01-01 00:00:00 bone 265 #> 531 46.2 2 1771 1771-01-31 10:00:00 blood 266 #> 532 46.2 2 1771 1771-01-31 10:00:00 bone 266 #> 533 46.7 3 1771 1771-03-02 20:00:01 blood 267 #> 534 46.7 3 1771 1771-03-02 20:00:01 bone 267 #> 535 64.9 4 1771 1771-04-02 06:00:00 blood 268 #> 536 64.9 4 1771 1771-04-02 06:00:00 bone 268 #> 537 152.7 5 1771 1771-05-02 16:00:00 blood 269 #> 538 152.7 5 1771 1771-05-02 16:00:00 bone 269 #> 539 119.5 6 1771 1771-06-02 02:00:01 blood 270 #> 540 119.5 6 1771 1771-06-02 02:00:01 bone 270 #> 541 67.7 7 1771 1771-07-02 12:00:00 blood 271 #> 542 67.7 7 1771 1771-07-02 12:00:00 bone 271 #> 543 58.5 8 1771 1771-08-01 22:00:00 blood 272 #> 544 58.5 8 1771 1771-08-01 22:00:00 bone 272 #> 545 101.4 9 1771 1771-09-01 08:00:01 blood 273 #> 546 101.4 9 1771 1771-09-01 08:00:01 bone 273 #> 547 90.0 10 1771 1771-10-01 18:00:00 blood 274 #> 548 90.0 10 1771 1771-10-01 18:00:00 bone 274 #> 549 99.7 11 1771 1771-11-01 04:00:00 blood 275 #> 550 99.7 11 1771 1771-11-01 04:00:00 bone 275 #> 551 95.7 12 1771 1771-12-01 14:00:01 blood 276 #> 552 95.7 12 1771 1771-12-01 14:00:01 bone 276 #> 553 100.9 1 1772 1772-01-01 00:00:00 blood 277 #> 554 100.9 1 1772 1772-01-01 00:00:00 bone 277 #> 555 90.8 2 1772 1772-01-31 12:00:00 blood 278 #> 556 90.8 2 1772 1772-01-31 12:00:00 bone 278 #> 557 31.1 3 1772 1772-03-02 00:00:01 blood 279 #> 558 31.1 3 1772 1772-03-02 00:00:01 bone 279 #> 559 92.2 4 1772 1772-04-01 12:00:00 blood 280 #> 560 92.2 4 1772 1772-04-01 12:00:00 bone 280 #> 561 38.0 5 1772 1772-05-02 00:00:00 blood 281 #> 562 38.0 5 1772 1772-05-02 00:00:00 bone 281 #> 563 57.0 6 1772 1772-06-01 12:00:01 blood 282 #> 564 57.0 6 1772 1772-06-01 12:00:01 bone 282 #> 565 77.3 7 1772 1772-07-02 00:00:00 blood 283 #> 566 77.3 7 1772 1772-07-02 00:00:00 bone 283 #> 567 56.2 8 1772 1772-08-01 12:00:00 blood 284 #> 568 56.2 8 1772 1772-08-01 12:00:00 bone 284 #> 569 50.5 9 1772 1772-09-01 00:00:01 blood 285 #> 570 50.5 9 1772 1772-09-01 00:00:01 bone 285 #> 571 78.6 10 1772 1772-10-01 12:00:00 blood 286 #> 572 78.6 10 1772 1772-10-01 12:00:00 bone 286 #> 573 61.3 11 1772 1772-11-01 00:00:00 blood 287 #> 574 61.3 11 1772 1772-11-01 00:00:00 bone 287 #> 575 64.0 12 1772 1772-12-01 12:00:01 blood 288 #> 576 64.0 12 1772 1772-12-01 12:00:01 bone 288 #> 577 54.6 1 1773 1773-01-01 00:00:00 blood 289 #> 578 54.6 1 1773 1773-01-01 00:00:00 bone 289 #> 579 29.0 2 1773 1773-01-31 10:00:00 blood 290 #> 580 29.0 2 1773 1773-01-31 10:00:00 bone 290 #> 581 51.2 3 1773 1773-03-02 20:00:01 blood 291 #> 582 51.2 3 1773 1773-03-02 20:00:01 bone 291 #> 583 32.9 4 1773 1773-04-02 06:00:00 blood 292 #> 584 32.9 4 1773 1773-04-02 06:00:00 bone 292 #> 585 41.1 5 1773 1773-05-02 16:00:00 blood 293 #> 586 41.1 5 1773 1773-05-02 16:00:00 bone 293 #> 587 28.4 6 1773 1773-06-02 02:00:01 blood 294 #> 588 28.4 6 1773 1773-06-02 02:00:01 bone 294 #> 589 27.7 7 1773 1773-07-02 12:00:00 blood 295 #> 590 27.7 7 1773 1773-07-02 12:00:00 bone 295 #> 591 12.7 8 1773 1773-08-01 22:00:00 blood 296 #> 592 12.7 8 1773 1773-08-01 22:00:00 bone 296 #> 593 29.3 9 1773 1773-09-01 08:00:01 blood 297 #> 594 29.3 9 1773 1773-09-01 08:00:01 bone 297 #> 595 26.3 10 1773 1773-10-01 18:00:00 blood 298 #> 596 26.3 10 1773 1773-10-01 18:00:00 bone 298 #> 597 40.9 11 1773 1773-11-01 04:00:00 blood 299 #> 598 40.9 11 1773 1773-11-01 04:00:00 bone 299 #> 599 43.2 12 1773 1773-12-01 14:00:01 blood 300 #> 600 43.2 12 1773 1773-12-01 14:00:01 bone 300 #> 601 46.8 1 1774 1774-01-01 00:00:00 blood 301 #> 602 46.8 1 1774 1774-01-01 00:00:00 bone 301 #> 603 65.4 2 1774 1774-01-31 10:00:00 blood 302 #> 604 65.4 2 1774 1774-01-31 10:00:00 bone 302 #> 605 55.7 3 1774 1774-03-02 20:00:01 blood 303 #> 606 55.7 3 1774 1774-03-02 20:00:01 bone 303 #> 607 43.8 4 1774 1774-04-02 06:00:00 blood 304 #> 608 43.8 4 1774 1774-04-02 06:00:00 bone 304 #> 609 51.3 5 1774 1774-05-02 16:00:00 blood 305 #> 610 51.3 5 1774 1774-05-02 16:00:00 bone 305 #> 611 28.5 6 1774 1774-06-02 02:00:01 blood 306 #> 612 28.5 6 1774 1774-06-02 02:00:01 bone 306 #> 613 17.5 7 1774 1774-07-02 12:00:00 blood 307 #> 614 17.5 7 1774 1774-07-02 12:00:00 bone 307 #> 615 6.6 8 1774 1774-08-01 22:00:00 blood 308 #> 616 6.6 8 1774 1774-08-01 22:00:00 bone 308 #> 617 7.9 9 1774 1774-09-01 08:00:01 blood 309 #> 618 7.9 9 1774 1774-09-01 08:00:01 bone 309 #> 619 14.0 10 1774 1774-10-01 18:00:00 blood 310 #> 620 14.0 10 1774 1774-10-01 18:00:00 bone 310 #> 621 17.7 11 1774 1774-11-01 04:00:00 blood 311 #> 622 17.7 11 1774 1774-11-01 04:00:00 bone 311 #> 623 12.2 12 1774 1774-12-01 14:00:01 blood 312 #> 624 12.2 12 1774 1774-12-01 14:00:01 bone 312 #> 625 4.4 1 1775 1775-01-01 00:00:00 blood 313 #> 626 4.4 1 1775 1775-01-01 00:00:00 bone 313 #> 627 0.0 2 1775 1775-01-31 10:00:00 blood 314 #> 628 0.0 2 1775 1775-01-31 10:00:00 bone 314 #> 629 11.6 3 1775 1775-03-02 20:00:01 blood 315 #> 630 11.6 3 1775 1775-03-02 20:00:01 bone 315 #> 631 11.2 4 1775 1775-04-02 06:00:00 blood 316 #> 632 11.2 4 1775 1775-04-02 06:00:00 bone 316 #> 633 3.9 5 1775 1775-05-02 16:00:00 blood 317 #> 634 3.9 5 1775 1775-05-02 16:00:00 bone 317 #> 635 12.3 6 1775 1775-06-02 02:00:01 blood 318 #> 636 12.3 6 1775 1775-06-02 02:00:01 bone 318 #> 637 1.0 7 1775 1775-07-02 12:00:00 blood 319 #> 638 1.0 7 1775 1775-07-02 12:00:00 bone 319 #> 639 7.9 8 1775 1775-08-01 22:00:00 blood 320 #> 640 7.9 8 1775 1775-08-01 22:00:00 bone 320 #> 641 3.2 9 1775 1775-09-01 08:00:01 blood 321 #> 642 3.2 9 1775 1775-09-01 08:00:01 bone 321 #> 643 5.6 10 1775 1775-10-01 18:00:00 blood 322 #> 644 5.6 10 1775 1775-10-01 18:00:00 bone 322 #> 645 15.1 11 1775 1775-11-01 04:00:00 blood 323 #> 646 15.1 11 1775 1775-11-01 04:00:00 bone 323 #> 647 7.9 12 1775 1775-12-01 14:00:01 blood 324 #> 648 7.9 12 1775 1775-12-01 14:00:01 bone 324 #> 649 21.7 1 1776 1776-01-01 00:00:00 blood 325 #> 650 21.7 1 1776 1776-01-01 00:00:00 bone 325 #> 651 11.6 2 1776 1776-01-31 12:00:00 blood 326 #> 652 11.6 2 1776 1776-01-31 12:00:00 bone 326 #> 653 6.3 3 1776 1776-03-02 00:00:01 blood 327 #> 654 6.3 3 1776 1776-03-02 00:00:01 bone 327 #> 655 21.8 4 1776 1776-04-01 12:00:00 blood 328 #> 656 21.8 4 1776 1776-04-01 12:00:00 bone 328 #> 657 11.2 5 1776 1776-05-02 00:00:00 blood 329 #> 658 11.2 5 1776 1776-05-02 00:00:00 bone 329 #> 659 19.0 6 1776 1776-06-01 12:00:01 blood 330 #> 660 19.0 6 1776 1776-06-01 12:00:01 bone 330 #> 661 1.0 7 1776 1776-07-02 00:00:00 blood 331 #> 662 1.0 7 1776 1776-07-02 00:00:00 bone 331 #> 663 24.2 8 1776 1776-08-01 12:00:00 blood 332 #> 664 24.2 8 1776 1776-08-01 12:00:00 bone 332 #> 665 16.0 9 1776 1776-09-01 00:00:01 blood 333 #> 666 16.0 9 1776 1776-09-01 00:00:01 bone 333 #> 667 30.0 10 1776 1776-10-01 12:00:00 blood 334 #> 668 30.0 10 1776 1776-10-01 12:00:00 bone 334 #> 669 35.0 11 1776 1776-11-01 00:00:00 blood 335 #> 670 35.0 11 1776 1776-11-01 00:00:00 bone 335 #> 671 40.0 12 1776 1776-12-01 12:00:01 blood 336 #> 672 40.0 12 1776 1776-12-01 12:00:01 bone 336 #> 673 45.0 1 1777 1777-01-01 00:00:00 blood 337 #> 674 45.0 1 1777 1777-01-01 00:00:00 bone 337 #> 675 36.5 2 1777 1777-01-31 10:00:00 blood 338 #> 676 36.5 2 1777 1777-01-31 10:00:00 bone 338 #> 677 39.0 3 1777 1777-03-02 20:00:01 blood 339 #> 678 39.0 3 1777 1777-03-02 20:00:01 bone 339 #> 679 95.5 4 1777 1777-04-02 06:00:00 blood 340 #> 680 95.5 4 1777 1777-04-02 06:00:00 bone 340 #> 681 80.3 5 1777 1777-05-02 16:00:00 blood 341 #> 682 80.3 5 1777 1777-05-02 16:00:00 bone 341 #> 683 80.7 6 1777 1777-06-02 02:00:01 blood 342 #> 684 80.7 6 1777 1777-06-02 02:00:01 bone 342 #> 685 95.0 7 1777 1777-07-02 12:00:00 blood 343 #> 686 95.0 7 1777 1777-07-02 12:00:00 bone 343 #> 687 112.0 8 1777 1777-08-01 22:00:00 blood 344 #> 688 112.0 8 1777 1777-08-01 22:00:00 bone 344 #> 689 116.2 9 1777 1777-09-01 08:00:01 blood 345 #> 690 116.2 9 1777 1777-09-01 08:00:01 bone 345 #> 691 106.5 10 1777 1777-10-01 18:00:00 blood 346 #> 692 106.5 10 1777 1777-10-01 18:00:00 bone 346 #> 693 146.0 11 1777 1777-11-01 04:00:00 blood 347 #> 694 146.0 11 1777 1777-11-01 04:00:00 bone 347 #> 695 157.3 12 1777 1777-12-01 14:00:01 blood 348 #> 696 157.3 12 1777 1777-12-01 14:00:01 bone 348 #> 697 177.3 1 1778 1778-01-01 00:00:00 blood 349 #> 698 177.3 1 1778 1778-01-01 00:00:00 bone 349 #> 699 109.3 2 1778 1778-01-31 10:00:00 blood 350 #> 700 109.3 2 1778 1778-01-31 10:00:00 bone 350 #> 701 134.0 3 1778 1778-03-02 20:00:01 blood 351 #> 702 134.0 3 1778 1778-03-02 20:00:01 bone 351 #> 703 145.0 4 1778 1778-04-02 06:00:00 blood 352 #> 704 145.0 4 1778 1778-04-02 06:00:00 bone 352 #> 705 238.9 5 1778 1778-05-02 16:00:00 blood 353 #> 706 238.9 5 1778 1778-05-02 16:00:00 bone 353 #> 707 171.6 6 1778 1778-06-02 02:00:01 blood 354 #> 708 171.6 6 1778 1778-06-02 02:00:01 bone 354 #> 709 153.0 7 1778 1778-07-02 12:00:00 blood 355 #> 710 153.0 7 1778 1778-07-02 12:00:00 bone 355 #> 711 140.0 8 1778 1778-08-01 22:00:00 blood 356 #> 712 140.0 8 1778 1778-08-01 22:00:00 bone 356 #> 713 171.7 9 1778 1778-09-01 08:00:01 blood 357 #> 714 171.7 9 1778 1778-09-01 08:00:01 bone 357 #> 715 156.3 10 1778 1778-10-01 18:00:00 blood 358 #> 716 156.3 10 1778 1778-10-01 18:00:00 bone 358 #> 717 150.3 11 1778 1778-11-01 04:00:00 blood 359 #> 718 150.3 11 1778 1778-11-01 04:00:00 bone 359 #> 719 105.0 12 1778 1778-12-01 14:00:01 blood 360 #> 720 105.0 12 1778 1778-12-01 14:00:01 bone 360 #> 721 114.7 1 1779 1779-01-01 00:00:00 blood 361 #> 722 114.7 1 1779 1779-01-01 00:00:00 bone 361 #> 723 165.7 2 1779 1779-01-31 10:00:00 blood 362 #> 724 165.7 2 1779 1779-01-31 10:00:00 bone 362 #> 725 118.0 3 1779 1779-03-02 20:00:01 blood 363 #> 726 118.0 3 1779 1779-03-02 20:00:01 bone 363 #> 727 145.0 4 1779 1779-04-02 06:00:00 blood 364 #> 728 145.0 4 1779 1779-04-02 06:00:00 bone 364 #> 729 140.0 5 1779 1779-05-02 16:00:00 blood 365 #> 730 140.0 5 1779 1779-05-02 16:00:00 bone 365 #> 731 113.7 6 1779 1779-06-02 02:00:01 blood 366 #> 732 113.7 6 1779 1779-06-02 02:00:01 bone 366 #> 733 143.0 7 1779 1779-07-02 12:00:00 blood 367 #> 734 143.0 7 1779 1779-07-02 12:00:00 bone 367 #> 735 112.0 8 1779 1779-08-01 22:00:00 blood 368 #> 736 112.0 8 1779 1779-08-01 22:00:00 bone 368 #> 737 111.0 9 1779 1779-09-01 08:00:01 blood 369 #> 738 111.0 9 1779 1779-09-01 08:00:01 bone 369 #> 739 124.0 10 1779 1779-10-01 18:00:00 blood 370 #> 740 124.0 10 1779 1779-10-01 18:00:00 bone 370 #> 741 114.0 11 1779 1779-11-01 04:00:00 blood 371 #> 742 114.0 11 1779 1779-11-01 04:00:00 bone 371 #> 743 110.0 12 1779 1779-12-01 14:00:01 blood 372 #> 744 110.0 12 1779 1779-12-01 14:00:01 bone 372 #> 745 70.0 1 1780 1780-01-01 00:00:00 blood 373 #> 746 70.0 1 1780 1780-01-01 00:00:00 bone 373 #> 747 98.0 2 1780 1780-01-31 12:00:00 blood 374 #> 748 98.0 2 1780 1780-01-31 12:00:00 bone 374 #> 749 98.0 3 1780 1780-03-02 00:00:01 blood 375 #> 750 98.0 3 1780 1780-03-02 00:00:01 bone 375 #> 751 95.0 4 1780 1780-04-01 12:00:00 blood 376 #> 752 95.0 4 1780 1780-04-01 12:00:00 bone 376 #> 753 107.2 5 1780 1780-05-02 00:00:00 blood 377 #> 754 107.2 5 1780 1780-05-02 00:00:00 bone 377 #> 755 88.0 6 1780 1780-06-01 12:00:01 blood 378 #> 756 88.0 6 1780 1780-06-01 12:00:01 bone 378 #> 757 86.0 7 1780 1780-07-02 00:00:00 blood 379 #> 758 86.0 7 1780 1780-07-02 00:00:00 bone 379 #> 759 86.0 8 1780 1780-08-01 12:00:00 blood 380 #> 760 86.0 8 1780 1780-08-01 12:00:00 bone 380 #> 761 93.7 9 1780 1780-09-01 00:00:01 blood 381 #> 762 93.7 9 1780 1780-09-01 00:00:01 bone 381 #> 763 77.0 10 1780 1780-10-01 12:00:00 blood 382 #> 764 77.0 10 1780 1780-10-01 12:00:00 bone 382 #> 765 60.0 11 1780 1780-11-01 00:00:00 blood 383 #> 766 60.0 11 1780 1780-11-01 00:00:00 bone 383 #> 767 58.7 12 1780 1780-12-01 12:00:01 blood 384 #> 768 58.7 12 1780 1780-12-01 12:00:01 bone 384 #> 769 98.7 1 1781 1781-01-01 00:00:00 blood 385 #> 770 98.7 1 1781 1781-01-01 00:00:00 bone 385 #> 771 74.7 2 1781 1781-01-31 10:00:00 blood 386 #> 772 74.7 2 1781 1781-01-31 10:00:00 bone 386 #> 773 53.0 3 1781 1781-03-02 20:00:01 blood 387 #> 774 53.0 3 1781 1781-03-02 20:00:01 bone 387 #> 775 68.3 4 1781 1781-04-02 06:00:00 blood 388 #> 776 68.3 4 1781 1781-04-02 06:00:00 bone 388 #> 777 104.7 5 1781 1781-05-02 16:00:00 blood 389 #> 778 104.7 5 1781 1781-05-02 16:00:00 bone 389 #> 779 97.7 6 1781 1781-06-02 02:00:01 blood 390 #> 780 97.7 6 1781 1781-06-02 02:00:01 bone 390 #> 781 73.5 7 1781 1781-07-02 12:00:00 blood 391 #> 782 73.5 7 1781 1781-07-02 12:00:00 bone 391 #> 783 66.0 8 1781 1781-08-01 22:00:00 blood 392 #> 784 66.0 8 1781 1781-08-01 22:00:00 bone 392 #> 785 51.0 9 1781 1781-09-01 08:00:01 blood 393 #> 786 51.0 9 1781 1781-09-01 08:00:01 bone 393 #> 787 27.3 10 1781 1781-10-01 18:00:00 blood 394 #> 788 27.3 10 1781 1781-10-01 18:00:00 bone 394 #> 789 67.0 11 1781 1781-11-01 04:00:00 blood 395 #> 790 67.0 11 1781 1781-11-01 04:00:00 bone 395 #> 791 35.2 12 1781 1781-12-01 14:00:01 blood 396 #> 792 35.2 12 1781 1781-12-01 14:00:01 bone 396 #> 793 54.0 1 1782 1782-01-01 00:00:00 blood 397 #> 794 54.0 1 1782 1782-01-01 00:00:00 bone 397 #> 795 37.5 2 1782 1782-01-31 10:00:00 blood 398 #> 796 37.5 2 1782 1782-01-31 10:00:00 bone 398 #> 797 37.0 3 1782 1782-03-02 20:00:01 blood 399 #> 798 37.0 3 1782 1782-03-02 20:00:01 bone 399 #> 799 41.0 4 1782 1782-04-02 06:00:00 blood 400 #> 800 41.0 4 1782 1782-04-02 06:00:00 bone 400 #> 801 54.3 5 1782 1782-05-02 16:00:00 blood 401 #> 802 54.3 5 1782 1782-05-02 16:00:00 bone 401 #> 803 38.0 6 1782 1782-06-02 02:00:01 blood 402 #> 804 38.0 6 1782 1782-06-02 02:00:01 bone 402 #> 805 37.0 7 1782 1782-07-02 12:00:00 blood 403 #> 806 37.0 7 1782 1782-07-02 12:00:00 bone 403 #> 807 44.0 8 1782 1782-08-01 22:00:00 blood 404 #> 808 44.0 8 1782 1782-08-01 22:00:00 bone 404 #> 809 34.0 9 1782 1782-09-01 08:00:01 blood 405 #> 810 34.0 9 1782 1782-09-01 08:00:01 bone 405 #> 811 23.2 10 1782 1782-10-01 18:00:00 blood 406 #> 812 23.2 10 1782 1782-10-01 18:00:00 bone 406 #> 813 31.5 11 1782 1782-11-01 04:00:00 blood 407 #> 814 31.5 11 1782 1782-11-01 04:00:00 bone 407 #> 815 30.0 12 1782 1782-12-01 14:00:01 blood 408 #> 816 30.0 12 1782 1782-12-01 14:00:01 bone 408 #> 817 28.0 1 1783 1783-01-01 00:00:00 blood 409 #> 818 28.0 1 1783 1783-01-01 00:00:00 bone 409 #> 819 38.7 2 1783 1783-01-31 10:00:00 blood 410 #> 820 38.7 2 1783 1783-01-31 10:00:00 bone 410 #> 821 26.7 3 1783 1783-03-02 20:00:01 blood 411 #> 822 26.7 3 1783 1783-03-02 20:00:01 bone 411 #> 823 28.3 4 1783 1783-04-02 06:00:00 blood 412 #> 824 28.3 4 1783 1783-04-02 06:00:00 bone 412 #> 825 23.0 5 1783 1783-05-02 16:00:00 blood 413 #> 826 23.0 5 1783 1783-05-02 16:00:00 bone 413 #> 827 25.2 6 1783 1783-06-02 02:00:01 blood 414 #> 828 25.2 6 1783 1783-06-02 02:00:01 bone 414 #> 829 32.2 7 1783 1783-07-02 12:00:00 blood 415 #> 830 32.2 7 1783 1783-07-02 12:00:00 bone 415 #> 831 20.0 8 1783 1783-08-01 22:00:00 blood 416 #> 832 20.0 8 1783 1783-08-01 22:00:00 bone 416 #> 833 18.0 9 1783 1783-09-01 08:00:01 blood 417 #> 834 18.0 9 1783 1783-09-01 08:00:01 bone 417 #> 835 8.0 10 1783 1783-10-01 18:00:00 blood 418 #> 836 8.0 10 1783 1783-10-01 18:00:00 bone 418 #> 837 15.0 11 1783 1783-11-01 04:00:00 blood 419 #> 838 15.0 11 1783 1783-11-01 04:00:00 bone 419 #> 839 10.5 12 1783 1783-12-01 14:00:01 blood 420 #> 840 10.5 12 1783 1783-12-01 14:00:01 bone 420 #> 841 13.0 1 1784 1784-01-01 00:00:00 blood 421 #> 842 13.0 1 1784 1784-01-01 00:00:00 bone 421 #> 843 8.0 2 1784 1784-01-31 12:00:00 blood 422 #> 844 8.0 2 1784 1784-01-31 12:00:00 bone 422 #> 845 11.0 3 1784 1784-03-02 00:00:01 blood 423 #> 846 11.0 3 1784 1784-03-02 00:00:01 bone 423 #> 847 10.0 4 1784 1784-04-01 12:00:00 blood 424 #> 848 10.0 4 1784 1784-04-01 12:00:00 bone 424 #> 849 6.0 5 1784 1784-05-02 00:00:00 blood 425 #> 850 6.0 5 1784 1784-05-02 00:00:00 bone 425 #> 851 9.0 6 1784 1784-06-01 12:00:01 blood 426 #> 852 9.0 6 1784 1784-06-01 12:00:01 bone 426 #> 853 6.0 7 1784 1784-07-02 00:00:00 blood 427 #> 854 6.0 7 1784 1784-07-02 00:00:00 bone 427 #> 855 10.0 8 1784 1784-08-01 12:00:00 blood 428 #> 856 10.0 8 1784 1784-08-01 12:00:00 bone 428 #> 857 10.0 9 1784 1784-09-01 00:00:01 blood 429 #> 858 10.0 9 1784 1784-09-01 00:00:01 bone 429 #> 859 8.0 10 1784 1784-10-01 12:00:00 blood 430 #> 860 8.0 10 1784 1784-10-01 12:00:00 bone 430 #> 861 17.0 11 1784 1784-11-01 00:00:00 blood 431 #> 862 17.0 11 1784 1784-11-01 00:00:00 bone 431 #> 863 14.0 12 1784 1784-12-01 12:00:01 blood 432 #> 864 14.0 12 1784 1784-12-01 12:00:01 bone 432 #> 865 6.5 1 1785 1785-01-01 00:00:00 blood 433 #> 866 6.5 1 1785 1785-01-01 00:00:00 bone 433 #> 867 8.0 2 1785 1785-01-31 10:00:00 blood 434 #> 868 8.0 2 1785 1785-01-31 10:00:00 bone 434 #> 869 9.0 3 1785 1785-03-02 20:00:01 blood 435 #> 870 9.0 3 1785 1785-03-02 20:00:01 bone 435 #> 871 15.7 4 1785 1785-04-02 06:00:00 blood 436 #> 872 15.7 4 1785 1785-04-02 06:00:00 bone 436 #> 873 20.7 5 1785 1785-05-02 16:00:00 blood 437 #> 874 20.7 5 1785 1785-05-02 16:00:00 bone 437 #> 875 26.3 6 1785 1785-06-02 02:00:01 blood 438 #> 876 26.3 6 1785 1785-06-02 02:00:01 bone 438 #> 877 36.3 7 1785 1785-07-02 12:00:00 blood 439 #> 878 36.3 7 1785 1785-07-02 12:00:00 bone 439 #> 879 20.0 8 1785 1785-08-01 22:00:00 blood 440 #> 880 20.0 8 1785 1785-08-01 22:00:00 bone 440 #> 881 32.0 9 1785 1785-09-01 08:00:01 blood 441 #> 882 32.0 9 1785 1785-09-01 08:00:01 bone 441 #> 883 47.2 10 1785 1785-10-01 18:00:00 blood 442 #> 884 47.2 10 1785 1785-10-01 18:00:00 bone 442 #> 885 40.2 11 1785 1785-11-01 04:00:00 blood 443 #> 886 40.2 11 1785 1785-11-01 04:00:00 bone 443 #> 887 27.3 12 1785 1785-12-01 14:00:01 blood 444 #> 888 27.3 12 1785 1785-12-01 14:00:01 bone 444 #> 889 37.2 1 1786 1786-01-01 00:00:00 blood 445 #> 890 37.2 1 1786 1786-01-01 00:00:00 bone 445 #> 891 47.6 2 1786 1786-01-31 10:00:00 blood 446 #> 892 47.6 2 1786 1786-01-31 10:00:00 bone 446 #> 893 47.7 3 1786 1786-03-02 20:00:01 blood 447 #> 894 47.7 3 1786 1786-03-02 20:00:01 bone 447 #> 895 85.4 4 1786 1786-04-02 06:00:00 blood 448 #> 896 85.4 4 1786 1786-04-02 06:00:00 bone 448 #> 897 92.3 5 1786 1786-05-02 16:00:00 blood 449 #> 898 92.3 5 1786 1786-05-02 16:00:00 bone 449 #> 899 59.0 6 1786 1786-06-02 02:00:01 blood 450 #> 900 59.0 6 1786 1786-06-02 02:00:01 bone 450 #> 901 83.0 7 1786 1786-07-02 12:00:00 blood 451 #> 902 83.0 7 1786 1786-07-02 12:00:00 bone 451 #> 903 89.7 8 1786 1786-08-01 22:00:00 blood 452 #> 904 89.7 8 1786 1786-08-01 22:00:00 bone 452 #> 905 111.5 9 1786 1786-09-01 08:00:01 blood 453 #> 906 111.5 9 1786 1786-09-01 08:00:01 bone 453 #> 907 112.3 10 1786 1786-10-01 18:00:00 blood 454 #> 908 112.3 10 1786 1786-10-01 18:00:00 bone 454 #> 909 116.0 11 1786 1786-11-01 04:00:00 blood 455 #> 910 116.0 11 1786 1786-11-01 04:00:00 bone 455 #> 911 112.7 12 1786 1786-12-01 14:00:01 blood 456 #> 912 112.7 12 1786 1786-12-01 14:00:01 bone 456 #> 913 134.7 1 1787 1787-01-01 00:00:00 blood 457 #> 914 134.7 1 1787 1787-01-01 00:00:00 bone 457 #> 915 106.0 2 1787 1787-01-31 10:00:00 blood 458 #> 916 106.0 2 1787 1787-01-31 10:00:00 bone 458 #> 917 87.4 3 1787 1787-03-02 20:00:01 blood 459 #> 918 87.4 3 1787 1787-03-02 20:00:01 bone 459 #> 919 127.2 4 1787 1787-04-02 06:00:00 blood 460 #> 920 127.2 4 1787 1787-04-02 06:00:00 bone 460 #> 921 134.8 5 1787 1787-05-02 16:00:00 blood 461 #> 922 134.8 5 1787 1787-05-02 16:00:00 bone 461 #> 923 99.2 6 1787 1787-06-02 02:00:01 blood 462 #> 924 99.2 6 1787 1787-06-02 02:00:01 bone 462 #> 925 128.0 7 1787 1787-07-02 12:00:00 blood 463 #> 926 128.0 7 1787 1787-07-02 12:00:00 bone 463 #> 927 137.2 8 1787 1787-08-01 22:00:00 blood 464 #> 928 137.2 8 1787 1787-08-01 22:00:00 bone 464 #> 929 157.3 9 1787 1787-09-01 08:00:01 blood 465 #> 930 157.3 9 1787 1787-09-01 08:00:01 bone 465 #> 931 157.0 10 1787 1787-10-01 18:00:00 blood 466 #> 932 157.0 10 1787 1787-10-01 18:00:00 bone 466 #> 933 141.5 11 1787 1787-11-01 04:00:00 blood 467 #> 934 141.5 11 1787 1787-11-01 04:00:00 bone 467 #> 935 174.0 12 1787 1787-12-01 14:00:01 blood 468 #> 936 174.0 12 1787 1787-12-01 14:00:01 bone 468 #> 937 138.0 1 1788 1788-01-01 00:00:00 blood 469 #> 938 138.0 1 1788 1788-01-01 00:00:00 bone 469 #> 939 129.2 2 1788 1788-01-31 12:00:00 blood 470 #> 940 129.2 2 1788 1788-01-31 12:00:00 bone 470 #> 941 143.3 3 1788 1788-03-02 00:00:01 blood 471 #> 942 143.3 3 1788 1788-03-02 00:00:01 bone 471 #> 943 108.5 4 1788 1788-04-01 12:00:00 blood 472 #> 944 108.5 4 1788 1788-04-01 12:00:00 bone 472 #> 945 113.0 5 1788 1788-05-02 00:00:00 blood 473 #> 946 113.0 5 1788 1788-05-02 00:00:00 bone 473 #> 947 154.2 6 1788 1788-06-01 12:00:01 blood 474 #> 948 154.2 6 1788 1788-06-01 12:00:01 bone 474 #> 949 141.5 7 1788 1788-07-02 00:00:00 blood 475 #> 950 141.5 7 1788 1788-07-02 00:00:00 bone 475 #> 951 136.0 8 1788 1788-08-01 12:00:00 blood 476 #> 952 136.0 8 1788 1788-08-01 12:00:00 bone 476 #> 953 141.0 9 1788 1788-09-01 00:00:01 blood 477 #> 954 141.0 9 1788 1788-09-01 00:00:01 bone 477 #> 955 142.0 10 1788 1788-10-01 12:00:00 blood 478 #> 956 142.0 10 1788 1788-10-01 12:00:00 bone 478 #> 957 94.7 11 1788 1788-11-01 00:00:00 blood 479 #> 958 94.7 11 1788 1788-11-01 00:00:00 bone 479 #> 959 129.5 12 1788 1788-12-01 12:00:01 blood 480 #> 960 129.5 12 1788 1788-12-01 12:00:01 bone 480 #> 961 114.0 1 1789 1789-01-01 00:00:00 blood 481 #> 962 114.0 1 1789 1789-01-01 00:00:00 bone 481 #> 963 125.3 2 1789 1789-01-31 10:00:00 blood 482 #> 964 125.3 2 1789 1789-01-31 10:00:00 bone 482 #> 965 120.0 3 1789 1789-03-02 20:00:01 blood 483 #> 966 120.0 3 1789 1789-03-02 20:00:01 bone 483 #> 967 123.3 4 1789 1789-04-02 06:00:00 blood 484 #> 968 123.3 4 1789 1789-04-02 06:00:00 bone 484 #> 969 123.5 5 1789 1789-05-02 16:00:00 blood 485 #> 970 123.5 5 1789 1789-05-02 16:00:00 bone 485 #> 971 120.0 6 1789 1789-06-02 02:00:01 blood 486 #> 972 120.0 6 1789 1789-06-02 02:00:01 bone 486 #> 973 117.0 7 1789 1789-07-02 12:00:00 blood 487 #> 974 117.0 7 1789 1789-07-02 12:00:00 bone 487 #> 975 103.0 8 1789 1789-08-01 22:00:00 blood 488 #> 976 103.0 8 1789 1789-08-01 22:00:00 bone 488 #> 977 112.0 9 1789 1789-09-01 08:00:01 blood 489 #> 978 112.0 9 1789 1789-09-01 08:00:01 bone 489 #> 979 89.7 10 1789 1789-10-01 18:00:00 blood 490 #> 980 89.7 10 1789 1789-10-01 18:00:00 bone 490 #> 981 134.0 11 1789 1789-11-01 04:00:00 blood 491 #> 982 134.0 11 1789 1789-11-01 04:00:00 bone 491 #> 983 135.5 12 1789 1789-12-01 14:00:01 blood 492 #> 984 135.5 12 1789 1789-12-01 14:00:01 bone 492 #> 985 103.0 1 1790 1790-01-01 00:00:00 blood 493 #> 986 103.0 1 1790 1790-01-01 00:00:00 bone 493 #> 987 127.5 2 1790 1790-01-31 10:00:00 blood 494 #> 988 127.5 2 1790 1790-01-31 10:00:00 bone 494 #> 989 96.3 3 1790 1790-03-02 20:00:01 blood 495 #> 990 96.3 3 1790 1790-03-02 20:00:01 bone 495 #> 991 94.0 4 1790 1790-04-02 06:00:00 blood 496 #> 992 94.0 4 1790 1790-04-02 06:00:00 bone 496 #> 993 93.0 5 1790 1790-05-02 16:00:00 blood 497 #> 994 93.0 5 1790 1790-05-02 16:00:00 bone 497 #> 995 91.0 6 1790 1790-06-02 02:00:01 blood 498 #> 996 91.0 6 1790 1790-06-02 02:00:01 bone 498 #> 997 69.3 7 1790 1790-07-02 12:00:00 blood 499 #> 998 69.3 7 1790 1790-07-02 12:00:00 bone 499 #> 999 87.0 8 1790 1790-08-01 22:00:00 blood 500 #> 1000 87.0 8 1790 1790-08-01 22:00:00 bone 500 #> 1001 77.3 9 1790 1790-09-01 08:00:01 blood 501 #> 1002 77.3 9 1790 1790-09-01 08:00:01 bone 501 #> 1003 84.3 10 1790 1790-10-01 18:00:00 blood 502 #> 1004 84.3 10 1790 1790-10-01 18:00:00 bone 502 #> 1005 82.0 11 1790 1790-11-01 04:00:00 blood 503 #> 1006 82.0 11 1790 1790-11-01 04:00:00 bone 503 #> 1007 74.0 12 1790 1790-12-01 14:00:01 blood 504 #> 1008 74.0 12 1790 1790-12-01 14:00:01 bone 504 #> 1009 72.7 1 1791 1791-01-01 00:00:00 blood 505 #> 1010 72.7 1 1791 1791-01-01 00:00:00 bone 505 #> 1011 62.0 2 1791 1791-01-31 10:00:00 blood 506 #> 1012 62.0 2 1791 1791-01-31 10:00:00 bone 506 #> 1013 74.0 3 1791 1791-03-02 20:00:01 blood 507 #> 1014 74.0 3 1791 1791-03-02 20:00:01 bone 507 #> 1015 77.2 4 1791 1791-04-02 06:00:00 blood 508 #> 1016 77.2 4 1791 1791-04-02 06:00:00 bone 508 #> 1017 73.7 5 1791 1791-05-02 16:00:00 blood 509 #> 1018 73.7 5 1791 1791-05-02 16:00:00 bone 509 #> 1019 64.2 6 1791 1791-06-02 02:00:01 blood 510 #> 1020 64.2 6 1791 1791-06-02 02:00:01 bone 510 #> 1021 71.0 7 1791 1791-07-02 12:00:00 blood 511 #> 1022 71.0 7 1791 1791-07-02 12:00:00 bone 511 #> 1023 43.0 8 1791 1791-08-01 22:00:00 blood 512 #> 1024 43.0 8 1791 1791-08-01 22:00:00 bone 512 #> 1025 66.5 9 1791 1791-09-01 08:00:01 blood 513 #> 1026 66.5 9 1791 1791-09-01 08:00:01 bone 513 #> 1027 61.7 10 1791 1791-10-01 18:00:00 blood 514 #> 1028 61.7 10 1791 1791-10-01 18:00:00 bone 514 #> 1029 67.0 11 1791 1791-11-01 04:00:00 blood 515 #> 1030 67.0 11 1791 1791-11-01 04:00:00 bone 515 #> 1031 66.0 12 1791 1791-12-01 14:00:01 blood 516 #> 1032 66.0 12 1791 1791-12-01 14:00:01 bone 516 #> 1033 58.0 1 1792 1792-01-01 00:00:00 blood 517 #> 1034 58.0 1 1792 1792-01-01 00:00:00 bone 517 #> 1035 64.0 2 1792 1792-01-31 12:00:00 blood 518 #> 1036 64.0 2 1792 1792-01-31 12:00:00 bone 518 #> 1037 63.0 3 1792 1792-03-02 00:00:01 blood 519 #> 1038 63.0 3 1792 1792-03-02 00:00:01 bone 519 #> 1039 75.7 4 1792 1792-04-01 12:00:00 blood 520 #> 1040 75.7 4 1792 1792-04-01 12:00:00 bone 520 #> 1041 62.0 5 1792 1792-05-02 00:00:00 blood 521 #> 1042 62.0 5 1792 1792-05-02 00:00:00 bone 521 #> 1043 61.0 6 1792 1792-06-01 12:00:01 blood 522 #> 1044 61.0 6 1792 1792-06-01 12:00:01 bone 522 #> 1045 45.8 7 1792 1792-07-02 00:00:00 blood 523 #> 1046 45.8 7 1792 1792-07-02 00:00:00 bone 523 #> 1047 60.0 8 1792 1792-08-01 12:00:00 blood 524 #> 1048 60.0 8 1792 1792-08-01 12:00:00 bone 524 #> 1049 59.0 9 1792 1792-09-01 00:00:01 blood 525 #> 1050 59.0 9 1792 1792-09-01 00:00:01 bone 525 #> 1051 59.0 10 1792 1792-10-01 12:00:00 blood 526 #> 1052 59.0 10 1792 1792-10-01 12:00:00 bone 526 #> 1053 57.0 11 1792 1792-11-01 00:00:00 blood 527 #> 1054 57.0 11 1792 1792-11-01 00:00:00 bone 527 #> 1055 56.0 12 1792 1792-12-01 12:00:01 blood 528 #> 1056 56.0 12 1792 1792-12-01 12:00:01 bone 528 #> 1057 56.0 1 1793 1793-01-01 00:00:00 blood 529 #> 1058 56.0 1 1793 1793-01-01 00:00:00 bone 529 #> 1059 55.0 2 1793 1793-01-31 10:00:00 blood 530 #> 1060 55.0 2 1793 1793-01-31 10:00:00 bone 530 #> 1061 55.5 3 1793 1793-03-02 20:00:01 blood 531 #> 1062 55.5 3 1793 1793-03-02 20:00:01 bone 531 #> 1063 53.0 4 1793 1793-04-02 06:00:00 blood 532 #> 1064 53.0 4 1793 1793-04-02 06:00:00 bone 532 #> 1065 52.3 5 1793 1793-05-02 16:00:00 blood 533 #> 1066 52.3 5 1793 1793-05-02 16:00:00 bone 533 #> 1067 51.0 6 1793 1793-06-02 02:00:01 blood 534 #> 1068 51.0 6 1793 1793-06-02 02:00:01 bone 534 #> 1069 50.0 7 1793 1793-07-02 12:00:00 blood 535 #> 1070 50.0 7 1793 1793-07-02 12:00:00 bone 535 #> 1071 29.3 8 1793 1793-08-01 22:00:00 blood 536 #> 1072 29.3 8 1793 1793-08-01 22:00:00 bone 536 #> 1073 24.0 9 1793 1793-09-01 08:00:01 blood 537 #> 1074 24.0 9 1793 1793-09-01 08:00:01 bone 537 #> 1075 47.0 10 1793 1793-10-01 18:00:00 blood 538 #> 1076 47.0 10 1793 1793-10-01 18:00:00 bone 538 #> 1077 44.0 11 1793 1793-11-01 04:00:00 blood 539 #> 1078 44.0 11 1793 1793-11-01 04:00:00 bone 539 #> 1079 45.7 12 1793 1793-12-01 14:00:01 blood 540 #> 1080 45.7 12 1793 1793-12-01 14:00:01 bone 540 #> 1081 45.0 1 1794 1794-01-01 00:00:00 blood 541 #> 1082 45.0 1 1794 1794-01-01 00:00:00 bone 541 #> 1083 44.0 2 1794 1794-01-31 10:00:00 blood 542 #> 1084 44.0 2 1794 1794-01-31 10:00:00 bone 542 #> 1085 38.0 3 1794 1794-03-02 20:00:01 blood 543 #> 1086 38.0 3 1794 1794-03-02 20:00:01 bone 543 #> 1087 28.4 4 1794 1794-04-02 06:00:00 blood 544 #> 1088 28.4 4 1794 1794-04-02 06:00:00 bone 544 #> 1089 55.7 5 1794 1794-05-02 16:00:00 blood 545 #> 1090 55.7 5 1794 1794-05-02 16:00:00 bone 545 #> 1091 41.5 6 1794 1794-06-02 02:00:01 blood 546 #> 1092 41.5 6 1794 1794-06-02 02:00:01 bone 546 #> 1093 41.0 7 1794 1794-07-02 12:00:00 blood 547 #> 1094 41.0 7 1794 1794-07-02 12:00:00 bone 547 #> 1095 40.0 8 1794 1794-08-01 22:00:00 blood 548 #> 1096 40.0 8 1794 1794-08-01 22:00:00 bone 548 #> 1097 11.1 9 1794 1794-09-01 08:00:01 blood 549 #> 1098 11.1 9 1794 1794-09-01 08:00:01 bone 549 #> 1099 28.5 10 1794 1794-10-01 18:00:00 blood 550 #> 1100 28.5 10 1794 1794-10-01 18:00:00 bone 550 #> 1101 67.4 11 1794 1794-11-01 04:00:00 blood 551 #> 1102 67.4 11 1794 1794-11-01 04:00:00 bone 551 #> 1103 51.4 12 1794 1794-12-01 14:00:01 blood 552 #> 1104 51.4 12 1794 1794-12-01 14:00:01 bone 552 #> 1105 21.4 1 1795 1795-01-01 00:00:00 blood 553 #> 1106 21.4 1 1795 1795-01-01 00:00:00 bone 553 #> 1107 39.9 2 1795 1795-01-31 10:00:00 blood 554 #> 1108 39.9 2 1795 1795-01-31 10:00:00 bone 554 #> 1109 12.6 3 1795 1795-03-02 20:00:01 blood 555 #> 1110 12.6 3 1795 1795-03-02 20:00:01 bone 555 #> 1111 18.6 4 1795 1795-04-02 06:00:00 blood 556 #> 1112 18.6 4 1795 1795-04-02 06:00:00 bone 556 #> 1113 31.0 5 1795 1795-05-02 16:00:00 blood 557 #> 1114 31.0 5 1795 1795-05-02 16:00:00 bone 557 #> 1115 17.1 6 1795 1795-06-02 02:00:01 blood 558 #> 1116 17.1 6 1795 1795-06-02 02:00:01 bone 558 #> 1117 12.9 7 1795 1795-07-02 12:00:00 blood 559 #> 1118 12.9 7 1795 1795-07-02 12:00:00 bone 559 #> 1119 25.7 8 1795 1795-08-01 22:00:00 blood 560 #> 1120 25.7 8 1795 1795-08-01 22:00:00 bone 560 #> 1121 13.5 9 1795 1795-09-01 08:00:01 blood 561 #> 1122 13.5 9 1795 1795-09-01 08:00:01 bone 561 #> 1123 19.5 10 1795 1795-10-01 18:00:00 blood 562 #> 1124 19.5 10 1795 1795-10-01 18:00:00 bone 562 #> 1125 25.0 11 1795 1795-11-01 04:00:00 blood 563 #> 1126 25.0 11 1795 1795-11-01 04:00:00 bone 563 #> 1127 18.0 12 1795 1795-12-01 14:00:01 blood 564 #> 1128 18.0 12 1795 1795-12-01 14:00:01 bone 564 #> 1129 22.0 1 1796 1796-01-01 00:00:00 blood 565 #> 1130 22.0 1 1796 1796-01-01 00:00:00 bone 565 #> 1131 23.8 2 1796 1796-01-31 12:00:00 blood 566 #> 1132 23.8 2 1796 1796-01-31 12:00:00 bone 566 #> 1133 15.7 3 1796 1796-03-02 00:00:01 blood 567 #> 1134 15.7 3 1796 1796-03-02 00:00:01 bone 567 #> 1135 31.7 4 1796 1796-04-01 12:00:00 blood 568 #> 1136 31.7 4 1796 1796-04-01 12:00:00 bone 568 #> 1137 21.0 5 1796 1796-05-02 00:00:00 blood 569 #> 1138 21.0 5 1796 1796-05-02 00:00:00 bone 569 #> 1139 6.7 6 1796 1796-06-01 12:00:01 blood 570 #> 1140 6.7 6 1796 1796-06-01 12:00:01 bone 570 #> 1141 26.9 7 1796 1796-07-02 00:00:00 blood 571 #> 1142 26.9 7 1796 1796-07-02 00:00:00 bone 571 #> 1143 1.5 8 1796 1796-08-01 12:00:00 blood 572 #> 1144 1.5 8 1796 1796-08-01 12:00:00 bone 572 #> 1145 18.4 9 1796 1796-09-01 00:00:01 blood 573 #> 1146 18.4 9 1796 1796-09-01 00:00:01 bone 573 #> 1147 11.0 10 1796 1796-10-01 12:00:00 blood 574 #> 1148 11.0 10 1796 1796-10-01 12:00:00 bone 574 #> 1149 8.4 11 1796 1796-11-01 00:00:00 blood 575 #> 1150 8.4 11 1796 1796-11-01 00:00:00 bone 575 #> 1151 5.1 12 1796 1796-12-01 12:00:01 blood 576 #> 1152 5.1 12 1796 1796-12-01 12:00:01 bone 576 #> 1153 14.4 1 1797 1797-01-01 00:00:00 blood 577 #> 1154 14.4 1 1797 1797-01-01 00:00:00 bone 577 #> 1155 4.2 2 1797 1797-01-31 10:00:00 blood 578 #> 1156 4.2 2 1797 1797-01-31 10:00:00 bone 578 #> 1157 4.0 3 1797 1797-03-02 20:00:01 blood 579 #> 1158 4.0 3 1797 1797-03-02 20:00:01 bone 579 #> 1159 4.0 4 1797 1797-04-02 06:00:00 blood 580 #> 1160 4.0 4 1797 1797-04-02 06:00:00 bone 580 #> 1161 7.3 5 1797 1797-05-02 16:00:00 blood 581 #> 1162 7.3 5 1797 1797-05-02 16:00:00 bone 581 #> 1163 11.1 6 1797 1797-06-02 02:00:01 blood 582 #> 1164 11.1 6 1797 1797-06-02 02:00:01 bone 582 #> 1165 4.3 7 1797 1797-07-02 12:00:00 blood 583 #> 1166 4.3 7 1797 1797-07-02 12:00:00 bone 583 #> 1167 6.0 8 1797 1797-08-01 22:00:00 blood 584 #> 1168 6.0 8 1797 1797-08-01 22:00:00 bone 584 #> 1169 5.7 9 1797 1797-09-01 08:00:01 blood 585 #> 1170 5.7 9 1797 1797-09-01 08:00:01 bone 585 #> 1171 6.9 10 1797 1797-10-01 18:00:00 blood 586 #> 1172 6.9 10 1797 1797-10-01 18:00:00 bone 586 #> 1173 5.8 11 1797 1797-11-01 04:00:00 blood 587 #> 1174 5.8 11 1797 1797-11-01 04:00:00 bone 587 #> 1175 3.0 12 1797 1797-12-01 14:00:01 blood 588 #> 1176 3.0 12 1797 1797-12-01 14:00:01 bone 588 #> 1177 2.0 1 1798 1798-01-01 00:00:00 blood 589 #> 1178 2.0 1 1798 1798-01-01 00:00:00 bone 589 #> 1179 4.0 2 1798 1798-01-31 10:00:00 blood 590 #> 1180 4.0 2 1798 1798-01-31 10:00:00 bone 590 #> 1181 12.4 3 1798 1798-03-02 20:00:01 blood 591 #> 1182 12.4 3 1798 1798-03-02 20:00:01 bone 591 #> 1183 1.1 4 1798 1798-04-02 06:00:00 blood 592 #> 1184 1.1 4 1798 1798-04-02 06:00:00 bone 592 #> 1185 0.0 5 1798 1798-05-02 16:00:00 blood 593 #> 1186 0.0 5 1798 1798-05-02 16:00:00 bone 593 #> 1187 0.0 6 1798 1798-06-02 02:00:01 blood 594 #> 1188 0.0 6 1798 1798-06-02 02:00:01 bone 594 #> 1189 0.0 7 1798 1798-07-02 12:00:00 blood 595 #> 1190 0.0 7 1798 1798-07-02 12:00:00 bone 595 #> 1191 3.0 8 1798 1798-08-01 22:00:00 blood 596 #> 1192 3.0 8 1798 1798-08-01 22:00:00 bone 596 #> 1193 2.4 9 1798 1798-09-01 08:00:01 blood 597 #> 1194 2.4 9 1798 1798-09-01 08:00:01 bone 597 #> 1195 1.5 10 1798 1798-10-01 18:00:00 blood 598 #> 1196 1.5 10 1798 1798-10-01 18:00:00 bone 598 #> 1197 12.5 11 1798 1798-11-01 04:00:00 blood 599 #> 1198 12.5 11 1798 1798-11-01 04:00:00 bone 599 #> 1199 9.9 12 1798 1798-12-01 14:00:01 blood 600 #> 1200 9.9 12 1798 1798-12-01 14:00:01 bone 600 #> 1201 1.6 1 1799 1799-01-01 00:00:00 blood 601 #> 1202 1.6 1 1799 1799-01-01 00:00:00 bone 601 #> 1203 12.6 2 1799 1799-01-31 10:00:00 blood 602 #> 1204 12.6 2 1799 1799-01-31 10:00:00 bone 602 #> 1205 21.7 3 1799 1799-03-02 20:00:01 blood 603 #> 1206 21.7 3 1799 1799-03-02 20:00:01 bone 603 #> 1207 8.4 4 1799 1799-04-02 06:00:00 blood 604 #> 1208 8.4 4 1799 1799-04-02 06:00:00 bone 604 #> 1209 8.2 5 1799 1799-05-02 16:00:00 blood 605 #> 1210 8.2 5 1799 1799-05-02 16:00:00 bone 605 #> 1211 10.6 6 1799 1799-06-02 02:00:01 blood 606 #> 1212 10.6 6 1799 1799-06-02 02:00:01 bone 606 #> 1213 2.1 7 1799 1799-07-02 12:00:00 blood 607 #> 1214 2.1 7 1799 1799-07-02 12:00:00 bone 607 #> 1215 0.0 8 1799 1799-08-01 22:00:00 blood 608 #> 1216 0.0 8 1799 1799-08-01 22:00:00 bone 608 #> 1217 0.0 9 1799 1799-09-01 08:00:01 blood 609 #> 1218 0.0 9 1799 1799-09-01 08:00:01 bone 609 #> 1219 4.6 10 1799 1799-10-01 18:00:00 blood 610 #> 1220 4.6 10 1799 1799-10-01 18:00:00 bone 610 #> 1221 2.7 11 1799 1799-11-01 04:00:00 blood 611 #> 1222 2.7 11 1799 1799-11-01 04:00:00 bone 611 #> 1223 8.6 12 1799 1799-12-01 14:00:01 blood 612 #> 1224 8.6 12 1799 1799-12-01 14:00:01 bone 612 #> 1225 6.9 1 1800 1800-01-01 00:00:00 blood 613 #> 1226 6.9 1 1800 1800-01-01 00:00:00 bone 613 #> 1227 9.3 2 1800 1800-01-31 10:00:00 blood 614 #> 1228 9.3 2 1800 1800-01-31 10:00:00 bone 614 #> 1229 13.9 3 1800 1800-03-02 20:00:01 blood 615 #> 1230 13.9 3 1800 1800-03-02 20:00:01 bone 615 #> 1231 0.0 4 1800 1800-04-02 06:00:00 blood 616 #> 1232 0.0 4 1800 1800-04-02 06:00:00 bone 616 #> 1233 5.0 5 1800 1800-05-02 16:00:00 blood 617 #> 1234 5.0 5 1800 1800-05-02 16:00:00 bone 617 #> 1235 23.7 6 1800 1800-06-02 02:00:01 blood 618 #> 1236 23.7 6 1800 1800-06-02 02:00:01 bone 618 #> 1237 21.0 7 1800 1800-07-02 12:00:00 blood 619 #> 1238 21.0 7 1800 1800-07-02 12:00:00 bone 619 #> 1239 19.5 8 1800 1800-08-01 22:00:00 blood 620 #> 1240 19.5 8 1800 1800-08-01 22:00:00 bone 620 #> 1241 11.5 9 1800 1800-09-01 08:00:01 blood 621 #> 1242 11.5 9 1800 1800-09-01 08:00:01 bone 621 #> 1243 12.3 10 1800 1800-10-01 18:00:00 blood 622 #> 1244 12.3 10 1800 1800-10-01 18:00:00 bone 622 #> 1245 10.5 11 1800 1800-11-01 04:00:00 blood 623 #> 1246 10.5 11 1800 1800-11-01 04:00:00 bone 623 #> 1247 40.1 12 1800 1800-12-01 14:00:01 blood 624 #> 1248 40.1 12 1800 1800-12-01 14:00:01 bone 624 #> 1249 27.0 1 1801 1801-01-01 00:00:00 blood 625 #> 1250 27.0 1 1801 1801-01-01 00:00:00 bone 625 #> 1251 29.0 2 1801 1801-01-31 10:00:00 blood 626 #> 1252 29.0 2 1801 1801-01-31 10:00:00 bone 626 #> 1253 30.0 3 1801 1801-03-02 20:00:01 blood 627 #> 1254 30.0 3 1801 1801-03-02 20:00:01 bone 627 #> 1255 31.0 4 1801 1801-04-02 06:00:00 blood 628 #> 1256 31.0 4 1801 1801-04-02 06:00:00 bone 628 #> 1257 32.0 5 1801 1801-05-02 16:00:00 blood 629 #> 1258 32.0 5 1801 1801-05-02 16:00:00 bone 629 #> 1259 31.2 6 1801 1801-06-02 02:00:01 blood 630 #> 1260 31.2 6 1801 1801-06-02 02:00:01 bone 630 #> 1261 35.0 7 1801 1801-07-02 12:00:00 blood 631 #> 1262 35.0 7 1801 1801-07-02 12:00:00 bone 631 #> 1263 38.7 8 1801 1801-08-01 22:00:00 blood 632 #> 1264 38.7 8 1801 1801-08-01 22:00:00 bone 632 #> 1265 33.5 9 1801 1801-09-01 08:00:01 blood 633 #> 1266 33.5 9 1801 1801-09-01 08:00:01 bone 633 #> 1267 32.6 10 1801 1801-10-01 18:00:00 blood 634 #> 1268 32.6 10 1801 1801-10-01 18:00:00 bone 634 #> 1269 39.8 11 1801 1801-11-01 04:00:00 blood 635 #> 1270 39.8 11 1801 1801-11-01 04:00:00 bone 635 #> 1271 48.2 12 1801 1801-12-01 14:00:01 blood 636 #> 1272 48.2 12 1801 1801-12-01 14:00:01 bone 636 #> 1273 47.8 1 1802 1802-01-01 00:00:00 blood 637 #> 1274 47.8 1 1802 1802-01-01 00:00:00 bone 637 #> 1275 47.0 2 1802 1802-01-31 10:00:00 blood 638 #> 1276 47.0 2 1802 1802-01-31 10:00:00 bone 638 #> 1277 40.8 3 1802 1802-03-02 20:00:01 blood 639 #> 1278 40.8 3 1802 1802-03-02 20:00:01 bone 639 #> 1279 42.0 4 1802 1802-04-02 06:00:00 blood 640 #> 1280 42.0 4 1802 1802-04-02 06:00:00 bone 640 #> 1281 44.0 5 1802 1802-05-02 16:00:00 blood 641 #> 1282 44.0 5 1802 1802-05-02 16:00:00 bone 641 #> 1283 46.0 6 1802 1802-06-02 02:00:01 blood 642 #> 1284 46.0 6 1802 1802-06-02 02:00:01 bone 642 #> 1285 48.0 7 1802 1802-07-02 12:00:00 blood 643 #> 1286 48.0 7 1802 1802-07-02 12:00:00 bone 643 #> 1287 50.0 8 1802 1802-08-01 22:00:00 blood 644 #> 1288 50.0 8 1802 1802-08-01 22:00:00 bone 644 #> 1289 51.8 9 1802 1802-09-01 08:00:01 blood 645 #> 1290 51.8 9 1802 1802-09-01 08:00:01 bone 645 #> 1291 38.5 10 1802 1802-10-01 18:00:00 blood 646 #> 1292 38.5 10 1802 1802-10-01 18:00:00 bone 646 #> 1293 34.5 11 1802 1802-11-01 04:00:00 blood 647 #> 1294 34.5 11 1802 1802-11-01 04:00:00 bone 647 #> 1295 50.0 12 1802 1802-12-01 14:00:01 blood 648 #> 1296 50.0 12 1802 1802-12-01 14:00:01 bone 648 #> 1297 50.0 1 1803 1803-01-01 00:00:00 blood 649 #> 1298 50.0 1 1803 1803-01-01 00:00:00 bone 649 #> 1299 50.8 2 1803 1803-01-31 10:00:00 blood 650 #> 1300 50.8 2 1803 1803-01-31 10:00:00 bone 650 #> 1301 29.5 3 1803 1803-03-02 20:00:01 blood 651 #> 1302 29.5 3 1803 1803-03-02 20:00:01 bone 651 #> 1303 25.0 4 1803 1803-04-02 06:00:00 blood 652 #> 1304 25.0 4 1803 1803-04-02 06:00:00 bone 652 #> 1305 44.3 5 1803 1803-05-02 16:00:00 blood 653 #> 1306 44.3 5 1803 1803-05-02 16:00:00 bone 653 #> 1307 36.0 6 1803 1803-06-02 02:00:01 blood 654 #> 1308 36.0 6 1803 1803-06-02 02:00:01 bone 654 #> 1309 48.3 7 1803 1803-07-02 12:00:00 blood 655 #> 1310 48.3 7 1803 1803-07-02 12:00:00 bone 655 #> 1311 34.1 8 1803 1803-08-01 22:00:00 blood 656 #> 1312 34.1 8 1803 1803-08-01 22:00:00 bone 656 #> 1313 45.3 9 1803 1803-09-01 08:00:01 blood 657 #> 1314 45.3 9 1803 1803-09-01 08:00:01 bone 657 #> 1315 54.3 10 1803 1803-10-01 18:00:00 blood 658 #> 1316 54.3 10 1803 1803-10-01 18:00:00 bone 658 #> 1317 51.0 11 1803 1803-11-01 04:00:00 blood 659 #> 1318 51.0 11 1803 1803-11-01 04:00:00 bone 659 #> 1319 48.0 12 1803 1803-12-01 14:00:01 blood 660 #> 1320 48.0 12 1803 1803-12-01 14:00:01 bone 660 #> 1321 45.3 1 1804 1804-01-01 00:00:00 blood 661 #> 1322 45.3 1 1804 1804-01-01 00:00:00 bone 661 #> 1323 48.3 2 1804 1804-01-31 12:00:00 blood 662 #> 1324 48.3 2 1804 1804-01-31 12:00:00 bone 662 #> 1325 48.0 3 1804 1804-03-02 00:00:01 blood 663 #> 1326 48.0 3 1804 1804-03-02 00:00:01 bone 663 #> 1327 50.6 4 1804 1804-04-01 12:00:00 blood 664 #> 1328 50.6 4 1804 1804-04-01 12:00:00 bone 664 #> 1329 33.4 5 1804 1804-05-02 00:00:00 blood 665 #> 1330 33.4 5 1804 1804-05-02 00:00:00 bone 665 #> 1331 34.8 6 1804 1804-06-01 12:00:01 blood 666 #> 1332 34.8 6 1804 1804-06-01 12:00:01 bone 666 #> 1333 29.8 7 1804 1804-07-02 00:00:00 blood 667 #> 1334 29.8 7 1804 1804-07-02 00:00:00 bone 667 #> 1335 43.1 8 1804 1804-08-01 12:00:00 blood 668 #> 1336 43.1 8 1804 1804-08-01 12:00:00 bone 668 #> 1337 53.0 9 1804 1804-09-01 00:00:01 blood 669 #> 1338 53.0 9 1804 1804-09-01 00:00:01 bone 669 #> 1339 62.3 10 1804 1804-10-01 12:00:00 blood 670 #> 1340 62.3 10 1804 1804-10-01 12:00:00 bone 670 #> 1341 61.0 11 1804 1804-11-01 00:00:00 blood 671 #> 1342 61.0 11 1804 1804-11-01 00:00:00 bone 671 #> 1343 60.0 12 1804 1804-12-01 12:00:01 blood 672 #> 1344 60.0 12 1804 1804-12-01 12:00:01 bone 672 #> 1345 61.0 1 1805 1805-01-01 00:00:00 blood 673 #> 1346 61.0 1 1805 1805-01-01 00:00:00 bone 673 #> 1347 44.1 2 1805 1805-01-31 10:00:00 blood 674 #> 1348 44.1 2 1805 1805-01-31 10:00:00 bone 674 #> 1349 51.4 3 1805 1805-03-02 20:00:01 blood 675 #> 1350 51.4 3 1805 1805-03-02 20:00:01 bone 675 #> 1351 37.5 4 1805 1805-04-02 06:00:00 blood 676 #> 1352 37.5 4 1805 1805-04-02 06:00:00 bone 676 #> 1353 39.0 5 1805 1805-05-02 16:00:00 blood 677 #> 1354 39.0 5 1805 1805-05-02 16:00:00 bone 677 #> 1355 40.5 6 1805 1805-06-02 02:00:01 blood 678 #> 1356 40.5 6 1805 1805-06-02 02:00:01 bone 678 #> 1357 37.6 7 1805 1805-07-02 12:00:00 blood 679 #> 1358 37.6 7 1805 1805-07-02 12:00:00 bone 679 #> 1359 42.7 8 1805 1805-08-01 22:00:00 blood 680 #> 1360 42.7 8 1805 1805-08-01 22:00:00 bone 680 #> 1361 44.4 9 1805 1805-09-01 08:00:01 blood 681 #> 1362 44.4 9 1805 1805-09-01 08:00:01 bone 681 #> 1363 29.4 10 1805 1805-10-01 18:00:00 blood 682 #> 1364 29.4 10 1805 1805-10-01 18:00:00 bone 682 #> 1365 41.0 11 1805 1805-11-01 04:00:00 blood 683 #> 1366 41.0 11 1805 1805-11-01 04:00:00 bone 683 #> 1367 38.3 12 1805 1805-12-01 14:00:01 blood 684 #> 1368 38.3 12 1805 1805-12-01 14:00:01 bone 684 #> 1369 39.0 1 1806 1806-01-01 00:00:00 blood 685 #> 1370 39.0 1 1806 1806-01-01 00:00:00 bone 685 #> 1371 29.6 2 1806 1806-01-31 10:00:00 blood 686 #> 1372 29.6 2 1806 1806-01-31 10:00:00 bone 686 #> 1373 32.7 3 1806 1806-03-02 20:00:01 blood 687 #> 1374 32.7 3 1806 1806-03-02 20:00:01 bone 687 #> 1375 27.7 4 1806 1806-04-02 06:00:00 blood 688 #> 1376 27.7 4 1806 1806-04-02 06:00:00 bone 688 #> 1377 26.4 5 1806 1806-05-02 16:00:00 blood 689 #> 1378 26.4 5 1806 1806-05-02 16:00:00 bone 689 #> 1379 25.6 6 1806 1806-06-02 02:00:01 blood 690 #> 1380 25.6 6 1806 1806-06-02 02:00:01 bone 690 #> 1381 30.0 7 1806 1806-07-02 12:00:00 blood 691 #> 1382 30.0 7 1806 1806-07-02 12:00:00 bone 691 #> 1383 26.3 8 1806 1806-08-01 22:00:00 blood 692 #> 1384 26.3 8 1806 1806-08-01 22:00:00 bone 692 #> 1385 24.0 9 1806 1806-09-01 08:00:01 blood 693 #> 1386 24.0 9 1806 1806-09-01 08:00:01 bone 693 #> 1387 27.0 10 1806 1806-10-01 18:00:00 blood 694 #> 1388 27.0 10 1806 1806-10-01 18:00:00 bone 694 #> 1389 25.0 11 1806 1806-11-01 04:00:00 blood 695 #> 1390 25.0 11 1806 1806-11-01 04:00:00 bone 695 #> 1391 24.0 12 1806 1806-12-01 14:00:01 blood 696 #> 1392 24.0 12 1806 1806-12-01 14:00:01 bone 696 #> 1393 12.0 1 1807 1807-01-01 00:00:00 blood 697 #> 1394 12.0 1 1807 1807-01-01 00:00:00 bone 697 #> 1395 12.2 2 1807 1807-01-31 10:00:00 blood 698 #> 1396 12.2 2 1807 1807-01-31 10:00:00 bone 698 #> 1397 9.6 3 1807 1807-03-02 20:00:01 blood 699 #> 1398 9.6 3 1807 1807-03-02 20:00:01 bone 699 #> 1399 23.8 4 1807 1807-04-02 06:00:00 blood 700 #> 1400 23.8 4 1807 1807-04-02 06:00:00 bone 700 #> 1401 10.0 5 1807 1807-05-02 16:00:00 blood 701 #> 1402 10.0 5 1807 1807-05-02 16:00:00 bone 701 #> 1403 12.0 6 1807 1807-06-02 02:00:01 blood 702 #> 1404 12.0 6 1807 1807-06-02 02:00:01 bone 702 #> 1405 12.7 7 1807 1807-07-02 12:00:00 blood 703 #> 1406 12.7 7 1807 1807-07-02 12:00:00 bone 703 #> 1407 12.0 8 1807 1807-08-01 22:00:00 blood 704 #> 1408 12.0 8 1807 1807-08-01 22:00:00 bone 704 #> 1409 5.7 9 1807 1807-09-01 08:00:01 blood 705 #> 1410 5.7 9 1807 1807-09-01 08:00:01 bone 705 #> 1411 8.0 10 1807 1807-10-01 18:00:00 blood 706 #> 1412 8.0 10 1807 1807-10-01 18:00:00 bone 706 #> 1413 2.6 11 1807 1807-11-01 04:00:00 blood 707 #> 1414 2.6 11 1807 1807-11-01 04:00:00 bone 707 #> 1415 0.0 12 1807 1807-12-01 14:00:01 blood 708 #> 1416 0.0 12 1807 1807-12-01 14:00:01 bone 708 #> 1417 0.0 1 1808 1808-01-01 00:00:00 blood 709 #> 1418 0.0 1 1808 1808-01-01 00:00:00 bone 709 #> 1419 4.5 2 1808 1808-01-31 12:00:00 blood 710 #> 1420 4.5 2 1808 1808-01-31 12:00:00 bone 710 #> 1421 0.0 3 1808 1808-03-02 00:00:01 blood 711 #> 1422 0.0 3 1808 1808-03-02 00:00:01 bone 711 #> 1423 12.3 4 1808 1808-04-01 12:00:00 blood 712 #> 1424 12.3 4 1808 1808-04-01 12:00:00 bone 712 #> 1425 13.5 5 1808 1808-05-02 00:00:00 blood 713 #> 1426 13.5 5 1808 1808-05-02 00:00:00 bone 713 #> 1427 13.5 6 1808 1808-06-01 12:00:01 blood 714 #> 1428 13.5 6 1808 1808-06-01 12:00:01 bone 714 #> 1429 6.7 7 1808 1808-07-02 00:00:00 blood 715 #> 1430 6.7 7 1808 1808-07-02 00:00:00 bone 715 #> 1431 8.0 8 1808 1808-08-01 12:00:00 blood 716 #> 1432 8.0 8 1808 1808-08-01 12:00:00 bone 716 #> 1433 11.7 9 1808 1808-09-01 00:00:01 blood 717 #> 1434 11.7 9 1808 1808-09-01 00:00:01 bone 717 #> 1435 4.7 10 1808 1808-10-01 12:00:00 blood 718 #> 1436 4.7 10 1808 1808-10-01 12:00:00 bone 718 #> 1437 10.5 11 1808 1808-11-01 00:00:00 blood 719 #> 1438 10.5 11 1808 1808-11-01 00:00:00 bone 719 #> 1439 12.3 12 1808 1808-12-01 12:00:01 blood 720 #> 1440 12.3 12 1808 1808-12-01 12:00:01 bone 720 #> 1441 7.2 1 1809 1809-01-01 00:00:00 blood 721 #> 1442 7.2 1 1809 1809-01-01 00:00:00 bone 721 #> 1443 9.2 2 1809 1809-01-31 10:00:00 blood 722 #> 1444 9.2 2 1809 1809-01-31 10:00:00 bone 722 #> 1445 0.9 3 1809 1809-03-02 20:00:01 blood 723 #> 1446 0.9 3 1809 1809-03-02 20:00:01 bone 723 #> 1447 2.5 4 1809 1809-04-02 06:00:00 blood 724 #> 1448 2.5 4 1809 1809-04-02 06:00:00 bone 724 #> 1449 2.0 5 1809 1809-05-02 16:00:00 blood 725 #> 1450 2.0 5 1809 1809-05-02 16:00:00 bone 725 #> 1451 7.7 6 1809 1809-06-02 02:00:01 blood 726 #> 1452 7.7 6 1809 1809-06-02 02:00:01 bone 726 #> 1453 0.3 7 1809 1809-07-02 12:00:00 blood 727 #> 1454 0.3 7 1809 1809-07-02 12:00:00 bone 727 #> 1455 0.2 8 1809 1809-08-01 22:00:00 blood 728 #> 1456 0.2 8 1809 1809-08-01 22:00:00 bone 728 #> 1457 0.4 9 1809 1809-09-01 08:00:01 blood 729 #> 1458 0.4 9 1809 1809-09-01 08:00:01 bone 729 #> 1459 0.0 10 1809 1809-10-01 18:00:00 blood 730 #> 1460 0.0 10 1809 1809-10-01 18:00:00 bone 730 #> 1461 0.0 11 1809 1809-11-01 04:00:00 blood 731 #> 1462 0.0 11 1809 1809-11-01 04:00:00 bone 731 #> 1463 0.0 12 1809 1809-12-01 14:00:01 blood 732 #> 1464 0.0 12 1809 1809-12-01 14:00:01 bone 732 #> 1465 0.0 1 1810 1810-01-01 00:00:00 blood 733 #> 1466 0.0 1 1810 1810-01-01 00:00:00 bone 733 #> 1467 0.0 2 1810 1810-01-31 10:00:00 blood 734 #> 1468 0.0 2 1810 1810-01-31 10:00:00 bone 734 #> 1469 0.0 3 1810 1810-03-02 20:00:01 blood 735 #> 1470 0.0 3 1810 1810-03-02 20:00:01 bone 735 #> 1471 0.0 4 1810 1810-04-02 06:00:00 blood 736 #> 1472 0.0 4 1810 1810-04-02 06:00:00 bone 736 #> 1473 0.0 5 1810 1810-05-02 16:00:00 blood 737 #> 1474 0.0 5 1810 1810-05-02 16:00:00 bone 737 #> 1475 0.0 6 1810 1810-06-02 02:00:01 blood 738 #> 1476 0.0 6 1810 1810-06-02 02:00:01 bone 738 #> 1477 0.0 7 1810 1810-07-02 12:00:00 blood 739 #> 1478 0.0 7 1810 1810-07-02 12:00:00 bone 739 #> 1479 0.0 8 1810 1810-08-01 22:00:00 blood 740 #> 1480 0.0 8 1810 1810-08-01 22:00:00 bone 740 #> 1481 0.0 9 1810 1810-09-01 08:00:01 blood 741 #> 1482 0.0 9 1810 1810-09-01 08:00:01 bone 741 #> 1483 0.0 10 1810 1810-10-01 18:00:00 blood 742 #> 1484 0.0 10 1810 1810-10-01 18:00:00 bone 742 #> 1485 0.0 11 1810 1810-11-01 04:00:00 blood 743 #> 1486 0.0 11 1810 1810-11-01 04:00:00 bone 743 #> 1487 0.0 12 1810 1810-12-01 14:00:01 blood 744 #> 1488 0.0 12 1810 1810-12-01 14:00:01 bone 744 #> 1489 0.0 1 1811 1811-01-01 00:00:00 blood 745 #> 1490 0.0 1 1811 1811-01-01 00:00:00 bone 745 #> 1491 0.0 2 1811 1811-01-31 10:00:00 blood 746 #> 1492 0.0 2 1811 1811-01-31 10:00:00 bone 746 #> 1493 0.0 3 1811 1811-03-02 20:00:01 blood 747 #> 1494 0.0 3 1811 1811-03-02 20:00:01 bone 747 #> 1495 0.0 4 1811 1811-04-02 06:00:00 blood 748 #> 1496 0.0 4 1811 1811-04-02 06:00:00 bone 748 #> 1497 0.0 5 1811 1811-05-02 16:00:00 blood 749 #> 1498 0.0 5 1811 1811-05-02 16:00:00 bone 749 #> 1499 0.0 6 1811 1811-06-02 02:00:01 blood 750 #> 1500 0.0 6 1811 1811-06-02 02:00:01 bone 750 #> 1501 6.6 7 1811 1811-07-02 12:00:00 blood 751 #> 1502 6.6 7 1811 1811-07-02 12:00:00 bone 751 #> 1503 0.0 8 1811 1811-08-01 22:00:00 blood 752 #> 1504 0.0 8 1811 1811-08-01 22:00:00 bone 752 #> 1505 2.4 9 1811 1811-09-01 08:00:01 blood 753 #> 1506 2.4 9 1811 1811-09-01 08:00:01 bone 753 #> 1507 6.1 10 1811 1811-10-01 18:00:00 blood 754 #> 1508 6.1 10 1811 1811-10-01 18:00:00 bone 754 #> 1509 0.8 11 1811 1811-11-01 04:00:00 blood 755 #> 1510 0.8 11 1811 1811-11-01 04:00:00 bone 755 #> 1511 1.1 12 1811 1811-12-01 14:00:01 blood 756 #> 1512 1.1 12 1811 1811-12-01 14:00:01 bone 756 #> 1513 11.3 1 1812 1812-01-01 00:00:00 blood 757 #> 1514 11.3 1 1812 1812-01-01 00:00:00 bone 757 #> 1515 1.9 2 1812 1812-01-31 12:00:00 blood 758 #> 1516 1.9 2 1812 1812-01-31 12:00:00 bone 758 #> 1517 0.7 3 1812 1812-03-02 00:00:01 blood 759 #> 1518 0.7 3 1812 1812-03-02 00:00:01 bone 759 #> 1519 0.0 4 1812 1812-04-01 12:00:00 blood 760 #> 1520 0.0 4 1812 1812-04-01 12:00:00 bone 760 #> 1521 1.0 5 1812 1812-05-02 00:00:00 blood 761 #> 1522 1.0 5 1812 1812-05-02 00:00:00 bone 761 #> 1523 1.3 6 1812 1812-06-01 12:00:01 blood 762 #> 1524 1.3 6 1812 1812-06-01 12:00:01 bone 762 #> 1525 0.5 7 1812 1812-07-02 00:00:00 blood 763 #> 1526 0.5 7 1812 1812-07-02 00:00:00 bone 763 #> 1527 15.6 8 1812 1812-08-01 12:00:00 blood 764 #> 1528 15.6 8 1812 1812-08-01 12:00:00 bone 764 #> 1529 5.2 9 1812 1812-09-01 00:00:01 blood 765 #> 1530 5.2 9 1812 1812-09-01 00:00:01 bone 765 #> 1531 3.9 10 1812 1812-10-01 12:00:00 blood 766 #> 1532 3.9 10 1812 1812-10-01 12:00:00 bone 766 #> 1533 7.9 11 1812 1812-11-01 00:00:00 blood 767 #> 1534 7.9 11 1812 1812-11-01 00:00:00 bone 767 #> 1535 10.1 12 1812 1812-12-01 12:00:01 blood 768 #> 1536 10.1 12 1812 1812-12-01 12:00:01 bone 768 #> 1537 0.0 1 1813 1813-01-01 00:00:00 blood 769 #> 1538 0.0 1 1813 1813-01-01 00:00:00 bone 769 #> 1539 10.3 2 1813 1813-01-31 10:00:00 blood 770 #> 1540 10.3 2 1813 1813-01-31 10:00:00 bone 770 #> 1541 1.9 3 1813 1813-03-02 20:00:01 blood 771 #> 1542 1.9 3 1813 1813-03-02 20:00:01 bone 771 #> 1543 16.6 4 1813 1813-04-02 06:00:00 blood 772 #> 1544 16.6 4 1813 1813-04-02 06:00:00 bone 772 #> 1545 5.5 5 1813 1813-05-02 16:00:00 blood 773 #> 1546 5.5 5 1813 1813-05-02 16:00:00 bone 773 #> 1547 11.2 6 1813 1813-06-02 02:00:01 blood 774 #> 1548 11.2 6 1813 1813-06-02 02:00:01 bone 774 #> 1549 18.3 7 1813 1813-07-02 12:00:00 blood 775 #> 1550 18.3 7 1813 1813-07-02 12:00:00 bone 775 #> 1551 8.4 8 1813 1813-08-01 22:00:00 blood 776 #> 1552 8.4 8 1813 1813-08-01 22:00:00 bone 776 #> 1553 15.3 9 1813 1813-09-01 08:00:01 blood 777 #> 1554 15.3 9 1813 1813-09-01 08:00:01 bone 777 #> 1555 27.8 10 1813 1813-10-01 18:00:00 blood 778 #> 1556 27.8 10 1813 1813-10-01 18:00:00 bone 778 #> 1557 16.7 11 1813 1813-11-01 04:00:00 blood 779 #> 1558 16.7 11 1813 1813-11-01 04:00:00 bone 779 #> 1559 14.3 12 1813 1813-12-01 14:00:01 blood 780 #> 1560 14.3 12 1813 1813-12-01 14:00:01 bone 780 #> 1561 22.2 1 1814 1814-01-01 00:00:00 blood 781 #> 1562 22.2 1 1814 1814-01-01 00:00:00 bone 781 #> 1563 12.0 2 1814 1814-01-31 10:00:00 blood 782 #> 1564 12.0 2 1814 1814-01-31 10:00:00 bone 782 #> 1565 5.7 3 1814 1814-03-02 20:00:01 blood 783 #> 1566 5.7 3 1814 1814-03-02 20:00:01 bone 783 #> 1567 23.8 4 1814 1814-04-02 06:00:00 blood 784 #> 1568 23.8 4 1814 1814-04-02 06:00:00 bone 784 #> 1569 5.8 5 1814 1814-05-02 16:00:00 blood 785 #> 1570 5.8 5 1814 1814-05-02 16:00:00 bone 785 #> 1571 14.9 6 1814 1814-06-02 02:00:01 blood 786 #> 1572 14.9 6 1814 1814-06-02 02:00:01 bone 786 #> 1573 18.5 7 1814 1814-07-02 12:00:00 blood 787 #> 1574 18.5 7 1814 1814-07-02 12:00:00 bone 787 #> 1575 2.3 8 1814 1814-08-01 22:00:00 blood 788 #> 1576 2.3 8 1814 1814-08-01 22:00:00 bone 788 #> 1577 8.1 9 1814 1814-09-01 08:00:01 blood 789 #> 1578 8.1 9 1814 1814-09-01 08:00:01 bone 789 #> 1579 19.3 10 1814 1814-10-01 18:00:00 blood 790 #> 1580 19.3 10 1814 1814-10-01 18:00:00 bone 790 #> 1581 14.5 11 1814 1814-11-01 04:00:00 blood 791 #> 1582 14.5 11 1814 1814-11-01 04:00:00 bone 791 #> 1583 20.1 12 1814 1814-12-01 14:00:01 blood 792 #> 1584 20.1 12 1814 1814-12-01 14:00:01 bone 792 #> 1585 19.2 1 1815 1815-01-01 00:00:00 blood 793 #> 1586 19.2 1 1815 1815-01-01 00:00:00 bone 793 #> 1587 32.2 2 1815 1815-01-31 10:00:00 blood 794 #> 1588 32.2 2 1815 1815-01-31 10:00:00 bone 794 #> 1589 26.2 3 1815 1815-03-02 20:00:01 blood 795 #> 1590 26.2 3 1815 1815-03-02 20:00:01 bone 795 #> 1591 31.6 4 1815 1815-04-02 06:00:00 blood 796 #> 1592 31.6 4 1815 1815-04-02 06:00:00 bone 796 #> 1593 9.8 5 1815 1815-05-02 16:00:00 blood 797 #> 1594 9.8 5 1815 1815-05-02 16:00:00 bone 797 #> 1595 55.9 6 1815 1815-06-02 02:00:01 blood 798 #> 1596 55.9 6 1815 1815-06-02 02:00:01 bone 798 #> 1597 35.5 7 1815 1815-07-02 12:00:00 blood 799 #> 1598 35.5 7 1815 1815-07-02 12:00:00 bone 799 #> 1599 47.2 8 1815 1815-08-01 22:00:00 blood 800 #> 1600 47.2 8 1815 1815-08-01 22:00:00 bone 800 #> 1601 31.5 9 1815 1815-09-01 08:00:01 blood 801 #> 1602 31.5 9 1815 1815-09-01 08:00:01 bone 801 #> 1603 33.5 10 1815 1815-10-01 18:00:00 blood 802 #> 1604 33.5 10 1815 1815-10-01 18:00:00 bone 802 #> 1605 37.2 11 1815 1815-11-01 04:00:00 blood 803 #> 1606 37.2 11 1815 1815-11-01 04:00:00 bone 803 #> 1607 65.0 12 1815 1815-12-01 14:00:01 blood 804 #> 1608 65.0 12 1815 1815-12-01 14:00:01 bone 804 #> 1609 26.3 1 1816 1816-01-01 00:00:00 blood 805 #> 1610 26.3 1 1816 1816-01-01 00:00:00 bone 805 #> 1611 68.8 2 1816 1816-01-31 12:00:00 blood 806 #> 1612 68.8 2 1816 1816-01-31 12:00:00 bone 806 #> 1613 73.7 3 1816 1816-03-02 00:00:01 blood 807 #> 1614 73.7 3 1816 1816-03-02 00:00:01 bone 807 #> 1615 58.8 4 1816 1816-04-01 12:00:00 blood 808 #> 1616 58.8 4 1816 1816-04-01 12:00:00 bone 808 #> 1617 44.3 5 1816 1816-05-02 00:00:00 blood 809 #> 1618 44.3 5 1816 1816-05-02 00:00:00 bone 809 #> 1619 43.6 6 1816 1816-06-01 12:00:01 blood 810 #> 1620 43.6 6 1816 1816-06-01 12:00:01 bone 810 #> 1621 38.8 7 1816 1816-07-02 00:00:00 blood 811 #> 1622 38.8 7 1816 1816-07-02 00:00:00 bone 811 #> 1623 23.2 8 1816 1816-08-01 12:00:00 blood 812 #> 1624 23.2 8 1816 1816-08-01 12:00:00 bone 812 #> 1625 47.8 9 1816 1816-09-01 00:00:01 blood 813 #> 1626 47.8 9 1816 1816-09-01 00:00:01 bone 813 #> 1627 56.4 10 1816 1816-10-01 12:00:00 blood 814 #> 1628 56.4 10 1816 1816-10-01 12:00:00 bone 814 #> 1629 38.1 11 1816 1816-11-01 00:00:00 blood 815 #> 1630 38.1 11 1816 1816-11-01 00:00:00 bone 815 #> 1631 29.9 12 1816 1816-12-01 12:00:01 blood 816 #> 1632 29.9 12 1816 1816-12-01 12:00:01 bone 816 #> 1633 36.4 1 1817 1817-01-01 00:00:00 blood 817 #> 1634 36.4 1 1817 1817-01-01 00:00:00 bone 817 #> 1635 57.9 2 1817 1817-01-31 10:00:00 blood 818 #> 1636 57.9 2 1817 1817-01-31 10:00:00 bone 818 #> 1637 96.2 3 1817 1817-03-02 20:00:01 blood 819 #> 1638 96.2 3 1817 1817-03-02 20:00:01 bone 819 #> 1639 26.4 4 1817 1817-04-02 06:00:00 blood 820 #> 1640 26.4 4 1817 1817-04-02 06:00:00 bone 820 #> 1641 21.2 5 1817 1817-05-02 16:00:00 blood 821 #> 1642 21.2 5 1817 1817-05-02 16:00:00 bone 821 #> 1643 40.0 6 1817 1817-06-02 02:00:01 blood 822 #> 1644 40.0 6 1817 1817-06-02 02:00:01 bone 822 #> 1645 50.0 7 1817 1817-07-02 12:00:00 blood 823 #> 1646 50.0 7 1817 1817-07-02 12:00:00 bone 823 #> 1647 45.0 8 1817 1817-08-01 22:00:00 blood 824 #> 1648 45.0 8 1817 1817-08-01 22:00:00 bone 824 #> 1649 36.7 9 1817 1817-09-01 08:00:01 blood 825 #> 1650 36.7 9 1817 1817-09-01 08:00:01 bone 825 #> 1651 25.6 10 1817 1817-10-01 18:00:00 blood 826 #> 1652 25.6 10 1817 1817-10-01 18:00:00 bone 826 #> 1653 28.9 11 1817 1817-11-01 04:00:00 blood 827 #> 1654 28.9 11 1817 1817-11-01 04:00:00 bone 827 #> 1655 28.4 12 1817 1817-12-01 14:00:01 blood 828 #> 1656 28.4 12 1817 1817-12-01 14:00:01 bone 828 #> 1657 34.9 1 1818 1818-01-01 00:00:00 blood 829 #> 1658 34.9 1 1818 1818-01-01 00:00:00 bone 829 #> 1659 22.4 2 1818 1818-01-31 10:00:00 blood 830 #> 1660 22.4 2 1818 1818-01-31 10:00:00 bone 830 #> 1661 25.4 3 1818 1818-03-02 20:00:01 blood 831 #> 1662 25.4 3 1818 1818-03-02 20:00:01 bone 831 #> 1663 34.5 4 1818 1818-04-02 06:00:00 blood 832 #> 1664 34.5 4 1818 1818-04-02 06:00:00 bone 832 #> 1665 53.1 5 1818 1818-05-02 16:00:00 blood 833 #> 1666 53.1 5 1818 1818-05-02 16:00:00 bone 833 #> 1667 36.4 6 1818 1818-06-02 02:00:01 blood 834 #> 1668 36.4 6 1818 1818-06-02 02:00:01 bone 834 #> 1669 28.0 7 1818 1818-07-02 12:00:00 blood 835 #> 1670 28.0 7 1818 1818-07-02 12:00:00 bone 835 #> 1671 31.5 8 1818 1818-08-01 22:00:00 blood 836 #> 1672 31.5 8 1818 1818-08-01 22:00:00 bone 836 #> 1673 26.1 9 1818 1818-09-01 08:00:01 blood 837 #> 1674 26.1 9 1818 1818-09-01 08:00:01 bone 837 #> 1675 31.7 10 1818 1818-10-01 18:00:00 blood 838 #> 1676 31.7 10 1818 1818-10-01 18:00:00 bone 838 #> 1677 10.9 11 1818 1818-11-01 04:00:00 blood 839 #> 1678 10.9 11 1818 1818-11-01 04:00:00 bone 839 #> 1679 25.8 12 1818 1818-12-01 14:00:01 blood 840 #> 1680 25.8 12 1818 1818-12-01 14:00:01 bone 840 #> 1681 32.5 1 1819 1819-01-01 00:00:00 blood 841 #> 1682 32.5 1 1819 1819-01-01 00:00:00 bone 841 #> 1683 20.7 2 1819 1819-01-31 10:00:00 blood 842 #> 1684 20.7 2 1819 1819-01-31 10:00:00 bone 842 #> 1685 3.7 3 1819 1819-03-02 20:00:01 blood 843 #> 1686 3.7 3 1819 1819-03-02 20:00:01 bone 843 #> 1687 20.2 4 1819 1819-04-02 06:00:00 blood 844 #> 1688 20.2 4 1819 1819-04-02 06:00:00 bone 844 #> 1689 19.6 5 1819 1819-05-02 16:00:00 blood 845 #> 1690 19.6 5 1819 1819-05-02 16:00:00 bone 845 #> 1691 35.0 6 1819 1819-06-02 02:00:01 blood 846 #> 1692 35.0 6 1819 1819-06-02 02:00:01 bone 846 #> 1693 31.4 7 1819 1819-07-02 12:00:00 blood 847 #> 1694 31.4 7 1819 1819-07-02 12:00:00 bone 847 #> 1695 26.1 8 1819 1819-08-01 22:00:00 blood 848 #> 1696 26.1 8 1819 1819-08-01 22:00:00 bone 848 #> 1697 14.9 9 1819 1819-09-01 08:00:01 blood 849 #> 1698 14.9 9 1819 1819-09-01 08:00:01 bone 849 #> 1699 27.5 10 1819 1819-10-01 18:00:00 blood 850 #> 1700 27.5 10 1819 1819-10-01 18:00:00 bone 850 #> 1701 25.1 11 1819 1819-11-01 04:00:00 blood 851 #> 1702 25.1 11 1819 1819-11-01 04:00:00 bone 851 #> 1703 30.6 12 1819 1819-12-01 14:00:01 blood 852 #> 1704 30.6 12 1819 1819-12-01 14:00:01 bone 852 #> 1705 19.2 1 1820 1820-01-01 00:00:00 blood 853 #> 1706 19.2 1 1820 1820-01-01 00:00:00 bone 853 #> 1707 26.6 2 1820 1820-01-31 12:00:00 blood 854 #> 1708 26.6 2 1820 1820-01-31 12:00:00 bone 854 #> 1709 4.5 3 1820 1820-03-02 00:00:01 blood 855 #> 1710 4.5 3 1820 1820-03-02 00:00:01 bone 855 #> 1711 19.4 4 1820 1820-04-01 12:00:00 blood 856 #> 1712 19.4 4 1820 1820-04-01 12:00:00 bone 856 #> 1713 29.3 5 1820 1820-05-02 00:00:00 blood 857 #> 1714 29.3 5 1820 1820-05-02 00:00:00 bone 857 #> 1715 10.8 6 1820 1820-06-01 12:00:01 blood 858 #> 1716 10.8 6 1820 1820-06-01 12:00:01 bone 858 #> 1717 20.6 7 1820 1820-07-02 00:00:00 blood 859 #> 1718 20.6 7 1820 1820-07-02 00:00:00 bone 859 #> 1719 25.9 8 1820 1820-08-01 12:00:00 blood 860 #> 1720 25.9 8 1820 1820-08-01 12:00:00 bone 860 #> 1721 5.2 9 1820 1820-09-01 00:00:01 blood 861 #> 1722 5.2 9 1820 1820-09-01 00:00:01 bone 861 #> 1723 9.0 10 1820 1820-10-01 12:00:00 blood 862 #> 1724 9.0 10 1820 1820-10-01 12:00:00 bone 862 #> 1725 7.9 11 1820 1820-11-01 00:00:00 blood 863 #> 1726 7.9 11 1820 1820-11-01 00:00:00 bone 863 #> 1727 9.7 12 1820 1820-12-01 12:00:01 blood 864 #> 1728 9.7 12 1820 1820-12-01 12:00:01 bone 864 #> 1729 21.5 1 1821 1821-01-01 00:00:00 blood 865 #> 1730 21.5 1 1821 1821-01-01 00:00:00 bone 865 #> 1731 4.3 2 1821 1821-01-31 10:00:00 blood 866 #> 1732 4.3 2 1821 1821-01-31 10:00:00 bone 866 #> 1733 5.7 3 1821 1821-03-02 20:00:01 blood 867 #> 1734 5.7 3 1821 1821-03-02 20:00:01 bone 867 #> 1735 9.2 4 1821 1821-04-02 06:00:00 blood 868 #> 1736 9.2 4 1821 1821-04-02 06:00:00 bone 868 #> 1737 1.7 5 1821 1821-05-02 16:00:00 blood 869 #> 1738 1.7 5 1821 1821-05-02 16:00:00 bone 869 #> 1739 1.8 6 1821 1821-06-02 02:00:01 blood 870 #> 1740 1.8 6 1821 1821-06-02 02:00:01 bone 870 #> 1741 2.5 7 1821 1821-07-02 12:00:00 blood 871 #> 1742 2.5 7 1821 1821-07-02 12:00:00 bone 871 #> 1743 4.8 8 1821 1821-08-01 22:00:00 blood 872 #> 1744 4.8 8 1821 1821-08-01 22:00:00 bone 872 #> 1745 4.4 9 1821 1821-09-01 08:00:01 blood 873 #> 1746 4.4 9 1821 1821-09-01 08:00:01 bone 873 #> 1747 18.8 10 1821 1821-10-01 18:00:00 blood 874 #> 1748 18.8 10 1821 1821-10-01 18:00:00 bone 874 #> 1749 4.4 11 1821 1821-11-01 04:00:00 blood 875 #> 1750 4.4 11 1821 1821-11-01 04:00:00 bone 875 #> 1751 0.0 12 1821 1821-12-01 14:00:01 blood 876 #> 1752 0.0 12 1821 1821-12-01 14:00:01 bone 876 #> 1753 0.0 1 1822 1822-01-01 00:00:00 blood 877 #> 1754 0.0 1 1822 1822-01-01 00:00:00 bone 877 #> 1755 0.9 2 1822 1822-01-31 10:00:00 blood 878 #> 1756 0.9 2 1822 1822-01-31 10:00:00 bone 878 #> 1757 16.1 3 1822 1822-03-02 20:00:01 blood 879 #> 1758 16.1 3 1822 1822-03-02 20:00:01 bone 879 #> 1759 13.5 4 1822 1822-04-02 06:00:00 blood 880 #> 1760 13.5 4 1822 1822-04-02 06:00:00 bone 880 #> 1761 1.5 5 1822 1822-05-02 16:00:00 blood 881 #> 1762 1.5 5 1822 1822-05-02 16:00:00 bone 881 #> 1763 5.6 6 1822 1822-06-02 02:00:01 blood 882 #> 1764 5.6 6 1822 1822-06-02 02:00:01 bone 882 #> 1765 7.9 7 1822 1822-07-02 12:00:00 blood 883 #> 1766 7.9 7 1822 1822-07-02 12:00:00 bone 883 #> 1767 2.1 8 1822 1822-08-01 22:00:00 blood 884 #> 1768 2.1 8 1822 1822-08-01 22:00:00 bone 884 #> 1769 0.0 9 1822 1822-09-01 08:00:01 blood 885 #> 1770 0.0 9 1822 1822-09-01 08:00:01 bone 885 #> 1771 0.4 10 1822 1822-10-01 18:00:00 blood 886 #> 1772 0.4 10 1822 1822-10-01 18:00:00 bone 886 #> 1773 0.0 11 1822 1822-11-01 04:00:00 blood 887 #> 1774 0.0 11 1822 1822-11-01 04:00:00 bone 887 #> 1775 0.0 12 1822 1822-12-01 14:00:01 blood 888 #> 1776 0.0 12 1822 1822-12-01 14:00:01 bone 888 #> 1777 0.0 1 1823 1823-01-01 00:00:00 blood 889 #> 1778 0.0 1 1823 1823-01-01 00:00:00 bone 889 #> 1779 0.0 2 1823 1823-01-31 10:00:00 blood 890 #> 1780 0.0 2 1823 1823-01-31 10:00:00 bone 890 #> 1781 0.6 3 1823 1823-03-02 20:00:01 blood 891 #> 1782 0.6 3 1823 1823-03-02 20:00:01 bone 891 #> 1783 0.0 4 1823 1823-04-02 06:00:00 blood 892 #> 1784 0.0 4 1823 1823-04-02 06:00:00 bone 892 #> 1785 0.0 5 1823 1823-05-02 16:00:00 blood 893 #> 1786 0.0 5 1823 1823-05-02 16:00:00 bone 893 #> 1787 0.0 6 1823 1823-06-02 02:00:01 blood 894 #> 1788 0.0 6 1823 1823-06-02 02:00:01 bone 894 #> 1789 0.5 7 1823 1823-07-02 12:00:00 blood 895 #> 1790 0.5 7 1823 1823-07-02 12:00:00 bone 895 #> 1791 0.0 8 1823 1823-08-01 22:00:00 blood 896 #> 1792 0.0 8 1823 1823-08-01 22:00:00 bone 896 #> 1793 0.0 9 1823 1823-09-01 08:00:01 blood 897 #> 1794 0.0 9 1823 1823-09-01 08:00:01 bone 897 #> 1795 0.0 10 1823 1823-10-01 18:00:00 blood 898 #> 1796 0.0 10 1823 1823-10-01 18:00:00 bone 898 #> 1797 0.0 11 1823 1823-11-01 04:00:00 blood 899 #> 1798 0.0 11 1823 1823-11-01 04:00:00 bone 899 #> 1799 20.4 12 1823 1823-12-01 14:00:01 blood 900 #> 1800 20.4 12 1823 1823-12-01 14:00:01 bone 900 #> 1801 21.6 1 1824 1824-01-01 00:00:00 blood 901 #> 1802 21.6 1 1824 1824-01-01 00:00:00 bone 901 #> 1803 10.8 2 1824 1824-01-31 12:00:00 blood 902 #> 1804 10.8 2 1824 1824-01-31 12:00:00 bone 902 #> 1805 0.0 3 1824 1824-03-02 00:00:01 blood 903 #> 1806 0.0 3 1824 1824-03-02 00:00:01 bone 903 #> 1807 19.4 4 1824 1824-04-01 12:00:00 blood 904 #> 1808 19.4 4 1824 1824-04-01 12:00:00 bone 904 #> 1809 2.8 5 1824 1824-05-02 00:00:00 blood 905 #> 1810 2.8 5 1824 1824-05-02 00:00:00 bone 905 #> 1811 0.0 6 1824 1824-06-01 12:00:01 blood 906 #> 1812 0.0 6 1824 1824-06-01 12:00:01 bone 906 #> 1813 0.0 7 1824 1824-07-02 00:00:00 blood 907 #> 1814 0.0 7 1824 1824-07-02 00:00:00 bone 907 #> 1815 1.4 8 1824 1824-08-01 12:00:00 blood 908 #> 1816 1.4 8 1824 1824-08-01 12:00:00 bone 908 #> 1817 20.5 9 1824 1824-09-01 00:00:01 blood 909 #> 1818 20.5 9 1824 1824-09-01 00:00:01 bone 909 #> 1819 25.2 10 1824 1824-10-01 12:00:00 blood 910 #> 1820 25.2 10 1824 1824-10-01 12:00:00 bone 910 #> 1821 0.0 11 1824 1824-11-01 00:00:00 blood 911 #> 1822 0.0 11 1824 1824-11-01 00:00:00 bone 911 #> 1823 0.8 12 1824 1824-12-01 12:00:01 blood 912 #> 1824 0.8 12 1824 1824-12-01 12:00:01 bone 912 #> 1825 5.0 1 1825 1825-01-01 00:00:00 blood 913 #> 1826 5.0 1 1825 1825-01-01 00:00:00 bone 913 #> 1827 15.5 2 1825 1825-01-31 10:00:00 blood 914 #> 1828 15.5 2 1825 1825-01-31 10:00:00 bone 914 #> 1829 22.4 3 1825 1825-03-02 20:00:01 blood 915 #> 1830 22.4 3 1825 1825-03-02 20:00:01 bone 915 #> 1831 3.8 4 1825 1825-04-02 06:00:00 blood 916 #> 1832 3.8 4 1825 1825-04-02 06:00:00 bone 916 #> 1833 15.4 5 1825 1825-05-02 16:00:00 blood 917 #> 1834 15.4 5 1825 1825-05-02 16:00:00 bone 917 #> 1835 15.4 6 1825 1825-06-02 02:00:01 blood 918 #> 1836 15.4 6 1825 1825-06-02 02:00:01 bone 918 #> 1837 30.9 7 1825 1825-07-02 12:00:00 blood 919 #> 1838 30.9 7 1825 1825-07-02 12:00:00 bone 919 #> 1839 25.4 8 1825 1825-08-01 22:00:00 blood 920 #> 1840 25.4 8 1825 1825-08-01 22:00:00 bone 920 #> 1841 15.7 9 1825 1825-09-01 08:00:01 blood 921 #> 1842 15.7 9 1825 1825-09-01 08:00:01 bone 921 #> 1843 15.6 10 1825 1825-10-01 18:00:00 blood 922 #> 1844 15.6 10 1825 1825-10-01 18:00:00 bone 922 #> 1845 11.7 11 1825 1825-11-01 04:00:00 blood 923 #> 1846 11.7 11 1825 1825-11-01 04:00:00 bone 923 #> 1847 22.0 12 1825 1825-12-01 14:00:01 blood 924 #> 1848 22.0 12 1825 1825-12-01 14:00:01 bone 924 #> 1849 17.7 1 1826 1826-01-01 00:00:00 blood 925 #> 1850 17.7 1 1826 1826-01-01 00:00:00 bone 925 #> 1851 18.2 2 1826 1826-01-31 10:00:00 blood 926 #> 1852 18.2 2 1826 1826-01-31 10:00:00 bone 926 #> 1853 36.7 3 1826 1826-03-02 20:00:01 blood 927 #> 1854 36.7 3 1826 1826-03-02 20:00:01 bone 927 #> 1855 24.0 4 1826 1826-04-02 06:00:00 blood 928 #> 1856 24.0 4 1826 1826-04-02 06:00:00 bone 928 #> 1857 32.4 5 1826 1826-05-02 16:00:00 blood 929 #> 1858 32.4 5 1826 1826-05-02 16:00:00 bone 929 #> 1859 37.1 6 1826 1826-06-02 02:00:01 blood 930 #> 1860 37.1 6 1826 1826-06-02 02:00:01 bone 930 #> 1861 52.5 7 1826 1826-07-02 12:00:00 blood 931 #> 1862 52.5 7 1826 1826-07-02 12:00:00 bone 931 #> 1863 39.6 8 1826 1826-08-01 22:00:00 blood 932 #> 1864 39.6 8 1826 1826-08-01 22:00:00 bone 932 #> 1865 18.9 9 1826 1826-09-01 08:00:01 blood 933 #> 1866 18.9 9 1826 1826-09-01 08:00:01 bone 933 #> 1867 50.6 10 1826 1826-10-01 18:00:00 blood 934 #> 1868 50.6 10 1826 1826-10-01 18:00:00 bone 934 #> 1869 39.5 11 1826 1826-11-01 04:00:00 blood 935 #> 1870 39.5 11 1826 1826-11-01 04:00:00 bone 935 #> 1871 68.1 12 1826 1826-12-01 14:00:01 blood 936 #> 1872 68.1 12 1826 1826-12-01 14:00:01 bone 936 #> 1873 34.6 1 1827 1827-01-01 00:00:00 blood 937 #> 1874 34.6 1 1827 1827-01-01 00:00:00 bone 937 #> 1875 47.4 2 1827 1827-01-31 10:00:00 blood 938 #> 1876 47.4 2 1827 1827-01-31 10:00:00 bone 938 #> 1877 57.8 3 1827 1827-03-02 20:00:01 blood 939 #> 1878 57.8 3 1827 1827-03-02 20:00:01 bone 939 #> 1879 46.0 4 1827 1827-04-02 06:00:00 blood 940 #> 1880 46.0 4 1827 1827-04-02 06:00:00 bone 940 #> 1881 56.3 5 1827 1827-05-02 16:00:00 blood 941 #> 1882 56.3 5 1827 1827-05-02 16:00:00 bone 941 #> 1883 56.7 6 1827 1827-06-02 02:00:01 blood 942 #> 1884 56.7 6 1827 1827-06-02 02:00:01 bone 942 #> 1885 42.9 7 1827 1827-07-02 12:00:00 blood 943 #> 1886 42.9 7 1827 1827-07-02 12:00:00 bone 943 #> 1887 53.7 8 1827 1827-08-01 22:00:00 blood 944 #> 1888 53.7 8 1827 1827-08-01 22:00:00 bone 944 #> 1889 49.6 9 1827 1827-09-01 08:00:01 blood 945 #> 1890 49.6 9 1827 1827-09-01 08:00:01 bone 945 #> 1891 57.2 10 1827 1827-10-01 18:00:00 blood 946 #> 1892 57.2 10 1827 1827-10-01 18:00:00 bone 946 #> 1893 48.2 11 1827 1827-11-01 04:00:00 blood 947 #> 1894 48.2 11 1827 1827-11-01 04:00:00 bone 947 #> 1895 46.1 12 1827 1827-12-01 14:00:01 blood 948 #> 1896 46.1 12 1827 1827-12-01 14:00:01 bone 948 #> 1897 52.8 1 1828 1828-01-01 00:00:00 blood 949 #> 1898 52.8 1 1828 1828-01-01 00:00:00 bone 949 #> 1899 64.4 2 1828 1828-01-31 12:00:00 blood 950 #> 1900 64.4 2 1828 1828-01-31 12:00:00 bone 950 #> 1901 65.0 3 1828 1828-03-02 00:00:01 blood 951 #> 1902 65.0 3 1828 1828-03-02 00:00:01 bone 951 #> 1903 61.1 4 1828 1828-04-01 12:00:00 blood 952 #> 1904 61.1 4 1828 1828-04-01 12:00:00 bone 952 #> 1905 89.1 5 1828 1828-05-02 00:00:00 blood 953 #> 1906 89.1 5 1828 1828-05-02 00:00:00 bone 953 #> 1907 98.0 6 1828 1828-06-01 12:00:01 blood 954 #> 1908 98.0 6 1828 1828-06-01 12:00:01 bone 954 #> 1909 54.3 7 1828 1828-07-02 00:00:00 blood 955 #> 1910 54.3 7 1828 1828-07-02 00:00:00 bone 955 #> 1911 76.4 8 1828 1828-08-01 12:00:00 blood 956 #> 1912 76.4 8 1828 1828-08-01 12:00:00 bone 956 #> 1913 50.4 9 1828 1828-09-01 00:00:01 blood 957 #> 1914 50.4 9 1828 1828-09-01 00:00:01 bone 957 #> 1915 54.7 10 1828 1828-10-01 12:00:00 blood 958 #> 1916 54.7 10 1828 1828-10-01 12:00:00 bone 958 #> 1917 57.0 11 1828 1828-11-01 00:00:00 blood 959 #> 1918 57.0 11 1828 1828-11-01 00:00:00 bone 959 #> 1919 46.6 12 1828 1828-12-01 12:00:01 blood 960 #> 1920 46.6 12 1828 1828-12-01 12:00:01 bone 960 #> 1921 43.0 1 1829 1829-01-01 00:00:00 blood 961 #> 1922 43.0 1 1829 1829-01-01 00:00:00 bone 961 #> 1923 49.4 2 1829 1829-01-31 10:00:00 blood 962 #> 1924 49.4 2 1829 1829-01-31 10:00:00 bone 962 #> 1925 72.3 3 1829 1829-03-02 20:00:01 blood 963 #> 1926 72.3 3 1829 1829-03-02 20:00:01 bone 963 #> 1927 95.0 4 1829 1829-04-02 06:00:00 blood 964 #> 1928 95.0 4 1829 1829-04-02 06:00:00 bone 964 #> 1929 67.5 5 1829 1829-05-02 16:00:00 blood 965 #> 1930 67.5 5 1829 1829-05-02 16:00:00 bone 965 #> 1931 73.9 6 1829 1829-06-02 02:00:01 blood 966 #> 1932 73.9 6 1829 1829-06-02 02:00:01 bone 966 #> 1933 90.8 7 1829 1829-07-02 12:00:00 blood 967 #> 1934 90.8 7 1829 1829-07-02 12:00:00 bone 967 #> 1935 78.3 8 1829 1829-08-01 22:00:00 blood 968 #> 1936 78.3 8 1829 1829-08-01 22:00:00 bone 968 #> 1937 52.8 9 1829 1829-09-01 08:00:01 blood 969 #> 1938 52.8 9 1829 1829-09-01 08:00:01 bone 969 #> 1939 57.2 10 1829 1829-10-01 18:00:00 blood 970 #> 1940 57.2 10 1829 1829-10-01 18:00:00 bone 970 #> 1941 67.6 11 1829 1829-11-01 04:00:00 blood 971 #> 1942 67.6 11 1829 1829-11-01 04:00:00 bone 971 #> 1943 56.5 12 1829 1829-12-01 14:00:01 blood 972 #> 1944 56.5 12 1829 1829-12-01 14:00:01 bone 972 #> 1945 52.2 1 1830 1830-01-01 00:00:00 blood 973 #> 1946 52.2 1 1830 1830-01-01 00:00:00 bone 973 #> 1947 72.1 2 1830 1830-01-31 10:00:00 blood 974 #> 1948 72.1 2 1830 1830-01-31 10:00:00 bone 974 #> 1949 84.6 3 1830 1830-03-02 20:00:01 blood 975 #> 1950 84.6 3 1830 1830-03-02 20:00:01 bone 975 #> 1951 107.1 4 1830 1830-04-02 06:00:00 blood 976 #> 1952 107.1 4 1830 1830-04-02 06:00:00 bone 976 #> 1953 66.3 5 1830 1830-05-02 16:00:00 blood 977 #> 1954 66.3 5 1830 1830-05-02 16:00:00 bone 977 #> 1955 65.1 6 1830 1830-06-02 02:00:01 blood 978 #> 1956 65.1 6 1830 1830-06-02 02:00:01 bone 978 #> 1957 43.9 7 1830 1830-07-02 12:00:00 blood 979 #> 1958 43.9 7 1830 1830-07-02 12:00:00 bone 979 #> 1959 50.7 8 1830 1830-08-01 22:00:00 blood 980 #> 1960 50.7 8 1830 1830-08-01 22:00:00 bone 980 #> 1961 62.1 9 1830 1830-09-01 08:00:01 blood 981 #> 1962 62.1 9 1830 1830-09-01 08:00:01 bone 981 #> 1963 84.4 10 1830 1830-10-01 18:00:00 blood 982 #> 1964 84.4 10 1830 1830-10-01 18:00:00 bone 982 #> 1965 81.2 11 1830 1830-11-01 04:00:00 blood 983 #> 1966 81.2 11 1830 1830-11-01 04:00:00 bone 983 #> 1967 82.1 12 1830 1830-12-01 14:00:01 blood 984 #> 1968 82.1 12 1830 1830-12-01 14:00:01 bone 984 #> 1969 47.5 1 1831 1831-01-01 00:00:00 blood 985 #> 1970 47.5 1 1831 1831-01-01 00:00:00 bone 985 #> 1971 50.1 2 1831 1831-01-31 10:00:00 blood 986 #> 1972 50.1 2 1831 1831-01-31 10:00:00 bone 986 #> 1973 93.4 3 1831 1831-03-02 20:00:01 blood 987 #> 1974 93.4 3 1831 1831-03-02 20:00:01 bone 987 #> 1975 54.6 4 1831 1831-04-02 06:00:00 blood 988 #> 1976 54.6 4 1831 1831-04-02 06:00:00 bone 988 #> 1977 38.1 5 1831 1831-05-02 16:00:00 blood 989 #> 1978 38.1 5 1831 1831-05-02 16:00:00 bone 989 #> 1979 33.4 6 1831 1831-06-02 02:00:01 blood 990 #> 1980 33.4 6 1831 1831-06-02 02:00:01 bone 990 #> 1981 45.2 7 1831 1831-07-02 12:00:00 blood 991 #> 1982 45.2 7 1831 1831-07-02 12:00:00 bone 991 #> 1983 54.9 8 1831 1831-08-01 22:00:00 blood 992 #> 1984 54.9 8 1831 1831-08-01 22:00:00 bone 992 #> 1985 37.9 9 1831 1831-09-01 08:00:01 blood 993 #> 1986 37.9 9 1831 1831-09-01 08:00:01 bone 993 #> 1987 46.2 10 1831 1831-10-01 18:00:00 blood 994 #> 1988 46.2 10 1831 1831-10-01 18:00:00 bone 994 #> 1989 43.5 11 1831 1831-11-01 04:00:00 blood 995 #> 1990 43.5 11 1831 1831-11-01 04:00:00 bone 995 #> 1991 28.9 12 1831 1831-12-01 14:00:01 blood 996 #> 1992 28.9 12 1831 1831-12-01 14:00:01 bone 996 #> 1993 30.9 1 1832 1832-01-01 00:00:00 blood 997 #> 1994 30.9 1 1832 1832-01-01 00:00:00 bone 997 #> 1995 55.5 2 1832 1832-01-31 12:00:00 blood 998 #> 1996 55.5 2 1832 1832-01-31 12:00:00 bone 998 #> 1997 55.1 3 1832 1832-03-02 00:00:01 blood 999 #> 1998 55.1 3 1832 1832-03-02 00:00:01 bone 999 #> 1999 26.9 4 1832 1832-04-01 12:00:00 blood 1000 #> 2000 26.9 4 1832 1832-04-01 12:00:00 bone 1000 #> 2001 41.3 5 1832 1832-05-02 00:00:00 blood 1001 #> 2002 41.3 5 1832 1832-05-02 00:00:00 bone 1001 #> 2003 26.7 6 1832 1832-06-01 12:00:01 blood 1002 #> 2004 26.7 6 1832 1832-06-01 12:00:01 bone 1002 #> 2005 13.9 7 1832 1832-07-02 00:00:00 blood 1003 #> 2006 13.9 7 1832 1832-07-02 00:00:00 bone 1003 #> 2007 8.9 8 1832 1832-08-01 12:00:00 blood 1004 #> 2008 8.9 8 1832 1832-08-01 12:00:00 bone 1004 #> 2009 8.2 9 1832 1832-09-01 00:00:01 blood 1005 #> 2010 8.2 9 1832 1832-09-01 00:00:01 bone 1005 #> 2011 21.1 10 1832 1832-10-01 12:00:00 blood 1006 #> 2012 21.1 10 1832 1832-10-01 12:00:00 bone 1006 #> 2013 14.3 11 1832 1832-11-01 00:00:00 blood 1007 #> 2014 14.3 11 1832 1832-11-01 00:00:00 bone 1007 #> 2015 27.5 12 1832 1832-12-01 12:00:01 blood 1008 #> 2016 27.5 12 1832 1832-12-01 12:00:01 bone 1008 #> 2017 11.3 1 1833 1833-01-01 00:00:00 blood 1009 #> 2018 11.3 1 1833 1833-01-01 00:00:00 bone 1009 #> 2019 14.9 2 1833 1833-01-31 10:00:00 blood 1010 #> 2020 14.9 2 1833 1833-01-31 10:00:00 bone 1010 #> 2021 11.8 3 1833 1833-03-02 20:00:01 blood 1011 #> 2022 11.8 3 1833 1833-03-02 20:00:01 bone 1011 #> 2023 2.8 4 1833 1833-04-02 06:00:00 blood 1012 #> 2024 2.8 4 1833 1833-04-02 06:00:00 bone 1012 #> 2025 12.9 5 1833 1833-05-02 16:00:00 blood 1013 #> 2026 12.9 5 1833 1833-05-02 16:00:00 bone 1013 #> 2027 1.0 6 1833 1833-06-02 02:00:01 blood 1014 #> 2028 1.0 6 1833 1833-06-02 02:00:01 bone 1014 #> 2029 7.0 7 1833 1833-07-02 12:00:00 blood 1015 #> 2030 7.0 7 1833 1833-07-02 12:00:00 bone 1015 #> 2031 5.7 8 1833 1833-08-01 22:00:00 blood 1016 #> 2032 5.7 8 1833 1833-08-01 22:00:00 bone 1016 #> 2033 11.6 9 1833 1833-09-01 08:00:01 blood 1017 #> 2034 11.6 9 1833 1833-09-01 08:00:01 bone 1017 #> 2035 7.5 10 1833 1833-10-01 18:00:00 blood 1018 #> 2036 7.5 10 1833 1833-10-01 18:00:00 bone 1018 #> 2037 5.9 11 1833 1833-11-01 04:00:00 blood 1019 #> 2038 5.9 11 1833 1833-11-01 04:00:00 bone 1019 #> 2039 9.9 12 1833 1833-12-01 14:00:01 blood 1020 #> 2040 9.9 12 1833 1833-12-01 14:00:01 bone 1020 #> 2041 4.9 1 1834 1834-01-01 00:00:00 blood 1021 #> 2042 4.9 1 1834 1834-01-01 00:00:00 bone 1021 #> 2043 18.1 2 1834 1834-01-31 10:00:00 blood 1022 #> 2044 18.1 2 1834 1834-01-31 10:00:00 bone 1022 #> 2045 3.9 3 1834 1834-03-02 20:00:01 blood 1023 #> 2046 3.9 3 1834 1834-03-02 20:00:01 bone 1023 #> 2047 1.4 4 1834 1834-04-02 06:00:00 blood 1024 #> 2048 1.4 4 1834 1834-04-02 06:00:00 bone 1024 #> 2049 8.8 5 1834 1834-05-02 16:00:00 blood 1025 #> 2050 8.8 5 1834 1834-05-02 16:00:00 bone 1025 #> 2051 7.8 6 1834 1834-06-02 02:00:01 blood 1026 #> 2052 7.8 6 1834 1834-06-02 02:00:01 bone 1026 #> 2053 8.7 7 1834 1834-07-02 12:00:00 blood 1027 #> 2054 8.7 7 1834 1834-07-02 12:00:00 bone 1027 #> 2055 4.0 8 1834 1834-08-01 22:00:00 blood 1028 #> 2056 4.0 8 1834 1834-08-01 22:00:00 bone 1028 #> 2057 11.5 9 1834 1834-09-01 08:00:01 blood 1029 #> 2058 11.5 9 1834 1834-09-01 08:00:01 bone 1029 #> 2059 24.8 10 1834 1834-10-01 18:00:00 blood 1030 #> 2060 24.8 10 1834 1834-10-01 18:00:00 bone 1030 #> 2061 30.5 11 1834 1834-11-01 04:00:00 blood 1031 #> 2062 30.5 11 1834 1834-11-01 04:00:00 bone 1031 #> 2063 34.5 12 1834 1834-12-01 14:00:01 blood 1032 #> 2064 34.5 12 1834 1834-12-01 14:00:01 bone 1032 #> 2065 7.5 1 1835 1835-01-01 00:00:00 blood 1033 #> 2066 7.5 1 1835 1835-01-01 00:00:00 bone 1033 #> 2067 24.5 2 1835 1835-01-31 10:00:00 blood 1034 #> 2068 24.5 2 1835 1835-01-31 10:00:00 bone 1034 #> 2069 19.7 3 1835 1835-03-02 20:00:01 blood 1035 #> 2070 19.7 3 1835 1835-03-02 20:00:01 bone 1035 #> 2071 61.5 4 1835 1835-04-02 06:00:00 blood 1036 #> 2072 61.5 4 1835 1835-04-02 06:00:00 bone 1036 #> 2073 43.6 5 1835 1835-05-02 16:00:00 blood 1037 #> 2074 43.6 5 1835 1835-05-02 16:00:00 bone 1037 #> 2075 33.2 6 1835 1835-06-02 02:00:01 blood 1038 #> 2076 33.2 6 1835 1835-06-02 02:00:01 bone 1038 #> 2077 59.8 7 1835 1835-07-02 12:00:00 blood 1039 #> 2078 59.8 7 1835 1835-07-02 12:00:00 bone 1039 #> 2079 59.0 8 1835 1835-08-01 22:00:00 blood 1040 #> 2080 59.0 8 1835 1835-08-01 22:00:00 bone 1040 #> 2081 100.8 9 1835 1835-09-01 08:00:01 blood 1041 #> 2082 100.8 9 1835 1835-09-01 08:00:01 bone 1041 #> 2083 95.2 10 1835 1835-10-01 18:00:00 blood 1042 #> 2084 95.2 10 1835 1835-10-01 18:00:00 bone 1042 #> 2085 100.0 11 1835 1835-11-01 04:00:00 blood 1043 #> 2086 100.0 11 1835 1835-11-01 04:00:00 bone 1043 #> 2087 77.5 12 1835 1835-12-01 14:00:01 blood 1044 #> 2088 77.5 12 1835 1835-12-01 14:00:01 bone 1044 #> 2089 88.6 1 1836 1836-01-01 00:00:00 blood 1045 #> 2090 88.6 1 1836 1836-01-01 00:00:00 bone 1045 #> 2091 107.6 2 1836 1836-01-31 12:00:00 blood 1046 #> 2092 107.6 2 1836 1836-01-31 12:00:00 bone 1046 #> 2093 98.1 3 1836 1836-03-02 00:00:01 blood 1047 #> 2094 98.1 3 1836 1836-03-02 00:00:01 bone 1047 #> 2095 142.9 4 1836 1836-04-01 12:00:00 blood 1048 #> 2096 142.9 4 1836 1836-04-01 12:00:00 bone 1048 #> 2097 111.4 5 1836 1836-05-02 00:00:00 blood 1049 #> 2098 111.4 5 1836 1836-05-02 00:00:00 bone 1049 #> 2099 124.7 6 1836 1836-06-01 12:00:01 blood 1050 #> 2100 124.7 6 1836 1836-06-01 12:00:01 bone 1050 #> 2101 116.7 7 1836 1836-07-02 00:00:00 blood 1051 #> 2102 116.7 7 1836 1836-07-02 00:00:00 bone 1051 #> 2103 107.8 8 1836 1836-08-01 12:00:00 blood 1052 #> 2104 107.8 8 1836 1836-08-01 12:00:00 bone 1052 #> 2105 95.1 9 1836 1836-09-01 00:00:01 blood 1053 #> 2106 95.1 9 1836 1836-09-01 00:00:01 bone 1053 #> 2107 137.4 10 1836 1836-10-01 12:00:00 blood 1054 #> 2108 137.4 10 1836 1836-10-01 12:00:00 bone 1054 #> 2109 120.9 11 1836 1836-11-01 00:00:00 blood 1055 #> 2110 120.9 11 1836 1836-11-01 00:00:00 bone 1055 #> 2111 206.2 12 1836 1836-12-01 12:00:01 blood 1056 #> 2112 206.2 12 1836 1836-12-01 12:00:01 bone 1056 #> 2113 188.0 1 1837 1837-01-01 00:00:00 blood 1057 #> 2114 188.0 1 1837 1837-01-01 00:00:00 bone 1057 #> 2115 175.6 2 1837 1837-01-31 10:00:00 blood 1058 #> 2116 175.6 2 1837 1837-01-31 10:00:00 bone 1058 #> 2117 134.6 3 1837 1837-03-02 20:00:01 blood 1059 #> 2118 134.6 3 1837 1837-03-02 20:00:01 bone 1059 #> 2119 138.2 4 1837 1837-04-02 06:00:00 blood 1060 #> 2120 138.2 4 1837 1837-04-02 06:00:00 bone 1060 #> 2121 111.3 5 1837 1837-05-02 16:00:00 blood 1061 #> 2122 111.3 5 1837 1837-05-02 16:00:00 bone 1061 #> 2123 158.0 6 1837 1837-06-02 02:00:01 blood 1062 #> 2124 158.0 6 1837 1837-06-02 02:00:01 bone 1062 #> 2125 162.8 7 1837 1837-07-02 12:00:00 blood 1063 #> 2126 162.8 7 1837 1837-07-02 12:00:00 bone 1063 #> 2127 134.0 8 1837 1837-08-01 22:00:00 blood 1064 #> 2128 134.0 8 1837 1837-08-01 22:00:00 bone 1064 #> 2129 96.3 9 1837 1837-09-01 08:00:01 blood 1065 #> 2130 96.3 9 1837 1837-09-01 08:00:01 bone 1065 #> 2131 123.7 10 1837 1837-10-01 18:00:00 blood 1066 #> 2132 123.7 10 1837 1837-10-01 18:00:00 bone 1066 #> 2133 107.0 11 1837 1837-11-01 04:00:00 blood 1067 #> 2134 107.0 11 1837 1837-11-01 04:00:00 bone 1067 #> 2135 129.8 12 1837 1837-12-01 14:00:01 blood 1068 #> 2136 129.8 12 1837 1837-12-01 14:00:01 bone 1068 #> 2137 144.9 1 1838 1838-01-01 00:00:00 blood 1069 #> 2138 144.9 1 1838 1838-01-01 00:00:00 bone 1069 #> 2139 84.8 2 1838 1838-01-31 10:00:00 blood 1070 #> 2140 84.8 2 1838 1838-01-31 10:00:00 bone 1070 #> 2141 140.8 3 1838 1838-03-02 20:00:01 blood 1071 #> 2142 140.8 3 1838 1838-03-02 20:00:01 bone 1071 #> 2143 126.6 4 1838 1838-04-02 06:00:00 blood 1072 #> 2144 126.6 4 1838 1838-04-02 06:00:00 bone 1072 #> 2145 137.6 5 1838 1838-05-02 16:00:00 blood 1073 #> 2146 137.6 5 1838 1838-05-02 16:00:00 bone 1073 #> 2147 94.5 6 1838 1838-06-02 02:00:01 blood 1074 #> 2148 94.5 6 1838 1838-06-02 02:00:01 bone 1074 #> 2149 108.2 7 1838 1838-07-02 12:00:00 blood 1075 #> 2150 108.2 7 1838 1838-07-02 12:00:00 bone 1075 #> 2151 78.8 8 1838 1838-08-01 22:00:00 blood 1076 #> 2152 78.8 8 1838 1838-08-01 22:00:00 bone 1076 #> 2153 73.6 9 1838 1838-09-01 08:00:01 blood 1077 #> 2154 73.6 9 1838 1838-09-01 08:00:01 bone 1077 #> 2155 90.8 10 1838 1838-10-01 18:00:00 blood 1078 #> 2156 90.8 10 1838 1838-10-01 18:00:00 bone 1078 #> 2157 77.4 11 1838 1838-11-01 04:00:00 blood 1079 #> 2158 77.4 11 1838 1838-11-01 04:00:00 bone 1079 #> 2159 79.8 12 1838 1838-12-01 14:00:01 blood 1080 #> 2160 79.8 12 1838 1838-12-01 14:00:01 bone 1080 #> 2161 107.6 1 1839 1839-01-01 00:00:00 blood 1081 #> 2162 107.6 1 1839 1839-01-01 00:00:00 bone 1081 #> 2163 102.5 2 1839 1839-01-31 10:00:00 blood 1082 #> 2164 102.5 2 1839 1839-01-31 10:00:00 bone 1082 #> 2165 77.7 3 1839 1839-03-02 20:00:01 blood 1083 #> 2166 77.7 3 1839 1839-03-02 20:00:01 bone 1083 #> 2167 61.8 4 1839 1839-04-02 06:00:00 blood 1084 #> 2168 61.8 4 1839 1839-04-02 06:00:00 bone 1084 #> 2169 53.8 5 1839 1839-05-02 16:00:00 blood 1085 #> 2170 53.8 5 1839 1839-05-02 16:00:00 bone 1085 #> 2171 54.6 6 1839 1839-06-02 02:00:01 blood 1086 #> 2172 54.6 6 1839 1839-06-02 02:00:01 bone 1086 #> 2173 84.7 7 1839 1839-07-02 12:00:00 blood 1087 #> 2174 84.7 7 1839 1839-07-02 12:00:00 bone 1087 #> 2175 131.2 8 1839 1839-08-01 22:00:00 blood 1088 #> 2176 131.2 8 1839 1839-08-01 22:00:00 bone 1088 #> 2177 132.7 9 1839 1839-09-01 08:00:01 blood 1089 #> 2178 132.7 9 1839 1839-09-01 08:00:01 bone 1089 #> 2179 90.8 10 1839 1839-10-01 18:00:00 blood 1090 #> 2180 90.8 10 1839 1839-10-01 18:00:00 bone 1090 #> 2181 68.8 11 1839 1839-11-01 04:00:00 blood 1091 #> 2182 68.8 11 1839 1839-11-01 04:00:00 bone 1091 #> 2183 63.6 12 1839 1839-12-01 14:00:01 blood 1092 #> 2184 63.6 12 1839 1839-12-01 14:00:01 bone 1092 #> 2185 81.2 1 1840 1840-01-01 00:00:00 blood 1093 #> 2186 81.2 1 1840 1840-01-01 00:00:00 bone 1093 #> 2187 87.7 2 1840 1840-01-31 12:00:00 blood 1094 #> 2188 87.7 2 1840 1840-01-31 12:00:00 bone 1094 #> 2189 55.5 3 1840 1840-03-02 00:00:01 blood 1095 #> 2190 55.5 3 1840 1840-03-02 00:00:01 bone 1095 #> 2191 65.9 4 1840 1840-04-01 12:00:00 blood 1096 #> 2192 65.9 4 1840 1840-04-01 12:00:00 bone 1096 #> 2193 69.2 5 1840 1840-05-02 00:00:00 blood 1097 #> 2194 69.2 5 1840 1840-05-02 00:00:00 bone 1097 #> 2195 48.5 6 1840 1840-06-01 12:00:01 blood 1098 #> 2196 48.5 6 1840 1840-06-01 12:00:01 bone 1098 #> 2197 60.7 7 1840 1840-07-02 00:00:00 blood 1099 #> 2198 60.7 7 1840 1840-07-02 00:00:00 bone 1099 #> 2199 57.8 8 1840 1840-08-01 12:00:00 blood 1100 #> 2200 57.8 8 1840 1840-08-01 12:00:00 bone 1100 #> 2201 74.0 9 1840 1840-09-01 00:00:01 blood 1101 #> 2202 74.0 9 1840 1840-09-01 00:00:01 bone 1101 #> 2203 49.8 10 1840 1840-10-01 12:00:00 blood 1102 #> 2204 49.8 10 1840 1840-10-01 12:00:00 bone 1102 #> 2205 54.3 11 1840 1840-11-01 00:00:00 blood 1103 #> 2206 54.3 11 1840 1840-11-01 00:00:00 bone 1103 #> 2207 53.7 12 1840 1840-12-01 12:00:01 blood 1104 #> 2208 53.7 12 1840 1840-12-01 12:00:01 bone 1104 #> 2209 24.0 1 1841 1841-01-01 00:00:00 blood 1105 #> 2210 24.0 1 1841 1841-01-01 00:00:00 bone 1105 #> 2211 29.9 2 1841 1841-01-31 10:00:00 blood 1106 #> 2212 29.9 2 1841 1841-01-31 10:00:00 bone 1106 #> 2213 29.7 3 1841 1841-03-02 20:00:01 blood 1107 #> 2214 29.7 3 1841 1841-03-02 20:00:01 bone 1107 #> 2215 42.6 4 1841 1841-04-02 06:00:00 blood 1108 #> 2216 42.6 4 1841 1841-04-02 06:00:00 bone 1108 #> 2217 67.4 5 1841 1841-05-02 16:00:00 blood 1109 #> 2218 67.4 5 1841 1841-05-02 16:00:00 bone 1109 #> 2219 55.7 6 1841 1841-06-02 02:00:01 blood 1110 #> 2220 55.7 6 1841 1841-06-02 02:00:01 bone 1110 #> 2221 30.8 7 1841 1841-07-02 12:00:00 blood 1111 #> 2222 30.8 7 1841 1841-07-02 12:00:00 bone 1111 #> 2223 39.3 8 1841 1841-08-01 22:00:00 blood 1112 #> 2224 39.3 8 1841 1841-08-01 22:00:00 bone 1112 #> 2225 35.1 9 1841 1841-09-01 08:00:01 blood 1113 #> 2226 35.1 9 1841 1841-09-01 08:00:01 bone 1113 #> 2227 28.5 10 1841 1841-10-01 18:00:00 blood 1114 #> 2228 28.5 10 1841 1841-10-01 18:00:00 bone 1114 #> 2229 19.8 11 1841 1841-11-01 04:00:00 blood 1115 #> 2230 19.8 11 1841 1841-11-01 04:00:00 bone 1115 #> 2231 38.8 12 1841 1841-12-01 14:00:01 blood 1116 #> 2232 38.8 12 1841 1841-12-01 14:00:01 bone 1116 #> 2233 20.4 1 1842 1842-01-01 00:00:00 blood 1117 #> 2234 20.4 1 1842 1842-01-01 00:00:00 bone 1117 #> 2235 22.1 2 1842 1842-01-31 10:00:00 blood 1118 #> 2236 22.1 2 1842 1842-01-31 10:00:00 bone 1118 #> 2237 21.7 3 1842 1842-03-02 20:00:01 blood 1119 #> 2238 21.7 3 1842 1842-03-02 20:00:01 bone 1119 #> 2239 26.9 4 1842 1842-04-02 06:00:00 blood 1120 #> 2240 26.9 4 1842 1842-04-02 06:00:00 bone 1120 #> 2241 24.9 5 1842 1842-05-02 16:00:00 blood 1121 #> 2242 24.9 5 1842 1842-05-02 16:00:00 bone 1121 #> 2243 20.5 6 1842 1842-06-02 02:00:01 blood 1122 #> 2244 20.5 6 1842 1842-06-02 02:00:01 bone 1122 #> 2245 12.6 7 1842 1842-07-02 12:00:00 blood 1123 #> 2246 12.6 7 1842 1842-07-02 12:00:00 bone 1123 #> 2247 26.5 8 1842 1842-08-01 22:00:00 blood 1124 #> 2248 26.5 8 1842 1842-08-01 22:00:00 bone 1124 #> 2249 18.5 9 1842 1842-09-01 08:00:01 blood 1125 #> 2250 18.5 9 1842 1842-09-01 08:00:01 bone 1125 #> 2251 38.1 10 1842 1842-10-01 18:00:00 blood 1126 #> 2252 38.1 10 1842 1842-10-01 18:00:00 bone 1126 #> 2253 40.5 11 1842 1842-11-01 04:00:00 blood 1127 #> 2254 40.5 11 1842 1842-11-01 04:00:00 bone 1127 #> 2255 17.6 12 1842 1842-12-01 14:00:01 blood 1128 #> 2256 17.6 12 1842 1842-12-01 14:00:01 bone 1128 #> 2257 13.3 1 1843 1843-01-01 00:00:00 blood 1129 #> 2258 13.3 1 1843 1843-01-01 00:00:00 bone 1129 #> 2259 3.5 2 1843 1843-01-31 10:00:00 blood 1130 #> 2260 3.5 2 1843 1843-01-31 10:00:00 bone 1130 #> 2261 8.3 3 1843 1843-03-02 20:00:01 blood 1131 #> 2262 8.3 3 1843 1843-03-02 20:00:01 bone 1131 #> 2263 8.8 4 1843 1843-04-02 06:00:00 blood 1132 #> 2264 8.8 4 1843 1843-04-02 06:00:00 bone 1132 #> 2265 21.1 5 1843 1843-05-02 16:00:00 blood 1133 #> 2266 21.1 5 1843 1843-05-02 16:00:00 bone 1133 #> 2267 10.5 6 1843 1843-06-02 02:00:01 blood 1134 #> 2268 10.5 6 1843 1843-06-02 02:00:01 bone 1134 #> 2269 9.5 7 1843 1843-07-02 12:00:00 blood 1135 #> 2270 9.5 7 1843 1843-07-02 12:00:00 bone 1135 #> 2271 11.8 8 1843 1843-08-01 22:00:00 blood 1136 #> 2272 11.8 8 1843 1843-08-01 22:00:00 bone 1136 #> 2273 4.2 9 1843 1843-09-01 08:00:01 blood 1137 #> 2274 4.2 9 1843 1843-09-01 08:00:01 bone 1137 #> 2275 5.3 10 1843 1843-10-01 18:00:00 blood 1138 #> 2276 5.3 10 1843 1843-10-01 18:00:00 bone 1138 #> 2277 19.1 11 1843 1843-11-01 04:00:00 blood 1139 #> 2278 19.1 11 1843 1843-11-01 04:00:00 bone 1139 #> 2279 12.7 12 1843 1843-12-01 14:00:01 blood 1140 #> 2280 12.7 12 1843 1843-12-01 14:00:01 bone 1140 #> 2281 9.4 1 1844 1844-01-01 00:00:00 blood 1141 #> 2282 9.4 1 1844 1844-01-01 00:00:00 bone 1141 #> 2283 14.7 2 1844 1844-01-31 12:00:00 blood 1142 #> 2284 14.7 2 1844 1844-01-31 12:00:00 bone 1142 #> 2285 13.6 3 1844 1844-03-02 00:00:01 blood 1143 #> 2286 13.6 3 1844 1844-03-02 00:00:01 bone 1143 #> 2287 20.8 4 1844 1844-04-01 12:00:00 blood 1144 #> 2288 20.8 4 1844 1844-04-01 12:00:00 bone 1144 #> 2289 12.0 5 1844 1844-05-02 00:00:00 blood 1145 #> 2290 12.0 5 1844 1844-05-02 00:00:00 bone 1145 #> 2291 3.7 6 1844 1844-06-01 12:00:01 blood 1146 #> 2292 3.7 6 1844 1844-06-01 12:00:01 bone 1146 #> 2293 21.2 7 1844 1844-07-02 00:00:00 blood 1147 #> 2294 21.2 7 1844 1844-07-02 00:00:00 bone 1147 #> 2295 23.9 8 1844 1844-08-01 12:00:00 blood 1148 #> 2296 23.9 8 1844 1844-08-01 12:00:00 bone 1148 #> 2297 6.9 9 1844 1844-09-01 00:00:01 blood 1149 #> 2298 6.9 9 1844 1844-09-01 00:00:01 bone 1149 #> 2299 21.5 10 1844 1844-10-01 12:00:00 blood 1150 #> 2300 21.5 10 1844 1844-10-01 12:00:00 bone 1150 #> 2301 10.7 11 1844 1844-11-01 00:00:00 blood 1151 #> 2302 10.7 11 1844 1844-11-01 00:00:00 bone 1151 #> 2303 21.6 12 1844 1844-12-01 12:00:01 blood 1152 #> 2304 21.6 12 1844 1844-12-01 12:00:01 bone 1152 #> 2305 25.7 1 1845 1845-01-01 00:00:00 blood 1153 #> 2306 25.7 1 1845 1845-01-01 00:00:00 bone 1153 #> 2307 43.6 2 1845 1845-01-31 10:00:00 blood 1154 #> 2308 43.6 2 1845 1845-01-31 10:00:00 bone 1154 #> 2309 43.3 3 1845 1845-03-02 20:00:01 blood 1155 #> 2310 43.3 3 1845 1845-03-02 20:00:01 bone 1155 #> 2311 56.9 4 1845 1845-04-02 06:00:00 blood 1156 #> 2312 56.9 4 1845 1845-04-02 06:00:00 bone 1156 #> 2313 47.8 5 1845 1845-05-02 16:00:00 blood 1157 #> 2314 47.8 5 1845 1845-05-02 16:00:00 bone 1157 #> 2315 31.1 6 1845 1845-06-02 02:00:01 blood 1158 #> 2316 31.1 6 1845 1845-06-02 02:00:01 bone 1158 #> 2317 30.6 7 1845 1845-07-02 12:00:00 blood 1159 #> 2318 30.6 7 1845 1845-07-02 12:00:00 bone 1159 #> 2319 32.3 8 1845 1845-08-01 22:00:00 blood 1160 #> 2320 32.3 8 1845 1845-08-01 22:00:00 bone 1160 #> 2321 29.6 9 1845 1845-09-01 08:00:01 blood 1161 #> 2322 29.6 9 1845 1845-09-01 08:00:01 bone 1161 #> 2323 40.7 10 1845 1845-10-01 18:00:00 blood 1162 #> 2324 40.7 10 1845 1845-10-01 18:00:00 bone 1162 #> 2325 39.4 11 1845 1845-11-01 04:00:00 blood 1163 #> 2326 39.4 11 1845 1845-11-01 04:00:00 bone 1163 #> 2327 59.7 12 1845 1845-12-01 14:00:01 blood 1164 #> 2328 59.7 12 1845 1845-12-01 14:00:01 bone 1164 #> 2329 38.7 1 1846 1846-01-01 00:00:00 blood 1165 #> 2330 38.7 1 1846 1846-01-01 00:00:00 bone 1165 #> 2331 51.0 2 1846 1846-01-31 10:00:00 blood 1166 #> 2332 51.0 2 1846 1846-01-31 10:00:00 bone 1166 #> 2333 63.9 3 1846 1846-03-02 20:00:01 blood 1167 #> 2334 63.9 3 1846 1846-03-02 20:00:01 bone 1167 #> 2335 69.2 4 1846 1846-04-02 06:00:00 blood 1168 #> 2336 69.2 4 1846 1846-04-02 06:00:00 bone 1168 #> 2337 59.9 5 1846 1846-05-02 16:00:00 blood 1169 #> 2338 59.9 5 1846 1846-05-02 16:00:00 bone 1169 #> 2339 65.1 6 1846 1846-06-02 02:00:01 blood 1170 #> 2340 65.1 6 1846 1846-06-02 02:00:01 bone 1170 #> 2341 46.5 7 1846 1846-07-02 12:00:00 blood 1171 #> 2342 46.5 7 1846 1846-07-02 12:00:00 bone 1171 #> 2343 54.8 8 1846 1846-08-01 22:00:00 blood 1172 #> 2344 54.8 8 1846 1846-08-01 22:00:00 bone 1172 #> 2345 107.1 9 1846 1846-09-01 08:00:01 blood 1173 #> 2346 107.1 9 1846 1846-09-01 08:00:01 bone 1173 #> 2347 55.9 10 1846 1846-10-01 18:00:00 blood 1174 #> 2348 55.9 10 1846 1846-10-01 18:00:00 bone 1174 #> 2349 60.4 11 1846 1846-11-01 04:00:00 blood 1175 #> 2350 60.4 11 1846 1846-11-01 04:00:00 bone 1175 #> 2351 65.5 12 1846 1846-12-01 14:00:01 blood 1176 #> 2352 65.5 12 1846 1846-12-01 14:00:01 bone 1176 #> 2353 62.6 1 1847 1847-01-01 00:00:00 blood 1177 #> 2354 62.6 1 1847 1847-01-01 00:00:00 bone 1177 #> 2355 44.9 2 1847 1847-01-31 10:00:00 blood 1178 #> 2356 44.9 2 1847 1847-01-31 10:00:00 bone 1178 #> 2357 85.7 3 1847 1847-03-02 20:00:01 blood 1179 #> 2358 85.7 3 1847 1847-03-02 20:00:01 bone 1179 #> 2359 44.7 4 1847 1847-04-02 06:00:00 blood 1180 #> 2360 44.7 4 1847 1847-04-02 06:00:00 bone 1180 #> 2361 75.4 5 1847 1847-05-02 16:00:00 blood 1181 #> 2362 75.4 5 1847 1847-05-02 16:00:00 bone 1181 #> 2363 85.3 6 1847 1847-06-02 02:00:01 blood 1182 #> 2364 85.3 6 1847 1847-06-02 02:00:01 bone 1182 #> 2365 52.2 7 1847 1847-07-02 12:00:00 blood 1183 #> 2366 52.2 7 1847 1847-07-02 12:00:00 bone 1183 #> 2367 140.6 8 1847 1847-08-01 22:00:00 blood 1184 #> 2368 140.6 8 1847 1847-08-01 22:00:00 bone 1184 #> 2369 161.2 9 1847 1847-09-01 08:00:01 blood 1185 #> 2370 161.2 9 1847 1847-09-01 08:00:01 bone 1185 #> 2371 180.4 10 1847 1847-10-01 18:00:00 blood 1186 #> 2372 180.4 10 1847 1847-10-01 18:00:00 bone 1186 #> 2373 138.9 11 1847 1847-11-01 04:00:00 blood 1187 #> 2374 138.9 11 1847 1847-11-01 04:00:00 bone 1187 #> 2375 109.6 12 1847 1847-12-01 14:00:01 blood 1188 #> 2376 109.6 12 1847 1847-12-01 14:00:01 bone 1188 #> 2377 159.1 1 1848 1848-01-01 00:00:00 blood 1189 #> 2378 159.1 1 1848 1848-01-01 00:00:00 bone 1189 #> 2379 111.8 2 1848 1848-01-31 12:00:00 blood 1190 #> 2380 111.8 2 1848 1848-01-31 12:00:00 bone 1190 #> 2381 108.9 3 1848 1848-03-02 00:00:01 blood 1191 #> 2382 108.9 3 1848 1848-03-02 00:00:01 bone 1191 #> 2383 107.1 4 1848 1848-04-01 12:00:00 blood 1192 #> 2384 107.1 4 1848 1848-04-01 12:00:00 bone 1192 #> 2385 102.2 5 1848 1848-05-02 00:00:00 blood 1193 #> 2386 102.2 5 1848 1848-05-02 00:00:00 bone 1193 #> 2387 123.8 6 1848 1848-06-01 12:00:01 blood 1194 #> 2388 123.8 6 1848 1848-06-01 12:00:01 bone 1194 #> 2389 139.2 7 1848 1848-07-02 00:00:00 blood 1195 #> 2390 139.2 7 1848 1848-07-02 00:00:00 bone 1195 #> 2391 132.5 8 1848 1848-08-01 12:00:00 blood 1196 #> 2392 132.5 8 1848 1848-08-01 12:00:00 bone 1196 #> 2393 100.3 9 1848 1848-09-01 00:00:01 blood 1197 #> 2394 100.3 9 1848 1848-09-01 00:00:01 bone 1197 #> 2395 132.4 10 1848 1848-10-01 12:00:00 blood 1198 #> 2396 132.4 10 1848 1848-10-01 12:00:00 bone 1198 #> 2397 114.6 11 1848 1848-11-01 00:00:00 blood 1199 #> 2398 114.6 11 1848 1848-11-01 00:00:00 bone 1199 #> 2399 159.9 12 1848 1848-12-01 12:00:01 blood 1200 #> 2400 159.9 12 1848 1848-12-01 12:00:01 bone 1200 #> 2401 156.7 1 1849 1849-01-01 00:00:00 blood 1201 #> 2402 156.7 1 1849 1849-01-01 00:00:00 bone 1201 #> 2403 131.7 2 1849 1849-01-31 10:00:00 blood 1202 #> 2404 131.7 2 1849 1849-01-31 10:00:00 bone 1202 #> 2405 96.5 3 1849 1849-03-02 20:00:01 blood 1203 #> 2406 96.5 3 1849 1849-03-02 20:00:01 bone 1203 #> 2407 102.5 4 1849 1849-04-02 06:00:00 blood 1204 #> 2408 102.5 4 1849 1849-04-02 06:00:00 bone 1204 #> 2409 80.6 5 1849 1849-05-02 16:00:00 blood 1205 #> 2410 80.6 5 1849 1849-05-02 16:00:00 bone 1205 #> 2411 81.2 6 1849 1849-06-02 02:00:01 blood 1206 #> 2412 81.2 6 1849 1849-06-02 02:00:01 bone 1206 #> 2413 78.0 7 1849 1849-07-02 12:00:00 blood 1207 #> 2414 78.0 7 1849 1849-07-02 12:00:00 bone 1207 #> 2415 61.3 8 1849 1849-08-01 22:00:00 blood 1208 #> 2416 61.3 8 1849 1849-08-01 22:00:00 bone 1208 #> 2417 93.7 9 1849 1849-09-01 08:00:01 blood 1209 #> 2418 93.7 9 1849 1849-09-01 08:00:01 bone 1209 #> 2419 71.5 10 1849 1849-10-01 18:00:00 blood 1210 #> 2420 71.5 10 1849 1849-10-01 18:00:00 bone 1210 #> 2421 99.7 11 1849 1849-11-01 04:00:00 blood 1211 #> 2422 99.7 11 1849 1849-11-01 04:00:00 bone 1211 #> 2423 97.0 12 1849 1849-12-01 14:00:01 blood 1212 #> 2424 97.0 12 1849 1849-12-01 14:00:01 bone 1212 #> 2425 78.0 1 1850 1850-01-01 00:00:00 blood 1213 #> 2426 78.0 1 1850 1850-01-01 00:00:00 bone 1213 #> 2427 89.4 2 1850 1850-01-31 10:00:00 blood 1214 #> 2428 89.4 2 1850 1850-01-31 10:00:00 bone 1214 #> 2429 82.6 3 1850 1850-03-02 20:00:01 blood 1215 #> 2430 82.6 3 1850 1850-03-02 20:00:01 bone 1215 #> 2431 44.1 4 1850 1850-04-02 06:00:00 blood 1216 #> 2432 44.1 4 1850 1850-04-02 06:00:00 bone 1216 #> 2433 61.6 5 1850 1850-05-02 16:00:00 blood 1217 #> 2434 61.6 5 1850 1850-05-02 16:00:00 bone 1217 #> 2435 70.0 6 1850 1850-06-02 02:00:01 blood 1218 #> 2436 70.0 6 1850 1850-06-02 02:00:01 bone 1218 #> 2437 39.1 7 1850 1850-07-02 12:00:00 blood 1219 #> 2438 39.1 7 1850 1850-07-02 12:00:00 bone 1219 #> 2439 61.6 8 1850 1850-08-01 22:00:00 blood 1220 #> 2440 61.6 8 1850 1850-08-01 22:00:00 bone 1220 #> 2441 86.2 9 1850 1850-09-01 08:00:01 blood 1221 #> 2442 86.2 9 1850 1850-09-01 08:00:01 bone 1221 #> 2443 71.0 10 1850 1850-10-01 18:00:00 blood 1222 #> 2444 71.0 10 1850 1850-10-01 18:00:00 bone 1222 #> 2445 54.8 11 1850 1850-11-01 04:00:00 blood 1223 #> 2446 54.8 11 1850 1850-11-01 04:00:00 bone 1223 #> 2447 60.0 12 1850 1850-12-01 14:00:01 blood 1224 #> 2448 60.0 12 1850 1850-12-01 14:00:01 bone 1224 #> 2449 75.5 1 1851 1851-01-01 00:00:00 blood 1225 #> 2450 75.5 1 1851 1851-01-01 00:00:00 bone 1225 #> 2451 105.4 2 1851 1851-01-31 10:00:00 blood 1226 #> 2452 105.4 2 1851 1851-01-31 10:00:00 bone 1226 #> 2453 64.6 3 1851 1851-03-02 20:00:01 blood 1227 #> 2454 64.6 3 1851 1851-03-02 20:00:01 bone 1227 #> 2455 56.5 4 1851 1851-04-02 06:00:00 blood 1228 #> 2456 56.5 4 1851 1851-04-02 06:00:00 bone 1228 #> 2457 62.6 5 1851 1851-05-02 16:00:00 blood 1229 #> 2458 62.6 5 1851 1851-05-02 16:00:00 bone 1229 #> 2459 63.2 6 1851 1851-06-02 02:00:01 blood 1230 #> 2460 63.2 6 1851 1851-06-02 02:00:01 bone 1230 #> 2461 36.1 7 1851 1851-07-02 12:00:00 blood 1231 #> 2462 36.1 7 1851 1851-07-02 12:00:00 bone 1231 #> 2463 57.4 8 1851 1851-08-01 22:00:00 blood 1232 #> 2464 57.4 8 1851 1851-08-01 22:00:00 bone 1232 #> 2465 67.9 9 1851 1851-09-01 08:00:01 blood 1233 #> 2466 67.9 9 1851 1851-09-01 08:00:01 bone 1233 #> 2467 62.5 10 1851 1851-10-01 18:00:00 blood 1234 #> 2468 62.5 10 1851 1851-10-01 18:00:00 bone 1234 #> 2469 50.9 11 1851 1851-11-01 04:00:00 blood 1235 #> 2470 50.9 11 1851 1851-11-01 04:00:00 bone 1235 #> 2471 71.4 12 1851 1851-12-01 14:00:01 blood 1236 #> 2472 71.4 12 1851 1851-12-01 14:00:01 bone 1236 #> 2473 68.4 1 1852 1852-01-01 00:00:00 blood 1237 #> 2474 68.4 1 1852 1852-01-01 00:00:00 bone 1237 #> 2475 67.5 2 1852 1852-01-31 12:00:00 blood 1238 #> 2476 67.5 2 1852 1852-01-31 12:00:00 bone 1238 #> 2477 61.2 3 1852 1852-03-02 00:00:01 blood 1239 #> 2478 61.2 3 1852 1852-03-02 00:00:01 bone 1239 #> 2479 65.4 4 1852 1852-04-01 12:00:00 blood 1240 #> 2480 65.4 4 1852 1852-04-01 12:00:00 bone 1240 #> 2481 54.9 5 1852 1852-05-02 00:00:00 blood 1241 #> 2482 54.9 5 1852 1852-05-02 00:00:00 bone 1241 #> 2483 46.9 6 1852 1852-06-01 12:00:01 blood 1242 #> 2484 46.9 6 1852 1852-06-01 12:00:01 bone 1242 #> 2485 42.0 7 1852 1852-07-02 00:00:00 blood 1243 #> 2486 42.0 7 1852 1852-07-02 00:00:00 bone 1243 #> 2487 39.7 8 1852 1852-08-01 12:00:00 blood 1244 #> 2488 39.7 8 1852 1852-08-01 12:00:00 bone 1244 #> 2489 37.5 9 1852 1852-09-01 00:00:01 blood 1245 #> 2490 37.5 9 1852 1852-09-01 00:00:01 bone 1245 #> 2491 67.3 10 1852 1852-10-01 12:00:00 blood 1246 #> 2492 67.3 10 1852 1852-10-01 12:00:00 bone 1246 #> 2493 54.3 11 1852 1852-11-01 00:00:00 blood 1247 #> 2494 54.3 11 1852 1852-11-01 00:00:00 bone 1247 #> 2495 45.4 12 1852 1852-12-01 12:00:01 blood 1248 #> 2496 45.4 12 1852 1852-12-01 12:00:01 bone 1248 #> 2497 41.1 1 1853 1853-01-01 00:00:00 blood 1249 #> 2498 41.1 1 1853 1853-01-01 00:00:00 bone 1249 #> 2499 42.9 2 1853 1853-01-31 10:00:00 blood 1250 #> 2500 42.9 2 1853 1853-01-31 10:00:00 bone 1250 #> 2501 37.7 3 1853 1853-03-02 20:00:01 blood 1251 #> 2502 37.7 3 1853 1853-03-02 20:00:01 bone 1251 #> 2503 47.6 4 1853 1853-04-02 06:00:00 blood 1252 #> 2504 47.6 4 1853 1853-04-02 06:00:00 bone 1252 #> 2505 34.7 5 1853 1853-05-02 16:00:00 blood 1253 #> 2506 34.7 5 1853 1853-05-02 16:00:00 bone 1253 #> 2507 40.0 6 1853 1853-06-02 02:00:01 blood 1254 #> 2508 40.0 6 1853 1853-06-02 02:00:01 bone 1254 #> 2509 45.9 7 1853 1853-07-02 12:00:00 blood 1255 #> 2510 45.9 7 1853 1853-07-02 12:00:00 bone 1255 #> 2511 50.4 8 1853 1853-08-01 22:00:00 blood 1256 #> 2512 50.4 8 1853 1853-08-01 22:00:00 bone 1256 #> 2513 33.5 9 1853 1853-09-01 08:00:01 blood 1257 #> 2514 33.5 9 1853 1853-09-01 08:00:01 bone 1257 #> 2515 42.3 10 1853 1853-10-01 18:00:00 blood 1258 #> 2516 42.3 10 1853 1853-10-01 18:00:00 bone 1258 #> 2517 28.8 11 1853 1853-11-01 04:00:00 blood 1259 #> 2518 28.8 11 1853 1853-11-01 04:00:00 bone 1259 #> 2519 23.4 12 1853 1853-12-01 14:00:01 blood 1260 #> 2520 23.4 12 1853 1853-12-01 14:00:01 bone 1260 #> 2521 15.4 1 1854 1854-01-01 00:00:00 blood 1261 #> 2522 15.4 1 1854 1854-01-01 00:00:00 bone 1261 #> 2523 20.0 2 1854 1854-01-31 10:00:00 blood 1262 #> 2524 20.0 2 1854 1854-01-31 10:00:00 bone 1262 #> 2525 20.7 3 1854 1854-03-02 20:00:01 blood 1263 #> 2526 20.7 3 1854 1854-03-02 20:00:01 bone 1263 #> 2527 26.4 4 1854 1854-04-02 06:00:00 blood 1264 #> 2528 26.4 4 1854 1854-04-02 06:00:00 bone 1264 #> 2529 24.0 5 1854 1854-05-02 16:00:00 blood 1265 #> 2530 24.0 5 1854 1854-05-02 16:00:00 bone 1265 #> 2531 21.1 6 1854 1854-06-02 02:00:01 blood 1266 #> 2532 21.1 6 1854 1854-06-02 02:00:01 bone 1266 #> 2533 18.7 7 1854 1854-07-02 12:00:00 blood 1267 #> 2534 18.7 7 1854 1854-07-02 12:00:00 bone 1267 #> 2535 15.8 8 1854 1854-08-01 22:00:00 blood 1268 #> 2536 15.8 8 1854 1854-08-01 22:00:00 bone 1268 #> 2537 22.4 9 1854 1854-09-01 08:00:01 blood 1269 #> 2538 22.4 9 1854 1854-09-01 08:00:01 bone 1269 #> 2539 12.7 10 1854 1854-10-01 18:00:00 blood 1270 #> 2540 12.7 10 1854 1854-10-01 18:00:00 bone 1270 #> 2541 28.2 11 1854 1854-11-01 04:00:00 blood 1271 #> 2542 28.2 11 1854 1854-11-01 04:00:00 bone 1271 #> 2543 21.4 12 1854 1854-12-01 14:00:01 blood 1272 #> 2544 21.4 12 1854 1854-12-01 14:00:01 bone 1272 #> 2545 12.3 1 1855 1855-01-01 00:00:00 blood 1273 #> 2546 12.3 1 1855 1855-01-01 00:00:00 bone 1273 #> 2547 11.4 2 1855 1855-01-31 10:00:00 blood 1274 #> 2548 11.4 2 1855 1855-01-31 10:00:00 bone 1274 #> 2549 17.4 3 1855 1855-03-02 20:00:01 blood 1275 #> 2550 17.4 3 1855 1855-03-02 20:00:01 bone 1275 #> 2551 4.4 4 1855 1855-04-02 06:00:00 blood 1276 #> 2552 4.4 4 1855 1855-04-02 06:00:00 bone 1276 #> 2553 9.1 5 1855 1855-05-02 16:00:00 blood 1277 #> 2554 9.1 5 1855 1855-05-02 16:00:00 bone 1277 #> 2555 5.3 6 1855 1855-06-02 02:00:01 blood 1278 #> 2556 5.3 6 1855 1855-06-02 02:00:01 bone 1278 #> 2557 0.4 7 1855 1855-07-02 12:00:00 blood 1279 #> 2558 0.4 7 1855 1855-07-02 12:00:00 bone 1279 #> 2559 3.1 8 1855 1855-08-01 22:00:00 blood 1280 #> 2560 3.1 8 1855 1855-08-01 22:00:00 bone 1280 #> 2561 0.0 9 1855 1855-09-01 08:00:01 blood 1281 #> 2562 0.0 9 1855 1855-09-01 08:00:01 bone 1281 #> 2563 9.7 10 1855 1855-10-01 18:00:00 blood 1282 #> 2564 9.7 10 1855 1855-10-01 18:00:00 bone 1282 #> 2565 4.3 11 1855 1855-11-01 04:00:00 blood 1283 #> 2566 4.3 11 1855 1855-11-01 04:00:00 bone 1283 #> 2567 3.1 12 1855 1855-12-01 14:00:01 blood 1284 #> 2568 3.1 12 1855 1855-12-01 14:00:01 bone 1284 #> 2569 0.5 1 1856 1856-01-01 00:00:00 blood 1285 #> 2570 0.5 1 1856 1856-01-01 00:00:00 bone 1285 #> 2571 4.9 2 1856 1856-01-31 12:00:00 blood 1286 #> 2572 4.9 2 1856 1856-01-31 12:00:00 bone 1286 #> 2573 0.4 3 1856 1856-03-02 00:00:01 blood 1287 #> 2574 0.4 3 1856 1856-03-02 00:00:01 bone 1287 #> 2575 6.5 4 1856 1856-04-01 12:00:00 blood 1288 #> 2576 6.5 4 1856 1856-04-01 12:00:00 bone 1288 #> 2577 0.0 5 1856 1856-05-02 00:00:00 blood 1289 #> 2578 0.0 5 1856 1856-05-02 00:00:00 bone 1289 #> 2579 5.0 6 1856 1856-06-01 12:00:01 blood 1290 #> 2580 5.0 6 1856 1856-06-01 12:00:01 bone 1290 #> 2581 4.6 7 1856 1856-07-02 00:00:00 blood 1291 #> 2582 4.6 7 1856 1856-07-02 00:00:00 bone 1291 #> 2583 5.9 8 1856 1856-08-01 12:00:00 blood 1292 #> 2584 5.9 8 1856 1856-08-01 12:00:00 bone 1292 #> 2585 4.4 9 1856 1856-09-01 00:00:01 blood 1293 #> 2586 4.4 9 1856 1856-09-01 00:00:01 bone 1293 #> 2587 4.5 10 1856 1856-10-01 12:00:00 blood 1294 #> 2588 4.5 10 1856 1856-10-01 12:00:00 bone 1294 #> 2589 7.7 11 1856 1856-11-01 00:00:00 blood 1295 #> 2590 7.7 11 1856 1856-11-01 00:00:00 bone 1295 #> 2591 7.2 12 1856 1856-12-01 12:00:01 blood 1296 #> 2592 7.2 12 1856 1856-12-01 12:00:01 bone 1296 #> 2593 13.7 1 1857 1857-01-01 00:00:00 blood 1297 #> 2594 13.7 1 1857 1857-01-01 00:00:00 bone 1297 #> 2595 7.4 2 1857 1857-01-31 10:00:00 blood 1298 #> 2596 7.4 2 1857 1857-01-31 10:00:00 bone 1298 #> 2597 5.2 3 1857 1857-03-02 20:00:01 blood 1299 #> 2598 5.2 3 1857 1857-03-02 20:00:01 bone 1299 #> 2599 11.1 4 1857 1857-04-02 06:00:00 blood 1300 #> 2600 11.1 4 1857 1857-04-02 06:00:00 bone 1300 #> 2601 29.2 5 1857 1857-05-02 16:00:00 blood 1301 #> 2602 29.2 5 1857 1857-05-02 16:00:00 bone 1301 #> 2603 16.0 6 1857 1857-06-02 02:00:01 blood 1302 #> 2604 16.0 6 1857 1857-06-02 02:00:01 bone 1302 #> 2605 22.2 7 1857 1857-07-02 12:00:00 blood 1303 #> 2606 22.2 7 1857 1857-07-02 12:00:00 bone 1303 #> 2607 16.9 8 1857 1857-08-01 22:00:00 blood 1304 #> 2608 16.9 8 1857 1857-08-01 22:00:00 bone 1304 #> 2609 42.4 9 1857 1857-09-01 08:00:01 blood 1305 #> 2610 42.4 9 1857 1857-09-01 08:00:01 bone 1305 #> 2611 40.6 10 1857 1857-10-01 18:00:00 blood 1306 #> 2612 40.6 10 1857 1857-10-01 18:00:00 bone 1306 #> 2613 31.4 11 1857 1857-11-01 04:00:00 blood 1307 #> 2614 31.4 11 1857 1857-11-01 04:00:00 bone 1307 #> 2615 37.2 12 1857 1857-12-01 14:00:01 blood 1308 #> 2616 37.2 12 1857 1857-12-01 14:00:01 bone 1308 #> 2617 39.0 1 1858 1858-01-01 00:00:00 blood 1309 #> 2618 39.0 1 1858 1858-01-01 00:00:00 bone 1309 #> 2619 34.9 2 1858 1858-01-31 10:00:00 blood 1310 #> 2620 34.9 2 1858 1858-01-31 10:00:00 bone 1310 #> 2621 57.5 3 1858 1858-03-02 20:00:01 blood 1311 #> 2622 57.5 3 1858 1858-03-02 20:00:01 bone 1311 #> 2623 38.3 4 1858 1858-04-02 06:00:00 blood 1312 #> 2624 38.3 4 1858 1858-04-02 06:00:00 bone 1312 #> 2625 41.4 5 1858 1858-05-02 16:00:00 blood 1313 #> 2626 41.4 5 1858 1858-05-02 16:00:00 bone 1313 #> 2627 44.5 6 1858 1858-06-02 02:00:01 blood 1314 #> 2628 44.5 6 1858 1858-06-02 02:00:01 bone 1314 #> 2629 56.7 7 1858 1858-07-02 12:00:00 blood 1315 #> 2630 56.7 7 1858 1858-07-02 12:00:00 bone 1315 #> 2631 55.3 8 1858 1858-08-01 22:00:00 blood 1316 #> 2632 55.3 8 1858 1858-08-01 22:00:00 bone 1316 #> 2633 80.1 9 1858 1858-09-01 08:00:01 blood 1317 #> 2634 80.1 9 1858 1858-09-01 08:00:01 bone 1317 #> 2635 91.2 10 1858 1858-10-01 18:00:00 blood 1318 #> 2636 91.2 10 1858 1858-10-01 18:00:00 bone 1318 #> 2637 51.9 11 1858 1858-11-01 04:00:00 blood 1319 #> 2638 51.9 11 1858 1858-11-01 04:00:00 bone 1319 #> 2639 66.9 12 1858 1858-12-01 14:00:01 blood 1320 #> 2640 66.9 12 1858 1858-12-01 14:00:01 bone 1320 #> 2641 83.7 1 1859 1859-01-01 00:00:00 blood 1321 #> 2642 83.7 1 1859 1859-01-01 00:00:00 bone 1321 #> 2643 87.6 2 1859 1859-01-31 10:00:00 blood 1322 #> 2644 87.6 2 1859 1859-01-31 10:00:00 bone 1322 #> 2645 90.3 3 1859 1859-03-02 20:00:01 blood 1323 #> 2646 90.3 3 1859 1859-03-02 20:00:01 bone 1323 #> 2647 85.7 4 1859 1859-04-02 06:00:00 blood 1324 #> 2648 85.7 4 1859 1859-04-02 06:00:00 bone 1324 #> 2649 91.0 5 1859 1859-05-02 16:00:00 blood 1325 #> 2650 91.0 5 1859 1859-05-02 16:00:00 bone 1325 #> 2651 87.1 6 1859 1859-06-02 02:00:01 blood 1326 #> 2652 87.1 6 1859 1859-06-02 02:00:01 bone 1326 #> 2653 95.2 7 1859 1859-07-02 12:00:00 blood 1327 #> 2654 95.2 7 1859 1859-07-02 12:00:00 bone 1327 #> 2655 106.8 8 1859 1859-08-01 22:00:00 blood 1328 #> 2656 106.8 8 1859 1859-08-01 22:00:00 bone 1328 #> 2657 105.8 9 1859 1859-09-01 08:00:01 blood 1329 #> 2658 105.8 9 1859 1859-09-01 08:00:01 bone 1329 #> 2659 114.6 10 1859 1859-10-01 18:00:00 blood 1330 #> 2660 114.6 10 1859 1859-10-01 18:00:00 bone 1330 #> 2661 97.2 11 1859 1859-11-01 04:00:00 blood 1331 #> 2662 97.2 11 1859 1859-11-01 04:00:00 bone 1331 #> 2663 81.0 12 1859 1859-12-01 14:00:01 blood 1332 #> 2664 81.0 12 1859 1859-12-01 14:00:01 bone 1332 #> 2665 81.5 1 1860 1860-01-01 00:00:00 blood 1333 #> 2666 81.5 1 1860 1860-01-01 00:00:00 bone 1333 #> 2667 88.0 2 1860 1860-01-31 12:00:01 blood 1334 #> 2668 88.0 2 1860 1860-01-31 12:00:01 bone 1334 #> 2669 98.9 3 1860 1860-03-02 00:00:01 blood 1335 #> 2670 98.9 3 1860 1860-03-02 00:00:01 bone 1335 #> 2671 71.4 4 1860 1860-04-01 12:00:00 blood 1336 #> 2672 71.4 4 1860 1860-04-01 12:00:00 bone 1336 #> 2673 107.1 5 1860 1860-05-02 00:00:01 blood 1337 #> 2674 107.1 5 1860 1860-05-02 00:00:01 bone 1337 #> 2675 108.6 6 1860 1860-06-01 12:00:01 blood 1338 #> 2676 108.6 6 1860 1860-06-01 12:00:01 bone 1338 #> 2677 116.7 7 1860 1860-07-02 00:00:00 blood 1339 #> 2678 116.7 7 1860 1860-07-02 00:00:00 bone 1339 #> 2679 100.3 8 1860 1860-08-01 12:00:01 blood 1340 #> 2680 100.3 8 1860 1860-08-01 12:00:01 bone 1340 #> 2681 92.2 9 1860 1860-09-01 00:00:01 blood 1341 #> 2682 92.2 9 1860 1860-09-01 00:00:01 bone 1341 #> 2683 90.1 10 1860 1860-10-01 12:00:00 blood 1342 #> 2684 90.1 10 1860 1860-10-01 12:00:00 bone 1342 #> 2685 97.9 11 1860 1860-11-01 00:00:01 blood 1343 #> 2686 97.9 11 1860 1860-11-01 00:00:01 bone 1343 #> 2687 95.6 12 1860 1860-12-01 12:00:01 blood 1344 #> 2688 95.6 12 1860 1860-12-01 12:00:01 bone 1344 #> 2689 62.3 1 1861 1861-01-01 00:00:00 blood 1345 #> 2690 62.3 1 1861 1861-01-01 00:00:00 bone 1345 #> 2691 77.8 2 1861 1861-01-31 10:00:01 blood 1346 #> 2692 77.8 2 1861 1861-01-31 10:00:01 bone 1346 #> 2693 101.0 3 1861 1861-03-02 20:00:01 blood 1347 #> 2694 101.0 3 1861 1861-03-02 20:00:01 bone 1347 #> 2695 98.5 4 1861 1861-04-02 06:00:00 blood 1348 #> 2696 98.5 4 1861 1861-04-02 06:00:00 bone 1348 #> 2697 56.8 5 1861 1861-05-02 16:00:01 blood 1349 #> 2698 56.8 5 1861 1861-05-02 16:00:01 bone 1349 #> 2699 87.8 6 1861 1861-06-02 02:00:01 blood 1350 #> 2700 87.8 6 1861 1861-06-02 02:00:01 bone 1350 #> 2701 78.0 7 1861 1861-07-02 12:00:00 blood 1351 #> 2702 78.0 7 1861 1861-07-02 12:00:00 bone 1351 #> 2703 82.5 8 1861 1861-08-01 22:00:01 blood 1352 #> 2704 82.5 8 1861 1861-08-01 22:00:01 bone 1352 #> 2705 79.9 9 1861 1861-09-01 08:00:01 blood 1353 #> 2706 79.9 9 1861 1861-09-01 08:00:01 bone 1353 #> 2707 67.2 10 1861 1861-10-01 18:00:00 blood 1354 #> 2708 67.2 10 1861 1861-10-01 18:00:00 bone 1354 #> 2709 53.7 11 1861 1861-11-01 04:00:01 blood 1355 #> 2710 53.7 11 1861 1861-11-01 04:00:01 bone 1355 #> 2711 80.5 12 1861 1861-12-01 14:00:01 blood 1356 #> 2712 80.5 12 1861 1861-12-01 14:00:01 bone 1356 #> 2713 63.1 1 1862 1862-01-01 00:00:00 blood 1357 #> 2714 63.1 1 1862 1862-01-01 00:00:00 bone 1357 #> 2715 64.5 2 1862 1862-01-31 10:00:01 blood 1358 #> 2716 64.5 2 1862 1862-01-31 10:00:01 bone 1358 #> 2717 43.6 3 1862 1862-03-02 20:00:01 blood 1359 #> 2718 43.6 3 1862 1862-03-02 20:00:01 bone 1359 #> 2719 53.7 4 1862 1862-04-02 06:00:00 blood 1360 #> 2720 53.7 4 1862 1862-04-02 06:00:00 bone 1360 #> 2721 64.4 5 1862 1862-05-02 16:00:01 blood 1361 #> 2722 64.4 5 1862 1862-05-02 16:00:01 bone 1361 #> 2723 84.0 6 1862 1862-06-02 02:00:01 blood 1362 #> 2724 84.0 6 1862 1862-06-02 02:00:01 bone 1362 #> 2725 73.4 7 1862 1862-07-02 12:00:00 blood 1363 #> 2726 73.4 7 1862 1862-07-02 12:00:00 bone 1363 #> 2727 62.5 8 1862 1862-08-01 22:00:01 blood 1364 #> 2728 62.5 8 1862 1862-08-01 22:00:01 bone 1364 #> 2729 66.6 9 1862 1862-09-01 08:00:01 blood 1365 #> 2730 66.6 9 1862 1862-09-01 08:00:01 bone 1365 #> 2731 42.0 10 1862 1862-10-01 18:00:00 blood 1366 #> 2732 42.0 10 1862 1862-10-01 18:00:00 bone 1366 #> 2733 50.6 11 1862 1862-11-01 04:00:01 blood 1367 #> 2734 50.6 11 1862 1862-11-01 04:00:01 bone 1367 #> 2735 40.9 12 1862 1862-12-01 14:00:01 blood 1368 #> 2736 40.9 12 1862 1862-12-01 14:00:01 bone 1368 #> 2737 48.3 1 1863 1863-01-01 00:00:00 blood 1369 #> 2738 48.3 1 1863 1863-01-01 00:00:00 bone 1369 #> 2739 56.7 2 1863 1863-01-31 10:00:01 blood 1370 #> 2740 56.7 2 1863 1863-01-31 10:00:01 bone 1370 #> 2741 66.4 3 1863 1863-03-02 20:00:01 blood 1371 #> 2742 66.4 3 1863 1863-03-02 20:00:01 bone 1371 #> 2743 40.6 4 1863 1863-04-02 06:00:00 blood 1372 #> 2744 40.6 4 1863 1863-04-02 06:00:00 bone 1372 #> 2745 53.8 5 1863 1863-05-02 16:00:01 blood 1373 #> 2746 53.8 5 1863 1863-05-02 16:00:01 bone 1373 #> 2747 40.8 6 1863 1863-06-02 02:00:01 blood 1374 #> 2748 40.8 6 1863 1863-06-02 02:00:01 bone 1374 #> 2749 32.7 7 1863 1863-07-02 12:00:00 blood 1375 #> 2750 32.7 7 1863 1863-07-02 12:00:00 bone 1375 #> 2751 48.1 8 1863 1863-08-01 22:00:01 blood 1376 #> 2752 48.1 8 1863 1863-08-01 22:00:01 bone 1376 #> 2753 22.0 9 1863 1863-09-01 08:00:01 blood 1377 #> 2754 22.0 9 1863 1863-09-01 08:00:01 bone 1377 #> 2755 39.9 10 1863 1863-10-01 18:00:00 blood 1378 #> 2756 39.9 10 1863 1863-10-01 18:00:00 bone 1378 #> 2757 37.7 11 1863 1863-11-01 04:00:01 blood 1379 #> 2758 37.7 11 1863 1863-11-01 04:00:01 bone 1379 #> 2759 41.2 12 1863 1863-12-01 14:00:01 blood 1380 #> 2760 41.2 12 1863 1863-12-01 14:00:01 bone 1380 #> 2761 57.7 1 1864 1864-01-01 00:00:00 blood 1381 #> 2762 57.7 1 1864 1864-01-01 00:00:00 bone 1381 #> 2763 47.1 2 1864 1864-01-31 12:00:01 blood 1382 #> 2764 47.1 2 1864 1864-01-31 12:00:01 bone 1382 #> 2765 66.3 3 1864 1864-03-02 00:00:01 blood 1383 #> 2766 66.3 3 1864 1864-03-02 00:00:01 bone 1383 #> 2767 35.8 4 1864 1864-04-01 12:00:00 blood 1384 #> 2768 35.8 4 1864 1864-04-01 12:00:00 bone 1384 #> 2769 40.6 5 1864 1864-05-02 00:00:01 blood 1385 #> 2770 40.6 5 1864 1864-05-02 00:00:01 bone 1385 #> 2771 57.8 6 1864 1864-06-01 12:00:01 blood 1386 #> 2772 57.8 6 1864 1864-06-01 12:00:01 bone 1386 #> 2773 54.7 7 1864 1864-07-02 00:00:00 blood 1387 #> 2774 54.7 7 1864 1864-07-02 00:00:00 bone 1387 #> 2775 54.8 8 1864 1864-08-01 12:00:01 blood 1388 #> 2776 54.8 8 1864 1864-08-01 12:00:01 bone 1388 #> 2777 28.5 9 1864 1864-09-01 00:00:01 blood 1389 #> 2778 28.5 9 1864 1864-09-01 00:00:01 bone 1389 #> 2779 33.9 10 1864 1864-10-01 12:00:00 blood 1390 #> 2780 33.9 10 1864 1864-10-01 12:00:00 bone 1390 #> 2781 57.6 11 1864 1864-11-01 00:00:01 blood 1391 #> 2782 57.6 11 1864 1864-11-01 00:00:01 bone 1391 #> 2783 28.6 12 1864 1864-12-01 12:00:01 blood 1392 #> 2784 28.6 12 1864 1864-12-01 12:00:01 bone 1392 #> 2785 48.7 1 1865 1865-01-01 00:00:00 blood 1393 #> 2786 48.7 1 1865 1865-01-01 00:00:00 bone 1393 #> 2787 39.3 2 1865 1865-01-31 10:00:01 blood 1394 #> 2788 39.3 2 1865 1865-01-31 10:00:01 bone 1394 #> 2789 39.5 3 1865 1865-03-02 20:00:01 blood 1395 #> 2790 39.5 3 1865 1865-03-02 20:00:01 bone 1395 #> 2791 29.4 4 1865 1865-04-02 06:00:00 blood 1396 #> 2792 29.4 4 1865 1865-04-02 06:00:00 bone 1396 #> 2793 34.5 5 1865 1865-05-02 16:00:01 blood 1397 #> 2794 34.5 5 1865 1865-05-02 16:00:01 bone 1397 #> 2795 33.6 6 1865 1865-06-02 02:00:01 blood 1398 #> 2796 33.6 6 1865 1865-06-02 02:00:01 bone 1398 #> 2797 26.8 7 1865 1865-07-02 12:00:00 blood 1399 #> 2798 26.8 7 1865 1865-07-02 12:00:00 bone 1399 #> 2799 37.8 8 1865 1865-08-01 22:00:01 blood 1400 #> 2800 37.8 8 1865 1865-08-01 22:00:01 bone 1400 #> 2801 21.6 9 1865 1865-09-01 08:00:01 blood 1401 #> 2802 21.6 9 1865 1865-09-01 08:00:01 bone 1401 #> 2803 17.1 10 1865 1865-10-01 18:00:00 blood 1402 #> 2804 17.1 10 1865 1865-10-01 18:00:00 bone 1402 #> 2805 24.6 11 1865 1865-11-01 04:00:01 blood 1403 #> 2806 24.6 11 1865 1865-11-01 04:00:01 bone 1403 #> 2807 12.8 12 1865 1865-12-01 14:00:01 blood 1404 #> 2808 12.8 12 1865 1865-12-01 14:00:01 bone 1404 #> 2809 31.6 1 1866 1866-01-01 00:00:00 blood 1405 #> 2810 31.6 1 1866 1866-01-01 00:00:00 bone 1405 #> 2811 38.4 2 1866 1866-01-31 10:00:01 blood 1406 #> 2812 38.4 2 1866 1866-01-31 10:00:01 bone 1406 #> 2813 24.6 3 1866 1866-03-02 20:00:01 blood 1407 #> 2814 24.6 3 1866 1866-03-02 20:00:01 bone 1407 #> 2815 17.6 4 1866 1866-04-02 06:00:00 blood 1408 #> 2816 17.6 4 1866 1866-04-02 06:00:00 bone 1408 #> 2817 12.9 5 1866 1866-05-02 16:00:01 blood 1409 #> 2818 12.9 5 1866 1866-05-02 16:00:01 bone 1409 #> 2819 16.5 6 1866 1866-06-02 02:00:01 blood 1410 #> 2820 16.5 6 1866 1866-06-02 02:00:01 bone 1410 #> 2821 9.3 7 1866 1866-07-02 12:00:00 blood 1411 #> 2822 9.3 7 1866 1866-07-02 12:00:00 bone 1411 #> 2823 12.7 8 1866 1866-08-01 22:00:01 blood 1412 #> 2824 12.7 8 1866 1866-08-01 22:00:01 bone 1412 #> 2825 7.3 9 1866 1866-09-01 08:00:01 blood 1413 #> 2826 7.3 9 1866 1866-09-01 08:00:01 bone 1413 #> 2827 14.1 10 1866 1866-10-01 18:00:00 blood 1414 #> 2828 14.1 10 1866 1866-10-01 18:00:00 bone 1414 #> 2829 9.0 11 1866 1866-11-01 04:00:01 blood 1415 #> 2830 9.0 11 1866 1866-11-01 04:00:01 bone 1415 #> 2831 1.5 12 1866 1866-12-01 14:00:01 blood 1416 #> 2832 1.5 12 1866 1866-12-01 14:00:01 bone 1416 #> 2833 0.0 1 1867 1867-01-01 00:00:00 blood 1417 #> 2834 0.0 1 1867 1867-01-01 00:00:00 bone 1417 #> 2835 0.7 2 1867 1867-01-31 10:00:01 blood 1418 #> 2836 0.7 2 1867 1867-01-31 10:00:01 bone 1418 #> 2837 9.2 3 1867 1867-03-02 20:00:01 blood 1419 #> 2838 9.2 3 1867 1867-03-02 20:00:01 bone 1419 #> 2839 5.1 4 1867 1867-04-02 06:00:00 blood 1420 #> 2840 5.1 4 1867 1867-04-02 06:00:00 bone 1420 #> 2841 2.9 5 1867 1867-05-02 16:00:01 blood 1421 #> 2842 2.9 5 1867 1867-05-02 16:00:01 bone 1421 #> 2843 1.5 6 1867 1867-06-02 02:00:01 blood 1422 #> 2844 1.5 6 1867 1867-06-02 02:00:01 bone 1422 #> 2845 5.0 7 1867 1867-07-02 12:00:00 blood 1423 #> 2846 5.0 7 1867 1867-07-02 12:00:00 bone 1423 #> 2847 4.9 8 1867 1867-08-01 22:00:01 blood 1424 #> 2848 4.9 8 1867 1867-08-01 22:00:01 bone 1424 #> 2849 9.8 9 1867 1867-09-01 08:00:01 blood 1425 #> 2850 9.8 9 1867 1867-09-01 08:00:01 bone 1425 #> 2851 13.5 10 1867 1867-10-01 18:00:00 blood 1426 #> 2852 13.5 10 1867 1867-10-01 18:00:00 bone 1426 #> 2853 9.3 11 1867 1867-11-01 04:00:01 blood 1427 #> 2854 9.3 11 1867 1867-11-01 04:00:01 bone 1427 #> 2855 25.2 12 1867 1867-12-01 14:00:01 blood 1428 #> 2856 25.2 12 1867 1867-12-01 14:00:01 bone 1428 #> 2857 15.6 1 1868 1868-01-01 00:00:00 blood 1429 #> 2858 15.6 1 1868 1868-01-01 00:00:00 bone 1429 #> 2859 15.8 2 1868 1868-01-31 12:00:01 blood 1430 #> 2860 15.8 2 1868 1868-01-31 12:00:01 bone 1430 #> 2861 26.5 3 1868 1868-03-02 00:00:01 blood 1431 #> 2862 26.5 3 1868 1868-03-02 00:00:01 bone 1431 #> 2863 36.6 4 1868 1868-04-01 12:00:00 blood 1432 #> 2864 36.6 4 1868 1868-04-01 12:00:00 bone 1432 #> 2865 26.7 5 1868 1868-05-02 00:00:01 blood 1433 #> 2866 26.7 5 1868 1868-05-02 00:00:01 bone 1433 #> 2867 31.1 6 1868 1868-06-01 12:00:01 blood 1434 #> 2868 31.1 6 1868 1868-06-01 12:00:01 bone 1434 #> 2869 28.6 7 1868 1868-07-02 00:00:00 blood 1435 #> 2870 28.6 7 1868 1868-07-02 00:00:00 bone 1435 #> 2871 34.4 8 1868 1868-08-01 12:00:01 blood 1436 #> 2872 34.4 8 1868 1868-08-01 12:00:01 bone 1436 #> 2873 43.8 9 1868 1868-09-01 00:00:01 blood 1437 #> 2874 43.8 9 1868 1868-09-01 00:00:01 bone 1437 #> 2875 61.7 10 1868 1868-10-01 12:00:00 blood 1438 #> 2876 61.7 10 1868 1868-10-01 12:00:00 bone 1438 #> 2877 59.1 11 1868 1868-11-01 00:00:01 blood 1439 #> 2878 59.1 11 1868 1868-11-01 00:00:01 bone 1439 #> 2879 67.6 12 1868 1868-12-01 12:00:01 blood 1440 #> 2880 67.6 12 1868 1868-12-01 12:00:01 bone 1440 #> 2881 60.9 1 1869 1869-01-01 00:00:00 blood 1441 #> 2882 60.9 1 1869 1869-01-01 00:00:00 bone 1441 #> 2883 59.3 2 1869 1869-01-31 10:00:01 blood 1442 #> 2884 59.3 2 1869 1869-01-31 10:00:01 bone 1442 #> 2885 52.7 3 1869 1869-03-02 20:00:01 blood 1443 #> 2886 52.7 3 1869 1869-03-02 20:00:01 bone 1443 #> 2887 41.0 4 1869 1869-04-02 06:00:00 blood 1444 #> 2888 41.0 4 1869 1869-04-02 06:00:00 bone 1444 #> 2889 104.0 5 1869 1869-05-02 16:00:01 blood 1445 #> 2890 104.0 5 1869 1869-05-02 16:00:01 bone 1445 #> 2891 108.4 6 1869 1869-06-02 02:00:01 blood 1446 #> 2892 108.4 6 1869 1869-06-02 02:00:01 bone 1446 #> 2893 59.2 7 1869 1869-07-02 12:00:00 blood 1447 #> 2894 59.2 7 1869 1869-07-02 12:00:00 bone 1447 #> 2895 79.6 8 1869 1869-08-01 22:00:01 blood 1448 #> 2896 79.6 8 1869 1869-08-01 22:00:01 bone 1448 #> 2897 80.6 9 1869 1869-09-01 08:00:01 blood 1449 #> 2898 80.6 9 1869 1869-09-01 08:00:01 bone 1449 #> 2899 59.4 10 1869 1869-10-01 18:00:00 blood 1450 #> 2900 59.4 10 1869 1869-10-01 18:00:00 bone 1450 #> 2901 77.4 11 1869 1869-11-01 04:00:01 blood 1451 #> 2902 77.4 11 1869 1869-11-01 04:00:01 bone 1451 #> 2903 104.3 12 1869 1869-12-01 14:00:01 blood 1452 #> 2904 104.3 12 1869 1869-12-01 14:00:01 bone 1452 #> 2905 77.3 1 1870 1870-01-01 00:00:00 blood 1453 #> 2906 77.3 1 1870 1870-01-01 00:00:00 bone 1453 #> 2907 114.9 2 1870 1870-01-31 10:00:01 blood 1454 #> 2908 114.9 2 1870 1870-01-31 10:00:01 bone 1454 #> 2909 159.4 3 1870 1870-03-02 20:00:01 blood 1455 #> 2910 159.4 3 1870 1870-03-02 20:00:01 bone 1455 #> 2911 160.0 4 1870 1870-04-02 06:00:00 blood 1456 #> 2912 160.0 4 1870 1870-04-02 06:00:00 bone 1456 #> 2913 176.0 5 1870 1870-05-02 16:00:01 blood 1457 #> 2914 176.0 5 1870 1870-05-02 16:00:01 bone 1457 #> 2915 135.6 6 1870 1870-06-02 02:00:01 blood 1458 #> 2916 135.6 6 1870 1870-06-02 02:00:01 bone 1458 #> 2917 132.4 7 1870 1870-07-02 12:00:00 blood 1459 #> 2918 132.4 7 1870 1870-07-02 12:00:00 bone 1459 #> 2919 153.8 8 1870 1870-08-01 22:00:01 blood 1460 #> 2920 153.8 8 1870 1870-08-01 22:00:01 bone 1460 #> 2921 136.0 9 1870 1870-09-01 08:00:01 blood 1461 #> 2922 136.0 9 1870 1870-09-01 08:00:01 bone 1461 #> 2923 146.4 10 1870 1870-10-01 18:00:00 blood 1462 #> 2924 146.4 10 1870 1870-10-01 18:00:00 bone 1462 #> 2925 147.5 11 1870 1870-11-01 04:00:01 blood 1463 #> 2926 147.5 11 1870 1870-11-01 04:00:01 bone 1463 #> 2927 130.0 12 1870 1870-12-01 14:00:01 blood 1464 #> 2928 130.0 12 1870 1870-12-01 14:00:01 bone 1464 #> 2929 88.3 1 1871 1871-01-01 00:00:00 blood 1465 #> 2930 88.3 1 1871 1871-01-01 00:00:00 bone 1465 #> 2931 125.3 2 1871 1871-01-31 10:00:01 blood 1466 #> 2932 125.3 2 1871 1871-01-31 10:00:01 bone 1466 #> 2933 143.2 3 1871 1871-03-02 20:00:01 blood 1467 #> 2934 143.2 3 1871 1871-03-02 20:00:01 bone 1467 #> 2935 162.4 4 1871 1871-04-02 06:00:00 blood 1468 #> 2936 162.4 4 1871 1871-04-02 06:00:00 bone 1468 #> 2937 145.5 5 1871 1871-05-02 16:00:01 blood 1469 #> 2938 145.5 5 1871 1871-05-02 16:00:01 bone 1469 #> 2939 91.7 6 1871 1871-06-02 02:00:01 blood 1470 #> 2940 91.7 6 1871 1871-06-02 02:00:01 bone 1470 #> 2941 103.0 7 1871 1871-07-02 12:00:00 blood 1471 #> 2942 103.0 7 1871 1871-07-02 12:00:00 bone 1471 #> 2943 110.0 8 1871 1871-08-01 22:00:01 blood 1472 #> 2944 110.0 8 1871 1871-08-01 22:00:01 bone 1472 #> 2945 80.3 9 1871 1871-09-01 08:00:01 blood 1473 #> 2946 80.3 9 1871 1871-09-01 08:00:01 bone 1473 #> 2947 89.0 10 1871 1871-10-01 18:00:00 blood 1474 #> 2948 89.0 10 1871 1871-10-01 18:00:00 bone 1474 #> 2949 105.4 11 1871 1871-11-01 04:00:01 blood 1475 #> 2950 105.4 11 1871 1871-11-01 04:00:01 bone 1475 #> 2951 90.3 12 1871 1871-12-01 14:00:01 blood 1476 #> 2952 90.3 12 1871 1871-12-01 14:00:01 bone 1476 #> 2953 79.5 1 1872 1872-01-01 00:00:00 blood 1477 #> 2954 79.5 1 1872 1872-01-01 00:00:00 bone 1477 #> 2955 120.1 2 1872 1872-01-31 12:00:01 blood 1478 #> 2956 120.1 2 1872 1872-01-31 12:00:01 bone 1478 #> 2957 88.4 3 1872 1872-03-02 00:00:01 blood 1479 #> 2958 88.4 3 1872 1872-03-02 00:00:01 bone 1479 #> 2959 102.1 4 1872 1872-04-01 12:00:00 blood 1480 #> 2960 102.1 4 1872 1872-04-01 12:00:00 bone 1480 #> 2961 107.6 5 1872 1872-05-02 00:00:01 blood 1481 #> 2962 107.6 5 1872 1872-05-02 00:00:01 bone 1481 #> 2963 109.9 6 1872 1872-06-01 12:00:01 blood 1482 #> 2964 109.9 6 1872 1872-06-01 12:00:01 bone 1482 #> 2965 105.5 7 1872 1872-07-02 00:00:00 blood 1483 #> 2966 105.5 7 1872 1872-07-02 00:00:00 bone 1483 #> 2967 92.9 8 1872 1872-08-01 12:00:01 blood 1484 #> 2968 92.9 8 1872 1872-08-01 12:00:01 bone 1484 #> 2969 114.6 9 1872 1872-09-01 00:00:01 blood 1485 #> 2970 114.6 9 1872 1872-09-01 00:00:01 bone 1485 #> 2971 103.5 10 1872 1872-10-01 12:00:00 blood 1486 #> 2972 103.5 10 1872 1872-10-01 12:00:00 bone 1486 #> 2973 112.0 11 1872 1872-11-01 00:00:01 blood 1487 #> 2974 112.0 11 1872 1872-11-01 00:00:01 bone 1487 #> 2975 83.9 12 1872 1872-12-01 12:00:01 blood 1488 #> 2976 83.9 12 1872 1872-12-01 12:00:01 bone 1488 #> 2977 86.7 1 1873 1873-01-01 00:00:00 blood 1489 #> 2978 86.7 1 1873 1873-01-01 00:00:00 bone 1489 #> 2979 107.0 2 1873 1873-01-31 10:00:01 blood 1490 #> 2980 107.0 2 1873 1873-01-31 10:00:01 bone 1490 #> 2981 98.3 3 1873 1873-03-02 20:00:01 blood 1491 #> 2982 98.3 3 1873 1873-03-02 20:00:01 bone 1491 #> 2983 76.2 4 1873 1873-04-02 06:00:00 blood 1492 #> 2984 76.2 4 1873 1873-04-02 06:00:00 bone 1492 #> 2985 47.9 5 1873 1873-05-02 16:00:01 blood 1493 #> 2986 47.9 5 1873 1873-05-02 16:00:01 bone 1493 #> 2987 44.8 6 1873 1873-06-02 02:00:01 blood 1494 #> 2988 44.8 6 1873 1873-06-02 02:00:01 bone 1494 #> 2989 66.9 7 1873 1873-07-02 12:00:00 blood 1495 #> 2990 66.9 7 1873 1873-07-02 12:00:00 bone 1495 #> 2991 68.2 8 1873 1873-08-01 22:00:01 blood 1496 #> 2992 68.2 8 1873 1873-08-01 22:00:01 bone 1496 #> 2993 47.5 9 1873 1873-09-01 08:00:01 blood 1497 #> 2994 47.5 9 1873 1873-09-01 08:00:01 bone 1497 #> 2995 47.4 10 1873 1873-10-01 18:00:00 blood 1498 #> 2996 47.4 10 1873 1873-10-01 18:00:00 bone 1498 #> 2997 55.4 11 1873 1873-11-01 04:00:01 blood 1499 #> 2998 55.4 11 1873 1873-11-01 04:00:01 bone 1499 #> 2999 49.2 12 1873 1873-12-01 14:00:01 blood 1500 #> 3000 49.2 12 1873 1873-12-01 14:00:01 bone 1500 #> 3001 60.8 1 1874 1874-01-01 00:00:00 blood 1501 #> 3002 60.8 1 1874 1874-01-01 00:00:00 bone 1501 #> 3003 64.2 2 1874 1874-01-31 10:00:01 blood 1502 #> 3004 64.2 2 1874 1874-01-31 10:00:01 bone 1502 #> 3005 46.4 3 1874 1874-03-02 20:00:01 blood 1503 #> 3006 46.4 3 1874 1874-03-02 20:00:01 bone 1503 #> 3007 32.0 4 1874 1874-04-02 06:00:00 blood 1504 #> 3008 32.0 4 1874 1874-04-02 06:00:00 bone 1504 #> 3009 44.6 5 1874 1874-05-02 16:00:01 blood 1505 #> 3010 44.6 5 1874 1874-05-02 16:00:01 bone 1505 #> 3011 38.2 6 1874 1874-06-02 02:00:01 blood 1506 #> 3012 38.2 6 1874 1874-06-02 02:00:01 bone 1506 #> 3013 67.8 7 1874 1874-07-02 12:00:00 blood 1507 #> 3014 67.8 7 1874 1874-07-02 12:00:00 bone 1507 #> 3015 61.3 8 1874 1874-08-01 22:00:01 blood 1508 #> 3016 61.3 8 1874 1874-08-01 22:00:01 bone 1508 #> 3017 28.0 9 1874 1874-09-01 08:00:01 blood 1509 #> 3018 28.0 9 1874 1874-09-01 08:00:01 bone 1509 #> 3019 34.3 10 1874 1874-10-01 18:00:00 blood 1510 #> 3020 34.3 10 1874 1874-10-01 18:00:00 bone 1510 #> 3021 28.9 11 1874 1874-11-01 04:00:01 blood 1511 #> 3022 28.9 11 1874 1874-11-01 04:00:01 bone 1511 #> 3023 29.3 12 1874 1874-12-01 14:00:01 blood 1512 #> 3024 29.3 12 1874 1874-12-01 14:00:01 bone 1512 #> 3025 14.6 1 1875 1875-01-01 00:00:00 blood 1513 #> 3026 14.6 1 1875 1875-01-01 00:00:00 bone 1513 #> 3027 22.2 2 1875 1875-01-31 10:00:01 blood 1514 #> 3028 22.2 2 1875 1875-01-31 10:00:01 bone 1514 #> 3029 33.8 3 1875 1875-03-02 20:00:01 blood 1515 #> 3030 33.8 3 1875 1875-03-02 20:00:01 bone 1515 #> 3031 29.1 4 1875 1875-04-02 06:00:00 blood 1516 #> 3032 29.1 4 1875 1875-04-02 06:00:00 bone 1516 #> 3033 11.5 5 1875 1875-05-02 16:00:01 blood 1517 #> 3034 11.5 5 1875 1875-05-02 16:00:01 bone 1517 #> 3035 23.9 6 1875 1875-06-02 02:00:01 blood 1518 #> 3036 23.9 6 1875 1875-06-02 02:00:01 bone 1518 #> 3037 12.5 7 1875 1875-07-02 12:00:00 blood 1519 #> 3038 12.5 7 1875 1875-07-02 12:00:00 bone 1519 #> 3039 14.6 8 1875 1875-08-01 22:00:01 blood 1520 #> 3040 14.6 8 1875 1875-08-01 22:00:01 bone 1520 #> 3041 2.4 9 1875 1875-09-01 08:00:01 blood 1521 #> 3042 2.4 9 1875 1875-09-01 08:00:01 bone 1521 #> 3043 12.7 10 1875 1875-10-01 18:00:00 blood 1522 #> 3044 12.7 10 1875 1875-10-01 18:00:00 bone 1522 #> 3045 17.7 11 1875 1875-11-01 04:00:01 blood 1523 #> 3046 17.7 11 1875 1875-11-01 04:00:01 bone 1523 #> 3047 9.9 12 1875 1875-12-01 14:00:01 blood 1524 #> 3048 9.9 12 1875 1875-12-01 14:00:01 bone 1524 #> 3049 14.3 1 1876 1876-01-01 00:00:00 blood 1525 #> 3050 14.3 1 1876 1876-01-01 00:00:00 bone 1525 #> 3051 15.0 2 1876 1876-01-31 12:00:01 blood 1526 #> 3052 15.0 2 1876 1876-01-31 12:00:01 bone 1526 #> 3053 31.2 3 1876 1876-03-02 00:00:01 blood 1527 #> 3054 31.2 3 1876 1876-03-02 00:00:01 bone 1527 #> 3055 2.3 4 1876 1876-04-01 12:00:00 blood 1528 #> 3056 2.3 4 1876 1876-04-01 12:00:00 bone 1528 #> 3057 5.1 5 1876 1876-05-02 00:00:01 blood 1529 #> 3058 5.1 5 1876 1876-05-02 00:00:01 bone 1529 #> 3059 1.6 6 1876 1876-06-01 12:00:01 blood 1530 #> 3060 1.6 6 1876 1876-06-01 12:00:01 bone 1530 #> 3061 15.2 7 1876 1876-07-02 00:00:00 blood 1531 #> 3062 15.2 7 1876 1876-07-02 00:00:00 bone 1531 #> 3063 8.8 8 1876 1876-08-01 12:00:01 blood 1532 #> 3064 8.8 8 1876 1876-08-01 12:00:01 bone 1532 #> 3065 9.9 9 1876 1876-09-01 00:00:01 blood 1533 #> 3066 9.9 9 1876 1876-09-01 00:00:01 bone 1533 #> 3067 14.3 10 1876 1876-10-01 12:00:00 blood 1534 #> 3068 14.3 10 1876 1876-10-01 12:00:00 bone 1534 #> 3069 9.9 11 1876 1876-11-01 00:00:01 blood 1535 #> 3070 9.9 11 1876 1876-11-01 00:00:01 bone 1535 #> 3071 8.2 12 1876 1876-12-01 12:00:01 blood 1536 #> 3072 8.2 12 1876 1876-12-01 12:00:01 bone 1536 #> 3073 24.4 1 1877 1877-01-01 00:00:00 blood 1537 #> 3074 24.4 1 1877 1877-01-01 00:00:00 bone 1537 #> 3075 8.7 2 1877 1877-01-31 10:00:01 blood 1538 #> 3076 8.7 2 1877 1877-01-31 10:00:01 bone 1538 #> 3077 11.7 3 1877 1877-03-02 20:00:01 blood 1539 #> 3078 11.7 3 1877 1877-03-02 20:00:01 bone 1539 #> 3079 15.8 4 1877 1877-04-02 06:00:00 blood 1540 #> 3080 15.8 4 1877 1877-04-02 06:00:00 bone 1540 #> 3081 21.2 5 1877 1877-05-02 16:00:01 blood 1541 #> 3082 21.2 5 1877 1877-05-02 16:00:01 bone 1541 #> 3083 13.4 6 1877 1877-06-02 02:00:01 blood 1542 #> 3084 13.4 6 1877 1877-06-02 02:00:01 bone 1542 #> 3085 5.9 7 1877 1877-07-02 12:00:00 blood 1543 #> 3086 5.9 7 1877 1877-07-02 12:00:00 bone 1543 #> 3087 6.3 8 1877 1877-08-01 22:00:01 blood 1544 #> 3088 6.3 8 1877 1877-08-01 22:00:01 bone 1544 #> 3089 16.4 9 1877 1877-09-01 08:00:01 blood 1545 #> 3090 16.4 9 1877 1877-09-01 08:00:01 bone 1545 #> 3091 6.7 10 1877 1877-10-01 18:00:00 blood 1546 #> 3092 6.7 10 1877 1877-10-01 18:00:00 bone 1546 #> 3093 14.5 11 1877 1877-11-01 04:00:01 blood 1547 #> 3094 14.5 11 1877 1877-11-01 04:00:01 bone 1547 #> 3095 2.3 12 1877 1877-12-01 14:00:01 blood 1548 #> 3096 2.3 12 1877 1877-12-01 14:00:01 bone 1548 #> 3097 3.3 1 1878 1878-01-01 00:00:00 blood 1549 #> 3098 3.3 1 1878 1878-01-01 00:00:00 bone 1549 #> 3099 6.0 2 1878 1878-01-31 10:00:01 blood 1550 #> 3100 6.0 2 1878 1878-01-31 10:00:01 bone 1550 #> 3101 7.8 3 1878 1878-03-02 20:00:01 blood 1551 #> 3102 7.8 3 1878 1878-03-02 20:00:01 bone 1551 #> 3103 0.1 4 1878 1878-04-02 06:00:00 blood 1552 #> 3104 0.1 4 1878 1878-04-02 06:00:00 bone 1552 #> 3105 5.8 5 1878 1878-05-02 16:00:01 blood 1553 #> 3106 5.8 5 1878 1878-05-02 16:00:01 bone 1553 #> 3107 6.4 6 1878 1878-06-02 02:00:01 blood 1554 #> 3108 6.4 6 1878 1878-06-02 02:00:01 bone 1554 #> 3109 0.1 7 1878 1878-07-02 12:00:00 blood 1555 #> 3110 0.1 7 1878 1878-07-02 12:00:00 bone 1555 #> 3111 0.0 8 1878 1878-08-01 22:00:01 blood 1556 #> 3112 0.0 8 1878 1878-08-01 22:00:01 bone 1556 #> 3113 5.3 9 1878 1878-09-01 08:00:01 blood 1557 #> 3114 5.3 9 1878 1878-09-01 08:00:01 bone 1557 #> 3115 1.1 10 1878 1878-10-01 18:00:00 blood 1558 #> 3116 1.1 10 1878 1878-10-01 18:00:00 bone 1558 #> 3117 4.1 11 1878 1878-11-01 04:00:01 blood 1559 #> 3118 4.1 11 1878 1878-11-01 04:00:01 bone 1559 #> 3119 0.5 12 1878 1878-12-01 14:00:01 blood 1560 #> 3120 0.5 12 1878 1878-12-01 14:00:01 bone 1560 #> 3121 0.8 1 1879 1879-01-01 00:00:00 blood 1561 #> 3122 0.8 1 1879 1879-01-01 00:00:00 bone 1561 #> 3123 0.6 2 1879 1879-01-31 10:00:01 blood 1562 #> 3124 0.6 2 1879 1879-01-31 10:00:01 bone 1562 #> 3125 0.0 3 1879 1879-03-02 20:00:01 blood 1563 #> 3126 0.0 3 1879 1879-03-02 20:00:01 bone 1563 #> 3127 6.2 4 1879 1879-04-02 06:00:00 blood 1564 #> 3128 6.2 4 1879 1879-04-02 06:00:00 bone 1564 #> 3129 2.4 5 1879 1879-05-02 16:00:01 blood 1565 #> 3130 2.4 5 1879 1879-05-02 16:00:01 bone 1565 #> 3131 4.8 6 1879 1879-06-02 02:00:01 blood 1566 #> 3132 4.8 6 1879 1879-06-02 02:00:01 bone 1566 #> 3133 7.5 7 1879 1879-07-02 12:00:00 blood 1567 #> 3134 7.5 7 1879 1879-07-02 12:00:00 bone 1567 #> 3135 10.7 8 1879 1879-08-01 22:00:01 blood 1568 #> 3136 10.7 8 1879 1879-08-01 22:00:01 bone 1568 #> 3137 6.1 9 1879 1879-09-01 08:00:01 blood 1569 #> 3138 6.1 9 1879 1879-09-01 08:00:01 bone 1569 #> 3139 12.3 10 1879 1879-10-01 18:00:00 blood 1570 #> 3140 12.3 10 1879 1879-10-01 18:00:00 bone 1570 #> 3141 12.9 11 1879 1879-11-01 04:00:01 blood 1571 #> 3142 12.9 11 1879 1879-11-01 04:00:01 bone 1571 #> 3143 7.2 12 1879 1879-12-01 14:00:01 blood 1572 #> 3144 7.2 12 1879 1879-12-01 14:00:01 bone 1572 #> 3145 24.0 1 1880 1880-01-01 00:00:00 blood 1573 #> 3146 24.0 1 1880 1880-01-01 00:00:00 bone 1573 #> 3147 27.5 2 1880 1880-01-31 12:00:01 blood 1574 #> 3148 27.5 2 1880 1880-01-31 12:00:01 bone 1574 #> 3149 19.5 3 1880 1880-03-02 00:00:01 blood 1575 #> 3150 19.5 3 1880 1880-03-02 00:00:01 bone 1575 #> 3151 19.3 4 1880 1880-04-01 12:00:00 blood 1576 #> 3152 19.3 4 1880 1880-04-01 12:00:00 bone 1576 #> 3153 23.5 5 1880 1880-05-02 00:00:01 blood 1577 #> 3154 23.5 5 1880 1880-05-02 00:00:01 bone 1577 #> 3155 34.1 6 1880 1880-06-01 12:00:01 blood 1578 #> 3156 34.1 6 1880 1880-06-01 12:00:01 bone 1578 #> 3157 21.9 7 1880 1880-07-02 00:00:00 blood 1579 #> 3158 21.9 7 1880 1880-07-02 00:00:00 bone 1579 #> 3159 48.1 8 1880 1880-08-01 12:00:01 blood 1580 #> 3160 48.1 8 1880 1880-08-01 12:00:01 bone 1580 #> 3161 66.0 9 1880 1880-09-01 00:00:01 blood 1581 #> 3162 66.0 9 1880 1880-09-01 00:00:01 bone 1581 #> 3163 43.0 10 1880 1880-10-01 12:00:00 blood 1582 #> 3164 43.0 10 1880 1880-10-01 12:00:00 bone 1582 #> 3165 30.7 11 1880 1880-11-01 00:00:01 blood 1583 #> 3166 30.7 11 1880 1880-11-01 00:00:01 bone 1583 #> 3167 29.6 12 1880 1880-12-01 12:00:01 blood 1584 #> 3168 29.6 12 1880 1880-12-01 12:00:01 bone 1584 #> 3169 36.4 1 1881 1881-01-01 00:00:00 blood 1585 #> 3170 36.4 1 1881 1881-01-01 00:00:00 bone 1585 #> 3171 53.2 2 1881 1881-01-31 10:00:01 blood 1586 #> 3172 53.2 2 1881 1881-01-31 10:00:01 bone 1586 #> 3173 51.5 3 1881 1881-03-02 20:00:01 blood 1587 #> 3174 51.5 3 1881 1881-03-02 20:00:01 bone 1587 #> 3175 51.7 4 1881 1881-04-02 06:00:00 blood 1588 #> 3176 51.7 4 1881 1881-04-02 06:00:00 bone 1588 #> 3177 43.5 5 1881 1881-05-02 16:00:01 blood 1589 #> 3178 43.5 5 1881 1881-05-02 16:00:01 bone 1589 #> 3179 60.5 6 1881 1881-06-02 02:00:01 blood 1590 #> 3180 60.5 6 1881 1881-06-02 02:00:01 bone 1590 #> 3181 76.9 7 1881 1881-07-02 12:00:00 blood 1591 #> 3182 76.9 7 1881 1881-07-02 12:00:00 bone 1591 #> 3183 58.0 8 1881 1881-08-01 22:00:01 blood 1592 #> 3184 58.0 8 1881 1881-08-01 22:00:01 bone 1592 #> 3185 53.2 9 1881 1881-09-01 08:00:01 blood 1593 #> 3186 53.2 9 1881 1881-09-01 08:00:01 bone 1593 #> 3187 64.0 10 1881 1881-10-01 18:00:00 blood 1594 #> 3188 64.0 10 1881 1881-10-01 18:00:00 bone 1594 #> 3189 54.8 11 1881 1881-11-01 04:00:01 blood 1595 #> 3190 54.8 11 1881 1881-11-01 04:00:01 bone 1595 #> 3191 47.3 12 1881 1881-12-01 14:00:01 blood 1596 #> 3192 47.3 12 1881 1881-12-01 14:00:01 bone 1596 #> 3193 45.0 1 1882 1882-01-01 00:00:00 blood 1597 #> 3194 45.0 1 1882 1882-01-01 00:00:00 bone 1597 #> 3195 69.3 2 1882 1882-01-31 10:00:01 blood 1598 #> 3196 69.3 2 1882 1882-01-31 10:00:01 bone 1598 #> 3197 67.5 3 1882 1882-03-02 20:00:01 blood 1599 #> 3198 67.5 3 1882 1882-03-02 20:00:01 bone 1599 #> 3199 95.8 4 1882 1882-04-02 06:00:00 blood 1600 #> 3200 95.8 4 1882 1882-04-02 06:00:00 bone 1600 #> 3201 64.1 5 1882 1882-05-02 16:00:01 blood 1601 #> 3202 64.1 5 1882 1882-05-02 16:00:01 bone 1601 #> 3203 45.2 6 1882 1882-06-02 02:00:01 blood 1602 #> 3204 45.2 6 1882 1882-06-02 02:00:01 bone 1602 #> 3205 45.4 7 1882 1882-07-02 12:00:00 blood 1603 #> 3206 45.4 7 1882 1882-07-02 12:00:00 bone 1603 #> 3207 40.4 8 1882 1882-08-01 22:00:01 blood 1604 #> 3208 40.4 8 1882 1882-08-01 22:00:01 bone 1604 #> 3209 57.7 9 1882 1882-09-01 08:00:01 blood 1605 #> 3210 57.7 9 1882 1882-09-01 08:00:01 bone 1605 #> 3211 59.2 10 1882 1882-10-01 18:00:00 blood 1606 #> 3212 59.2 10 1882 1882-10-01 18:00:00 bone 1606 #> 3213 84.4 11 1882 1882-11-01 04:00:01 blood 1607 #> 3214 84.4 11 1882 1882-11-01 04:00:01 bone 1607 #> 3215 41.8 12 1882 1882-12-01 14:00:01 blood 1608 #> 3216 41.8 12 1882 1882-12-01 14:00:01 bone 1608 #> 3217 60.6 1 1883 1883-01-01 00:00:00 blood 1609 #> 3218 60.6 1 1883 1883-01-01 00:00:00 bone 1609 #> 3219 46.9 2 1883 1883-01-31 10:00:01 blood 1610 #> 3220 46.9 2 1883 1883-01-31 10:00:01 bone 1610 #> 3221 42.8 3 1883 1883-03-02 20:00:01 blood 1611 #> 3222 42.8 3 1883 1883-03-02 20:00:01 bone 1611 #> 3223 82.1 4 1883 1883-04-02 06:00:00 blood 1612 #> 3224 82.1 4 1883 1883-04-02 06:00:00 bone 1612 #> 3225 32.1 5 1883 1883-05-02 16:00:01 blood 1613 #> 3226 32.1 5 1883 1883-05-02 16:00:01 bone 1613 #> 3227 76.5 6 1883 1883-06-02 02:00:01 blood 1614 #> 3228 76.5 6 1883 1883-06-02 02:00:01 bone 1614 #> 3229 80.6 7 1883 1883-07-02 12:00:00 blood 1615 #> 3230 80.6 7 1883 1883-07-02 12:00:00 bone 1615 #> 3231 46.0 8 1883 1883-08-01 22:00:01 blood 1616 #> 3232 46.0 8 1883 1883-08-01 22:00:01 bone 1616 #> 3233 52.6 9 1883 1883-09-01 08:00:01 blood 1617 #> 3234 52.6 9 1883 1883-09-01 08:00:01 bone 1617 #> 3235 83.8 10 1883 1883-10-01 18:00:00 blood 1618 #> 3236 83.8 10 1883 1883-10-01 18:00:00 bone 1618 #> 3237 84.5 11 1883 1883-11-01 04:00:01 blood 1619 #> 3238 84.5 11 1883 1883-11-01 04:00:01 bone 1619 #> 3239 75.9 12 1883 1883-12-01 14:00:01 blood 1620 #> 3240 75.9 12 1883 1883-12-01 14:00:01 bone 1620 #> 3241 91.5 1 1884 1884-01-01 00:00:00 blood 1621 #> 3242 91.5 1 1884 1884-01-01 00:00:00 bone 1621 #> 3243 86.9 2 1884 1884-01-31 12:00:01 blood 1622 #> 3244 86.9 2 1884 1884-01-31 12:00:01 bone 1622 #> 3245 86.8 3 1884 1884-03-02 00:00:01 blood 1623 #> 3246 86.8 3 1884 1884-03-02 00:00:01 bone 1623 #> 3247 76.1 4 1884 1884-04-01 12:00:00 blood 1624 #> 3248 76.1 4 1884 1884-04-01 12:00:00 bone 1624 #> 3249 66.5 5 1884 1884-05-02 00:00:01 blood 1625 #> 3250 66.5 5 1884 1884-05-02 00:00:01 bone 1625 #> 3251 51.2 6 1884 1884-06-01 12:00:01 blood 1626 #> 3252 51.2 6 1884 1884-06-01 12:00:01 bone 1626 #> 3253 53.1 7 1884 1884-07-02 00:00:00 blood 1627 #> 3254 53.1 7 1884 1884-07-02 00:00:00 bone 1627 #> 3255 55.8 8 1884 1884-08-01 12:00:01 blood 1628 #> 3256 55.8 8 1884 1884-08-01 12:00:01 bone 1628 #> 3257 61.9 9 1884 1884-09-01 00:00:01 blood 1629 #> 3258 61.9 9 1884 1884-09-01 00:00:01 bone 1629 #> 3259 47.8 10 1884 1884-10-01 12:00:00 blood 1630 #> 3260 47.8 10 1884 1884-10-01 12:00:00 bone 1630 #> 3261 36.6 11 1884 1884-11-01 00:00:01 blood 1631 #> 3262 36.6 11 1884 1884-11-01 00:00:01 bone 1631 #> 3263 47.2 12 1884 1884-12-01 12:00:01 blood 1632 #> 3264 47.2 12 1884 1884-12-01 12:00:01 bone 1632 #> 3265 42.8 1 1885 1885-01-01 00:00:00 blood 1633 #> 3266 42.8 1 1885 1885-01-01 00:00:00 bone 1633 #> 3267 71.8 2 1885 1885-01-31 10:00:01 blood 1634 #> 3268 71.8 2 1885 1885-01-31 10:00:01 bone 1634 #> 3269 49.8 3 1885 1885-03-02 20:00:01 blood 1635 #> 3270 49.8 3 1885 1885-03-02 20:00:01 bone 1635 #> 3271 55.0 4 1885 1885-04-02 06:00:00 blood 1636 #> 3272 55.0 4 1885 1885-04-02 06:00:00 bone 1636 #> 3273 73.0 5 1885 1885-05-02 16:00:01 blood 1637 #> 3274 73.0 5 1885 1885-05-02 16:00:01 bone 1637 #> 3275 83.7 6 1885 1885-06-02 02:00:01 blood 1638 #> 3276 83.7 6 1885 1885-06-02 02:00:01 bone 1638 #> 3277 66.5 7 1885 1885-07-02 12:00:00 blood 1639 #> 3278 66.5 7 1885 1885-07-02 12:00:00 bone 1639 #> 3279 50.0 8 1885 1885-08-01 22:00:01 blood 1640 #> 3280 50.0 8 1885 1885-08-01 22:00:01 bone 1640 #> 3281 39.6 9 1885 1885-09-01 08:00:01 blood 1641 #> 3282 39.6 9 1885 1885-09-01 08:00:01 bone 1641 #> 3283 38.7 10 1885 1885-10-01 18:00:00 blood 1642 #> 3284 38.7 10 1885 1885-10-01 18:00:00 bone 1642 #> 3285 33.3 11 1885 1885-11-01 04:00:01 blood 1643 #> 3286 33.3 11 1885 1885-11-01 04:00:01 bone 1643 #> 3287 21.7 12 1885 1885-12-01 14:00:01 blood 1644 #> 3288 21.7 12 1885 1885-12-01 14:00:01 bone 1644 #> 3289 29.9 1 1886 1886-01-01 00:00:00 blood 1645 #> 3290 29.9 1 1886 1886-01-01 00:00:00 bone 1645 #> 3291 25.9 2 1886 1886-01-31 10:00:01 blood 1646 #> 3292 25.9 2 1886 1886-01-31 10:00:01 bone 1646 #> 3293 57.3 3 1886 1886-03-02 20:00:01 blood 1647 #> 3294 57.3 3 1886 1886-03-02 20:00:01 bone 1647 #> 3295 43.7 4 1886 1886-04-02 06:00:00 blood 1648 #> 3296 43.7 4 1886 1886-04-02 06:00:00 bone 1648 #> 3297 30.7 5 1886 1886-05-02 16:00:01 blood 1649 #> 3298 30.7 5 1886 1886-05-02 16:00:01 bone 1649 #> 3299 27.1 6 1886 1886-06-02 02:00:01 blood 1650 #> 3300 27.1 6 1886 1886-06-02 02:00:01 bone 1650 #> 3301 30.3 7 1886 1886-07-02 12:00:00 blood 1651 #> 3302 30.3 7 1886 1886-07-02 12:00:00 bone 1651 #> 3303 16.9 8 1886 1886-08-01 22:00:01 blood 1652 #> 3304 16.9 8 1886 1886-08-01 22:00:01 bone 1652 #> 3305 21.4 9 1886 1886-09-01 08:00:01 blood 1653 #> 3306 21.4 9 1886 1886-09-01 08:00:01 bone 1653 #> 3307 8.6 10 1886 1886-10-01 18:00:00 blood 1654 #> 3308 8.6 10 1886 1886-10-01 18:00:00 bone 1654 #> 3309 0.3 11 1886 1886-11-01 04:00:01 blood 1655 #> 3310 0.3 11 1886 1886-11-01 04:00:01 bone 1655 #> 3311 12.4 12 1886 1886-12-01 14:00:01 blood 1656 #> 3312 12.4 12 1886 1886-12-01 14:00:01 bone 1656 #> 3313 10.3 1 1887 1887-01-01 00:00:00 blood 1657 #> 3314 10.3 1 1887 1887-01-01 00:00:00 bone 1657 #> 3315 13.2 2 1887 1887-01-31 10:00:01 blood 1658 #> 3316 13.2 2 1887 1887-01-31 10:00:01 bone 1658 #> 3317 4.2 3 1887 1887-03-02 20:00:01 blood 1659 #> 3318 4.2 3 1887 1887-03-02 20:00:01 bone 1659 #> 3319 6.9 4 1887 1887-04-02 06:00:00 blood 1660 #> 3320 6.9 4 1887 1887-04-02 06:00:00 bone 1660 #> 3321 20.0 5 1887 1887-05-02 16:00:01 blood 1661 #> 3322 20.0 5 1887 1887-05-02 16:00:01 bone 1661 #> 3323 15.7 6 1887 1887-06-02 02:00:01 blood 1662 #> 3324 15.7 6 1887 1887-06-02 02:00:01 bone 1662 #> 3325 23.3 7 1887 1887-07-02 12:00:00 blood 1663 #> 3326 23.3 7 1887 1887-07-02 12:00:00 bone 1663 #> 3327 21.4 8 1887 1887-08-01 22:00:01 blood 1664 #> 3328 21.4 8 1887 1887-08-01 22:00:01 bone 1664 #> 3329 7.4 9 1887 1887-09-01 08:00:01 blood 1665 #> 3330 7.4 9 1887 1887-09-01 08:00:01 bone 1665 #> 3331 6.6 10 1887 1887-10-01 18:00:00 blood 1666 #> 3332 6.6 10 1887 1887-10-01 18:00:00 bone 1666 #> 3333 6.9 11 1887 1887-11-01 04:00:01 blood 1667 #> 3334 6.9 11 1887 1887-11-01 04:00:01 bone 1667 #> 3335 20.7 12 1887 1887-12-01 14:00:01 blood 1668 #> 3336 20.7 12 1887 1887-12-01 14:00:01 bone 1668 #> 3337 12.7 1 1888 1888-01-01 00:00:00 blood 1669 #> 3338 12.7 1 1888 1888-01-01 00:00:00 bone 1669 #> 3339 7.1 2 1888 1888-01-31 12:00:01 blood 1670 #> 3340 7.1 2 1888 1888-01-31 12:00:01 bone 1670 #> 3341 7.8 3 1888 1888-03-02 00:00:01 blood 1671 #> 3342 7.8 3 1888 1888-03-02 00:00:01 bone 1671 #> 3343 5.1 4 1888 1888-04-01 12:00:00 blood 1672 #> 3344 5.1 4 1888 1888-04-01 12:00:00 bone 1672 #> 3345 7.0 5 1888 1888-05-02 00:00:01 blood 1673 #> 3346 7.0 5 1888 1888-05-02 00:00:01 bone 1673 #> 3347 7.1 6 1888 1888-06-01 12:00:01 blood 1674 #> 3348 7.1 6 1888 1888-06-01 12:00:01 bone 1674 #> 3349 3.1 7 1888 1888-07-02 00:00:00 blood 1675 #> 3350 3.1 7 1888 1888-07-02 00:00:00 bone 1675 #> 3351 2.8 8 1888 1888-08-01 12:00:01 blood 1676 #> 3352 2.8 8 1888 1888-08-01 12:00:01 bone 1676 #> 3353 8.8 9 1888 1888-09-01 00:00:01 blood 1677 #> 3354 8.8 9 1888 1888-09-01 00:00:01 bone 1677 #> 3355 2.1 10 1888 1888-10-01 12:00:00 blood 1678 #> 3356 2.1 10 1888 1888-10-01 12:00:00 bone 1678 #> 3357 10.7 11 1888 1888-11-01 00:00:01 blood 1679 #> 3358 10.7 11 1888 1888-11-01 00:00:01 bone 1679 #> 3359 6.7 12 1888 1888-12-01 12:00:01 blood 1680 #> 3360 6.7 12 1888 1888-12-01 12:00:01 bone 1680 #> 3361 0.8 1 1889 1889-01-01 00:00:00 blood 1681 #> 3362 0.8 1 1889 1889-01-01 00:00:00 bone 1681 #> 3363 8.5 2 1889 1889-01-31 10:00:01 blood 1682 #> 3364 8.5 2 1889 1889-01-31 10:00:01 bone 1682 #> 3365 7.0 3 1889 1889-03-02 20:00:01 blood 1683 #> 3366 7.0 3 1889 1889-03-02 20:00:01 bone 1683 #> 3367 4.3 4 1889 1889-04-02 06:00:00 blood 1684 #> 3368 4.3 4 1889 1889-04-02 06:00:00 bone 1684 #> 3369 2.4 5 1889 1889-05-02 16:00:01 blood 1685 #> 3370 2.4 5 1889 1889-05-02 16:00:01 bone 1685 #> 3371 6.4 6 1889 1889-06-02 02:00:01 blood 1686 #> 3372 6.4 6 1889 1889-06-02 02:00:01 bone 1686 #> 3373 9.7 7 1889 1889-07-02 12:00:00 blood 1687 #> 3374 9.7 7 1889 1889-07-02 12:00:00 bone 1687 #> 3375 20.6 8 1889 1889-08-01 22:00:01 blood 1688 #> 3376 20.6 8 1889 1889-08-01 22:00:01 bone 1688 #> 3377 6.5 9 1889 1889-09-01 08:00:01 blood 1689 #> 3378 6.5 9 1889 1889-09-01 08:00:01 bone 1689 #> 3379 2.1 10 1889 1889-10-01 18:00:00 blood 1690 #> 3380 2.1 10 1889 1889-10-01 18:00:00 bone 1690 #> 3381 0.2 11 1889 1889-11-01 04:00:01 blood 1691 #> 3382 0.2 11 1889 1889-11-01 04:00:01 bone 1691 #> 3383 6.7 12 1889 1889-12-01 14:00:01 blood 1692 #> 3384 6.7 12 1889 1889-12-01 14:00:01 bone 1692 #> 3385 5.3 1 1890 1890-01-01 00:00:00 blood 1693 #> 3386 5.3 1 1890 1890-01-01 00:00:00 bone 1693 #> 3387 0.6 2 1890 1890-01-31 10:00:01 blood 1694 #> 3388 0.6 2 1890 1890-01-31 10:00:01 bone 1694 #> 3389 5.1 3 1890 1890-03-02 20:00:01 blood 1695 #> 3390 5.1 3 1890 1890-03-02 20:00:01 bone 1695 #> 3391 1.6 4 1890 1890-04-02 06:00:00 blood 1696 #> 3392 1.6 4 1890 1890-04-02 06:00:00 bone 1696 #> 3393 4.8 5 1890 1890-05-02 16:00:01 blood 1697 #> 3394 4.8 5 1890 1890-05-02 16:00:01 bone 1697 #> 3395 1.3 6 1890 1890-06-02 02:00:01 blood 1698 #> 3396 1.3 6 1890 1890-06-02 02:00:01 bone 1698 #> 3397 11.6 7 1890 1890-07-02 12:00:00 blood 1699 #> 3398 11.6 7 1890 1890-07-02 12:00:00 bone 1699 #> 3399 8.5 8 1890 1890-08-01 22:00:01 blood 1700 #> 3400 8.5 8 1890 1890-08-01 22:00:01 bone 1700 #> 3401 17.2 9 1890 1890-09-01 08:00:01 blood 1701 #> 3402 17.2 9 1890 1890-09-01 08:00:01 bone 1701 #> 3403 11.2 10 1890 1890-10-01 18:00:00 blood 1702 #> 3404 11.2 10 1890 1890-10-01 18:00:00 bone 1702 #> 3405 9.6 11 1890 1890-11-01 04:00:01 blood 1703 #> 3406 9.6 11 1890 1890-11-01 04:00:01 bone 1703 #> 3407 7.8 12 1890 1890-12-01 14:00:01 blood 1704 #> 3408 7.8 12 1890 1890-12-01 14:00:01 bone 1704 #> 3409 13.5 1 1891 1891-01-01 00:00:00 blood 1705 #> 3410 13.5 1 1891 1891-01-01 00:00:00 bone 1705 #> 3411 22.2 2 1891 1891-01-31 10:00:01 blood 1706 #> 3412 22.2 2 1891 1891-01-31 10:00:01 bone 1706 #> 3413 10.4 3 1891 1891-03-02 20:00:01 blood 1707 #> 3414 10.4 3 1891 1891-03-02 20:00:01 bone 1707 #> 3415 20.5 4 1891 1891-04-02 06:00:00 blood 1708 #> 3416 20.5 4 1891 1891-04-02 06:00:00 bone 1708 #> 3417 41.1 5 1891 1891-05-02 16:00:01 blood 1709 #> 3418 41.1 5 1891 1891-05-02 16:00:01 bone 1709 #> 3419 48.3 6 1891 1891-06-02 02:00:01 blood 1710 #> 3420 48.3 6 1891 1891-06-02 02:00:01 bone 1710 #> 3421 58.8 7 1891 1891-07-02 12:00:00 blood 1711 #> 3422 58.8 7 1891 1891-07-02 12:00:00 bone 1711 #> 3423 33.2 8 1891 1891-08-01 22:00:01 blood 1712 #> 3424 33.2 8 1891 1891-08-01 22:00:01 bone 1712 #> 3425 53.8 9 1891 1891-09-01 08:00:01 blood 1713 #> 3426 53.8 9 1891 1891-09-01 08:00:01 bone 1713 #> 3427 51.5 10 1891 1891-10-01 18:00:00 blood 1714 #> 3428 51.5 10 1891 1891-10-01 18:00:00 bone 1714 #> 3429 41.9 11 1891 1891-11-01 04:00:01 blood 1715 #> 3430 41.9 11 1891 1891-11-01 04:00:01 bone 1715 #> 3431 32.3 12 1891 1891-12-01 14:00:01 blood 1716 #> 3432 32.3 12 1891 1891-12-01 14:00:01 bone 1716 #> 3433 69.1 1 1892 1892-01-01 00:00:00 blood 1717 #> 3434 69.1 1 1892 1892-01-01 00:00:00 bone 1717 #> 3435 75.6 2 1892 1892-01-31 12:00:01 blood 1718 #> 3436 75.6 2 1892 1892-01-31 12:00:01 bone 1718 #> 3437 49.9 3 1892 1892-03-02 00:00:01 blood 1719 #> 3438 49.9 3 1892 1892-03-02 00:00:01 bone 1719 #> 3439 69.6 4 1892 1892-04-01 12:00:00 blood 1720 #> 3440 69.6 4 1892 1892-04-01 12:00:00 bone 1720 #> 3441 79.6 5 1892 1892-05-02 00:00:01 blood 1721 #> 3442 79.6 5 1892 1892-05-02 00:00:01 bone 1721 #> 3443 76.3 6 1892 1892-06-01 12:00:01 blood 1722 #> 3444 76.3 6 1892 1892-06-01 12:00:01 bone 1722 #> 3445 76.8 7 1892 1892-07-02 00:00:00 blood 1723 #> 3446 76.8 7 1892 1892-07-02 00:00:00 bone 1723 #> 3447 101.4 8 1892 1892-08-01 12:00:01 blood 1724 #> 3448 101.4 8 1892 1892-08-01 12:00:01 bone 1724 #> 3449 62.8 9 1892 1892-09-01 00:00:01 blood 1725 #> 3450 62.8 9 1892 1892-09-01 00:00:01 bone 1725 #> 3451 70.5 10 1892 1892-10-01 12:00:00 blood 1726 #> 3452 70.5 10 1892 1892-10-01 12:00:00 bone 1726 #> 3453 65.4 11 1892 1892-11-01 00:00:01 blood 1727 #> 3454 65.4 11 1892 1892-11-01 00:00:01 bone 1727 #> 3455 78.6 12 1892 1892-12-01 12:00:01 blood 1728 #> 3456 78.6 12 1892 1892-12-01 12:00:01 bone 1728 #> 3457 75.0 1 1893 1893-01-01 00:00:00 blood 1729 #> 3458 75.0 1 1893 1893-01-01 00:00:00 bone 1729 #> 3459 73.0 2 1893 1893-01-31 10:00:01 blood 1730 #> 3460 73.0 2 1893 1893-01-31 10:00:01 bone 1730 #> 3461 65.7 3 1893 1893-03-02 20:00:01 blood 1731 #> 3462 65.7 3 1893 1893-03-02 20:00:01 bone 1731 #> 3463 88.1 4 1893 1893-04-02 06:00:00 blood 1732 #> 3464 88.1 4 1893 1893-04-02 06:00:00 bone 1732 #> 3465 84.7 5 1893 1893-05-02 16:00:01 blood 1733 #> 3466 84.7 5 1893 1893-05-02 16:00:01 bone 1733 #> 3467 88.2 6 1893 1893-06-02 02:00:01 blood 1734 #> 3468 88.2 6 1893 1893-06-02 02:00:01 bone 1734 #> 3469 88.8 7 1893 1893-07-02 12:00:00 blood 1735 #> 3470 88.8 7 1893 1893-07-02 12:00:00 bone 1735 #> 3471 129.2 8 1893 1893-08-01 22:00:01 blood 1736 #> 3472 129.2 8 1893 1893-08-01 22:00:01 bone 1736 #> 3473 77.9 9 1893 1893-09-01 08:00:01 blood 1737 #> 3474 77.9 9 1893 1893-09-01 08:00:01 bone 1737 #> 3475 79.7 10 1893 1893-10-01 18:00:00 blood 1738 #> 3476 79.7 10 1893 1893-10-01 18:00:00 bone 1738 #> 3477 75.1 11 1893 1893-11-01 04:00:01 blood 1739 #> 3478 75.1 11 1893 1893-11-01 04:00:01 bone 1739 #> 3479 93.8 12 1893 1893-12-01 14:00:01 blood 1740 #> 3480 93.8 12 1893 1893-12-01 14:00:01 bone 1740 #> 3481 83.2 1 1894 1894-01-01 00:00:00 blood 1741 #> 3482 83.2 1 1894 1894-01-01 00:00:00 bone 1741 #> 3483 84.6 2 1894 1894-01-31 10:00:01 blood 1742 #> 3484 84.6 2 1894 1894-01-31 10:00:01 bone 1742 #> 3485 52.3 3 1894 1894-03-02 20:00:01 blood 1743 #> 3486 52.3 3 1894 1894-03-02 20:00:01 bone 1743 #> 3487 81.6 4 1894 1894-04-02 06:00:00 blood 1744 #> 3488 81.6 4 1894 1894-04-02 06:00:00 bone 1744 #> 3489 101.2 5 1894 1894-05-02 16:00:01 blood 1745 #> 3490 101.2 5 1894 1894-05-02 16:00:01 bone 1745 #> 3491 98.9 6 1894 1894-06-02 02:00:01 blood 1746 #> 3492 98.9 6 1894 1894-06-02 02:00:01 bone 1746 #> 3493 106.0 7 1894 1894-07-02 12:00:00 blood 1747 #> 3494 106.0 7 1894 1894-07-02 12:00:00 bone 1747 #> 3495 70.3 8 1894 1894-08-01 22:00:01 blood 1748 #> 3496 70.3 8 1894 1894-08-01 22:00:01 bone 1748 #> 3497 65.9 9 1894 1894-09-01 08:00:01 blood 1749 #> 3498 65.9 9 1894 1894-09-01 08:00:01 bone 1749 #> 3499 75.5 10 1894 1894-10-01 18:00:00 blood 1750 #> 3500 75.5 10 1894 1894-10-01 18:00:00 bone 1750 #> 3501 56.6 11 1894 1894-11-01 04:00:01 blood 1751 #> 3502 56.6 11 1894 1894-11-01 04:00:01 bone 1751 #> 3503 60.0 12 1894 1894-12-01 14:00:01 blood 1752 #> 3504 60.0 12 1894 1894-12-01 14:00:01 bone 1752 #> 3505 63.3 1 1895 1895-01-01 00:00:00 blood 1753 #> 3506 63.3 1 1895 1895-01-01 00:00:00 bone 1753 #> 3507 67.2 2 1895 1895-01-31 10:00:01 blood 1754 #> 3508 67.2 2 1895 1895-01-31 10:00:01 bone 1754 #> 3509 61.0 3 1895 1895-03-02 20:00:01 blood 1755 #> 3510 61.0 3 1895 1895-03-02 20:00:01 bone 1755 #> 3511 76.9 4 1895 1895-04-02 06:00:00 blood 1756 #> 3512 76.9 4 1895 1895-04-02 06:00:00 bone 1756 #> 3513 67.5 5 1895 1895-05-02 16:00:01 blood 1757 #> 3514 67.5 5 1895 1895-05-02 16:00:01 bone 1757 #> 3515 71.5 6 1895 1895-06-02 02:00:01 blood 1758 #> 3516 71.5 6 1895 1895-06-02 02:00:01 bone 1758 #> 3517 47.8 7 1895 1895-07-02 12:00:00 blood 1759 #> 3518 47.8 7 1895 1895-07-02 12:00:00 bone 1759 #> 3519 68.9 8 1895 1895-08-01 22:00:01 blood 1760 #> 3520 68.9 8 1895 1895-08-01 22:00:01 bone 1760 #> 3521 57.7 9 1895 1895-09-01 08:00:01 blood 1761 #> 3522 57.7 9 1895 1895-09-01 08:00:01 bone 1761 #> 3523 67.9 10 1895 1895-10-01 18:00:00 blood 1762 #> 3524 67.9 10 1895 1895-10-01 18:00:00 bone 1762 #> 3525 47.2 11 1895 1895-11-01 04:00:01 blood 1763 #> 3526 47.2 11 1895 1895-11-01 04:00:01 bone 1763 #> 3527 70.7 12 1895 1895-12-01 14:00:01 blood 1764 #> 3528 70.7 12 1895 1895-12-01 14:00:01 bone 1764 #> 3529 29.0 1 1896 1896-01-01 00:00:00 blood 1765 #> 3530 29.0 1 1896 1896-01-01 00:00:00 bone 1765 #> 3531 57.4 2 1896 1896-01-31 12:00:01 blood 1766 #> 3532 57.4 2 1896 1896-01-31 12:00:01 bone 1766 #> 3533 52.0 3 1896 1896-03-02 00:00:01 blood 1767 #> 3534 52.0 3 1896 1896-03-02 00:00:01 bone 1767 #> 3535 43.8 4 1896 1896-04-01 12:00:00 blood 1768 #> 3536 43.8 4 1896 1896-04-01 12:00:00 bone 1768 #> 3537 27.7 5 1896 1896-05-02 00:00:01 blood 1769 #> 3538 27.7 5 1896 1896-05-02 00:00:01 bone 1769 #> 3539 49.0 6 1896 1896-06-01 12:00:01 blood 1770 #> 3540 49.0 6 1896 1896-06-01 12:00:01 bone 1770 #> 3541 45.0 7 1896 1896-07-02 00:00:00 blood 1771 #> 3542 45.0 7 1896 1896-07-02 00:00:00 bone 1771 #> 3543 27.2 8 1896 1896-08-01 12:00:01 blood 1772 #> 3544 27.2 8 1896 1896-08-01 12:00:01 bone 1772 #> 3545 61.3 9 1896 1896-09-01 00:00:01 blood 1773 #> 3546 61.3 9 1896 1896-09-01 00:00:01 bone 1773 #> 3547 28.4 10 1896 1896-10-01 12:00:00 blood 1774 #> 3548 28.4 10 1896 1896-10-01 12:00:00 bone 1774 #> 3549 38.0 11 1896 1896-11-01 00:00:01 blood 1775 #> 3550 38.0 11 1896 1896-11-01 00:00:01 bone 1775 #> 3551 42.6 12 1896 1896-12-01 12:00:01 blood 1776 #> 3552 42.6 12 1896 1896-12-01 12:00:01 bone 1776 #> 3553 40.6 1 1897 1897-01-01 00:00:00 blood 1777 #> 3554 40.6 1 1897 1897-01-01 00:00:00 bone 1777 #> 3555 29.4 2 1897 1897-01-31 10:00:01 blood 1778 #> 3556 29.4 2 1897 1897-01-31 10:00:01 bone 1778 #> 3557 29.1 3 1897 1897-03-02 20:00:01 blood 1779 #> 3558 29.1 3 1897 1897-03-02 20:00:01 bone 1779 #> 3559 31.0 4 1897 1897-04-02 06:00:00 blood 1780 #> 3560 31.0 4 1897 1897-04-02 06:00:00 bone 1780 #> 3561 20.0 5 1897 1897-05-02 16:00:01 blood 1781 #> 3562 20.0 5 1897 1897-05-02 16:00:01 bone 1781 #> 3563 11.3 6 1897 1897-06-02 02:00:01 blood 1782 #> 3564 11.3 6 1897 1897-06-02 02:00:01 bone 1782 #> 3565 27.6 7 1897 1897-07-02 12:00:00 blood 1783 #> 3566 27.6 7 1897 1897-07-02 12:00:00 bone 1783 #> 3567 21.8 8 1897 1897-08-01 22:00:01 blood 1784 #> 3568 21.8 8 1897 1897-08-01 22:00:01 bone 1784 #> 3569 48.1 9 1897 1897-09-01 08:00:01 blood 1785 #> 3570 48.1 9 1897 1897-09-01 08:00:01 bone 1785 #> 3571 14.3 10 1897 1897-10-01 18:00:00 blood 1786 #> 3572 14.3 10 1897 1897-10-01 18:00:00 bone 1786 #> 3573 8.4 11 1897 1897-11-01 04:00:01 blood 1787 #> 3574 8.4 11 1897 1897-11-01 04:00:01 bone 1787 #> 3575 33.3 12 1897 1897-12-01 14:00:01 blood 1788 #> 3576 33.3 12 1897 1897-12-01 14:00:01 bone 1788 #> 3577 30.2 1 1898 1898-01-01 00:00:00 blood 1789 #> 3578 30.2 1 1898 1898-01-01 00:00:00 bone 1789 #> 3579 36.4 2 1898 1898-01-31 10:00:01 blood 1790 #> 3580 36.4 2 1898 1898-01-31 10:00:01 bone 1790 #> 3581 38.3 3 1898 1898-03-02 20:00:01 blood 1791 #> 3582 38.3 3 1898 1898-03-02 20:00:01 bone 1791 #> 3583 14.5 4 1898 1898-04-02 06:00:00 blood 1792 #> 3584 14.5 4 1898 1898-04-02 06:00:00 bone 1792 #> 3585 25.8 5 1898 1898-05-02 16:00:01 blood 1793 #> 3586 25.8 5 1898 1898-05-02 16:00:01 bone 1793 #> 3587 22.3 6 1898 1898-06-02 02:00:01 blood 1794 #> 3588 22.3 6 1898 1898-06-02 02:00:01 bone 1794 #> 3589 9.0 7 1898 1898-07-02 12:00:00 blood 1795 #> 3590 9.0 7 1898 1898-07-02 12:00:00 bone 1795 #> 3591 31.4 8 1898 1898-08-01 22:00:01 blood 1796 #> 3592 31.4 8 1898 1898-08-01 22:00:01 bone 1796 #> 3593 34.8 9 1898 1898-09-01 08:00:01 blood 1797 #> 3594 34.8 9 1898 1898-09-01 08:00:01 bone 1797 #> 3595 34.4 10 1898 1898-10-01 18:00:00 blood 1798 #> 3596 34.4 10 1898 1898-10-01 18:00:00 bone 1798 #> 3597 30.9 11 1898 1898-11-01 04:00:01 blood 1799 #> 3598 30.9 11 1898 1898-11-01 04:00:01 bone 1799 #> 3599 12.6 12 1898 1898-12-01 14:00:01 blood 1800 #> 3600 12.6 12 1898 1898-12-01 14:00:01 bone 1800 #> 3601 19.5 1 1899 1899-01-01 00:00:00 blood 1801 #> 3602 19.5 1 1899 1899-01-01 00:00:00 bone 1801 #> 3603 9.2 2 1899 1899-01-31 10:00:01 blood 1802 #> 3604 9.2 2 1899 1899-01-31 10:00:01 bone 1802 #> 3605 18.1 3 1899 1899-03-02 20:00:01 blood 1803 #> 3606 18.1 3 1899 1899-03-02 20:00:01 bone 1803 #> 3607 14.2 4 1899 1899-04-02 06:00:00 blood 1804 #> 3608 14.2 4 1899 1899-04-02 06:00:00 bone 1804 #> 3609 7.7 5 1899 1899-05-02 16:00:01 blood 1805 #> 3610 7.7 5 1899 1899-05-02 16:00:01 bone 1805 #> 3611 20.5 6 1899 1899-06-02 02:00:01 blood 1806 #> 3612 20.5 6 1899 1899-06-02 02:00:01 bone 1806 #> 3613 13.5 7 1899 1899-07-02 12:00:00 blood 1807 #> 3614 13.5 7 1899 1899-07-02 12:00:00 bone 1807 #> 3615 2.9 8 1899 1899-08-01 22:00:01 blood 1808 #> 3616 2.9 8 1899 1899-08-01 22:00:01 bone 1808 #> 3617 8.4 9 1899 1899-09-01 08:00:01 blood 1809 #> 3618 8.4 9 1899 1899-09-01 08:00:01 bone 1809 #> 3619 13.0 10 1899 1899-10-01 18:00:00 blood 1810 #> 3620 13.0 10 1899 1899-10-01 18:00:00 bone 1810 #> 3621 7.8 11 1899 1899-11-01 04:00:01 blood 1811 #> 3622 7.8 11 1899 1899-11-01 04:00:01 bone 1811 #> 3623 10.5 12 1899 1899-12-01 14:00:01 blood 1812 #> 3624 10.5 12 1899 1899-12-01 14:00:01 bone 1812 #> 3625 9.4 1 1900 1900-01-01 00:00:00 blood 1813 #> 3626 9.4 1 1900 1900-01-01 00:00:00 bone 1813 #> 3627 13.6 2 1900 1900-01-31 10:00:01 blood 1814 #> 3628 13.6 2 1900 1900-01-31 10:00:01 bone 1814 #> 3629 8.6 3 1900 1900-03-02 20:00:01 blood 1815 #> 3630 8.6 3 1900 1900-03-02 20:00:01 bone 1815 #> 3631 16.0 4 1900 1900-04-02 06:00:00 blood 1816 #> 3632 16.0 4 1900 1900-04-02 06:00:00 bone 1816 #> 3633 15.2 5 1900 1900-05-02 16:00:01 blood 1817 #> 3634 15.2 5 1900 1900-05-02 16:00:01 bone 1817 #> 3635 12.1 6 1900 1900-06-02 02:00:01 blood 1818 #> 3636 12.1 6 1900 1900-06-02 02:00:01 bone 1818 #> 3637 8.3 7 1900 1900-07-02 12:00:00 blood 1819 #> 3638 8.3 7 1900 1900-07-02 12:00:00 bone 1819 #> 3639 4.3 8 1900 1900-08-01 22:00:01 blood 1820 #> 3640 4.3 8 1900 1900-08-01 22:00:01 bone 1820 #> 3641 8.3 9 1900 1900-09-01 08:00:01 blood 1821 #> 3642 8.3 9 1900 1900-09-01 08:00:01 bone 1821 #> 3643 12.9 10 1900 1900-10-01 18:00:00 blood 1822 #> 3644 12.9 10 1900 1900-10-01 18:00:00 bone 1822 #> 3645 4.5 11 1900 1900-11-01 04:00:01 blood 1823 #> 3646 4.5 11 1900 1900-11-01 04:00:01 bone 1823 #> 3647 0.3 12 1900 1900-12-01 14:00:01 blood 1824 #> 3648 0.3 12 1900 1900-12-01 14:00:01 bone 1824 #> 3649 0.2 1 1901 1901-01-01 00:00:00 blood 1825 #> 3650 0.2 1 1901 1901-01-01 00:00:00 bone 1825 #> 3651 2.4 2 1901 1901-01-31 10:00:01 blood 1826 #> 3652 2.4 2 1901 1901-01-31 10:00:01 bone 1826 #> 3653 4.5 3 1901 1901-03-02 20:00:01 blood 1827 #> 3654 4.5 3 1901 1901-03-02 20:00:01 bone 1827 #> 3655 0.0 4 1901 1901-04-02 06:00:00 blood 1828 #> 3656 0.0 4 1901 1901-04-02 06:00:00 bone 1828 #> 3657 10.2 5 1901 1901-05-02 16:00:01 blood 1829 #> 3658 10.2 5 1901 1901-05-02 16:00:01 bone 1829 #> 3659 5.8 6 1901 1901-06-02 02:00:01 blood 1830 #> 3660 5.8 6 1901 1901-06-02 02:00:01 bone 1830 #> 3661 0.7 7 1901 1901-07-02 12:00:00 blood 1831 #> 3662 0.7 7 1901 1901-07-02 12:00:00 bone 1831 #> 3663 1.0 8 1901 1901-08-01 22:00:01 blood 1832 #> 3664 1.0 8 1901 1901-08-01 22:00:01 bone 1832 #> 3665 0.6 9 1901 1901-09-01 08:00:01 blood 1833 #> 3666 0.6 9 1901 1901-09-01 08:00:01 bone 1833 #> 3667 3.7 10 1901 1901-10-01 18:00:00 blood 1834 #> 3668 3.7 10 1901 1901-10-01 18:00:00 bone 1834 #> 3669 3.8 11 1901 1901-11-01 04:00:01 blood 1835 #> 3670 3.8 11 1901 1901-11-01 04:00:01 bone 1835 #> 3671 0.0 12 1901 1901-12-01 14:00:01 blood 1836 #> 3672 0.0 12 1901 1901-12-01 14:00:01 bone 1836 #> 3673 5.2 1 1902 1902-01-01 00:00:00 blood 1837 #> 3674 5.2 1 1902 1902-01-01 00:00:00 bone 1837 #> 3675 0.0 2 1902 1902-01-31 10:00:01 blood 1838 #> 3676 0.0 2 1902 1902-01-31 10:00:01 bone 1838 #> 3677 12.4 3 1902 1902-03-02 20:00:01 blood 1839 #> 3678 12.4 3 1902 1902-03-02 20:00:01 bone 1839 #> 3679 0.0 4 1902 1902-04-02 06:00:00 blood 1840 #> 3680 0.0 4 1902 1902-04-02 06:00:00 bone 1840 #> 3681 2.8 5 1902 1902-05-02 16:00:01 blood 1841 #> 3682 2.8 5 1902 1902-05-02 16:00:01 bone 1841 #> 3683 1.4 6 1902 1902-06-02 02:00:01 blood 1842 #> 3684 1.4 6 1902 1902-06-02 02:00:01 bone 1842 #> 3685 0.9 7 1902 1902-07-02 12:00:00 blood 1843 #> 3686 0.9 7 1902 1902-07-02 12:00:00 bone 1843 #> 3687 2.3 8 1902 1902-08-01 22:00:01 blood 1844 #> 3688 2.3 8 1902 1902-08-01 22:00:01 bone 1844 #> 3689 7.6 9 1902 1902-09-01 08:00:01 blood 1845 #> 3690 7.6 9 1902 1902-09-01 08:00:01 bone 1845 #> 3691 16.3 10 1902 1902-10-01 18:00:00 blood 1846 #> 3692 16.3 10 1902 1902-10-01 18:00:00 bone 1846 #> 3693 10.3 11 1902 1902-11-01 04:00:01 blood 1847 #> 3694 10.3 11 1902 1902-11-01 04:00:01 bone 1847 #> 3695 1.1 12 1902 1902-12-01 14:00:01 blood 1848 #> 3696 1.1 12 1902 1902-12-01 14:00:01 bone 1848 #> 3697 8.3 1 1903 1903-01-01 00:00:00 blood 1849 #> 3698 8.3 1 1903 1903-01-01 00:00:00 bone 1849 #> 3699 17.0 2 1903 1903-01-31 10:00:01 blood 1850 #> 3700 17.0 2 1903 1903-01-31 10:00:01 bone 1850 #> 3701 13.5 3 1903 1903-03-02 20:00:01 blood 1851 #> 3702 13.5 3 1903 1903-03-02 20:00:01 bone 1851 #> 3703 26.1 4 1903 1903-04-02 06:00:00 blood 1852 #> 3704 26.1 4 1903 1903-04-02 06:00:00 bone 1852 #> 3705 14.6 5 1903 1903-05-02 16:00:01 blood 1853 #> 3706 14.6 5 1903 1903-05-02 16:00:01 bone 1853 #> 3707 16.3 6 1903 1903-06-02 02:00:01 blood 1854 #> 3708 16.3 6 1903 1903-06-02 02:00:01 bone 1854 #> 3709 27.9 7 1903 1903-07-02 12:00:00 blood 1855 #> 3710 27.9 7 1903 1903-07-02 12:00:00 bone 1855 #> 3711 28.8 8 1903 1903-08-01 22:00:01 blood 1856 #> 3712 28.8 8 1903 1903-08-01 22:00:01 bone 1856 #> 3713 11.1 9 1903 1903-09-01 08:00:01 blood 1857 #> 3714 11.1 9 1903 1903-09-01 08:00:01 bone 1857 #> 3715 38.9 10 1903 1903-10-01 18:00:00 blood 1858 #> 3716 38.9 10 1903 1903-10-01 18:00:00 bone 1858 #> 3717 44.5 11 1903 1903-11-01 04:00:01 blood 1859 #> 3718 44.5 11 1903 1903-11-01 04:00:01 bone 1859 #> 3719 45.6 12 1903 1903-12-01 14:00:01 blood 1860 #> 3720 45.6 12 1903 1903-12-01 14:00:01 bone 1860 #> 3721 31.6 1 1904 1904-01-01 00:00:00 blood 1861 #> 3722 31.6 1 1904 1904-01-01 00:00:00 bone 1861 #> 3723 24.5 2 1904 1904-01-31 12:00:01 blood 1862 #> 3724 24.5 2 1904 1904-01-31 12:00:01 bone 1862 #> 3725 37.2 3 1904 1904-03-02 00:00:01 blood 1863 #> 3726 37.2 3 1904 1904-03-02 00:00:01 bone 1863 #> 3727 43.0 4 1904 1904-04-01 12:00:00 blood 1864 #> 3728 43.0 4 1904 1904-04-01 12:00:00 bone 1864 #> 3729 39.5 5 1904 1904-05-02 00:00:01 blood 1865 #> 3730 39.5 5 1904 1904-05-02 00:00:01 bone 1865 #> 3731 41.9 6 1904 1904-06-01 12:00:01 blood 1866 #> 3732 41.9 6 1904 1904-06-01 12:00:01 bone 1866 #> 3733 50.6 7 1904 1904-07-02 00:00:00 blood 1867 #> 3734 50.6 7 1904 1904-07-02 00:00:00 bone 1867 #> 3735 58.2 8 1904 1904-08-01 12:00:01 blood 1868 #> 3736 58.2 8 1904 1904-08-01 12:00:01 bone 1868 #> 3737 30.1 9 1904 1904-09-01 00:00:01 blood 1869 #> 3738 30.1 9 1904 1904-09-01 00:00:01 bone 1869 #> 3739 54.2 10 1904 1904-10-01 12:00:00 blood 1870 #> 3740 54.2 10 1904 1904-10-01 12:00:00 bone 1870 #> 3741 38.0 11 1904 1904-11-01 00:00:01 blood 1871 #> 3742 38.0 11 1904 1904-11-01 00:00:01 bone 1871 #> 3743 54.6 12 1904 1904-12-01 12:00:01 blood 1872 #> 3744 54.6 12 1904 1904-12-01 12:00:01 bone 1872 #> 3745 54.8 1 1905 1905-01-01 00:00:00 blood 1873 #> 3746 54.8 1 1905 1905-01-01 00:00:00 bone 1873 #> 3747 85.8 2 1905 1905-01-31 10:00:01 blood 1874 #> 3748 85.8 2 1905 1905-01-31 10:00:01 bone 1874 #> 3749 56.5 3 1905 1905-03-02 20:00:01 blood 1875 #> 3750 56.5 3 1905 1905-03-02 20:00:01 bone 1875 #> 3751 39.3 4 1905 1905-04-02 06:00:00 blood 1876 #> 3752 39.3 4 1905 1905-04-02 06:00:00 bone 1876 #> 3753 48.0 5 1905 1905-05-02 16:00:01 blood 1877 #> 3754 48.0 5 1905 1905-05-02 16:00:01 bone 1877 #> 3755 49.0 6 1905 1905-06-02 02:00:01 blood 1878 #> 3756 49.0 6 1905 1905-06-02 02:00:01 bone 1878 #> 3757 73.0 7 1905 1905-07-02 12:00:00 blood 1879 #> 3758 73.0 7 1905 1905-07-02 12:00:00 bone 1879 #> 3759 58.8 8 1905 1905-08-01 22:00:01 blood 1880 #> 3760 58.8 8 1905 1905-08-01 22:00:01 bone 1880 #> 3761 55.0 9 1905 1905-09-01 08:00:01 blood 1881 #> 3762 55.0 9 1905 1905-09-01 08:00:01 bone 1881 #> 3763 78.7 10 1905 1905-10-01 18:00:00 blood 1882 #> 3764 78.7 10 1905 1905-10-01 18:00:00 bone 1882 #> 3765 107.2 11 1905 1905-11-01 04:00:01 blood 1883 #> 3766 107.2 11 1905 1905-11-01 04:00:01 bone 1883 #> 3767 55.5 12 1905 1905-12-01 14:00:01 blood 1884 #> 3768 55.5 12 1905 1905-12-01 14:00:01 bone 1884 #> 3769 45.5 1 1906 1906-01-01 00:00:00 blood 1885 #> 3770 45.5 1 1906 1906-01-01 00:00:00 bone 1885 #> 3771 31.3 2 1906 1906-01-31 10:00:01 blood 1886 #> 3772 31.3 2 1906 1906-01-31 10:00:01 bone 1886 #> 3773 64.5 3 1906 1906-03-02 20:00:01 blood 1887 #> 3774 64.5 3 1906 1906-03-02 20:00:01 bone 1887 #> 3775 55.3 4 1906 1906-04-02 06:00:00 blood 1888 #> 3776 55.3 4 1906 1906-04-02 06:00:00 bone 1888 #> 3777 57.7 5 1906 1906-05-02 16:00:01 blood 1889 #> 3778 57.7 5 1906 1906-05-02 16:00:01 bone 1889 #> 3779 63.2 6 1906 1906-06-02 02:00:01 blood 1890 #> 3780 63.2 6 1906 1906-06-02 02:00:01 bone 1890 #> 3781 103.6 7 1906 1906-07-02 12:00:00 blood 1891 #> 3782 103.6 7 1906 1906-07-02 12:00:00 bone 1891 #> 3783 47.7 8 1906 1906-08-01 22:00:01 blood 1892 #> 3784 47.7 8 1906 1906-08-01 22:00:01 bone 1892 #> 3785 56.1 9 1906 1906-09-01 08:00:01 blood 1893 #> 3786 56.1 9 1906 1906-09-01 08:00:01 bone 1893 #> 3787 17.8 10 1906 1906-10-01 18:00:00 blood 1894 #> 3788 17.8 10 1906 1906-10-01 18:00:00 bone 1894 #> 3789 38.9 11 1906 1906-11-01 04:00:01 blood 1895 #> 3790 38.9 11 1906 1906-11-01 04:00:01 bone 1895 #> 3791 64.7 12 1906 1906-12-01 14:00:01 blood 1896 #> 3792 64.7 12 1906 1906-12-01 14:00:01 bone 1896 #> 3793 76.4 1 1907 1907-01-01 00:00:00 blood 1897 #> 3794 76.4 1 1907 1907-01-01 00:00:00 bone 1897 #> 3795 108.2 2 1907 1907-01-31 10:00:01 blood 1898 #> 3796 108.2 2 1907 1907-01-31 10:00:01 bone 1898 #> 3797 60.7 3 1907 1907-03-02 20:00:01 blood 1899 #> 3798 60.7 3 1907 1907-03-02 20:00:01 bone 1899 #> 3799 52.6 4 1907 1907-04-02 06:00:00 blood 1900 #> 3800 52.6 4 1907 1907-04-02 06:00:00 bone 1900 #> 3801 42.9 5 1907 1907-05-02 16:00:01 blood 1901 #> 3802 42.9 5 1907 1907-05-02 16:00:01 bone 1901 #> 3803 40.4 6 1907 1907-06-02 02:00:01 blood 1902 #> 3804 40.4 6 1907 1907-06-02 02:00:01 bone 1902 #> 3805 49.7 7 1907 1907-07-02 12:00:00 blood 1903 #> 3806 49.7 7 1907 1907-07-02 12:00:00 bone 1903 #> 3807 54.3 8 1907 1907-08-01 22:00:01 blood 1904 #> 3808 54.3 8 1907 1907-08-01 22:00:01 bone 1904 #> 3809 85.0 9 1907 1907-09-01 08:00:01 blood 1905 #> 3810 85.0 9 1907 1907-09-01 08:00:01 bone 1905 #> 3811 65.4 10 1907 1907-10-01 18:00:00 blood 1906 #> 3812 65.4 10 1907 1907-10-01 18:00:00 bone 1906 #> 3813 61.5 11 1907 1907-11-01 04:00:01 blood 1907 #> 3814 61.5 11 1907 1907-11-01 04:00:01 bone 1907 #> 3815 47.3 12 1907 1907-12-01 14:00:01 blood 1908 #> 3816 47.3 12 1907 1907-12-01 14:00:01 bone 1908 #> 3817 39.2 1 1908 1908-01-01 00:00:00 blood 1909 #> 3818 39.2 1 1908 1908-01-01 00:00:00 bone 1909 #> 3819 33.9 2 1908 1908-01-31 12:00:01 blood 1910 #> 3820 33.9 2 1908 1908-01-31 12:00:01 bone 1910 #> 3821 28.7 3 1908 1908-03-02 00:00:01 blood 1911 #> 3822 28.7 3 1908 1908-03-02 00:00:01 bone 1911 #> 3823 57.6 4 1908 1908-04-01 12:00:00 blood 1912 #> 3824 57.6 4 1908 1908-04-01 12:00:00 bone 1912 #> 3825 40.8 5 1908 1908-05-02 00:00:01 blood 1913 #> 3826 40.8 5 1908 1908-05-02 00:00:01 bone 1913 #> 3827 48.1 6 1908 1908-06-01 12:00:01 blood 1914 #> 3828 48.1 6 1908 1908-06-01 12:00:01 bone 1914 #> 3829 39.5 7 1908 1908-07-02 00:00:00 blood 1915 #> 3830 39.5 7 1908 1908-07-02 00:00:00 bone 1915 #> 3831 90.5 8 1908 1908-08-01 12:00:01 blood 1916 #> 3832 90.5 8 1908 1908-08-01 12:00:01 bone 1916 #> 3833 86.9 9 1908 1908-09-01 00:00:01 blood 1917 #> 3834 86.9 9 1908 1908-09-01 00:00:01 bone 1917 #> 3835 32.3 10 1908 1908-10-01 12:00:00 blood 1918 #> 3836 32.3 10 1908 1908-10-01 12:00:00 bone 1918 #> 3837 45.5 11 1908 1908-11-01 00:00:01 blood 1919 #> 3838 45.5 11 1908 1908-11-01 00:00:01 bone 1919 #> 3839 39.5 12 1908 1908-12-01 12:00:01 blood 1920 #> 3840 39.5 12 1908 1908-12-01 12:00:01 bone 1920 #> 3841 56.7 1 1909 1909-01-01 00:00:00 blood 1921 #> 3842 56.7 1 1909 1909-01-01 00:00:00 bone 1921 #> 3843 46.6 2 1909 1909-01-31 10:00:01 blood 1922 #> 3844 46.6 2 1909 1909-01-31 10:00:01 bone 1922 #> 3845 66.3 3 1909 1909-03-02 20:00:01 blood 1923 #> 3846 66.3 3 1909 1909-03-02 20:00:01 bone 1923 #> 3847 32.3 4 1909 1909-04-02 06:00:00 blood 1924 #> 3848 32.3 4 1909 1909-04-02 06:00:00 bone 1924 #> 3849 36.0 5 1909 1909-05-02 16:00:01 blood 1925 #> 3850 36.0 5 1909 1909-05-02 16:00:01 bone 1925 #> 3851 22.6 6 1909 1909-06-02 02:00:01 blood 1926 #> 3852 22.6 6 1909 1909-06-02 02:00:01 bone 1926 #> 3853 35.8 7 1909 1909-07-02 12:00:00 blood 1927 #> 3854 35.8 7 1909 1909-07-02 12:00:00 bone 1927 #> 3855 23.1 8 1909 1909-08-01 22:00:01 blood 1928 #> 3856 23.1 8 1909 1909-08-01 22:00:01 bone 1928 #> 3857 38.8 9 1909 1909-09-01 08:00:01 blood 1929 #> 3858 38.8 9 1909 1909-09-01 08:00:01 bone 1929 #> 3859 58.4 10 1909 1909-10-01 18:00:00 blood 1930 #> 3860 58.4 10 1909 1909-10-01 18:00:00 bone 1930 #> 3861 55.8 11 1909 1909-11-01 04:00:01 blood 1931 #> 3862 55.8 11 1909 1909-11-01 04:00:01 bone 1931 #> 3863 54.2 12 1909 1909-12-01 14:00:01 blood 1932 #> 3864 54.2 12 1909 1909-12-01 14:00:01 bone 1932 #> 3865 26.4 1 1910 1910-01-01 00:00:00 blood 1933 #> 3866 26.4 1 1910 1910-01-01 00:00:00 bone 1933 #> 3867 31.5 2 1910 1910-01-31 10:00:01 blood 1934 #> 3868 31.5 2 1910 1910-01-31 10:00:01 bone 1934 #> 3869 21.4 3 1910 1910-03-02 20:00:01 blood 1935 #> 3870 21.4 3 1910 1910-03-02 20:00:01 bone 1935 #> 3871 8.4 4 1910 1910-04-02 06:00:00 blood 1936 #> 3872 8.4 4 1910 1910-04-02 06:00:00 bone 1936 #> 3873 22.2 5 1910 1910-05-02 16:00:01 blood 1937 #> 3874 22.2 5 1910 1910-05-02 16:00:01 bone 1937 #> 3875 12.3 6 1910 1910-06-02 02:00:01 blood 1938 #> 3876 12.3 6 1910 1910-06-02 02:00:01 bone 1938 #> 3877 14.1 7 1910 1910-07-02 12:00:00 blood 1939 #> 3878 14.1 7 1910 1910-07-02 12:00:00 bone 1939 #> 3879 11.5 8 1910 1910-08-01 22:00:01 blood 1940 #> 3880 11.5 8 1910 1910-08-01 22:00:01 bone 1940 #> 3881 26.2 9 1910 1910-09-01 08:00:01 blood 1941 #> 3882 26.2 9 1910 1910-09-01 08:00:01 bone 1941 #> 3883 38.3 10 1910 1910-10-01 18:00:00 blood 1942 #> 3884 38.3 10 1910 1910-10-01 18:00:00 bone 1942 #> 3885 4.9 11 1910 1910-11-01 04:00:01 blood 1943 #> 3886 4.9 11 1910 1910-11-01 04:00:01 bone 1943 #> 3887 5.8 12 1910 1910-12-01 14:00:01 blood 1944 #> 3888 5.8 12 1910 1910-12-01 14:00:01 bone 1944 #> 3889 3.4 1 1911 1911-01-01 00:00:00 blood 1945 #> 3890 3.4 1 1911 1911-01-01 00:00:00 bone 1945 #> 3891 9.0 2 1911 1911-01-31 10:00:01 blood 1946 #> 3892 9.0 2 1911 1911-01-31 10:00:01 bone 1946 #> 3893 7.8 3 1911 1911-03-02 20:00:01 blood 1947 #> 3894 7.8 3 1911 1911-03-02 20:00:01 bone 1947 #> 3895 16.5 4 1911 1911-04-02 06:00:00 blood 1948 #> 3896 16.5 4 1911 1911-04-02 06:00:00 bone 1948 #> 3897 9.0 5 1911 1911-05-02 16:00:01 blood 1949 #> 3898 9.0 5 1911 1911-05-02 16:00:01 bone 1949 #> 3899 2.2 6 1911 1911-06-02 02:00:01 blood 1950 #> 3900 2.2 6 1911 1911-06-02 02:00:01 bone 1950 #> 3901 3.5 7 1911 1911-07-02 12:00:00 blood 1951 #> 3902 3.5 7 1911 1911-07-02 12:00:00 bone 1951 #> 3903 4.0 8 1911 1911-08-01 22:00:01 blood 1952 #> 3904 4.0 8 1911 1911-08-01 22:00:01 bone 1952 #> 3905 4.0 9 1911 1911-09-01 08:00:01 blood 1953 #> 3906 4.0 9 1911 1911-09-01 08:00:01 bone 1953 #> 3907 2.6 10 1911 1911-10-01 18:00:00 blood 1954 #> 3908 2.6 10 1911 1911-10-01 18:00:00 bone 1954 #> 3909 4.2 11 1911 1911-11-01 04:00:01 blood 1955 #> 3910 4.2 11 1911 1911-11-01 04:00:01 bone 1955 #> 3911 2.2 12 1911 1911-12-01 14:00:01 blood 1956 #> 3912 2.2 12 1911 1911-12-01 14:00:01 bone 1956 #> 3913 0.3 1 1912 1912-01-01 00:00:00 blood 1957 #> 3914 0.3 1 1912 1912-01-01 00:00:00 bone 1957 #> 3915 0.0 2 1912 1912-01-31 12:00:01 blood 1958 #> 3916 0.0 2 1912 1912-01-31 12:00:01 bone 1958 #> 3917 4.9 3 1912 1912-03-02 00:00:01 blood 1959 #> 3918 4.9 3 1912 1912-03-02 00:00:01 bone 1959 #> 3919 4.5 4 1912 1912-04-01 12:00:00 blood 1960 #> 3920 4.5 4 1912 1912-04-01 12:00:00 bone 1960 #> 3921 4.4 5 1912 1912-05-02 00:00:01 blood 1961 #> 3922 4.4 5 1912 1912-05-02 00:00:01 bone 1961 #> 3923 4.1 6 1912 1912-06-01 12:00:01 blood 1962 #> 3924 4.1 6 1912 1912-06-01 12:00:01 bone 1962 #> 3925 3.0 7 1912 1912-07-02 00:00:00 blood 1963 #> 3926 3.0 7 1912 1912-07-02 00:00:00 bone 1963 #> 3927 0.3 8 1912 1912-08-01 12:00:01 blood 1964 #> 3928 0.3 8 1912 1912-08-01 12:00:01 bone 1964 #> 3929 9.5 9 1912 1912-09-01 00:00:01 blood 1965 #> 3930 9.5 9 1912 1912-09-01 00:00:01 bone 1965 #> 3931 4.6 10 1912 1912-10-01 12:00:00 blood 1966 #> 3932 4.6 10 1912 1912-10-01 12:00:00 bone 1966 #> 3933 1.1 11 1912 1912-11-01 00:00:01 blood 1967 #> 3934 1.1 11 1912 1912-11-01 00:00:01 bone 1967 #> 3935 6.4 12 1912 1912-12-01 12:00:01 blood 1968 #> 3936 6.4 12 1912 1912-12-01 12:00:01 bone 1968 #> 3937 2.3 1 1913 1913-01-01 00:00:00 blood 1969 #> 3938 2.3 1 1913 1913-01-01 00:00:00 bone 1969 #> 3939 2.9 2 1913 1913-01-31 10:00:01 blood 1970 #> 3940 2.9 2 1913 1913-01-31 10:00:01 bone 1970 #> 3941 0.5 3 1913 1913-03-02 20:00:01 blood 1971 #> 3942 0.5 3 1913 1913-03-02 20:00:01 bone 1971 #> 3943 0.9 4 1913 1913-04-02 06:00:00 blood 1972 #> 3944 0.9 4 1913 1913-04-02 06:00:00 bone 1972 #> 3945 0.0 5 1913 1913-05-02 16:00:01 blood 1973 #> 3946 0.0 5 1913 1913-05-02 16:00:01 bone 1973 #> 3947 0.0 6 1913 1913-06-02 02:00:01 blood 1974 #> 3948 0.0 6 1913 1913-06-02 02:00:01 bone 1974 #> 3949 1.7 7 1913 1913-07-02 12:00:00 blood 1975 #> 3950 1.7 7 1913 1913-07-02 12:00:00 bone 1975 #> 3951 0.2 8 1913 1913-08-01 22:00:01 blood 1976 #> 3952 0.2 8 1913 1913-08-01 22:00:01 bone 1976 #> 3953 1.2 9 1913 1913-09-01 08:00:01 blood 1977 #> 3954 1.2 9 1913 1913-09-01 08:00:01 bone 1977 #> 3955 3.1 10 1913 1913-10-01 18:00:00 blood 1978 #> 3956 3.1 10 1913 1913-10-01 18:00:00 bone 1978 #> 3957 0.7 11 1913 1913-11-01 04:00:01 blood 1979 #> 3958 0.7 11 1913 1913-11-01 04:00:01 bone 1979 #> 3959 3.8 12 1913 1913-12-01 14:00:01 blood 1980 #> 3960 3.8 12 1913 1913-12-01 14:00:01 bone 1980 #> 3961 2.8 1 1914 1914-01-01 00:00:00 blood 1981 #> 3962 2.8 1 1914 1914-01-01 00:00:00 bone 1981 #> 3963 2.6 2 1914 1914-01-31 10:00:01 blood 1982 #> 3964 2.6 2 1914 1914-01-31 10:00:01 bone 1982 #> 3965 3.1 3 1914 1914-03-02 20:00:01 blood 1983 #> 3966 3.1 3 1914 1914-03-02 20:00:01 bone 1983 #> 3967 17.3 4 1914 1914-04-02 06:00:00 blood 1984 #> 3968 17.3 4 1914 1914-04-02 06:00:00 bone 1984 #> 3969 5.2 5 1914 1914-05-02 16:00:01 blood 1985 #> 3970 5.2 5 1914 1914-05-02 16:00:01 bone 1985 #> 3971 11.4 6 1914 1914-06-02 02:00:01 blood 1986 #> 3972 11.4 6 1914 1914-06-02 02:00:01 bone 1986 #> 3973 5.4 7 1914 1914-07-02 12:00:00 blood 1987 #> 3974 5.4 7 1914 1914-07-02 12:00:00 bone 1987 #> 3975 7.7 8 1914 1914-08-01 22:00:01 blood 1988 #> 3976 7.7 8 1914 1914-08-01 22:00:01 bone 1988 #> 3977 12.7 9 1914 1914-09-01 08:00:01 blood 1989 #> 3978 12.7 9 1914 1914-09-01 08:00:01 bone 1989 #> 3979 8.2 10 1914 1914-10-01 18:00:00 blood 1990 #> 3980 8.2 10 1914 1914-10-01 18:00:00 bone 1990 #> 3981 16.4 11 1914 1914-11-01 04:00:01 blood 1991 #> 3982 16.4 11 1914 1914-11-01 04:00:01 bone 1991 #> 3983 22.3 12 1914 1914-12-01 14:00:01 blood 1992 #> 3984 22.3 12 1914 1914-12-01 14:00:01 bone 1992 #> 3985 23.0 1 1915 1915-01-01 00:00:00 blood 1993 #> 3986 23.0 1 1915 1915-01-01 00:00:00 bone 1993 #> 3987 42.3 2 1915 1915-01-31 10:00:01 blood 1994 #> 3988 42.3 2 1915 1915-01-31 10:00:01 bone 1994 #> 3989 38.8 3 1915 1915-03-02 20:00:01 blood 1995 #> 3990 38.8 3 1915 1915-03-02 20:00:01 bone 1995 #> 3991 41.3 4 1915 1915-04-02 06:00:00 blood 1996 #> 3992 41.3 4 1915 1915-04-02 06:00:00 bone 1996 #> 3993 33.0 5 1915 1915-05-02 16:00:01 blood 1997 #> 3994 33.0 5 1915 1915-05-02 16:00:01 bone 1997 #> 3995 68.8 6 1915 1915-06-02 02:00:01 blood 1998 #> 3996 68.8 6 1915 1915-06-02 02:00:01 bone 1998 #> 3997 71.6 7 1915 1915-07-02 12:00:00 blood 1999 #> 3998 71.6 7 1915 1915-07-02 12:00:00 bone 1999 #> 3999 69.6 8 1915 1915-08-01 22:00:01 blood 2000 #> 4000 69.6 8 1915 1915-08-01 22:00:01 bone 2000 #> 4001 49.5 9 1915 1915-09-01 08:00:01 blood 2001 #> 4002 49.5 9 1915 1915-09-01 08:00:01 bone 2001 #> 4003 53.5 10 1915 1915-10-01 18:00:00 blood 2002 #> 4004 53.5 10 1915 1915-10-01 18:00:00 bone 2002 #> 4005 42.5 11 1915 1915-11-01 04:00:01 blood 2003 #> 4006 42.5 11 1915 1915-11-01 04:00:01 bone 2003 #> 4007 34.5 12 1915 1915-12-01 14:00:01 blood 2004 #> 4008 34.5 12 1915 1915-12-01 14:00:01 bone 2004 #> 4009 45.3 1 1916 1916-01-01 00:00:00 blood 2005 #> 4010 45.3 1 1916 1916-01-01 00:00:00 bone 2005 #> 4011 55.4 2 1916 1916-01-31 12:00:01 blood 2006 #> 4012 55.4 2 1916 1916-01-31 12:00:01 bone 2006 #> 4013 67.0 3 1916 1916-03-02 00:00:01 blood 2007 #> 4014 67.0 3 1916 1916-03-02 00:00:01 bone 2007 #> 4015 71.8 4 1916 1916-04-01 12:00:00 blood 2008 #> 4016 71.8 4 1916 1916-04-01 12:00:00 bone 2008 #> 4017 74.5 5 1916 1916-05-02 00:00:01 blood 2009 #> 4018 74.5 5 1916 1916-05-02 00:00:01 bone 2009 #> 4019 67.7 6 1916 1916-06-01 12:00:01 blood 2010 #> 4020 67.7 6 1916 1916-06-01 12:00:01 bone 2010 #> 4021 53.5 7 1916 1916-07-02 00:00:00 blood 2011 #> 4022 53.5 7 1916 1916-07-02 00:00:00 bone 2011 #> 4023 35.2 8 1916 1916-08-01 12:00:01 blood 2012 #> 4024 35.2 8 1916 1916-08-01 12:00:01 bone 2012 #> 4025 45.1 9 1916 1916-09-01 00:00:01 blood 2013 #> 4026 45.1 9 1916 1916-09-01 00:00:01 bone 2013 #> 4027 50.7 10 1916 1916-10-01 12:00:00 blood 2014 #> 4028 50.7 10 1916 1916-10-01 12:00:00 bone 2014 #> 4029 65.6 11 1916 1916-11-01 00:00:01 blood 2015 #> 4030 65.6 11 1916 1916-11-01 00:00:01 bone 2015 #> 4031 53.0 12 1916 1916-12-01 12:00:01 blood 2016 #> 4032 53.0 12 1916 1916-12-01 12:00:01 bone 2016 #> 4033 74.7 1 1917 1917-01-01 00:00:00 blood 2017 #> 4034 74.7 1 1917 1917-01-01 00:00:00 bone 2017 #> 4035 71.9 2 1917 1917-01-31 10:00:01 blood 2018 #> 4036 71.9 2 1917 1917-01-31 10:00:01 bone 2018 #> 4037 94.8 3 1917 1917-03-02 20:00:01 blood 2019 #> 4038 94.8 3 1917 1917-03-02 20:00:01 bone 2019 #> 4039 74.7 4 1917 1917-04-02 06:00:00 blood 2020 #> 4040 74.7 4 1917 1917-04-02 06:00:00 bone 2020 #> 4041 114.1 5 1917 1917-05-02 16:00:01 blood 2021 #> 4042 114.1 5 1917 1917-05-02 16:00:01 bone 2021 #> 4043 114.9 6 1917 1917-06-02 02:00:01 blood 2022 #> 4044 114.9 6 1917 1917-06-02 02:00:01 bone 2022 #> 4045 119.8 7 1917 1917-07-02 12:00:00 blood 2023 #> 4046 119.8 7 1917 1917-07-02 12:00:00 bone 2023 #> 4047 154.5 8 1917 1917-08-01 22:00:01 blood 2024 #> 4048 154.5 8 1917 1917-08-01 22:00:01 bone 2024 #> 4049 129.4 9 1917 1917-09-01 08:00:01 blood 2025 #> 4050 129.4 9 1917 1917-09-01 08:00:01 bone 2025 #> 4051 72.2 10 1917 1917-10-01 18:00:00 blood 2026 #> 4052 72.2 10 1917 1917-10-01 18:00:00 bone 2026 #> 4053 96.4 11 1917 1917-11-01 04:00:01 blood 2027 #> 4054 96.4 11 1917 1917-11-01 04:00:01 bone 2027 #> 4055 129.3 12 1917 1917-12-01 14:00:01 blood 2028 #> 4056 129.3 12 1917 1917-12-01 14:00:01 bone 2028 #> 4057 96.0 1 1918 1918-01-01 00:00:00 blood 2029 #> 4058 96.0 1 1918 1918-01-01 00:00:00 bone 2029 #> 4059 65.3 2 1918 1918-01-31 10:00:01 blood 2030 #> 4060 65.3 2 1918 1918-01-31 10:00:01 bone 2030 #> 4061 72.2 3 1918 1918-03-02 20:00:01 blood 2031 #> 4062 72.2 3 1918 1918-03-02 20:00:01 bone 2031 #> 4063 80.5 4 1918 1918-04-02 06:00:00 blood 2032 #> 4064 80.5 4 1918 1918-04-02 06:00:00 bone 2032 #> 4065 76.7 5 1918 1918-05-02 16:00:01 blood 2033 #> 4066 76.7 5 1918 1918-05-02 16:00:01 bone 2033 #> 4067 59.4 6 1918 1918-06-02 02:00:01 blood 2034 #> 4068 59.4 6 1918 1918-06-02 02:00:01 bone 2034 #> 4069 107.6 7 1918 1918-07-02 12:00:00 blood 2035 #> 4070 107.6 7 1918 1918-07-02 12:00:00 bone 2035 #> 4071 101.7 8 1918 1918-08-01 22:00:01 blood 2036 #> 4072 101.7 8 1918 1918-08-01 22:00:01 bone 2036 #> 4073 79.9 9 1918 1918-09-01 08:00:01 blood 2037 #> 4074 79.9 9 1918 1918-09-01 08:00:01 bone 2037 #> 4075 85.0 10 1918 1918-10-01 18:00:00 blood 2038 #> 4076 85.0 10 1918 1918-10-01 18:00:00 bone 2038 #> 4077 83.4 11 1918 1918-11-01 04:00:01 blood 2039 #> 4078 83.4 11 1918 1918-11-01 04:00:01 bone 2039 #> 4079 59.2 12 1918 1918-12-01 14:00:01 blood 2040 #> 4080 59.2 12 1918 1918-12-01 14:00:01 bone 2040 #> 4081 48.1 1 1919 1919-01-01 00:00:00 blood 2041 #> 4082 48.1 1 1919 1919-01-01 00:00:00 bone 2041 #> 4083 79.5 2 1919 1919-01-31 10:00:01 blood 2042 #> 4084 79.5 2 1919 1919-01-31 10:00:01 bone 2042 #> 4085 66.5 3 1919 1919-03-02 20:00:01 blood 2043 #> 4086 66.5 3 1919 1919-03-02 20:00:01 bone 2043 #> 4087 51.8 4 1919 1919-04-02 06:00:00 blood 2044 #> 4088 51.8 4 1919 1919-04-02 06:00:00 bone 2044 #> 4089 88.1 5 1919 1919-05-02 16:00:01 blood 2045 #> 4090 88.1 5 1919 1919-05-02 16:00:01 bone 2045 #> 4091 111.2 6 1919 1919-06-02 02:00:01 blood 2046 #> 4092 111.2 6 1919 1919-06-02 02:00:01 bone 2046 #> 4093 64.7 7 1919 1919-07-02 12:00:00 blood 2047 #> 4094 64.7 7 1919 1919-07-02 12:00:00 bone 2047 #> 4095 69.0 8 1919 1919-08-01 22:00:01 blood 2048 #> 4096 69.0 8 1919 1919-08-01 22:00:01 bone 2048 #> 4097 54.7 9 1919 1919-09-01 08:00:01 blood 2049 #> 4098 54.7 9 1919 1919-09-01 08:00:01 bone 2049 #> 4099 52.8 10 1919 1919-10-01 18:00:00 blood 2050 #> 4100 52.8 10 1919 1919-10-01 18:00:00 bone 2050 #> 4101 42.0 11 1919 1919-11-01 04:00:01 blood 2051 #> 4102 42.0 11 1919 1919-11-01 04:00:01 bone 2051 #> 4103 34.9 12 1919 1919-12-01 14:00:01 blood 2052 #> 4104 34.9 12 1919 1919-12-01 14:00:01 bone 2052 #> 4105 51.1 1 1920 1920-01-01 00:00:00 blood 2053 #> 4106 51.1 1 1920 1920-01-01 00:00:00 bone 2053 #> 4107 53.9 2 1920 1920-01-31 12:00:01 blood 2054 #> 4108 53.9 2 1920 1920-01-31 12:00:01 bone 2054 #> 4109 70.2 3 1920 1920-03-02 00:00:01 blood 2055 #> 4110 70.2 3 1920 1920-03-02 00:00:01 bone 2055 #> 4111 14.8 4 1920 1920-04-01 12:00:00 blood 2056 #> 4112 14.8 4 1920 1920-04-01 12:00:00 bone 2056 #> 4113 33.3 5 1920 1920-05-02 00:00:01 blood 2057 #> 4114 33.3 5 1920 1920-05-02 00:00:01 bone 2057 #> 4115 38.7 6 1920 1920-06-01 12:00:01 blood 2058 #> 4116 38.7 6 1920 1920-06-01 12:00:01 bone 2058 #> 4117 27.5 7 1920 1920-07-02 00:00:00 blood 2059 #> 4118 27.5 7 1920 1920-07-02 00:00:00 bone 2059 #> 4119 19.2 8 1920 1920-08-01 12:00:01 blood 2060 #> 4120 19.2 8 1920 1920-08-01 12:00:01 bone 2060 #> 4121 36.3 9 1920 1920-09-01 00:00:01 blood 2061 #> 4122 36.3 9 1920 1920-09-01 00:00:01 bone 2061 #> 4123 49.6 10 1920 1920-10-01 12:00:00 blood 2062 #> 4124 49.6 10 1920 1920-10-01 12:00:00 bone 2062 #> 4125 27.2 11 1920 1920-11-01 00:00:01 blood 2063 #> 4126 27.2 11 1920 1920-11-01 00:00:01 bone 2063 #> 4127 29.9 12 1920 1920-12-01 12:00:01 blood 2064 #> 4128 29.9 12 1920 1920-12-01 12:00:01 bone 2064 #> 4129 31.5 1 1921 1921-01-01 00:00:00 blood 2065 #> 4130 31.5 1 1921 1921-01-01 00:00:00 bone 2065 #> 4131 28.3 2 1921 1921-01-31 10:00:01 blood 2066 #> 4132 28.3 2 1921 1921-01-31 10:00:01 bone 2066 #> 4133 26.7 3 1921 1921-03-02 20:00:01 blood 2067 #> 4134 26.7 3 1921 1921-03-02 20:00:01 bone 2067 #> 4135 32.4 4 1921 1921-04-02 06:00:00 blood 2068 #> 4136 32.4 4 1921 1921-04-02 06:00:00 bone 2068 #> 4137 22.2 5 1921 1921-05-02 16:00:01 blood 2069 #> 4138 22.2 5 1921 1921-05-02 16:00:01 bone 2069 #> 4139 33.7 6 1921 1921-06-02 02:00:01 blood 2070 #> 4140 33.7 6 1921 1921-06-02 02:00:01 bone 2070 #> 4141 41.9 7 1921 1921-07-02 12:00:00 blood 2071 #> 4142 41.9 7 1921 1921-07-02 12:00:00 bone 2071 #> 4143 22.8 8 1921 1921-08-01 22:00:01 blood 2072 #> 4144 22.8 8 1921 1921-08-01 22:00:01 bone 2072 #> 4145 17.8 9 1921 1921-09-01 08:00:01 blood 2073 #> 4146 17.8 9 1921 1921-09-01 08:00:01 bone 2073 #> 4147 18.2 10 1921 1921-10-01 18:00:00 blood 2074 #> 4148 18.2 10 1921 1921-10-01 18:00:00 bone 2074 #> 4149 17.8 11 1921 1921-11-01 04:00:01 blood 2075 #> 4150 17.8 11 1921 1921-11-01 04:00:01 bone 2075 #> 4151 20.3 12 1921 1921-12-01 14:00:01 blood 2076 #> 4152 20.3 12 1921 1921-12-01 14:00:01 bone 2076 #> 4153 11.8 1 1922 1922-01-01 00:00:00 blood 2077 #> 4154 11.8 1 1922 1922-01-01 00:00:00 bone 2077 #> 4155 26.4 2 1922 1922-01-31 10:00:01 blood 2078 #> 4156 26.4 2 1922 1922-01-31 10:00:01 bone 2078 #> 4157 54.7 3 1922 1922-03-02 20:00:01 blood 2079 #> 4158 54.7 3 1922 1922-03-02 20:00:01 bone 2079 #> 4159 11.0 4 1922 1922-04-02 06:00:00 blood 2080 #> 4160 11.0 4 1922 1922-04-02 06:00:00 bone 2080 #> 4161 8.0 5 1922 1922-05-02 16:00:01 blood 2081 #> 4162 8.0 5 1922 1922-05-02 16:00:01 bone 2081 #> 4163 5.8 6 1922 1922-06-02 02:00:01 blood 2082 #> 4164 5.8 6 1922 1922-06-02 02:00:01 bone 2082 #> 4165 10.9 7 1922 1922-07-02 12:00:00 blood 2083 #> 4166 10.9 7 1922 1922-07-02 12:00:00 bone 2083 #> 4167 6.5 8 1922 1922-08-01 22:00:01 blood 2084 #> 4168 6.5 8 1922 1922-08-01 22:00:01 bone 2084 #> 4169 4.7 9 1922 1922-09-01 08:00:01 blood 2085 #> 4170 4.7 9 1922 1922-09-01 08:00:01 bone 2085 #> 4171 6.2 10 1922 1922-10-01 18:00:00 blood 2086 #> 4172 6.2 10 1922 1922-10-01 18:00:00 bone 2086 #> 4173 7.4 11 1922 1922-11-01 04:00:01 blood 2087 #> 4174 7.4 11 1922 1922-11-01 04:00:01 bone 2087 #> 4175 17.5 12 1922 1922-12-01 14:00:01 blood 2088 #> 4176 17.5 12 1922 1922-12-01 14:00:01 bone 2088 #> 4177 4.5 1 1923 1923-01-01 00:00:00 blood 2089 #> 4178 4.5 1 1923 1923-01-01 00:00:00 bone 2089 #> 4179 1.5 2 1923 1923-01-31 10:00:01 blood 2090 #> 4180 1.5 2 1923 1923-01-31 10:00:01 bone 2090 #> 4181 3.3 3 1923 1923-03-02 20:00:01 blood 2091 #> 4182 3.3 3 1923 1923-03-02 20:00:01 bone 2091 #> 4183 6.1 4 1923 1923-04-02 06:00:00 blood 2092 #> 4184 6.1 4 1923 1923-04-02 06:00:00 bone 2092 #> 4185 3.2 5 1923 1923-05-02 16:00:01 blood 2093 #> 4186 3.2 5 1923 1923-05-02 16:00:01 bone 2093 #> 4187 9.1 6 1923 1923-06-02 02:00:01 blood 2094 #> 4188 9.1 6 1923 1923-06-02 02:00:01 bone 2094 #> 4189 3.5 7 1923 1923-07-02 12:00:00 blood 2095 #> 4190 3.5 7 1923 1923-07-02 12:00:00 bone 2095 #> 4191 0.5 8 1923 1923-08-01 22:00:01 blood 2096 #> 4192 0.5 8 1923 1923-08-01 22:00:01 bone 2096 #> 4193 13.2 9 1923 1923-09-01 08:00:01 blood 2097 #> 4194 13.2 9 1923 1923-09-01 08:00:01 bone 2097 #> 4195 11.6 10 1923 1923-10-01 18:00:00 blood 2098 #> 4196 11.6 10 1923 1923-10-01 18:00:00 bone 2098 #> 4197 10.0 11 1923 1923-11-01 04:00:01 blood 2099 #> 4198 10.0 11 1923 1923-11-01 04:00:01 bone 2099 #> 4199 2.8 12 1923 1923-12-01 14:00:01 blood 2100 #> 4200 2.8 12 1923 1923-12-01 14:00:01 bone 2100 #> 4201 0.5 1 1924 1924-01-01 00:00:00 blood 2101 #> 4202 0.5 1 1924 1924-01-01 00:00:00 bone 2101 #> 4203 5.1 2 1924 1924-01-31 12:00:01 blood 2102 #> 4204 5.1 2 1924 1924-01-31 12:00:01 bone 2102 #> 4205 1.8 3 1924 1924-03-02 00:00:01 blood 2103 #> 4206 1.8 3 1924 1924-03-02 00:00:01 bone 2103 #> 4207 11.3 4 1924 1924-04-01 12:00:00 blood 2104 #> 4208 11.3 4 1924 1924-04-01 12:00:00 bone 2104 #> 4209 20.8 5 1924 1924-05-02 00:00:01 blood 2105 #> 4210 20.8 5 1924 1924-05-02 00:00:01 bone 2105 #> 4211 24.0 6 1924 1924-06-01 12:00:01 blood 2106 #> 4212 24.0 6 1924 1924-06-01 12:00:01 bone 2106 #> 4213 28.1 7 1924 1924-07-02 00:00:00 blood 2107 #> 4214 28.1 7 1924 1924-07-02 00:00:00 bone 2107 #> 4215 19.3 8 1924 1924-08-01 12:00:01 blood 2108 #> 4216 19.3 8 1924 1924-08-01 12:00:01 bone 2108 #> 4217 25.1 9 1924 1924-09-01 00:00:01 blood 2109 #> 4218 25.1 9 1924 1924-09-01 00:00:01 bone 2109 #> 4219 25.6 10 1924 1924-10-01 12:00:00 blood 2110 #> 4220 25.6 10 1924 1924-10-01 12:00:00 bone 2110 #> 4221 22.5 11 1924 1924-11-01 00:00:01 blood 2111 #> 4222 22.5 11 1924 1924-11-01 00:00:01 bone 2111 #> 4223 16.5 12 1924 1924-12-01 12:00:01 blood 2112 #> 4224 16.5 12 1924 1924-12-01 12:00:01 bone 2112 #> 4225 5.5 1 1925 1925-01-01 00:00:00 blood 2113 #> 4226 5.5 1 1925 1925-01-01 00:00:00 bone 2113 #> 4227 23.2 2 1925 1925-01-31 10:00:01 blood 2114 #> 4228 23.2 2 1925 1925-01-31 10:00:01 bone 2114 #> 4229 18.0 3 1925 1925-03-02 20:00:01 blood 2115 #> 4230 18.0 3 1925 1925-03-02 20:00:01 bone 2115 #> 4231 31.7 4 1925 1925-04-02 06:00:00 blood 2116 #> 4232 31.7 4 1925 1925-04-02 06:00:00 bone 2116 #> 4233 42.8 5 1925 1925-05-02 16:00:01 blood 2117 #> 4234 42.8 5 1925 1925-05-02 16:00:01 bone 2117 #> 4235 47.5 6 1925 1925-06-02 02:00:01 blood 2118 #> 4236 47.5 6 1925 1925-06-02 02:00:01 bone 2118 #> 4237 38.5 7 1925 1925-07-02 12:00:00 blood 2119 #> 4238 38.5 7 1925 1925-07-02 12:00:00 bone 2119 #> 4239 37.9 8 1925 1925-08-01 22:00:01 blood 2120 #> 4240 37.9 8 1925 1925-08-01 22:00:01 bone 2120 #> 4241 60.2 9 1925 1925-09-01 08:00:01 blood 2121 #> 4242 60.2 9 1925 1925-09-01 08:00:01 bone 2121 #> 4243 69.2 10 1925 1925-10-01 18:00:00 blood 2122 #> 4244 69.2 10 1925 1925-10-01 18:00:00 bone 2122 #> 4245 58.6 11 1925 1925-11-01 04:00:01 blood 2123 #> 4246 58.6 11 1925 1925-11-01 04:00:01 bone 2123 #> 4247 98.6 12 1925 1925-12-01 14:00:01 blood 2124 #> 4248 98.6 12 1925 1925-12-01 14:00:01 bone 2124 #> 4249 71.8 1 1926 1926-01-01 00:00:00 blood 2125 #> 4250 71.8 1 1926 1926-01-01 00:00:00 bone 2125 #> 4251 70.0 2 1926 1926-01-31 10:00:01 blood 2126 #> 4252 70.0 2 1926 1926-01-31 10:00:01 bone 2126 #> 4253 62.5 3 1926 1926-03-02 20:00:01 blood 2127 #> 4254 62.5 3 1926 1926-03-02 20:00:01 bone 2127 #> 4255 38.5 4 1926 1926-04-02 06:00:00 blood 2128 #> 4256 38.5 4 1926 1926-04-02 06:00:00 bone 2128 #> 4257 64.3 5 1926 1926-05-02 16:00:01 blood 2129 #> 4258 64.3 5 1926 1926-05-02 16:00:01 bone 2129 #> 4259 73.5 6 1926 1926-06-02 02:00:01 blood 2130 #> 4260 73.5 6 1926 1926-06-02 02:00:01 bone 2130 #> 4261 52.3 7 1926 1926-07-02 12:00:00 blood 2131 #> 4262 52.3 7 1926 1926-07-02 12:00:00 bone 2131 #> 4263 61.6 8 1926 1926-08-01 22:00:01 blood 2132 #> 4264 61.6 8 1926 1926-08-01 22:00:01 bone 2132 #> 4265 60.8 9 1926 1926-09-01 08:00:01 blood 2133 #> 4266 60.8 9 1926 1926-09-01 08:00:01 bone 2133 #> 4267 71.5 10 1926 1926-10-01 18:00:00 blood 2134 #> 4268 71.5 10 1926 1926-10-01 18:00:00 bone 2134 #> 4269 60.5 11 1926 1926-11-01 04:00:01 blood 2135 #> 4270 60.5 11 1926 1926-11-01 04:00:01 bone 2135 #> 4271 79.4 12 1926 1926-12-01 14:00:01 blood 2136 #> 4272 79.4 12 1926 1926-12-01 14:00:01 bone 2136 #> 4273 81.6 1 1927 1927-01-01 00:00:00 blood 2137 #> 4274 81.6 1 1927 1927-01-01 00:00:00 bone 2137 #> 4275 93.0 2 1927 1927-01-31 10:00:01 blood 2138 #> 4276 93.0 2 1927 1927-01-31 10:00:01 bone 2138 #> 4277 69.6 3 1927 1927-03-02 20:00:01 blood 2139 #> 4278 69.6 3 1927 1927-03-02 20:00:01 bone 2139 #> 4279 93.5 4 1927 1927-04-02 06:00:00 blood 2140 #> 4280 93.5 4 1927 1927-04-02 06:00:00 bone 2140 #> 4281 79.1 5 1927 1927-05-02 16:00:01 blood 2141 #> 4282 79.1 5 1927 1927-05-02 16:00:01 bone 2141 #> 4283 59.1 6 1927 1927-06-02 02:00:01 blood 2142 #> 4284 59.1 6 1927 1927-06-02 02:00:01 bone 2142 #> 4285 54.9 7 1927 1927-07-02 12:00:00 blood 2143 #> 4286 54.9 7 1927 1927-07-02 12:00:00 bone 2143 #> 4287 53.8 8 1927 1927-08-01 22:00:01 blood 2144 #> 4288 53.8 8 1927 1927-08-01 22:00:01 bone 2144 #> 4289 68.4 9 1927 1927-09-01 08:00:01 blood 2145 #> 4290 68.4 9 1927 1927-09-01 08:00:01 bone 2145 #> 4291 63.1 10 1927 1927-10-01 18:00:00 blood 2146 #> 4292 63.1 10 1927 1927-10-01 18:00:00 bone 2146 #> 4293 67.2 11 1927 1927-11-01 04:00:01 blood 2147 #> 4294 67.2 11 1927 1927-11-01 04:00:01 bone 2147 #> 4295 45.2 12 1927 1927-12-01 14:00:01 blood 2148 #> 4296 45.2 12 1927 1927-12-01 14:00:01 bone 2148 #> 4297 83.5 1 1928 1928-01-01 00:00:00 blood 2149 #> 4298 83.5 1 1928 1928-01-01 00:00:00 bone 2149 #> 4299 73.5 2 1928 1928-01-31 12:00:01 blood 2150 #> 4300 73.5 2 1928 1928-01-31 12:00:01 bone 2150 #> 4301 85.4 3 1928 1928-03-02 00:00:01 blood 2151 #> 4302 85.4 3 1928 1928-03-02 00:00:01 bone 2151 #> 4303 80.6 4 1928 1928-04-01 12:00:00 blood 2152 #> 4304 80.6 4 1928 1928-04-01 12:00:00 bone 2152 #> 4305 76.9 5 1928 1928-05-02 00:00:01 blood 2153 #> 4306 76.9 5 1928 1928-05-02 00:00:01 bone 2153 #> 4307 91.4 6 1928 1928-06-01 12:00:01 blood 2154 #> 4308 91.4 6 1928 1928-06-01 12:00:01 bone 2154 #> 4309 98.0 7 1928 1928-07-02 00:00:00 blood 2155 #> 4310 98.0 7 1928 1928-07-02 00:00:00 bone 2155 #> 4311 83.8 8 1928 1928-08-01 12:00:01 blood 2156 #> 4312 83.8 8 1928 1928-08-01 12:00:01 bone 2156 #> 4313 89.7 9 1928 1928-09-01 00:00:01 blood 2157 #> 4314 89.7 9 1928 1928-09-01 00:00:01 bone 2157 #> 4315 61.4 10 1928 1928-10-01 12:00:00 blood 2158 #> 4316 61.4 10 1928 1928-10-01 12:00:00 bone 2158 #> 4317 50.3 11 1928 1928-11-01 00:00:01 blood 2159 #> 4318 50.3 11 1928 1928-11-01 00:00:01 bone 2159 #> 4319 59.0 12 1928 1928-12-01 12:00:01 blood 2160 #> 4320 59.0 12 1928 1928-12-01 12:00:01 bone 2160 #> 4321 68.9 1 1929 1929-01-01 00:00:00 blood 2161 #> 4322 68.9 1 1929 1929-01-01 00:00:00 bone 2161 #> 4323 64.1 2 1929 1929-01-31 10:00:01 blood 2162 #> 4324 64.1 2 1929 1929-01-31 10:00:01 bone 2162 #> 4325 50.2 3 1929 1929-03-02 20:00:01 blood 2163 #> 4326 50.2 3 1929 1929-03-02 20:00:01 bone 2163 #> 4327 52.8 4 1929 1929-04-02 06:00:00 blood 2164 #> 4328 52.8 4 1929 1929-04-02 06:00:00 bone 2164 #> 4329 58.2 5 1929 1929-05-02 16:00:01 blood 2165 #> 4330 58.2 5 1929 1929-05-02 16:00:01 bone 2165 #> 4331 71.9 6 1929 1929-06-02 02:00:01 blood 2166 #> 4332 71.9 6 1929 1929-06-02 02:00:01 bone 2166 #> 4333 70.2 7 1929 1929-07-02 12:00:00 blood 2167 #> 4334 70.2 7 1929 1929-07-02 12:00:00 bone 2167 #> 4335 65.8 8 1929 1929-08-01 22:00:01 blood 2168 #> 4336 65.8 8 1929 1929-08-01 22:00:01 bone 2168 #> 4337 34.4 9 1929 1929-09-01 08:00:01 blood 2169 #> 4338 34.4 9 1929 1929-09-01 08:00:01 bone 2169 #> 4339 54.0 10 1929 1929-10-01 18:00:00 blood 2170 #> 4340 54.0 10 1929 1929-10-01 18:00:00 bone 2170 #> 4341 81.1 11 1929 1929-11-01 04:00:01 blood 2171 #> 4342 81.1 11 1929 1929-11-01 04:00:01 bone 2171 #> 4343 108.0 12 1929 1929-12-01 14:00:01 blood 2172 #> 4344 108.0 12 1929 1929-12-01 14:00:01 bone 2172 #> 4345 65.3 1 1930 1930-01-01 00:00:00 blood 2173 #> 4346 65.3 1 1930 1930-01-01 00:00:00 bone 2173 #> 4347 49.2 2 1930 1930-01-31 10:00:01 blood 2174 #> 4348 49.2 2 1930 1930-01-31 10:00:01 bone 2174 #> 4349 35.0 3 1930 1930-03-02 20:00:01 blood 2175 #> 4350 35.0 3 1930 1930-03-02 20:00:01 bone 2175 #> 4351 38.2 4 1930 1930-04-02 06:00:00 blood 2176 #> 4352 38.2 4 1930 1930-04-02 06:00:00 bone 2176 #> 4353 36.8 5 1930 1930-05-02 16:00:01 blood 2177 #> 4354 36.8 5 1930 1930-05-02 16:00:01 bone 2177 #> 4355 28.8 6 1930 1930-06-02 02:00:01 blood 2178 #> 4356 28.8 6 1930 1930-06-02 02:00:01 bone 2178 #> 4357 21.9 7 1930 1930-07-02 12:00:00 blood 2179 #> 4358 21.9 7 1930 1930-07-02 12:00:00 bone 2179 #> 4359 24.9 8 1930 1930-08-01 22:00:01 blood 2180 #> 4360 24.9 8 1930 1930-08-01 22:00:01 bone 2180 #> 4361 32.1 9 1930 1930-09-01 08:00:01 blood 2181 #> 4362 32.1 9 1930 1930-09-01 08:00:01 bone 2181 #> 4363 34.4 10 1930 1930-10-01 18:00:00 blood 2182 #> 4364 34.4 10 1930 1930-10-01 18:00:00 bone 2182 #> 4365 35.6 11 1930 1930-11-01 04:00:01 blood 2183 #> 4366 35.6 11 1930 1930-11-01 04:00:01 bone 2183 #> 4367 25.8 12 1930 1930-12-01 14:00:01 blood 2184 #> 4368 25.8 12 1930 1930-12-01 14:00:01 bone 2184 #> 4369 14.6 1 1931 1931-01-01 00:00:00 blood 2185 #> 4370 14.6 1 1931 1931-01-01 00:00:00 bone 2185 #> 4371 43.1 2 1931 1931-01-31 10:00:01 blood 2186 #> 4372 43.1 2 1931 1931-01-31 10:00:01 bone 2186 #> 4373 30.0 3 1931 1931-03-02 20:00:01 blood 2187 #> 4374 30.0 3 1931 1931-03-02 20:00:01 bone 2187 #> 4375 31.2 4 1931 1931-04-02 06:00:00 blood 2188 #> 4376 31.2 4 1931 1931-04-02 06:00:00 bone 2188 #> 4377 24.6 5 1931 1931-05-02 16:00:01 blood 2189 #> 4378 24.6 5 1931 1931-05-02 16:00:01 bone 2189 #> 4379 15.3 6 1931 1931-06-02 02:00:01 blood 2190 #> 4380 15.3 6 1931 1931-06-02 02:00:01 bone 2190 #> 4381 17.4 7 1931 1931-07-02 12:00:00 blood 2191 #> 4382 17.4 7 1931 1931-07-02 12:00:00 bone 2191 #> 4383 13.0 8 1931 1931-08-01 22:00:01 blood 2192 #> 4384 13.0 8 1931 1931-08-01 22:00:01 bone 2192 #> 4385 19.0 9 1931 1931-09-01 08:00:01 blood 2193 #> 4386 19.0 9 1931 1931-09-01 08:00:01 bone 2193 #> 4387 10.0 10 1931 1931-10-01 18:00:00 blood 2194 #> 4388 10.0 10 1931 1931-10-01 18:00:00 bone 2194 #> 4389 18.7 11 1931 1931-11-01 04:00:01 blood 2195 #> 4390 18.7 11 1931 1931-11-01 04:00:01 bone 2195 #> 4391 17.8 12 1931 1931-12-01 14:00:01 blood 2196 #> 4392 17.8 12 1931 1931-12-01 14:00:01 bone 2196 #> 4393 12.1 1 1932 1932-01-01 00:00:00 blood 2197 #> 4394 12.1 1 1932 1932-01-01 00:00:00 bone 2197 #> 4395 10.6 2 1932 1932-01-31 12:00:01 blood 2198 #> 4396 10.6 2 1932 1932-01-31 12:00:01 bone 2198 #> 4397 11.2 3 1932 1932-03-02 00:00:01 blood 2199 #> 4398 11.2 3 1932 1932-03-02 00:00:01 bone 2199 #> 4399 11.2 4 1932 1932-04-01 12:00:00 blood 2200 #> 4400 11.2 4 1932 1932-04-01 12:00:00 bone 2200 #> 4401 17.9 5 1932 1932-05-02 00:00:01 blood 2201 #> 4402 17.9 5 1932 1932-05-02 00:00:01 bone 2201 #> 4403 22.2 6 1932 1932-06-01 12:00:01 blood 2202 #> 4404 22.2 6 1932 1932-06-01 12:00:01 bone 2202 #> 4405 9.6 7 1932 1932-07-02 00:00:00 blood 2203 #> 4406 9.6 7 1932 1932-07-02 00:00:00 bone 2203 #> 4407 6.8 8 1932 1932-08-01 12:00:01 blood 2204 #> 4408 6.8 8 1932 1932-08-01 12:00:01 bone 2204 #> 4409 4.0 9 1932 1932-09-01 00:00:01 blood 2205 #> 4410 4.0 9 1932 1932-09-01 00:00:01 bone 2205 #> 4411 8.9 10 1932 1932-10-01 12:00:00 blood 2206 #> 4412 8.9 10 1932 1932-10-01 12:00:00 bone 2206 #> 4413 8.2 11 1932 1932-11-01 00:00:01 blood 2207 #> 4414 8.2 11 1932 1932-11-01 00:00:01 bone 2207 #> 4415 11.0 12 1932 1932-12-01 12:00:01 blood 2208 #> 4416 11.0 12 1932 1932-12-01 12:00:01 bone 2208 #> 4417 12.3 1 1933 1933-01-01 00:00:00 blood 2209 #> 4418 12.3 1 1933 1933-01-01 00:00:00 bone 2209 #> 4419 22.2 2 1933 1933-01-31 10:00:01 blood 2210 #> 4420 22.2 2 1933 1933-01-31 10:00:01 bone 2210 #> 4421 10.1 3 1933 1933-03-02 20:00:01 blood 2211 #> 4422 10.1 3 1933 1933-03-02 20:00:01 bone 2211 #> 4423 2.9 4 1933 1933-04-02 06:00:00 blood 2212 #> 4424 2.9 4 1933 1933-04-02 06:00:00 bone 2212 #> 4425 3.2 5 1933 1933-05-02 16:00:01 blood 2213 #> 4426 3.2 5 1933 1933-05-02 16:00:01 bone 2213 #> 4427 5.2 6 1933 1933-06-02 02:00:01 blood 2214 #> 4428 5.2 6 1933 1933-06-02 02:00:01 bone 2214 #> 4429 2.8 7 1933 1933-07-02 12:00:00 blood 2215 #> 4430 2.8 7 1933 1933-07-02 12:00:00 bone 2215 #> 4431 0.2 8 1933 1933-08-01 22:00:01 blood 2216 #> 4432 0.2 8 1933 1933-08-01 22:00:01 bone 2216 #> 4433 5.1 9 1933 1933-09-01 08:00:01 blood 2217 #> 4434 5.1 9 1933 1933-09-01 08:00:01 bone 2217 #> 4435 3.0 10 1933 1933-10-01 18:00:00 blood 2218 #> 4436 3.0 10 1933 1933-10-01 18:00:00 bone 2218 #> 4437 0.6 11 1933 1933-11-01 04:00:01 blood 2219 #> 4438 0.6 11 1933 1933-11-01 04:00:01 bone 2219 #> 4439 0.3 12 1933 1933-12-01 14:00:01 blood 2220 #> 4440 0.3 12 1933 1933-12-01 14:00:01 bone 2220 #> 4441 3.4 1 1934 1934-01-01 00:00:00 blood 2221 #> 4442 3.4 1 1934 1934-01-01 00:00:00 bone 2221 #> 4443 7.8 2 1934 1934-01-31 10:00:01 blood 2222 #> 4444 7.8 2 1934 1934-01-31 10:00:01 bone 2222 #> 4445 4.3 3 1934 1934-03-02 20:00:01 blood 2223 #> 4446 4.3 3 1934 1934-03-02 20:00:01 bone 2223 #> 4447 11.3 4 1934 1934-04-02 06:00:00 blood 2224 #> 4448 11.3 4 1934 1934-04-02 06:00:00 bone 2224 #> 4449 19.7 5 1934 1934-05-02 16:00:01 blood 2225 #> 4450 19.7 5 1934 1934-05-02 16:00:01 bone 2225 #> 4451 6.7 6 1934 1934-06-02 02:00:01 blood 2226 #> 4452 6.7 6 1934 1934-06-02 02:00:01 bone 2226 #> 4453 9.3 7 1934 1934-07-02 12:00:00 blood 2227 #> 4454 9.3 7 1934 1934-07-02 12:00:00 bone 2227 #> 4455 8.3 8 1934 1934-08-01 22:00:01 blood 2228 #> 4456 8.3 8 1934 1934-08-01 22:00:01 bone 2228 #> 4457 4.0 9 1934 1934-09-01 08:00:01 blood 2229 #> 4458 4.0 9 1934 1934-09-01 08:00:01 bone 2229 #> 4459 5.7 10 1934 1934-10-01 18:00:00 blood 2230 #> 4460 5.7 10 1934 1934-10-01 18:00:00 bone 2230 #> 4461 8.7 11 1934 1934-11-01 04:00:01 blood 2231 #> 4462 8.7 11 1934 1934-11-01 04:00:01 bone 2231 #> 4463 15.4 12 1934 1934-12-01 14:00:01 blood 2232 #> 4464 15.4 12 1934 1934-12-01 14:00:01 bone 2232 #> 4465 18.9 1 1935 1935-01-01 00:00:00 blood 2233 #> 4466 18.9 1 1935 1935-01-01 00:00:00 bone 2233 #> 4467 20.5 2 1935 1935-01-31 10:00:01 blood 2234 #> 4468 20.5 2 1935 1935-01-31 10:00:01 bone 2234 #> 4469 23.1 3 1935 1935-03-02 20:00:01 blood 2235 #> 4470 23.1 3 1935 1935-03-02 20:00:01 bone 2235 #> 4471 12.2 4 1935 1935-04-02 06:00:00 blood 2236 #> 4472 12.2 4 1935 1935-04-02 06:00:00 bone 2236 #> 4473 27.3 5 1935 1935-05-02 16:00:01 blood 2237 #> 4474 27.3 5 1935 1935-05-02 16:00:01 bone 2237 #> 4475 45.7 6 1935 1935-06-02 02:00:01 blood 2238 #> 4476 45.7 6 1935 1935-06-02 02:00:01 bone 2238 #> 4477 33.9 7 1935 1935-07-02 12:00:00 blood 2239 #> 4478 33.9 7 1935 1935-07-02 12:00:00 bone 2239 #> 4479 30.1 8 1935 1935-08-01 22:00:01 blood 2240 #> 4480 30.1 8 1935 1935-08-01 22:00:01 bone 2240 #> 4481 42.1 9 1935 1935-09-01 08:00:01 blood 2241 #> 4482 42.1 9 1935 1935-09-01 08:00:01 bone 2241 #> 4483 53.2 10 1935 1935-10-01 18:00:00 blood 2242 #> 4484 53.2 10 1935 1935-10-01 18:00:00 bone 2242 #> 4485 64.2 11 1935 1935-11-01 04:00:01 blood 2243 #> 4486 64.2 11 1935 1935-11-01 04:00:01 bone 2243 #> 4487 61.5 12 1935 1935-12-01 14:00:01 blood 2244 #> 4488 61.5 12 1935 1935-12-01 14:00:01 bone 2244 #> 4489 62.8 1 1936 1936-01-01 00:00:00 blood 2245 #> 4490 62.8 1 1936 1936-01-01 00:00:00 bone 2245 #> 4491 74.3 2 1936 1936-01-31 12:00:01 blood 2246 #> 4492 74.3 2 1936 1936-01-31 12:00:01 bone 2246 #> 4493 77.1 3 1936 1936-03-02 00:00:01 blood 2247 #> 4494 77.1 3 1936 1936-03-02 00:00:01 bone 2247 #> 4495 74.9 4 1936 1936-04-01 12:00:00 blood 2248 #> 4496 74.9 4 1936 1936-04-01 12:00:00 bone 2248 #> 4497 54.6 5 1936 1936-05-02 00:00:01 blood 2249 #> 4498 54.6 5 1936 1936-05-02 00:00:01 bone 2249 #> 4499 70.0 6 1936 1936-06-01 12:00:01 blood 2250 #> 4500 70.0 6 1936 1936-06-01 12:00:01 bone 2250 #> 4501 52.3 7 1936 1936-07-02 00:00:00 blood 2251 #> 4502 52.3 7 1936 1936-07-02 00:00:00 bone 2251 #> 4503 87.0 8 1936 1936-08-01 12:00:01 blood 2252 #> 4504 87.0 8 1936 1936-08-01 12:00:01 bone 2252 #> 4505 76.0 9 1936 1936-09-01 00:00:01 blood 2253 #> 4506 76.0 9 1936 1936-09-01 00:00:01 bone 2253 #> 4507 89.0 10 1936 1936-10-01 12:00:00 blood 2254 #> 4508 89.0 10 1936 1936-10-01 12:00:00 bone 2254 #> 4509 115.4 11 1936 1936-11-01 00:00:01 blood 2255 #> 4510 115.4 11 1936 1936-11-01 00:00:01 bone 2255 #> 4511 123.4 12 1936 1936-12-01 12:00:01 blood 2256 #> 4512 123.4 12 1936 1936-12-01 12:00:01 bone 2256 #> 4513 132.5 1 1937 1937-01-01 00:00:00 blood 2257 #> 4514 132.5 1 1937 1937-01-01 00:00:00 bone 2257 #> 4515 128.5 2 1937 1937-01-31 10:00:01 blood 2258 #> 4516 128.5 2 1937 1937-01-31 10:00:01 bone 2258 #> 4517 83.9 3 1937 1937-03-02 20:00:01 blood 2259 #> 4518 83.9 3 1937 1937-03-02 20:00:01 bone 2259 #> 4519 109.3 4 1937 1937-04-02 06:00:00 blood 2260 #> 4520 109.3 4 1937 1937-04-02 06:00:00 bone 2260 #> 4521 116.7 5 1937 1937-05-02 16:00:01 blood 2261 #> 4522 116.7 5 1937 1937-05-02 16:00:01 bone 2261 #> 4523 130.3 6 1937 1937-06-02 02:00:01 blood 2262 #> 4524 130.3 6 1937 1937-06-02 02:00:01 bone 2262 #> 4525 145.1 7 1937 1937-07-02 12:00:00 blood 2263 #> 4526 145.1 7 1937 1937-07-02 12:00:00 bone 2263 #> 4527 137.7 8 1937 1937-08-01 22:00:01 blood 2264 #> 4528 137.7 8 1937 1937-08-01 22:00:01 bone 2264 #> 4529 100.7 9 1937 1937-09-01 08:00:01 blood 2265 #> 4530 100.7 9 1937 1937-09-01 08:00:01 bone 2265 #> 4531 124.9 10 1937 1937-10-01 18:00:00 blood 2266 #> 4532 124.9 10 1937 1937-10-01 18:00:00 bone 2266 #> 4533 74.4 11 1937 1937-11-01 04:00:01 blood 2267 #> 4534 74.4 11 1937 1937-11-01 04:00:01 bone 2267 #> 4535 88.8 12 1937 1937-12-01 14:00:01 blood 2268 #> 4536 88.8 12 1937 1937-12-01 14:00:01 bone 2268 #> 4537 98.4 1 1938 1938-01-01 00:00:00 blood 2269 #> 4538 98.4 1 1938 1938-01-01 00:00:00 bone 2269 #> 4539 119.2 2 1938 1938-01-31 10:00:01 blood 2270 #> 4540 119.2 2 1938 1938-01-31 10:00:01 bone 2270 #> 4541 86.5 3 1938 1938-03-02 20:00:01 blood 2271 #> 4542 86.5 3 1938 1938-03-02 20:00:01 bone 2271 #> 4543 101.0 4 1938 1938-04-02 06:00:00 blood 2272 #> 4544 101.0 4 1938 1938-04-02 06:00:00 bone 2272 #> 4545 127.4 5 1938 1938-05-02 16:00:01 blood 2273 #> 4546 127.4 5 1938 1938-05-02 16:00:01 bone 2273 #> 4547 97.5 6 1938 1938-06-02 02:00:01 blood 2274 #> 4548 97.5 6 1938 1938-06-02 02:00:01 bone 2274 #> 4549 165.3 7 1938 1938-07-02 12:00:00 blood 2275 #> 4550 165.3 7 1938 1938-07-02 12:00:00 bone 2275 #> 4551 115.7 8 1938 1938-08-01 22:00:01 blood 2276 #> 4552 115.7 8 1938 1938-08-01 22:00:01 bone 2276 #> 4553 89.6 9 1938 1938-09-01 08:00:01 blood 2277 #> 4554 89.6 9 1938 1938-09-01 08:00:01 bone 2277 #> 4555 99.1 10 1938 1938-10-01 18:00:00 blood 2278 #> 4556 99.1 10 1938 1938-10-01 18:00:00 bone 2278 #> 4557 122.2 11 1938 1938-11-01 04:00:01 blood 2279 #> 4558 122.2 11 1938 1938-11-01 04:00:01 bone 2279 #> 4559 92.7 12 1938 1938-12-01 14:00:01 blood 2280 #> 4560 92.7 12 1938 1938-12-01 14:00:01 bone 2280 #> 4561 80.3 1 1939 1939-01-01 00:00:00 blood 2281 #> 4562 80.3 1 1939 1939-01-01 00:00:00 bone 2281 #> 4563 77.4 2 1939 1939-01-31 10:00:01 blood 2282 #> 4564 77.4 2 1939 1939-01-31 10:00:01 bone 2282 #> 4565 64.6 3 1939 1939-03-02 20:00:01 blood 2283 #> 4566 64.6 3 1939 1939-03-02 20:00:01 bone 2283 #> 4567 109.1 4 1939 1939-04-02 06:00:00 blood 2284 #> 4568 109.1 4 1939 1939-04-02 06:00:00 bone 2284 #> 4569 118.3 5 1939 1939-05-02 16:00:01 blood 2285 #> 4570 118.3 5 1939 1939-05-02 16:00:01 bone 2285 #> 4571 101.0 6 1939 1939-06-02 02:00:01 blood 2286 #> 4572 101.0 6 1939 1939-06-02 02:00:01 bone 2286 #> 4573 97.6 7 1939 1939-07-02 12:00:00 blood 2287 #> 4574 97.6 7 1939 1939-07-02 12:00:00 bone 2287 #> 4575 105.8 8 1939 1939-08-01 22:00:01 blood 2288 #> 4576 105.8 8 1939 1939-08-01 22:00:01 bone 2288 #> 4577 112.6 9 1939 1939-09-01 08:00:01 blood 2289 #> 4578 112.6 9 1939 1939-09-01 08:00:01 bone 2289 #> 4579 88.1 10 1939 1939-10-01 18:00:00 blood 2290 #> 4580 88.1 10 1939 1939-10-01 18:00:00 bone 2290 #> 4581 68.1 11 1939 1939-11-01 04:00:01 blood 2291 #> 4582 68.1 11 1939 1939-11-01 04:00:01 bone 2291 #> 4583 42.1 12 1939 1939-12-01 14:00:01 blood 2292 #> 4584 42.1 12 1939 1939-12-01 14:00:01 bone 2292 #> 4585 50.5 1 1940 1940-01-01 00:00:00 blood 2293 #> 4586 50.5 1 1940 1940-01-01 00:00:00 bone 2293 #> 4587 59.4 2 1940 1940-01-31 12:00:01 blood 2294 #> 4588 59.4 2 1940 1940-01-31 12:00:01 bone 2294 #> 4589 83.3 3 1940 1940-03-02 00:00:01 blood 2295 #> 4590 83.3 3 1940 1940-03-02 00:00:01 bone 2295 #> 4591 60.7 4 1940 1940-04-01 12:00:00 blood 2296 #> 4592 60.7 4 1940 1940-04-01 12:00:00 bone 2296 #> 4593 54.4 5 1940 1940-05-02 00:00:01 blood 2297 #> 4594 54.4 5 1940 1940-05-02 00:00:01 bone 2297 #> 4595 83.9 6 1940 1940-06-01 12:00:01 blood 2298 #> 4596 83.9 6 1940 1940-06-01 12:00:01 bone 2298 #> 4597 67.5 7 1940 1940-07-02 00:00:00 blood 2299 #> 4598 67.5 7 1940 1940-07-02 00:00:00 bone 2299 #> 4599 105.5 8 1940 1940-08-01 12:00:01 blood 2300 #> 4600 105.5 8 1940 1940-08-01 12:00:01 bone 2300 #> 4601 66.5 9 1940 1940-09-01 00:00:01 blood 2301 #> 4602 66.5 9 1940 1940-09-01 00:00:01 bone 2301 #> 4603 55.0 10 1940 1940-10-01 12:00:00 blood 2302 #> 4604 55.0 10 1940 1940-10-01 12:00:00 bone 2302 #> 4605 58.4 11 1940 1940-11-01 00:00:01 blood 2303 #> 4606 58.4 11 1940 1940-11-01 00:00:01 bone 2303 #> 4607 68.3 12 1940 1940-12-01 12:00:01 blood 2304 #> 4608 68.3 12 1940 1940-12-01 12:00:01 bone 2304 #> 4609 45.6 1 1941 1941-01-01 00:00:00 blood 2305 #> 4610 45.6 1 1941 1941-01-01 00:00:00 bone 2305 #> 4611 44.5 2 1941 1941-01-31 10:00:01 blood 2306 #> 4612 44.5 2 1941 1941-01-31 10:00:01 bone 2306 #> 4613 46.4 3 1941 1941-03-02 20:00:01 blood 2307 #> 4614 46.4 3 1941 1941-03-02 20:00:01 bone 2307 #> 4615 32.8 4 1941 1941-04-02 06:00:00 blood 2308 #> 4616 32.8 4 1941 1941-04-02 06:00:00 bone 2308 #> 4617 29.5 5 1941 1941-05-02 16:00:01 blood 2309 #> 4618 29.5 5 1941 1941-05-02 16:00:01 bone 2309 #> 4619 59.8 6 1941 1941-06-02 02:00:01 blood 2310 #> 4620 59.8 6 1941 1941-06-02 02:00:01 bone 2310 #> 4621 66.9 7 1941 1941-07-02 12:00:00 blood 2311 #> 4622 66.9 7 1941 1941-07-02 12:00:00 bone 2311 #> 4623 60.0 8 1941 1941-08-01 22:00:01 blood 2312 #> 4624 60.0 8 1941 1941-08-01 22:00:01 bone 2312 #> 4625 65.9 9 1941 1941-09-01 08:00:01 blood 2313 #> 4626 65.9 9 1941 1941-09-01 08:00:01 bone 2313 #> 4627 46.3 10 1941 1941-10-01 18:00:00 blood 2314 #> 4628 46.3 10 1941 1941-10-01 18:00:00 bone 2314 #> 4629 38.3 11 1941 1941-11-01 04:00:01 blood 2315 #> 4630 38.3 11 1941 1941-11-01 04:00:01 bone 2315 #> 4631 33.7 12 1941 1941-12-01 14:00:01 blood 2316 #> 4632 33.7 12 1941 1941-12-01 14:00:01 bone 2316 #> 4633 35.6 1 1942 1942-01-01 00:00:00 blood 2317 #> 4634 35.6 1 1942 1942-01-01 00:00:00 bone 2317 #> 4635 52.8 2 1942 1942-01-31 10:00:01 blood 2318 #> 4636 52.8 2 1942 1942-01-31 10:00:01 bone 2318 #> 4637 54.2 3 1942 1942-03-02 20:00:01 blood 2319 #> 4638 54.2 3 1942 1942-03-02 20:00:01 bone 2319 #> 4639 60.7 4 1942 1942-04-02 06:00:00 blood 2320 #> 4640 60.7 4 1942 1942-04-02 06:00:00 bone 2320 #> 4641 25.0 5 1942 1942-05-02 16:00:01 blood 2321 #> 4642 25.0 5 1942 1942-05-02 16:00:01 bone 2321 #> 4643 11.4 6 1942 1942-06-02 02:00:01 blood 2322 #> 4644 11.4 6 1942 1942-06-02 02:00:01 bone 2322 #> 4645 17.7 7 1942 1942-07-02 12:00:00 blood 2323 #> 4646 17.7 7 1942 1942-07-02 12:00:00 bone 2323 #> 4647 20.2 8 1942 1942-08-01 22:00:01 blood 2324 #> 4648 20.2 8 1942 1942-08-01 22:00:01 bone 2324 #> 4649 17.2 9 1942 1942-09-01 08:00:01 blood 2325 #> 4650 17.2 9 1942 1942-09-01 08:00:01 bone 2325 #> 4651 19.2 10 1942 1942-10-01 18:00:00 blood 2326 #> 4652 19.2 10 1942 1942-10-01 18:00:00 bone 2326 #> 4653 30.7 11 1942 1942-11-01 04:00:01 blood 2327 #> 4654 30.7 11 1942 1942-11-01 04:00:01 bone 2327 #> 4655 22.5 12 1942 1942-12-01 14:00:01 blood 2328 #> 4656 22.5 12 1942 1942-12-01 14:00:01 bone 2328 #> 4657 12.4 1 1943 1943-01-01 00:00:00 blood 2329 #> 4658 12.4 1 1943 1943-01-01 00:00:00 bone 2329 #> 4659 28.9 2 1943 1943-01-31 10:00:01 blood 2330 #> 4660 28.9 2 1943 1943-01-31 10:00:01 bone 2330 #> 4661 27.4 3 1943 1943-03-02 20:00:01 blood 2331 #> 4662 27.4 3 1943 1943-03-02 20:00:01 bone 2331 #> 4663 26.1 4 1943 1943-04-02 06:00:00 blood 2332 #> 4664 26.1 4 1943 1943-04-02 06:00:00 bone 2332 #> 4665 14.1 5 1943 1943-05-02 16:00:01 blood 2333 #> 4666 14.1 5 1943 1943-05-02 16:00:01 bone 2333 #> 4667 7.6 6 1943 1943-06-02 02:00:01 blood 2334 #> 4668 7.6 6 1943 1943-06-02 02:00:01 bone 2334 #> 4669 13.2 7 1943 1943-07-02 12:00:00 blood 2335 #> 4670 13.2 7 1943 1943-07-02 12:00:00 bone 2335 #> 4671 19.4 8 1943 1943-08-01 22:00:01 blood 2336 #> 4672 19.4 8 1943 1943-08-01 22:00:01 bone 2336 #> 4673 10.0 9 1943 1943-09-01 08:00:01 blood 2337 #> 4674 10.0 9 1943 1943-09-01 08:00:01 bone 2337 #> 4675 7.8 10 1943 1943-10-01 18:00:00 blood 2338 #> 4676 7.8 10 1943 1943-10-01 18:00:00 bone 2338 #> 4677 10.2 11 1943 1943-11-01 04:00:01 blood 2339 #> 4678 10.2 11 1943 1943-11-01 04:00:01 bone 2339 #> 4679 18.8 12 1943 1943-12-01 14:00:01 blood 2340 #> 4680 18.8 12 1943 1943-12-01 14:00:01 bone 2340 #> 4681 3.7 1 1944 1944-01-01 00:00:00 blood 2341 #> 4682 3.7 1 1944 1944-01-01 00:00:00 bone 2341 #> 4683 0.5 2 1944 1944-01-31 12:00:01 blood 2342 #> 4684 0.5 2 1944 1944-01-31 12:00:01 bone 2342 #> 4685 11.0 3 1944 1944-03-02 00:00:01 blood 2343 #> 4686 11.0 3 1944 1944-03-02 00:00:01 bone 2343 #> 4687 0.3 4 1944 1944-04-01 12:00:00 blood 2344 #> 4688 0.3 4 1944 1944-04-01 12:00:00 bone 2344 #> 4689 2.5 5 1944 1944-05-02 00:00:01 blood 2345 #> 4690 2.5 5 1944 1944-05-02 00:00:01 bone 2345 #> 4691 5.0 6 1944 1944-06-01 12:00:01 blood 2346 #> 4692 5.0 6 1944 1944-06-01 12:00:01 bone 2346 #> 4693 5.0 7 1944 1944-07-02 00:00:00 blood 2347 #> 4694 5.0 7 1944 1944-07-02 00:00:00 bone 2347 #> 4695 16.7 8 1944 1944-08-01 12:00:01 blood 2348 #> 4696 16.7 8 1944 1944-08-01 12:00:01 bone 2348 #> 4697 14.3 9 1944 1944-09-01 00:00:01 blood 2349 #> 4698 14.3 9 1944 1944-09-01 00:00:01 bone 2349 #> 4699 16.9 10 1944 1944-10-01 12:00:00 blood 2350 #> 4700 16.9 10 1944 1944-10-01 12:00:00 bone 2350 #> 4701 10.8 11 1944 1944-11-01 00:00:01 blood 2351 #> 4702 10.8 11 1944 1944-11-01 00:00:01 bone 2351 #> 4703 28.4 12 1944 1944-12-01 12:00:01 blood 2352 #> 4704 28.4 12 1944 1944-12-01 12:00:01 bone 2352 #> 4705 18.5 1 1945 1945-01-01 00:00:00 blood 2353 #> 4706 18.5 1 1945 1945-01-01 00:00:00 bone 2353 #> 4707 12.7 2 1945 1945-01-31 10:00:01 blood 2354 #> 4708 12.7 2 1945 1945-01-31 10:00:01 bone 2354 #> 4709 21.5 3 1945 1945-03-02 20:00:01 blood 2355 #> 4710 21.5 3 1945 1945-03-02 20:00:01 bone 2355 #> 4711 32.0 4 1945 1945-04-02 06:00:00 blood 2356 #> 4712 32.0 4 1945 1945-04-02 06:00:00 bone 2356 #> 4713 30.6 5 1945 1945-05-02 16:00:01 blood 2357 #> 4714 30.6 5 1945 1945-05-02 16:00:01 bone 2357 #> 4715 36.2 6 1945 1945-06-02 02:00:01 blood 2358 #> 4716 36.2 6 1945 1945-06-02 02:00:01 bone 2358 #> 4717 42.6 7 1945 1945-07-02 12:00:00 blood 2359 #> 4718 42.6 7 1945 1945-07-02 12:00:00 bone 2359 #> 4719 25.9 8 1945 1945-08-01 22:00:01 blood 2360 #> 4720 25.9 8 1945 1945-08-01 22:00:01 bone 2360 #> 4721 34.9 9 1945 1945-09-01 08:00:01 blood 2361 #> 4722 34.9 9 1945 1945-09-01 08:00:01 bone 2361 #> 4723 68.8 10 1945 1945-10-01 18:00:00 blood 2362 #> 4724 68.8 10 1945 1945-10-01 18:00:00 bone 2362 #> 4725 46.0 11 1945 1945-11-01 04:00:01 blood 2363 #> 4726 46.0 11 1945 1945-11-01 04:00:01 bone 2363 #> 4727 27.4 12 1945 1945-12-01 14:00:01 blood 2364 #> 4728 27.4 12 1945 1945-12-01 14:00:01 bone 2364 #> 4729 47.6 1 1946 1946-01-01 00:00:00 blood 2365 #> 4730 47.6 1 1946 1946-01-01 00:00:00 bone 2365 #> 4731 86.2 2 1946 1946-01-31 10:00:01 blood 2366 #> 4732 86.2 2 1946 1946-01-31 10:00:01 bone 2366 #> 4733 76.6 3 1946 1946-03-02 20:00:01 blood 2367 #> 4734 76.6 3 1946 1946-03-02 20:00:01 bone 2367 #> 4735 75.7 4 1946 1946-04-02 06:00:00 blood 2368 #> 4736 75.7 4 1946 1946-04-02 06:00:00 bone 2368 #> 4737 84.9 5 1946 1946-05-02 16:00:01 blood 2369 #> 4738 84.9 5 1946 1946-05-02 16:00:01 bone 2369 #> 4739 73.5 6 1946 1946-06-02 02:00:01 blood 2370 #> 4740 73.5 6 1946 1946-06-02 02:00:01 bone 2370 #> 4741 116.2 7 1946 1946-07-02 12:00:00 blood 2371 #> 4742 116.2 7 1946 1946-07-02 12:00:00 bone 2371 #> 4743 107.2 8 1946 1946-08-01 22:00:01 blood 2372 #> 4744 107.2 8 1946 1946-08-01 22:00:01 bone 2372 #> 4745 94.4 9 1946 1946-09-01 08:00:01 blood 2373 #> 4746 94.4 9 1946 1946-09-01 08:00:01 bone 2373 #> 4747 102.3 10 1946 1946-10-01 18:00:00 blood 2374 #> 4748 102.3 10 1946 1946-10-01 18:00:00 bone 2374 #> 4749 123.8 11 1946 1946-11-01 04:00:01 blood 2375 #> 4750 123.8 11 1946 1946-11-01 04:00:01 bone 2375 #> 4751 121.7 12 1946 1946-12-01 14:00:01 blood 2376 #> 4752 121.7 12 1946 1946-12-01 14:00:01 bone 2376 #> 4753 115.7 1 1947 1947-01-01 00:00:00 blood 2377 #> 4754 115.7 1 1947 1947-01-01 00:00:00 bone 2377 #> 4755 113.4 2 1947 1947-01-31 10:00:01 blood 2378 #> 4756 113.4 2 1947 1947-01-31 10:00:01 bone 2378 #> 4757 129.8 3 1947 1947-03-02 20:00:01 blood 2379 #> 4758 129.8 3 1947 1947-03-02 20:00:01 bone 2379 #> 4759 149.8 4 1947 1947-04-02 06:00:00 blood 2380 #> 4760 149.8 4 1947 1947-04-02 06:00:00 bone 2380 #> 4761 201.3 5 1947 1947-05-02 16:00:01 blood 2381 #> 4762 201.3 5 1947 1947-05-02 16:00:01 bone 2381 #> 4763 163.9 6 1947 1947-06-02 02:00:01 blood 2382 #> 4764 163.9 6 1947 1947-06-02 02:00:01 bone 2382 #> 4765 157.9 7 1947 1947-07-02 12:00:00 blood 2383 #> 4766 157.9 7 1947 1947-07-02 12:00:00 bone 2383 #> 4767 188.8 8 1947 1947-08-01 22:00:01 blood 2384 #> 4768 188.8 8 1947 1947-08-01 22:00:01 bone 2384 #> 4769 169.4 9 1947 1947-09-01 08:00:01 blood 2385 #> 4770 169.4 9 1947 1947-09-01 08:00:01 bone 2385 #> 4771 163.6 10 1947 1947-10-01 18:00:00 blood 2386 #> 4772 163.6 10 1947 1947-10-01 18:00:00 bone 2386 #> 4773 128.0 11 1947 1947-11-01 04:00:01 blood 2387 #> 4774 128.0 11 1947 1947-11-01 04:00:01 bone 2387 #> 4775 116.5 12 1947 1947-12-01 14:00:01 blood 2388 #> 4776 116.5 12 1947 1947-12-01 14:00:01 bone 2388 #> 4777 108.5 1 1948 1948-01-01 00:00:00 blood 2389 #> 4778 108.5 1 1948 1948-01-01 00:00:00 bone 2389 #> 4779 86.1 2 1948 1948-01-31 12:00:01 blood 2390 #> 4780 86.1 2 1948 1948-01-31 12:00:01 bone 2390 #> 4781 94.8 3 1948 1948-03-02 00:00:01 blood 2391 #> 4782 94.8 3 1948 1948-03-02 00:00:01 bone 2391 #> 4783 189.7 4 1948 1948-04-01 12:00:00 blood 2392 #> 4784 189.7 4 1948 1948-04-01 12:00:00 bone 2392 #> 4785 174.0 5 1948 1948-05-02 00:00:01 blood 2393 #> 4786 174.0 5 1948 1948-05-02 00:00:01 bone 2393 #> 4787 167.8 6 1948 1948-06-01 12:00:01 blood 2394 #> 4788 167.8 6 1948 1948-06-01 12:00:01 bone 2394 #> 4789 142.2 7 1948 1948-07-02 00:00:00 blood 2395 #> 4790 142.2 7 1948 1948-07-02 00:00:00 bone 2395 #> 4791 157.9 8 1948 1948-08-01 12:00:01 blood 2396 #> 4792 157.9 8 1948 1948-08-01 12:00:01 bone 2396 #> 4793 143.3 9 1948 1948-09-01 00:00:01 blood 2397 #> 4794 143.3 9 1948 1948-09-01 00:00:01 bone 2397 #> #> $data_test #> y season year date series time #> 1 136.3 10 1948 1948-10-01 12:00:00 blood 2398 #> 2 136.3 10 1948 1948-10-01 12:00:00 bone 2398 #> 3 95.8 11 1948 1948-11-01 00:00:01 blood 2399 #> 4 95.8 11 1948 1948-11-01 00:00:01 bone 2399 #> 5 138.0 12 1948 1948-12-01 12:00:01 blood 2400 #> 6 138.0 12 1948 1948-12-01 12:00:01 bone 2400 #> 7 119.1 1 1949 1949-01-01 00:00:00 blood 2401 #> 8 119.1 1 1949 1949-01-01 00:00:00 bone 2401 #> 9 182.3 2 1949 1949-01-31 10:00:01 blood 2402 #> 10 182.3 2 1949 1949-01-31 10:00:01 bone 2402 #> 11 157.5 3 1949 1949-03-02 20:00:01 blood 2403 #> 12 157.5 3 1949 1949-03-02 20:00:01 bone 2403 #> 13 147.0 4 1949 1949-04-02 06:00:00 blood 2404 #> 14 147.0 4 1949 1949-04-02 06:00:00 bone 2404 #> 15 106.2 5 1949 1949-05-02 16:00:01 blood 2405 #> 16 106.2 5 1949 1949-05-02 16:00:01 bone 2405 #> 17 121.7 6 1949 1949-06-02 02:00:01 blood 2406 #> 18 121.7 6 1949 1949-06-02 02:00:01 bone 2406 #> 19 125.8 7 1949 1949-07-02 12:00:00 blood 2407 #> 20 125.8 7 1949 1949-07-02 12:00:00 bone 2407 #> 21 123.8 8 1949 1949-08-01 22:00:01 blood 2408 #> 22 123.8 8 1949 1949-08-01 22:00:01 bone 2408 #> 23 145.3 9 1949 1949-09-01 08:00:01 blood 2409 #> 24 145.3 9 1949 1949-09-01 08:00:01 bone 2409 #> 25 131.6 10 1949 1949-10-01 18:00:00 blood 2410 #> 26 131.6 10 1949 1949-10-01 18:00:00 bone 2410 #> 27 143.5 11 1949 1949-11-01 04:00:01 blood 2411 #> 28 143.5 11 1949 1949-11-01 04:00:01 bone 2411 #> 29 117.6 12 1949 1949-12-01 14:00:01 blood 2412 #> 30 117.6 12 1949 1949-12-01 14:00:01 bone 2412 #> 31 101.6 1 1950 1950-01-01 00:00:00 blood 2413 #> 32 101.6 1 1950 1950-01-01 00:00:00 bone 2413 #> 33 94.8 2 1950 1950-01-31 10:00:01 blood 2414 #> 34 94.8 2 1950 1950-01-31 10:00:01 bone 2414 #> 35 109.7 3 1950 1950-03-02 20:00:01 blood 2415 #> 36 109.7 3 1950 1950-03-02 20:00:01 bone 2415 #> 37 113.4 4 1950 1950-04-02 06:00:00 blood 2416 #> 38 113.4 4 1950 1950-04-02 06:00:00 bone 2416 #> 39 106.2 5 1950 1950-05-02 16:00:01 blood 2417 #> 40 106.2 5 1950 1950-05-02 16:00:01 bone 2417 #> 41 83.6 6 1950 1950-06-02 02:00:01 blood 2418 #> 42 83.6 6 1950 1950-06-02 02:00:01 bone 2418 #> 43 91.0 7 1950 1950-07-02 12:00:00 blood 2419 #> 44 91.0 7 1950 1950-07-02 12:00:00 bone 2419 #> 45 85.2 8 1950 1950-08-01 22:00:01 blood 2420 #> 46 85.2 8 1950 1950-08-01 22:00:01 bone 2420 #> 47 51.3 9 1950 1950-09-01 08:00:01 blood 2421 #> 48 51.3 9 1950 1950-09-01 08:00:01 bone 2421 #> 49 61.4 10 1950 1950-10-01 18:00:00 blood 2422 #> 50 61.4 10 1950 1950-10-01 18:00:00 bone 2422 #> 51 54.8 11 1950 1950-11-01 04:00:01 blood 2423 #> 52 54.8 11 1950 1950-11-01 04:00:01 bone 2423 #> 53 54.1 12 1950 1950-12-01 14:00:01 blood 2424 #> 54 54.1 12 1950 1950-12-01 14:00:01 bone 2424 #> 55 59.9 1 1951 1951-01-01 00:00:00 blood 2425 #> 56 59.9 1 1951 1951-01-01 00:00:00 bone 2425 #> 57 59.9 2 1951 1951-01-31 10:00:01 blood 2426 #> 58 59.9 2 1951 1951-01-31 10:00:01 bone 2426 #> 59 59.9 3 1951 1951-03-02 20:00:01 blood 2427 #> 60 59.9 3 1951 1951-03-02 20:00:01 bone 2427 #> 61 92.9 4 1951 1951-04-02 06:00:00 blood 2428 #> 62 92.9 4 1951 1951-04-02 06:00:00 bone 2428 #> 63 108.5 5 1951 1951-05-02 16:00:01 blood 2429 #> 64 108.5 5 1951 1951-05-02 16:00:01 bone 2429 #> 65 100.6 6 1951 1951-06-02 02:00:01 blood 2430 #> 66 100.6 6 1951 1951-06-02 02:00:01 bone 2430 #> 67 61.5 7 1951 1951-07-02 12:00:00 blood 2431 #> 68 61.5 7 1951 1951-07-02 12:00:00 bone 2431 #> 69 61.0 8 1951 1951-08-01 22:00:01 blood 2432 #> 70 61.0 8 1951 1951-08-01 22:00:01 bone 2432 #> 71 83.1 9 1951 1951-09-01 08:00:01 blood 2433 #> 72 83.1 9 1951 1951-09-01 08:00:01 bone 2433 #> 73 51.6 10 1951 1951-10-01 18:00:00 blood 2434 #> 74 51.6 10 1951 1951-10-01 18:00:00 bone 2434 #> 75 52.4 11 1951 1951-11-01 04:00:01 blood 2435 #> 76 52.4 11 1951 1951-11-01 04:00:01 bone 2435 #> 77 45.8 12 1951 1951-12-01 14:00:01 blood 2436 #> 78 45.8 12 1951 1951-12-01 14:00:01 bone 2436 #> 79 40.7 1 1952 1952-01-01 00:00:00 blood 2437 #> 80 40.7 1 1952 1952-01-01 00:00:00 bone 2437 #> 81 22.7 2 1952 1952-01-31 12:00:01 blood 2438 #> 82 22.7 2 1952 1952-01-31 12:00:01 bone 2438 #> 83 22.0 3 1952 1952-03-02 00:00:01 blood 2439 #> 84 22.0 3 1952 1952-03-02 00:00:01 bone 2439 #> 85 29.1 4 1952 1952-04-01 12:00:00 blood 2440 #> 86 29.1 4 1952 1952-04-01 12:00:00 bone 2440 #> 87 23.4 5 1952 1952-05-02 00:00:01 blood 2441 #> 88 23.4 5 1952 1952-05-02 00:00:01 bone 2441 #> 89 36.4 6 1952 1952-06-01 12:00:01 blood 2442 #> 90 36.4 6 1952 1952-06-01 12:00:01 bone 2442 #> 91 39.3 7 1952 1952-07-02 00:00:00 blood 2443 #> 92 39.3 7 1952 1952-07-02 00:00:00 bone 2443 #> 93 54.9 8 1952 1952-08-01 12:00:01 blood 2444 #> 94 54.9 8 1952 1952-08-01 12:00:01 bone 2444 #> 95 28.2 9 1952 1952-09-01 00:00:01 blood 2445 #> 96 28.2 9 1952 1952-09-01 00:00:01 bone 2445 #> 97 23.8 10 1952 1952-10-01 12:00:00 blood 2446 #> 98 23.8 10 1952 1952-10-01 12:00:00 bone 2446 #> 99 22.1 11 1952 1952-11-01 00:00:01 blood 2447 #> 100 22.1 11 1952 1952-11-01 00:00:01 bone 2447 #> 101 34.3 12 1952 1952-12-01 12:00:01 blood 2448 #> 102 34.3 12 1952 1952-12-01 12:00:01 bone 2448 #> 103 26.5 1 1953 1953-01-01 00:00:00 blood 2449 #> 104 26.5 1 1953 1953-01-01 00:00:00 bone 2449 #> 105 3.9 2 1953 1953-01-31 10:00:01 blood 2450 #> 106 3.9 2 1953 1953-01-31 10:00:01 bone 2450 #> 107 10.0 3 1953 1953-03-02 20:00:01 blood 2451 #> 108 10.0 3 1953 1953-03-02 20:00:01 bone 2451 #> 109 27.8 4 1953 1953-04-02 06:00:00 blood 2452 #> 110 27.8 4 1953 1953-04-02 06:00:00 bone 2452 #> 111 12.5 5 1953 1953-05-02 16:00:01 blood 2453 #> 112 12.5 5 1953 1953-05-02 16:00:01 bone 2453 #> 113 21.8 6 1953 1953-06-02 02:00:01 blood 2454 #> 114 21.8 6 1953 1953-06-02 02:00:01 bone 2454 #> 115 8.6 7 1953 1953-07-02 12:00:00 blood 2455 #> 116 8.6 7 1953 1953-07-02 12:00:00 bone 2455 #> 117 23.5 8 1953 1953-08-01 22:00:01 blood 2456 #> 118 23.5 8 1953 1953-08-01 22:00:01 bone 2456 #> 119 19.3 9 1953 1953-09-01 08:00:01 blood 2457 #> 120 19.3 9 1953 1953-09-01 08:00:01 bone 2457 #> 121 8.2 10 1953 1953-10-01 18:00:00 blood 2458 #> 122 8.2 10 1953 1953-10-01 18:00:00 bone 2458 #> 123 1.6 11 1953 1953-11-01 04:00:01 blood 2459 #> 124 1.6 11 1953 1953-11-01 04:00:01 bone 2459 #> 125 2.5 12 1953 1953-12-01 14:00:01 blood 2460 #> 126 2.5 12 1953 1953-12-01 14:00:01 bone 2460 #> 127 0.2 1 1954 1954-01-01 00:00:00 blood 2461 #> 128 0.2 1 1954 1954-01-01 00:00:00 bone 2461 #> 129 0.5 2 1954 1954-01-31 10:00:01 blood 2462 #> 130 0.5 2 1954 1954-01-31 10:00:01 bone 2462 #> 131 10.9 3 1954 1954-03-02 20:00:01 blood 2463 #> 132 10.9 3 1954 1954-03-02 20:00:01 bone 2463 #> 133 1.8 4 1954 1954-04-02 06:00:00 blood 2464 #> 134 1.8 4 1954 1954-04-02 06:00:00 bone 2464 #> 135 0.8 5 1954 1954-05-02 16:00:01 blood 2465 #> 136 0.8 5 1954 1954-05-02 16:00:01 bone 2465 #> 137 0.2 6 1954 1954-06-02 02:00:01 blood 2466 #> 138 0.2 6 1954 1954-06-02 02:00:01 bone 2466 #> 139 4.8 7 1954 1954-07-02 12:00:00 blood 2467 #> 140 4.8 7 1954 1954-07-02 12:00:00 bone 2467 #> 141 8.4 8 1954 1954-08-01 22:00:01 blood 2468 #> 142 8.4 8 1954 1954-08-01 22:00:01 bone 2468 #> 143 1.5 9 1954 1954-09-01 08:00:01 blood 2469 #> 144 1.5 9 1954 1954-09-01 08:00:01 bone 2469 #> 145 7.0 10 1954 1954-10-01 18:00:00 blood 2470 #> 146 7.0 10 1954 1954-10-01 18:00:00 bone 2470 #> 147 9.2 11 1954 1954-11-01 04:00:01 blood 2471 #> 148 9.2 11 1954 1954-11-01 04:00:01 bone 2471 #> 149 7.6 12 1954 1954-12-01 14:00:01 blood 2472 #> 150 7.6 12 1954 1954-12-01 14:00:01 bone 2472 #> 151 23.1 1 1955 1955-01-01 00:00:00 blood 2473 #> 152 23.1 1 1955 1955-01-01 00:00:00 bone 2473 #> 153 20.8 2 1955 1955-01-31 10:00:01 blood 2474 #> 154 20.8 2 1955 1955-01-31 10:00:01 bone 2474 #> 155 4.9 3 1955 1955-03-02 20:00:01 blood 2475 #> 156 4.9 3 1955 1955-03-02 20:00:01 bone 2475 #> 157 11.3 4 1955 1955-04-02 06:00:00 blood 2476 #> 158 11.3 4 1955 1955-04-02 06:00:00 bone 2476 #> 159 28.9 5 1955 1955-05-02 16:00:01 blood 2477 #> 160 28.9 5 1955 1955-05-02 16:00:01 bone 2477 #> 161 31.7 6 1955 1955-06-02 02:00:01 blood 2478 #> 162 31.7 6 1955 1955-06-02 02:00:01 bone 2478 #> 163 26.7 7 1955 1955-07-02 12:00:00 blood 2479 #> 164 26.7 7 1955 1955-07-02 12:00:00 bone 2479 #> 165 40.7 8 1955 1955-08-01 22:00:01 blood 2480 #> 166 40.7 8 1955 1955-08-01 22:00:01 bone 2480 #> 167 42.7 9 1955 1955-09-01 08:00:01 blood 2481 #> 168 42.7 9 1955 1955-09-01 08:00:01 bone 2481 #> 169 58.5 10 1955 1955-10-01 18:00:00 blood 2482 #> 170 58.5 10 1955 1955-10-01 18:00:00 bone 2482 #> 171 89.2 11 1955 1955-11-01 04:00:01 blood 2483 #> 172 89.2 11 1955 1955-11-01 04:00:01 bone 2483 #> 173 76.9 12 1955 1955-12-01 14:00:01 blood 2484 #> 174 76.9 12 1955 1955-12-01 14:00:01 bone 2484 #> 175 73.6 1 1956 1956-01-01 00:00:00 blood 2485 #> 176 73.6 1 1956 1956-01-01 00:00:00 bone 2485 #> 177 124.0 2 1956 1956-01-31 12:00:01 blood 2486 #> 178 124.0 2 1956 1956-01-31 12:00:01 bone 2486 #> 179 118.4 3 1956 1956-03-02 00:00:01 blood 2487 #> 180 118.4 3 1956 1956-03-02 00:00:01 bone 2487 #> 181 110.7 4 1956 1956-04-01 12:00:00 blood 2488 #> 182 110.7 4 1956 1956-04-01 12:00:00 bone 2488 #> 183 136.6 5 1956 1956-05-02 00:00:01 blood 2489 #> 184 136.6 5 1956 1956-05-02 00:00:01 bone 2489 #> 185 116.6 6 1956 1956-06-01 12:00:01 blood 2490 #> 186 116.6 6 1956 1956-06-01 12:00:01 bone 2490 #> 187 129.1 7 1956 1956-07-02 00:00:00 blood 2491 #> 188 129.1 7 1956 1956-07-02 00:00:00 bone 2491 #> 189 169.6 8 1956 1956-08-01 12:00:01 blood 2492 #> 190 169.6 8 1956 1956-08-01 12:00:01 bone 2492 #> 191 173.2 9 1956 1956-09-01 00:00:01 blood 2493 #> 192 173.2 9 1956 1956-09-01 00:00:01 bone 2493 #> 193 155.3 10 1956 1956-10-01 12:00:00 blood 2494 #> 194 155.3 10 1956 1956-10-01 12:00:00 bone 2494 #> 195 201.3 11 1956 1956-11-01 00:00:01 blood 2495 #> 196 201.3 11 1956 1956-11-01 00:00:01 bone 2495 #> 197 192.1 12 1956 1956-12-01 12:00:01 blood 2496 #> 198 192.1 12 1956 1956-12-01 12:00:01 bone 2496 #> 199 165.0 1 1957 1957-01-01 00:00:00 blood 2497 #> 200 165.0 1 1957 1957-01-01 00:00:00 bone 2497 #> 201 130.2 2 1957 1957-01-31 10:00:01 blood 2498 #> 202 130.2 2 1957 1957-01-31 10:00:01 bone 2498 #> 203 157.4 3 1957 1957-03-02 20:00:01 blood 2499 #> 204 157.4 3 1957 1957-03-02 20:00:01 bone 2499 #> 205 175.2 4 1957 1957-04-02 06:00:00 blood 2500 #> 206 175.2 4 1957 1957-04-02 06:00:00 bone 2500 #> 207 164.6 5 1957 1957-05-02 16:00:01 blood 2501 #> 208 164.6 5 1957 1957-05-02 16:00:01 bone 2501 #> 209 200.7 6 1957 1957-06-02 02:00:01 blood 2502 #> 210 200.7 6 1957 1957-06-02 02:00:01 bone 2502 #> 211 187.2 7 1957 1957-07-02 12:00:00 blood 2503 #> 212 187.2 7 1957 1957-07-02 12:00:00 bone 2503 #> 213 158.0 8 1957 1957-08-01 22:00:01 blood 2504 #> 214 158.0 8 1957 1957-08-01 22:00:01 bone 2504 #> 215 235.8 9 1957 1957-09-01 08:00:01 blood 2505 #> 216 235.8 9 1957 1957-09-01 08:00:01 bone 2505 #> 217 253.8 10 1957 1957-10-01 18:00:00 blood 2506 #> 218 253.8 10 1957 1957-10-01 18:00:00 bone 2506 #> 219 210.9 11 1957 1957-11-01 04:00:01 blood 2507 #> 220 210.9 11 1957 1957-11-01 04:00:01 bone 2507 #> 221 239.4 12 1957 1957-12-01 14:00:01 blood 2508 #> 222 239.4 12 1957 1957-12-01 14:00:01 bone 2508 #> 223 202.5 1 1958 1958-01-01 00:00:00 blood 2509 #> 224 202.5 1 1958 1958-01-01 00:00:00 bone 2509 #> 225 164.9 2 1958 1958-01-31 10:00:01 blood 2510 #> 226 164.9 2 1958 1958-01-31 10:00:01 bone 2510 #> 227 190.7 3 1958 1958-03-02 20:00:01 blood 2511 #> 228 190.7 3 1958 1958-03-02 20:00:01 bone 2511 #> 229 196.0 4 1958 1958-04-02 06:00:00 blood 2512 #> 230 196.0 4 1958 1958-04-02 06:00:00 bone 2512 #> 231 175.3 5 1958 1958-05-02 16:00:01 blood 2513 #> 232 175.3 5 1958 1958-05-02 16:00:01 bone 2513 #> 233 171.5 6 1958 1958-06-02 02:00:01 blood 2514 #> 234 171.5 6 1958 1958-06-02 02:00:01 bone 2514 #> 235 191.4 7 1958 1958-07-02 12:00:00 blood 2515 #> 236 191.4 7 1958 1958-07-02 12:00:00 bone 2515 #> 237 200.2 8 1958 1958-08-01 22:00:01 blood 2516 #> 238 200.2 8 1958 1958-08-01 22:00:01 bone 2516 #> 239 201.2 9 1958 1958-09-01 08:00:01 blood 2517 #> 240 201.2 9 1958 1958-09-01 08:00:01 bone 2517 #> 241 181.5 10 1958 1958-10-01 18:00:00 blood 2518 #> 242 181.5 10 1958 1958-10-01 18:00:00 bone 2518 #> 243 152.3 11 1958 1958-11-01 04:00:01 blood 2519 #> 244 152.3 11 1958 1958-11-01 04:00:01 bone 2519 #> 245 187.6 12 1958 1958-12-01 14:00:01 blood 2520 #> 246 187.6 12 1958 1958-12-01 14:00:01 bone 2520 #> 247 217.4 1 1959 1959-01-01 00:00:00 blood 2521 #> 248 217.4 1 1959 1959-01-01 00:00:00 bone 2521 #> 249 143.1 2 1959 1959-01-31 10:00:01 blood 2522 #> 250 143.1 2 1959 1959-01-31 10:00:01 bone 2522 #> 251 185.7 3 1959 1959-03-02 20:00:01 blood 2523 #> 252 185.7 3 1959 1959-03-02 20:00:01 bone 2523 #> 253 163.3 4 1959 1959-04-02 06:00:00 blood 2524 #> 254 163.3 4 1959 1959-04-02 06:00:00 bone 2524 #> 255 172.0 5 1959 1959-05-02 16:00:01 blood 2525 #> 256 172.0 5 1959 1959-05-02 16:00:01 bone 2525 #> 257 168.7 6 1959 1959-06-02 02:00:01 blood 2526 #> 258 168.7 6 1959 1959-06-02 02:00:01 bone 2526 #> 259 149.6 7 1959 1959-07-02 12:00:00 blood 2527 #> 260 149.6 7 1959 1959-07-02 12:00:00 bone 2527 #> 261 199.6 8 1959 1959-08-01 22:00:01 blood 2528 #> 262 199.6 8 1959 1959-08-01 22:00:01 bone 2528 #> 263 145.2 9 1959 1959-09-01 08:00:01 blood 2529 #> 264 145.2 9 1959 1959-09-01 08:00:01 bone 2529 #> 265 111.4 10 1959 1959-10-01 18:00:00 blood 2530 #> 266 111.4 10 1959 1959-10-01 18:00:00 bone 2530 #> 267 124.0 11 1959 1959-11-01 04:00:01 blood 2531 #> 268 124.0 11 1959 1959-11-01 04:00:01 bone 2531 #> 269 125.0 12 1959 1959-12-01 14:00:01 blood 2532 #> 270 125.0 12 1959 1959-12-01 14:00:01 bone 2532 #> 271 146.3 1 1960 1960-01-01 00:00:00 blood 2533 #> 272 146.3 1 1960 1960-01-01 00:00:00 bone 2533 #> 273 106.0 2 1960 1960-01-31 12:00:01 blood 2534 #> 274 106.0 2 1960 1960-01-31 12:00:01 bone 2534 #> 275 102.2 3 1960 1960-03-02 00:00:01 blood 2535 #> 276 102.2 3 1960 1960-03-02 00:00:01 bone 2535 #> 277 122.0 4 1960 1960-04-01 12:00:00 blood 2536 #> 278 122.0 4 1960 1960-04-01 12:00:00 bone 2536 #> 279 119.6 5 1960 1960-05-02 00:00:01 blood 2537 #> 280 119.6 5 1960 1960-05-02 00:00:01 bone 2537 #> 281 110.2 6 1960 1960-06-01 12:00:01 blood 2538 #> 282 110.2 6 1960 1960-06-01 12:00:01 bone 2538 #> 283 121.7 7 1960 1960-07-02 00:00:00 blood 2539 #> 284 121.7 7 1960 1960-07-02 00:00:00 bone 2539 #> 285 134.1 8 1960 1960-08-01 12:00:01 blood 2540 #> 286 134.1 8 1960 1960-08-01 12:00:01 bone 2540 #> 287 127.2 9 1960 1960-09-01 00:00:01 blood 2541 #> 288 127.2 9 1960 1960-09-01 00:00:01 bone 2541 #> 289 82.8 10 1960 1960-10-01 12:00:00 blood 2542 #> 290 82.8 10 1960 1960-10-01 12:00:00 bone 2542 #> 291 89.6 11 1960 1960-11-01 00:00:01 blood 2543 #> 292 89.6 11 1960 1960-11-01 00:00:01 bone 2543 #> 293 85.6 12 1960 1960-12-01 12:00:01 blood 2544 #> 294 85.6 12 1960 1960-12-01 12:00:01 bone 2544 #> 295 57.9 1 1961 1961-01-01 00:00:00 blood 2545 #> 296 57.9 1 1961 1961-01-01 00:00:00 bone 2545 #> 297 46.1 2 1961 1961-01-31 10:00:01 blood 2546 #> 298 46.1 2 1961 1961-01-31 10:00:01 bone 2546 #> 299 53.0 3 1961 1961-03-02 20:00:01 blood 2547 #> 300 53.0 3 1961 1961-03-02 20:00:01 bone 2547 #> 301 61.4 4 1961 1961-04-02 06:00:00 blood 2548 #> 302 61.4 4 1961 1961-04-02 06:00:00 bone 2548 #> 303 51.0 5 1961 1961-05-02 16:00:01 blood 2549 #> 304 51.0 5 1961 1961-05-02 16:00:01 bone 2549 #> 305 77.4 6 1961 1961-06-02 02:00:01 blood 2550 #> 306 77.4 6 1961 1961-06-02 02:00:01 bone 2550 #> 307 70.2 7 1961 1961-07-02 12:00:00 blood 2551 #> 308 70.2 7 1961 1961-07-02 12:00:00 bone 2551 #> 309 55.9 8 1961 1961-08-01 22:00:01 blood 2552 #> 310 55.9 8 1961 1961-08-01 22:00:01 bone 2552 #> 311 63.6 9 1961 1961-09-01 08:00:01 blood 2553 #> 312 63.6 9 1961 1961-09-01 08:00:01 bone 2553 #> 313 37.7 10 1961 1961-10-01 18:00:00 blood 2554 #> 314 37.7 10 1961 1961-10-01 18:00:00 bone 2554 #> 315 32.6 11 1961 1961-11-01 04:00:01 blood 2555 #> 316 32.6 11 1961 1961-11-01 04:00:01 bone 2555 #> 317 40.0 12 1961 1961-12-01 14:00:01 blood 2556 #> 318 40.0 12 1961 1961-12-01 14:00:01 bone 2556 #> 319 38.7 1 1962 1962-01-01 00:00:00 blood 2557 #> 320 38.7 1 1962 1962-01-01 00:00:00 bone 2557 #> 321 50.3 2 1962 1962-01-31 10:00:01 blood 2558 #> 322 50.3 2 1962 1962-01-31 10:00:01 bone 2558 #> 323 45.6 3 1962 1962-03-02 20:00:01 blood 2559 #> 324 45.6 3 1962 1962-03-02 20:00:01 bone 2559 #> 325 46.4 4 1962 1962-04-02 06:00:00 blood 2560 #> 326 46.4 4 1962 1962-04-02 06:00:00 bone 2560 #> 327 43.7 5 1962 1962-05-02 16:00:01 blood 2561 #> 328 43.7 5 1962 1962-05-02 16:00:01 bone 2561 #> 329 42.0 6 1962 1962-06-02 02:00:01 blood 2562 #> 330 42.0 6 1962 1962-06-02 02:00:01 bone 2562 #> 331 21.8 7 1962 1962-07-02 12:00:00 blood 2563 #> 332 21.8 7 1962 1962-07-02 12:00:00 bone 2563 #> 333 21.8 8 1962 1962-08-01 22:00:01 blood 2564 #> 334 21.8 8 1962 1962-08-01 22:00:01 bone 2564 #> 335 51.3 9 1962 1962-09-01 08:00:01 blood 2565 #> 336 51.3 9 1962 1962-09-01 08:00:01 bone 2565 #> 337 39.5 10 1962 1962-10-01 18:00:00 blood 2566 #> 338 39.5 10 1962 1962-10-01 18:00:00 bone 2566 #> 339 26.9 11 1962 1962-11-01 04:00:01 blood 2567 #> 340 26.9 11 1962 1962-11-01 04:00:01 bone 2567 #> 341 23.2 12 1962 1962-12-01 14:00:01 blood 2568 #> 342 23.2 12 1962 1962-12-01 14:00:01 bone 2568 #> 343 19.8 1 1963 1963-01-01 00:00:00 blood 2569 #> 344 19.8 1 1963 1963-01-01 00:00:00 bone 2569 #> 345 24.4 2 1963 1963-01-31 10:00:01 blood 2570 #> 346 24.4 2 1963 1963-01-31 10:00:01 bone 2570 #> 347 17.1 3 1963 1963-03-02 20:00:01 blood 2571 #> 348 17.1 3 1963 1963-03-02 20:00:01 bone 2571 #> 349 29.3 4 1963 1963-04-02 06:00:00 blood 2572 #> 350 29.3 4 1963 1963-04-02 06:00:00 bone 2572 #> 351 43.0 5 1963 1963-05-02 16:00:01 blood 2573 #> 352 43.0 5 1963 1963-05-02 16:00:01 bone 2573 #> 353 35.9 6 1963 1963-06-02 02:00:01 blood 2574 #> 354 35.9 6 1963 1963-06-02 02:00:01 bone 2574 #> 355 19.6 7 1963 1963-07-02 12:00:00 blood 2575 #> 356 19.6 7 1963 1963-07-02 12:00:00 bone 2575 #> 357 33.2 8 1963 1963-08-01 22:00:01 blood 2576 #> 358 33.2 8 1963 1963-08-01 22:00:01 bone 2576 #> 359 38.8 9 1963 1963-09-01 08:00:01 blood 2577 #> 360 38.8 9 1963 1963-09-01 08:00:01 bone 2577 #> 361 35.3 10 1963 1963-10-01 18:00:00 blood 2578 #> 362 35.3 10 1963 1963-10-01 18:00:00 bone 2578 #> 363 23.4 11 1963 1963-11-01 04:00:01 blood 2579 #> 364 23.4 11 1963 1963-11-01 04:00:01 bone 2579 #> 365 14.9 12 1963 1963-12-01 14:00:01 blood 2580 #> 366 14.9 12 1963 1963-12-01 14:00:01 bone 2580 #> 367 15.3 1 1964 1964-01-01 00:00:00 blood 2581 #> 368 15.3 1 1964 1964-01-01 00:00:00 bone 2581 #> 369 17.7 2 1964 1964-01-31 12:00:01 blood 2582 #> 370 17.7 2 1964 1964-01-31 12:00:01 bone 2582 #> 371 16.5 3 1964 1964-03-02 00:00:01 blood 2583 #> 372 16.5 3 1964 1964-03-02 00:00:01 bone 2583 #> 373 8.6 4 1964 1964-04-01 12:00:00 blood 2584 #> 374 8.6 4 1964 1964-04-01 12:00:00 bone 2584 #> 375 9.5 5 1964 1964-05-02 00:00:01 blood 2585 #> 376 9.5 5 1964 1964-05-02 00:00:01 bone 2585 #> 377 9.1 6 1964 1964-06-01 12:00:01 blood 2586 #> 378 9.1 6 1964 1964-06-01 12:00:01 bone 2586 #> 379 3.1 7 1964 1964-07-02 00:00:00 blood 2587 #> 380 3.1 7 1964 1964-07-02 00:00:00 bone 2587 #> 381 9.3 8 1964 1964-08-01 12:00:01 blood 2588 #> 382 9.3 8 1964 1964-08-01 12:00:01 bone 2588 #> 383 4.7 9 1964 1964-09-01 00:00:01 blood 2589 #> 384 4.7 9 1964 1964-09-01 00:00:01 bone 2589 #> 385 6.1 10 1964 1964-10-01 12:00:00 blood 2590 #> 386 6.1 10 1964 1964-10-01 12:00:00 bone 2590 #> 387 7.4 11 1964 1964-11-01 00:00:01 blood 2591 #> 388 7.4 11 1964 1964-11-01 00:00:01 bone 2591 #> 389 15.1 12 1964 1964-12-01 12:00:01 blood 2592 #> 390 15.1 12 1964 1964-12-01 12:00:01 bone 2592 #> 391 17.5 1 1965 1965-01-01 00:00:00 blood 2593 #> 392 17.5 1 1965 1965-01-01 00:00:00 bone 2593 #> 393 14.2 2 1965 1965-01-31 10:00:01 blood 2594 #> 394 14.2 2 1965 1965-01-31 10:00:01 bone 2594 #> 395 11.7 3 1965 1965-03-02 20:00:01 blood 2595 #> 396 11.7 3 1965 1965-03-02 20:00:01 bone 2595 #> 397 6.8 4 1965 1965-04-02 06:00:00 blood 2596 #> 398 6.8 4 1965 1965-04-02 06:00:00 bone 2596 #> 399 24.1 5 1965 1965-05-02 16:00:01 blood 2597 #> 400 24.1 5 1965 1965-05-02 16:00:01 bone 2597 #> 401 15.9 6 1965 1965-06-02 02:00:01 blood 2598 #> 402 15.9 6 1965 1965-06-02 02:00:01 bone 2598 #> 403 11.9 7 1965 1965-07-02 12:00:00 blood 2599 #> 404 11.9 7 1965 1965-07-02 12:00:00 bone 2599 #> 405 8.9 8 1965 1965-08-01 22:00:01 blood 2600 #> 406 8.9 8 1965 1965-08-01 22:00:01 bone 2600 #> 407 16.8 9 1965 1965-09-01 08:00:01 blood 2601 #> 408 16.8 9 1965 1965-09-01 08:00:01 bone 2601 #> 409 20.1 10 1965 1965-10-01 18:00:00 blood 2602 #> 410 20.1 10 1965 1965-10-01 18:00:00 bone 2602 #> 411 15.8 11 1965 1965-11-01 04:00:01 blood 2603 #> 412 15.8 11 1965 1965-11-01 04:00:01 bone 2603 #> 413 17.0 12 1965 1965-12-01 14:00:01 blood 2604 #> 414 17.0 12 1965 1965-12-01 14:00:01 bone 2604 #> 415 28.2 1 1966 1966-01-01 00:00:00 blood 2605 #> 416 28.2 1 1966 1966-01-01 00:00:00 bone 2605 #> 417 24.4 2 1966 1966-01-31 10:00:01 blood 2606 #> 418 24.4 2 1966 1966-01-31 10:00:01 bone 2606 #> 419 25.3 3 1966 1966-03-02 20:00:01 blood 2607 #> 420 25.3 3 1966 1966-03-02 20:00:01 bone 2607 #> 421 48.7 4 1966 1966-04-02 06:00:00 blood 2608 #> 422 48.7 4 1966 1966-04-02 06:00:00 bone 2608 #> 423 45.3 5 1966 1966-05-02 16:00:01 blood 2609 #> 424 45.3 5 1966 1966-05-02 16:00:01 bone 2609 #> 425 47.7 6 1966 1966-06-02 02:00:01 blood 2610 #> 426 47.7 6 1966 1966-06-02 02:00:01 bone 2610 #> 427 56.7 7 1966 1966-07-02 12:00:00 blood 2611 #> 428 56.7 7 1966 1966-07-02 12:00:00 bone 2611 #> 429 51.2 8 1966 1966-08-01 22:00:01 blood 2612 #> 430 51.2 8 1966 1966-08-01 22:00:01 bone 2612 #> 431 50.2 9 1966 1966-09-01 08:00:01 blood 2613 #> 432 50.2 9 1966 1966-09-01 08:00:01 bone 2613 #> 433 57.2 10 1966 1966-10-01 18:00:00 blood 2614 #> 434 57.2 10 1966 1966-10-01 18:00:00 bone 2614 #> 435 57.2 11 1966 1966-11-01 04:00:01 blood 2615 #> 436 57.2 11 1966 1966-11-01 04:00:01 bone 2615 #> 437 70.4 12 1966 1966-12-01 14:00:01 blood 2616 #> 438 70.4 12 1966 1966-12-01 14:00:01 bone 2616 #> 439 110.9 1 1967 1967-01-01 00:00:00 blood 2617 #> 440 110.9 1 1967 1967-01-01 00:00:00 bone 2617 #> 441 93.6 2 1967 1967-01-31 10:00:01 blood 2618 #> 442 93.6 2 1967 1967-01-31 10:00:01 bone 2618 #> 443 111.8 3 1967 1967-03-02 20:00:01 blood 2619 #> 444 111.8 3 1967 1967-03-02 20:00:01 bone 2619 #> 445 69.5 4 1967 1967-04-02 06:00:00 blood 2620 #> 446 69.5 4 1967 1967-04-02 06:00:00 bone 2620 #> 447 86.5 5 1967 1967-05-02 16:00:01 blood 2621 #> 448 86.5 5 1967 1967-05-02 16:00:01 bone 2621 #> 449 67.3 6 1967 1967-06-02 02:00:01 blood 2622 #> 450 67.3 6 1967 1967-06-02 02:00:01 bone 2622 #> 451 91.5 7 1967 1967-07-02 12:00:00 blood 2623 #> 452 91.5 7 1967 1967-07-02 12:00:00 bone 2623 #> 453 107.2 8 1967 1967-08-01 22:00:01 blood 2624 #> 454 107.2 8 1967 1967-08-01 22:00:01 bone 2624 #> 455 76.8 9 1967 1967-09-01 08:00:01 blood 2625 #> 456 76.8 9 1967 1967-09-01 08:00:01 bone 2625 #> 457 88.2 10 1967 1967-10-01 18:00:00 blood 2626 #> 458 88.2 10 1967 1967-10-01 18:00:00 bone 2626 #> 459 94.3 11 1967 1967-11-01 04:00:01 blood 2627 #> 460 94.3 11 1967 1967-11-01 04:00:01 bone 2627 #> 461 126.4 12 1967 1967-12-01 14:00:01 blood 2628 #> 462 126.4 12 1967 1967-12-01 14:00:01 bone 2628 #> 463 121.8 1 1968 1968-01-01 00:00:00 blood 2629 #> 464 121.8 1 1968 1968-01-01 00:00:00 bone 2629 #> 465 111.9 2 1968 1968-01-31 12:00:01 blood 2630 #> 466 111.9 2 1968 1968-01-31 12:00:01 bone 2630 #> 467 92.2 3 1968 1968-03-02 00:00:01 blood 2631 #> 468 92.2 3 1968 1968-03-02 00:00:01 bone 2631 #> 469 81.2 4 1968 1968-04-01 12:00:00 blood 2632 #> 470 81.2 4 1968 1968-04-01 12:00:00 bone 2632 #> 471 127.2 5 1968 1968-05-02 00:00:01 blood 2633 #> 472 127.2 5 1968 1968-05-02 00:00:01 bone 2633 #> 473 110.3 6 1968 1968-06-01 12:00:01 blood 2634 #> 474 110.3 6 1968 1968-06-01 12:00:01 bone 2634 #> 475 96.1 7 1968 1968-07-02 00:00:00 blood 2635 #> 476 96.1 7 1968 1968-07-02 00:00:00 bone 2635 #> 477 109.3 8 1968 1968-08-01 12:00:01 blood 2636 #> 478 109.3 8 1968 1968-08-01 12:00:01 bone 2636 #> 479 117.2 9 1968 1968-09-01 00:00:01 blood 2637 #> 480 117.2 9 1968 1968-09-01 00:00:01 bone 2637 #> 481 107.7 10 1968 1968-10-01 12:00:00 blood 2638 #> 482 107.7 10 1968 1968-10-01 12:00:00 bone 2638 #> 483 86.0 11 1968 1968-11-01 00:00:01 blood 2639 #> 484 86.0 11 1968 1968-11-01 00:00:01 bone 2639 #> 485 109.8 12 1968 1968-12-01 12:00:01 blood 2640 #> 486 109.8 12 1968 1968-12-01 12:00:01 bone 2640 #> 487 104.4 1 1969 1969-01-01 00:00:00 blood 2641 #> 488 104.4 1 1969 1969-01-01 00:00:00 bone 2641 #> 489 120.5 2 1969 1969-01-31 10:00:01 blood 2642 #> 490 120.5 2 1969 1969-01-31 10:00:01 bone 2642 #> 491 135.8 3 1969 1969-03-02 20:00:01 blood 2643 #> 492 135.8 3 1969 1969-03-02 20:00:01 bone 2643 #> 493 106.8 4 1969 1969-04-02 06:00:00 blood 2644 #> 494 106.8 4 1969 1969-04-02 06:00:00 bone 2644 #> 495 120.0 5 1969 1969-05-02 16:00:01 blood 2645 #> 496 120.0 5 1969 1969-05-02 16:00:01 bone 2645 #> 497 106.0 6 1969 1969-06-02 02:00:01 blood 2646 #> 498 106.0 6 1969 1969-06-02 02:00:01 bone 2646 #> 499 96.8 7 1969 1969-07-02 12:00:00 blood 2647 #> 500 96.8 7 1969 1969-07-02 12:00:00 bone 2647 #> 501 98.0 8 1969 1969-08-01 22:00:01 blood 2648 #> 502 98.0 8 1969 1969-08-01 22:00:01 bone 2648 #> 503 91.3 9 1969 1969-09-01 08:00:01 blood 2649 #> 504 91.3 9 1969 1969-09-01 08:00:01 bone 2649 #> 505 95.7 10 1969 1969-10-01 18:00:00 blood 2650 #> 506 95.7 10 1969 1969-10-01 18:00:00 bone 2650 #> 507 93.5 11 1969 1969-11-01 04:00:01 blood 2651 #> 508 93.5 11 1969 1969-11-01 04:00:01 bone 2651 #> 509 97.9 12 1969 1969-12-01 14:00:01 blood 2652 #> 510 97.9 12 1969 1969-12-01 14:00:01 bone 2652 #> 511 111.5 1 1970 1970-01-01 00:00:00 blood 2653 #> 512 111.5 1 1970 1970-01-01 00:00:00 bone 2653 #> 513 127.8 2 1970 1970-01-31 10:00:00 blood 2654 #> 514 127.8 2 1970 1970-01-31 10:00:00 bone 2654 #> 515 102.9 3 1970 1970-03-02 20:00:00 blood 2655 #> 516 102.9 3 1970 1970-03-02 20:00:00 bone 2655 #> 517 109.5 4 1970 1970-04-02 06:00:00 blood 2656 #> 518 109.5 4 1970 1970-04-02 06:00:00 bone 2656 #> 519 127.5 5 1970 1970-05-02 16:00:00 blood 2657 #> 520 127.5 5 1970 1970-05-02 16:00:00 bone 2657 #> 521 106.8 6 1970 1970-06-02 02:00:00 blood 2658 #> 522 106.8 6 1970 1970-06-02 02:00:00 bone 2658 #> 523 112.5 7 1970 1970-07-02 12:00:00 blood 2659 #> 524 112.5 7 1970 1970-07-02 12:00:00 bone 2659 #> 525 93.0 8 1970 1970-08-01 22:00:00 blood 2660 #> 526 93.0 8 1970 1970-08-01 22:00:00 bone 2660 #> 527 99.5 9 1970 1970-09-01 08:00:00 blood 2661 #> 528 99.5 9 1970 1970-09-01 08:00:00 bone 2661 #> 529 86.6 10 1970 1970-10-01 18:00:00 blood 2662 #> 530 86.6 10 1970 1970-10-01 18:00:00 bone 2662 #> 531 95.2 11 1970 1970-11-01 04:00:00 blood 2663 #> 532 95.2 11 1970 1970-11-01 04:00:00 bone 2663 #> 533 83.5 12 1970 1970-12-01 14:00:00 blood 2664 #> 534 83.5 12 1970 1970-12-01 14:00:00 bone 2664 #> 535 91.3 1 1971 1971-01-01 00:00:00 blood 2665 #> 536 91.3 1 1971 1971-01-01 00:00:00 bone 2665 #> 537 79.0 2 1971 1971-01-31 10:00:00 blood 2666 #> 538 79.0 2 1971 1971-01-31 10:00:00 bone 2666 #> 539 60.7 3 1971 1971-03-02 20:00:00 blood 2667 #> 540 60.7 3 1971 1971-03-02 20:00:00 bone 2667 #> 541 71.8 4 1971 1971-04-02 06:00:00 blood 2668 #> 542 71.8 4 1971 1971-04-02 06:00:00 bone 2668 #> 543 57.5 5 1971 1971-05-02 16:00:00 blood 2669 #> 544 57.5 5 1971 1971-05-02 16:00:00 bone 2669 #> 545 49.8 6 1971 1971-06-02 02:00:00 blood 2670 #> 546 49.8 6 1971 1971-06-02 02:00:00 bone 2670 #> 547 81.0 7 1971 1971-07-02 12:00:00 blood 2671 #> 548 81.0 7 1971 1971-07-02 12:00:00 bone 2671 #> 549 61.4 8 1971 1971-08-01 22:00:00 blood 2672 #> 550 61.4 8 1971 1971-08-01 22:00:00 bone 2672 #> 551 50.2 9 1971 1971-09-01 08:00:00 blood 2673 #> 552 50.2 9 1971 1971-09-01 08:00:00 bone 2673 #> 553 51.7 10 1971 1971-10-01 18:00:00 blood 2674 #> 554 51.7 10 1971 1971-10-01 18:00:00 bone 2674 #> 555 63.2 11 1971 1971-11-01 04:00:00 blood 2675 #> 556 63.2 11 1971 1971-11-01 04:00:00 bone 2675 #> 557 82.2 12 1971 1971-12-01 14:00:00 blood 2676 #> 558 82.2 12 1971 1971-12-01 14:00:00 bone 2676 #> 559 61.5 1 1972 1972-01-01 00:00:00 blood 2677 #> 560 61.5 1 1972 1972-01-01 00:00:00 bone 2677 #> 561 88.4 2 1972 1972-01-31 12:00:00 blood 2678 #> 562 88.4 2 1972 1972-01-31 12:00:00 bone 2678 #> 563 80.1 3 1972 1972-03-02 00:00:00 blood 2679 #> 564 80.1 3 1972 1972-03-02 00:00:00 bone 2679 #> 565 63.2 4 1972 1972-04-01 12:00:00 blood 2680 #> 566 63.2 4 1972 1972-04-01 12:00:00 bone 2680 #> 567 80.5 5 1972 1972-05-02 00:00:00 blood 2681 #> 568 80.5 5 1972 1972-05-02 00:00:00 bone 2681 #> 569 88.0 6 1972 1972-06-01 12:00:00 blood 2682 #> 570 88.0 6 1972 1972-06-01 12:00:00 bone 2682 #> 571 76.5 7 1972 1972-07-02 00:00:00 blood 2683 #> 572 76.5 7 1972 1972-07-02 00:00:00 bone 2683 #> 573 76.8 8 1972 1972-08-01 12:00:00 blood 2684 #> 574 76.8 8 1972 1972-08-01 12:00:00 bone 2684 #> 575 64.0 9 1972 1972-09-01 00:00:00 blood 2685 #> 576 64.0 9 1972 1972-09-01 00:00:00 bone 2685 #> 577 61.3 10 1972 1972-10-01 12:00:00 blood 2686 #> 578 61.3 10 1972 1972-10-01 12:00:00 bone 2686 #> 579 41.6 11 1972 1972-11-01 00:00:00 blood 2687 #> 580 41.6 11 1972 1972-11-01 00:00:00 bone 2687 #> 581 45.3 12 1972 1972-12-01 12:00:00 blood 2688 #> 582 45.3 12 1972 1972-12-01 12:00:00 bone 2688 #> 583 43.4 1 1973 1973-01-01 00:00:00 blood 2689 #> 584 43.4 1 1973 1973-01-01 00:00:00 bone 2689 #> 585 42.9 2 1973 1973-01-31 10:00:00 blood 2690 #> 586 42.9 2 1973 1973-01-31 10:00:00 bone 2690 #> 587 46.0 3 1973 1973-03-02 20:00:00 blood 2691 #> 588 46.0 3 1973 1973-03-02 20:00:00 bone 2691 #> 589 57.7 4 1973 1973-04-02 06:00:00 blood 2692 #> 590 57.7 4 1973 1973-04-02 06:00:00 bone 2692 #> 591 42.4 5 1973 1973-05-02 16:00:00 blood 2693 #> 592 42.4 5 1973 1973-05-02 16:00:00 bone 2693 #> 593 39.5 6 1973 1973-06-02 02:00:00 blood 2694 #> 594 39.5 6 1973 1973-06-02 02:00:00 bone 2694 #> 595 23.1 7 1973 1973-07-02 12:00:00 blood 2695 #> 596 23.1 7 1973 1973-07-02 12:00:00 bone 2695 #> 597 25.6 8 1973 1973-08-01 22:00:00 blood 2696 #> 598 25.6 8 1973 1973-08-01 22:00:00 bone 2696 #> 599 59.3 9 1973 1973-09-01 08:00:00 blood 2697 #> 600 59.3 9 1973 1973-09-01 08:00:00 bone 2697 #> 601 30.7 10 1973 1973-10-01 18:00:00 blood 2698 #> 602 30.7 10 1973 1973-10-01 18:00:00 bone 2698 #> 603 23.9 11 1973 1973-11-01 04:00:00 blood 2699 #> 604 23.9 11 1973 1973-11-01 04:00:00 bone 2699 #> 605 23.3 12 1973 1973-12-01 14:00:00 blood 2700 #> 606 23.3 12 1973 1973-12-01 14:00:00 bone 2700 #> 607 27.6 1 1974 1974-01-01 00:00:00 blood 2701 #> 608 27.6 1 1974 1974-01-01 00:00:00 bone 2701 #> 609 26.0 2 1974 1974-01-31 10:00:00 blood 2702 #> 610 26.0 2 1974 1974-01-31 10:00:00 bone 2702 #> 611 21.3 3 1974 1974-03-02 20:00:00 blood 2703 #> 612 21.3 3 1974 1974-03-02 20:00:00 bone 2703 #> 613 40.3 4 1974 1974-04-02 06:00:00 blood 2704 #> 614 40.3 4 1974 1974-04-02 06:00:00 bone 2704 #> 615 39.5 5 1974 1974-05-02 16:00:00 blood 2705 #> 616 39.5 5 1974 1974-05-02 16:00:00 bone 2705 #> 617 36.0 6 1974 1974-06-02 02:00:00 blood 2706 #> 618 36.0 6 1974 1974-06-02 02:00:00 bone 2706 #> 619 55.8 7 1974 1974-07-02 12:00:00 blood 2707 #> 620 55.8 7 1974 1974-07-02 12:00:00 bone 2707 #> 621 33.6 8 1974 1974-08-01 22:00:00 blood 2708 #> 622 33.6 8 1974 1974-08-01 22:00:00 bone 2708 #> 623 40.2 9 1974 1974-09-01 08:00:00 blood 2709 #> 624 40.2 9 1974 1974-09-01 08:00:00 bone 2709 #> 625 47.1 10 1974 1974-10-01 18:00:00 blood 2710 #> 626 47.1 10 1974 1974-10-01 18:00:00 bone 2710 #> 627 25.0 11 1974 1974-11-01 04:00:00 blood 2711 #> 628 25.0 11 1974 1974-11-01 04:00:00 bone 2711 #> 629 20.5 12 1974 1974-12-01 14:00:00 blood 2712 #> 630 20.5 12 1974 1974-12-01 14:00:00 bone 2712 #> 631 18.9 1 1975 1975-01-01 00:00:00 blood 2713 #> 632 18.9 1 1975 1975-01-01 00:00:00 bone 2713 #> 633 11.5 2 1975 1975-01-31 10:00:00 blood 2714 #> 634 11.5 2 1975 1975-01-31 10:00:00 bone 2714 #> 635 11.5 3 1975 1975-03-02 20:00:00 blood 2715 #> 636 11.5 3 1975 1975-03-02 20:00:00 bone 2715 #> 637 5.1 4 1975 1975-04-02 06:00:00 blood 2716 #> 638 5.1 4 1975 1975-04-02 06:00:00 bone 2716 #> 639 9.0 5 1975 1975-05-02 16:00:00 blood 2717 #> 640 9.0 5 1975 1975-05-02 16:00:00 bone 2717 #> 641 11.4 6 1975 1975-06-02 02:00:00 blood 2718 #> 642 11.4 6 1975 1975-06-02 02:00:00 bone 2718 #> 643 28.2 7 1975 1975-07-02 12:00:00 blood 2719 #> 644 28.2 7 1975 1975-07-02 12:00:00 bone 2719 #> 645 39.7 8 1975 1975-08-01 22:00:00 blood 2720 #> 646 39.7 8 1975 1975-08-01 22:00:00 bone 2720 #> 647 13.9 9 1975 1975-09-01 08:00:00 blood 2721 #> 648 13.9 9 1975 1975-09-01 08:00:00 bone 2721 #> 649 9.1 10 1975 1975-10-01 18:00:00 blood 2722 #> 650 9.1 10 1975 1975-10-01 18:00:00 bone 2722 #> 651 19.4 11 1975 1975-11-01 04:00:00 blood 2723 #> 652 19.4 11 1975 1975-11-01 04:00:00 bone 2723 #> 653 7.8 12 1975 1975-12-01 14:00:00 blood 2724 #> 654 7.8 12 1975 1975-12-01 14:00:00 bone 2724 #> 655 8.1 1 1976 1976-01-01 00:00:00 blood 2725 #> 656 8.1 1 1976 1976-01-01 00:00:00 bone 2725 #> 657 4.3 2 1976 1976-01-31 12:00:00 blood 2726 #> 658 4.3 2 1976 1976-01-31 12:00:00 bone 2726 #> 659 21.9 3 1976 1976-03-02 00:00:00 blood 2727 #> 660 21.9 3 1976 1976-03-02 00:00:00 bone 2727 #> 661 18.8 4 1976 1976-04-01 12:00:00 blood 2728 #> 662 18.8 4 1976 1976-04-01 12:00:00 bone 2728 #> 663 12.4 5 1976 1976-05-02 00:00:00 blood 2729 #> 664 12.4 5 1976 1976-05-02 00:00:00 bone 2729 #> 665 12.2 6 1976 1976-06-01 12:00:00 blood 2730 #> 666 12.2 6 1976 1976-06-01 12:00:00 bone 2730 #> 667 1.9 7 1976 1976-07-02 00:00:00 blood 2731 #> 668 1.9 7 1976 1976-07-02 00:00:00 bone 2731 #> 669 16.4 8 1976 1976-08-01 12:00:00 blood 2732 #> 670 16.4 8 1976 1976-08-01 12:00:00 bone 2732 #> 671 13.5 9 1976 1976-09-01 00:00:00 blood 2733 #> 672 13.5 9 1976 1976-09-01 00:00:00 bone 2733 #> 673 20.6 10 1976 1976-10-01 12:00:00 blood 2734 #> 674 20.6 10 1976 1976-10-01 12:00:00 bone 2734 #> 675 5.2 11 1976 1976-11-01 00:00:00 blood 2735 #> 676 5.2 11 1976 1976-11-01 00:00:00 bone 2735 #> 677 15.3 12 1976 1976-12-01 12:00:00 blood 2736 #> 678 15.3 12 1976 1976-12-01 12:00:00 bone 2736 #> 679 16.4 1 1977 1977-01-01 00:00:00 blood 2737 #> 680 16.4 1 1977 1977-01-01 00:00:00 bone 2737 #> 681 23.1 2 1977 1977-01-31 10:00:00 blood 2738 #> 682 23.1 2 1977 1977-01-31 10:00:00 bone 2738 #> 683 8.7 3 1977 1977-03-02 20:00:00 blood 2739 #> 684 8.7 3 1977 1977-03-02 20:00:00 bone 2739 #> 685 12.9 4 1977 1977-04-02 06:00:00 blood 2740 #> 686 12.9 4 1977 1977-04-02 06:00:00 bone 2740 #> 687 18.6 5 1977 1977-05-02 16:00:00 blood 2741 #> 688 18.6 5 1977 1977-05-02 16:00:00 bone 2741 #> 689 38.5 6 1977 1977-06-02 02:00:00 blood 2742 #> 690 38.5 6 1977 1977-06-02 02:00:00 bone 2742 #> 691 21.4 7 1977 1977-07-02 12:00:00 blood 2743 #> 692 21.4 7 1977 1977-07-02 12:00:00 bone 2743 #> 693 30.1 8 1977 1977-08-01 22:00:00 blood 2744 #> 694 30.1 8 1977 1977-08-01 22:00:00 bone 2744 #> 695 44.0 9 1977 1977-09-01 08:00:00 blood 2745 #> 696 44.0 9 1977 1977-09-01 08:00:00 bone 2745 #> 697 43.8 10 1977 1977-10-01 18:00:00 blood 2746 #> 698 43.8 10 1977 1977-10-01 18:00:00 bone 2746 #> 699 29.1 11 1977 1977-11-01 04:00:00 blood 2747 #> 700 29.1 11 1977 1977-11-01 04:00:00 bone 2747 #> 701 43.2 12 1977 1977-12-01 14:00:00 blood 2748 #> 702 43.2 12 1977 1977-12-01 14:00:00 bone 2748 #> 703 51.9 1 1978 1978-01-01 00:00:00 blood 2749 #> 704 51.9 1 1978 1978-01-01 00:00:00 bone 2749 #> 705 93.6 2 1978 1978-01-31 10:00:00 blood 2750 #> 706 93.6 2 1978 1978-01-31 10:00:00 bone 2750 #> 707 76.5 3 1978 1978-03-02 20:00:00 blood 2751 #> 708 76.5 3 1978 1978-03-02 20:00:00 bone 2751 #> 709 99.7 4 1978 1978-04-02 06:00:00 blood 2752 #> 710 99.7 4 1978 1978-04-02 06:00:00 bone 2752 #> 711 82.7 5 1978 1978-05-02 16:00:00 blood 2753 #> 712 82.7 5 1978 1978-05-02 16:00:00 bone 2753 #> 713 95.1 6 1978 1978-06-02 02:00:00 blood 2754 #> 714 95.1 6 1978 1978-06-02 02:00:00 bone 2754 #> 715 70.4 7 1978 1978-07-02 12:00:00 blood 2755 #> 716 70.4 7 1978 1978-07-02 12:00:00 bone 2755 #> 717 58.1 8 1978 1978-08-01 22:00:00 blood 2756 #> 718 58.1 8 1978 1978-08-01 22:00:00 bone 2756 #> 719 138.2 9 1978 1978-09-01 08:00:00 blood 2757 #> 720 138.2 9 1978 1978-09-01 08:00:00 bone 2757 #> 721 125.1 10 1978 1978-10-01 18:00:00 blood 2758 #> 722 125.1 10 1978 1978-10-01 18:00:00 bone 2758 #> 723 97.9 11 1978 1978-11-01 04:00:00 blood 2759 #> 724 97.9 11 1978 1978-11-01 04:00:00 bone 2759 #> 725 122.7 12 1978 1978-12-01 14:00:00 blood 2760 #> 726 122.7 12 1978 1978-12-01 14:00:00 bone 2760 #> 727 166.6 1 1979 1979-01-01 00:00:00 blood 2761 #> 728 166.6 1 1979 1979-01-01 00:00:00 bone 2761 #> 729 137.5 2 1979 1979-01-31 10:00:00 blood 2762 #> 730 137.5 2 1979 1979-01-31 10:00:00 bone 2762 #> 731 138.0 3 1979 1979-03-02 20:00:00 blood 2763 #> 732 138.0 3 1979 1979-03-02 20:00:00 bone 2763 #> 733 101.5 4 1979 1979-04-02 06:00:00 blood 2764 #> 734 101.5 4 1979 1979-04-02 06:00:00 bone 2764 #> 735 134.4 5 1979 1979-05-02 16:00:00 blood 2765 #> 736 134.4 5 1979 1979-05-02 16:00:00 bone 2765 #> 737 149.5 6 1979 1979-06-02 02:00:00 blood 2766 #> 738 149.5 6 1979 1979-06-02 02:00:00 bone 2766 #> 739 159.4 7 1979 1979-07-02 12:00:00 blood 2767 #> 740 159.4 7 1979 1979-07-02 12:00:00 bone 2767 #> 741 142.2 8 1979 1979-08-01 22:00:00 blood 2768 #> 742 142.2 8 1979 1979-08-01 22:00:00 bone 2768 #> 743 188.4 9 1979 1979-09-01 08:00:00 blood 2769 #> 744 188.4 9 1979 1979-09-01 08:00:00 bone 2769 #> 745 186.2 10 1979 1979-10-01 18:00:00 blood 2770 #> 746 186.2 10 1979 1979-10-01 18:00:00 bone 2770 #> 747 183.3 11 1979 1979-11-01 04:00:00 blood 2771 #> 748 183.3 11 1979 1979-11-01 04:00:00 bone 2771 #> 749 176.3 12 1979 1979-12-01 14:00:00 blood 2772 #> 750 176.3 12 1979 1979-12-01 14:00:00 bone 2772 #> 751 159.6 1 1980 1980-01-01 00:00:00 blood 2773 #> 752 159.6 1 1980 1980-01-01 00:00:00 bone 2773 #> 753 155.0 2 1980 1980-01-31 12:00:00 blood 2774 #> 754 155.0 2 1980 1980-01-31 12:00:00 bone 2774 #> 755 126.2 3 1980 1980-03-02 00:00:00 blood 2775 #> 756 126.2 3 1980 1980-03-02 00:00:00 bone 2775 #> 757 164.1 4 1980 1980-04-01 12:00:00 blood 2776 #> 758 164.1 4 1980 1980-04-01 12:00:00 bone 2776 #> 759 179.9 5 1980 1980-05-02 00:00:00 blood 2777 #> 760 179.9 5 1980 1980-05-02 00:00:00 bone 2777 #> 761 157.3 6 1980 1980-06-01 12:00:00 blood 2778 #> 762 157.3 6 1980 1980-06-01 12:00:00 bone 2778 #> 763 136.3 7 1980 1980-07-02 00:00:00 blood 2779 #> 764 136.3 7 1980 1980-07-02 00:00:00 bone 2779 #> 765 135.4 8 1980 1980-08-01 12:00:00 blood 2780 #> 766 135.4 8 1980 1980-08-01 12:00:00 bone 2780 #> 767 155.0 9 1980 1980-09-01 00:00:00 blood 2781 #> 768 155.0 9 1980 1980-09-01 00:00:00 bone 2781 #> 769 164.7 10 1980 1980-10-01 12:00:00 blood 2782 #> 770 164.7 10 1980 1980-10-01 12:00:00 bone 2782 #> 771 147.9 11 1980 1980-11-01 00:00:00 blood 2783 #> 772 147.9 11 1980 1980-11-01 00:00:00 bone 2783 #> 773 174.4 12 1980 1980-12-01 12:00:00 blood 2784 #> 774 174.4 12 1980 1980-12-01 12:00:00 bone 2784 #> 775 114.0 1 1981 1981-01-01 00:00:00 blood 2785 #> 776 114.0 1 1981 1981-01-01 00:00:00 bone 2785 #> 777 141.3 2 1981 1981-01-31 10:00:00 blood 2786 #> 778 141.3 2 1981 1981-01-31 10:00:00 bone 2786 #> 779 135.5 3 1981 1981-03-02 20:00:00 blood 2787 #> 780 135.5 3 1981 1981-03-02 20:00:00 bone 2787 #> 781 156.4 4 1981 1981-04-02 06:00:00 blood 2788 #> 782 156.4 4 1981 1981-04-02 06:00:00 bone 2788 #> 783 127.5 5 1981 1981-05-02 16:00:00 blood 2789 #> 784 127.5 5 1981 1981-05-02 16:00:00 bone 2789 #> 785 90.0 6 1981 1981-06-02 02:00:00 blood 2790 #> 786 90.0 6 1981 1981-06-02 02:00:00 bone 2790 #> 787 143.8 7 1981 1981-07-02 12:00:00 blood 2791 #> 788 143.8 7 1981 1981-07-02 12:00:00 bone 2791 #> 789 158.7 8 1981 1981-08-01 22:00:00 blood 2792 #> 790 158.7 8 1981 1981-08-01 22:00:00 bone 2792 #> 791 167.3 9 1981 1981-09-01 08:00:00 blood 2793 #> 792 167.3 9 1981 1981-09-01 08:00:00 bone 2793 #> 793 162.4 10 1981 1981-10-01 18:00:00 blood 2794 #> 794 162.4 10 1981 1981-10-01 18:00:00 bone 2794 #> 795 137.5 11 1981 1981-11-01 04:00:00 blood 2795 #> 796 137.5 11 1981 1981-11-01 04:00:00 bone 2795 #> 797 150.1 12 1981 1981-12-01 14:00:00 blood 2796 #> 798 150.1 12 1981 1981-12-01 14:00:00 bone 2796 #> 799 111.2 1 1982 1982-01-01 00:00:00 blood 2797 #> 800 111.2 1 1982 1982-01-01 00:00:00 bone 2797 #> 801 163.6 2 1982 1982-01-31 10:00:00 blood 2798 #> 802 163.6 2 1982 1982-01-31 10:00:00 bone 2798 #> 803 153.8 3 1982 1982-03-02 20:00:00 blood 2799 #> 804 153.8 3 1982 1982-03-02 20:00:00 bone 2799 #> 805 122.0 4 1982 1982-04-02 06:00:00 blood 2800 #> 806 122.0 4 1982 1982-04-02 06:00:00 bone 2800 #> 807 82.2 5 1982 1982-05-02 16:00:00 blood 2801 #> 808 82.2 5 1982 1982-05-02 16:00:00 bone 2801 #> 809 110.4 6 1982 1982-06-02 02:00:00 blood 2802 #> 810 110.4 6 1982 1982-06-02 02:00:00 bone 2802 #> 811 106.1 7 1982 1982-07-02 12:00:00 blood 2803 #> 812 106.1 7 1982 1982-07-02 12:00:00 bone 2803 #> 813 107.6 8 1982 1982-08-01 22:00:00 blood 2804 #> 814 107.6 8 1982 1982-08-01 22:00:00 bone 2804 #> 815 118.8 9 1982 1982-09-01 08:00:00 blood 2805 #> 816 118.8 9 1982 1982-09-01 08:00:00 bone 2805 #> 817 94.7 10 1982 1982-10-01 18:00:00 blood 2806 #> 818 94.7 10 1982 1982-10-01 18:00:00 bone 2806 #> 819 98.1 11 1982 1982-11-01 04:00:00 blood 2807 #> 820 98.1 11 1982 1982-11-01 04:00:00 bone 2807 #> 821 127.0 12 1982 1982-12-01 14:00:00 blood 2808 #> 822 127.0 12 1982 1982-12-01 14:00:00 bone 2808 #> 823 84.3 1 1983 1983-01-01 00:00:00 blood 2809 #> 824 84.3 1 1983 1983-01-01 00:00:00 bone 2809 #> 825 51.0 2 1983 1983-01-31 10:00:00 blood 2810 #> 826 51.0 2 1983 1983-01-31 10:00:00 bone 2810 #> 827 66.5 3 1983 1983-03-02 20:00:00 blood 2811 #> 828 66.5 3 1983 1983-03-02 20:00:00 bone 2811 #> 829 80.7 4 1983 1983-04-02 06:00:00 blood 2812 #> 830 80.7 4 1983 1983-04-02 06:00:00 bone 2812 #> 831 99.2 5 1983 1983-05-02 16:00:00 blood 2813 #> 832 99.2 5 1983 1983-05-02 16:00:00 bone 2813 #> 833 91.1 6 1983 1983-06-02 02:00:00 blood 2814 #> 834 91.1 6 1983 1983-06-02 02:00:00 bone 2814 #> 835 82.2 7 1983 1983-07-02 12:00:00 blood 2815 #> 836 82.2 7 1983 1983-07-02 12:00:00 bone 2815 #> 837 71.8 8 1983 1983-08-01 22:00:00 blood 2816 #> 838 71.8 8 1983 1983-08-01 22:00:00 bone 2816 #> 839 50.3 9 1983 1983-09-01 08:00:00 blood 2817 #> 840 50.3 9 1983 1983-09-01 08:00:00 bone 2817 #> 841 55.8 10 1983 1983-10-01 18:00:00 blood 2818 #> 842 55.8 10 1983 1983-10-01 18:00:00 bone 2818 #> 843 33.3 11 1983 1983-11-01 04:00:00 blood 2819 #> 844 33.3 11 1983 1983-11-01 04:00:00 bone 2819 #> 845 33.4 12 1983 1983-12-01 14:00:00 blood 2820 #> 846 33.4 12 1983 1983-12-01 14:00:00 bone 2820 #> # An xts object example library(xts) #> Loading required package: zoo #> #> Attaching package: 'zoo' #> The following objects are masked from 'package:base': #> #> as.Date, as.Date.numeric dates <- seq(as.Date(\"2001-05-01\"), length=30, by=\"quarter\") data <- cbind(c(gas = rpois(30, cumprod(1+rnorm(30, mean = 0.01, sd = 0.001)))), c(oil = rpois(30, cumprod(1+rnorm(30, mean = 0.01, sd = 0.001))))) series <- xts(x = data, order.by = dates) colnames(series) <- c('gas', 'oil') head(series) #> gas oil #> 2001-05-01 2 2 #> 2001-08-01 1 1 #> 2001-11-01 1 2 #> 2002-02-01 1 3 #> 2002-05-01 4 1 #> 2002-08-01 1 3 series_to_mvgam(series, freq = 4, train_prop = 0.85) #> $data_train #> y season year date series time #> 1 2 2 2001 2001-05-01 gas 1 #> 2 2 2 2001 2001-05-01 oil 1 #> 3 1 3 2001 2001-08-01 gas 2 #> 4 1 3 2001 2001-08-01 oil 2 #> 5 1 4 2001 2001-11-01 gas 3 #> 6 2 4 2001 2001-11-01 oil 3 #> 7 1 1 2002 2002-02-01 gas 4 #> 8 3 1 2002 2002-02-01 oil 4 #> 9 4 2 2002 2002-05-01 gas 5 #> 10 1 2 2002 2002-05-01 oil 5 #> 11 1 3 2002 2002-08-01 gas 6 #> 12 3 3 2002 2002-08-01 oil 6 #> 13 0 4 2002 2002-11-01 gas 7 #> 14 1 4 2002 2002-11-01 oil 7 #> 15 0 1 2003 2003-02-01 gas 8 #> 16 2 1 2003 2003-02-01 oil 8 #> 17 3 2 2003 2003-05-01 gas 9 #> 18 3 2 2003 2003-05-01 oil 9 #> 19 0 3 2003 2003-08-01 gas 10 #> 20 0 3 2003 2003-08-01 oil 10 #> 21 1 4 2003 2003-11-01 gas 11 #> 22 0 4 2003 2003-11-01 oil 11 #> 23 2 1 2004 2004-02-01 gas 12 #> 24 0 1 2004 2004-02-01 oil 12 #> 25 1 2 2004 2004-05-01 gas 13 #> 26 1 2 2004 2004-05-01 oil 13 #> 27 0 3 2004 2004-08-01 gas 14 #> 28 2 3 2004 2004-08-01 oil 14 #> 29 0 4 2004 2004-11-01 gas 15 #> 30 2 4 2004 2004-11-01 oil 15 #> 31 0 1 2005 2005-02-01 gas 16 #> 32 1 1 2005 2005-02-01 oil 16 #> 33 1 2 2005 2005-05-01 gas 17 #> 34 2 2 2005 2005-05-01 oil 17 #> 35 0 3 2005 2005-08-01 gas 18 #> 36 0 3 2005 2005-08-01 oil 18 #> 37 1 4 2005 2005-11-01 gas 19 #> 38 0 4 2005 2005-11-01 oil 19 #> 39 1 1 2006 2006-02-01 gas 20 #> 40 0 1 2006 2006-02-01 oil 20 #> 41 1 2 2006 2006-05-01 gas 21 #> 42 4 2 2006 2006-05-01 oil 21 #> 43 0 3 2006 2006-08-01 gas 22 #> 44 0 3 2006 2006-08-01 oil 22 #> 45 0 4 2006 2006-11-01 gas 23 #> 46 1 4 2006 2006-11-01 oil 23 #> 47 1 1 2007 2007-02-01 gas 24 #> 48 2 1 2007 2007-02-01 oil 24 #> 49 1 2 2007 2007-05-01 gas 25 #> 50 0 2 2007 2007-05-01 oil 25 #> #> $data_test #> y season year date series time #> 1 0 3 2007 2007-08-01 gas 26 #> 2 3 3 2007 2007-08-01 oil 26 #> 3 3 4 2007 2007-11-01 gas 27 #> 4 2 4 2007 2007-11-01 oil 27 #> 5 0 1 2008 2008-02-01 gas 28 #> 6 1 1 2008 2008-02-01 oil 28 #> 7 0 2 2008 2008-05-01 gas 29 #> 8 1 2 2008 2008-05-01 oil 29 #> 9 0 3 2008 2008-08-01 gas 30 #> 10 3 3 2008 2008-08-01 oil 30 #>"},{"path":"https://nicholasjclark.github.io/mvgam/reference/sim_mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","title":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","text":"function simulates discrete time series data fitting multivariate GAM includes shared seasonality dependence state-space latent dynamic factors. Random dependencies among series, .e. correlations long-term trends, included form correlated loadings latent dynamic factors","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/sim_mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","text":"","code":"sim_mvgam( T = 100, n_series = 3, seasonality = \"shared\", use_lv = FALSE, n_lv = 1, trend_model = \"RW\", drift = FALSE, trend_rel = 0.2, freq = 12, family = poisson(), phi, shape, sigma, nu, mu, prop_missing = 0, train_prop = 0.85 )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/sim_mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","text":"T integer. Number observations (timepoints) n_series integer. Number discrete time series seasonality character. Either shared, meaning series share exact seasonal pattern, hierarchical, meaning global seasonality series' pattern can deviate slightly use_lv logical. TRUE, use dynamic factors estimate series' latent trends reduced dimension format. FALSE, estimate independent latent trends series n_lv integer. Number latent dynamic factors generating series' trends trend_model character specifying time series dynamics latent trend. Options : None (latent trend component; .e. GAM component contributes linear predictor, observation process source error; similarly estimated gam) RW (random walk possible drift) AR1 (possible drift) AR2 (possible drift) AR3 (possible drift) VAR1 (contemporaneously uncorrelated VAR1) VAR1cor (contemporaneously correlated VAR1) GP (Gaussian Process squared exponential kernel) See mvgam_trends details drift logical, simulate drift term trend trend_rel numeric. Relative importance trend series. 0 1 freq integer. seasonal frequency series family family specifying exponential observation family series. Currently supported families : nb(), poisson(), tweedie(), gaussian(), betar(), lognormal(), student_t() Gamma() phi vector dispersion parameters series (.e. size Negative Binomial phi Tweedie Beta). length(phi) < n_series, first element phi replicated n_series times. Defaults 5 Negative Binomial Tweedie; 10 Beta shape vector shape parameters series (.e. shape Gamma) length(shape) < n_series, first element shape replicated n_series times. Defaults 10 sigma vector scale parameters series (.e. sd Normal Student-T, log(sd) LogNormal). length(sigma) < n_series, first element sigma replicated n_series times. Defaults 0.5 Normal Student-T; 0.2 Lognormal nu vector degrees freedom parameters series (.e. nu Student-T) length(nu) < n_series, first element nu replicated n_series times. Defaults 3 mu vector location parameters series. length(mu) < n_series, first element mu replicated n_series times. Defaults small random values -0.5 0.5 link scale prop_missing numeric stating proportion observations missing. 0 0.8, inclusive train_prop numeric stating proportion data use training. 0.25 0.75","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/sim_mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","text":"list object containing outputs needed mvgam, including 'data_train' 'data_test', well additional information simulated seasonality trend dependencies","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/sim_mvgam.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","text":"","code":"#Simulate series with observations bounded at 0 and 1 (Beta responses) sim_data <- sim_mvgam(family = betar(), trend_model = 'GP', trend_rel = 0.6) plot_mvgam_series(data = sim_data$data_train, series = 'all') #Now simulate series with overdispersed discrete observations sim_data <- sim_mvgam(family = nb(), trend_model = 'GP', trend_rel = 0.6, phi = 10) plot_mvgam_series(data = sim_data$data_train, series = 'all')"},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Summary for a fitted mvgam object — summary.mvgam","title":"Summary for a fitted mvgam object — summary.mvgam","text":"functions take fitted mvgam object return various useful summaries","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summary for a fitted mvgam object — summary.mvgam","text":"","code":"# S3 method for mvgam summary(object, ...) # S3 method for mvgam_prefit summary(object, ...) # S3 method for mvgam coef(object, summarise = TRUE, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summary for a fitted mvgam object — summary.mvgam","text":"object list object returned mvgam ... Ignored summarise logical. Summaries coefficients returned TRUE. Otherwise full posterior distribution returned","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summary for a fitted mvgam object — summary.mvgam","text":"summary.mvgam summary.mvgam_prefit, Aalist printed -screen showing summaries model coef.mvgam, either matrix posterior coefficient distributions (summarise == FALSE data.frame coefficient summaries)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Summary for a fitted mvgam object — summary.mvgam","text":"summary.mvgam summary.mvgam_prefit return brief summaries model's call printed, along posterior intervals key parameters model. Note smooths extra penalties null space, summaries rho parameters may include penalty terms number smooths original model formula. coef.mvgam returns either summaries full posterior estimates GAM component coefficients","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Summary for a fitted mvgam object — summary.mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/update.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Update an existing mvgam object — update.mvgam","title":"Update an existing mvgam object — update.mvgam","text":"function allows previously fitted mvgam model updated","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/update.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Update an existing mvgam object — update.mvgam","text":"","code":"# S3 method for mvgam update( object, formula, trend_formula, data, newdata, trend_model, trend_map, use_lv, n_lv, family, priors, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/update.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Update an existing mvgam object — update.mvgam","text":"object fitted mvgam model formula Optional new formula object. Note, mvgam currently support dynamic formula updates removal specific terms - term. updating, entire formula needs supplied trend_formula optional character string specifying GAM process model formula. supplied, linear predictor modelled latent trends capture process model evolution separately observation model. response variable specified left-hand side formula (.e. valid option ~ season + s(year)). feature experimental, currently available Random Walk trend models. data dataframe list containing model response variable covariates required GAM formula. include columns: 'series' (character factor index series IDs) 'time' (numeric index time point observation). variables included linear predictor formula must also present newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor formula. included, observations variable y set NA fitting model posterior simulations can obtained trend_model character specifying time series dynamics latent trend. Options : None (latent trend component; .e. GAM component contributes linear predictor, observation process source error; similarly estimated gam) RW (random walk possible drift) AR1 (possible drift) AR2 (possible drift) AR3 (possible drift) VAR1 (possible drift; available Stan) GP (Gaussian Process squared exponential kernel; available Stan) trend_map Optional data.frame specifying series depend latent trends. Useful allowing multiple series depend latent trend process, different observation processes. supplied, latent factor model set setting use_lv = TRUE using mapping set shared trends. Needs column names series trend, integer values trend column state trend series depend . series column single unique entry series data (names perfectly match factor levels series variable data). See examples mvgam details use_lv logical. TRUE, use dynamic factors estimate series' latent trends reduced dimension format. FALSE, estimate independent latent trends series n_lv integer number latent dynamic factors use use_lv == TRUE. >n_series. Defaults arbitrarily min(2, floor(n_series / 2)) family family specifying exponential observation family series. Currently supported families : nb(), poisson(), tweedie(), gaussian(), betar(), lognormal(), student_t() Gamma() priors optional data.frame prior definitions. See get_mvgam_priors mvgam information changing default prior distributions ... arguments passed mvgam","code":""}] +[{"path":"https://nicholasjclark.github.io/mvgam/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Nicholas J Clark. Author, maintainer.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Nicholas J. Clark, Konstans Wells (2022). Dynamic Generalized Additive Models (DGAMs) forecasting discrete ecological time series Methods Ecology Evolution DOI: https://doi.org/10.1111/2041-210X.13974","code":"@Article{, title = {Dynamic Generalized Additive Models (DGAMs) for forecasting discrete ecological time series}, author = {Nicholas J. Clark and Konstans Wells}, journal = {Methods in Ecology and Evolution}, year = {2022}, url = {https://doi.org/10.1111/2041-210X.13974}, }"},{"path":"https://nicholasjclark.github.io/mvgam/index.html","id":"mvgam","dir":"","previous_headings":"","what":"mvgam","title":"Multivariate (Dynamic) Generalized Additive Models","text":"MultiVariate (Dynamic) Generalized Addivite Models goal mvgam use Bayesian framework estimate parameters Dynamic Generalized Additive Models (DGAMs) time series dynamic trend components. package provides interface fit Bayesian DGAMs using either JAGS Stan backend, note users strongly encouraged opt Stan JAGS. formula syntax based package mgcv provide familiar GAM modelling interface. motivation package primary objectives described detail Clark & Wells 2022 (published Methods Ecology Evolution).","code":""},{"path":"https://nicholasjclark.github.io/mvgam/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Multivariate (Dynamic) Generalized Additive Models","text":"Install development version GitHub using: devtools::install_github(\"nicholasjclark/mvgam\"). Note actually condition models MCMC sampling, either JAGS software must installed (along R packages rjags runjags) Stan software must installed (along either rstan /cmdstanr). rstan listed dependency mvgam ensure installation less difficult. users wish fit models using mvgam, please refer installation links JAGS , Stan rstan , Stan cmdstandr . need fairly recent version Stan ensure model syntax recognized. see warnings variable \"array\" exist, usually sign need update version Stan. highly recommend use Cmdstan cmdstanr interface backend. Cmdstan easier install, date new features, uses less memory Rstan. See documentation Cmdstan team information.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/index.html","id":"getting-started","dir":"","previous_headings":"","what":"Getting started","title":"Multivariate (Dynamic) Generalized Additive Models","text":"mvgam originally designed analyse forecast non-negative integer-valued data (counts). data traditionally challenging analyse existing time-series analysis packages. development mvgam resulted support growing number observation families extend types data. Currently, package can handle data following families: gaussian() real-valued data student_t() heavy-tailed real-valued data lognormal() non-negative real-valued data betar() proportional data (0,1) poisson() count data nb() overdispersed count data tweedie() overdispersed count data Note poisson(), nb(), tweedie() available using JAGS. families, apart tweedie(), supported using Stan. See ??mvgam_families information. simple example simulating modelling proportional data Beta observations set seasonal series independent Gaussian Process dynamic trends: Plot series see evolve time Fit DGAM series uses hierarchical cyclic seasonal smooth term capture variation seasonality among series. model also includes series-specific latent Gaussian Processes squared exponential covariance functions capture temporal dynamics Plot estimated posterior hindcast forecast distributions one series Various S3 functions can used inspect parameter estimates, plot smooth functions residuals, evaluate models posterior predictive checks forecast comparisons. Please see package documentation detailed examples.","code":"data <- sim_mvgam(family = betar(), T = 80, trend_model = 'GP', trend_rel = 0.5, seasonality = 'shared') plot_mvgam_series(data = data$data_train, series = 'all') mod <- mvgam(y ~ s(season, bs = 'cc', k = 7) + s(season, by = series, m = 1, k = 5), trend_model = 'GP', data = data$data_train, newdata = data$data_test, family = betar()) plot(mod, type = 'forecast', newdata = data$data_test, series = 2)"},{"path":"https://nicholasjclark.github.io/mvgam/index.html","id":"other-resources","dir":"","previous_headings":"","what":"Other resources","title":"Multivariate (Dynamic) Generalized Additive Models","text":"number case studies compiled highlight DGAMs can estimated using MCMC sampling. hosted currently RPubs following links: mvgam case study 1: model comparison data assimilation mvgam case study 2: multivariate models mvgam case study 3: distributed lag models package can also used generate necessary data structures, initial value functions modelling code necessary fit DGAMs using Stan JAGS. can helpful users wish make changes model better suit bespoke research / analysis goals. following resources can helpful troubleshoot: Stan Discourse JAGS Discourse","code":""},{"path":"https://nicholasjclark.github.io/mvgam/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2021 Nicholas Clark Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/add_tweedie_lines.html","id":null,"dir":"Reference","previous_headings":"","what":"Tweedie JAGS modifications — add_tweedie_lines","title":"Tweedie JAGS modifications — add_tweedie_lines","text":"Tweedie JAGS modifications","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/add_tweedie_lines.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tweedie JAGS modifications — add_tweedie_lines","text":"","code":"add_tweedie_lines(model_file, upper_bounds)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/add_tweedie_lines.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Tweedie JAGS modifications — add_tweedie_lines","text":"model_file template JAGS model file modified upper_bounds Optional upper bounds truncated observation likelihood","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/add_tweedie_lines.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Tweedie JAGS modifications — add_tweedie_lines","text":"modified JAGS model file","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/all_neon_tick_data.html","id":null,"dir":"Reference","previous_headings":"","what":"NEON Amblyomma and Ixodes tick abundance survey data — all_neon_tick_data","title":"NEON Amblyomma and Ixodes tick abundance survey data — all_neon_tick_data","text":"dataset containing timeseries Amblyomma americanum Ixodes scapularis nymph abundances NEON sites","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/all_neon_tick_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"NEON Amblyomma and Ixodes tick abundance survey data — all_neon_tick_data","text":"","code":"all_neon_tick_data"},{"path":"https://nicholasjclark.github.io/mvgam/reference/all_neon_tick_data.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"NEON Amblyomma and Ixodes tick abundance survey data — all_neon_tick_data","text":"tibble/dataframe containing covariate information alongside main fields : Year Year sampling epiWeek Epidemiological week sampling plot_ID NEON plot ID survey location siteID NEON site ID survey location amblyomma_americanum Counts . americanum nymphs ixodes_scapularis Counts . scapularis nymphs","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/all_neon_tick_data.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"NEON Amblyomma and Ixodes tick abundance survey data — all_neon_tick_data","text":"https://www.neonscience.org/data","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/code.html","id":null,"dir":"Reference","previous_headings":"","what":"Print the model code from an mvgam object — code","title":"Print the model code from an mvgam object — code","text":"Print model code mvgam object","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/code.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Print the model code from an mvgam object — code","text":"","code":"code(object)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/code.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Print the model code from an mvgam object — code","text":"object list object returned mvgam","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/code.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Print the model code from an mvgam object — code","text":"character string containing model code tidy format","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/dynamic.html","id":null,"dir":"Reference","previous_headings":"","what":"Defining dynamic coefficients in mvgam formulae — dynamic","title":"Defining dynamic coefficients in mvgam formulae — dynamic","text":"Set time-varying (dynamic) coefficients use mvgam models. Currently, low-rank Gaussian Process smooths available estimating dynamics time-varying coefficient.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/dynamic.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Defining dynamic coefficients in mvgam formulae — dynamic","text":"","code":"dynamic(variable, rho = 5, stationary = TRUE)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/dynamic.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Defining dynamic coefficients in mvgam formulae — dynamic","text":"variable variable dynamic smooth function rho Positive numeric stating length scale used approximating squared exponential Gaussian Process smooth. See gp.smooth details stationary logical. TRUE (default), latent Gaussian Process smooth linear trend component. FALSE, linear trend covariate added Gaussian Process smooth. Leave TRUE believe coefficient evolving much trend, linear component basis functions can hard penalize zero. sometimes causes divergence issues Stan. See gp.smooth details","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/dynamic.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Defining dynamic coefficients in mvgam formulae — dynamic","text":"mvgam currently sets dynamic coefficients low-rank squared exponential Gaussian Process smooths via call s(time, = variable, bs = \"gp\", m = c(2, rho, 2)). smooths, specified reasonable values length scale parameter, give realistic sample forecasts standard splines thin plate cubic. user must set value rho, currently support estimating value mgcv. may big problem, estimating latent length scales often difficult anyway. rho parameter thought prior smoothness latent dynamic coefficient function (higher values rho lead smoother functions temporal covariance structure. Values k set automatically ensure enough basis functions used approximate expected wiggliness underlying dynamic function (k increase rho decreases)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/dynamic.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Defining dynamic coefficients in mvgam formulae — dynamic","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/evaluate_mvgams.html","id":null,"dir":"Reference","previous_headings":"","what":"Evaluate forecasts from fitted mvgam objects — evaluate_mvgams","title":"Evaluate forecasts from fitted mvgam objects — evaluate_mvgams","text":"Evaluate forecasts fitted mvgam objects","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/evaluate_mvgams.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Evaluate forecasts from fitted mvgam objects — evaluate_mvgams","text":"","code":"eval_mvgam( object, n_samples = 5000, eval_timepoint = 3, fc_horizon = 3, n_cores = 2, score = \"drps\", log = FALSE, weights ) roll_eval_mvgam( object, n_evaluations = 5, evaluation_seq, n_samples = 5000, fc_horizon = 3, n_cores = 2, score = \"drps\", log = FALSE, weights ) compare_mvgams( model1, model2, n_samples = 1000, fc_horizon = 3, n_evaluations = 10, n_cores = 2, score = \"drps\", log = FALSE, weights )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/evaluate_mvgams.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Evaluate forecasts from fitted mvgam objects — evaluate_mvgams","text":"object list object returned mvgam n_samples integer specifying number samples generate model's posterior distribution eval_timepoint integer indexing timepoint represents last 'observed' set outcome data fc_horizon integer specifying length forecast horizon evaluating forecasts n_cores integer specifying number cores generating particle forecasts parallel score character specifying type ranked probability score use evaluation. Options : variogram, drps crps log logical. forecasts truths logged prior scoring? often appropriate comparing performance models series vary observation ranges weights optional vector weights (length(weights) == n_series) weighting pairwise correlations evaluating variogram score multivariate forecasts. Useful -weighting series larger magnitude observations less interest forecasting. Ignored score != 'variogram' n_evaluations integer specifying total number evaluations perform evaluation_seq Optional integer sequence specifying exact set timepoints evaluating model's forecasts. sequence values <3 > max(training timepoints) - fc_horizon model1 list object returned mvgam representing first model evaluated model2 list object returned mvgam representing second model evaluated","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/evaluate_mvgams.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Evaluate forecasts from fitted mvgam objects — evaluate_mvgams","text":"eval_mvgam, list object containing information specific evaluations series (using drps crps score) vector scores using variogram. roll_eval_mvgam, list object containing information specific evaluations series well total evaluation summary (taken summing forecast score series evaluation averaging coverages evaluation) compare_mvgams, series plots comparing forecast Rank Probability Scores competing model. lower score preferred. Note however possible select model ultimately perform poorly true --sample forecasting. example wiggly smooth function 'year' included model function learned prior evaluating rolling window forecasts, model generate tight predictions result. forecasting ahead timepoints model seen (.e. next year), smooth function end extrapolating, sometimes strange unexpected ways. therefore recommended use smooth functions covariates adequately measured data (.e. 'seasonality', example) reduce possible extrapolation smooths let latent trends mvgam model capture temporal dependencies data. trends time series models provide much stable forecasts","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/evaluate_mvgams.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Evaluate forecasts from fitted mvgam objects — evaluate_mvgams","text":"eval_mvgam generates set samples representing fixed parameters estimated full mvgam model latent trend states given point time. trends rolled forward total fc_horizon timesteps according estimated state space dynamics generate '--sample' forecast evaluated true observations horizon window. function therefore simulates situation model's parameters already estimated observed data evaluation timepoint like generate forecasts latent trends observed timepoint. Evaluation involves calculating appropriate Rank Probability Score binary indicator whether true value lies within forecast's 90% prediction interval roll_eval_mvgam sets sequence evaluation timepoints along rolling window iteratively calls eval_mvgam evaluate '--sample' forecasts. Evaluation involves calculating Discrete Rank Probability Score binary indicator whether true value lies within forecast's 90% prediction interval compare_mvgams automates evaluation compare two fitted models using rolling window forecast evaluation provides series summary plots facilitate model selection. essentially wrapper roll_eval_mvgam","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","title":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","text":"Extract compute hindcasts forecasts fitted mvgam object","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","text":"","code":"forecast(object, ...) # S3 method for mvgam forecast( object, newdata, data_test, series = \"all\", n_cores = 1, type = \"response\", ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","text":"object list object returned mvgam. See mvgam() ... Ignored newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor original formula. included, covariate information newdata used generate forecasts fitted model equations. newdata originally included call mvgam, forecasts already produced generative model simply extracted plotted. However newdata supplied original model call, assumption made newdata supplied comes sequentially data supplied data original model (.e. assume time gap last observation series 1 data first observation series 1 newdata) data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows series Either integer specifying series set forecast, character string '', specifying series forecast. preferable fitted model contained multivariate trends (either dynamic factor VAR process), saves recomputing full set trends series individually n_cores integer specifying number cores generating forecasts parallel type value link, linear predictor calculated log link scale. response used, predictions take uncertainty observation process account return predictions outcome (discrete) scale (default). trend used, forecast distribution latent trend returned","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","text":"object class mvgam_forecast containing hindcast forecast distributions. See mvgam_forecast-class details.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extract or compute hindcasts and forecasts for a fitted mvgam object — forecast.mvgam","text":"Posterior predictions drawn fitted mvgam used simulate forecast distribution","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/formula.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract model.frame from a fitted mvgam object — formula.mvgam","title":"Extract model.frame from a fitted mvgam object — formula.mvgam","text":"Extract model.frame fitted mvgam object","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/formula.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract model.frame from a fitted mvgam object — formula.mvgam","text":"","code":"# S3 method for mvgam formula(x, trend_effects = FALSE, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/formula.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract model.frame from a fitted mvgam object — formula.mvgam","text":"trend_effects logical, return model.frame observation model (FALSE) underlying process model (ifTRUE) ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/formula.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract model.frame from a fitted mvgam object — formula.mvgam","text":"matrix containing fitted model frame","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/formula.mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Extract model.frame from a fitted mvgam object — formula.mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_monitor_pars.html","id":null,"dir":"Reference","previous_headings":"","what":"Return parameters to monitor during modelling — get_monitor_pars","title":"Return parameters to monitor during modelling — get_monitor_pars","text":"Return parameters monitor modelling","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_monitor_pars.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Return parameters to monitor during modelling — get_monitor_pars","text":"","code":"get_monitor_pars(family, smooths_included = TRUE, use_lv, trend_model, drift)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_monitor_pars.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Return parameters to monitor during modelling — get_monitor_pars","text":"family character smooths_included Logical. smooth terms included model formula? use_lv Logical (use latent variable trends ) trend_model type trend model used drift Logical (drift term estimated )","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_monitor_pars.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Return parameters to monitor during modelling — get_monitor_pars","text":"string parameters monitor","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"function lists parameters can prior distributions changed given mvgam model, well listing default distributions","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"","code":"get_mvgam_priors( formula, trend_formula, data, data_train, family = \"poisson\", use_lv = FALSE, n_lv, use_stan = TRUE, trend_model = \"None\", trend_map, drift = FALSE )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"formula character string specifying GAM formula. exactly like formula GLM except smooth terms, s, te, ti t2, can added right hand side specify linear predictor depends smooth functions predictors (linear functionals ) trend_formula optional character string specifying GAM process model formula. supplied, linear predictor modelled latent trends capture process model evolution separately observation model. response variable specified left-hand side formula (.e. valid option ~ season + s(year)). feature experimental, currently available Random Walk trend models. data dataframe list containing model response variable covariates required GAM formula. include columns: 'y' (discrete outcomes; NAs allowed) 'series' (character factor index series IDs) 'time' (numeric index time point observation). variables included linear predictor formula must also present data_train Deprecated. Still works place data users recommended use data instead seamless integration R workflows family family specifying exponential observation family series. Currently supported families : nb() count data poisson() count data tweedie() count data (power parameter p fixed 1.5) gaussian() real-valued data betar() proportional data (0,1) lognormal() non-negative real-valued data student_t() real-valued data Gamma() non-negative real-valued data See mvgam_families details use_lv logical. TRUE, use dynamic factors estimate series' latent trends reduced dimension format. FALSE, estimate independent latent trends series n_lv integer number latent dynamic factors use use_lv == TRUE. >n_series. Defaults arbitrarily min(2, floor(n_series / 2)) use_stan Logical. TRUE rstan installed, model compiled sampled using Hamiltonian Monte Carlo call cmdstan_model , cmdstanr available, call stan. Note functionality still development options available JAGS can used, including: option Tweedie family option dynamic factor trends. However, Stan can estimate Hilbert base approximate Gaussian Processes, much computationally tractable full GPs time series >100 observations, estimation Stan can support latent GP trends estimation JAGS trend_model character specifying time series dynamics latent trend. Options : None (latent trend component; .e. GAM component contributes linear predictor, observation process source error; similarly estimated gam) RW (random walk possible drift) AR1 (possible drift) AR2 (possible drift) AR3 (possible drift) VAR1 (contemporaneously uncorrelated VAR1; available Stan) VAR1cor (contemporaneously correlated VAR1; available Stan) GP (Gaussian Process squared exponential kernel; available Stan) See mvgam_trends details trend_map Optional data.frame specifying series depend latent trends. Useful allowing multiple series depend latent trend process, different observation processes. supplied, latent factor model set setting use_lv = TRUE using mapping set shared trends. Needs column names series trend, integer values trend column state trend series depend . series column single unique entry series data (names perfectly match factor levels series variable data). See examples mvgam details drift logical estimate drift parameter latent trend components. Useful latent trend expected broadly follow non-zero slope. Note latent trend less stationary, drift parameter can become unidentifiable, especially intercept term included GAM linear predictor (default calling jagam). Therefore defaults FALSE","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"either data.frame containing prior definitions (suitable priors can altered user) NULL, indicating priors model can modified mvgam interface","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"Users can supply model formula, prior fitting model, default priors can inspected altered. make alterations, change contents prior column supplying data.frame mvgam function using argument priors. using Stan backend, users can also modify parameter bounds modifying new_lowerbound /new_upperbound columns. necessary using restrictive distributions parameters, Beta distribution trend sd parameters example (Beta support (0,1)), upperbound 1","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"prior, new_lowerbound /new_upperbound columns output altered defining user-defined priors mvgam model. Use familiar underlying probabilistic programming language. sanity checks done ensure code legal (.e. check lower bounds smaller upper bounds, example)","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/get_mvgam_priors.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract information on default prior distributions for an mvgam model — get_mvgam_priors","text":"","code":"# Simulate three integer-valued time series library(mvgam) dat <- sim_mvgam(trend_rel = 0.5) # Get a model file that uses default mvgam priors for inspection (not always necessary, # but this can be useful for testing whether your updated priors are written correctly) mod_default <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, family = 'nb', data = dat$data_train, trend_model = 'AR2', run_model = FALSE) # Inspect the model file with default mvgam priors mod_default$model_file #> [1] \"\" #> [2] \"// Stan model code generated by package mvgam\" #> [3] \"functions {\" #> [4] \"vector rep_each(vector x, int K) {\" #> [5] \"int N = rows(x);\" #> [6] \"vector[N * K] y;\" #> [7] \"int pos = 1;\" #> [8] \"for (n in 1:N) {\" #> [9] \"for (k in 1:K) {\" #> [10] \"y[pos] = x[n];\" #> [11] \"pos += 1;\" #> [12] \"}\" #> [13] \"}\" #> [14] \"return y;\" #> [15] \"}\" #> [16] \"}\" #> [17] \"data {\" #> [18] \"int total_obs; // total number of observations\" #> [19] \"int n; // number of timepoints per series\" #> [20] \"int n_sp; // number of smoothing parameters\" #> [21] \"int n_series; // number of series\" #> [22] \"int num_basis; // total number of basis coefficients\" #> [23] \"vector[num_basis] zero; // prior locations for basis coefficients\" #> [24] \"matrix[total_obs, num_basis] X; // mgcv GAM design matrix\" #> [25] \"int ytimes[n, n_series]; // time-ordered matrix (which col in X belongs to each [time, series] observation?)\" #> [26] \"matrix[8,8] S1; // mgcv smooth penalty matrix S1\" #> [27] \"int n_nonmissing; // number of nonmissing observations\" #> [28] \"int flat_ys[n_nonmissing]; // flattened nonmissing observations\" #> [29] \"matrix[n_nonmissing, num_basis] flat_xs; // X values for nonmissing observations\" #> [30] \"int obs_ind[n_nonmissing]; // indices of nonmissing observations\" #> [31] \"}\" #> [32] \"parameters {\" #> [33] \"// raw basis coefficients\" #> [34] \"vector[num_basis] b_raw;\" #> [35] \"\" #> [36] \"// random effect variances\" #> [37] \"vector[1] sigma_raw;\" #> [38] \"\" #> [39] \"// random effect means\" #> [40] \"vector[1] mu_raw;\" #> [41] \"\" #> [42] \"// negative binomial overdispersion\" #> [43] \"vector[n_series] phi_inv;\" #> [44] \"\" #> [45] \"// latent trend AR1 terms\" #> [46] \"vector[n_series] ar1;\" #> [47] \"\" #> [48] \"// latent trend AR2 terms\" #> [49] \"vector[n_series] ar2;\" #> [50] \"\" #> [51] \"// latent trend variance parameters\" #> [52] \"vector[n_series] sigma;\" #> [53] \"\" #> [54] \"// latent trends\" #> [55] \"matrix[n, n_series] trend;\" #> [56] \"\" #> [57] \"// smoothing parameters\" #> [58] \"vector[n_sp] lambda;\" #> [59] \"}\" #> [60] \"\" #> [61] \"transformed parameters {\" #> [62] \"// basis coefficients\" #> [63] \"vector[num_basis] b;\" #> [64] \"\" #> [65] \"b[1:8] = b_raw[1:8];\" #> [66] \"b[9:11] = mu_raw[1] + b_raw[9:11] * sigma_raw[1];\" #> [67] \"\" #> [68] \"}\" #> [69] \"\" #> [70] \"model {\" #> [71] \"// prior for random effect population variances\" #> [72] \"sigma_raw ~ exponential(0.5);\" #> [73] \"\" #> [74] \"// prior for random effect population means\" #> [75] \"mu_raw ~ std_normal();\" #> [76] \"\" #> [77] \"// prior for s(season)...\" #> [78] \"b_raw[1:8] ~ multi_normal_prec(zero[1:8],S1[1:8,1:8] * lambda[1]);\" #> [79] \"\" #> [80] \"// prior (non-centred) for s(series)...\" #> [81] \"b_raw[9:11] ~ std_normal();\" #> [82] \"\" #> [83] \"// priors for AR parameters\" #> [84] \"ar1 ~ std_normal();\" #> [85] \"ar2 ~ std_normal();\" #> [86] \"\" #> [87] \"// priors for smoothing parameters\" #> [88] \"lambda ~ normal(10, 25);\" #> [89] \"\" #> [90] \"// priors for overdispersion parameters\" #> [91] \"phi_inv ~ student_t(3, 0, 0.1);\" #> [92] \"\" #> [93] \"// priors for latent trend variance parameters\" #> [94] \"sigma ~ exponential(2);\" #> [95] \"\" #> [96] \"// trend estimates\" #> [97] \"trend[1, 1:n_series] ~ normal(0, sigma);\" #> [98] \"trend[2, 1:n_series] ~ normal(trend[1, 1:n_series] * ar1, sigma);\" #> [99] \"for(s in 1:n_series){\" #> [100] \"trend[3:n, s] ~ normal(ar1[s] * trend[2:(n - 1), s] + ar2[s] * trend[1:(n - 2), s], sigma[s]);\" #> [101] \"}\" #> [102] \"\" #> [103] \"{\" #> [104] \"// likelihood functions\" #> [105] \"vector[n_nonmissing] flat_trends;\" #> [106] \"real flat_phis[n_nonmissing];\" #> [107] \"flat_trends = (to_vector(trend))[obs_ind];\" #> [108] \"flat_phis = to_array_1d(rep_each(phi_inv, n)[obs_ind]);\" #> [109] \"flat_ys ~ neg_binomial_2(\" #> [110] \"exp(append_col(flat_xs, flat_trends) * append_row(b, 1.0)),\" #> [111] \"inv(flat_phis));\" #> [112] \"}\" #> [113] \"}\" #> [114] \"\" #> [115] \"generated quantities {\" #> [116] \"vector[total_obs] eta;\" #> [117] \"matrix[n, n_series] mus;\" #> [118] \"vector[n_sp] rho;\" #> [119] \"vector[n_series] tau;\" #> [120] \"array[n, n_series] int ypred;\" #> [121] \"matrix[n, n_series] phi_vec;\" #> [122] \"vector[n_series] phi;\" #> [123] \"phi = inv(phi_inv);\" #> [124] \"for (s in 1:n_series) {\" #> [125] \"phi_vec[1:n,s] = rep_vector(phi[s], n);\" #> [126] \"}\" #> [127] \"\" #> [128] \"rho = log(lambda);\" #> [129] \"for (s in 1:n_series) {\" #> [130] \"tau[s] = pow(sigma[s], -2.0);\" #> [131] \"}\" #> [132] \"\" #> [133] \"// posterior predictions\" #> [134] \"eta = X * b;\" #> [135] \"for(s in 1:n_series){ \" #> [136] \"mus[1:n, s] = eta[ytimes[1:n, s]] + trend[1:n, s];\" #> [137] \"ypred[1:n, s] = neg_binomial_2_rng(exp(mus[1:n, s]), phi_vec[1:n, s]);\" #> [138] \"}\" #> [139] \"}\" #> [140] \"\" # Look at which priors can be updated in mvgam test_priors <- get_mvgam_priors(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, family = 'nb', data = dat$data_train, trend_model = 'AR2') test_priors #> param_name param_length #> 1 vector[n_sp] lambda; 2 #> 2 vector[1] mu_raw; 1 #> 3 vector[1] sigma_raw; 1 #> 4 vector[n_series] ar1; 3 #> 5 vector[n_series] ar2; 3 #> 6 vector[n_series] sigma; 3 #> 7 vector[n_series] phi_inv; 3 #> param_info prior #> 1 s(season) smooth parameters lambda ~ normal(10, 25); #> 2 s(series) pop mean mu_raw ~ std_normal(); #> 3 s(series) pop sd sigma_raw ~ exponential(0.5); #> 4 trend AR1 coefficient ar1 ~ std_normal(); #> 5 trend AR2 coefficient ar2 ~ std_normal(); #> 6 trend sd sigma ~ exponential(2); #> 7 inverse of NB dispsersion phi_inv ~ student_t(3, 0, 0.1); #> example_change new_lowerbound new_upperbound #> 1 lambda ~ exponential(0.23); NA NA #> 2 mu_raw ~ normal(-0.71, 0.93); NA NA #> 3 sigma_raw ~ exponential(0.78); NA NA #> 4 ar1 ~ normal(-0.23, 0.41); NA NA #> 5 ar2 ~ normal(0.98, 0.49); NA NA #> 6 sigma ~ exponential(0.81); NA NA #> 7 phi_inv ~ normal(-0.74, 0.88); NA NA # Make a few changes; first, change the population mean for the series-level # random intercepts test_priors$prior[2] <- 'mu_raw ~ normal(0.2, 0.5);' # Now use stronger regularisation for the series-level AR2 coefficients test_priors$prior[5] <- 'ar2 ~ normal(0, 0.25);' # Check that the changes are made to the model file without any warnings by # setting 'run_model = FALSE' mod <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, family = 'nb', data = dat$data_train, trend_model = 'AR2', priors = test_priors, run_model = FALSE) code(mod) #> // Stan model code generated by package mvgam #> functions { #> vector rep_each(vector x, int K) { #> int N = rows(x); #> vector[N * K] y; #> int pos = 1; #> for (n in 1:N) { #> for (k in 1:K) { #> y[pos] = x[n]; #> pos += 1; #> } #> } #> return y; #> } #> } #> data { #> int total_obs; // total number of observations #> int n; // number of timepoints per series #> int n_sp; // number of smoothing parameters #> int n_series; // number of series #> int num_basis; // total number of basis coefficients #> vector[num_basis] zero; // prior locations for basis coefficients #> matrix[total_obs, num_basis] X; // mgcv GAM design matrix #> int ytimes[n, n_series]; // time-ordered matrix (which col in X belongs to each [time, series] observation?) #> matrix[8,8] S1; // mgcv smooth penalty matrix S1 #> int n_nonmissing; // number of nonmissing observations #> int flat_ys[n_nonmissing]; // flattened nonmissing observations #> matrix[n_nonmissing, num_basis] flat_xs; // X values for nonmissing observations #> int obs_ind[n_nonmissing]; // indices of nonmissing observations #> } #> parameters { #> // raw basis coefficients #> vector[num_basis] b_raw; #> // random effect variances #> vector[1] sigma_raw; #> // random effect means #> vector[1] mu_raw; #> // negative binomial overdispersion #> vector[n_series] phi_inv; #> // latent trend AR1 terms #> vector[n_series] ar1; #> // latent trend AR2 terms #> vector[n_series] ar2; #> // latent trend variance parameters #> vector[n_series] sigma; #> // latent trends #> matrix[n, n_series] trend; #> // smoothing parameters #> vector[n_sp] lambda; #> } #> transformed parameters { #> // basis coefficients #> vector[num_basis] b; #> b[1:8] = b_raw[1:8]; #> b[9:11] = mu_raw[1] + b_raw[9:11] * sigma_raw[1]; #> } #> model { #> // prior for random effect population variances #> sigma_raw ~ exponential(0.5); #> // prior for random effect population means #> mu_raw ~ normal(0.2, 0.5); #> // prior for s(season)... #> b_raw[1:8] ~ multi_normal_prec(zero[1:8],S1[1:8,1:8] * lambda[1]); #> // prior (non-centred) for s(series)... #> b_raw[9:11] ~ std_normal(); #> // priors for AR parameters #> ar1 ~ std_normal(); #> ar2 ~ normal(0, 0.25); #> // priors for smoothing parameters #> lambda ~ normal(10, 25); #> // priors for overdispersion parameters #> phi_inv ~ student_t(3, 0, 0.1); #> // priors for latent trend variance parameters #> sigma ~ exponential(2); #> // trend estimates #> trend[1, 1:n_series] ~ normal(0, sigma); #> trend[2, 1:n_series] ~ normal(trend[1, 1:n_series] * ar1, sigma); #> for(s in 1:n_series){ #> trend[3:n, s] ~ normal(ar1[s] * trend[2:(n - 1), s] + ar2[s] * trend[1:(n - 2), s], sigma[s]); #> } #> { #> // likelihood functions #> vector[n_nonmissing] flat_trends; #> real flat_phis[n_nonmissing]; #> flat_trends = (to_vector(trend))[obs_ind]; #> flat_phis = to_array_1d(rep_each(phi_inv, n)[obs_ind]); #> flat_ys ~ neg_binomial_2( #> exp(append_col(flat_xs, flat_trends) * append_row(b, 1.0)), #> inv(flat_phis)); #> } #> } #> generated quantities { #> vector[total_obs] eta; #> matrix[n, n_series] mus; #> vector[n_sp] rho; #> vector[n_series] tau; #> array[n, n_series] int ypred; #> matrix[n, n_series] phi_vec; #> vector[n_series] phi; #> phi = inv(phi_inv); #> for (s in 1:n_series) { #> phi_vec[1:n,s] = rep_vector(phi[s], n); #> } #> rho = log(lambda); #> for (s in 1:n_series) { #> tau[s] = pow(sigma[s], -2.0); #> } #> // posterior predictions #> eta = X * b; #> for(s in 1:n_series){ #> mus[1:n, s] = eta[ytimes[1:n, s]] + trend[1:n, s]; #> ypred[1:n, s] = neg_binomial_2_rng(exp(mus[1:n, s]), phi_vec[1:n, s]); #> } #> } # No warnings, the model is ready for fitting now in the usual way with the addition # of the 'priors' argument # Look at what is returned when an incorrect spelling is used test_priors$prior[5] <- 'ar2_bananas ~ normal(0, 0.25);' mod <- mvgam(y ~ s(series, bs = 're') + s(season, bs = 'cc') - 1, family = 'nb', data = dat$data_train, trend_model = 'AR2', priors = test_priors, run_model = FALSE) #> Warning: no match found in model_file for parameter: ar2_bananas code(mod) #> // Stan model code generated by package mvgam #> functions { #> vector rep_each(vector x, int K) { #> int N = rows(x); #> vector[N * K] y; #> int pos = 1; #> for (n in 1:N) { #> for (k in 1:K) { #> y[pos] = x[n]; #> pos += 1; #> } #> } #> return y; #> } #> } #> data { #> int total_obs; // total number of observations #> int n; // number of timepoints per series #> int n_sp; // number of smoothing parameters #> int n_series; // number of series #> int num_basis; // total number of basis coefficients #> vector[num_basis] zero; // prior locations for basis coefficients #> matrix[total_obs, num_basis] X; // mgcv GAM design matrix #> int ytimes[n, n_series]; // time-ordered matrix (which col in X belongs to each [time, series] observation?) #> matrix[8,8] S1; // mgcv smooth penalty matrix S1 #> int n_nonmissing; // number of nonmissing observations #> int flat_ys[n_nonmissing]; // flattened nonmissing observations #> matrix[n_nonmissing, num_basis] flat_xs; // X values for nonmissing observations #> int obs_ind[n_nonmissing]; // indices of nonmissing observations #> } #> parameters { #> // raw basis coefficients #> vector[num_basis] b_raw; #> // random effect variances #> vector[1] sigma_raw; #> // random effect means #> vector[1] mu_raw; #> // negative binomial overdispersion #> vector[n_series] phi_inv; #> // latent trend AR1 terms #> vector[n_series] ar1; #> // latent trend AR2 terms #> vector[n_series] ar2; #> // latent trend variance parameters #> vector[n_series] sigma; #> // latent trends #> matrix[n, n_series] trend; #> // smoothing parameters #> vector[n_sp] lambda; #> } #> transformed parameters { #> // basis coefficients #> vector[num_basis] b; #> b[1:8] = b_raw[1:8]; #> b[9:11] = mu_raw[1] + b_raw[9:11] * sigma_raw[1]; #> } #> model { #> // prior for random effect population variances #> sigma_raw ~ exponential(0.5); #> // prior for random effect population means #> mu_raw ~ normal(0.2, 0.5); #> // prior for s(season)... #> b_raw[1:8] ~ multi_normal_prec(zero[1:8],S1[1:8,1:8] * lambda[1]); #> // prior (non-centred) for s(series)... #> b_raw[9:11] ~ std_normal(); #> // priors for AR parameters #> ar1 ~ std_normal(); #> ar2 ~ std_normal(); #> // priors for smoothing parameters #> lambda ~ normal(10, 25); #> // priors for overdispersion parameters #> phi_inv ~ student_t(3, 0, 0.1); #> // priors for latent trend variance parameters #> sigma ~ exponential(2); #> // trend estimates #> trend[1, 1:n_series] ~ normal(0, sigma); #> trend[2, 1:n_series] ~ normal(trend[1, 1:n_series] * ar1, sigma); #> for(s in 1:n_series){ #> trend[3:n, s] ~ normal(ar1[s] * trend[2:(n - 1), s] + ar2[s] * trend[1:(n - 2), s], sigma[s]); #> } #> { #> // likelihood functions #> vector[n_nonmissing] flat_trends; #> real flat_phis[n_nonmissing]; #> flat_trends = (to_vector(trend))[obs_ind]; #> flat_phis = to_array_1d(rep_each(phi_inv, n)[obs_ind]); #> flat_ys ~ neg_binomial_2( #> exp(append_col(flat_xs, flat_trends) * append_row(b, 1.0)), #> inv(flat_phis)); #> } #> } #> generated quantities { #> vector[total_obs] eta; #> matrix[n, n_series] mus; #> vector[n_sp] rho; #> vector[n_series] tau; #> array[n, n_series] int ypred; #> matrix[n, n_series] phi_vec; #> vector[n_series] phi; #> phi = inv(phi_inv); #> for (s in 1:n_series) { #> phi_vec[1:n,s] = rep_vector(phi[s], n); #> } #> rho = log(lambda); #> for (s in 1:n_series) { #> tau[s] = pow(sigma[s], -2.0); #> } #> // posterior predictions #> eta = X * b; #> for(s in 1:n_series){ #> mus[1:n, s] = eta[ytimes[1:n, s]] + trend[1:n, s]; #> ypred[1:n, s] = neg_binomial_2_rng(exp(mus[1:n, s]), phi_vec[1:n, s]); #> } #> }"},{"path":"https://nicholasjclark.github.io/mvgam/reference/hindcast.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","title":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","text":"Extract hindcasts fitted mvgam object","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/hindcast.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","text":"","code":"hindcast(object, ...) # S3 method for mvgam hindcast(object, series = \"all\", type = \"response\", ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/hindcast.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","text":"object list object returned mvgam. See mvgam() ... Ignored series Either integer specifying series set forecast, character string '', specifying series forecast. preferable fitted model contained multivariate trends (either dynamic factor VAR process), saves recomputing full set trends series individually type value link, linear predictor calculated log link scale. response used, predictions take uncertainty observation process account return predictions outcome (discrete) scale (default). trend used, hindcast distribution latent trend returned","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/hindcast.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","text":"object class mvgam_forecast containing hindcast distributions. See mvgam_forecast-class details.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/hindcast.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extract hindcasts for a fitted mvgam object — hindcast.mvgam","text":"Posterior retrodictions drawn fitted mvgam organized convenient format","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/index-mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Index mvgam objects — index-mvgam","title":"Index mvgam objects — index-mvgam","text":"Index mvgam objects","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/index-mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Index mvgam objects — index-mvgam","text":"","code":"# S3 method for mvgam variables(x, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/index-mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Index mvgam objects — index-mvgam","text":"x list object class mvgam ... Arguments passed individual methods (applicable).","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"Approximate leave-future-cross-validation fitted mvgam objects","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"","code":"lfo_cv(object, ...) # S3 method for mvgam lfo_cv( object, data, min_t, fc_horizon = 1, pareto_k_threshold = 0.7, n_cores = 1, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"object list object returned mvgam. See mvgam() ... Ignored data dataframe list containing model response variable covariates required GAM formula. include columns: 'series' (character factor index series IDs) 'time' (numeric index time point observation). variables included linear predictor formula must also present min_t Integer specifying minimum training time required making predictions data. Default either 30, whatever training time allows least 10 lfo-cv calculations (.e. pmin(max(data$time) - 10, 30)) fc_horizon Integer specifying number time steps ahead evaluating forecasts pareto_k_threshold Proportion specifying threshold Pareto shape parameter considered unstable, triggering model refit. Default 0.7 n_cores integer specifying number cores calculating likelihoods parallel","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"list class mvgam_lfo containing approximate ELPD scores, Pareto-k shape values 'specified pareto_k_threshold","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"Approximate leave-future-cross-validation uses expanding training window scheme evaluate model forecasting ability. steps used function mirror laid lfo vignette loo package, written Paul Bürkner, Jonah Gabry, Aki Vehtari. First, refit model using first min_t observations perform single exact fc_horizon-ahead forecast step. forecast evaluated min_t + fc_horizon sample observations using Expected Log Predictive Density (ELPD). Next, approximate successive round expanding window forecasts moving forward one step time 1:N_evaluations re-weighting draws model's posterior predictive distribution using Pareto Smoothed Importance Sampling (PSIS). iteration , PSIS weights obtained next observation included model re-fit (.e. last observation training data, min_t + ). importance ratios stable, consider approximation adequate use re-weighted posterior's forecast evaluating next holdout set testing observations ((min_t + + 1):(min_t + + fc_horizon)). point importance ratio variability become large importance sampling fail. indicated estimated shape parameter k generalized Pareto distribution crossing certain threshold pareto_k_threshold. refit model using observations time failure. restart process iterate forward next refit triggered (Bürkner et al. 2020).","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"Paul-Christian Bürkner, Jonah Gabry & Aki Vehtari (2020). Approximate leave-future-cross-validation Bayesian time series models Journal Statistical Computation Simulation. 90:14, 2499-2523.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lfo_cv.mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Approximate leave-future-out cross-validation of fitted mvgam objects — lfo_cv.mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/logLik.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute pointwise Log-Likelihoods from fitted mvgam objects — logLik.mvgam","title":"Compute pointwise Log-Likelihoods from fitted mvgam objects — logLik.mvgam","text":"Compute pointwise Log-Likelihoods fitted mvgam objects","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/logLik.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute pointwise Log-Likelihoods from fitted mvgam objects — logLik.mvgam","text":"","code":"# S3 method for mvgam logLik(object, n_cores = 1, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/logLik.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute pointwise Log-Likelihoods from fitted mvgam objects — logLik.mvgam","text":"object list object returned mvgam n_cores integer specifying number cores calculating likelihoods parallel ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/logLik.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute pointwise Log-Likelihoods from fitted mvgam objects — logLik.mvgam","text":"matrix dimension n_samples x n_observations containing pointwise log-likelihood draws observations (training observations , supplied original model via newdata argument mvgam, testing observations)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lv_correlations.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate trend correlations based on mvgam latent factor loadings — lv_correlations","title":"Calculate trend correlations based on mvgam latent factor loadings — lv_correlations","text":"function uses samples latent trends series fitted mvgam model calculates correlations among series' trends","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lv_correlations.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate trend correlations based on mvgam latent factor loadings — lv_correlations","text":"","code":"lv_correlations(object)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/lv_correlations.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate trend correlations based on mvgam latent factor loadings — lv_correlations","text":"object list object returned mvgam","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/lv_correlations.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate trend correlations based on mvgam latent factor loadings — lv_correlations","text":"list object containing mean posterior correlations full array posterior correlations","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/model.frame.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract model.frame from a fitted mvgam object — model.frame.mvgam","title":"Extract model.frame from a fitted mvgam object — model.frame.mvgam","text":"Extract model.frame fitted mvgam object","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/model.frame.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract model.frame from a fitted mvgam object — model.frame.mvgam","text":"","code":"# S3 method for mvgam model.frame(formula, trend_effects = FALSE, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/model.frame.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract model.frame from a fitted mvgam object — model.frame.mvgam","text":"formula model formula terms object R object. trend_effects logical, return model.frame observation model (FALSE) underlying process model (ifTRUE) ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/model.frame.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract model.frame from a fitted mvgam object — model.frame.mvgam","text":"matrix containing fitted model frame","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/model.frame.mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Extract model.frame from a fitted mvgam object — model.frame.mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Fitted mvgam object description — mvgam-class","title":"Fitted mvgam object description — mvgam-class","text":"fitted mvgam object returned function mvgam. Run methods(class = \"mvgam\") see overview available methods.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam-class.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fitted mvgam object description — mvgam-class","text":"mvgam object contains following elements: call original observation model formula trend_call trend_formula supplied, original trend model formula returned. Otherwise NULL family character description observation distribution trend_model character description latent trend model trend_map data.frame describing mapping trend states observations, supplied original model. Otherwise NULL drift Logical specifying whether drift term used trend model priors model priors updated defaults, prior dataframe returned. Otherwise NULL model_output MCMC object returned fitting engine. model fitted using Stan, object class stanfit (see stanfit-class details). JAGS used backend, object class runjags (see runjags-class details) model_file character string model file used describe model either Stan JAGS syntax model_data return_model_data set TRUE fitting model, list object containing data objects needed condition model returned. item list described detail top model_file. Otherwise NULL inits return_model_data set TRUE fitting model, initial value functions used initialise MCMC chains returned. Otherwise NULL monitor_pars parameters monitored MCMC sampling returned character vector sp_names character vector specifying names smoothing parameter mgcv_model object class gam containing mgcv version observation model. object used generating linear predictor matrix making predictions new data. coefficients model object contain posterior median coefficients GAM linear predictor, used generating plots smooth functions mvgam currently handle (plots three-dimensional smooths). model therefore used inference. See gamObject details trend_mgcv_model trend_formula supplied, object class gam containing mgcv version trend model. Otherwise NULL ytimes matrix object used model fitting indexing series timepoints observed row supplied data. Used internally downstream plotting prediction functions resids named list object containing posterior draws Dunn-Smyth randomized quantile residuals use_lv Logical flag indicating whether latent dynamic factors used model n_lv use_lv == TRUE, number latent dynamic factors used model upper_bounds bounds supplied original model fit, returned. Otherwise NULL obs_data original data object (either list dataframe) supplied model fitting. test_data test data supplied (argument newdata original model), returned. Othwerise NULL fit_engine Character describing fit engine, either stan jags max_treedepth model fitted using Stan, value supplied maximum treedepth tuning parameter returned (see stan details). Otherwise NULL adapt_delta model fitted using Stan, value supplied adapt_delta tuning parameter returned (see stan details). Otherwise NULL","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Fitted mvgam object description — mvgam-class","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"function estimates posterior distribution Generalised Additive Models (GAMs) can include smooth spline functions, specified GAM formula, well latent temporal processes, specified trend_model. currently two options specifying structures trends (either latent dynamic factors capture trend dependencies among series reduced dimension format, independent trends)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"","code":"mvgam( formula, trend_formula, knots, trend_knots, data, data_train, newdata, data_test, run_model = TRUE, prior_simulation = FALSE, return_model_data = FALSE, family = \"poisson\", use_lv = FALSE, n_lv, trend_map, trend_model = \"None\", drift = FALSE, chains = 4, burnin = 500, samples = 500, thin = 1, parallel = TRUE, threads = 1, priors, upper_bounds, refit = FALSE, use_stan = TRUE, max_treedepth, adapt_delta, jags_path )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"formula character string specifying GAM observation model formula. exactly like formula GLM except smooth terms, s, te, ti t2, can added right hand side specify linear predictor depends smooth functions predictors (linear functionals ). trend_formula optional character string specifying GAM process model formula. supplied, linear predictor modelled latent trends capture process model evolution separately observation model. response variable specified left-hand side formula (.e. valid option ~ season + s(year)). feature experimental, currently available Random Walk trend models. knots optional list containing user specified knot values used basis construction. bases user simply supplies knots used, must match k value supplied (note number knots always just k). Different terms can use different numbers knots, unless share covariate. trend_knots knots , optional list knot values smooth functions within trend_formula data dataframe list containing model response variable covariates required GAM formula. include columns: series (character factor index series IDs) time (numeric index time point observation). variables included linear predictor formula must also present data_train Deprecated. Still works place data users recommended use data instead seamless integration R workflows newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor formula. included, observations variable y set NA fitting model posterior simulations can obtained data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows run_model logical. FALSE, model fitted instead function return model file data / initial values needed fit model outside mvgam prior_simulation logical. TRUE, observations fed model, instead simulations prior distributions returned return_model_data logical. TRUE, list data needed fit model returned, along initial values smooth AR parameters, model fitted. helpful users wish modify model file add stochastic elements currently avaiable mvgam. Default FALSE reduce size returned object, unless run_model == FALSE family family specifying exponential observation family series. Currently supported families : nb() count data poisson() count data tweedie() count data (power parameter p fixed 1.5) gaussian() real-valued data betar() proportional data (0,1) lognormal() non-negative real-valued data student_t() real-valued data Gamma() non-negative real-valued data See mvgam_families details use_lv logical. TRUE, use dynamic factors estimate series' latent trends reduced dimension format. FALSE, estimate independent latent trends series n_lv integer number latent dynamic factors use use_lv == TRUE. >n_series. Defaults arbitrarily min(2, floor(n_series / 2)) trend_map Optional data.frame specifying series depend latent trends. Useful allowing multiple series depend latent trend process, different observation processes. supplied, latent factor model set setting use_lv = TRUE using mapping set shared trends. Needs column names series trend, integer values trend column state trend series depend . series column single unique entry series data (names perfectly match factor levels series variable data). See examples details trend_model character specifying time series dynamics latent trend. Options : None (latent trend component; .e. GAM component contributes linear predictor, observation process source error; similarly estimated gam) RW (random walk possible drift) AR1 (possible drift) AR2 (possible drift) AR3 (possible drift) VAR1 (contemporaneously uncorrelated VAR1; available Stan) VAR1cor (contemporaneously correlated VAR1; available Stan) GP (Gaussian Process squared exponential kernel; available Stan) See mvgam_trends details drift logical estimate drift parameter latent trend components. Useful latent trend expected broadly follow non-zero slope. Note latent trend less stationary, drift parameter can become unidentifiable, especially intercept term included GAM linear predictor (default calling jagam). Drift parameters also likely unidentifiable using dynamic factor models. Therefore defaults FALSE chains integer specifying number parallel chains model burnin integer specifying number warmup iterations Markov chain run tune sampling algorithms samples integer specifying number post-warmup iterations Markov chain run sampling posterior distribution thin Thinning interval monitors parallel logical specifying whether multiple cores used generating MCMC simulations parallel. TRUE, number cores use min(c(chains, parallel::detectCores() - 1)) threads integer Experimental option use multithreading within-chain parallelisation Stan. recommend use experienced Stan's reduce_sum function slow running model sped means. available using Cmdstan backend priors optional data.frame prior definitions (JAGS Stan syntax). See get_mvgam_priors 'Details' information changing default prior distributions upper_bounds Optional vector integer values specifying upper limits series. supplied, generates modified likelihood values bound given likelihood zero. Note modification computationally expensive JAGS can lead better estimates true bounds exist. Default remove truncation entirely (.e. upper bound series). Currently implemented Stan refit Logical indicating whether refit, called using update.mvgam. Users leave FALSE use_stan Logical. TRUE rstan installed, model compiled sampled using Hamiltonian Monte Carlo call cmdstan_model , cmdstanr available, call stan. Note many options using Stan vs JAGS (\"advantage\" JAGS ability use Tweedie family). max_treedepth positive integer placing cap number simulation steps evaluated iteration use_stan == TRUE. Default 12. Increasing value can sometimes help exploration complex posterior geometries, rarely fruitful go max_treedepth 14 adapt_delta positive numeric 0 1 defining target average proposal acceptance probability Stan's adaptation period, use_stan == TRUE. Default 0.8. general need change adapt_delta unless see warning message divergent transitions, case can increase adapt_delta default value closer 1 (e.g. 0.95 0.99, 0.99 0.999, etc). step size used numerical integrator function adapt_delta increasing adapt_delta result smaller step size fewer divergences. Increasing adapt_delta typically result slower sampler, always lead robust sampler. jags_path Optional character vector specifying path location JAGS executable (.exe) use modelling use_stan == FALSE. missing, path recovered call findjags","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"list object class mvgam containing model output, text representation model file, mgcv model output (easily generating simulations unsampled covariate values), Dunn-Smyth residuals series key information needed functions package. See mvgam-class details.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"Dynamic GAMs useful wish predict future values time series show temporal dependence want rely extrapolating smooth term (can sometimes lead unpredictable unrealistic behaviours). addition, smooths can often try wiggle excessively capture autocorrelation present time series, exacerbates problem forecasting ahead. GAMs naturally viewed Bayesian lens, often must model time series show complex distributional features missing data, parameters mvgam models estimated Bayesian framework using Markov Chain Monte Carlo. Priors: jagam model file generated formula modified include latent temporal processes. Prior distributions important model parameters can altered user inspect model sensitivities given priors (see get_mvgam_priors details). Note latent trends estimated log scale choose tau, AR phi priors accordingly. However control model specification can accomplished first using mvgam baseline, editing returned model accordingly. model file can edited run outside mvgam setting run_model = FALSE encouraged complex modelling tasks. Note, priors formally checked ensure right syntax respective probabilistic modelling framework, user ensure correct (.e. use dnorm normal densities JAGS, mean precision parameterisation; use normal normal densities Stan, mean standard deviation parameterisation) Random effects: smooth terms using random effect basis (smooth.construct.re.smooth.spec), non-centred parameterisation automatically employed avoid degeneracies common hierarchical models. Note however centred versions may perform better series particularly informative, foray Bayesian modelling, worth building understanding model's assumptions limitations following principled workflow. Also note models parameterised using drop.unused.levels = FALSE jagam ensure predictions can made levels supplied factor variable Overdispersion parameters: one series included data_train overdispersed exponential family used, additional observation family parameters (.e. phi nb() sigma gaussian()) estimated independently series. Factor regularisation: using dynamic factor model trends JAGS factor precisions given regularized penalty priors theoretically allow factors dropped model squeezing increasing factors' variances zero. done help protect selecting many latent factors needed capture dependencies data, can often advantageous set n_lv slightly larger number. However larger numbers factors come additional computational costs balanced well. using Stan, factors parameterised sd = 0.1 Residuals: series, randomized quantile (.e. Dunn-Smyth) residuals calculated inspecting model diagnostics fitted model appropriate Dunn-Smyth residuals standard normal distribution autocorrelation evident. particular observation missing, residual calculated comparing independent draws model's posterior distribution Using Stan: mvgam primarily designed use Hamiltonian Monte Carlo parameter estimation via software Stan (using either cmdstanr rstan interface). great advantages using Stan Gibbs / Metropolis Hastings samplers, includes option estimate smooth latent trends via Hilbert space approximate Gaussian Processes. often makes sense ecological series, expect change smoothly. mvgam, latent squared exponential GP trends approximated using default 40 basis functions, saves computational costs compared fitting full GPs adequately estimating GP alpha rho parameters. many advantages Stan JAGS, development package applied Stan. includes planned addition response distributions, plans handle zero-inflation, plans incorporate greater variety trend models. Users strongly encouraged opt Stan JAGS proceeding workflows","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"Nicholas J Clark & Konstans Wells (2020). Dynamic generalised additive models (DGAMs) forecasting discrete ecological time series. Methods Ecology Evolution. 14:3, 771-784.","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Fit a Bayesian dynamic GAM to a univariate or multivariate set of discrete time series — mvgam","text":"","code":"if (FALSE) { # Simulate a collection of three time series that have shared seasonal dynamics dat <- sim_mvgam(T = 80, n_series = 3, prop_missing = 0.1, trend_rel = 0.6) # Plot key summary statistics for a single series plot_mvgam_series(data = dat$data_train, series = 1) # Plot all series together plot_mvgam_series(data = dat$data_train, series = 'all') # Formulate a model using Stan where series share a cyclic smooth for # seasonality and each series has an independent random walk temporal process; # Set run_model = FALSE to inspect the returned objects mod1 <- mvgam(formula = y ~ s(season, bs = 'cc'), data = dat$data_train, trend_model = 'RW', family = 'poisson', use_stan = TRUE, run_model = FALSE) # View the model code in Stan language code(mod1) # Inspect the data objects needed to condition the model str(mod1$model_data) # Inspect the initial value function used to initialise the MCMC chains mod1$inits # The following code can be used to run the model outside of mvgam; first using rstan model_data <- mod1$model_data library(rstan) fit <- stan(model_code = mod1$model_file, data = model_data, init = mod1$inits) # Now using cmdstanr library(cmdstanr) model_data <- mod1$model_data cmd_mod <- cmdstan_model(write_stan_file(mod1$model_file), stanc_options = list('canonicalize=deprecations,braces,parentheses')) cmd_mod$print() fit <- cmd_mod$sample(data = model_data, chains = 4, parallel_chains = 4, refresh = 100, init = mod1$inits) # Now fit the model using mvgam with the Stan backend mod1 <- mvgam(formula = y ~ s(season, bs = 'cc'), data = dat$data_train, trend_model = 'RW', family = poisson(), use_stan = TRUE) # Extract the model summary summary(mod1) # Plot the estimated historical trend and forecast for one series plot(mod1, type = 'trend', series = 1) plot(mod1, type = 'forecast', series = 1) # Compute the forecast using covariate information in data_test plot(object = mod1, type = 'trend', newdata = dat$data_test, series = 1) plot(object = mod1, type = 'forecast', newdata = dat$data_test, series = 1) # Plot the estimated seasonal smooth function plot(mod1, type = 'smooths') # Plot estimated first derivatives of the smooth plot(mod1, type = 'smooths', derivatives = TRUE) # Plot partial residuals of the smooth plot(mod1, type = 'smooths', residuals = TRUE) # Plot posterior realisations for the smooth plot(mod1, type = 'smooths', realisations = TRUE) # Extract observation model beta coefficient draws as a data.frame beta_draws_df <- as.data.frame(mod1, variable = 'betas') head(beta_draws_df) str(beta_draws_df) # Example of supplying a trend_map so that some series can share # latent trend processes sim <- sim_mvgam(n_series = 3) mod_data <- sim$data_train # Here, we specify only two latent trends; series 1 and 2 share a trend, # while series 3 has it's own unique latent trend trend_map <- data.frame(series = unique(mod_data$series), trend = c(1,1,2)) # Fit the model using AR1 trends mod1 <- mvgam(y ~ s(season, bs = 'cc'), trend_map = trend_map, trend_model = 'AR1', data = mod_data, return_model_data = TRUE) # The mapping matrix is now supplied as data to the model in the 'Z' element mod1$model_data$Z code(mod1) # The first two series share an identical latent trend; the third is different plot(mod1, type = 'trend', series = 1) plot(mod1, type = 'trend', series = 2) plot(mod1, type = 'trend', series = 3) # Example of how to use dynamic coefficients # Simulate a time-varying coefficient for the effect of temperature set.seed(3) N = 200 beta_temp <- vector(length = N) beta_temp[1] <- 0.4 for(i in 2:N){ beta_temp[i] <- rnorm(1, mean = beta_temp[i - 1], sd = 0.025) } # Simulate the temperature covariate temp <- rnorm(N, sd = 1) # Simulate the Gaussian observation process out <- rnorm(N, mean = 4 + beta_temp * temp, sd = 0.5) # Gather necessary data into a data.frame; split into training / testing data = data.frame(out, temp, time = seq_along(temp)) data_train <- data[1:180,] data_test <- data[181:200,] # Fit the model using the dynamic() formula helper mod <- mvgam(formula = out ~ dynamic(temp, rho = 8), family = gaussian(), data = data_train, newdata = data_test) # Inspect the model summary, forecast and time-varying coefficient distribution summary(mod) plot(mod, type = 'smooths') plot(mod, type = 'forecast', newdata = data_test) # Propagating the smooth term shows how the coefficient is expected to evolve plot_mvgam_smooth(mod, smooth = 1, newdata = data) abline(v = 180, lty = 'dashed', lwd = 2) # Example showing how to incorporate an offset; simulate some count data # with different means per series set.seed(100) dat <- sim_mvgam(trend_rel = 0, mu = c(0, 2, 2), seasonality = 'hierarchical') # Add offset terms to the training and testing data dat$data_train$offset <- 0.5 * as.numeric(dat$data_train$series) dat$data_test$offset <- 0.5 * as.numeric(dat$data_test$series) # Fit a model that includes the offset in the linear predictor as well as # hierarchical seasonal smooths mod1 <- mvgam(formula = y ~ offset(offset) + s(series, bs = 're') + s(season, bs = 'cc') + s(season, by = series, m = 1, k = 5), data = dat$data_train, trend_model = 'None', use_stan = TRUE) # Inspect the model file to see the modification to the linear predictor # (eta) mod1$model_file # Forecasts for the first two series will differ in magnitude layout(matrix(1:2, ncol = 2)) plot(mod1, type = 'forecast', series = 1, newdata = dat$data_test, ylim = c(0, 75)) plot(mod1, type = 'forecast', series = 2, newdata = dat$data_test, ylim = c(0, 75)) layout(1) # Changing the offset for the testing data should lead to changes in # the forecast dat$data_test$offset <- dat$data_test$offset - 2 plot(mod1, 'forecast', newdata = dat$data_test) # Relative Risks can be computed by fixing the offset to the same value # for each series dat$data_test$offset <- rep(1, NROW(dat$data_test)) preds_rr <- predict(mod1, type = 'link', newdata = dat$data_test) series1_inds <- which(dat$data_test$series == 'series_1') series2_inds <- which(dat$data_test$series == 'series_2') # Relative Risks are now more comparable among series layout(matrix(1:2, ncol = 2)) plot(preds_rr[1, series1_inds], type = 'l', col = 'grey75', ylim = range(preds_rr), ylab = 'Series1 Relative Risk', xlab = 'Time') for(i in 2:50){ lines(preds_rr[i, series1_inds], col = 'grey75') } plot(preds_rr[1, series2_inds], type = 'l', col = 'darkred', ylim = range(preds_rr), ylab = 'Series2 Relative Risk', xlab = 'Time') for(i in 2:50){ lines(preds_rr[i, series2_inds], col = 'darkred') } layout(1) }"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_draws.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract posterior draws from fitted mvgam objects — mvgam_draws","title":"Extract posterior draws from fitted mvgam objects — mvgam_draws","text":"Extract posterior draws conventional formats data.frames, matrices, arrays.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_draws.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract posterior draws from fitted mvgam objects — mvgam_draws","text":"","code":"# S3 method for mvgam as.data.frame( x, row.names = NULL, optional = TRUE, variable = \"betas\", regex = FALSE, ... ) # S3 method for mvgam as.matrix(x, variable = \"betas\", regex = FALSE, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_draws.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract posterior draws from fitted mvgam objects — mvgam_draws","text":"x list object class mvgam row.names Ignored optional Ignored variable character specifying parameters extract. Can either one following options: obs_params (parameters specific observation model, overdispsersions negative binomial models observation error SD gaussian / student-t models) betas (beta coefficients GAM observation model linear predictor; default) smooth_params (smoothing parameters GAM observation model) linpreds (estimated linear predictors whatever link scale used model) trend_params (parameters governing trend dynamics, AR parameters, trend SD parameters Gaussian Process parameters) trend_betas (beta coefficients GAM latent process model linear predictor; available trend_formula supplied original model) trend_smooth_params (process model GAM smoothing parameters; available trend_formula supplied original model) trend_linpreds (process model linear predictors identity scale; available trend_formula supplied original model) can character vector providing variables extract regex Logical. using one prespecified options extractions, variable treated (vector ) regular expressions? variable x matching least one regular expressions selected. Defaults FALSE. ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_draws.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract posterior draws from fitted mvgam objects — mvgam_draws","text":"data.frame, matrix, array containing posterior draws.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_draws.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract posterior draws from fitted mvgam objects — mvgam_draws","text":"","code":"if (FALSE) { sim <- sim_mvgam(family = Gamma()) mod1 <- mvgam(y ~ s(season, bs = 'cc'), trend_model = 'AR1', data = sim$data_train, family = Gamma()) beta_draws_df <- as.data.frame(mod1, variable = 'betas') head(beta_draws_df) str(beta_draws_df) beta_draws_mat <- as.data.frame(mod1, variable = 'betas') head(beta_draws_mat) str(beta_draws_mat)}"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_families.html","id":null,"dir":"Reference","previous_headings":"","what":"Supported mvgam families — mvgam_families","title":"Supported mvgam families — mvgam_families","text":"Supported mvgam families","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_families.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Supported mvgam families — mvgam_families","text":"","code":"tweedie(link = \"log\") student_t(link = \"identity\")"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_families.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Supported mvgam families — mvgam_families","text":"link specification family link function. present changed","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_families.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Supported mvgam families — mvgam_families","text":"mvgam currently supports following standard observation families: gaussian real-valued data poisson count data Gamma non-negative real-valued data addition, following extended families mgcv package supported: betar proportional data (0,1) nb count data Finally, mvgam supports three extended families described : lognormal non-negative real-valued data tweedie count data (power parameter p fixed 1.5) student-t real-valued data Note poisson(), nb(), tweedie() available using JAGS. families, apart tweedie(), supported using Stan.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_families.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Supported mvgam families — mvgam_families","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_forecast-class.html","id":null,"dir":"Reference","previous_headings":"","what":"mvgam_forecast object description — mvgam_forecast-class","title":"mvgam_forecast object description — mvgam_forecast-class","text":"mvgam_forecast object returned function hindcast forecast. Run methods(class = \"mvgam_forecast\") see overview available methods.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_forecast-class.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"mvgam_forecast object description — mvgam_forecast-class","text":"mvgam_forecast object contains following elements: call original observation model formula trend_call trend_formula supplied, original trend model formula returned. Otherwise NULL family character description observation distribution trend_model character description latent trend model drift Logical specifying whether drift term used trend model use_lv Logical flag indicating whether latent dynamic factors used model fit_engine Character describing fit engine, either stan jags type type predictions included (either link, response trend) series_names Names time series, taken levels(data$series) original model fit train_observations list training observation vectors length n_series test_observations forecast function used, list test observation vectors length n_series. Otherwise NULL hindcasts list posterior hindcast distributions length n_series. forecasts forecast function used, list posterior forecast distributions length n_series. Otherwise NULL","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_forecast-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"mvgam_forecast object description — mvgam_forecast-class","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_marginaleffects.html","id":null,"dir":"Reference","previous_headings":"","what":"Helper functions for mvgam marginaleffects calculations — mvgam_marginaleffects","title":"Helper functions for mvgam marginaleffects calculations — mvgam_marginaleffects","text":"Helper functions mvgam marginaleffects calculations Functions needed working marginaleffects Functions needed getting data / objects insight","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_marginaleffects.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Helper functions for mvgam marginaleffects calculations — mvgam_marginaleffects","text":"","code":"# S3 method for mvgam get_coef(model, trend_effects = FALSE, ...) # S3 method for mvgam set_coef(model, coefs, trend_effects = FALSE, ...) # S3 method for mvgam get_vcov(model, vcov = NULL, ...) # S3 method for mvgam get_predict( model, newdata, type = \"response\", process_error = FALSE, n_cores = 1, ... ) # S3 method for mvgam get_data(x, source = \"environment\", verbose = TRUE, ...) # S3 method for mvgam find_predictors( x, effects = c(\"fixed\", \"random\", \"all\"), component = c(\"all\", \"conditional\", \"zi\", \"zero_inflated\", \"dispersion\", \"instruments\", \"correlation\", \"smooth_terms\"), flatten = FALSE, verbose = TRUE, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_marginaleffects.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Helper functions for mvgam marginaleffects calculations — mvgam_marginaleffects","text":"model Model object ... Additional arguments passed predict() method supplied modeling package.arguments particularly useful mixed-effects bayesian models (see online vignettes marginaleffects website). Available arguments can vary model model, depending range supported arguments modeling package. See \"Model-Specific Arguments\" section ?marginaleffects documentation non-exhaustive list available arguments. coefs vector coefficients insert model object vcov Type uncertainty estimates report (e.g., robust standard errors). Acceptable values: FALSE: compute standard errors. can speed computation considerably. TRUE: Unit-level standard errors using default vcov(model) variance-covariance matrix. String indicates kind uncertainty estimates return. Heteroskedasticity-consistent: \"HC\", \"HC0\", \"HC1\", \"HC2\", \"HC3\", \"HC4\", \"HC4m\", \"HC5\". See ?sandwich::vcovHC Heteroskedasticity autocorrelation consistent: \"HAC\" Mixed-Models degrees freedom: \"satterthwaite\", \"kenward-roger\" : \"NeweyWest\", \"KernHAC\", \"OPG\". See sandwich package documentation. One-sided formula indicates name cluster variables (e.g., ~unit_id). formula passed cluster argument sandwich::vcovCL function. Square covariance matrix Function returns covariance matrix (e.g., stats::vcov(model)) newdata Grid predictor values evaluate slopes. NULL (default): Unit-level slopes observed value original dataset. See insight::get_data() data frame: Unit-level slopes row newdata data frame. datagrid() call specify custom grid regressors. example: newdata = datagrid(cyl = c(4, 6)): cyl variable equal 4 6 regressors fixed means modes. See Examples section datagrid() documentation. string: \"mean\": Marginal Effects Mean. Slopes predictor held mean mode. \"median\": Marginal Effects Median. Slopes predictor held median mode. \"marginalmeans\": Marginal Effects Marginal Means. See Details section . \"tukey\": Marginal Effects Tukey's 5 numbers. \"grid\": Marginal Effects grid representative numbers (Tukey's 5 numbers unique values categorical predictors). type string indicates type (scale) predictions used compute contrasts slopes. can differ based model type, typically string : \"response\", \"link\", \"probs\", \"zero\". unsupported string entered, model-specific list acceptable values returned error message. type NULL, default value used. default first model-related row marginaleffects:::type_dictionary dataframe. process_error logical. TRUE, uncertainty latent process (trend) model incorporated predictions n_cores Integer specifying number cores use generating predictions x fitted model. source String, indicating data recovered. source = \"environment\" (default), data recovered environment (e.g. data workspace). option usually fastest way getting data ensures original variables used model fitting returned. Note always current data recovered environment. Hence, data modified model fitting (e.g., variables recoded rows filtered), returned data may longer equal model data. source = \"frame\" (\"mf\"), data taken model frame. transformed variables back-transformed, possible. option returns data even available environment, however, certain edge cases back-transforming original data may fail. source = \"environment\" fails recover data, tries extract data model frame; source = \"frame\" data extracted model frame, data recovered environment. ways returns observations missing data variables used model fitting. verbose Toggle messages warnings. effects model data fixed effects (\"fixed\"), random effects (\"random\") (\"\") returned? applies mixed gee models. component predictor variables, predictor variables conditional model, zero-inflated part model, dispersion term instrumental variables returned? Applies models zero-inflated /dispersion formula, models instrumental variable (called fixed-effects regressions). May abbreviated. Note conditional component also called count mean component, depending model. flatten Logical, TRUE, values returned character vector, list. Duplicated values removed.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_marginaleffects.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Helper functions for mvgam marginaleffects calculations — mvgam_marginaleffects","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_trends.html","id":null,"dir":"Reference","previous_headings":"","what":"Supported mvgam trend models — mvgam_trends","title":"Supported mvgam trend models — mvgam_trends","text":"Supported mvgam trend models","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_trends.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Supported mvgam trend models — mvgam_trends","text":"mvgam currently supports following dynamic trend models: RW Random Walk AR1 Autoregressive model AR coefficient lag 1 AR2 Autoregressive model AR coefficients lags 1 2 AR3 Autoregressive model AR coefficients lags 1, 2 3 VAR1 Vector Autoregressive model VAR coefficients lag 1; contemporaneously uncorrelated process errors VAR1cor Vector Autoregressive model VAR coefficients lag 1; contemporaneously correlated process errors GP Squared exponential Gaussian Process None latent trend fitted Dynamic factor models can used latent factors evolve either RW, AR1, AR2, AR3 GP. Note RW, AR1, AR2 AR3 available using JAGS. trend models supported using Stan. multivariate trend models (.e. VAR VARcor models), users can either fix trend error covariances 0 (using VAR) estimate potentially allow contemporaneously correlated errors using VARcor. VAR models, stationarity latent process enforced prior using parameterisation given Heaps (2022). Stationarity enforced using AR1, AR2 AR3 models, though can changed user specifying lower upper bounds autoregressive parameters using functionality get_mvgam_priors priors argument mvgam","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/mvgam_trends.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Supported mvgam trend models — mvgam_trends","text":"Sarah E. Heaps (2022) Enforcing stationarity prior Vector Autoregressions. Journal Computational Graphical Statistics. 32:1, 1-10.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_fc.html","id":null,"dir":"Reference","previous_headings":"","what":"Forecast from a particle filtered mvgam object — pfilter_mvgam_fc","title":"Forecast from a particle filtered mvgam object — pfilter_mvgam_fc","text":"function generates forecast set particles capture unique proposal current state system modelled mvgam object. covariate timepoint information data_test used generate GAM component forecast, trends run forward time according state space dynamics. forecast weighted ensemble, weights determined particle's proposal likelihood prior recent assimilation step","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_fc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Forecast from a particle filtered mvgam object — pfilter_mvgam_fc","text":"","code":"pfilter_mvgam_fc( file_path = \"pfilter\", n_cores = 2, newdata, data_test, plot_legend = TRUE, legend_position = \"topleft\", ylim, return_forecasts = FALSE )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_fc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Forecast from a particle filtered mvgam object — pfilter_mvgam_fc","text":"file_path character string specifying file path particles saved n_cores integer specifying number cores generating particle forecasts parallel newdata dataframe list test data containing least 'series' time', addition variables included linear predictor formula data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows plot_legend logical stating whether include legend highlight observations used calibration assimilated particle filter legend_position legend location may specified setting x single keyword list \"bottomright\", \"bottom\", \"bottomleft\", \"left\", \"topleft\", \"top\", \"topright\", \"right\" \"center\". places legend inside plot frame given location. ylim Optional vector y-axis limits (min, max). limits used plots return_forecasts logical. TRUE, returned list object contain plots forecasts well forecast objects (matrix dimension n_particles x horizon)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_fc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Forecast from a particle filtered mvgam object — pfilter_mvgam_fc","text":"named list containing functions call base R plots series' forecast. Optionally actual forecasts returned within list separate list matrices","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_init.html","id":null,"dir":"Reference","previous_headings":"","what":"Initiate particles for online filtering from a fitted mvgam object — pfilter_mvgam_init","title":"Initiate particles for online filtering from a fitted mvgam object — pfilter_mvgam_init","text":"function generates set particles captures unique proposal current state system. next observation data_assim assimilated particles weighted proposal's multivariate composite likelihood update model's forecast distribution","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_init.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Initiate particles for online filtering from a fitted mvgam object — pfilter_mvgam_init","text":"","code":"pfilter_mvgam_init( object, newdata, data_assim, n_particles = 1000, file_path = \"pfilter\", n_cores = 2 )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_init.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Initiate particles for online filtering from a fitted mvgam object — pfilter_mvgam_init","text":"object list object returned mvgam newdata dataframe list test data containing least one observation per series (beyond last observation seen model object) assimilated particle filter. least contain 'series' 'time' one-step ahead horizon, addition variables included linear predictor object data_assim Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows n_particles integer specifying number unique particles generate tracking latent system state file_path character string specifying file path saving initiated particles n_cores integer specifying number cores generating particle forecasts parallel","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_init.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Initiate particles for online filtering from a fitted mvgam object — pfilter_mvgam_init","text":"list object length = n_particles containing information parameters current state estimates particle generated saved, along important information original model, .rda object file_path","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_online.html","id":null,"dir":"Reference","previous_headings":"","what":"Automatic online particle filtering for assimilating new observations into a fitted mvgam model — pfilter_mvgam_online","title":"Automatic online particle filtering for assimilating new observations into a fitted mvgam model — pfilter_mvgam_online","text":"function operates sequentially new observations data_assim update posterior forecast distribution. wrapper calls pfilter_mvgam_smooth. iteration, next observation assimilated particles weighted proposal's multivariate composite likelihood","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_online.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Automatic online particle filtering for assimilating new observations into a fitted mvgam model — pfilter_mvgam_online","text":"","code":"pfilter_mvgam_online( newdata, data_assim, file_path = \"pfilter\", threshold = 0.5, use_resampling = FALSE, kernel_lambda = 0.25, n_cores = 1 )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_online.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Automatic online particle filtering for assimilating new observations into a fitted mvgam model — pfilter_mvgam_online","text":"newdata dataframe list test data containing least one observation per series (beyond last observation seen model initialising particles pfilter_mvgam_init previous calls pfilter_mvgam_online. least contain 'series' 'time' one-step ahead horizon, addition variables included linear predictor object data_assim Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows file_path character string specifying file path locating particles threshold proportional numeric specifying Effective Sample Size limit resampling particles triggered (calculated ESS / n_particles) use_resampling == TRUE. 0 1 use_resampling logical specifying whether resampling used ESS falls specified threshold. Default option FALSE, relying instead kernel smoothing maintain particle diversity kernel_lambda proportional numeric specifying strength kernel smoothing use pulling low weight particles toward high likelihood state space. 0 1 n_cores integer specifying number cores generating particle forecasts parallel","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_online.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Automatic online particle filtering for assimilating new observations into a fitted mvgam model — pfilter_mvgam_online","text":"list object length = n_particles containing information parameters current state estimates particle generated saved, along important information original model, .rda object file_path","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_smooth.html","id":null,"dir":"Reference","previous_headings":"","what":"Assimilate new observations into a fitted mvgam model using resampling and kernel smoothing — pfilter_mvgam_smooth","title":"Assimilate new observations into a fitted mvgam model using resampling and kernel smoothing — pfilter_mvgam_smooth","text":"function operates new observation next_assim update posterior forecast distribution. next observation assimilated particle weights updated light recent multivariate composite likelihood. Low weight particles smoothed towards high weight state space using importance sampling, options given using resampling high weight particles Effective Sample Size falls user-specified threshold","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_smooth.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assimilate new observations into a fitted mvgam model using resampling and kernel smoothing — pfilter_mvgam_smooth","text":"","code":"pfilter_mvgam_smooth( particles, mgcv_model, next_assim, threshold = 0.25, n_cores = 1, use_resampling = FALSE, kernel_lambda = 0.5 )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_smooth.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assimilate new observations into a fitted mvgam model using resampling and kernel smoothing — pfilter_mvgam_smooth","text":"particles list particles run one observation prior observation next_assim mgcv_model gam model returned call link{mvgam} next_assim dataframe test data containing one observation per series (beyond last observation seen model initialising particles pfilter_mvgam_init previous calls pfilter_mvgam_online. least contain 'series' 'time' one-step ahead horizon, addition variables included linear predictor object threshold proportional numeric specifying Effective Sample Size limit resampling particles triggered (calculated ESS / n_particles) use_resampling == TRUE. 0 1 n_cores integer specifying number cores generating particle forecasts parallel use_resampling logical specifying whether resampling used ESS falls specified threshold. Note resampling can result loss original model's diversity GAM beta coefficients, may undesirable consequences forecast distribution. use_resampling TRUE, effort made remedy assigning randomly sampled draws GAM beta coefficients original model's distribution particle. however guarantee loss diversity, especially successive resampling take place. Default option therefore FALSE kernel_lambda proportional numeric specifying strength smoothing use pulling low weight particles toward high likelihood state space. 0 1","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pfilter_mvgam_smooth.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assimilate new observations into a fitted mvgam model using resampling and kernel smoothing — pfilter_mvgam_smooth","text":"list object length = n_particles containing information parameters current state estimates particle","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pipe.html","id":null,"dir":"Reference","previous_headings":"","what":"Pipe operator — %>%","title":"Pipe operator — %>%","text":"See magrittr::%>% details.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pipe.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Pipe operator — %>%","text":"","code":"lhs %>% rhs"},{"path":"https://nicholasjclark.github.io/mvgam/reference/pipe.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Pipe operator — %>%","text":"lhs value magrittr placeholder. rhs function call using magrittr semantics.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/pipe.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Pipe operator — %>%","text":"result calling rhs(lhs).","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Default mvgam plots — plot.mvgam","title":"Default mvgam plots — plot.mvgam","text":"function takes fitted mvgam object produces plots smooth functions, forecasts, trends uncertainty components","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Default mvgam plots — plot.mvgam","text":"","code":"# S3 method for mvgam plot( x, type = \"residuals\", series = 1, residuals = FALSE, newdata, data_test, trend_effects = FALSE, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Default mvgam plots — plot.mvgam","text":"x list object returned mvgam. See mvgam() type character specifying type plot return. Options : 'series, residuals, smooths, re (random effect smooths), pterms (parametric effects), forecast, trend, uncertainty, factors series integer specifying series set plotted. ignored type == 're' residuals logical. TRUE type = residuals, posterior quantiles partial residuals added plots 1-D smooths series ribbon rectangles. Partial residuals smooth term median Dunn-Smyth residuals obtained dropping term concerned model, leaving estimates fixed (.e. estimates term plus original median Dunn-Smyth residuals). Note mvgam works Dunn-Smyth residuals working residuals, used mgcv, magnitudes partial residuals different expect plot.gam. Interpretation similar though, partial residuals evenly scattered around smooth function function well estimated newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor original formula. argument optional plotting sample forecast period observations (type = forecast) required plotting uncertainty components (type = uncertainty). data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows trend_effects logical. TRUE trend_formula used model fitting, terms trend (.e. process) model plotted ... Additional arguments individual plotting function.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Default mvgam plots — plot.mvgam","text":"base R plot set plots","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Default mvgam plots — plot.mvgam","text":"plots useful getting overview fitted model estimated random effects smooth functions, individual plotting functions generally offer customisation.","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Default mvgam plots — plot.mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam_lfo.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Pareto-k and ELPD values from a leave-future-out object — plot.mvgam_lfo","title":"Plot Pareto-k and ELPD values from a leave-future-out object — plot.mvgam_lfo","text":"function takes object class mvgam_lfo create several informative diagnostic plots","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam_lfo.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Pareto-k and ELPD values from a leave-future-out object — plot.mvgam_lfo","text":"","code":"# S3 method for mvgam_lfo plot(x, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam_lfo.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Pareto-k and ELPD values from a leave-future-out object — plot.mvgam_lfo","text":"x object class mvgam_lfo ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot.mvgam_lfo.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Pareto-k and ELPD values from a leave-future-out object — plot.mvgam_lfo","text":"base R plot Pareto-k ELPD values evaluation timepoints. Pareto-k plot, dashed red line indicates specified threshold chosen triggering model refits. ELPD plot, dashed red line indicated bottom 10% quantile ELPD values. Points threshold may represent outliers difficult forecast","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":null,"dir":"Reference","previous_headings":"","what":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"function takes fitted mvgam object returns plots summary statistics latent dynamic factors","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"","code":"plot_mvgam_factors(object, plot = TRUE)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"object list object returned mvgam plot logical specifying whether factors plotted","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"dataframe factor contributions , optionally, series base R plots","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"model object estimated using dynamic factors, possible factors contributed estimated trends. due regularisation penalty acts independently factor's Gaussian precision, squeeze un-needed factors white noise process (effectively dropping factor model). function, factor tested null hypothesis white noise calculating sum factor's 2nd derivatives. factor larger contribution larger sum due weaker penalty factor's precision. plot == TRUE, factors also plotted.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_factors.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Latent factor summaries for a fitted mvgam object — plot_mvgam_factors","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_forecasts.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","title":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","text":"Plot mvgam posterior predictions specified series","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_forecasts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","text":"","code":"plot_mvgam_fc( object, series = 1, newdata, data_test, realisations = FALSE, n_realisations = 15, hide_xlabels = FALSE, xlab, ylab, ylim, n_cores = 1, return_forecasts = FALSE, return_score = FALSE, ... ) # S3 method for mvgam_forecast plot( x, series = 1, realisations = FALSE, n_realisations = 15, hide_xlabels = FALSE, xlab, ylab, ylim, return_score = FALSE, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_forecasts.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","text":"object list object returned mvgam series integer specifying series set plotted newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor original formula. included, covariate information newdata used generate forecasts fitted model equations. newdata originally included call mvgam, forecasts already produced generative model simply extracted plotted. However newdata supplied original model call, assumption made newdata supplied comes sequentially data supplied data original model (.e. assume time gap last observation series 1 data first observation series 1 newdata). newdata contains observations column y, observations used compute Discrete Rank Probability Score forecast distribution data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows realisations logical. TRUE, forecast realisations shown spaghetti plot, making easier visualise diversity possible forecasts. FALSE, default, empirical quantiles forecast distribution shown n_realisations integer specifying number posterior realisations plot, realisations = TRUE. Ignored otherwise hide_xlabels logical. TRUE, xlabels printed allow user add custom labels using axis base R xlab label x axis. ylab label y axis. ylim Optional vector y-axis limits (min, max) n_cores integer specifying number cores generating forecasts parallel return_forecasts logical. TRUE, function plot forecast well returning forecast object (matrix dimension n_samples x horizon) return_score logical. TRUE sample test data provided newdata, probabilistic score calculated returned. score used depend observation family fitted model. Discrete families (poisson, negative binomial, tweedie) use Discrete Rank Probability Score. families use Continuous Rank Probability Score. value returned sum scores within sample forecast horizon ... par graphical parameters. x Object class mvgam_forecast","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_forecasts.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","text":"base R graphics plot optional list containing forecast distribution sample probabilistic forecast score","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_forecasts.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot mvgam posterior predictions for a specified series — plot_mvgam_forecasts","text":"plot_mvgam_fc draws posterior predictions object class mvgam calculates posterior empirical quantiles. plot.mvgam_forecast takes object class mvgam_forecast, forecasts already computed, plots resulting forecast distribution. realisations = FALSE, posterior quantiles plotted along true observed data used train model. Otherwise, spaghetti plot returned show possible forecast paths.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_pterms.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","title":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","text":"function plots posterior empirical quantiles partial effects parametric terms","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_pterms.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","text":"","code":"plot_mvgam_pterms(object, trend_effects = FALSE)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_pterms.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","text":"object list object returned mvgam trend_effects logical. TRUE trend_formula used model fitting, terms trend (.e. process) model plotted","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_pterms.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","text":"base R graphics plot","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_pterms.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot mvgam parametric term partial effects — plot_mvgam_pterms","text":"Posterior empirical quantiles parametric term's partial effect estimates (link scale) calculated visualised ribbon plots. effects can interpreted partial effect parametric term contributes terms model set 0","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_randomeffects.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam random effect terms — plot_mvgam_randomeffects","title":"Plot mvgam random effect terms — plot_mvgam_randomeffects","text":"function plots posterior empirical quantiles random effect smooths (bs = re)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_randomeffects.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam random effect terms — plot_mvgam_randomeffects","text":"","code":"plot_mvgam_randomeffects(object, trend_effects = FALSE)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_randomeffects.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam random effect terms — plot_mvgam_randomeffects","text":"object list object returned mvgam trend_effects logical. TRUE trend_formula used model fitting, terms trend (.e. process) model plotted","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_randomeffects.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot mvgam random effect terms — plot_mvgam_randomeffects","text":"base R graphics plot","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_randomeffects.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot mvgam random effect terms — plot_mvgam_randomeffects","text":"Posterior empirical quantiles random effect coefficient estimates (link scale) calculated visualised ribbon plots. Labels coefficients taken levels original factor variable used specify smooth model's formula","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":null,"dir":"Reference","previous_headings":"","what":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"function takes fitted mvgam object returns various residual diagnostic plots","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"","code":"plot_mvgam_resids(object, series = 1, n_bins = 15, newdata, data_test)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"object list object returned mvgam series integer specifying series set plotted n_bins integer specifying number bins use binning fitted values newdata Optional dataframe list test data containing least 'series', 'y', 'time' addition variables included linear predictor formula. included, covariate information newdata used generate forecasts fitted model equations. newdata originally included call mvgam, forecasts already produced generative model simply extracted used calculate residuals. However newdata supplied original model call, assumption made newdata supplied comes sequentially data supplied data original model (.e. assume time gap last observation series 1 data_train first observation series 1 newdata). data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"series base R plots","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"total four base R plots generated examine Dunn-Smyth residuals specified series. Plots include residuals vs fitted values plot, Q-Q plot, two plots check remaining temporal autocorrelation residuals. Note, plots use posterior medians fitted values / residuals, uncertainty represented.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_resids.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Residual diagnostics for a fitted mvgam object — plot_mvgam_resids","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_series.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot observed time series used for mvgam modelling — plot_mvgam_series","title":"Plot observed time series used for mvgam modelling — plot_mvgam_series","text":"function takes either fitted mvgam object data_train object produces plots observed time series, ACF, CDF histograms exploratory data analysis","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_series.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot observed time series used for mvgam modelling — plot_mvgam_series","text":"","code":"plot_mvgam_series( object, data, data_train, newdata, data_test, y = \"y\", lines = TRUE, series = 1, n_bins, log_scale = FALSE )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_series.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot observed time series used for mvgam modelling — plot_mvgam_series","text":"object Optional list object returned mvgam. Either object data_train must supplied. data Optional dataframe list training data containing least 'series' 'time'. Use argument training data gathered correct format mvgam modelling model yet fitted. data_train Deprecated. Still works place data users recommended use data instead seamless integration R workflows newdata Optional dataframe list test data containing least 'series' 'time' forecast horizon, addition variables included linear predictor formula. included, observed values test data compared model's forecast distribution exploring biases model predictions. data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows y Character. name outcome variable supplied data? Defaults 'y' lines Logical. TRUE, line plots used visualising time series. FALSE, points used. series Either integer specifying series set plotted string '', plots series available supplied data n_bins integer specifying number bins use binning observed values plotting histogram. Default use number bins returned call hist base R log_scale logical. series == '', flag used control whether time series plot shown log scale (using log(Y + 1)). can useful visualising many series may different observed ranges. Default FALSE","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_series.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot observed time series used for mvgam modelling — plot_mvgam_series","text":"set base R graphics plots. series integer, plots show observed time series, autocorrelation cumulative distribution functions, histogram series. series == '', set observed time series plots returned series shown plot single focal series highlighted, remaining series shown faint gray lines.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_series.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Plot observed time series used for mvgam modelling — plot_mvgam_series","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_smooth.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam smooth terms — plot_mvgam_smooth","title":"Plot mvgam smooth terms — plot_mvgam_smooth","text":"function plots posterior empirical quantiles series-specific smooth term","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_smooth.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam smooth terms — plot_mvgam_smooth","text":"","code":"plot_mvgam_smooth( object, trend_effects = FALSE, series = 1, smooth, residuals = FALSE, n_resid_bins = 25, realisations = FALSE, n_realisations = 15, derivatives = FALSE, newdata )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_smooth.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam smooth terms — plot_mvgam_smooth","text":"object list object returned mvgam trend_effects logical. TRUE trend_formula used model fitting, terms trend (.e. process) model plotted series integer specifying series set plotted smooth either character integer specifying smooth term plotted residuals logical. TRUE posterior quantiles partial residuals added plots 1-D smooths series ribbon rectangles. Partial residuals smooth term median Dunn-Smyth residuals obtained dropping term concerned model, leaving estimates fixed (.e. estimates term plus original median Dunn-Smyth residuals). Note mvgam works Dunn-Smyth residuals working residuals, used mgcv, magnitudes partial residuals different expect plot.gam. Interpretation similar though, partial residuals evenly scattered around smooth function function well estimated n_resid_bins integer specifying number bins group covariate plotting partial residuals. Setting argument high can make messy plots difficult interpret, setting low likely mask potentially useful patterns partial residuals. Default 25 realisations logical. TRUE, posterior realisations shown spaghetti plot, making easier visualise diversity possible functions. FALSE, default, empirical quantiles posterior distribution shown n_realisations integer specifying number posterior realisations plot, realisations = TRUE. Ignored otherwise derivatives logical. TRUE, additional plot returned show estimated 1st derivative specified smooth (Note, works univariate smooths) newdata Optional dataframe predicting smooth, containing least 'series' addition variables included linear predictor original model's formula. Note currently supported plotting univariate smooths","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_smooth.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot mvgam smooth terms — plot_mvgam_smooth","text":"base R graphics plot","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_smooth.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot mvgam smooth terms — plot_mvgam_smooth","text":"Smooth functions shown empirical quantiles (spaghetti plots) posterior partial expectations across sequence 500 values variable's min max, zeroing effects variables. present, univariate bivariate smooth plots allowed, though note bivariate smooths rely default behaviour plot.gam. nuanced visualisation, supply newdata just predicting gam model","code":""},{"path":[]},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_trend.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam latent trend for a specified series — plot_mvgam_trend","title":"Plot mvgam latent trend for a specified series — plot_mvgam_trend","text":"Plot mvgam latent trend specified series","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_trend.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam latent trend for a specified series — plot_mvgam_trend","text":"","code":"plot_mvgam_trend( object, series = 1, newdata, data_test, realisations = FALSE, n_realisations = 15, n_cores = 1, derivatives = FALSE, hide_xlabels = FALSE, xlab, ylab, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_trend.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam latent trend for a specified series — plot_mvgam_trend","text":"object list object returned mvgam series integer specifying series set plotted newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor original formula. data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows realisations logical. TRUE, posterior trend realisations shown spaghetti plot, making easier visualise diversity possible trend paths. FALSE, default, empirical quantiles posterior distribution shown n_realisations integer specifying number posterior realisations plot, realisations = TRUE. Ignored otherwise n_cores integer specifying number cores generating trend forecasts parallel derivatives logical. TRUE, additional plot returned show estimated 1st derivative estimated trend hide_xlabels logical. TRUE, xlabels printed allow user add custom labels using axis base R. Ignored derivatives = TRUE xlab label x axis. ylab label y axis. ... par graphical parameters.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_uncertainty.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam forecast uncertainty contributions for a specified series — plot_mvgam_uncertainty","title":"Plot mvgam forecast uncertainty contributions for a specified series — plot_mvgam_uncertainty","text":"Plot mvgam forecast uncertainty contributions specified series","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_uncertainty.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam forecast uncertainty contributions for a specified series — plot_mvgam_uncertainty","text":"","code":"plot_mvgam_uncertainty( object, series = 1, newdata, data_test, legend_position = \"topleft\", hide_xlabels = FALSE )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/plot_mvgam_uncertainty.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam forecast uncertainty contributions for a specified series — plot_mvgam_uncertainty","text":"object list object returned mvgam series integer specifying series set plotted newdata dataframe list containing least 'series' 'time' forecast horizon, addition variables included linear predictor formula data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows legend_position location may also specified setting x single keyword list: \"none\", \"bottomright\", \"bottom\", \"bottomleft\", \"left\", \"topleft\", \"top\", \"topright\", \"right\" \"center\". places legend inside plot frame given location (\"none\"). hide_xlabels logical. TRUE, xlabels printed allow user add custom labels using axis base R","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/portal_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Portal Project rodent capture survey data — portal_data","title":"Portal Project rodent capture survey data — portal_data","text":"dataset containing timeseries select rodent species captures control plots Portal Project","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/portal_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Portal Project rodent capture survey data — portal_data","text":"","code":"portal_data"},{"path":"https://nicholasjclark.github.io/mvgam/reference/portal_data.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Portal Project rodent capture survey data — portal_data","text":"dataframe containing following fields: moon time sampling lunar cycles DM Total captures species DM Total captures species DM Total captures species PP DM Total captures species OT year Sampling year month Sampling month mintemp Monthly mean minimum temperature precipitation Monthly mean precipitation ndvi Monthly mean Normalised Difference Vegetation Index","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/portal_data.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Portal Project rodent capture survey data — portal_data","text":"https://www.weecology.org/data-projects/portal/","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/ppc.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","title":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","text":"Plot mvgam posterior predictive checks specified series","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/ppc.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","text":"","code":"ppc(object, ...) # S3 method for mvgam ppc( object, newdata, data_test, series = 1, type = \"hist\", n_bins, legend_position, xlab, ylab, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/ppc.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","text":"object list object returned mvgam. See mvgam() ... par graphical parameters. newdata Optional dataframe list test data containing least 'series' 'time' forecast horizon, addition variables included linear predictor formula. included, observed values test data compared model's forecast distribution exploring biases model predictions. Note useful newdata also included fitting original model. data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows series integer specifying series set plotted type character specifying type posterior predictive check calculate plot. Valid options : 'rootogram', 'mean', 'hist', 'density', 'prop_zero', 'pit' 'cdf' n_bins integer specifying number bins use binning observed values plotting rootogram histogram. Default 50 bins rootogram, means >50 unique observed values, bins used prevent overplotting facilitate interpretation. Default histogram use number bins returned call hist base R legend_position location may also specified setting x single keyword list \"bottomright\", \"bottom\", \"bottomleft\", \"left\", \"topleft\", \"top\", \"topright\", \"right\" \"center\". places legend inside plot frame given location. alternatively, use \"none\" hide legend. xlab label x axis. ylab label y axis.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/ppc.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","text":"base R graphics plot showing either posterior rootogram (type == 'rootogram'), predicted vs observed mean series (type == 'mean'), predicted vs observed proportion zeroes series (type == 'prop_zero'),predicted vs observed histogram series (type == 'hist'), kernel density empirical CDF estimates posterior predictions (type == 'density' type == 'cdf') Probability Integral Transform histogram (type == 'pit').","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/ppc.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot mvgam posterior predictive checks for a specified series — ppc.mvgam","text":"Posterior predictions drawn fitted mvgam compared empirical distribution observed data specified series help evaluate model's ability generate unbiased predictions. plots apart 'rootogram', posterior predictions can also compared sample observations long observations included 'data_test' original model fit supplied . Rootograms currently plotted using 'hanging' style","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/predict.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Predict from the GAM component of an mvgam model — predict.mvgam","title":"Predict from the GAM component of an mvgam model — predict.mvgam","text":"Predict GAM component mvgam model","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/predict.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Predict from the GAM component of an mvgam model — predict.mvgam","text":"","code":"# S3 method for mvgam predict( object, newdata, data_test, type = \"link\", process_error = TRUE, n_cores = 1, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/predict.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Predict from the GAM component of an mvgam model — predict.mvgam","text":"object list object returned mvgam newdata Optional dataframe list test data containing variables included linear predictor formula. supplied, predictions generated original observations used model fit. data_test Deprecated. Still works place newdata users recommended use newdata instead seamless integration R workflows type value link (default) linear predictor calculated link scale. expected used, predictions reflect expectation response (mean) ignore uncertainty observation process. response used, predictions take uncertainty observation process account return predictions outcome scale process_error Logical. TRUE dynamic trend model fit, expected uncertainty process model accounted using draws latent trend SD parameters. FALSE, uncertainty latent trend component ignored calculating predictions n_cores integer specifying number cores generating predictions parallel ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/predict.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Predict from the GAM component of an mvgam model — predict.mvgam","text":"matrix dimension n_samples x new_obs, n_samples number posterior samples fitted object n_obs number test observations newdata","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/predict.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Predict from the GAM component of an mvgam model — predict.mvgam","text":"Note types predictions models include trend_formula, uncertainty dynamic trend component can ignored setting process_error = FALSE. However, trend_formula supplied model, predictions component ignored. process_error = TRUE, trend predictions ignore autocorrelation coefficients GP length scale coefficients, ultimately assuming process stationary. method similar types posterior predictions returned brms models using autocorrelated error predictions newdata. function therefore suited posterior simulation GAM components mvgam model, forecasting functions plot_mvgam_fc forecast.mvgam better suited generate h-step ahead forecasts respect temporal dynamics estimated latent trends.","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Summary for a fitted mvgam object — print.mvgam","title":"Summary for a fitted mvgam object — print.mvgam","text":"function takes fitted mvgam object prints quick summary","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summary for a fitted mvgam object — print.mvgam","text":"","code":"# S3 method for mvgam print(x, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summary for a fitted mvgam object — print.mvgam","text":"x list object returned mvgam ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summary for a fitted mvgam object — print.mvgam","text":"list printed -screen","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Summary for a fitted mvgam object — print.mvgam","text":"brief summary model's call printed","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/print.mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Summary for a fitted mvgam object — print.mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/score.mvgam_forecast.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","title":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","text":"Compute probabilistic forecast scores mvgam objects","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/score.mvgam_forecast.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","text":"","code":"# S3 method for mvgam_forecast score(object, score = \"crps\", log = FALSE, weights, interval_width = 0.9, ...) score(object, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/score.mvgam_forecast.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","text":"object mvgam_forecast object. See forecast.mvgam(). score character specifying type ranked probability score use evaluation. Options : variogram, drps crps log logical. forecasts truths logged prior scoring? often appropriate comparing performance models series vary observation ranges weights optional vector weights (length(weights) == n_series) weighting pairwise correlations evaluating variogram score multivariate forecasts. Useful -weighting series larger magnitude observations less interest forecasting. Ignored score != 'variogram' interval_width proportional value [0.05,0.95] defining forecast interval calculating coverage ... Ignored","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/score.mvgam_forecast.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","text":"list containing scores 90% interval coverages per forecast horizon. score %% c('drps', 'crps'), list also contain return sum series-level scores per horizon. score == 'variogram', series-level scores computed score returned series. scores, in_interval column series-level slot binary indicator whether true value within forecast's corresponding posterior empirical quantiles","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/score.mvgam_forecast.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute probabilistic forecast scores for mvgam objects — score.mvgam_forecast","text":"","code":"if (FALSE) { #Simulate observations for three count-valued time series data <- sim_mvgam() #Fit a dynamic model using 'newdata' to automatically produce forecasts mod <- mvgam(y ~ 1, trend_model = 'RW', data = data$data_train, newdata = data$data_test) #Extract forecasts into a 'mvgam_forecast' object fc <- forecast(mod) #Score forecasts score(fc, score = 'drps') }"},{"path":"https://nicholasjclark.github.io/mvgam/reference/series_to_mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","title":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","text":"function converts univariate multivariate time series (xts ts objects) format necessary mvgam","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/series_to_mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","text":"","code":"series_to_mvgam(series, freq, train_prop = 0.85)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/series_to_mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","text":"series xts ts object converted mvgam format freq integer. seasonal frequency series train_prop numeric stating proportion data use training. 0.25 0.95","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/series_to_mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","text":"list object containing outputs needed mvgam, including 'data_train' 'data_test'","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/series_to_mvgam.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"This function converts univariate or multivariate time series (xts or ts objects)\r\nto the format necessary for mvgam — series_to_mvgam","text":"","code":"# A ts object example data(\"sunspots\") series <- cbind(sunspots, sunspots) colnames(series) <- c('blood', 'bone') head(series) #> blood bone #> [1,] 58.0 58.0 #> [2,] 62.6 62.6 #> [3,] 70.0 70.0 #> [4,] 55.7 55.7 #> [5,] 85.0 85.0 #> [6,] 83.5 83.5 series_to_mvgam(series, frequency(series), 0.85) #> $data_train #> y season year date series time #> 1 58.0 1 1749 1749-01-01 00:00:00 blood 1 #> 2 58.0 1 1749 1749-01-01 00:00:00 bone 1 #> 3 62.6 2 1749 1749-01-31 10:00:00 blood 2 #> 4 62.6 2 1749 1749-01-31 10:00:00 bone 2 #> 5 70.0 3 1749 1749-03-02 20:00:01 blood 3 #> 6 70.0 3 1749 1749-03-02 20:00:01 bone 3 #> 7 55.7 4 1749 1749-04-02 06:00:00 blood 4 #> 8 55.7 4 1749 1749-04-02 06:00:00 bone 4 #> 9 85.0 5 1749 1749-05-02 16:00:00 blood 5 #> 10 85.0 5 1749 1749-05-02 16:00:00 bone 5 #> 11 83.5 6 1749 1749-06-02 02:00:01 blood 6 #> 12 83.5 6 1749 1749-06-02 02:00:01 bone 6 #> 13 94.8 7 1749 1749-07-02 12:00:00 blood 7 #> 14 94.8 7 1749 1749-07-02 12:00:00 bone 7 #> 15 66.3 8 1749 1749-08-01 22:00:00 blood 8 #> 16 66.3 8 1749 1749-08-01 22:00:00 bone 8 #> 17 75.9 9 1749 1749-09-01 08:00:01 blood 9 #> 18 75.9 9 1749 1749-09-01 08:00:01 bone 9 #> 19 75.5 10 1749 1749-10-01 18:00:00 blood 10 #> 20 75.5 10 1749 1749-10-01 18:00:00 bone 10 #> 21 158.6 11 1749 1749-11-01 04:00:00 blood 11 #> 22 158.6 11 1749 1749-11-01 04:00:00 bone 11 #> 23 85.2 12 1749 1749-12-01 14:00:01 blood 12 #> 24 85.2 12 1749 1749-12-01 14:00:01 bone 12 #> 25 73.3 1 1750 1750-01-01 00:00:00 blood 13 #> 26 73.3 1 1750 1750-01-01 00:00:00 bone 13 #> 27 75.9 2 1750 1750-01-31 10:00:00 blood 14 #> 28 75.9 2 1750 1750-01-31 10:00:00 bone 14 #> 29 89.2 3 1750 1750-03-02 20:00:01 blood 15 #> 30 89.2 3 1750 1750-03-02 20:00:01 bone 15 #> 31 88.3 4 1750 1750-04-02 06:00:00 blood 16 #> 32 88.3 4 1750 1750-04-02 06:00:00 bone 16 #> 33 90.0 5 1750 1750-05-02 16:00:00 blood 17 #> 34 90.0 5 1750 1750-05-02 16:00:00 bone 17 #> 35 100.0 6 1750 1750-06-02 02:00:01 blood 18 #> 36 100.0 6 1750 1750-06-02 02:00:01 bone 18 #> 37 85.4 7 1750 1750-07-02 12:00:00 blood 19 #> 38 85.4 7 1750 1750-07-02 12:00:00 bone 19 #> 39 103.0 8 1750 1750-08-01 22:00:00 blood 20 #> 40 103.0 8 1750 1750-08-01 22:00:00 bone 20 #> 41 91.2 9 1750 1750-09-01 08:00:01 blood 21 #> 42 91.2 9 1750 1750-09-01 08:00:01 bone 21 #> 43 65.7 10 1750 1750-10-01 18:00:00 blood 22 #> 44 65.7 10 1750 1750-10-01 18:00:00 bone 22 #> 45 63.3 11 1750 1750-11-01 04:00:00 blood 23 #> 46 63.3 11 1750 1750-11-01 04:00:00 bone 23 #> 47 75.4 12 1750 1750-12-01 14:00:01 blood 24 #> 48 75.4 12 1750 1750-12-01 14:00:01 bone 24 #> 49 70.0 1 1751 1751-01-01 00:00:00 blood 25 #> 50 70.0 1 1751 1751-01-01 00:00:00 bone 25 #> 51 43.5 2 1751 1751-01-31 10:00:00 blood 26 #> 52 43.5 2 1751 1751-01-31 10:00:00 bone 26 #> 53 45.3 3 1751 1751-03-02 20:00:01 blood 27 #> 54 45.3 3 1751 1751-03-02 20:00:01 bone 27 #> 55 56.4 4 1751 1751-04-02 06:00:00 blood 28 #> 56 56.4 4 1751 1751-04-02 06:00:00 bone 28 #> 57 60.7 5 1751 1751-05-02 16:00:00 blood 29 #> 58 60.7 5 1751 1751-05-02 16:00:00 bone 29 #> 59 50.7 6 1751 1751-06-02 02:00:01 blood 30 #> 60 50.7 6 1751 1751-06-02 02:00:01 bone 30 #> 61 66.3 7 1751 1751-07-02 12:00:00 blood 31 #> 62 66.3 7 1751 1751-07-02 12:00:00 bone 31 #> 63 59.8 8 1751 1751-08-01 22:00:00 blood 32 #> 64 59.8 8 1751 1751-08-01 22:00:00 bone 32 #> 65 23.5 9 1751 1751-09-01 08:00:01 blood 33 #> 66 23.5 9 1751 1751-09-01 08:00:01 bone 33 #> 67 23.2 10 1751 1751-10-01 18:00:00 blood 34 #> 68 23.2 10 1751 1751-10-01 18:00:00 bone 34 #> 69 28.5 11 1751 1751-11-01 04:00:00 blood 35 #> 70 28.5 11 1751 1751-11-01 04:00:00 bone 35 #> 71 44.0 12 1751 1751-12-01 14:00:01 blood 36 #> 72 44.0 12 1751 1751-12-01 14:00:01 bone 36 #> 73 35.0 1 1752 1752-01-01 00:00:00 blood 37 #> 74 35.0 1 1752 1752-01-01 00:00:00 bone 37 #> 75 50.0 2 1752 1752-01-31 12:00:00 blood 38 #> 76 50.0 2 1752 1752-01-31 12:00:00 bone 38 #> 77 71.0 3 1752 1752-03-02 00:00:01 blood 39 #> 78 71.0 3 1752 1752-03-02 00:00:01 bone 39 #> 79 59.3 4 1752 1752-04-01 12:00:00 blood 40 #> 80 59.3 4 1752 1752-04-01 12:00:00 bone 40 #> 81 59.7 5 1752 1752-05-02 00:00:00 blood 41 #> 82 59.7 5 1752 1752-05-02 00:00:00 bone 41 #> 83 39.6 6 1752 1752-06-01 12:00:01 blood 42 #> 84 39.6 6 1752 1752-06-01 12:00:01 bone 42 #> 85 78.4 7 1752 1752-07-02 00:00:00 blood 43 #> 86 78.4 7 1752 1752-07-02 00:00:00 bone 43 #> 87 29.3 8 1752 1752-08-01 12:00:00 blood 44 #> 88 29.3 8 1752 1752-08-01 12:00:00 bone 44 #> 89 27.1 9 1752 1752-09-01 00:00:01 blood 45 #> 90 27.1 9 1752 1752-09-01 00:00:01 bone 45 #> 91 46.6 10 1752 1752-10-01 12:00:00 blood 46 #> 92 46.6 10 1752 1752-10-01 12:00:00 bone 46 #> 93 37.6 11 1752 1752-11-01 00:00:00 blood 47 #> 94 37.6 11 1752 1752-11-01 00:00:00 bone 47 #> 95 40.0 12 1752 1752-12-01 12:00:01 blood 48 #> 96 40.0 12 1752 1752-12-01 12:00:01 bone 48 #> 97 44.0 1 1753 1753-01-01 00:00:00 blood 49 #> 98 44.0 1 1753 1753-01-01 00:00:00 bone 49 #> 99 32.0 2 1753 1753-01-31 10:00:00 blood 50 #> 100 32.0 2 1753 1753-01-31 10:00:00 bone 50 #> 101 45.7 3 1753 1753-03-02 20:00:01 blood 51 #> 102 45.7 3 1753 1753-03-02 20:00:01 bone 51 #> 103 38.0 4 1753 1753-04-02 06:00:00 blood 52 #> 104 38.0 4 1753 1753-04-02 06:00:00 bone 52 #> 105 36.0 5 1753 1753-05-02 16:00:00 blood 53 #> 106 36.0 5 1753 1753-05-02 16:00:00 bone 53 #> 107 31.7 6 1753 1753-06-02 02:00:01 blood 54 #> 108 31.7 6 1753 1753-06-02 02:00:01 bone 54 #> 109 22.2 7 1753 1753-07-02 12:00:00 blood 55 #> 110 22.2 7 1753 1753-07-02 12:00:00 bone 55 #> 111 39.0 8 1753 1753-08-01 22:00:00 blood 56 #> 112 39.0 8 1753 1753-08-01 22:00:00 bone 56 #> 113 28.0 9 1753 1753-09-01 08:00:01 blood 57 #> 114 28.0 9 1753 1753-09-01 08:00:01 bone 57 #> 115 25.0 10 1753 1753-10-01 18:00:00 blood 58 #> 116 25.0 10 1753 1753-10-01 18:00:00 bone 58 #> 117 20.0 11 1753 1753-11-01 04:00:00 blood 59 #> 118 20.0 11 1753 1753-11-01 04:00:00 bone 59 #> 119 6.7 12 1753 1753-12-01 14:00:01 blood 60 #> 120 6.7 12 1753 1753-12-01 14:00:01 bone 60 #> 121 0.0 1 1754 1754-01-01 00:00:00 blood 61 #> 122 0.0 1 1754 1754-01-01 00:00:00 bone 61 #> 123 3.0 2 1754 1754-01-31 10:00:00 blood 62 #> 124 3.0 2 1754 1754-01-31 10:00:00 bone 62 #> 125 1.7 3 1754 1754-03-02 20:00:01 blood 63 #> 126 1.7 3 1754 1754-03-02 20:00:01 bone 63 #> 127 13.7 4 1754 1754-04-02 06:00:00 blood 64 #> 128 13.7 4 1754 1754-04-02 06:00:00 bone 64 #> 129 20.7 5 1754 1754-05-02 16:00:00 blood 65 #> 130 20.7 5 1754 1754-05-02 16:00:00 bone 65 #> 131 26.7 6 1754 1754-06-02 02:00:01 blood 66 #> 132 26.7 6 1754 1754-06-02 02:00:01 bone 66 #> 133 18.8 7 1754 1754-07-02 12:00:00 blood 67 #> 134 18.8 7 1754 1754-07-02 12:00:00 bone 67 #> 135 12.3 8 1754 1754-08-01 22:00:00 blood 68 #> 136 12.3 8 1754 1754-08-01 22:00:00 bone 68 #> 137 8.2 9 1754 1754-09-01 08:00:01 blood 69 #> 138 8.2 9 1754 1754-09-01 08:00:01 bone 69 #> 139 24.1 10 1754 1754-10-01 18:00:00 blood 70 #> 140 24.1 10 1754 1754-10-01 18:00:00 bone 70 #> 141 13.2 11 1754 1754-11-01 04:00:00 blood 71 #> 142 13.2 11 1754 1754-11-01 04:00:00 bone 71 #> 143 4.2 12 1754 1754-12-01 14:00:01 blood 72 #> 144 4.2 12 1754 1754-12-01 14:00:01 bone 72 #> 145 10.2 1 1755 1755-01-01 00:00:00 blood 73 #> 146 10.2 1 1755 1755-01-01 00:00:00 bone 73 #> 147 11.2 2 1755 1755-01-31 10:00:00 blood 74 #> 148 11.2 2 1755 1755-01-31 10:00:00 bone 74 #> 149 6.8 3 1755 1755-03-02 20:00:01 blood 75 #> 150 6.8 3 1755 1755-03-02 20:00:01 bone 75 #> 151 6.5 4 1755 1755-04-02 06:00:00 blood 76 #> 152 6.5 4 1755 1755-04-02 06:00:00 bone 76 #> 153 0.0 5 1755 1755-05-02 16:00:00 blood 77 #> 154 0.0 5 1755 1755-05-02 16:00:00 bone 77 #> 155 0.0 6 1755 1755-06-02 02:00:01 blood 78 #> 156 0.0 6 1755 1755-06-02 02:00:01 bone 78 #> 157 8.6 7 1755 1755-07-02 12:00:00 blood 79 #> 158 8.6 7 1755 1755-07-02 12:00:00 bone 79 #> 159 3.2 8 1755 1755-08-01 22:00:00 blood 80 #> 160 3.2 8 1755 1755-08-01 22:00:00 bone 80 #> 161 17.8 9 1755 1755-09-01 08:00:01 blood 81 #> 162 17.8 9 1755 1755-09-01 08:00:01 bone 81 #> 163 23.7 10 1755 1755-10-01 18:00:00 blood 82 #> 164 23.7 10 1755 1755-10-01 18:00:00 bone 82 #> 165 6.8 11 1755 1755-11-01 04:00:00 blood 83 #> 166 6.8 11 1755 1755-11-01 04:00:00 bone 83 #> 167 20.0 12 1755 1755-12-01 14:00:01 blood 84 #> 168 20.0 12 1755 1755-12-01 14:00:01 bone 84 #> 169 12.5 1 1756 1756-01-01 00:00:00 blood 85 #> 170 12.5 1 1756 1756-01-01 00:00:00 bone 85 #> 171 7.1 2 1756 1756-01-31 12:00:00 blood 86 #> 172 7.1 2 1756 1756-01-31 12:00:00 bone 86 #> 173 5.4 3 1756 1756-03-02 00:00:01 blood 87 #> 174 5.4 3 1756 1756-03-02 00:00:01 bone 87 #> 175 9.4 4 1756 1756-04-01 12:00:00 blood 88 #> 176 9.4 4 1756 1756-04-01 12:00:00 bone 88 #> 177 12.5 5 1756 1756-05-02 00:00:00 blood 89 #> 178 12.5 5 1756 1756-05-02 00:00:00 bone 89 #> 179 12.9 6 1756 1756-06-01 12:00:01 blood 90 #> 180 12.9 6 1756 1756-06-01 12:00:01 bone 90 #> 181 3.6 7 1756 1756-07-02 00:00:00 blood 91 #> 182 3.6 7 1756 1756-07-02 00:00:00 bone 91 #> 183 6.4 8 1756 1756-08-01 12:00:00 blood 92 #> 184 6.4 8 1756 1756-08-01 12:00:00 bone 92 #> 185 11.8 9 1756 1756-09-01 00:00:01 blood 93 #> 186 11.8 9 1756 1756-09-01 00:00:01 bone 93 #> 187 14.3 10 1756 1756-10-01 12:00:00 blood 94 #> 188 14.3 10 1756 1756-10-01 12:00:00 bone 94 #> 189 17.0 11 1756 1756-11-01 00:00:00 blood 95 #> 190 17.0 11 1756 1756-11-01 00:00:00 bone 95 #> 191 9.4 12 1756 1756-12-01 12:00:01 blood 96 #> 192 9.4 12 1756 1756-12-01 12:00:01 bone 96 #> 193 14.1 1 1757 1757-01-01 00:00:00 blood 97 #> 194 14.1 1 1757 1757-01-01 00:00:00 bone 97 #> 195 21.2 2 1757 1757-01-31 10:00:00 blood 98 #> 196 21.2 2 1757 1757-01-31 10:00:00 bone 98 #> 197 26.2 3 1757 1757-03-02 20:00:01 blood 99 #> 198 26.2 3 1757 1757-03-02 20:00:01 bone 99 #> 199 30.0 4 1757 1757-04-02 06:00:00 blood 100 #> 200 30.0 4 1757 1757-04-02 06:00:00 bone 100 #> 201 38.1 5 1757 1757-05-02 16:00:00 blood 101 #> 202 38.1 5 1757 1757-05-02 16:00:00 bone 101 #> 203 12.8 6 1757 1757-06-02 02:00:01 blood 102 #> 204 12.8 6 1757 1757-06-02 02:00:01 bone 102 #> 205 25.0 7 1757 1757-07-02 12:00:00 blood 103 #> 206 25.0 7 1757 1757-07-02 12:00:00 bone 103 #> 207 51.3 8 1757 1757-08-01 22:00:00 blood 104 #> 208 51.3 8 1757 1757-08-01 22:00:00 bone 104 #> 209 39.7 9 1757 1757-09-01 08:00:01 blood 105 #> 210 39.7 9 1757 1757-09-01 08:00:01 bone 105 #> 211 32.5 10 1757 1757-10-01 18:00:00 blood 106 #> 212 32.5 10 1757 1757-10-01 18:00:00 bone 106 #> 213 64.7 11 1757 1757-11-01 04:00:00 blood 107 #> 214 64.7 11 1757 1757-11-01 04:00:00 bone 107 #> 215 33.5 12 1757 1757-12-01 14:00:01 blood 108 #> 216 33.5 12 1757 1757-12-01 14:00:01 bone 108 #> 217 37.6 1 1758 1758-01-01 00:00:00 blood 109 #> 218 37.6 1 1758 1758-01-01 00:00:00 bone 109 #> 219 52.0 2 1758 1758-01-31 10:00:00 blood 110 #> 220 52.0 2 1758 1758-01-31 10:00:00 bone 110 #> 221 49.0 3 1758 1758-03-02 20:00:01 blood 111 #> 222 49.0 3 1758 1758-03-02 20:00:01 bone 111 #> 223 72.3 4 1758 1758-04-02 06:00:00 blood 112 #> 224 72.3 4 1758 1758-04-02 06:00:00 bone 112 #> 225 46.4 5 1758 1758-05-02 16:00:00 blood 113 #> 226 46.4 5 1758 1758-05-02 16:00:00 bone 113 #> 227 45.0 6 1758 1758-06-02 02:00:01 blood 114 #> 228 45.0 6 1758 1758-06-02 02:00:01 bone 114 #> 229 44.0 7 1758 1758-07-02 12:00:00 blood 115 #> 230 44.0 7 1758 1758-07-02 12:00:00 bone 115 #> 231 38.7 8 1758 1758-08-01 22:00:00 blood 116 #> 232 38.7 8 1758 1758-08-01 22:00:00 bone 116 #> 233 62.5 9 1758 1758-09-01 08:00:01 blood 117 #> 234 62.5 9 1758 1758-09-01 08:00:01 bone 117 #> 235 37.7 10 1758 1758-10-01 18:00:00 blood 118 #> 236 37.7 10 1758 1758-10-01 18:00:00 bone 118 #> 237 43.0 11 1758 1758-11-01 04:00:00 blood 119 #> 238 43.0 11 1758 1758-11-01 04:00:00 bone 119 #> 239 43.0 12 1758 1758-12-01 14:00:01 blood 120 #> 240 43.0 12 1758 1758-12-01 14:00:01 bone 120 #> 241 48.3 1 1759 1759-01-01 00:00:00 blood 121 #> 242 48.3 1 1759 1759-01-01 00:00:00 bone 121 #> 243 44.0 2 1759 1759-01-31 10:00:00 blood 122 #> 244 44.0 2 1759 1759-01-31 10:00:00 bone 122 #> 245 46.8 3 1759 1759-03-02 20:00:01 blood 123 #> 246 46.8 3 1759 1759-03-02 20:00:01 bone 123 #> 247 47.0 4 1759 1759-04-02 06:00:00 blood 124 #> 248 47.0 4 1759 1759-04-02 06:00:00 bone 124 #> 249 49.0 5 1759 1759-05-02 16:00:00 blood 125 #> 250 49.0 5 1759 1759-05-02 16:00:00 bone 125 #> 251 50.0 6 1759 1759-06-02 02:00:01 blood 126 #> 252 50.0 6 1759 1759-06-02 02:00:01 bone 126 #> 253 51.0 7 1759 1759-07-02 12:00:00 blood 127 #> 254 51.0 7 1759 1759-07-02 12:00:00 bone 127 #> 255 71.3 8 1759 1759-08-01 22:00:00 blood 128 #> 256 71.3 8 1759 1759-08-01 22:00:00 bone 128 #> 257 77.2 9 1759 1759-09-01 08:00:01 blood 129 #> 258 77.2 9 1759 1759-09-01 08:00:01 bone 129 #> 259 59.7 10 1759 1759-10-01 18:00:00 blood 130 #> 260 59.7 10 1759 1759-10-01 18:00:00 bone 130 #> 261 46.3 11 1759 1759-11-01 04:00:00 blood 131 #> 262 46.3 11 1759 1759-11-01 04:00:00 bone 131 #> 263 57.0 12 1759 1759-12-01 14:00:01 blood 132 #> 264 57.0 12 1759 1759-12-01 14:00:01 bone 132 #> 265 67.3 1 1760 1760-01-01 00:00:00 blood 133 #> 266 67.3 1 1760 1760-01-01 00:00:00 bone 133 #> 267 59.5 2 1760 1760-01-31 12:00:00 blood 134 #> 268 59.5 2 1760 1760-01-31 12:00:00 bone 134 #> 269 74.7 3 1760 1760-03-02 00:00:01 blood 135 #> 270 74.7 3 1760 1760-03-02 00:00:01 bone 135 #> 271 58.3 4 1760 1760-04-01 12:00:00 blood 136 #> 272 58.3 4 1760 1760-04-01 12:00:00 bone 136 #> 273 72.0 5 1760 1760-05-02 00:00:00 blood 137 #> 274 72.0 5 1760 1760-05-02 00:00:00 bone 137 #> 275 48.3 6 1760 1760-06-01 12:00:01 blood 138 #> 276 48.3 6 1760 1760-06-01 12:00:01 bone 138 #> 277 66.0 7 1760 1760-07-02 00:00:00 blood 139 #> 278 66.0 7 1760 1760-07-02 00:00:00 bone 139 #> 279 75.6 8 1760 1760-08-01 12:00:00 blood 140 #> 280 75.6 8 1760 1760-08-01 12:00:00 bone 140 #> 281 61.3 9 1760 1760-09-01 00:00:01 blood 141 #> 282 61.3 9 1760 1760-09-01 00:00:01 bone 141 #> 283 50.6 10 1760 1760-10-01 12:00:00 blood 142 #> 284 50.6 10 1760 1760-10-01 12:00:00 bone 142 #> 285 59.7 11 1760 1760-11-01 00:00:00 blood 143 #> 286 59.7 11 1760 1760-11-01 00:00:00 bone 143 #> 287 61.0 12 1760 1760-12-01 12:00:01 blood 144 #> 288 61.0 12 1760 1760-12-01 12:00:01 bone 144 #> 289 70.0 1 1761 1761-01-01 00:00:00 blood 145 #> 290 70.0 1 1761 1761-01-01 00:00:00 bone 145 #> 291 91.0 2 1761 1761-01-31 10:00:00 blood 146 #> 292 91.0 2 1761 1761-01-31 10:00:00 bone 146 #> 293 80.7 3 1761 1761-03-02 20:00:01 blood 147 #> 294 80.7 3 1761 1761-03-02 20:00:01 bone 147 #> 295 71.7 4 1761 1761-04-02 06:00:00 blood 148 #> 296 71.7 4 1761 1761-04-02 06:00:00 bone 148 #> 297 107.2 5 1761 1761-05-02 16:00:00 blood 149 #> 298 107.2 5 1761 1761-05-02 16:00:00 bone 149 #> 299 99.3 6 1761 1761-06-02 02:00:01 blood 150 #> 300 99.3 6 1761 1761-06-02 02:00:01 bone 150 #> 301 94.1 7 1761 1761-07-02 12:00:00 blood 151 #> 302 94.1 7 1761 1761-07-02 12:00:00 bone 151 #> 303 91.1 8 1761 1761-08-01 22:00:00 blood 152 #> 304 91.1 8 1761 1761-08-01 22:00:00 bone 152 #> 305 100.7 9 1761 1761-09-01 08:00:01 blood 153 #> 306 100.7 9 1761 1761-09-01 08:00:01 bone 153 #> 307 88.7 10 1761 1761-10-01 18:00:00 blood 154 #> 308 88.7 10 1761 1761-10-01 18:00:00 bone 154 #> 309 89.7 11 1761 1761-11-01 04:00:00 blood 155 #> 310 89.7 11 1761 1761-11-01 04:00:00 bone 155 #> 311 46.0 12 1761 1761-12-01 14:00:01 blood 156 #> 312 46.0 12 1761 1761-12-01 14:00:01 bone 156 #> 313 43.8 1 1762 1762-01-01 00:00:00 blood 157 #> 314 43.8 1 1762 1762-01-01 00:00:00 bone 157 #> 315 72.8 2 1762 1762-01-31 10:00:00 blood 158 #> 316 72.8 2 1762 1762-01-31 10:00:00 bone 158 #> 317 45.7 3 1762 1762-03-02 20:00:01 blood 159 #> 318 45.7 3 1762 1762-03-02 20:00:01 bone 159 #> 319 60.2 4 1762 1762-04-02 06:00:00 blood 160 #> 320 60.2 4 1762 1762-04-02 06:00:00 bone 160 #> 321 39.9 5 1762 1762-05-02 16:00:00 blood 161 #> 322 39.9 5 1762 1762-05-02 16:00:00 bone 161 #> 323 77.1 6 1762 1762-06-02 02:00:01 blood 162 #> 324 77.1 6 1762 1762-06-02 02:00:01 bone 162 #> 325 33.8 7 1762 1762-07-02 12:00:00 blood 163 #> 326 33.8 7 1762 1762-07-02 12:00:00 bone 163 #> 327 67.7 8 1762 1762-08-01 22:00:00 blood 164 #> 328 67.7 8 1762 1762-08-01 22:00:00 bone 164 #> 329 68.5 9 1762 1762-09-01 08:00:01 blood 165 #> 330 68.5 9 1762 1762-09-01 08:00:01 bone 165 #> 331 69.3 10 1762 1762-10-01 18:00:00 blood 166 #> 332 69.3 10 1762 1762-10-01 18:00:00 bone 166 #> 333 77.8 11 1762 1762-11-01 04:00:00 blood 167 #> 334 77.8 11 1762 1762-11-01 04:00:00 bone 167 #> 335 77.2 12 1762 1762-12-01 14:00:01 blood 168 #> 336 77.2 12 1762 1762-12-01 14:00:01 bone 168 #> 337 56.5 1 1763 1763-01-01 00:00:00 blood 169 #> 338 56.5 1 1763 1763-01-01 00:00:00 bone 169 #> 339 31.9 2 1763 1763-01-31 10:00:00 blood 170 #> 340 31.9 2 1763 1763-01-31 10:00:00 bone 170 #> 341 34.2 3 1763 1763-03-02 20:00:01 blood 171 #> 342 34.2 3 1763 1763-03-02 20:00:01 bone 171 #> 343 32.9 4 1763 1763-04-02 06:00:00 blood 172 #> 344 32.9 4 1763 1763-04-02 06:00:00 bone 172 #> 345 32.7 5 1763 1763-05-02 16:00:00 blood 173 #> 346 32.7 5 1763 1763-05-02 16:00:00 bone 173 #> 347 35.8 6 1763 1763-06-02 02:00:01 blood 174 #> 348 35.8 6 1763 1763-06-02 02:00:01 bone 174 #> 349 54.2 7 1763 1763-07-02 12:00:00 blood 175 #> 350 54.2 7 1763 1763-07-02 12:00:00 bone 175 #> 351 26.5 8 1763 1763-08-01 22:00:00 blood 176 #> 352 26.5 8 1763 1763-08-01 22:00:00 bone 176 #> 353 68.1 9 1763 1763-09-01 08:00:01 blood 177 #> 354 68.1 9 1763 1763-09-01 08:00:01 bone 177 #> 355 46.3 10 1763 1763-10-01 18:00:00 blood 178 #> 356 46.3 10 1763 1763-10-01 18:00:00 bone 178 #> 357 60.9 11 1763 1763-11-01 04:00:00 blood 179 #> 358 60.9 11 1763 1763-11-01 04:00:00 bone 179 #> 359 61.4 12 1763 1763-12-01 14:00:01 blood 180 #> 360 61.4 12 1763 1763-12-01 14:00:01 bone 180 #> 361 59.7 1 1764 1764-01-01 00:00:00 blood 181 #> 362 59.7 1 1764 1764-01-01 00:00:00 bone 181 #> 363 59.7 2 1764 1764-01-31 12:00:00 blood 182 #> 364 59.7 2 1764 1764-01-31 12:00:00 bone 182 #> 365 40.2 3 1764 1764-03-02 00:00:01 blood 183 #> 366 40.2 3 1764 1764-03-02 00:00:01 bone 183 #> 367 34.4 4 1764 1764-04-01 12:00:00 blood 184 #> 368 34.4 4 1764 1764-04-01 12:00:00 bone 184 #> 369 44.3 5 1764 1764-05-02 00:00:00 blood 185 #> 370 44.3 5 1764 1764-05-02 00:00:00 bone 185 #> 371 30.0 6 1764 1764-06-01 12:00:01 blood 186 #> 372 30.0 6 1764 1764-06-01 12:00:01 bone 186 #> 373 30.0 7 1764 1764-07-02 00:00:00 blood 187 #> 374 30.0 7 1764 1764-07-02 00:00:00 bone 187 #> 375 30.0 8 1764 1764-08-01 12:00:00 blood 188 #> 376 30.0 8 1764 1764-08-01 12:00:00 bone 188 #> 377 28.2 9 1764 1764-09-01 00:00:01 blood 189 #> 378 28.2 9 1764 1764-09-01 00:00:01 bone 189 #> 379 28.0 10 1764 1764-10-01 12:00:00 blood 190 #> 380 28.0 10 1764 1764-10-01 12:00:00 bone 190 #> 381 26.0 11 1764 1764-11-01 00:00:00 blood 191 #> 382 26.0 11 1764 1764-11-01 00:00:00 bone 191 #> 383 25.7 12 1764 1764-12-01 12:00:01 blood 192 #> 384 25.7 12 1764 1764-12-01 12:00:01 bone 192 #> 385 24.0 1 1765 1765-01-01 00:00:00 blood 193 #> 386 24.0 1 1765 1765-01-01 00:00:00 bone 193 #> 387 26.0 2 1765 1765-01-31 10:00:00 blood 194 #> 388 26.0 2 1765 1765-01-31 10:00:00 bone 194 #> 389 25.0 3 1765 1765-03-02 20:00:01 blood 195 #> 390 25.0 3 1765 1765-03-02 20:00:01 bone 195 #> 391 22.0 4 1765 1765-04-02 06:00:00 blood 196 #> 392 22.0 4 1765 1765-04-02 06:00:00 bone 196 #> 393 20.2 5 1765 1765-05-02 16:00:00 blood 197 #> 394 20.2 5 1765 1765-05-02 16:00:00 bone 197 #> 395 20.0 6 1765 1765-06-02 02:00:01 blood 198 #> 396 20.0 6 1765 1765-06-02 02:00:01 bone 198 #> 397 27.0 7 1765 1765-07-02 12:00:00 blood 199 #> 398 27.0 7 1765 1765-07-02 12:00:00 bone 199 #> 399 29.7 8 1765 1765-08-01 22:00:00 blood 200 #> 400 29.7 8 1765 1765-08-01 22:00:00 bone 200 #> 401 16.0 9 1765 1765-09-01 08:00:01 blood 201 #> 402 16.0 9 1765 1765-09-01 08:00:01 bone 201 #> 403 14.0 10 1765 1765-10-01 18:00:00 blood 202 #> 404 14.0 10 1765 1765-10-01 18:00:00 bone 202 #> 405 14.0 11 1765 1765-11-01 04:00:00 blood 203 #> 406 14.0 11 1765 1765-11-01 04:00:00 bone 203 #> 407 13.0 12 1765 1765-12-01 14:00:01 blood 204 #> 408 13.0 12 1765 1765-12-01 14:00:01 bone 204 #> 409 12.0 1 1766 1766-01-01 00:00:00 blood 205 #> 410 12.0 1 1766 1766-01-01 00:00:00 bone 205 #> 411 11.0 2 1766 1766-01-31 10:00:00 blood 206 #> 412 11.0 2 1766 1766-01-31 10:00:00 bone 206 #> 413 36.6 3 1766 1766-03-02 20:00:01 blood 207 #> 414 36.6 3 1766 1766-03-02 20:00:01 bone 207 #> 415 6.0 4 1766 1766-04-02 06:00:00 blood 208 #> 416 6.0 4 1766 1766-04-02 06:00:00 bone 208 #> 417 26.8 5 1766 1766-05-02 16:00:00 blood 209 #> 418 26.8 5 1766 1766-05-02 16:00:00 bone 209 #> 419 3.0 6 1766 1766-06-02 02:00:01 blood 210 #> 420 3.0 6 1766 1766-06-02 02:00:01 bone 210 #> 421 3.3 7 1766 1766-07-02 12:00:00 blood 211 #> 422 3.3 7 1766 1766-07-02 12:00:00 bone 211 #> 423 4.0 8 1766 1766-08-01 22:00:00 blood 212 #> 424 4.0 8 1766 1766-08-01 22:00:00 bone 212 #> 425 4.3 9 1766 1766-09-01 08:00:01 blood 213 #> 426 4.3 9 1766 1766-09-01 08:00:01 bone 213 #> 427 5.0 10 1766 1766-10-01 18:00:00 blood 214 #> 428 5.0 10 1766 1766-10-01 18:00:00 bone 214 #> 429 5.7 11 1766 1766-11-01 04:00:00 blood 215 #> 430 5.7 11 1766 1766-11-01 04:00:00 bone 215 #> 431 19.2 12 1766 1766-12-01 14:00:01 blood 216 #> 432 19.2 12 1766 1766-12-01 14:00:01 bone 216 #> 433 27.4 1 1767 1767-01-01 00:00:00 blood 217 #> 434 27.4 1 1767 1767-01-01 00:00:00 bone 217 #> 435 30.0 2 1767 1767-01-31 10:00:00 blood 218 #> 436 30.0 2 1767 1767-01-31 10:00:00 bone 218 #> 437 43.0 3 1767 1767-03-02 20:00:01 blood 219 #> 438 43.0 3 1767 1767-03-02 20:00:01 bone 219 #> 439 32.9 4 1767 1767-04-02 06:00:00 blood 220 #> 440 32.9 4 1767 1767-04-02 06:00:00 bone 220 #> 441 29.8 5 1767 1767-05-02 16:00:00 blood 221 #> 442 29.8 5 1767 1767-05-02 16:00:00 bone 221 #> 443 33.3 6 1767 1767-06-02 02:00:01 blood 222 #> 444 33.3 6 1767 1767-06-02 02:00:01 bone 222 #> 445 21.9 7 1767 1767-07-02 12:00:00 blood 223 #> 446 21.9 7 1767 1767-07-02 12:00:00 bone 223 #> 447 40.8 8 1767 1767-08-01 22:00:00 blood 224 #> 448 40.8 8 1767 1767-08-01 22:00:00 bone 224 #> 449 42.7 9 1767 1767-09-01 08:00:01 blood 225 #> 450 42.7 9 1767 1767-09-01 08:00:01 bone 225 #> 451 44.1 10 1767 1767-10-01 18:00:00 blood 226 #> 452 44.1 10 1767 1767-10-01 18:00:00 bone 226 #> 453 54.7 11 1767 1767-11-01 04:00:00 blood 227 #> 454 54.7 11 1767 1767-11-01 04:00:00 bone 227 #> 455 53.3 12 1767 1767-12-01 14:00:01 blood 228 #> 456 53.3 12 1767 1767-12-01 14:00:01 bone 228 #> 457 53.5 1 1768 1768-01-01 00:00:00 blood 229 #> 458 53.5 1 1768 1768-01-01 00:00:00 bone 229 #> 459 66.1 2 1768 1768-01-31 12:00:00 blood 230 #> 460 66.1 2 1768 1768-01-31 12:00:00 bone 230 #> 461 46.3 3 1768 1768-03-02 00:00:01 blood 231 #> 462 46.3 3 1768 1768-03-02 00:00:01 bone 231 #> 463 42.7 4 1768 1768-04-01 12:00:00 blood 232 #> 464 42.7 4 1768 1768-04-01 12:00:00 bone 232 #> 465 77.7 5 1768 1768-05-02 00:00:00 blood 233 #> 466 77.7 5 1768 1768-05-02 00:00:00 bone 233 #> 467 77.4 6 1768 1768-06-01 12:00:01 blood 234 #> 468 77.4 6 1768 1768-06-01 12:00:01 bone 234 #> 469 52.6 7 1768 1768-07-02 00:00:00 blood 235 #> 470 52.6 7 1768 1768-07-02 00:00:00 bone 235 #> 471 66.8 8 1768 1768-08-01 12:00:00 blood 236 #> 472 66.8 8 1768 1768-08-01 12:00:00 bone 236 #> 473 74.8 9 1768 1768-09-01 00:00:01 blood 237 #> 474 74.8 9 1768 1768-09-01 00:00:01 bone 237 #> 475 77.8 10 1768 1768-10-01 12:00:00 blood 238 #> 476 77.8 10 1768 1768-10-01 12:00:00 bone 238 #> 477 90.6 11 1768 1768-11-01 00:00:00 blood 239 #> 478 90.6 11 1768 1768-11-01 00:00:00 bone 239 #> 479 111.8 12 1768 1768-12-01 12:00:01 blood 240 #> 480 111.8 12 1768 1768-12-01 12:00:01 bone 240 #> 481 73.9 1 1769 1769-01-01 00:00:00 blood 241 #> 482 73.9 1 1769 1769-01-01 00:00:00 bone 241 #> 483 64.2 2 1769 1769-01-31 10:00:00 blood 242 #> 484 64.2 2 1769 1769-01-31 10:00:00 bone 242 #> 485 64.3 3 1769 1769-03-02 20:00:01 blood 243 #> 486 64.3 3 1769 1769-03-02 20:00:01 bone 243 #> 487 96.7 4 1769 1769-04-02 06:00:00 blood 244 #> 488 96.7 4 1769 1769-04-02 06:00:00 bone 244 #> 489 73.6 5 1769 1769-05-02 16:00:00 blood 245 #> 490 73.6 5 1769 1769-05-02 16:00:00 bone 245 #> 491 94.4 6 1769 1769-06-02 02:00:01 blood 246 #> 492 94.4 6 1769 1769-06-02 02:00:01 bone 246 #> 493 118.6 7 1769 1769-07-02 12:00:00 blood 247 #> 494 118.6 7 1769 1769-07-02 12:00:00 bone 247 #> 495 120.3 8 1769 1769-08-01 22:00:00 blood 248 #> 496 120.3 8 1769 1769-08-01 22:00:00 bone 248 #> 497 148.8 9 1769 1769-09-01 08:00:01 blood 249 #> 498 148.8 9 1769 1769-09-01 08:00:01 bone 249 #> 499 158.2 10 1769 1769-10-01 18:00:00 blood 250 #> 500 158.2 10 1769 1769-10-01 18:00:00 bone 250 #> 501 148.1 11 1769 1769-11-01 04:00:00 blood 251 #> 502 148.1 11 1769 1769-11-01 04:00:00 bone 251 #> 503 112.0 12 1769 1769-12-01 14:00:01 blood 252 #> 504 112.0 12 1769 1769-12-01 14:00:01 bone 252 #> 505 104.0 1 1770 1770-01-01 00:00:00 blood 253 #> 506 104.0 1 1770 1770-01-01 00:00:00 bone 253 #> 507 142.5 2 1770 1770-01-31 10:00:00 blood 254 #> 508 142.5 2 1770 1770-01-31 10:00:00 bone 254 #> 509 80.1 3 1770 1770-03-02 20:00:01 blood 255 #> 510 80.1 3 1770 1770-03-02 20:00:01 bone 255 #> 511 51.0 4 1770 1770-04-02 06:00:00 blood 256 #> 512 51.0 4 1770 1770-04-02 06:00:00 bone 256 #> 513 70.1 5 1770 1770-05-02 16:00:00 blood 257 #> 514 70.1 5 1770 1770-05-02 16:00:00 bone 257 #> 515 83.3 6 1770 1770-06-02 02:00:01 blood 258 #> 516 83.3 6 1770 1770-06-02 02:00:01 bone 258 #> 517 109.8 7 1770 1770-07-02 12:00:00 blood 259 #> 518 109.8 7 1770 1770-07-02 12:00:00 bone 259 #> 519 126.3 8 1770 1770-08-01 22:00:00 blood 260 #> 520 126.3 8 1770 1770-08-01 22:00:00 bone 260 #> 521 104.4 9 1770 1770-09-01 08:00:01 blood 261 #> 522 104.4 9 1770 1770-09-01 08:00:01 bone 261 #> 523 103.6 10 1770 1770-10-01 18:00:00 blood 262 #> 524 103.6 10 1770 1770-10-01 18:00:00 bone 262 #> 525 132.2 11 1770 1770-11-01 04:00:00 blood 263 #> 526 132.2 11 1770 1770-11-01 04:00:00 bone 263 #> 527 102.3 12 1770 1770-12-01 14:00:01 blood 264 #> 528 102.3 12 1770 1770-12-01 14:00:01 bone 264 #> 529 36.0 1 1771 1771-01-01 00:00:00 blood 265 #> 530 36.0 1 1771 1771-01-01 00:00:00 bone 265 #> 531 46.2 2 1771 1771-01-31 10:00:00 blood 266 #> 532 46.2 2 1771 1771-01-31 10:00:00 bone 266 #> 533 46.7 3 1771 1771-03-02 20:00:01 blood 267 #> 534 46.7 3 1771 1771-03-02 20:00:01 bone 267 #> 535 64.9 4 1771 1771-04-02 06:00:00 blood 268 #> 536 64.9 4 1771 1771-04-02 06:00:00 bone 268 #> 537 152.7 5 1771 1771-05-02 16:00:00 blood 269 #> 538 152.7 5 1771 1771-05-02 16:00:00 bone 269 #> 539 119.5 6 1771 1771-06-02 02:00:01 blood 270 #> 540 119.5 6 1771 1771-06-02 02:00:01 bone 270 #> 541 67.7 7 1771 1771-07-02 12:00:00 blood 271 #> 542 67.7 7 1771 1771-07-02 12:00:00 bone 271 #> 543 58.5 8 1771 1771-08-01 22:00:00 blood 272 #> 544 58.5 8 1771 1771-08-01 22:00:00 bone 272 #> 545 101.4 9 1771 1771-09-01 08:00:01 blood 273 #> 546 101.4 9 1771 1771-09-01 08:00:01 bone 273 #> 547 90.0 10 1771 1771-10-01 18:00:00 blood 274 #> 548 90.0 10 1771 1771-10-01 18:00:00 bone 274 #> 549 99.7 11 1771 1771-11-01 04:00:00 blood 275 #> 550 99.7 11 1771 1771-11-01 04:00:00 bone 275 #> 551 95.7 12 1771 1771-12-01 14:00:01 blood 276 #> 552 95.7 12 1771 1771-12-01 14:00:01 bone 276 #> 553 100.9 1 1772 1772-01-01 00:00:00 blood 277 #> 554 100.9 1 1772 1772-01-01 00:00:00 bone 277 #> 555 90.8 2 1772 1772-01-31 12:00:00 blood 278 #> 556 90.8 2 1772 1772-01-31 12:00:00 bone 278 #> 557 31.1 3 1772 1772-03-02 00:00:01 blood 279 #> 558 31.1 3 1772 1772-03-02 00:00:01 bone 279 #> 559 92.2 4 1772 1772-04-01 12:00:00 blood 280 #> 560 92.2 4 1772 1772-04-01 12:00:00 bone 280 #> 561 38.0 5 1772 1772-05-02 00:00:00 blood 281 #> 562 38.0 5 1772 1772-05-02 00:00:00 bone 281 #> 563 57.0 6 1772 1772-06-01 12:00:01 blood 282 #> 564 57.0 6 1772 1772-06-01 12:00:01 bone 282 #> 565 77.3 7 1772 1772-07-02 00:00:00 blood 283 #> 566 77.3 7 1772 1772-07-02 00:00:00 bone 283 #> 567 56.2 8 1772 1772-08-01 12:00:00 blood 284 #> 568 56.2 8 1772 1772-08-01 12:00:00 bone 284 #> 569 50.5 9 1772 1772-09-01 00:00:01 blood 285 #> 570 50.5 9 1772 1772-09-01 00:00:01 bone 285 #> 571 78.6 10 1772 1772-10-01 12:00:00 blood 286 #> 572 78.6 10 1772 1772-10-01 12:00:00 bone 286 #> 573 61.3 11 1772 1772-11-01 00:00:00 blood 287 #> 574 61.3 11 1772 1772-11-01 00:00:00 bone 287 #> 575 64.0 12 1772 1772-12-01 12:00:01 blood 288 #> 576 64.0 12 1772 1772-12-01 12:00:01 bone 288 #> 577 54.6 1 1773 1773-01-01 00:00:00 blood 289 #> 578 54.6 1 1773 1773-01-01 00:00:00 bone 289 #> 579 29.0 2 1773 1773-01-31 10:00:00 blood 290 #> 580 29.0 2 1773 1773-01-31 10:00:00 bone 290 #> 581 51.2 3 1773 1773-03-02 20:00:01 blood 291 #> 582 51.2 3 1773 1773-03-02 20:00:01 bone 291 #> 583 32.9 4 1773 1773-04-02 06:00:00 blood 292 #> 584 32.9 4 1773 1773-04-02 06:00:00 bone 292 #> 585 41.1 5 1773 1773-05-02 16:00:00 blood 293 #> 586 41.1 5 1773 1773-05-02 16:00:00 bone 293 #> 587 28.4 6 1773 1773-06-02 02:00:01 blood 294 #> 588 28.4 6 1773 1773-06-02 02:00:01 bone 294 #> 589 27.7 7 1773 1773-07-02 12:00:00 blood 295 #> 590 27.7 7 1773 1773-07-02 12:00:00 bone 295 #> 591 12.7 8 1773 1773-08-01 22:00:00 blood 296 #> 592 12.7 8 1773 1773-08-01 22:00:00 bone 296 #> 593 29.3 9 1773 1773-09-01 08:00:01 blood 297 #> 594 29.3 9 1773 1773-09-01 08:00:01 bone 297 #> 595 26.3 10 1773 1773-10-01 18:00:00 blood 298 #> 596 26.3 10 1773 1773-10-01 18:00:00 bone 298 #> 597 40.9 11 1773 1773-11-01 04:00:00 blood 299 #> 598 40.9 11 1773 1773-11-01 04:00:00 bone 299 #> 599 43.2 12 1773 1773-12-01 14:00:01 blood 300 #> 600 43.2 12 1773 1773-12-01 14:00:01 bone 300 #> 601 46.8 1 1774 1774-01-01 00:00:00 blood 301 #> 602 46.8 1 1774 1774-01-01 00:00:00 bone 301 #> 603 65.4 2 1774 1774-01-31 10:00:00 blood 302 #> 604 65.4 2 1774 1774-01-31 10:00:00 bone 302 #> 605 55.7 3 1774 1774-03-02 20:00:01 blood 303 #> 606 55.7 3 1774 1774-03-02 20:00:01 bone 303 #> 607 43.8 4 1774 1774-04-02 06:00:00 blood 304 #> 608 43.8 4 1774 1774-04-02 06:00:00 bone 304 #> 609 51.3 5 1774 1774-05-02 16:00:00 blood 305 #> 610 51.3 5 1774 1774-05-02 16:00:00 bone 305 #> 611 28.5 6 1774 1774-06-02 02:00:01 blood 306 #> 612 28.5 6 1774 1774-06-02 02:00:01 bone 306 #> 613 17.5 7 1774 1774-07-02 12:00:00 blood 307 #> 614 17.5 7 1774 1774-07-02 12:00:00 bone 307 #> 615 6.6 8 1774 1774-08-01 22:00:00 blood 308 #> 616 6.6 8 1774 1774-08-01 22:00:00 bone 308 #> 617 7.9 9 1774 1774-09-01 08:00:01 blood 309 #> 618 7.9 9 1774 1774-09-01 08:00:01 bone 309 #> 619 14.0 10 1774 1774-10-01 18:00:00 blood 310 #> 620 14.0 10 1774 1774-10-01 18:00:00 bone 310 #> 621 17.7 11 1774 1774-11-01 04:00:00 blood 311 #> 622 17.7 11 1774 1774-11-01 04:00:00 bone 311 #> 623 12.2 12 1774 1774-12-01 14:00:01 blood 312 #> 624 12.2 12 1774 1774-12-01 14:00:01 bone 312 #> 625 4.4 1 1775 1775-01-01 00:00:00 blood 313 #> 626 4.4 1 1775 1775-01-01 00:00:00 bone 313 #> 627 0.0 2 1775 1775-01-31 10:00:00 blood 314 #> 628 0.0 2 1775 1775-01-31 10:00:00 bone 314 #> 629 11.6 3 1775 1775-03-02 20:00:01 blood 315 #> 630 11.6 3 1775 1775-03-02 20:00:01 bone 315 #> 631 11.2 4 1775 1775-04-02 06:00:00 blood 316 #> 632 11.2 4 1775 1775-04-02 06:00:00 bone 316 #> 633 3.9 5 1775 1775-05-02 16:00:00 blood 317 #> 634 3.9 5 1775 1775-05-02 16:00:00 bone 317 #> 635 12.3 6 1775 1775-06-02 02:00:01 blood 318 #> 636 12.3 6 1775 1775-06-02 02:00:01 bone 318 #> 637 1.0 7 1775 1775-07-02 12:00:00 blood 319 #> 638 1.0 7 1775 1775-07-02 12:00:00 bone 319 #> 639 7.9 8 1775 1775-08-01 22:00:00 blood 320 #> 640 7.9 8 1775 1775-08-01 22:00:00 bone 320 #> 641 3.2 9 1775 1775-09-01 08:00:01 blood 321 #> 642 3.2 9 1775 1775-09-01 08:00:01 bone 321 #> 643 5.6 10 1775 1775-10-01 18:00:00 blood 322 #> 644 5.6 10 1775 1775-10-01 18:00:00 bone 322 #> 645 15.1 11 1775 1775-11-01 04:00:00 blood 323 #> 646 15.1 11 1775 1775-11-01 04:00:00 bone 323 #> 647 7.9 12 1775 1775-12-01 14:00:01 blood 324 #> 648 7.9 12 1775 1775-12-01 14:00:01 bone 324 #> 649 21.7 1 1776 1776-01-01 00:00:00 blood 325 #> 650 21.7 1 1776 1776-01-01 00:00:00 bone 325 #> 651 11.6 2 1776 1776-01-31 12:00:00 blood 326 #> 652 11.6 2 1776 1776-01-31 12:00:00 bone 326 #> 653 6.3 3 1776 1776-03-02 00:00:01 blood 327 #> 654 6.3 3 1776 1776-03-02 00:00:01 bone 327 #> 655 21.8 4 1776 1776-04-01 12:00:00 blood 328 #> 656 21.8 4 1776 1776-04-01 12:00:00 bone 328 #> 657 11.2 5 1776 1776-05-02 00:00:00 blood 329 #> 658 11.2 5 1776 1776-05-02 00:00:00 bone 329 #> 659 19.0 6 1776 1776-06-01 12:00:01 blood 330 #> 660 19.0 6 1776 1776-06-01 12:00:01 bone 330 #> 661 1.0 7 1776 1776-07-02 00:00:00 blood 331 #> 662 1.0 7 1776 1776-07-02 00:00:00 bone 331 #> 663 24.2 8 1776 1776-08-01 12:00:00 blood 332 #> 664 24.2 8 1776 1776-08-01 12:00:00 bone 332 #> 665 16.0 9 1776 1776-09-01 00:00:01 blood 333 #> 666 16.0 9 1776 1776-09-01 00:00:01 bone 333 #> 667 30.0 10 1776 1776-10-01 12:00:00 blood 334 #> 668 30.0 10 1776 1776-10-01 12:00:00 bone 334 #> 669 35.0 11 1776 1776-11-01 00:00:00 blood 335 #> 670 35.0 11 1776 1776-11-01 00:00:00 bone 335 #> 671 40.0 12 1776 1776-12-01 12:00:01 blood 336 #> 672 40.0 12 1776 1776-12-01 12:00:01 bone 336 #> 673 45.0 1 1777 1777-01-01 00:00:00 blood 337 #> 674 45.0 1 1777 1777-01-01 00:00:00 bone 337 #> 675 36.5 2 1777 1777-01-31 10:00:00 blood 338 #> 676 36.5 2 1777 1777-01-31 10:00:00 bone 338 #> 677 39.0 3 1777 1777-03-02 20:00:01 blood 339 #> 678 39.0 3 1777 1777-03-02 20:00:01 bone 339 #> 679 95.5 4 1777 1777-04-02 06:00:00 blood 340 #> 680 95.5 4 1777 1777-04-02 06:00:00 bone 340 #> 681 80.3 5 1777 1777-05-02 16:00:00 blood 341 #> 682 80.3 5 1777 1777-05-02 16:00:00 bone 341 #> 683 80.7 6 1777 1777-06-02 02:00:01 blood 342 #> 684 80.7 6 1777 1777-06-02 02:00:01 bone 342 #> 685 95.0 7 1777 1777-07-02 12:00:00 blood 343 #> 686 95.0 7 1777 1777-07-02 12:00:00 bone 343 #> 687 112.0 8 1777 1777-08-01 22:00:00 blood 344 #> 688 112.0 8 1777 1777-08-01 22:00:00 bone 344 #> 689 116.2 9 1777 1777-09-01 08:00:01 blood 345 #> 690 116.2 9 1777 1777-09-01 08:00:01 bone 345 #> 691 106.5 10 1777 1777-10-01 18:00:00 blood 346 #> 692 106.5 10 1777 1777-10-01 18:00:00 bone 346 #> 693 146.0 11 1777 1777-11-01 04:00:00 blood 347 #> 694 146.0 11 1777 1777-11-01 04:00:00 bone 347 #> 695 157.3 12 1777 1777-12-01 14:00:01 blood 348 #> 696 157.3 12 1777 1777-12-01 14:00:01 bone 348 #> 697 177.3 1 1778 1778-01-01 00:00:00 blood 349 #> 698 177.3 1 1778 1778-01-01 00:00:00 bone 349 #> 699 109.3 2 1778 1778-01-31 10:00:00 blood 350 #> 700 109.3 2 1778 1778-01-31 10:00:00 bone 350 #> 701 134.0 3 1778 1778-03-02 20:00:01 blood 351 #> 702 134.0 3 1778 1778-03-02 20:00:01 bone 351 #> 703 145.0 4 1778 1778-04-02 06:00:00 blood 352 #> 704 145.0 4 1778 1778-04-02 06:00:00 bone 352 #> 705 238.9 5 1778 1778-05-02 16:00:00 blood 353 #> 706 238.9 5 1778 1778-05-02 16:00:00 bone 353 #> 707 171.6 6 1778 1778-06-02 02:00:01 blood 354 #> 708 171.6 6 1778 1778-06-02 02:00:01 bone 354 #> 709 153.0 7 1778 1778-07-02 12:00:00 blood 355 #> 710 153.0 7 1778 1778-07-02 12:00:00 bone 355 #> 711 140.0 8 1778 1778-08-01 22:00:00 blood 356 #> 712 140.0 8 1778 1778-08-01 22:00:00 bone 356 #> 713 171.7 9 1778 1778-09-01 08:00:01 blood 357 #> 714 171.7 9 1778 1778-09-01 08:00:01 bone 357 #> 715 156.3 10 1778 1778-10-01 18:00:00 blood 358 #> 716 156.3 10 1778 1778-10-01 18:00:00 bone 358 #> 717 150.3 11 1778 1778-11-01 04:00:00 blood 359 #> 718 150.3 11 1778 1778-11-01 04:00:00 bone 359 #> 719 105.0 12 1778 1778-12-01 14:00:01 blood 360 #> 720 105.0 12 1778 1778-12-01 14:00:01 bone 360 #> 721 114.7 1 1779 1779-01-01 00:00:00 blood 361 #> 722 114.7 1 1779 1779-01-01 00:00:00 bone 361 #> 723 165.7 2 1779 1779-01-31 10:00:00 blood 362 #> 724 165.7 2 1779 1779-01-31 10:00:00 bone 362 #> 725 118.0 3 1779 1779-03-02 20:00:01 blood 363 #> 726 118.0 3 1779 1779-03-02 20:00:01 bone 363 #> 727 145.0 4 1779 1779-04-02 06:00:00 blood 364 #> 728 145.0 4 1779 1779-04-02 06:00:00 bone 364 #> 729 140.0 5 1779 1779-05-02 16:00:00 blood 365 #> 730 140.0 5 1779 1779-05-02 16:00:00 bone 365 #> 731 113.7 6 1779 1779-06-02 02:00:01 blood 366 #> 732 113.7 6 1779 1779-06-02 02:00:01 bone 366 #> 733 143.0 7 1779 1779-07-02 12:00:00 blood 367 #> 734 143.0 7 1779 1779-07-02 12:00:00 bone 367 #> 735 112.0 8 1779 1779-08-01 22:00:00 blood 368 #> 736 112.0 8 1779 1779-08-01 22:00:00 bone 368 #> 737 111.0 9 1779 1779-09-01 08:00:01 blood 369 #> 738 111.0 9 1779 1779-09-01 08:00:01 bone 369 #> 739 124.0 10 1779 1779-10-01 18:00:00 blood 370 #> 740 124.0 10 1779 1779-10-01 18:00:00 bone 370 #> 741 114.0 11 1779 1779-11-01 04:00:00 blood 371 #> 742 114.0 11 1779 1779-11-01 04:00:00 bone 371 #> 743 110.0 12 1779 1779-12-01 14:00:01 blood 372 #> 744 110.0 12 1779 1779-12-01 14:00:01 bone 372 #> 745 70.0 1 1780 1780-01-01 00:00:00 blood 373 #> 746 70.0 1 1780 1780-01-01 00:00:00 bone 373 #> 747 98.0 2 1780 1780-01-31 12:00:00 blood 374 #> 748 98.0 2 1780 1780-01-31 12:00:00 bone 374 #> 749 98.0 3 1780 1780-03-02 00:00:01 blood 375 #> 750 98.0 3 1780 1780-03-02 00:00:01 bone 375 #> 751 95.0 4 1780 1780-04-01 12:00:00 blood 376 #> 752 95.0 4 1780 1780-04-01 12:00:00 bone 376 #> 753 107.2 5 1780 1780-05-02 00:00:00 blood 377 #> 754 107.2 5 1780 1780-05-02 00:00:00 bone 377 #> 755 88.0 6 1780 1780-06-01 12:00:01 blood 378 #> 756 88.0 6 1780 1780-06-01 12:00:01 bone 378 #> 757 86.0 7 1780 1780-07-02 00:00:00 blood 379 #> 758 86.0 7 1780 1780-07-02 00:00:00 bone 379 #> 759 86.0 8 1780 1780-08-01 12:00:00 blood 380 #> 760 86.0 8 1780 1780-08-01 12:00:00 bone 380 #> 761 93.7 9 1780 1780-09-01 00:00:01 blood 381 #> 762 93.7 9 1780 1780-09-01 00:00:01 bone 381 #> 763 77.0 10 1780 1780-10-01 12:00:00 blood 382 #> 764 77.0 10 1780 1780-10-01 12:00:00 bone 382 #> 765 60.0 11 1780 1780-11-01 00:00:00 blood 383 #> 766 60.0 11 1780 1780-11-01 00:00:00 bone 383 #> 767 58.7 12 1780 1780-12-01 12:00:01 blood 384 #> 768 58.7 12 1780 1780-12-01 12:00:01 bone 384 #> 769 98.7 1 1781 1781-01-01 00:00:00 blood 385 #> 770 98.7 1 1781 1781-01-01 00:00:00 bone 385 #> 771 74.7 2 1781 1781-01-31 10:00:00 blood 386 #> 772 74.7 2 1781 1781-01-31 10:00:00 bone 386 #> 773 53.0 3 1781 1781-03-02 20:00:01 blood 387 #> 774 53.0 3 1781 1781-03-02 20:00:01 bone 387 #> 775 68.3 4 1781 1781-04-02 06:00:00 blood 388 #> 776 68.3 4 1781 1781-04-02 06:00:00 bone 388 #> 777 104.7 5 1781 1781-05-02 16:00:00 blood 389 #> 778 104.7 5 1781 1781-05-02 16:00:00 bone 389 #> 779 97.7 6 1781 1781-06-02 02:00:01 blood 390 #> 780 97.7 6 1781 1781-06-02 02:00:01 bone 390 #> 781 73.5 7 1781 1781-07-02 12:00:00 blood 391 #> 782 73.5 7 1781 1781-07-02 12:00:00 bone 391 #> 783 66.0 8 1781 1781-08-01 22:00:00 blood 392 #> 784 66.0 8 1781 1781-08-01 22:00:00 bone 392 #> 785 51.0 9 1781 1781-09-01 08:00:01 blood 393 #> 786 51.0 9 1781 1781-09-01 08:00:01 bone 393 #> 787 27.3 10 1781 1781-10-01 18:00:00 blood 394 #> 788 27.3 10 1781 1781-10-01 18:00:00 bone 394 #> 789 67.0 11 1781 1781-11-01 04:00:00 blood 395 #> 790 67.0 11 1781 1781-11-01 04:00:00 bone 395 #> 791 35.2 12 1781 1781-12-01 14:00:01 blood 396 #> 792 35.2 12 1781 1781-12-01 14:00:01 bone 396 #> 793 54.0 1 1782 1782-01-01 00:00:00 blood 397 #> 794 54.0 1 1782 1782-01-01 00:00:00 bone 397 #> 795 37.5 2 1782 1782-01-31 10:00:00 blood 398 #> 796 37.5 2 1782 1782-01-31 10:00:00 bone 398 #> 797 37.0 3 1782 1782-03-02 20:00:01 blood 399 #> 798 37.0 3 1782 1782-03-02 20:00:01 bone 399 #> 799 41.0 4 1782 1782-04-02 06:00:00 blood 400 #> 800 41.0 4 1782 1782-04-02 06:00:00 bone 400 #> 801 54.3 5 1782 1782-05-02 16:00:00 blood 401 #> 802 54.3 5 1782 1782-05-02 16:00:00 bone 401 #> 803 38.0 6 1782 1782-06-02 02:00:01 blood 402 #> 804 38.0 6 1782 1782-06-02 02:00:01 bone 402 #> 805 37.0 7 1782 1782-07-02 12:00:00 blood 403 #> 806 37.0 7 1782 1782-07-02 12:00:00 bone 403 #> 807 44.0 8 1782 1782-08-01 22:00:00 blood 404 #> 808 44.0 8 1782 1782-08-01 22:00:00 bone 404 #> 809 34.0 9 1782 1782-09-01 08:00:01 blood 405 #> 810 34.0 9 1782 1782-09-01 08:00:01 bone 405 #> 811 23.2 10 1782 1782-10-01 18:00:00 blood 406 #> 812 23.2 10 1782 1782-10-01 18:00:00 bone 406 #> 813 31.5 11 1782 1782-11-01 04:00:00 blood 407 #> 814 31.5 11 1782 1782-11-01 04:00:00 bone 407 #> 815 30.0 12 1782 1782-12-01 14:00:01 blood 408 #> 816 30.0 12 1782 1782-12-01 14:00:01 bone 408 #> 817 28.0 1 1783 1783-01-01 00:00:00 blood 409 #> 818 28.0 1 1783 1783-01-01 00:00:00 bone 409 #> 819 38.7 2 1783 1783-01-31 10:00:00 blood 410 #> 820 38.7 2 1783 1783-01-31 10:00:00 bone 410 #> 821 26.7 3 1783 1783-03-02 20:00:01 blood 411 #> 822 26.7 3 1783 1783-03-02 20:00:01 bone 411 #> 823 28.3 4 1783 1783-04-02 06:00:00 blood 412 #> 824 28.3 4 1783 1783-04-02 06:00:00 bone 412 #> 825 23.0 5 1783 1783-05-02 16:00:00 blood 413 #> 826 23.0 5 1783 1783-05-02 16:00:00 bone 413 #> 827 25.2 6 1783 1783-06-02 02:00:01 blood 414 #> 828 25.2 6 1783 1783-06-02 02:00:01 bone 414 #> 829 32.2 7 1783 1783-07-02 12:00:00 blood 415 #> 830 32.2 7 1783 1783-07-02 12:00:00 bone 415 #> 831 20.0 8 1783 1783-08-01 22:00:00 blood 416 #> 832 20.0 8 1783 1783-08-01 22:00:00 bone 416 #> 833 18.0 9 1783 1783-09-01 08:00:01 blood 417 #> 834 18.0 9 1783 1783-09-01 08:00:01 bone 417 #> 835 8.0 10 1783 1783-10-01 18:00:00 blood 418 #> 836 8.0 10 1783 1783-10-01 18:00:00 bone 418 #> 837 15.0 11 1783 1783-11-01 04:00:00 blood 419 #> 838 15.0 11 1783 1783-11-01 04:00:00 bone 419 #> 839 10.5 12 1783 1783-12-01 14:00:01 blood 420 #> 840 10.5 12 1783 1783-12-01 14:00:01 bone 420 #> 841 13.0 1 1784 1784-01-01 00:00:00 blood 421 #> 842 13.0 1 1784 1784-01-01 00:00:00 bone 421 #> 843 8.0 2 1784 1784-01-31 12:00:00 blood 422 #> 844 8.0 2 1784 1784-01-31 12:00:00 bone 422 #> 845 11.0 3 1784 1784-03-02 00:00:01 blood 423 #> 846 11.0 3 1784 1784-03-02 00:00:01 bone 423 #> 847 10.0 4 1784 1784-04-01 12:00:00 blood 424 #> 848 10.0 4 1784 1784-04-01 12:00:00 bone 424 #> 849 6.0 5 1784 1784-05-02 00:00:00 blood 425 #> 850 6.0 5 1784 1784-05-02 00:00:00 bone 425 #> 851 9.0 6 1784 1784-06-01 12:00:01 blood 426 #> 852 9.0 6 1784 1784-06-01 12:00:01 bone 426 #> 853 6.0 7 1784 1784-07-02 00:00:00 blood 427 #> 854 6.0 7 1784 1784-07-02 00:00:00 bone 427 #> 855 10.0 8 1784 1784-08-01 12:00:00 blood 428 #> 856 10.0 8 1784 1784-08-01 12:00:00 bone 428 #> 857 10.0 9 1784 1784-09-01 00:00:01 blood 429 #> 858 10.0 9 1784 1784-09-01 00:00:01 bone 429 #> 859 8.0 10 1784 1784-10-01 12:00:00 blood 430 #> 860 8.0 10 1784 1784-10-01 12:00:00 bone 430 #> 861 17.0 11 1784 1784-11-01 00:00:00 blood 431 #> 862 17.0 11 1784 1784-11-01 00:00:00 bone 431 #> 863 14.0 12 1784 1784-12-01 12:00:01 blood 432 #> 864 14.0 12 1784 1784-12-01 12:00:01 bone 432 #> 865 6.5 1 1785 1785-01-01 00:00:00 blood 433 #> 866 6.5 1 1785 1785-01-01 00:00:00 bone 433 #> 867 8.0 2 1785 1785-01-31 10:00:00 blood 434 #> 868 8.0 2 1785 1785-01-31 10:00:00 bone 434 #> 869 9.0 3 1785 1785-03-02 20:00:01 blood 435 #> 870 9.0 3 1785 1785-03-02 20:00:01 bone 435 #> 871 15.7 4 1785 1785-04-02 06:00:00 blood 436 #> 872 15.7 4 1785 1785-04-02 06:00:00 bone 436 #> 873 20.7 5 1785 1785-05-02 16:00:00 blood 437 #> 874 20.7 5 1785 1785-05-02 16:00:00 bone 437 #> 875 26.3 6 1785 1785-06-02 02:00:01 blood 438 #> 876 26.3 6 1785 1785-06-02 02:00:01 bone 438 #> 877 36.3 7 1785 1785-07-02 12:00:00 blood 439 #> 878 36.3 7 1785 1785-07-02 12:00:00 bone 439 #> 879 20.0 8 1785 1785-08-01 22:00:00 blood 440 #> 880 20.0 8 1785 1785-08-01 22:00:00 bone 440 #> 881 32.0 9 1785 1785-09-01 08:00:01 blood 441 #> 882 32.0 9 1785 1785-09-01 08:00:01 bone 441 #> 883 47.2 10 1785 1785-10-01 18:00:00 blood 442 #> 884 47.2 10 1785 1785-10-01 18:00:00 bone 442 #> 885 40.2 11 1785 1785-11-01 04:00:00 blood 443 #> 886 40.2 11 1785 1785-11-01 04:00:00 bone 443 #> 887 27.3 12 1785 1785-12-01 14:00:01 blood 444 #> 888 27.3 12 1785 1785-12-01 14:00:01 bone 444 #> 889 37.2 1 1786 1786-01-01 00:00:00 blood 445 #> 890 37.2 1 1786 1786-01-01 00:00:00 bone 445 #> 891 47.6 2 1786 1786-01-31 10:00:00 blood 446 #> 892 47.6 2 1786 1786-01-31 10:00:00 bone 446 #> 893 47.7 3 1786 1786-03-02 20:00:01 blood 447 #> 894 47.7 3 1786 1786-03-02 20:00:01 bone 447 #> 895 85.4 4 1786 1786-04-02 06:00:00 blood 448 #> 896 85.4 4 1786 1786-04-02 06:00:00 bone 448 #> 897 92.3 5 1786 1786-05-02 16:00:00 blood 449 #> 898 92.3 5 1786 1786-05-02 16:00:00 bone 449 #> 899 59.0 6 1786 1786-06-02 02:00:01 blood 450 #> 900 59.0 6 1786 1786-06-02 02:00:01 bone 450 #> 901 83.0 7 1786 1786-07-02 12:00:00 blood 451 #> 902 83.0 7 1786 1786-07-02 12:00:00 bone 451 #> 903 89.7 8 1786 1786-08-01 22:00:00 blood 452 #> 904 89.7 8 1786 1786-08-01 22:00:00 bone 452 #> 905 111.5 9 1786 1786-09-01 08:00:01 blood 453 #> 906 111.5 9 1786 1786-09-01 08:00:01 bone 453 #> 907 112.3 10 1786 1786-10-01 18:00:00 blood 454 #> 908 112.3 10 1786 1786-10-01 18:00:00 bone 454 #> 909 116.0 11 1786 1786-11-01 04:00:00 blood 455 #> 910 116.0 11 1786 1786-11-01 04:00:00 bone 455 #> 911 112.7 12 1786 1786-12-01 14:00:01 blood 456 #> 912 112.7 12 1786 1786-12-01 14:00:01 bone 456 #> 913 134.7 1 1787 1787-01-01 00:00:00 blood 457 #> 914 134.7 1 1787 1787-01-01 00:00:00 bone 457 #> 915 106.0 2 1787 1787-01-31 10:00:00 blood 458 #> 916 106.0 2 1787 1787-01-31 10:00:00 bone 458 #> 917 87.4 3 1787 1787-03-02 20:00:01 blood 459 #> 918 87.4 3 1787 1787-03-02 20:00:01 bone 459 #> 919 127.2 4 1787 1787-04-02 06:00:00 blood 460 #> 920 127.2 4 1787 1787-04-02 06:00:00 bone 460 #> 921 134.8 5 1787 1787-05-02 16:00:00 blood 461 #> 922 134.8 5 1787 1787-05-02 16:00:00 bone 461 #> 923 99.2 6 1787 1787-06-02 02:00:01 blood 462 #> 924 99.2 6 1787 1787-06-02 02:00:01 bone 462 #> 925 128.0 7 1787 1787-07-02 12:00:00 blood 463 #> 926 128.0 7 1787 1787-07-02 12:00:00 bone 463 #> 927 137.2 8 1787 1787-08-01 22:00:00 blood 464 #> 928 137.2 8 1787 1787-08-01 22:00:00 bone 464 #> 929 157.3 9 1787 1787-09-01 08:00:01 blood 465 #> 930 157.3 9 1787 1787-09-01 08:00:01 bone 465 #> 931 157.0 10 1787 1787-10-01 18:00:00 blood 466 #> 932 157.0 10 1787 1787-10-01 18:00:00 bone 466 #> 933 141.5 11 1787 1787-11-01 04:00:00 blood 467 #> 934 141.5 11 1787 1787-11-01 04:00:00 bone 467 #> 935 174.0 12 1787 1787-12-01 14:00:01 blood 468 #> 936 174.0 12 1787 1787-12-01 14:00:01 bone 468 #> 937 138.0 1 1788 1788-01-01 00:00:00 blood 469 #> 938 138.0 1 1788 1788-01-01 00:00:00 bone 469 #> 939 129.2 2 1788 1788-01-31 12:00:00 blood 470 #> 940 129.2 2 1788 1788-01-31 12:00:00 bone 470 #> 941 143.3 3 1788 1788-03-02 00:00:01 blood 471 #> 942 143.3 3 1788 1788-03-02 00:00:01 bone 471 #> 943 108.5 4 1788 1788-04-01 12:00:00 blood 472 #> 944 108.5 4 1788 1788-04-01 12:00:00 bone 472 #> 945 113.0 5 1788 1788-05-02 00:00:00 blood 473 #> 946 113.0 5 1788 1788-05-02 00:00:00 bone 473 #> 947 154.2 6 1788 1788-06-01 12:00:01 blood 474 #> 948 154.2 6 1788 1788-06-01 12:00:01 bone 474 #> 949 141.5 7 1788 1788-07-02 00:00:00 blood 475 #> 950 141.5 7 1788 1788-07-02 00:00:00 bone 475 #> 951 136.0 8 1788 1788-08-01 12:00:00 blood 476 #> 952 136.0 8 1788 1788-08-01 12:00:00 bone 476 #> 953 141.0 9 1788 1788-09-01 00:00:01 blood 477 #> 954 141.0 9 1788 1788-09-01 00:00:01 bone 477 #> 955 142.0 10 1788 1788-10-01 12:00:00 blood 478 #> 956 142.0 10 1788 1788-10-01 12:00:00 bone 478 #> 957 94.7 11 1788 1788-11-01 00:00:00 blood 479 #> 958 94.7 11 1788 1788-11-01 00:00:00 bone 479 #> 959 129.5 12 1788 1788-12-01 12:00:01 blood 480 #> 960 129.5 12 1788 1788-12-01 12:00:01 bone 480 #> 961 114.0 1 1789 1789-01-01 00:00:00 blood 481 #> 962 114.0 1 1789 1789-01-01 00:00:00 bone 481 #> 963 125.3 2 1789 1789-01-31 10:00:00 blood 482 #> 964 125.3 2 1789 1789-01-31 10:00:00 bone 482 #> 965 120.0 3 1789 1789-03-02 20:00:01 blood 483 #> 966 120.0 3 1789 1789-03-02 20:00:01 bone 483 #> 967 123.3 4 1789 1789-04-02 06:00:00 blood 484 #> 968 123.3 4 1789 1789-04-02 06:00:00 bone 484 #> 969 123.5 5 1789 1789-05-02 16:00:00 blood 485 #> 970 123.5 5 1789 1789-05-02 16:00:00 bone 485 #> 971 120.0 6 1789 1789-06-02 02:00:01 blood 486 #> 972 120.0 6 1789 1789-06-02 02:00:01 bone 486 #> 973 117.0 7 1789 1789-07-02 12:00:00 blood 487 #> 974 117.0 7 1789 1789-07-02 12:00:00 bone 487 #> 975 103.0 8 1789 1789-08-01 22:00:00 blood 488 #> 976 103.0 8 1789 1789-08-01 22:00:00 bone 488 #> 977 112.0 9 1789 1789-09-01 08:00:01 blood 489 #> 978 112.0 9 1789 1789-09-01 08:00:01 bone 489 #> 979 89.7 10 1789 1789-10-01 18:00:00 blood 490 #> 980 89.7 10 1789 1789-10-01 18:00:00 bone 490 #> 981 134.0 11 1789 1789-11-01 04:00:00 blood 491 #> 982 134.0 11 1789 1789-11-01 04:00:00 bone 491 #> 983 135.5 12 1789 1789-12-01 14:00:01 blood 492 #> 984 135.5 12 1789 1789-12-01 14:00:01 bone 492 #> 985 103.0 1 1790 1790-01-01 00:00:00 blood 493 #> 986 103.0 1 1790 1790-01-01 00:00:00 bone 493 #> 987 127.5 2 1790 1790-01-31 10:00:00 blood 494 #> 988 127.5 2 1790 1790-01-31 10:00:00 bone 494 #> 989 96.3 3 1790 1790-03-02 20:00:01 blood 495 #> 990 96.3 3 1790 1790-03-02 20:00:01 bone 495 #> 991 94.0 4 1790 1790-04-02 06:00:00 blood 496 #> 992 94.0 4 1790 1790-04-02 06:00:00 bone 496 #> 993 93.0 5 1790 1790-05-02 16:00:00 blood 497 #> 994 93.0 5 1790 1790-05-02 16:00:00 bone 497 #> 995 91.0 6 1790 1790-06-02 02:00:01 blood 498 #> 996 91.0 6 1790 1790-06-02 02:00:01 bone 498 #> 997 69.3 7 1790 1790-07-02 12:00:00 blood 499 #> 998 69.3 7 1790 1790-07-02 12:00:00 bone 499 #> 999 87.0 8 1790 1790-08-01 22:00:00 blood 500 #> 1000 87.0 8 1790 1790-08-01 22:00:00 bone 500 #> 1001 77.3 9 1790 1790-09-01 08:00:01 blood 501 #> 1002 77.3 9 1790 1790-09-01 08:00:01 bone 501 #> 1003 84.3 10 1790 1790-10-01 18:00:00 blood 502 #> 1004 84.3 10 1790 1790-10-01 18:00:00 bone 502 #> 1005 82.0 11 1790 1790-11-01 04:00:00 blood 503 #> 1006 82.0 11 1790 1790-11-01 04:00:00 bone 503 #> 1007 74.0 12 1790 1790-12-01 14:00:01 blood 504 #> 1008 74.0 12 1790 1790-12-01 14:00:01 bone 504 #> 1009 72.7 1 1791 1791-01-01 00:00:00 blood 505 #> 1010 72.7 1 1791 1791-01-01 00:00:00 bone 505 #> 1011 62.0 2 1791 1791-01-31 10:00:00 blood 506 #> 1012 62.0 2 1791 1791-01-31 10:00:00 bone 506 #> 1013 74.0 3 1791 1791-03-02 20:00:01 blood 507 #> 1014 74.0 3 1791 1791-03-02 20:00:01 bone 507 #> 1015 77.2 4 1791 1791-04-02 06:00:00 blood 508 #> 1016 77.2 4 1791 1791-04-02 06:00:00 bone 508 #> 1017 73.7 5 1791 1791-05-02 16:00:00 blood 509 #> 1018 73.7 5 1791 1791-05-02 16:00:00 bone 509 #> 1019 64.2 6 1791 1791-06-02 02:00:01 blood 510 #> 1020 64.2 6 1791 1791-06-02 02:00:01 bone 510 #> 1021 71.0 7 1791 1791-07-02 12:00:00 blood 511 #> 1022 71.0 7 1791 1791-07-02 12:00:00 bone 511 #> 1023 43.0 8 1791 1791-08-01 22:00:00 blood 512 #> 1024 43.0 8 1791 1791-08-01 22:00:00 bone 512 #> 1025 66.5 9 1791 1791-09-01 08:00:01 blood 513 #> 1026 66.5 9 1791 1791-09-01 08:00:01 bone 513 #> 1027 61.7 10 1791 1791-10-01 18:00:00 blood 514 #> 1028 61.7 10 1791 1791-10-01 18:00:00 bone 514 #> 1029 67.0 11 1791 1791-11-01 04:00:00 blood 515 #> 1030 67.0 11 1791 1791-11-01 04:00:00 bone 515 #> 1031 66.0 12 1791 1791-12-01 14:00:01 blood 516 #> 1032 66.0 12 1791 1791-12-01 14:00:01 bone 516 #> 1033 58.0 1 1792 1792-01-01 00:00:00 blood 517 #> 1034 58.0 1 1792 1792-01-01 00:00:00 bone 517 #> 1035 64.0 2 1792 1792-01-31 12:00:00 blood 518 #> 1036 64.0 2 1792 1792-01-31 12:00:00 bone 518 #> 1037 63.0 3 1792 1792-03-02 00:00:01 blood 519 #> 1038 63.0 3 1792 1792-03-02 00:00:01 bone 519 #> 1039 75.7 4 1792 1792-04-01 12:00:00 blood 520 #> 1040 75.7 4 1792 1792-04-01 12:00:00 bone 520 #> 1041 62.0 5 1792 1792-05-02 00:00:00 blood 521 #> 1042 62.0 5 1792 1792-05-02 00:00:00 bone 521 #> 1043 61.0 6 1792 1792-06-01 12:00:01 blood 522 #> 1044 61.0 6 1792 1792-06-01 12:00:01 bone 522 #> 1045 45.8 7 1792 1792-07-02 00:00:00 blood 523 #> 1046 45.8 7 1792 1792-07-02 00:00:00 bone 523 #> 1047 60.0 8 1792 1792-08-01 12:00:00 blood 524 #> 1048 60.0 8 1792 1792-08-01 12:00:00 bone 524 #> 1049 59.0 9 1792 1792-09-01 00:00:01 blood 525 #> 1050 59.0 9 1792 1792-09-01 00:00:01 bone 525 #> 1051 59.0 10 1792 1792-10-01 12:00:00 blood 526 #> 1052 59.0 10 1792 1792-10-01 12:00:00 bone 526 #> 1053 57.0 11 1792 1792-11-01 00:00:00 blood 527 #> 1054 57.0 11 1792 1792-11-01 00:00:00 bone 527 #> 1055 56.0 12 1792 1792-12-01 12:00:01 blood 528 #> 1056 56.0 12 1792 1792-12-01 12:00:01 bone 528 #> 1057 56.0 1 1793 1793-01-01 00:00:00 blood 529 #> 1058 56.0 1 1793 1793-01-01 00:00:00 bone 529 #> 1059 55.0 2 1793 1793-01-31 10:00:00 blood 530 #> 1060 55.0 2 1793 1793-01-31 10:00:00 bone 530 #> 1061 55.5 3 1793 1793-03-02 20:00:01 blood 531 #> 1062 55.5 3 1793 1793-03-02 20:00:01 bone 531 #> 1063 53.0 4 1793 1793-04-02 06:00:00 blood 532 #> 1064 53.0 4 1793 1793-04-02 06:00:00 bone 532 #> 1065 52.3 5 1793 1793-05-02 16:00:00 blood 533 #> 1066 52.3 5 1793 1793-05-02 16:00:00 bone 533 #> 1067 51.0 6 1793 1793-06-02 02:00:01 blood 534 #> 1068 51.0 6 1793 1793-06-02 02:00:01 bone 534 #> 1069 50.0 7 1793 1793-07-02 12:00:00 blood 535 #> 1070 50.0 7 1793 1793-07-02 12:00:00 bone 535 #> 1071 29.3 8 1793 1793-08-01 22:00:00 blood 536 #> 1072 29.3 8 1793 1793-08-01 22:00:00 bone 536 #> 1073 24.0 9 1793 1793-09-01 08:00:01 blood 537 #> 1074 24.0 9 1793 1793-09-01 08:00:01 bone 537 #> 1075 47.0 10 1793 1793-10-01 18:00:00 blood 538 #> 1076 47.0 10 1793 1793-10-01 18:00:00 bone 538 #> 1077 44.0 11 1793 1793-11-01 04:00:00 blood 539 #> 1078 44.0 11 1793 1793-11-01 04:00:00 bone 539 #> 1079 45.7 12 1793 1793-12-01 14:00:01 blood 540 #> 1080 45.7 12 1793 1793-12-01 14:00:01 bone 540 #> 1081 45.0 1 1794 1794-01-01 00:00:00 blood 541 #> 1082 45.0 1 1794 1794-01-01 00:00:00 bone 541 #> 1083 44.0 2 1794 1794-01-31 10:00:00 blood 542 #> 1084 44.0 2 1794 1794-01-31 10:00:00 bone 542 #> 1085 38.0 3 1794 1794-03-02 20:00:01 blood 543 #> 1086 38.0 3 1794 1794-03-02 20:00:01 bone 543 #> 1087 28.4 4 1794 1794-04-02 06:00:00 blood 544 #> 1088 28.4 4 1794 1794-04-02 06:00:00 bone 544 #> 1089 55.7 5 1794 1794-05-02 16:00:00 blood 545 #> 1090 55.7 5 1794 1794-05-02 16:00:00 bone 545 #> 1091 41.5 6 1794 1794-06-02 02:00:01 blood 546 #> 1092 41.5 6 1794 1794-06-02 02:00:01 bone 546 #> 1093 41.0 7 1794 1794-07-02 12:00:00 blood 547 #> 1094 41.0 7 1794 1794-07-02 12:00:00 bone 547 #> 1095 40.0 8 1794 1794-08-01 22:00:00 blood 548 #> 1096 40.0 8 1794 1794-08-01 22:00:00 bone 548 #> 1097 11.1 9 1794 1794-09-01 08:00:01 blood 549 #> 1098 11.1 9 1794 1794-09-01 08:00:01 bone 549 #> 1099 28.5 10 1794 1794-10-01 18:00:00 blood 550 #> 1100 28.5 10 1794 1794-10-01 18:00:00 bone 550 #> 1101 67.4 11 1794 1794-11-01 04:00:00 blood 551 #> 1102 67.4 11 1794 1794-11-01 04:00:00 bone 551 #> 1103 51.4 12 1794 1794-12-01 14:00:01 blood 552 #> 1104 51.4 12 1794 1794-12-01 14:00:01 bone 552 #> 1105 21.4 1 1795 1795-01-01 00:00:00 blood 553 #> 1106 21.4 1 1795 1795-01-01 00:00:00 bone 553 #> 1107 39.9 2 1795 1795-01-31 10:00:00 blood 554 #> 1108 39.9 2 1795 1795-01-31 10:00:00 bone 554 #> 1109 12.6 3 1795 1795-03-02 20:00:01 blood 555 #> 1110 12.6 3 1795 1795-03-02 20:00:01 bone 555 #> 1111 18.6 4 1795 1795-04-02 06:00:00 blood 556 #> 1112 18.6 4 1795 1795-04-02 06:00:00 bone 556 #> 1113 31.0 5 1795 1795-05-02 16:00:00 blood 557 #> 1114 31.0 5 1795 1795-05-02 16:00:00 bone 557 #> 1115 17.1 6 1795 1795-06-02 02:00:01 blood 558 #> 1116 17.1 6 1795 1795-06-02 02:00:01 bone 558 #> 1117 12.9 7 1795 1795-07-02 12:00:00 blood 559 #> 1118 12.9 7 1795 1795-07-02 12:00:00 bone 559 #> 1119 25.7 8 1795 1795-08-01 22:00:00 blood 560 #> 1120 25.7 8 1795 1795-08-01 22:00:00 bone 560 #> 1121 13.5 9 1795 1795-09-01 08:00:01 blood 561 #> 1122 13.5 9 1795 1795-09-01 08:00:01 bone 561 #> 1123 19.5 10 1795 1795-10-01 18:00:00 blood 562 #> 1124 19.5 10 1795 1795-10-01 18:00:00 bone 562 #> 1125 25.0 11 1795 1795-11-01 04:00:00 blood 563 #> 1126 25.0 11 1795 1795-11-01 04:00:00 bone 563 #> 1127 18.0 12 1795 1795-12-01 14:00:01 blood 564 #> 1128 18.0 12 1795 1795-12-01 14:00:01 bone 564 #> 1129 22.0 1 1796 1796-01-01 00:00:00 blood 565 #> 1130 22.0 1 1796 1796-01-01 00:00:00 bone 565 #> 1131 23.8 2 1796 1796-01-31 12:00:00 blood 566 #> 1132 23.8 2 1796 1796-01-31 12:00:00 bone 566 #> 1133 15.7 3 1796 1796-03-02 00:00:01 blood 567 #> 1134 15.7 3 1796 1796-03-02 00:00:01 bone 567 #> 1135 31.7 4 1796 1796-04-01 12:00:00 blood 568 #> 1136 31.7 4 1796 1796-04-01 12:00:00 bone 568 #> 1137 21.0 5 1796 1796-05-02 00:00:00 blood 569 #> 1138 21.0 5 1796 1796-05-02 00:00:00 bone 569 #> 1139 6.7 6 1796 1796-06-01 12:00:01 blood 570 #> 1140 6.7 6 1796 1796-06-01 12:00:01 bone 570 #> 1141 26.9 7 1796 1796-07-02 00:00:00 blood 571 #> 1142 26.9 7 1796 1796-07-02 00:00:00 bone 571 #> 1143 1.5 8 1796 1796-08-01 12:00:00 blood 572 #> 1144 1.5 8 1796 1796-08-01 12:00:00 bone 572 #> 1145 18.4 9 1796 1796-09-01 00:00:01 blood 573 #> 1146 18.4 9 1796 1796-09-01 00:00:01 bone 573 #> 1147 11.0 10 1796 1796-10-01 12:00:00 blood 574 #> 1148 11.0 10 1796 1796-10-01 12:00:00 bone 574 #> 1149 8.4 11 1796 1796-11-01 00:00:00 blood 575 #> 1150 8.4 11 1796 1796-11-01 00:00:00 bone 575 #> 1151 5.1 12 1796 1796-12-01 12:00:01 blood 576 #> 1152 5.1 12 1796 1796-12-01 12:00:01 bone 576 #> 1153 14.4 1 1797 1797-01-01 00:00:00 blood 577 #> 1154 14.4 1 1797 1797-01-01 00:00:00 bone 577 #> 1155 4.2 2 1797 1797-01-31 10:00:00 blood 578 #> 1156 4.2 2 1797 1797-01-31 10:00:00 bone 578 #> 1157 4.0 3 1797 1797-03-02 20:00:01 blood 579 #> 1158 4.0 3 1797 1797-03-02 20:00:01 bone 579 #> 1159 4.0 4 1797 1797-04-02 06:00:00 blood 580 #> 1160 4.0 4 1797 1797-04-02 06:00:00 bone 580 #> 1161 7.3 5 1797 1797-05-02 16:00:00 blood 581 #> 1162 7.3 5 1797 1797-05-02 16:00:00 bone 581 #> 1163 11.1 6 1797 1797-06-02 02:00:01 blood 582 #> 1164 11.1 6 1797 1797-06-02 02:00:01 bone 582 #> 1165 4.3 7 1797 1797-07-02 12:00:00 blood 583 #> 1166 4.3 7 1797 1797-07-02 12:00:00 bone 583 #> 1167 6.0 8 1797 1797-08-01 22:00:00 blood 584 #> 1168 6.0 8 1797 1797-08-01 22:00:00 bone 584 #> 1169 5.7 9 1797 1797-09-01 08:00:01 blood 585 #> 1170 5.7 9 1797 1797-09-01 08:00:01 bone 585 #> 1171 6.9 10 1797 1797-10-01 18:00:00 blood 586 #> 1172 6.9 10 1797 1797-10-01 18:00:00 bone 586 #> 1173 5.8 11 1797 1797-11-01 04:00:00 blood 587 #> 1174 5.8 11 1797 1797-11-01 04:00:00 bone 587 #> 1175 3.0 12 1797 1797-12-01 14:00:01 blood 588 #> 1176 3.0 12 1797 1797-12-01 14:00:01 bone 588 #> 1177 2.0 1 1798 1798-01-01 00:00:00 blood 589 #> 1178 2.0 1 1798 1798-01-01 00:00:00 bone 589 #> 1179 4.0 2 1798 1798-01-31 10:00:00 blood 590 #> 1180 4.0 2 1798 1798-01-31 10:00:00 bone 590 #> 1181 12.4 3 1798 1798-03-02 20:00:01 blood 591 #> 1182 12.4 3 1798 1798-03-02 20:00:01 bone 591 #> 1183 1.1 4 1798 1798-04-02 06:00:00 blood 592 #> 1184 1.1 4 1798 1798-04-02 06:00:00 bone 592 #> 1185 0.0 5 1798 1798-05-02 16:00:00 blood 593 #> 1186 0.0 5 1798 1798-05-02 16:00:00 bone 593 #> 1187 0.0 6 1798 1798-06-02 02:00:01 blood 594 #> 1188 0.0 6 1798 1798-06-02 02:00:01 bone 594 #> 1189 0.0 7 1798 1798-07-02 12:00:00 blood 595 #> 1190 0.0 7 1798 1798-07-02 12:00:00 bone 595 #> 1191 3.0 8 1798 1798-08-01 22:00:00 blood 596 #> 1192 3.0 8 1798 1798-08-01 22:00:00 bone 596 #> 1193 2.4 9 1798 1798-09-01 08:00:01 blood 597 #> 1194 2.4 9 1798 1798-09-01 08:00:01 bone 597 #> 1195 1.5 10 1798 1798-10-01 18:00:00 blood 598 #> 1196 1.5 10 1798 1798-10-01 18:00:00 bone 598 #> 1197 12.5 11 1798 1798-11-01 04:00:00 blood 599 #> 1198 12.5 11 1798 1798-11-01 04:00:00 bone 599 #> 1199 9.9 12 1798 1798-12-01 14:00:01 blood 600 #> 1200 9.9 12 1798 1798-12-01 14:00:01 bone 600 #> 1201 1.6 1 1799 1799-01-01 00:00:00 blood 601 #> 1202 1.6 1 1799 1799-01-01 00:00:00 bone 601 #> 1203 12.6 2 1799 1799-01-31 10:00:00 blood 602 #> 1204 12.6 2 1799 1799-01-31 10:00:00 bone 602 #> 1205 21.7 3 1799 1799-03-02 20:00:01 blood 603 #> 1206 21.7 3 1799 1799-03-02 20:00:01 bone 603 #> 1207 8.4 4 1799 1799-04-02 06:00:00 blood 604 #> 1208 8.4 4 1799 1799-04-02 06:00:00 bone 604 #> 1209 8.2 5 1799 1799-05-02 16:00:00 blood 605 #> 1210 8.2 5 1799 1799-05-02 16:00:00 bone 605 #> 1211 10.6 6 1799 1799-06-02 02:00:01 blood 606 #> 1212 10.6 6 1799 1799-06-02 02:00:01 bone 606 #> 1213 2.1 7 1799 1799-07-02 12:00:00 blood 607 #> 1214 2.1 7 1799 1799-07-02 12:00:00 bone 607 #> 1215 0.0 8 1799 1799-08-01 22:00:00 blood 608 #> 1216 0.0 8 1799 1799-08-01 22:00:00 bone 608 #> 1217 0.0 9 1799 1799-09-01 08:00:01 blood 609 #> 1218 0.0 9 1799 1799-09-01 08:00:01 bone 609 #> 1219 4.6 10 1799 1799-10-01 18:00:00 blood 610 #> 1220 4.6 10 1799 1799-10-01 18:00:00 bone 610 #> 1221 2.7 11 1799 1799-11-01 04:00:00 blood 611 #> 1222 2.7 11 1799 1799-11-01 04:00:00 bone 611 #> 1223 8.6 12 1799 1799-12-01 14:00:01 blood 612 #> 1224 8.6 12 1799 1799-12-01 14:00:01 bone 612 #> 1225 6.9 1 1800 1800-01-01 00:00:00 blood 613 #> 1226 6.9 1 1800 1800-01-01 00:00:00 bone 613 #> 1227 9.3 2 1800 1800-01-31 10:00:00 blood 614 #> 1228 9.3 2 1800 1800-01-31 10:00:00 bone 614 #> 1229 13.9 3 1800 1800-03-02 20:00:01 blood 615 #> 1230 13.9 3 1800 1800-03-02 20:00:01 bone 615 #> 1231 0.0 4 1800 1800-04-02 06:00:00 blood 616 #> 1232 0.0 4 1800 1800-04-02 06:00:00 bone 616 #> 1233 5.0 5 1800 1800-05-02 16:00:00 blood 617 #> 1234 5.0 5 1800 1800-05-02 16:00:00 bone 617 #> 1235 23.7 6 1800 1800-06-02 02:00:01 blood 618 #> 1236 23.7 6 1800 1800-06-02 02:00:01 bone 618 #> 1237 21.0 7 1800 1800-07-02 12:00:00 blood 619 #> 1238 21.0 7 1800 1800-07-02 12:00:00 bone 619 #> 1239 19.5 8 1800 1800-08-01 22:00:00 blood 620 #> 1240 19.5 8 1800 1800-08-01 22:00:00 bone 620 #> 1241 11.5 9 1800 1800-09-01 08:00:01 blood 621 #> 1242 11.5 9 1800 1800-09-01 08:00:01 bone 621 #> 1243 12.3 10 1800 1800-10-01 18:00:00 blood 622 #> 1244 12.3 10 1800 1800-10-01 18:00:00 bone 622 #> 1245 10.5 11 1800 1800-11-01 04:00:00 blood 623 #> 1246 10.5 11 1800 1800-11-01 04:00:00 bone 623 #> 1247 40.1 12 1800 1800-12-01 14:00:01 blood 624 #> 1248 40.1 12 1800 1800-12-01 14:00:01 bone 624 #> 1249 27.0 1 1801 1801-01-01 00:00:00 blood 625 #> 1250 27.0 1 1801 1801-01-01 00:00:00 bone 625 #> 1251 29.0 2 1801 1801-01-31 10:00:00 blood 626 #> 1252 29.0 2 1801 1801-01-31 10:00:00 bone 626 #> 1253 30.0 3 1801 1801-03-02 20:00:01 blood 627 #> 1254 30.0 3 1801 1801-03-02 20:00:01 bone 627 #> 1255 31.0 4 1801 1801-04-02 06:00:00 blood 628 #> 1256 31.0 4 1801 1801-04-02 06:00:00 bone 628 #> 1257 32.0 5 1801 1801-05-02 16:00:00 blood 629 #> 1258 32.0 5 1801 1801-05-02 16:00:00 bone 629 #> 1259 31.2 6 1801 1801-06-02 02:00:01 blood 630 #> 1260 31.2 6 1801 1801-06-02 02:00:01 bone 630 #> 1261 35.0 7 1801 1801-07-02 12:00:00 blood 631 #> 1262 35.0 7 1801 1801-07-02 12:00:00 bone 631 #> 1263 38.7 8 1801 1801-08-01 22:00:00 blood 632 #> 1264 38.7 8 1801 1801-08-01 22:00:00 bone 632 #> 1265 33.5 9 1801 1801-09-01 08:00:01 blood 633 #> 1266 33.5 9 1801 1801-09-01 08:00:01 bone 633 #> 1267 32.6 10 1801 1801-10-01 18:00:00 blood 634 #> 1268 32.6 10 1801 1801-10-01 18:00:00 bone 634 #> 1269 39.8 11 1801 1801-11-01 04:00:00 blood 635 #> 1270 39.8 11 1801 1801-11-01 04:00:00 bone 635 #> 1271 48.2 12 1801 1801-12-01 14:00:01 blood 636 #> 1272 48.2 12 1801 1801-12-01 14:00:01 bone 636 #> 1273 47.8 1 1802 1802-01-01 00:00:00 blood 637 #> 1274 47.8 1 1802 1802-01-01 00:00:00 bone 637 #> 1275 47.0 2 1802 1802-01-31 10:00:00 blood 638 #> 1276 47.0 2 1802 1802-01-31 10:00:00 bone 638 #> 1277 40.8 3 1802 1802-03-02 20:00:01 blood 639 #> 1278 40.8 3 1802 1802-03-02 20:00:01 bone 639 #> 1279 42.0 4 1802 1802-04-02 06:00:00 blood 640 #> 1280 42.0 4 1802 1802-04-02 06:00:00 bone 640 #> 1281 44.0 5 1802 1802-05-02 16:00:00 blood 641 #> 1282 44.0 5 1802 1802-05-02 16:00:00 bone 641 #> 1283 46.0 6 1802 1802-06-02 02:00:01 blood 642 #> 1284 46.0 6 1802 1802-06-02 02:00:01 bone 642 #> 1285 48.0 7 1802 1802-07-02 12:00:00 blood 643 #> 1286 48.0 7 1802 1802-07-02 12:00:00 bone 643 #> 1287 50.0 8 1802 1802-08-01 22:00:00 blood 644 #> 1288 50.0 8 1802 1802-08-01 22:00:00 bone 644 #> 1289 51.8 9 1802 1802-09-01 08:00:01 blood 645 #> 1290 51.8 9 1802 1802-09-01 08:00:01 bone 645 #> 1291 38.5 10 1802 1802-10-01 18:00:00 blood 646 #> 1292 38.5 10 1802 1802-10-01 18:00:00 bone 646 #> 1293 34.5 11 1802 1802-11-01 04:00:00 blood 647 #> 1294 34.5 11 1802 1802-11-01 04:00:00 bone 647 #> 1295 50.0 12 1802 1802-12-01 14:00:01 blood 648 #> 1296 50.0 12 1802 1802-12-01 14:00:01 bone 648 #> 1297 50.0 1 1803 1803-01-01 00:00:00 blood 649 #> 1298 50.0 1 1803 1803-01-01 00:00:00 bone 649 #> 1299 50.8 2 1803 1803-01-31 10:00:00 blood 650 #> 1300 50.8 2 1803 1803-01-31 10:00:00 bone 650 #> 1301 29.5 3 1803 1803-03-02 20:00:01 blood 651 #> 1302 29.5 3 1803 1803-03-02 20:00:01 bone 651 #> 1303 25.0 4 1803 1803-04-02 06:00:00 blood 652 #> 1304 25.0 4 1803 1803-04-02 06:00:00 bone 652 #> 1305 44.3 5 1803 1803-05-02 16:00:00 blood 653 #> 1306 44.3 5 1803 1803-05-02 16:00:00 bone 653 #> 1307 36.0 6 1803 1803-06-02 02:00:01 blood 654 #> 1308 36.0 6 1803 1803-06-02 02:00:01 bone 654 #> 1309 48.3 7 1803 1803-07-02 12:00:00 blood 655 #> 1310 48.3 7 1803 1803-07-02 12:00:00 bone 655 #> 1311 34.1 8 1803 1803-08-01 22:00:00 blood 656 #> 1312 34.1 8 1803 1803-08-01 22:00:00 bone 656 #> 1313 45.3 9 1803 1803-09-01 08:00:01 blood 657 #> 1314 45.3 9 1803 1803-09-01 08:00:01 bone 657 #> 1315 54.3 10 1803 1803-10-01 18:00:00 blood 658 #> 1316 54.3 10 1803 1803-10-01 18:00:00 bone 658 #> 1317 51.0 11 1803 1803-11-01 04:00:00 blood 659 #> 1318 51.0 11 1803 1803-11-01 04:00:00 bone 659 #> 1319 48.0 12 1803 1803-12-01 14:00:01 blood 660 #> 1320 48.0 12 1803 1803-12-01 14:00:01 bone 660 #> 1321 45.3 1 1804 1804-01-01 00:00:00 blood 661 #> 1322 45.3 1 1804 1804-01-01 00:00:00 bone 661 #> 1323 48.3 2 1804 1804-01-31 12:00:00 blood 662 #> 1324 48.3 2 1804 1804-01-31 12:00:00 bone 662 #> 1325 48.0 3 1804 1804-03-02 00:00:01 blood 663 #> 1326 48.0 3 1804 1804-03-02 00:00:01 bone 663 #> 1327 50.6 4 1804 1804-04-01 12:00:00 blood 664 #> 1328 50.6 4 1804 1804-04-01 12:00:00 bone 664 #> 1329 33.4 5 1804 1804-05-02 00:00:00 blood 665 #> 1330 33.4 5 1804 1804-05-02 00:00:00 bone 665 #> 1331 34.8 6 1804 1804-06-01 12:00:01 blood 666 #> 1332 34.8 6 1804 1804-06-01 12:00:01 bone 666 #> 1333 29.8 7 1804 1804-07-02 00:00:00 blood 667 #> 1334 29.8 7 1804 1804-07-02 00:00:00 bone 667 #> 1335 43.1 8 1804 1804-08-01 12:00:00 blood 668 #> 1336 43.1 8 1804 1804-08-01 12:00:00 bone 668 #> 1337 53.0 9 1804 1804-09-01 00:00:01 blood 669 #> 1338 53.0 9 1804 1804-09-01 00:00:01 bone 669 #> 1339 62.3 10 1804 1804-10-01 12:00:00 blood 670 #> 1340 62.3 10 1804 1804-10-01 12:00:00 bone 670 #> 1341 61.0 11 1804 1804-11-01 00:00:00 blood 671 #> 1342 61.0 11 1804 1804-11-01 00:00:00 bone 671 #> 1343 60.0 12 1804 1804-12-01 12:00:01 blood 672 #> 1344 60.0 12 1804 1804-12-01 12:00:01 bone 672 #> 1345 61.0 1 1805 1805-01-01 00:00:00 blood 673 #> 1346 61.0 1 1805 1805-01-01 00:00:00 bone 673 #> 1347 44.1 2 1805 1805-01-31 10:00:00 blood 674 #> 1348 44.1 2 1805 1805-01-31 10:00:00 bone 674 #> 1349 51.4 3 1805 1805-03-02 20:00:01 blood 675 #> 1350 51.4 3 1805 1805-03-02 20:00:01 bone 675 #> 1351 37.5 4 1805 1805-04-02 06:00:00 blood 676 #> 1352 37.5 4 1805 1805-04-02 06:00:00 bone 676 #> 1353 39.0 5 1805 1805-05-02 16:00:00 blood 677 #> 1354 39.0 5 1805 1805-05-02 16:00:00 bone 677 #> 1355 40.5 6 1805 1805-06-02 02:00:01 blood 678 #> 1356 40.5 6 1805 1805-06-02 02:00:01 bone 678 #> 1357 37.6 7 1805 1805-07-02 12:00:00 blood 679 #> 1358 37.6 7 1805 1805-07-02 12:00:00 bone 679 #> 1359 42.7 8 1805 1805-08-01 22:00:00 blood 680 #> 1360 42.7 8 1805 1805-08-01 22:00:00 bone 680 #> 1361 44.4 9 1805 1805-09-01 08:00:01 blood 681 #> 1362 44.4 9 1805 1805-09-01 08:00:01 bone 681 #> 1363 29.4 10 1805 1805-10-01 18:00:00 blood 682 #> 1364 29.4 10 1805 1805-10-01 18:00:00 bone 682 #> 1365 41.0 11 1805 1805-11-01 04:00:00 blood 683 #> 1366 41.0 11 1805 1805-11-01 04:00:00 bone 683 #> 1367 38.3 12 1805 1805-12-01 14:00:01 blood 684 #> 1368 38.3 12 1805 1805-12-01 14:00:01 bone 684 #> 1369 39.0 1 1806 1806-01-01 00:00:00 blood 685 #> 1370 39.0 1 1806 1806-01-01 00:00:00 bone 685 #> 1371 29.6 2 1806 1806-01-31 10:00:00 blood 686 #> 1372 29.6 2 1806 1806-01-31 10:00:00 bone 686 #> 1373 32.7 3 1806 1806-03-02 20:00:01 blood 687 #> 1374 32.7 3 1806 1806-03-02 20:00:01 bone 687 #> 1375 27.7 4 1806 1806-04-02 06:00:00 blood 688 #> 1376 27.7 4 1806 1806-04-02 06:00:00 bone 688 #> 1377 26.4 5 1806 1806-05-02 16:00:00 blood 689 #> 1378 26.4 5 1806 1806-05-02 16:00:00 bone 689 #> 1379 25.6 6 1806 1806-06-02 02:00:01 blood 690 #> 1380 25.6 6 1806 1806-06-02 02:00:01 bone 690 #> 1381 30.0 7 1806 1806-07-02 12:00:00 blood 691 #> 1382 30.0 7 1806 1806-07-02 12:00:00 bone 691 #> 1383 26.3 8 1806 1806-08-01 22:00:00 blood 692 #> 1384 26.3 8 1806 1806-08-01 22:00:00 bone 692 #> 1385 24.0 9 1806 1806-09-01 08:00:01 blood 693 #> 1386 24.0 9 1806 1806-09-01 08:00:01 bone 693 #> 1387 27.0 10 1806 1806-10-01 18:00:00 blood 694 #> 1388 27.0 10 1806 1806-10-01 18:00:00 bone 694 #> 1389 25.0 11 1806 1806-11-01 04:00:00 blood 695 #> 1390 25.0 11 1806 1806-11-01 04:00:00 bone 695 #> 1391 24.0 12 1806 1806-12-01 14:00:01 blood 696 #> 1392 24.0 12 1806 1806-12-01 14:00:01 bone 696 #> 1393 12.0 1 1807 1807-01-01 00:00:00 blood 697 #> 1394 12.0 1 1807 1807-01-01 00:00:00 bone 697 #> 1395 12.2 2 1807 1807-01-31 10:00:00 blood 698 #> 1396 12.2 2 1807 1807-01-31 10:00:00 bone 698 #> 1397 9.6 3 1807 1807-03-02 20:00:01 blood 699 #> 1398 9.6 3 1807 1807-03-02 20:00:01 bone 699 #> 1399 23.8 4 1807 1807-04-02 06:00:00 blood 700 #> 1400 23.8 4 1807 1807-04-02 06:00:00 bone 700 #> 1401 10.0 5 1807 1807-05-02 16:00:00 blood 701 #> 1402 10.0 5 1807 1807-05-02 16:00:00 bone 701 #> 1403 12.0 6 1807 1807-06-02 02:00:01 blood 702 #> 1404 12.0 6 1807 1807-06-02 02:00:01 bone 702 #> 1405 12.7 7 1807 1807-07-02 12:00:00 blood 703 #> 1406 12.7 7 1807 1807-07-02 12:00:00 bone 703 #> 1407 12.0 8 1807 1807-08-01 22:00:00 blood 704 #> 1408 12.0 8 1807 1807-08-01 22:00:00 bone 704 #> 1409 5.7 9 1807 1807-09-01 08:00:01 blood 705 #> 1410 5.7 9 1807 1807-09-01 08:00:01 bone 705 #> 1411 8.0 10 1807 1807-10-01 18:00:00 blood 706 #> 1412 8.0 10 1807 1807-10-01 18:00:00 bone 706 #> 1413 2.6 11 1807 1807-11-01 04:00:00 blood 707 #> 1414 2.6 11 1807 1807-11-01 04:00:00 bone 707 #> 1415 0.0 12 1807 1807-12-01 14:00:01 blood 708 #> 1416 0.0 12 1807 1807-12-01 14:00:01 bone 708 #> 1417 0.0 1 1808 1808-01-01 00:00:00 blood 709 #> 1418 0.0 1 1808 1808-01-01 00:00:00 bone 709 #> 1419 4.5 2 1808 1808-01-31 12:00:00 blood 710 #> 1420 4.5 2 1808 1808-01-31 12:00:00 bone 710 #> 1421 0.0 3 1808 1808-03-02 00:00:01 blood 711 #> 1422 0.0 3 1808 1808-03-02 00:00:01 bone 711 #> 1423 12.3 4 1808 1808-04-01 12:00:00 blood 712 #> 1424 12.3 4 1808 1808-04-01 12:00:00 bone 712 #> 1425 13.5 5 1808 1808-05-02 00:00:00 blood 713 #> 1426 13.5 5 1808 1808-05-02 00:00:00 bone 713 #> 1427 13.5 6 1808 1808-06-01 12:00:01 blood 714 #> 1428 13.5 6 1808 1808-06-01 12:00:01 bone 714 #> 1429 6.7 7 1808 1808-07-02 00:00:00 blood 715 #> 1430 6.7 7 1808 1808-07-02 00:00:00 bone 715 #> 1431 8.0 8 1808 1808-08-01 12:00:00 blood 716 #> 1432 8.0 8 1808 1808-08-01 12:00:00 bone 716 #> 1433 11.7 9 1808 1808-09-01 00:00:01 blood 717 #> 1434 11.7 9 1808 1808-09-01 00:00:01 bone 717 #> 1435 4.7 10 1808 1808-10-01 12:00:00 blood 718 #> 1436 4.7 10 1808 1808-10-01 12:00:00 bone 718 #> 1437 10.5 11 1808 1808-11-01 00:00:00 blood 719 #> 1438 10.5 11 1808 1808-11-01 00:00:00 bone 719 #> 1439 12.3 12 1808 1808-12-01 12:00:01 blood 720 #> 1440 12.3 12 1808 1808-12-01 12:00:01 bone 720 #> 1441 7.2 1 1809 1809-01-01 00:00:00 blood 721 #> 1442 7.2 1 1809 1809-01-01 00:00:00 bone 721 #> 1443 9.2 2 1809 1809-01-31 10:00:00 blood 722 #> 1444 9.2 2 1809 1809-01-31 10:00:00 bone 722 #> 1445 0.9 3 1809 1809-03-02 20:00:01 blood 723 #> 1446 0.9 3 1809 1809-03-02 20:00:01 bone 723 #> 1447 2.5 4 1809 1809-04-02 06:00:00 blood 724 #> 1448 2.5 4 1809 1809-04-02 06:00:00 bone 724 #> 1449 2.0 5 1809 1809-05-02 16:00:00 blood 725 #> 1450 2.0 5 1809 1809-05-02 16:00:00 bone 725 #> 1451 7.7 6 1809 1809-06-02 02:00:01 blood 726 #> 1452 7.7 6 1809 1809-06-02 02:00:01 bone 726 #> 1453 0.3 7 1809 1809-07-02 12:00:00 blood 727 #> 1454 0.3 7 1809 1809-07-02 12:00:00 bone 727 #> 1455 0.2 8 1809 1809-08-01 22:00:00 blood 728 #> 1456 0.2 8 1809 1809-08-01 22:00:00 bone 728 #> 1457 0.4 9 1809 1809-09-01 08:00:01 blood 729 #> 1458 0.4 9 1809 1809-09-01 08:00:01 bone 729 #> 1459 0.0 10 1809 1809-10-01 18:00:00 blood 730 #> 1460 0.0 10 1809 1809-10-01 18:00:00 bone 730 #> 1461 0.0 11 1809 1809-11-01 04:00:00 blood 731 #> 1462 0.0 11 1809 1809-11-01 04:00:00 bone 731 #> 1463 0.0 12 1809 1809-12-01 14:00:01 blood 732 #> 1464 0.0 12 1809 1809-12-01 14:00:01 bone 732 #> 1465 0.0 1 1810 1810-01-01 00:00:00 blood 733 #> 1466 0.0 1 1810 1810-01-01 00:00:00 bone 733 #> 1467 0.0 2 1810 1810-01-31 10:00:00 blood 734 #> 1468 0.0 2 1810 1810-01-31 10:00:00 bone 734 #> 1469 0.0 3 1810 1810-03-02 20:00:01 blood 735 #> 1470 0.0 3 1810 1810-03-02 20:00:01 bone 735 #> 1471 0.0 4 1810 1810-04-02 06:00:00 blood 736 #> 1472 0.0 4 1810 1810-04-02 06:00:00 bone 736 #> 1473 0.0 5 1810 1810-05-02 16:00:00 blood 737 #> 1474 0.0 5 1810 1810-05-02 16:00:00 bone 737 #> 1475 0.0 6 1810 1810-06-02 02:00:01 blood 738 #> 1476 0.0 6 1810 1810-06-02 02:00:01 bone 738 #> 1477 0.0 7 1810 1810-07-02 12:00:00 blood 739 #> 1478 0.0 7 1810 1810-07-02 12:00:00 bone 739 #> 1479 0.0 8 1810 1810-08-01 22:00:00 blood 740 #> 1480 0.0 8 1810 1810-08-01 22:00:00 bone 740 #> 1481 0.0 9 1810 1810-09-01 08:00:01 blood 741 #> 1482 0.0 9 1810 1810-09-01 08:00:01 bone 741 #> 1483 0.0 10 1810 1810-10-01 18:00:00 blood 742 #> 1484 0.0 10 1810 1810-10-01 18:00:00 bone 742 #> 1485 0.0 11 1810 1810-11-01 04:00:00 blood 743 #> 1486 0.0 11 1810 1810-11-01 04:00:00 bone 743 #> 1487 0.0 12 1810 1810-12-01 14:00:01 blood 744 #> 1488 0.0 12 1810 1810-12-01 14:00:01 bone 744 #> 1489 0.0 1 1811 1811-01-01 00:00:00 blood 745 #> 1490 0.0 1 1811 1811-01-01 00:00:00 bone 745 #> 1491 0.0 2 1811 1811-01-31 10:00:00 blood 746 #> 1492 0.0 2 1811 1811-01-31 10:00:00 bone 746 #> 1493 0.0 3 1811 1811-03-02 20:00:01 blood 747 #> 1494 0.0 3 1811 1811-03-02 20:00:01 bone 747 #> 1495 0.0 4 1811 1811-04-02 06:00:00 blood 748 #> 1496 0.0 4 1811 1811-04-02 06:00:00 bone 748 #> 1497 0.0 5 1811 1811-05-02 16:00:00 blood 749 #> 1498 0.0 5 1811 1811-05-02 16:00:00 bone 749 #> 1499 0.0 6 1811 1811-06-02 02:00:01 blood 750 #> 1500 0.0 6 1811 1811-06-02 02:00:01 bone 750 #> 1501 6.6 7 1811 1811-07-02 12:00:00 blood 751 #> 1502 6.6 7 1811 1811-07-02 12:00:00 bone 751 #> 1503 0.0 8 1811 1811-08-01 22:00:00 blood 752 #> 1504 0.0 8 1811 1811-08-01 22:00:00 bone 752 #> 1505 2.4 9 1811 1811-09-01 08:00:01 blood 753 #> 1506 2.4 9 1811 1811-09-01 08:00:01 bone 753 #> 1507 6.1 10 1811 1811-10-01 18:00:00 blood 754 #> 1508 6.1 10 1811 1811-10-01 18:00:00 bone 754 #> 1509 0.8 11 1811 1811-11-01 04:00:00 blood 755 #> 1510 0.8 11 1811 1811-11-01 04:00:00 bone 755 #> 1511 1.1 12 1811 1811-12-01 14:00:01 blood 756 #> 1512 1.1 12 1811 1811-12-01 14:00:01 bone 756 #> 1513 11.3 1 1812 1812-01-01 00:00:00 blood 757 #> 1514 11.3 1 1812 1812-01-01 00:00:00 bone 757 #> 1515 1.9 2 1812 1812-01-31 12:00:00 blood 758 #> 1516 1.9 2 1812 1812-01-31 12:00:00 bone 758 #> 1517 0.7 3 1812 1812-03-02 00:00:01 blood 759 #> 1518 0.7 3 1812 1812-03-02 00:00:01 bone 759 #> 1519 0.0 4 1812 1812-04-01 12:00:00 blood 760 #> 1520 0.0 4 1812 1812-04-01 12:00:00 bone 760 #> 1521 1.0 5 1812 1812-05-02 00:00:00 blood 761 #> 1522 1.0 5 1812 1812-05-02 00:00:00 bone 761 #> 1523 1.3 6 1812 1812-06-01 12:00:01 blood 762 #> 1524 1.3 6 1812 1812-06-01 12:00:01 bone 762 #> 1525 0.5 7 1812 1812-07-02 00:00:00 blood 763 #> 1526 0.5 7 1812 1812-07-02 00:00:00 bone 763 #> 1527 15.6 8 1812 1812-08-01 12:00:00 blood 764 #> 1528 15.6 8 1812 1812-08-01 12:00:00 bone 764 #> 1529 5.2 9 1812 1812-09-01 00:00:01 blood 765 #> 1530 5.2 9 1812 1812-09-01 00:00:01 bone 765 #> 1531 3.9 10 1812 1812-10-01 12:00:00 blood 766 #> 1532 3.9 10 1812 1812-10-01 12:00:00 bone 766 #> 1533 7.9 11 1812 1812-11-01 00:00:00 blood 767 #> 1534 7.9 11 1812 1812-11-01 00:00:00 bone 767 #> 1535 10.1 12 1812 1812-12-01 12:00:01 blood 768 #> 1536 10.1 12 1812 1812-12-01 12:00:01 bone 768 #> 1537 0.0 1 1813 1813-01-01 00:00:00 blood 769 #> 1538 0.0 1 1813 1813-01-01 00:00:00 bone 769 #> 1539 10.3 2 1813 1813-01-31 10:00:00 blood 770 #> 1540 10.3 2 1813 1813-01-31 10:00:00 bone 770 #> 1541 1.9 3 1813 1813-03-02 20:00:01 blood 771 #> 1542 1.9 3 1813 1813-03-02 20:00:01 bone 771 #> 1543 16.6 4 1813 1813-04-02 06:00:00 blood 772 #> 1544 16.6 4 1813 1813-04-02 06:00:00 bone 772 #> 1545 5.5 5 1813 1813-05-02 16:00:00 blood 773 #> 1546 5.5 5 1813 1813-05-02 16:00:00 bone 773 #> 1547 11.2 6 1813 1813-06-02 02:00:01 blood 774 #> 1548 11.2 6 1813 1813-06-02 02:00:01 bone 774 #> 1549 18.3 7 1813 1813-07-02 12:00:00 blood 775 #> 1550 18.3 7 1813 1813-07-02 12:00:00 bone 775 #> 1551 8.4 8 1813 1813-08-01 22:00:00 blood 776 #> 1552 8.4 8 1813 1813-08-01 22:00:00 bone 776 #> 1553 15.3 9 1813 1813-09-01 08:00:01 blood 777 #> 1554 15.3 9 1813 1813-09-01 08:00:01 bone 777 #> 1555 27.8 10 1813 1813-10-01 18:00:00 blood 778 #> 1556 27.8 10 1813 1813-10-01 18:00:00 bone 778 #> 1557 16.7 11 1813 1813-11-01 04:00:00 blood 779 #> 1558 16.7 11 1813 1813-11-01 04:00:00 bone 779 #> 1559 14.3 12 1813 1813-12-01 14:00:01 blood 780 #> 1560 14.3 12 1813 1813-12-01 14:00:01 bone 780 #> 1561 22.2 1 1814 1814-01-01 00:00:00 blood 781 #> 1562 22.2 1 1814 1814-01-01 00:00:00 bone 781 #> 1563 12.0 2 1814 1814-01-31 10:00:00 blood 782 #> 1564 12.0 2 1814 1814-01-31 10:00:00 bone 782 #> 1565 5.7 3 1814 1814-03-02 20:00:01 blood 783 #> 1566 5.7 3 1814 1814-03-02 20:00:01 bone 783 #> 1567 23.8 4 1814 1814-04-02 06:00:00 blood 784 #> 1568 23.8 4 1814 1814-04-02 06:00:00 bone 784 #> 1569 5.8 5 1814 1814-05-02 16:00:00 blood 785 #> 1570 5.8 5 1814 1814-05-02 16:00:00 bone 785 #> 1571 14.9 6 1814 1814-06-02 02:00:01 blood 786 #> 1572 14.9 6 1814 1814-06-02 02:00:01 bone 786 #> 1573 18.5 7 1814 1814-07-02 12:00:00 blood 787 #> 1574 18.5 7 1814 1814-07-02 12:00:00 bone 787 #> 1575 2.3 8 1814 1814-08-01 22:00:00 blood 788 #> 1576 2.3 8 1814 1814-08-01 22:00:00 bone 788 #> 1577 8.1 9 1814 1814-09-01 08:00:01 blood 789 #> 1578 8.1 9 1814 1814-09-01 08:00:01 bone 789 #> 1579 19.3 10 1814 1814-10-01 18:00:00 blood 790 #> 1580 19.3 10 1814 1814-10-01 18:00:00 bone 790 #> 1581 14.5 11 1814 1814-11-01 04:00:00 blood 791 #> 1582 14.5 11 1814 1814-11-01 04:00:00 bone 791 #> 1583 20.1 12 1814 1814-12-01 14:00:01 blood 792 #> 1584 20.1 12 1814 1814-12-01 14:00:01 bone 792 #> 1585 19.2 1 1815 1815-01-01 00:00:00 blood 793 #> 1586 19.2 1 1815 1815-01-01 00:00:00 bone 793 #> 1587 32.2 2 1815 1815-01-31 10:00:00 blood 794 #> 1588 32.2 2 1815 1815-01-31 10:00:00 bone 794 #> 1589 26.2 3 1815 1815-03-02 20:00:01 blood 795 #> 1590 26.2 3 1815 1815-03-02 20:00:01 bone 795 #> 1591 31.6 4 1815 1815-04-02 06:00:00 blood 796 #> 1592 31.6 4 1815 1815-04-02 06:00:00 bone 796 #> 1593 9.8 5 1815 1815-05-02 16:00:00 blood 797 #> 1594 9.8 5 1815 1815-05-02 16:00:00 bone 797 #> 1595 55.9 6 1815 1815-06-02 02:00:01 blood 798 #> 1596 55.9 6 1815 1815-06-02 02:00:01 bone 798 #> 1597 35.5 7 1815 1815-07-02 12:00:00 blood 799 #> 1598 35.5 7 1815 1815-07-02 12:00:00 bone 799 #> 1599 47.2 8 1815 1815-08-01 22:00:00 blood 800 #> 1600 47.2 8 1815 1815-08-01 22:00:00 bone 800 #> 1601 31.5 9 1815 1815-09-01 08:00:01 blood 801 #> 1602 31.5 9 1815 1815-09-01 08:00:01 bone 801 #> 1603 33.5 10 1815 1815-10-01 18:00:00 blood 802 #> 1604 33.5 10 1815 1815-10-01 18:00:00 bone 802 #> 1605 37.2 11 1815 1815-11-01 04:00:00 blood 803 #> 1606 37.2 11 1815 1815-11-01 04:00:00 bone 803 #> 1607 65.0 12 1815 1815-12-01 14:00:01 blood 804 #> 1608 65.0 12 1815 1815-12-01 14:00:01 bone 804 #> 1609 26.3 1 1816 1816-01-01 00:00:00 blood 805 #> 1610 26.3 1 1816 1816-01-01 00:00:00 bone 805 #> 1611 68.8 2 1816 1816-01-31 12:00:00 blood 806 #> 1612 68.8 2 1816 1816-01-31 12:00:00 bone 806 #> 1613 73.7 3 1816 1816-03-02 00:00:01 blood 807 #> 1614 73.7 3 1816 1816-03-02 00:00:01 bone 807 #> 1615 58.8 4 1816 1816-04-01 12:00:00 blood 808 #> 1616 58.8 4 1816 1816-04-01 12:00:00 bone 808 #> 1617 44.3 5 1816 1816-05-02 00:00:00 blood 809 #> 1618 44.3 5 1816 1816-05-02 00:00:00 bone 809 #> 1619 43.6 6 1816 1816-06-01 12:00:01 blood 810 #> 1620 43.6 6 1816 1816-06-01 12:00:01 bone 810 #> 1621 38.8 7 1816 1816-07-02 00:00:00 blood 811 #> 1622 38.8 7 1816 1816-07-02 00:00:00 bone 811 #> 1623 23.2 8 1816 1816-08-01 12:00:00 blood 812 #> 1624 23.2 8 1816 1816-08-01 12:00:00 bone 812 #> 1625 47.8 9 1816 1816-09-01 00:00:01 blood 813 #> 1626 47.8 9 1816 1816-09-01 00:00:01 bone 813 #> 1627 56.4 10 1816 1816-10-01 12:00:00 blood 814 #> 1628 56.4 10 1816 1816-10-01 12:00:00 bone 814 #> 1629 38.1 11 1816 1816-11-01 00:00:00 blood 815 #> 1630 38.1 11 1816 1816-11-01 00:00:00 bone 815 #> 1631 29.9 12 1816 1816-12-01 12:00:01 blood 816 #> 1632 29.9 12 1816 1816-12-01 12:00:01 bone 816 #> 1633 36.4 1 1817 1817-01-01 00:00:00 blood 817 #> 1634 36.4 1 1817 1817-01-01 00:00:00 bone 817 #> 1635 57.9 2 1817 1817-01-31 10:00:00 blood 818 #> 1636 57.9 2 1817 1817-01-31 10:00:00 bone 818 #> 1637 96.2 3 1817 1817-03-02 20:00:01 blood 819 #> 1638 96.2 3 1817 1817-03-02 20:00:01 bone 819 #> 1639 26.4 4 1817 1817-04-02 06:00:00 blood 820 #> 1640 26.4 4 1817 1817-04-02 06:00:00 bone 820 #> 1641 21.2 5 1817 1817-05-02 16:00:00 blood 821 #> 1642 21.2 5 1817 1817-05-02 16:00:00 bone 821 #> 1643 40.0 6 1817 1817-06-02 02:00:01 blood 822 #> 1644 40.0 6 1817 1817-06-02 02:00:01 bone 822 #> 1645 50.0 7 1817 1817-07-02 12:00:00 blood 823 #> 1646 50.0 7 1817 1817-07-02 12:00:00 bone 823 #> 1647 45.0 8 1817 1817-08-01 22:00:00 blood 824 #> 1648 45.0 8 1817 1817-08-01 22:00:00 bone 824 #> 1649 36.7 9 1817 1817-09-01 08:00:01 blood 825 #> 1650 36.7 9 1817 1817-09-01 08:00:01 bone 825 #> 1651 25.6 10 1817 1817-10-01 18:00:00 blood 826 #> 1652 25.6 10 1817 1817-10-01 18:00:00 bone 826 #> 1653 28.9 11 1817 1817-11-01 04:00:00 blood 827 #> 1654 28.9 11 1817 1817-11-01 04:00:00 bone 827 #> 1655 28.4 12 1817 1817-12-01 14:00:01 blood 828 #> 1656 28.4 12 1817 1817-12-01 14:00:01 bone 828 #> 1657 34.9 1 1818 1818-01-01 00:00:00 blood 829 #> 1658 34.9 1 1818 1818-01-01 00:00:00 bone 829 #> 1659 22.4 2 1818 1818-01-31 10:00:00 blood 830 #> 1660 22.4 2 1818 1818-01-31 10:00:00 bone 830 #> 1661 25.4 3 1818 1818-03-02 20:00:01 blood 831 #> 1662 25.4 3 1818 1818-03-02 20:00:01 bone 831 #> 1663 34.5 4 1818 1818-04-02 06:00:00 blood 832 #> 1664 34.5 4 1818 1818-04-02 06:00:00 bone 832 #> 1665 53.1 5 1818 1818-05-02 16:00:00 blood 833 #> 1666 53.1 5 1818 1818-05-02 16:00:00 bone 833 #> 1667 36.4 6 1818 1818-06-02 02:00:01 blood 834 #> 1668 36.4 6 1818 1818-06-02 02:00:01 bone 834 #> 1669 28.0 7 1818 1818-07-02 12:00:00 blood 835 #> 1670 28.0 7 1818 1818-07-02 12:00:00 bone 835 #> 1671 31.5 8 1818 1818-08-01 22:00:00 blood 836 #> 1672 31.5 8 1818 1818-08-01 22:00:00 bone 836 #> 1673 26.1 9 1818 1818-09-01 08:00:01 blood 837 #> 1674 26.1 9 1818 1818-09-01 08:00:01 bone 837 #> 1675 31.7 10 1818 1818-10-01 18:00:00 blood 838 #> 1676 31.7 10 1818 1818-10-01 18:00:00 bone 838 #> 1677 10.9 11 1818 1818-11-01 04:00:00 blood 839 #> 1678 10.9 11 1818 1818-11-01 04:00:00 bone 839 #> 1679 25.8 12 1818 1818-12-01 14:00:01 blood 840 #> 1680 25.8 12 1818 1818-12-01 14:00:01 bone 840 #> 1681 32.5 1 1819 1819-01-01 00:00:00 blood 841 #> 1682 32.5 1 1819 1819-01-01 00:00:00 bone 841 #> 1683 20.7 2 1819 1819-01-31 10:00:00 blood 842 #> 1684 20.7 2 1819 1819-01-31 10:00:00 bone 842 #> 1685 3.7 3 1819 1819-03-02 20:00:01 blood 843 #> 1686 3.7 3 1819 1819-03-02 20:00:01 bone 843 #> 1687 20.2 4 1819 1819-04-02 06:00:00 blood 844 #> 1688 20.2 4 1819 1819-04-02 06:00:00 bone 844 #> 1689 19.6 5 1819 1819-05-02 16:00:00 blood 845 #> 1690 19.6 5 1819 1819-05-02 16:00:00 bone 845 #> 1691 35.0 6 1819 1819-06-02 02:00:01 blood 846 #> 1692 35.0 6 1819 1819-06-02 02:00:01 bone 846 #> 1693 31.4 7 1819 1819-07-02 12:00:00 blood 847 #> 1694 31.4 7 1819 1819-07-02 12:00:00 bone 847 #> 1695 26.1 8 1819 1819-08-01 22:00:00 blood 848 #> 1696 26.1 8 1819 1819-08-01 22:00:00 bone 848 #> 1697 14.9 9 1819 1819-09-01 08:00:01 blood 849 #> 1698 14.9 9 1819 1819-09-01 08:00:01 bone 849 #> 1699 27.5 10 1819 1819-10-01 18:00:00 blood 850 #> 1700 27.5 10 1819 1819-10-01 18:00:00 bone 850 #> 1701 25.1 11 1819 1819-11-01 04:00:00 blood 851 #> 1702 25.1 11 1819 1819-11-01 04:00:00 bone 851 #> 1703 30.6 12 1819 1819-12-01 14:00:01 blood 852 #> 1704 30.6 12 1819 1819-12-01 14:00:01 bone 852 #> 1705 19.2 1 1820 1820-01-01 00:00:00 blood 853 #> 1706 19.2 1 1820 1820-01-01 00:00:00 bone 853 #> 1707 26.6 2 1820 1820-01-31 12:00:00 blood 854 #> 1708 26.6 2 1820 1820-01-31 12:00:00 bone 854 #> 1709 4.5 3 1820 1820-03-02 00:00:01 blood 855 #> 1710 4.5 3 1820 1820-03-02 00:00:01 bone 855 #> 1711 19.4 4 1820 1820-04-01 12:00:00 blood 856 #> 1712 19.4 4 1820 1820-04-01 12:00:00 bone 856 #> 1713 29.3 5 1820 1820-05-02 00:00:00 blood 857 #> 1714 29.3 5 1820 1820-05-02 00:00:00 bone 857 #> 1715 10.8 6 1820 1820-06-01 12:00:01 blood 858 #> 1716 10.8 6 1820 1820-06-01 12:00:01 bone 858 #> 1717 20.6 7 1820 1820-07-02 00:00:00 blood 859 #> 1718 20.6 7 1820 1820-07-02 00:00:00 bone 859 #> 1719 25.9 8 1820 1820-08-01 12:00:00 blood 860 #> 1720 25.9 8 1820 1820-08-01 12:00:00 bone 860 #> 1721 5.2 9 1820 1820-09-01 00:00:01 blood 861 #> 1722 5.2 9 1820 1820-09-01 00:00:01 bone 861 #> 1723 9.0 10 1820 1820-10-01 12:00:00 blood 862 #> 1724 9.0 10 1820 1820-10-01 12:00:00 bone 862 #> 1725 7.9 11 1820 1820-11-01 00:00:00 blood 863 #> 1726 7.9 11 1820 1820-11-01 00:00:00 bone 863 #> 1727 9.7 12 1820 1820-12-01 12:00:01 blood 864 #> 1728 9.7 12 1820 1820-12-01 12:00:01 bone 864 #> 1729 21.5 1 1821 1821-01-01 00:00:00 blood 865 #> 1730 21.5 1 1821 1821-01-01 00:00:00 bone 865 #> 1731 4.3 2 1821 1821-01-31 10:00:00 blood 866 #> 1732 4.3 2 1821 1821-01-31 10:00:00 bone 866 #> 1733 5.7 3 1821 1821-03-02 20:00:01 blood 867 #> 1734 5.7 3 1821 1821-03-02 20:00:01 bone 867 #> 1735 9.2 4 1821 1821-04-02 06:00:00 blood 868 #> 1736 9.2 4 1821 1821-04-02 06:00:00 bone 868 #> 1737 1.7 5 1821 1821-05-02 16:00:00 blood 869 #> 1738 1.7 5 1821 1821-05-02 16:00:00 bone 869 #> 1739 1.8 6 1821 1821-06-02 02:00:01 blood 870 #> 1740 1.8 6 1821 1821-06-02 02:00:01 bone 870 #> 1741 2.5 7 1821 1821-07-02 12:00:00 blood 871 #> 1742 2.5 7 1821 1821-07-02 12:00:00 bone 871 #> 1743 4.8 8 1821 1821-08-01 22:00:00 blood 872 #> 1744 4.8 8 1821 1821-08-01 22:00:00 bone 872 #> 1745 4.4 9 1821 1821-09-01 08:00:01 blood 873 #> 1746 4.4 9 1821 1821-09-01 08:00:01 bone 873 #> 1747 18.8 10 1821 1821-10-01 18:00:00 blood 874 #> 1748 18.8 10 1821 1821-10-01 18:00:00 bone 874 #> 1749 4.4 11 1821 1821-11-01 04:00:00 blood 875 #> 1750 4.4 11 1821 1821-11-01 04:00:00 bone 875 #> 1751 0.0 12 1821 1821-12-01 14:00:01 blood 876 #> 1752 0.0 12 1821 1821-12-01 14:00:01 bone 876 #> 1753 0.0 1 1822 1822-01-01 00:00:00 blood 877 #> 1754 0.0 1 1822 1822-01-01 00:00:00 bone 877 #> 1755 0.9 2 1822 1822-01-31 10:00:00 blood 878 #> 1756 0.9 2 1822 1822-01-31 10:00:00 bone 878 #> 1757 16.1 3 1822 1822-03-02 20:00:01 blood 879 #> 1758 16.1 3 1822 1822-03-02 20:00:01 bone 879 #> 1759 13.5 4 1822 1822-04-02 06:00:00 blood 880 #> 1760 13.5 4 1822 1822-04-02 06:00:00 bone 880 #> 1761 1.5 5 1822 1822-05-02 16:00:00 blood 881 #> 1762 1.5 5 1822 1822-05-02 16:00:00 bone 881 #> 1763 5.6 6 1822 1822-06-02 02:00:01 blood 882 #> 1764 5.6 6 1822 1822-06-02 02:00:01 bone 882 #> 1765 7.9 7 1822 1822-07-02 12:00:00 blood 883 #> 1766 7.9 7 1822 1822-07-02 12:00:00 bone 883 #> 1767 2.1 8 1822 1822-08-01 22:00:00 blood 884 #> 1768 2.1 8 1822 1822-08-01 22:00:00 bone 884 #> 1769 0.0 9 1822 1822-09-01 08:00:01 blood 885 #> 1770 0.0 9 1822 1822-09-01 08:00:01 bone 885 #> 1771 0.4 10 1822 1822-10-01 18:00:00 blood 886 #> 1772 0.4 10 1822 1822-10-01 18:00:00 bone 886 #> 1773 0.0 11 1822 1822-11-01 04:00:00 blood 887 #> 1774 0.0 11 1822 1822-11-01 04:00:00 bone 887 #> 1775 0.0 12 1822 1822-12-01 14:00:01 blood 888 #> 1776 0.0 12 1822 1822-12-01 14:00:01 bone 888 #> 1777 0.0 1 1823 1823-01-01 00:00:00 blood 889 #> 1778 0.0 1 1823 1823-01-01 00:00:00 bone 889 #> 1779 0.0 2 1823 1823-01-31 10:00:00 blood 890 #> 1780 0.0 2 1823 1823-01-31 10:00:00 bone 890 #> 1781 0.6 3 1823 1823-03-02 20:00:01 blood 891 #> 1782 0.6 3 1823 1823-03-02 20:00:01 bone 891 #> 1783 0.0 4 1823 1823-04-02 06:00:00 blood 892 #> 1784 0.0 4 1823 1823-04-02 06:00:00 bone 892 #> 1785 0.0 5 1823 1823-05-02 16:00:00 blood 893 #> 1786 0.0 5 1823 1823-05-02 16:00:00 bone 893 #> 1787 0.0 6 1823 1823-06-02 02:00:01 blood 894 #> 1788 0.0 6 1823 1823-06-02 02:00:01 bone 894 #> 1789 0.5 7 1823 1823-07-02 12:00:00 blood 895 #> 1790 0.5 7 1823 1823-07-02 12:00:00 bone 895 #> 1791 0.0 8 1823 1823-08-01 22:00:00 blood 896 #> 1792 0.0 8 1823 1823-08-01 22:00:00 bone 896 #> 1793 0.0 9 1823 1823-09-01 08:00:01 blood 897 #> 1794 0.0 9 1823 1823-09-01 08:00:01 bone 897 #> 1795 0.0 10 1823 1823-10-01 18:00:00 blood 898 #> 1796 0.0 10 1823 1823-10-01 18:00:00 bone 898 #> 1797 0.0 11 1823 1823-11-01 04:00:00 blood 899 #> 1798 0.0 11 1823 1823-11-01 04:00:00 bone 899 #> 1799 20.4 12 1823 1823-12-01 14:00:01 blood 900 #> 1800 20.4 12 1823 1823-12-01 14:00:01 bone 900 #> 1801 21.6 1 1824 1824-01-01 00:00:00 blood 901 #> 1802 21.6 1 1824 1824-01-01 00:00:00 bone 901 #> 1803 10.8 2 1824 1824-01-31 12:00:00 blood 902 #> 1804 10.8 2 1824 1824-01-31 12:00:00 bone 902 #> 1805 0.0 3 1824 1824-03-02 00:00:01 blood 903 #> 1806 0.0 3 1824 1824-03-02 00:00:01 bone 903 #> 1807 19.4 4 1824 1824-04-01 12:00:00 blood 904 #> 1808 19.4 4 1824 1824-04-01 12:00:00 bone 904 #> 1809 2.8 5 1824 1824-05-02 00:00:00 blood 905 #> 1810 2.8 5 1824 1824-05-02 00:00:00 bone 905 #> 1811 0.0 6 1824 1824-06-01 12:00:01 blood 906 #> 1812 0.0 6 1824 1824-06-01 12:00:01 bone 906 #> 1813 0.0 7 1824 1824-07-02 00:00:00 blood 907 #> 1814 0.0 7 1824 1824-07-02 00:00:00 bone 907 #> 1815 1.4 8 1824 1824-08-01 12:00:00 blood 908 #> 1816 1.4 8 1824 1824-08-01 12:00:00 bone 908 #> 1817 20.5 9 1824 1824-09-01 00:00:01 blood 909 #> 1818 20.5 9 1824 1824-09-01 00:00:01 bone 909 #> 1819 25.2 10 1824 1824-10-01 12:00:00 blood 910 #> 1820 25.2 10 1824 1824-10-01 12:00:00 bone 910 #> 1821 0.0 11 1824 1824-11-01 00:00:00 blood 911 #> 1822 0.0 11 1824 1824-11-01 00:00:00 bone 911 #> 1823 0.8 12 1824 1824-12-01 12:00:01 blood 912 #> 1824 0.8 12 1824 1824-12-01 12:00:01 bone 912 #> 1825 5.0 1 1825 1825-01-01 00:00:00 blood 913 #> 1826 5.0 1 1825 1825-01-01 00:00:00 bone 913 #> 1827 15.5 2 1825 1825-01-31 10:00:00 blood 914 #> 1828 15.5 2 1825 1825-01-31 10:00:00 bone 914 #> 1829 22.4 3 1825 1825-03-02 20:00:01 blood 915 #> 1830 22.4 3 1825 1825-03-02 20:00:01 bone 915 #> 1831 3.8 4 1825 1825-04-02 06:00:00 blood 916 #> 1832 3.8 4 1825 1825-04-02 06:00:00 bone 916 #> 1833 15.4 5 1825 1825-05-02 16:00:00 blood 917 #> 1834 15.4 5 1825 1825-05-02 16:00:00 bone 917 #> 1835 15.4 6 1825 1825-06-02 02:00:01 blood 918 #> 1836 15.4 6 1825 1825-06-02 02:00:01 bone 918 #> 1837 30.9 7 1825 1825-07-02 12:00:00 blood 919 #> 1838 30.9 7 1825 1825-07-02 12:00:00 bone 919 #> 1839 25.4 8 1825 1825-08-01 22:00:00 blood 920 #> 1840 25.4 8 1825 1825-08-01 22:00:00 bone 920 #> 1841 15.7 9 1825 1825-09-01 08:00:01 blood 921 #> 1842 15.7 9 1825 1825-09-01 08:00:01 bone 921 #> 1843 15.6 10 1825 1825-10-01 18:00:00 blood 922 #> 1844 15.6 10 1825 1825-10-01 18:00:00 bone 922 #> 1845 11.7 11 1825 1825-11-01 04:00:00 blood 923 #> 1846 11.7 11 1825 1825-11-01 04:00:00 bone 923 #> 1847 22.0 12 1825 1825-12-01 14:00:01 blood 924 #> 1848 22.0 12 1825 1825-12-01 14:00:01 bone 924 #> 1849 17.7 1 1826 1826-01-01 00:00:00 blood 925 #> 1850 17.7 1 1826 1826-01-01 00:00:00 bone 925 #> 1851 18.2 2 1826 1826-01-31 10:00:00 blood 926 #> 1852 18.2 2 1826 1826-01-31 10:00:00 bone 926 #> 1853 36.7 3 1826 1826-03-02 20:00:01 blood 927 #> 1854 36.7 3 1826 1826-03-02 20:00:01 bone 927 #> 1855 24.0 4 1826 1826-04-02 06:00:00 blood 928 #> 1856 24.0 4 1826 1826-04-02 06:00:00 bone 928 #> 1857 32.4 5 1826 1826-05-02 16:00:00 blood 929 #> 1858 32.4 5 1826 1826-05-02 16:00:00 bone 929 #> 1859 37.1 6 1826 1826-06-02 02:00:01 blood 930 #> 1860 37.1 6 1826 1826-06-02 02:00:01 bone 930 #> 1861 52.5 7 1826 1826-07-02 12:00:00 blood 931 #> 1862 52.5 7 1826 1826-07-02 12:00:00 bone 931 #> 1863 39.6 8 1826 1826-08-01 22:00:00 blood 932 #> 1864 39.6 8 1826 1826-08-01 22:00:00 bone 932 #> 1865 18.9 9 1826 1826-09-01 08:00:01 blood 933 #> 1866 18.9 9 1826 1826-09-01 08:00:01 bone 933 #> 1867 50.6 10 1826 1826-10-01 18:00:00 blood 934 #> 1868 50.6 10 1826 1826-10-01 18:00:00 bone 934 #> 1869 39.5 11 1826 1826-11-01 04:00:00 blood 935 #> 1870 39.5 11 1826 1826-11-01 04:00:00 bone 935 #> 1871 68.1 12 1826 1826-12-01 14:00:01 blood 936 #> 1872 68.1 12 1826 1826-12-01 14:00:01 bone 936 #> 1873 34.6 1 1827 1827-01-01 00:00:00 blood 937 #> 1874 34.6 1 1827 1827-01-01 00:00:00 bone 937 #> 1875 47.4 2 1827 1827-01-31 10:00:00 blood 938 #> 1876 47.4 2 1827 1827-01-31 10:00:00 bone 938 #> 1877 57.8 3 1827 1827-03-02 20:00:01 blood 939 #> 1878 57.8 3 1827 1827-03-02 20:00:01 bone 939 #> 1879 46.0 4 1827 1827-04-02 06:00:00 blood 940 #> 1880 46.0 4 1827 1827-04-02 06:00:00 bone 940 #> 1881 56.3 5 1827 1827-05-02 16:00:00 blood 941 #> 1882 56.3 5 1827 1827-05-02 16:00:00 bone 941 #> 1883 56.7 6 1827 1827-06-02 02:00:01 blood 942 #> 1884 56.7 6 1827 1827-06-02 02:00:01 bone 942 #> 1885 42.9 7 1827 1827-07-02 12:00:00 blood 943 #> 1886 42.9 7 1827 1827-07-02 12:00:00 bone 943 #> 1887 53.7 8 1827 1827-08-01 22:00:00 blood 944 #> 1888 53.7 8 1827 1827-08-01 22:00:00 bone 944 #> 1889 49.6 9 1827 1827-09-01 08:00:01 blood 945 #> 1890 49.6 9 1827 1827-09-01 08:00:01 bone 945 #> 1891 57.2 10 1827 1827-10-01 18:00:00 blood 946 #> 1892 57.2 10 1827 1827-10-01 18:00:00 bone 946 #> 1893 48.2 11 1827 1827-11-01 04:00:00 blood 947 #> 1894 48.2 11 1827 1827-11-01 04:00:00 bone 947 #> 1895 46.1 12 1827 1827-12-01 14:00:01 blood 948 #> 1896 46.1 12 1827 1827-12-01 14:00:01 bone 948 #> 1897 52.8 1 1828 1828-01-01 00:00:00 blood 949 #> 1898 52.8 1 1828 1828-01-01 00:00:00 bone 949 #> 1899 64.4 2 1828 1828-01-31 12:00:00 blood 950 #> 1900 64.4 2 1828 1828-01-31 12:00:00 bone 950 #> 1901 65.0 3 1828 1828-03-02 00:00:01 blood 951 #> 1902 65.0 3 1828 1828-03-02 00:00:01 bone 951 #> 1903 61.1 4 1828 1828-04-01 12:00:00 blood 952 #> 1904 61.1 4 1828 1828-04-01 12:00:00 bone 952 #> 1905 89.1 5 1828 1828-05-02 00:00:00 blood 953 #> 1906 89.1 5 1828 1828-05-02 00:00:00 bone 953 #> 1907 98.0 6 1828 1828-06-01 12:00:01 blood 954 #> 1908 98.0 6 1828 1828-06-01 12:00:01 bone 954 #> 1909 54.3 7 1828 1828-07-02 00:00:00 blood 955 #> 1910 54.3 7 1828 1828-07-02 00:00:00 bone 955 #> 1911 76.4 8 1828 1828-08-01 12:00:00 blood 956 #> 1912 76.4 8 1828 1828-08-01 12:00:00 bone 956 #> 1913 50.4 9 1828 1828-09-01 00:00:01 blood 957 #> 1914 50.4 9 1828 1828-09-01 00:00:01 bone 957 #> 1915 54.7 10 1828 1828-10-01 12:00:00 blood 958 #> 1916 54.7 10 1828 1828-10-01 12:00:00 bone 958 #> 1917 57.0 11 1828 1828-11-01 00:00:00 blood 959 #> 1918 57.0 11 1828 1828-11-01 00:00:00 bone 959 #> 1919 46.6 12 1828 1828-12-01 12:00:01 blood 960 #> 1920 46.6 12 1828 1828-12-01 12:00:01 bone 960 #> 1921 43.0 1 1829 1829-01-01 00:00:00 blood 961 #> 1922 43.0 1 1829 1829-01-01 00:00:00 bone 961 #> 1923 49.4 2 1829 1829-01-31 10:00:00 blood 962 #> 1924 49.4 2 1829 1829-01-31 10:00:00 bone 962 #> 1925 72.3 3 1829 1829-03-02 20:00:01 blood 963 #> 1926 72.3 3 1829 1829-03-02 20:00:01 bone 963 #> 1927 95.0 4 1829 1829-04-02 06:00:00 blood 964 #> 1928 95.0 4 1829 1829-04-02 06:00:00 bone 964 #> 1929 67.5 5 1829 1829-05-02 16:00:00 blood 965 #> 1930 67.5 5 1829 1829-05-02 16:00:00 bone 965 #> 1931 73.9 6 1829 1829-06-02 02:00:01 blood 966 #> 1932 73.9 6 1829 1829-06-02 02:00:01 bone 966 #> 1933 90.8 7 1829 1829-07-02 12:00:00 blood 967 #> 1934 90.8 7 1829 1829-07-02 12:00:00 bone 967 #> 1935 78.3 8 1829 1829-08-01 22:00:00 blood 968 #> 1936 78.3 8 1829 1829-08-01 22:00:00 bone 968 #> 1937 52.8 9 1829 1829-09-01 08:00:01 blood 969 #> 1938 52.8 9 1829 1829-09-01 08:00:01 bone 969 #> 1939 57.2 10 1829 1829-10-01 18:00:00 blood 970 #> 1940 57.2 10 1829 1829-10-01 18:00:00 bone 970 #> 1941 67.6 11 1829 1829-11-01 04:00:00 blood 971 #> 1942 67.6 11 1829 1829-11-01 04:00:00 bone 971 #> 1943 56.5 12 1829 1829-12-01 14:00:01 blood 972 #> 1944 56.5 12 1829 1829-12-01 14:00:01 bone 972 #> 1945 52.2 1 1830 1830-01-01 00:00:00 blood 973 #> 1946 52.2 1 1830 1830-01-01 00:00:00 bone 973 #> 1947 72.1 2 1830 1830-01-31 10:00:00 blood 974 #> 1948 72.1 2 1830 1830-01-31 10:00:00 bone 974 #> 1949 84.6 3 1830 1830-03-02 20:00:01 blood 975 #> 1950 84.6 3 1830 1830-03-02 20:00:01 bone 975 #> 1951 107.1 4 1830 1830-04-02 06:00:00 blood 976 #> 1952 107.1 4 1830 1830-04-02 06:00:00 bone 976 #> 1953 66.3 5 1830 1830-05-02 16:00:00 blood 977 #> 1954 66.3 5 1830 1830-05-02 16:00:00 bone 977 #> 1955 65.1 6 1830 1830-06-02 02:00:01 blood 978 #> 1956 65.1 6 1830 1830-06-02 02:00:01 bone 978 #> 1957 43.9 7 1830 1830-07-02 12:00:00 blood 979 #> 1958 43.9 7 1830 1830-07-02 12:00:00 bone 979 #> 1959 50.7 8 1830 1830-08-01 22:00:00 blood 980 #> 1960 50.7 8 1830 1830-08-01 22:00:00 bone 980 #> 1961 62.1 9 1830 1830-09-01 08:00:01 blood 981 #> 1962 62.1 9 1830 1830-09-01 08:00:01 bone 981 #> 1963 84.4 10 1830 1830-10-01 18:00:00 blood 982 #> 1964 84.4 10 1830 1830-10-01 18:00:00 bone 982 #> 1965 81.2 11 1830 1830-11-01 04:00:00 blood 983 #> 1966 81.2 11 1830 1830-11-01 04:00:00 bone 983 #> 1967 82.1 12 1830 1830-12-01 14:00:01 blood 984 #> 1968 82.1 12 1830 1830-12-01 14:00:01 bone 984 #> 1969 47.5 1 1831 1831-01-01 00:00:00 blood 985 #> 1970 47.5 1 1831 1831-01-01 00:00:00 bone 985 #> 1971 50.1 2 1831 1831-01-31 10:00:00 blood 986 #> 1972 50.1 2 1831 1831-01-31 10:00:00 bone 986 #> 1973 93.4 3 1831 1831-03-02 20:00:01 blood 987 #> 1974 93.4 3 1831 1831-03-02 20:00:01 bone 987 #> 1975 54.6 4 1831 1831-04-02 06:00:00 blood 988 #> 1976 54.6 4 1831 1831-04-02 06:00:00 bone 988 #> 1977 38.1 5 1831 1831-05-02 16:00:00 blood 989 #> 1978 38.1 5 1831 1831-05-02 16:00:00 bone 989 #> 1979 33.4 6 1831 1831-06-02 02:00:01 blood 990 #> 1980 33.4 6 1831 1831-06-02 02:00:01 bone 990 #> 1981 45.2 7 1831 1831-07-02 12:00:00 blood 991 #> 1982 45.2 7 1831 1831-07-02 12:00:00 bone 991 #> 1983 54.9 8 1831 1831-08-01 22:00:00 blood 992 #> 1984 54.9 8 1831 1831-08-01 22:00:00 bone 992 #> 1985 37.9 9 1831 1831-09-01 08:00:01 blood 993 #> 1986 37.9 9 1831 1831-09-01 08:00:01 bone 993 #> 1987 46.2 10 1831 1831-10-01 18:00:00 blood 994 #> 1988 46.2 10 1831 1831-10-01 18:00:00 bone 994 #> 1989 43.5 11 1831 1831-11-01 04:00:00 blood 995 #> 1990 43.5 11 1831 1831-11-01 04:00:00 bone 995 #> 1991 28.9 12 1831 1831-12-01 14:00:01 blood 996 #> 1992 28.9 12 1831 1831-12-01 14:00:01 bone 996 #> 1993 30.9 1 1832 1832-01-01 00:00:00 blood 997 #> 1994 30.9 1 1832 1832-01-01 00:00:00 bone 997 #> 1995 55.5 2 1832 1832-01-31 12:00:00 blood 998 #> 1996 55.5 2 1832 1832-01-31 12:00:00 bone 998 #> 1997 55.1 3 1832 1832-03-02 00:00:01 blood 999 #> 1998 55.1 3 1832 1832-03-02 00:00:01 bone 999 #> 1999 26.9 4 1832 1832-04-01 12:00:00 blood 1000 #> 2000 26.9 4 1832 1832-04-01 12:00:00 bone 1000 #> 2001 41.3 5 1832 1832-05-02 00:00:00 blood 1001 #> 2002 41.3 5 1832 1832-05-02 00:00:00 bone 1001 #> 2003 26.7 6 1832 1832-06-01 12:00:01 blood 1002 #> 2004 26.7 6 1832 1832-06-01 12:00:01 bone 1002 #> 2005 13.9 7 1832 1832-07-02 00:00:00 blood 1003 #> 2006 13.9 7 1832 1832-07-02 00:00:00 bone 1003 #> 2007 8.9 8 1832 1832-08-01 12:00:00 blood 1004 #> 2008 8.9 8 1832 1832-08-01 12:00:00 bone 1004 #> 2009 8.2 9 1832 1832-09-01 00:00:01 blood 1005 #> 2010 8.2 9 1832 1832-09-01 00:00:01 bone 1005 #> 2011 21.1 10 1832 1832-10-01 12:00:00 blood 1006 #> 2012 21.1 10 1832 1832-10-01 12:00:00 bone 1006 #> 2013 14.3 11 1832 1832-11-01 00:00:00 blood 1007 #> 2014 14.3 11 1832 1832-11-01 00:00:00 bone 1007 #> 2015 27.5 12 1832 1832-12-01 12:00:01 blood 1008 #> 2016 27.5 12 1832 1832-12-01 12:00:01 bone 1008 #> 2017 11.3 1 1833 1833-01-01 00:00:00 blood 1009 #> 2018 11.3 1 1833 1833-01-01 00:00:00 bone 1009 #> 2019 14.9 2 1833 1833-01-31 10:00:00 blood 1010 #> 2020 14.9 2 1833 1833-01-31 10:00:00 bone 1010 #> 2021 11.8 3 1833 1833-03-02 20:00:01 blood 1011 #> 2022 11.8 3 1833 1833-03-02 20:00:01 bone 1011 #> 2023 2.8 4 1833 1833-04-02 06:00:00 blood 1012 #> 2024 2.8 4 1833 1833-04-02 06:00:00 bone 1012 #> 2025 12.9 5 1833 1833-05-02 16:00:00 blood 1013 #> 2026 12.9 5 1833 1833-05-02 16:00:00 bone 1013 #> 2027 1.0 6 1833 1833-06-02 02:00:01 blood 1014 #> 2028 1.0 6 1833 1833-06-02 02:00:01 bone 1014 #> 2029 7.0 7 1833 1833-07-02 12:00:00 blood 1015 #> 2030 7.0 7 1833 1833-07-02 12:00:00 bone 1015 #> 2031 5.7 8 1833 1833-08-01 22:00:00 blood 1016 #> 2032 5.7 8 1833 1833-08-01 22:00:00 bone 1016 #> 2033 11.6 9 1833 1833-09-01 08:00:01 blood 1017 #> 2034 11.6 9 1833 1833-09-01 08:00:01 bone 1017 #> 2035 7.5 10 1833 1833-10-01 18:00:00 blood 1018 #> 2036 7.5 10 1833 1833-10-01 18:00:00 bone 1018 #> 2037 5.9 11 1833 1833-11-01 04:00:00 blood 1019 #> 2038 5.9 11 1833 1833-11-01 04:00:00 bone 1019 #> 2039 9.9 12 1833 1833-12-01 14:00:01 blood 1020 #> 2040 9.9 12 1833 1833-12-01 14:00:01 bone 1020 #> 2041 4.9 1 1834 1834-01-01 00:00:00 blood 1021 #> 2042 4.9 1 1834 1834-01-01 00:00:00 bone 1021 #> 2043 18.1 2 1834 1834-01-31 10:00:00 blood 1022 #> 2044 18.1 2 1834 1834-01-31 10:00:00 bone 1022 #> 2045 3.9 3 1834 1834-03-02 20:00:01 blood 1023 #> 2046 3.9 3 1834 1834-03-02 20:00:01 bone 1023 #> 2047 1.4 4 1834 1834-04-02 06:00:00 blood 1024 #> 2048 1.4 4 1834 1834-04-02 06:00:00 bone 1024 #> 2049 8.8 5 1834 1834-05-02 16:00:00 blood 1025 #> 2050 8.8 5 1834 1834-05-02 16:00:00 bone 1025 #> 2051 7.8 6 1834 1834-06-02 02:00:01 blood 1026 #> 2052 7.8 6 1834 1834-06-02 02:00:01 bone 1026 #> 2053 8.7 7 1834 1834-07-02 12:00:00 blood 1027 #> 2054 8.7 7 1834 1834-07-02 12:00:00 bone 1027 #> 2055 4.0 8 1834 1834-08-01 22:00:00 blood 1028 #> 2056 4.0 8 1834 1834-08-01 22:00:00 bone 1028 #> 2057 11.5 9 1834 1834-09-01 08:00:01 blood 1029 #> 2058 11.5 9 1834 1834-09-01 08:00:01 bone 1029 #> 2059 24.8 10 1834 1834-10-01 18:00:00 blood 1030 #> 2060 24.8 10 1834 1834-10-01 18:00:00 bone 1030 #> 2061 30.5 11 1834 1834-11-01 04:00:00 blood 1031 #> 2062 30.5 11 1834 1834-11-01 04:00:00 bone 1031 #> 2063 34.5 12 1834 1834-12-01 14:00:01 blood 1032 #> 2064 34.5 12 1834 1834-12-01 14:00:01 bone 1032 #> 2065 7.5 1 1835 1835-01-01 00:00:00 blood 1033 #> 2066 7.5 1 1835 1835-01-01 00:00:00 bone 1033 #> 2067 24.5 2 1835 1835-01-31 10:00:00 blood 1034 #> 2068 24.5 2 1835 1835-01-31 10:00:00 bone 1034 #> 2069 19.7 3 1835 1835-03-02 20:00:01 blood 1035 #> 2070 19.7 3 1835 1835-03-02 20:00:01 bone 1035 #> 2071 61.5 4 1835 1835-04-02 06:00:00 blood 1036 #> 2072 61.5 4 1835 1835-04-02 06:00:00 bone 1036 #> 2073 43.6 5 1835 1835-05-02 16:00:00 blood 1037 #> 2074 43.6 5 1835 1835-05-02 16:00:00 bone 1037 #> 2075 33.2 6 1835 1835-06-02 02:00:01 blood 1038 #> 2076 33.2 6 1835 1835-06-02 02:00:01 bone 1038 #> 2077 59.8 7 1835 1835-07-02 12:00:00 blood 1039 #> 2078 59.8 7 1835 1835-07-02 12:00:00 bone 1039 #> 2079 59.0 8 1835 1835-08-01 22:00:00 blood 1040 #> 2080 59.0 8 1835 1835-08-01 22:00:00 bone 1040 #> 2081 100.8 9 1835 1835-09-01 08:00:01 blood 1041 #> 2082 100.8 9 1835 1835-09-01 08:00:01 bone 1041 #> 2083 95.2 10 1835 1835-10-01 18:00:00 blood 1042 #> 2084 95.2 10 1835 1835-10-01 18:00:00 bone 1042 #> 2085 100.0 11 1835 1835-11-01 04:00:00 blood 1043 #> 2086 100.0 11 1835 1835-11-01 04:00:00 bone 1043 #> 2087 77.5 12 1835 1835-12-01 14:00:01 blood 1044 #> 2088 77.5 12 1835 1835-12-01 14:00:01 bone 1044 #> 2089 88.6 1 1836 1836-01-01 00:00:00 blood 1045 #> 2090 88.6 1 1836 1836-01-01 00:00:00 bone 1045 #> 2091 107.6 2 1836 1836-01-31 12:00:00 blood 1046 #> 2092 107.6 2 1836 1836-01-31 12:00:00 bone 1046 #> 2093 98.1 3 1836 1836-03-02 00:00:01 blood 1047 #> 2094 98.1 3 1836 1836-03-02 00:00:01 bone 1047 #> 2095 142.9 4 1836 1836-04-01 12:00:00 blood 1048 #> 2096 142.9 4 1836 1836-04-01 12:00:00 bone 1048 #> 2097 111.4 5 1836 1836-05-02 00:00:00 blood 1049 #> 2098 111.4 5 1836 1836-05-02 00:00:00 bone 1049 #> 2099 124.7 6 1836 1836-06-01 12:00:01 blood 1050 #> 2100 124.7 6 1836 1836-06-01 12:00:01 bone 1050 #> 2101 116.7 7 1836 1836-07-02 00:00:00 blood 1051 #> 2102 116.7 7 1836 1836-07-02 00:00:00 bone 1051 #> 2103 107.8 8 1836 1836-08-01 12:00:00 blood 1052 #> 2104 107.8 8 1836 1836-08-01 12:00:00 bone 1052 #> 2105 95.1 9 1836 1836-09-01 00:00:01 blood 1053 #> 2106 95.1 9 1836 1836-09-01 00:00:01 bone 1053 #> 2107 137.4 10 1836 1836-10-01 12:00:00 blood 1054 #> 2108 137.4 10 1836 1836-10-01 12:00:00 bone 1054 #> 2109 120.9 11 1836 1836-11-01 00:00:00 blood 1055 #> 2110 120.9 11 1836 1836-11-01 00:00:00 bone 1055 #> 2111 206.2 12 1836 1836-12-01 12:00:01 blood 1056 #> 2112 206.2 12 1836 1836-12-01 12:00:01 bone 1056 #> 2113 188.0 1 1837 1837-01-01 00:00:00 blood 1057 #> 2114 188.0 1 1837 1837-01-01 00:00:00 bone 1057 #> 2115 175.6 2 1837 1837-01-31 10:00:00 blood 1058 #> 2116 175.6 2 1837 1837-01-31 10:00:00 bone 1058 #> 2117 134.6 3 1837 1837-03-02 20:00:01 blood 1059 #> 2118 134.6 3 1837 1837-03-02 20:00:01 bone 1059 #> 2119 138.2 4 1837 1837-04-02 06:00:00 blood 1060 #> 2120 138.2 4 1837 1837-04-02 06:00:00 bone 1060 #> 2121 111.3 5 1837 1837-05-02 16:00:00 blood 1061 #> 2122 111.3 5 1837 1837-05-02 16:00:00 bone 1061 #> 2123 158.0 6 1837 1837-06-02 02:00:01 blood 1062 #> 2124 158.0 6 1837 1837-06-02 02:00:01 bone 1062 #> 2125 162.8 7 1837 1837-07-02 12:00:00 blood 1063 #> 2126 162.8 7 1837 1837-07-02 12:00:00 bone 1063 #> 2127 134.0 8 1837 1837-08-01 22:00:00 blood 1064 #> 2128 134.0 8 1837 1837-08-01 22:00:00 bone 1064 #> 2129 96.3 9 1837 1837-09-01 08:00:01 blood 1065 #> 2130 96.3 9 1837 1837-09-01 08:00:01 bone 1065 #> 2131 123.7 10 1837 1837-10-01 18:00:00 blood 1066 #> 2132 123.7 10 1837 1837-10-01 18:00:00 bone 1066 #> 2133 107.0 11 1837 1837-11-01 04:00:00 blood 1067 #> 2134 107.0 11 1837 1837-11-01 04:00:00 bone 1067 #> 2135 129.8 12 1837 1837-12-01 14:00:01 blood 1068 #> 2136 129.8 12 1837 1837-12-01 14:00:01 bone 1068 #> 2137 144.9 1 1838 1838-01-01 00:00:00 blood 1069 #> 2138 144.9 1 1838 1838-01-01 00:00:00 bone 1069 #> 2139 84.8 2 1838 1838-01-31 10:00:00 blood 1070 #> 2140 84.8 2 1838 1838-01-31 10:00:00 bone 1070 #> 2141 140.8 3 1838 1838-03-02 20:00:01 blood 1071 #> 2142 140.8 3 1838 1838-03-02 20:00:01 bone 1071 #> 2143 126.6 4 1838 1838-04-02 06:00:00 blood 1072 #> 2144 126.6 4 1838 1838-04-02 06:00:00 bone 1072 #> 2145 137.6 5 1838 1838-05-02 16:00:00 blood 1073 #> 2146 137.6 5 1838 1838-05-02 16:00:00 bone 1073 #> 2147 94.5 6 1838 1838-06-02 02:00:01 blood 1074 #> 2148 94.5 6 1838 1838-06-02 02:00:01 bone 1074 #> 2149 108.2 7 1838 1838-07-02 12:00:00 blood 1075 #> 2150 108.2 7 1838 1838-07-02 12:00:00 bone 1075 #> 2151 78.8 8 1838 1838-08-01 22:00:00 blood 1076 #> 2152 78.8 8 1838 1838-08-01 22:00:00 bone 1076 #> 2153 73.6 9 1838 1838-09-01 08:00:01 blood 1077 #> 2154 73.6 9 1838 1838-09-01 08:00:01 bone 1077 #> 2155 90.8 10 1838 1838-10-01 18:00:00 blood 1078 #> 2156 90.8 10 1838 1838-10-01 18:00:00 bone 1078 #> 2157 77.4 11 1838 1838-11-01 04:00:00 blood 1079 #> 2158 77.4 11 1838 1838-11-01 04:00:00 bone 1079 #> 2159 79.8 12 1838 1838-12-01 14:00:01 blood 1080 #> 2160 79.8 12 1838 1838-12-01 14:00:01 bone 1080 #> 2161 107.6 1 1839 1839-01-01 00:00:00 blood 1081 #> 2162 107.6 1 1839 1839-01-01 00:00:00 bone 1081 #> 2163 102.5 2 1839 1839-01-31 10:00:00 blood 1082 #> 2164 102.5 2 1839 1839-01-31 10:00:00 bone 1082 #> 2165 77.7 3 1839 1839-03-02 20:00:01 blood 1083 #> 2166 77.7 3 1839 1839-03-02 20:00:01 bone 1083 #> 2167 61.8 4 1839 1839-04-02 06:00:00 blood 1084 #> 2168 61.8 4 1839 1839-04-02 06:00:00 bone 1084 #> 2169 53.8 5 1839 1839-05-02 16:00:00 blood 1085 #> 2170 53.8 5 1839 1839-05-02 16:00:00 bone 1085 #> 2171 54.6 6 1839 1839-06-02 02:00:01 blood 1086 #> 2172 54.6 6 1839 1839-06-02 02:00:01 bone 1086 #> 2173 84.7 7 1839 1839-07-02 12:00:00 blood 1087 #> 2174 84.7 7 1839 1839-07-02 12:00:00 bone 1087 #> 2175 131.2 8 1839 1839-08-01 22:00:00 blood 1088 #> 2176 131.2 8 1839 1839-08-01 22:00:00 bone 1088 #> 2177 132.7 9 1839 1839-09-01 08:00:01 blood 1089 #> 2178 132.7 9 1839 1839-09-01 08:00:01 bone 1089 #> 2179 90.8 10 1839 1839-10-01 18:00:00 blood 1090 #> 2180 90.8 10 1839 1839-10-01 18:00:00 bone 1090 #> 2181 68.8 11 1839 1839-11-01 04:00:00 blood 1091 #> 2182 68.8 11 1839 1839-11-01 04:00:00 bone 1091 #> 2183 63.6 12 1839 1839-12-01 14:00:01 blood 1092 #> 2184 63.6 12 1839 1839-12-01 14:00:01 bone 1092 #> 2185 81.2 1 1840 1840-01-01 00:00:00 blood 1093 #> 2186 81.2 1 1840 1840-01-01 00:00:00 bone 1093 #> 2187 87.7 2 1840 1840-01-31 12:00:00 blood 1094 #> 2188 87.7 2 1840 1840-01-31 12:00:00 bone 1094 #> 2189 55.5 3 1840 1840-03-02 00:00:01 blood 1095 #> 2190 55.5 3 1840 1840-03-02 00:00:01 bone 1095 #> 2191 65.9 4 1840 1840-04-01 12:00:00 blood 1096 #> 2192 65.9 4 1840 1840-04-01 12:00:00 bone 1096 #> 2193 69.2 5 1840 1840-05-02 00:00:00 blood 1097 #> 2194 69.2 5 1840 1840-05-02 00:00:00 bone 1097 #> 2195 48.5 6 1840 1840-06-01 12:00:01 blood 1098 #> 2196 48.5 6 1840 1840-06-01 12:00:01 bone 1098 #> 2197 60.7 7 1840 1840-07-02 00:00:00 blood 1099 #> 2198 60.7 7 1840 1840-07-02 00:00:00 bone 1099 #> 2199 57.8 8 1840 1840-08-01 12:00:00 blood 1100 #> 2200 57.8 8 1840 1840-08-01 12:00:00 bone 1100 #> 2201 74.0 9 1840 1840-09-01 00:00:01 blood 1101 #> 2202 74.0 9 1840 1840-09-01 00:00:01 bone 1101 #> 2203 49.8 10 1840 1840-10-01 12:00:00 blood 1102 #> 2204 49.8 10 1840 1840-10-01 12:00:00 bone 1102 #> 2205 54.3 11 1840 1840-11-01 00:00:00 blood 1103 #> 2206 54.3 11 1840 1840-11-01 00:00:00 bone 1103 #> 2207 53.7 12 1840 1840-12-01 12:00:01 blood 1104 #> 2208 53.7 12 1840 1840-12-01 12:00:01 bone 1104 #> 2209 24.0 1 1841 1841-01-01 00:00:00 blood 1105 #> 2210 24.0 1 1841 1841-01-01 00:00:00 bone 1105 #> 2211 29.9 2 1841 1841-01-31 10:00:00 blood 1106 #> 2212 29.9 2 1841 1841-01-31 10:00:00 bone 1106 #> 2213 29.7 3 1841 1841-03-02 20:00:01 blood 1107 #> 2214 29.7 3 1841 1841-03-02 20:00:01 bone 1107 #> 2215 42.6 4 1841 1841-04-02 06:00:00 blood 1108 #> 2216 42.6 4 1841 1841-04-02 06:00:00 bone 1108 #> 2217 67.4 5 1841 1841-05-02 16:00:00 blood 1109 #> 2218 67.4 5 1841 1841-05-02 16:00:00 bone 1109 #> 2219 55.7 6 1841 1841-06-02 02:00:01 blood 1110 #> 2220 55.7 6 1841 1841-06-02 02:00:01 bone 1110 #> 2221 30.8 7 1841 1841-07-02 12:00:00 blood 1111 #> 2222 30.8 7 1841 1841-07-02 12:00:00 bone 1111 #> 2223 39.3 8 1841 1841-08-01 22:00:00 blood 1112 #> 2224 39.3 8 1841 1841-08-01 22:00:00 bone 1112 #> 2225 35.1 9 1841 1841-09-01 08:00:01 blood 1113 #> 2226 35.1 9 1841 1841-09-01 08:00:01 bone 1113 #> 2227 28.5 10 1841 1841-10-01 18:00:00 blood 1114 #> 2228 28.5 10 1841 1841-10-01 18:00:00 bone 1114 #> 2229 19.8 11 1841 1841-11-01 04:00:00 blood 1115 #> 2230 19.8 11 1841 1841-11-01 04:00:00 bone 1115 #> 2231 38.8 12 1841 1841-12-01 14:00:01 blood 1116 #> 2232 38.8 12 1841 1841-12-01 14:00:01 bone 1116 #> 2233 20.4 1 1842 1842-01-01 00:00:00 blood 1117 #> 2234 20.4 1 1842 1842-01-01 00:00:00 bone 1117 #> 2235 22.1 2 1842 1842-01-31 10:00:00 blood 1118 #> 2236 22.1 2 1842 1842-01-31 10:00:00 bone 1118 #> 2237 21.7 3 1842 1842-03-02 20:00:01 blood 1119 #> 2238 21.7 3 1842 1842-03-02 20:00:01 bone 1119 #> 2239 26.9 4 1842 1842-04-02 06:00:00 blood 1120 #> 2240 26.9 4 1842 1842-04-02 06:00:00 bone 1120 #> 2241 24.9 5 1842 1842-05-02 16:00:00 blood 1121 #> 2242 24.9 5 1842 1842-05-02 16:00:00 bone 1121 #> 2243 20.5 6 1842 1842-06-02 02:00:01 blood 1122 #> 2244 20.5 6 1842 1842-06-02 02:00:01 bone 1122 #> 2245 12.6 7 1842 1842-07-02 12:00:00 blood 1123 #> 2246 12.6 7 1842 1842-07-02 12:00:00 bone 1123 #> 2247 26.5 8 1842 1842-08-01 22:00:00 blood 1124 #> 2248 26.5 8 1842 1842-08-01 22:00:00 bone 1124 #> 2249 18.5 9 1842 1842-09-01 08:00:01 blood 1125 #> 2250 18.5 9 1842 1842-09-01 08:00:01 bone 1125 #> 2251 38.1 10 1842 1842-10-01 18:00:00 blood 1126 #> 2252 38.1 10 1842 1842-10-01 18:00:00 bone 1126 #> 2253 40.5 11 1842 1842-11-01 04:00:00 blood 1127 #> 2254 40.5 11 1842 1842-11-01 04:00:00 bone 1127 #> 2255 17.6 12 1842 1842-12-01 14:00:01 blood 1128 #> 2256 17.6 12 1842 1842-12-01 14:00:01 bone 1128 #> 2257 13.3 1 1843 1843-01-01 00:00:00 blood 1129 #> 2258 13.3 1 1843 1843-01-01 00:00:00 bone 1129 #> 2259 3.5 2 1843 1843-01-31 10:00:00 blood 1130 #> 2260 3.5 2 1843 1843-01-31 10:00:00 bone 1130 #> 2261 8.3 3 1843 1843-03-02 20:00:01 blood 1131 #> 2262 8.3 3 1843 1843-03-02 20:00:01 bone 1131 #> 2263 8.8 4 1843 1843-04-02 06:00:00 blood 1132 #> 2264 8.8 4 1843 1843-04-02 06:00:00 bone 1132 #> 2265 21.1 5 1843 1843-05-02 16:00:00 blood 1133 #> 2266 21.1 5 1843 1843-05-02 16:00:00 bone 1133 #> 2267 10.5 6 1843 1843-06-02 02:00:01 blood 1134 #> 2268 10.5 6 1843 1843-06-02 02:00:01 bone 1134 #> 2269 9.5 7 1843 1843-07-02 12:00:00 blood 1135 #> 2270 9.5 7 1843 1843-07-02 12:00:00 bone 1135 #> 2271 11.8 8 1843 1843-08-01 22:00:00 blood 1136 #> 2272 11.8 8 1843 1843-08-01 22:00:00 bone 1136 #> 2273 4.2 9 1843 1843-09-01 08:00:01 blood 1137 #> 2274 4.2 9 1843 1843-09-01 08:00:01 bone 1137 #> 2275 5.3 10 1843 1843-10-01 18:00:00 blood 1138 #> 2276 5.3 10 1843 1843-10-01 18:00:00 bone 1138 #> 2277 19.1 11 1843 1843-11-01 04:00:00 blood 1139 #> 2278 19.1 11 1843 1843-11-01 04:00:00 bone 1139 #> 2279 12.7 12 1843 1843-12-01 14:00:01 blood 1140 #> 2280 12.7 12 1843 1843-12-01 14:00:01 bone 1140 #> 2281 9.4 1 1844 1844-01-01 00:00:00 blood 1141 #> 2282 9.4 1 1844 1844-01-01 00:00:00 bone 1141 #> 2283 14.7 2 1844 1844-01-31 12:00:00 blood 1142 #> 2284 14.7 2 1844 1844-01-31 12:00:00 bone 1142 #> 2285 13.6 3 1844 1844-03-02 00:00:01 blood 1143 #> 2286 13.6 3 1844 1844-03-02 00:00:01 bone 1143 #> 2287 20.8 4 1844 1844-04-01 12:00:00 blood 1144 #> 2288 20.8 4 1844 1844-04-01 12:00:00 bone 1144 #> 2289 12.0 5 1844 1844-05-02 00:00:00 blood 1145 #> 2290 12.0 5 1844 1844-05-02 00:00:00 bone 1145 #> 2291 3.7 6 1844 1844-06-01 12:00:01 blood 1146 #> 2292 3.7 6 1844 1844-06-01 12:00:01 bone 1146 #> 2293 21.2 7 1844 1844-07-02 00:00:00 blood 1147 #> 2294 21.2 7 1844 1844-07-02 00:00:00 bone 1147 #> 2295 23.9 8 1844 1844-08-01 12:00:00 blood 1148 #> 2296 23.9 8 1844 1844-08-01 12:00:00 bone 1148 #> 2297 6.9 9 1844 1844-09-01 00:00:01 blood 1149 #> 2298 6.9 9 1844 1844-09-01 00:00:01 bone 1149 #> 2299 21.5 10 1844 1844-10-01 12:00:00 blood 1150 #> 2300 21.5 10 1844 1844-10-01 12:00:00 bone 1150 #> 2301 10.7 11 1844 1844-11-01 00:00:00 blood 1151 #> 2302 10.7 11 1844 1844-11-01 00:00:00 bone 1151 #> 2303 21.6 12 1844 1844-12-01 12:00:01 blood 1152 #> 2304 21.6 12 1844 1844-12-01 12:00:01 bone 1152 #> 2305 25.7 1 1845 1845-01-01 00:00:00 blood 1153 #> 2306 25.7 1 1845 1845-01-01 00:00:00 bone 1153 #> 2307 43.6 2 1845 1845-01-31 10:00:00 blood 1154 #> 2308 43.6 2 1845 1845-01-31 10:00:00 bone 1154 #> 2309 43.3 3 1845 1845-03-02 20:00:01 blood 1155 #> 2310 43.3 3 1845 1845-03-02 20:00:01 bone 1155 #> 2311 56.9 4 1845 1845-04-02 06:00:00 blood 1156 #> 2312 56.9 4 1845 1845-04-02 06:00:00 bone 1156 #> 2313 47.8 5 1845 1845-05-02 16:00:00 blood 1157 #> 2314 47.8 5 1845 1845-05-02 16:00:00 bone 1157 #> 2315 31.1 6 1845 1845-06-02 02:00:01 blood 1158 #> 2316 31.1 6 1845 1845-06-02 02:00:01 bone 1158 #> 2317 30.6 7 1845 1845-07-02 12:00:00 blood 1159 #> 2318 30.6 7 1845 1845-07-02 12:00:00 bone 1159 #> 2319 32.3 8 1845 1845-08-01 22:00:00 blood 1160 #> 2320 32.3 8 1845 1845-08-01 22:00:00 bone 1160 #> 2321 29.6 9 1845 1845-09-01 08:00:01 blood 1161 #> 2322 29.6 9 1845 1845-09-01 08:00:01 bone 1161 #> 2323 40.7 10 1845 1845-10-01 18:00:00 blood 1162 #> 2324 40.7 10 1845 1845-10-01 18:00:00 bone 1162 #> 2325 39.4 11 1845 1845-11-01 04:00:00 blood 1163 #> 2326 39.4 11 1845 1845-11-01 04:00:00 bone 1163 #> 2327 59.7 12 1845 1845-12-01 14:00:01 blood 1164 #> 2328 59.7 12 1845 1845-12-01 14:00:01 bone 1164 #> 2329 38.7 1 1846 1846-01-01 00:00:00 blood 1165 #> 2330 38.7 1 1846 1846-01-01 00:00:00 bone 1165 #> 2331 51.0 2 1846 1846-01-31 10:00:00 blood 1166 #> 2332 51.0 2 1846 1846-01-31 10:00:00 bone 1166 #> 2333 63.9 3 1846 1846-03-02 20:00:01 blood 1167 #> 2334 63.9 3 1846 1846-03-02 20:00:01 bone 1167 #> 2335 69.2 4 1846 1846-04-02 06:00:00 blood 1168 #> 2336 69.2 4 1846 1846-04-02 06:00:00 bone 1168 #> 2337 59.9 5 1846 1846-05-02 16:00:00 blood 1169 #> 2338 59.9 5 1846 1846-05-02 16:00:00 bone 1169 #> 2339 65.1 6 1846 1846-06-02 02:00:01 blood 1170 #> 2340 65.1 6 1846 1846-06-02 02:00:01 bone 1170 #> 2341 46.5 7 1846 1846-07-02 12:00:00 blood 1171 #> 2342 46.5 7 1846 1846-07-02 12:00:00 bone 1171 #> 2343 54.8 8 1846 1846-08-01 22:00:00 blood 1172 #> 2344 54.8 8 1846 1846-08-01 22:00:00 bone 1172 #> 2345 107.1 9 1846 1846-09-01 08:00:01 blood 1173 #> 2346 107.1 9 1846 1846-09-01 08:00:01 bone 1173 #> 2347 55.9 10 1846 1846-10-01 18:00:00 blood 1174 #> 2348 55.9 10 1846 1846-10-01 18:00:00 bone 1174 #> 2349 60.4 11 1846 1846-11-01 04:00:00 blood 1175 #> 2350 60.4 11 1846 1846-11-01 04:00:00 bone 1175 #> 2351 65.5 12 1846 1846-12-01 14:00:01 blood 1176 #> 2352 65.5 12 1846 1846-12-01 14:00:01 bone 1176 #> 2353 62.6 1 1847 1847-01-01 00:00:00 blood 1177 #> 2354 62.6 1 1847 1847-01-01 00:00:00 bone 1177 #> 2355 44.9 2 1847 1847-01-31 10:00:00 blood 1178 #> 2356 44.9 2 1847 1847-01-31 10:00:00 bone 1178 #> 2357 85.7 3 1847 1847-03-02 20:00:01 blood 1179 #> 2358 85.7 3 1847 1847-03-02 20:00:01 bone 1179 #> 2359 44.7 4 1847 1847-04-02 06:00:00 blood 1180 #> 2360 44.7 4 1847 1847-04-02 06:00:00 bone 1180 #> 2361 75.4 5 1847 1847-05-02 16:00:00 blood 1181 #> 2362 75.4 5 1847 1847-05-02 16:00:00 bone 1181 #> 2363 85.3 6 1847 1847-06-02 02:00:01 blood 1182 #> 2364 85.3 6 1847 1847-06-02 02:00:01 bone 1182 #> 2365 52.2 7 1847 1847-07-02 12:00:00 blood 1183 #> 2366 52.2 7 1847 1847-07-02 12:00:00 bone 1183 #> 2367 140.6 8 1847 1847-08-01 22:00:00 blood 1184 #> 2368 140.6 8 1847 1847-08-01 22:00:00 bone 1184 #> 2369 161.2 9 1847 1847-09-01 08:00:01 blood 1185 #> 2370 161.2 9 1847 1847-09-01 08:00:01 bone 1185 #> 2371 180.4 10 1847 1847-10-01 18:00:00 blood 1186 #> 2372 180.4 10 1847 1847-10-01 18:00:00 bone 1186 #> 2373 138.9 11 1847 1847-11-01 04:00:00 blood 1187 #> 2374 138.9 11 1847 1847-11-01 04:00:00 bone 1187 #> 2375 109.6 12 1847 1847-12-01 14:00:01 blood 1188 #> 2376 109.6 12 1847 1847-12-01 14:00:01 bone 1188 #> 2377 159.1 1 1848 1848-01-01 00:00:00 blood 1189 #> 2378 159.1 1 1848 1848-01-01 00:00:00 bone 1189 #> 2379 111.8 2 1848 1848-01-31 12:00:00 blood 1190 #> 2380 111.8 2 1848 1848-01-31 12:00:00 bone 1190 #> 2381 108.9 3 1848 1848-03-02 00:00:01 blood 1191 #> 2382 108.9 3 1848 1848-03-02 00:00:01 bone 1191 #> 2383 107.1 4 1848 1848-04-01 12:00:00 blood 1192 #> 2384 107.1 4 1848 1848-04-01 12:00:00 bone 1192 #> 2385 102.2 5 1848 1848-05-02 00:00:00 blood 1193 #> 2386 102.2 5 1848 1848-05-02 00:00:00 bone 1193 #> 2387 123.8 6 1848 1848-06-01 12:00:01 blood 1194 #> 2388 123.8 6 1848 1848-06-01 12:00:01 bone 1194 #> 2389 139.2 7 1848 1848-07-02 00:00:00 blood 1195 #> 2390 139.2 7 1848 1848-07-02 00:00:00 bone 1195 #> 2391 132.5 8 1848 1848-08-01 12:00:00 blood 1196 #> 2392 132.5 8 1848 1848-08-01 12:00:00 bone 1196 #> 2393 100.3 9 1848 1848-09-01 00:00:01 blood 1197 #> 2394 100.3 9 1848 1848-09-01 00:00:01 bone 1197 #> 2395 132.4 10 1848 1848-10-01 12:00:00 blood 1198 #> 2396 132.4 10 1848 1848-10-01 12:00:00 bone 1198 #> 2397 114.6 11 1848 1848-11-01 00:00:00 blood 1199 #> 2398 114.6 11 1848 1848-11-01 00:00:00 bone 1199 #> 2399 159.9 12 1848 1848-12-01 12:00:01 blood 1200 #> 2400 159.9 12 1848 1848-12-01 12:00:01 bone 1200 #> 2401 156.7 1 1849 1849-01-01 00:00:00 blood 1201 #> 2402 156.7 1 1849 1849-01-01 00:00:00 bone 1201 #> 2403 131.7 2 1849 1849-01-31 10:00:00 blood 1202 #> 2404 131.7 2 1849 1849-01-31 10:00:00 bone 1202 #> 2405 96.5 3 1849 1849-03-02 20:00:01 blood 1203 #> 2406 96.5 3 1849 1849-03-02 20:00:01 bone 1203 #> 2407 102.5 4 1849 1849-04-02 06:00:00 blood 1204 #> 2408 102.5 4 1849 1849-04-02 06:00:00 bone 1204 #> 2409 80.6 5 1849 1849-05-02 16:00:00 blood 1205 #> 2410 80.6 5 1849 1849-05-02 16:00:00 bone 1205 #> 2411 81.2 6 1849 1849-06-02 02:00:01 blood 1206 #> 2412 81.2 6 1849 1849-06-02 02:00:01 bone 1206 #> 2413 78.0 7 1849 1849-07-02 12:00:00 blood 1207 #> 2414 78.0 7 1849 1849-07-02 12:00:00 bone 1207 #> 2415 61.3 8 1849 1849-08-01 22:00:00 blood 1208 #> 2416 61.3 8 1849 1849-08-01 22:00:00 bone 1208 #> 2417 93.7 9 1849 1849-09-01 08:00:01 blood 1209 #> 2418 93.7 9 1849 1849-09-01 08:00:01 bone 1209 #> 2419 71.5 10 1849 1849-10-01 18:00:00 blood 1210 #> 2420 71.5 10 1849 1849-10-01 18:00:00 bone 1210 #> 2421 99.7 11 1849 1849-11-01 04:00:00 blood 1211 #> 2422 99.7 11 1849 1849-11-01 04:00:00 bone 1211 #> 2423 97.0 12 1849 1849-12-01 14:00:01 blood 1212 #> 2424 97.0 12 1849 1849-12-01 14:00:01 bone 1212 #> 2425 78.0 1 1850 1850-01-01 00:00:00 blood 1213 #> 2426 78.0 1 1850 1850-01-01 00:00:00 bone 1213 #> 2427 89.4 2 1850 1850-01-31 10:00:00 blood 1214 #> 2428 89.4 2 1850 1850-01-31 10:00:00 bone 1214 #> 2429 82.6 3 1850 1850-03-02 20:00:01 blood 1215 #> 2430 82.6 3 1850 1850-03-02 20:00:01 bone 1215 #> 2431 44.1 4 1850 1850-04-02 06:00:00 blood 1216 #> 2432 44.1 4 1850 1850-04-02 06:00:00 bone 1216 #> 2433 61.6 5 1850 1850-05-02 16:00:00 blood 1217 #> 2434 61.6 5 1850 1850-05-02 16:00:00 bone 1217 #> 2435 70.0 6 1850 1850-06-02 02:00:01 blood 1218 #> 2436 70.0 6 1850 1850-06-02 02:00:01 bone 1218 #> 2437 39.1 7 1850 1850-07-02 12:00:00 blood 1219 #> 2438 39.1 7 1850 1850-07-02 12:00:00 bone 1219 #> 2439 61.6 8 1850 1850-08-01 22:00:00 blood 1220 #> 2440 61.6 8 1850 1850-08-01 22:00:00 bone 1220 #> 2441 86.2 9 1850 1850-09-01 08:00:01 blood 1221 #> 2442 86.2 9 1850 1850-09-01 08:00:01 bone 1221 #> 2443 71.0 10 1850 1850-10-01 18:00:00 blood 1222 #> 2444 71.0 10 1850 1850-10-01 18:00:00 bone 1222 #> 2445 54.8 11 1850 1850-11-01 04:00:00 blood 1223 #> 2446 54.8 11 1850 1850-11-01 04:00:00 bone 1223 #> 2447 60.0 12 1850 1850-12-01 14:00:01 blood 1224 #> 2448 60.0 12 1850 1850-12-01 14:00:01 bone 1224 #> 2449 75.5 1 1851 1851-01-01 00:00:00 blood 1225 #> 2450 75.5 1 1851 1851-01-01 00:00:00 bone 1225 #> 2451 105.4 2 1851 1851-01-31 10:00:00 blood 1226 #> 2452 105.4 2 1851 1851-01-31 10:00:00 bone 1226 #> 2453 64.6 3 1851 1851-03-02 20:00:01 blood 1227 #> 2454 64.6 3 1851 1851-03-02 20:00:01 bone 1227 #> 2455 56.5 4 1851 1851-04-02 06:00:00 blood 1228 #> 2456 56.5 4 1851 1851-04-02 06:00:00 bone 1228 #> 2457 62.6 5 1851 1851-05-02 16:00:00 blood 1229 #> 2458 62.6 5 1851 1851-05-02 16:00:00 bone 1229 #> 2459 63.2 6 1851 1851-06-02 02:00:01 blood 1230 #> 2460 63.2 6 1851 1851-06-02 02:00:01 bone 1230 #> 2461 36.1 7 1851 1851-07-02 12:00:00 blood 1231 #> 2462 36.1 7 1851 1851-07-02 12:00:00 bone 1231 #> 2463 57.4 8 1851 1851-08-01 22:00:00 blood 1232 #> 2464 57.4 8 1851 1851-08-01 22:00:00 bone 1232 #> 2465 67.9 9 1851 1851-09-01 08:00:01 blood 1233 #> 2466 67.9 9 1851 1851-09-01 08:00:01 bone 1233 #> 2467 62.5 10 1851 1851-10-01 18:00:00 blood 1234 #> 2468 62.5 10 1851 1851-10-01 18:00:00 bone 1234 #> 2469 50.9 11 1851 1851-11-01 04:00:00 blood 1235 #> 2470 50.9 11 1851 1851-11-01 04:00:00 bone 1235 #> 2471 71.4 12 1851 1851-12-01 14:00:01 blood 1236 #> 2472 71.4 12 1851 1851-12-01 14:00:01 bone 1236 #> 2473 68.4 1 1852 1852-01-01 00:00:00 blood 1237 #> 2474 68.4 1 1852 1852-01-01 00:00:00 bone 1237 #> 2475 67.5 2 1852 1852-01-31 12:00:00 blood 1238 #> 2476 67.5 2 1852 1852-01-31 12:00:00 bone 1238 #> 2477 61.2 3 1852 1852-03-02 00:00:01 blood 1239 #> 2478 61.2 3 1852 1852-03-02 00:00:01 bone 1239 #> 2479 65.4 4 1852 1852-04-01 12:00:00 blood 1240 #> 2480 65.4 4 1852 1852-04-01 12:00:00 bone 1240 #> 2481 54.9 5 1852 1852-05-02 00:00:00 blood 1241 #> 2482 54.9 5 1852 1852-05-02 00:00:00 bone 1241 #> 2483 46.9 6 1852 1852-06-01 12:00:01 blood 1242 #> 2484 46.9 6 1852 1852-06-01 12:00:01 bone 1242 #> 2485 42.0 7 1852 1852-07-02 00:00:00 blood 1243 #> 2486 42.0 7 1852 1852-07-02 00:00:00 bone 1243 #> 2487 39.7 8 1852 1852-08-01 12:00:00 blood 1244 #> 2488 39.7 8 1852 1852-08-01 12:00:00 bone 1244 #> 2489 37.5 9 1852 1852-09-01 00:00:01 blood 1245 #> 2490 37.5 9 1852 1852-09-01 00:00:01 bone 1245 #> 2491 67.3 10 1852 1852-10-01 12:00:00 blood 1246 #> 2492 67.3 10 1852 1852-10-01 12:00:00 bone 1246 #> 2493 54.3 11 1852 1852-11-01 00:00:00 blood 1247 #> 2494 54.3 11 1852 1852-11-01 00:00:00 bone 1247 #> 2495 45.4 12 1852 1852-12-01 12:00:01 blood 1248 #> 2496 45.4 12 1852 1852-12-01 12:00:01 bone 1248 #> 2497 41.1 1 1853 1853-01-01 00:00:00 blood 1249 #> 2498 41.1 1 1853 1853-01-01 00:00:00 bone 1249 #> 2499 42.9 2 1853 1853-01-31 10:00:00 blood 1250 #> 2500 42.9 2 1853 1853-01-31 10:00:00 bone 1250 #> 2501 37.7 3 1853 1853-03-02 20:00:01 blood 1251 #> 2502 37.7 3 1853 1853-03-02 20:00:01 bone 1251 #> 2503 47.6 4 1853 1853-04-02 06:00:00 blood 1252 #> 2504 47.6 4 1853 1853-04-02 06:00:00 bone 1252 #> 2505 34.7 5 1853 1853-05-02 16:00:00 blood 1253 #> 2506 34.7 5 1853 1853-05-02 16:00:00 bone 1253 #> 2507 40.0 6 1853 1853-06-02 02:00:01 blood 1254 #> 2508 40.0 6 1853 1853-06-02 02:00:01 bone 1254 #> 2509 45.9 7 1853 1853-07-02 12:00:00 blood 1255 #> 2510 45.9 7 1853 1853-07-02 12:00:00 bone 1255 #> 2511 50.4 8 1853 1853-08-01 22:00:00 blood 1256 #> 2512 50.4 8 1853 1853-08-01 22:00:00 bone 1256 #> 2513 33.5 9 1853 1853-09-01 08:00:01 blood 1257 #> 2514 33.5 9 1853 1853-09-01 08:00:01 bone 1257 #> 2515 42.3 10 1853 1853-10-01 18:00:00 blood 1258 #> 2516 42.3 10 1853 1853-10-01 18:00:00 bone 1258 #> 2517 28.8 11 1853 1853-11-01 04:00:00 blood 1259 #> 2518 28.8 11 1853 1853-11-01 04:00:00 bone 1259 #> 2519 23.4 12 1853 1853-12-01 14:00:01 blood 1260 #> 2520 23.4 12 1853 1853-12-01 14:00:01 bone 1260 #> 2521 15.4 1 1854 1854-01-01 00:00:00 blood 1261 #> 2522 15.4 1 1854 1854-01-01 00:00:00 bone 1261 #> 2523 20.0 2 1854 1854-01-31 10:00:00 blood 1262 #> 2524 20.0 2 1854 1854-01-31 10:00:00 bone 1262 #> 2525 20.7 3 1854 1854-03-02 20:00:01 blood 1263 #> 2526 20.7 3 1854 1854-03-02 20:00:01 bone 1263 #> 2527 26.4 4 1854 1854-04-02 06:00:00 blood 1264 #> 2528 26.4 4 1854 1854-04-02 06:00:00 bone 1264 #> 2529 24.0 5 1854 1854-05-02 16:00:00 blood 1265 #> 2530 24.0 5 1854 1854-05-02 16:00:00 bone 1265 #> 2531 21.1 6 1854 1854-06-02 02:00:01 blood 1266 #> 2532 21.1 6 1854 1854-06-02 02:00:01 bone 1266 #> 2533 18.7 7 1854 1854-07-02 12:00:00 blood 1267 #> 2534 18.7 7 1854 1854-07-02 12:00:00 bone 1267 #> 2535 15.8 8 1854 1854-08-01 22:00:00 blood 1268 #> 2536 15.8 8 1854 1854-08-01 22:00:00 bone 1268 #> 2537 22.4 9 1854 1854-09-01 08:00:01 blood 1269 #> 2538 22.4 9 1854 1854-09-01 08:00:01 bone 1269 #> 2539 12.7 10 1854 1854-10-01 18:00:00 blood 1270 #> 2540 12.7 10 1854 1854-10-01 18:00:00 bone 1270 #> 2541 28.2 11 1854 1854-11-01 04:00:00 blood 1271 #> 2542 28.2 11 1854 1854-11-01 04:00:00 bone 1271 #> 2543 21.4 12 1854 1854-12-01 14:00:01 blood 1272 #> 2544 21.4 12 1854 1854-12-01 14:00:01 bone 1272 #> 2545 12.3 1 1855 1855-01-01 00:00:00 blood 1273 #> 2546 12.3 1 1855 1855-01-01 00:00:00 bone 1273 #> 2547 11.4 2 1855 1855-01-31 10:00:00 blood 1274 #> 2548 11.4 2 1855 1855-01-31 10:00:00 bone 1274 #> 2549 17.4 3 1855 1855-03-02 20:00:01 blood 1275 #> 2550 17.4 3 1855 1855-03-02 20:00:01 bone 1275 #> 2551 4.4 4 1855 1855-04-02 06:00:00 blood 1276 #> 2552 4.4 4 1855 1855-04-02 06:00:00 bone 1276 #> 2553 9.1 5 1855 1855-05-02 16:00:00 blood 1277 #> 2554 9.1 5 1855 1855-05-02 16:00:00 bone 1277 #> 2555 5.3 6 1855 1855-06-02 02:00:01 blood 1278 #> 2556 5.3 6 1855 1855-06-02 02:00:01 bone 1278 #> 2557 0.4 7 1855 1855-07-02 12:00:00 blood 1279 #> 2558 0.4 7 1855 1855-07-02 12:00:00 bone 1279 #> 2559 3.1 8 1855 1855-08-01 22:00:00 blood 1280 #> 2560 3.1 8 1855 1855-08-01 22:00:00 bone 1280 #> 2561 0.0 9 1855 1855-09-01 08:00:01 blood 1281 #> 2562 0.0 9 1855 1855-09-01 08:00:01 bone 1281 #> 2563 9.7 10 1855 1855-10-01 18:00:00 blood 1282 #> 2564 9.7 10 1855 1855-10-01 18:00:00 bone 1282 #> 2565 4.3 11 1855 1855-11-01 04:00:00 blood 1283 #> 2566 4.3 11 1855 1855-11-01 04:00:00 bone 1283 #> 2567 3.1 12 1855 1855-12-01 14:00:01 blood 1284 #> 2568 3.1 12 1855 1855-12-01 14:00:01 bone 1284 #> 2569 0.5 1 1856 1856-01-01 00:00:00 blood 1285 #> 2570 0.5 1 1856 1856-01-01 00:00:00 bone 1285 #> 2571 4.9 2 1856 1856-01-31 12:00:00 blood 1286 #> 2572 4.9 2 1856 1856-01-31 12:00:00 bone 1286 #> 2573 0.4 3 1856 1856-03-02 00:00:01 blood 1287 #> 2574 0.4 3 1856 1856-03-02 00:00:01 bone 1287 #> 2575 6.5 4 1856 1856-04-01 12:00:00 blood 1288 #> 2576 6.5 4 1856 1856-04-01 12:00:00 bone 1288 #> 2577 0.0 5 1856 1856-05-02 00:00:00 blood 1289 #> 2578 0.0 5 1856 1856-05-02 00:00:00 bone 1289 #> 2579 5.0 6 1856 1856-06-01 12:00:01 blood 1290 #> 2580 5.0 6 1856 1856-06-01 12:00:01 bone 1290 #> 2581 4.6 7 1856 1856-07-02 00:00:00 blood 1291 #> 2582 4.6 7 1856 1856-07-02 00:00:00 bone 1291 #> 2583 5.9 8 1856 1856-08-01 12:00:00 blood 1292 #> 2584 5.9 8 1856 1856-08-01 12:00:00 bone 1292 #> 2585 4.4 9 1856 1856-09-01 00:00:01 blood 1293 #> 2586 4.4 9 1856 1856-09-01 00:00:01 bone 1293 #> 2587 4.5 10 1856 1856-10-01 12:00:00 blood 1294 #> 2588 4.5 10 1856 1856-10-01 12:00:00 bone 1294 #> 2589 7.7 11 1856 1856-11-01 00:00:00 blood 1295 #> 2590 7.7 11 1856 1856-11-01 00:00:00 bone 1295 #> 2591 7.2 12 1856 1856-12-01 12:00:01 blood 1296 #> 2592 7.2 12 1856 1856-12-01 12:00:01 bone 1296 #> 2593 13.7 1 1857 1857-01-01 00:00:00 blood 1297 #> 2594 13.7 1 1857 1857-01-01 00:00:00 bone 1297 #> 2595 7.4 2 1857 1857-01-31 10:00:00 blood 1298 #> 2596 7.4 2 1857 1857-01-31 10:00:00 bone 1298 #> 2597 5.2 3 1857 1857-03-02 20:00:01 blood 1299 #> 2598 5.2 3 1857 1857-03-02 20:00:01 bone 1299 #> 2599 11.1 4 1857 1857-04-02 06:00:00 blood 1300 #> 2600 11.1 4 1857 1857-04-02 06:00:00 bone 1300 #> 2601 29.2 5 1857 1857-05-02 16:00:00 blood 1301 #> 2602 29.2 5 1857 1857-05-02 16:00:00 bone 1301 #> 2603 16.0 6 1857 1857-06-02 02:00:01 blood 1302 #> 2604 16.0 6 1857 1857-06-02 02:00:01 bone 1302 #> 2605 22.2 7 1857 1857-07-02 12:00:00 blood 1303 #> 2606 22.2 7 1857 1857-07-02 12:00:00 bone 1303 #> 2607 16.9 8 1857 1857-08-01 22:00:00 blood 1304 #> 2608 16.9 8 1857 1857-08-01 22:00:00 bone 1304 #> 2609 42.4 9 1857 1857-09-01 08:00:01 blood 1305 #> 2610 42.4 9 1857 1857-09-01 08:00:01 bone 1305 #> 2611 40.6 10 1857 1857-10-01 18:00:00 blood 1306 #> 2612 40.6 10 1857 1857-10-01 18:00:00 bone 1306 #> 2613 31.4 11 1857 1857-11-01 04:00:00 blood 1307 #> 2614 31.4 11 1857 1857-11-01 04:00:00 bone 1307 #> 2615 37.2 12 1857 1857-12-01 14:00:01 blood 1308 #> 2616 37.2 12 1857 1857-12-01 14:00:01 bone 1308 #> 2617 39.0 1 1858 1858-01-01 00:00:00 blood 1309 #> 2618 39.0 1 1858 1858-01-01 00:00:00 bone 1309 #> 2619 34.9 2 1858 1858-01-31 10:00:00 blood 1310 #> 2620 34.9 2 1858 1858-01-31 10:00:00 bone 1310 #> 2621 57.5 3 1858 1858-03-02 20:00:01 blood 1311 #> 2622 57.5 3 1858 1858-03-02 20:00:01 bone 1311 #> 2623 38.3 4 1858 1858-04-02 06:00:00 blood 1312 #> 2624 38.3 4 1858 1858-04-02 06:00:00 bone 1312 #> 2625 41.4 5 1858 1858-05-02 16:00:00 blood 1313 #> 2626 41.4 5 1858 1858-05-02 16:00:00 bone 1313 #> 2627 44.5 6 1858 1858-06-02 02:00:01 blood 1314 #> 2628 44.5 6 1858 1858-06-02 02:00:01 bone 1314 #> 2629 56.7 7 1858 1858-07-02 12:00:00 blood 1315 #> 2630 56.7 7 1858 1858-07-02 12:00:00 bone 1315 #> 2631 55.3 8 1858 1858-08-01 22:00:00 blood 1316 #> 2632 55.3 8 1858 1858-08-01 22:00:00 bone 1316 #> 2633 80.1 9 1858 1858-09-01 08:00:01 blood 1317 #> 2634 80.1 9 1858 1858-09-01 08:00:01 bone 1317 #> 2635 91.2 10 1858 1858-10-01 18:00:00 blood 1318 #> 2636 91.2 10 1858 1858-10-01 18:00:00 bone 1318 #> 2637 51.9 11 1858 1858-11-01 04:00:00 blood 1319 #> 2638 51.9 11 1858 1858-11-01 04:00:00 bone 1319 #> 2639 66.9 12 1858 1858-12-01 14:00:01 blood 1320 #> 2640 66.9 12 1858 1858-12-01 14:00:01 bone 1320 #> 2641 83.7 1 1859 1859-01-01 00:00:00 blood 1321 #> 2642 83.7 1 1859 1859-01-01 00:00:00 bone 1321 #> 2643 87.6 2 1859 1859-01-31 10:00:00 blood 1322 #> 2644 87.6 2 1859 1859-01-31 10:00:00 bone 1322 #> 2645 90.3 3 1859 1859-03-02 20:00:01 blood 1323 #> 2646 90.3 3 1859 1859-03-02 20:00:01 bone 1323 #> 2647 85.7 4 1859 1859-04-02 06:00:00 blood 1324 #> 2648 85.7 4 1859 1859-04-02 06:00:00 bone 1324 #> 2649 91.0 5 1859 1859-05-02 16:00:00 blood 1325 #> 2650 91.0 5 1859 1859-05-02 16:00:00 bone 1325 #> 2651 87.1 6 1859 1859-06-02 02:00:01 blood 1326 #> 2652 87.1 6 1859 1859-06-02 02:00:01 bone 1326 #> 2653 95.2 7 1859 1859-07-02 12:00:00 blood 1327 #> 2654 95.2 7 1859 1859-07-02 12:00:00 bone 1327 #> 2655 106.8 8 1859 1859-08-01 22:00:00 blood 1328 #> 2656 106.8 8 1859 1859-08-01 22:00:00 bone 1328 #> 2657 105.8 9 1859 1859-09-01 08:00:01 blood 1329 #> 2658 105.8 9 1859 1859-09-01 08:00:01 bone 1329 #> 2659 114.6 10 1859 1859-10-01 18:00:00 blood 1330 #> 2660 114.6 10 1859 1859-10-01 18:00:00 bone 1330 #> 2661 97.2 11 1859 1859-11-01 04:00:00 blood 1331 #> 2662 97.2 11 1859 1859-11-01 04:00:00 bone 1331 #> 2663 81.0 12 1859 1859-12-01 14:00:01 blood 1332 #> 2664 81.0 12 1859 1859-12-01 14:00:01 bone 1332 #> 2665 81.5 1 1860 1860-01-01 00:00:00 blood 1333 #> 2666 81.5 1 1860 1860-01-01 00:00:00 bone 1333 #> 2667 88.0 2 1860 1860-01-31 12:00:01 blood 1334 #> 2668 88.0 2 1860 1860-01-31 12:00:01 bone 1334 #> 2669 98.9 3 1860 1860-03-02 00:00:01 blood 1335 #> 2670 98.9 3 1860 1860-03-02 00:00:01 bone 1335 #> 2671 71.4 4 1860 1860-04-01 12:00:00 blood 1336 #> 2672 71.4 4 1860 1860-04-01 12:00:00 bone 1336 #> 2673 107.1 5 1860 1860-05-02 00:00:01 blood 1337 #> 2674 107.1 5 1860 1860-05-02 00:00:01 bone 1337 #> 2675 108.6 6 1860 1860-06-01 12:00:01 blood 1338 #> 2676 108.6 6 1860 1860-06-01 12:00:01 bone 1338 #> 2677 116.7 7 1860 1860-07-02 00:00:00 blood 1339 #> 2678 116.7 7 1860 1860-07-02 00:00:00 bone 1339 #> 2679 100.3 8 1860 1860-08-01 12:00:01 blood 1340 #> 2680 100.3 8 1860 1860-08-01 12:00:01 bone 1340 #> 2681 92.2 9 1860 1860-09-01 00:00:01 blood 1341 #> 2682 92.2 9 1860 1860-09-01 00:00:01 bone 1341 #> 2683 90.1 10 1860 1860-10-01 12:00:00 blood 1342 #> 2684 90.1 10 1860 1860-10-01 12:00:00 bone 1342 #> 2685 97.9 11 1860 1860-11-01 00:00:01 blood 1343 #> 2686 97.9 11 1860 1860-11-01 00:00:01 bone 1343 #> 2687 95.6 12 1860 1860-12-01 12:00:01 blood 1344 #> 2688 95.6 12 1860 1860-12-01 12:00:01 bone 1344 #> 2689 62.3 1 1861 1861-01-01 00:00:00 blood 1345 #> 2690 62.3 1 1861 1861-01-01 00:00:00 bone 1345 #> 2691 77.8 2 1861 1861-01-31 10:00:01 blood 1346 #> 2692 77.8 2 1861 1861-01-31 10:00:01 bone 1346 #> 2693 101.0 3 1861 1861-03-02 20:00:01 blood 1347 #> 2694 101.0 3 1861 1861-03-02 20:00:01 bone 1347 #> 2695 98.5 4 1861 1861-04-02 06:00:00 blood 1348 #> 2696 98.5 4 1861 1861-04-02 06:00:00 bone 1348 #> 2697 56.8 5 1861 1861-05-02 16:00:01 blood 1349 #> 2698 56.8 5 1861 1861-05-02 16:00:01 bone 1349 #> 2699 87.8 6 1861 1861-06-02 02:00:01 blood 1350 #> 2700 87.8 6 1861 1861-06-02 02:00:01 bone 1350 #> 2701 78.0 7 1861 1861-07-02 12:00:00 blood 1351 #> 2702 78.0 7 1861 1861-07-02 12:00:00 bone 1351 #> 2703 82.5 8 1861 1861-08-01 22:00:01 blood 1352 #> 2704 82.5 8 1861 1861-08-01 22:00:01 bone 1352 #> 2705 79.9 9 1861 1861-09-01 08:00:01 blood 1353 #> 2706 79.9 9 1861 1861-09-01 08:00:01 bone 1353 #> 2707 67.2 10 1861 1861-10-01 18:00:00 blood 1354 #> 2708 67.2 10 1861 1861-10-01 18:00:00 bone 1354 #> 2709 53.7 11 1861 1861-11-01 04:00:01 blood 1355 #> 2710 53.7 11 1861 1861-11-01 04:00:01 bone 1355 #> 2711 80.5 12 1861 1861-12-01 14:00:01 blood 1356 #> 2712 80.5 12 1861 1861-12-01 14:00:01 bone 1356 #> 2713 63.1 1 1862 1862-01-01 00:00:00 blood 1357 #> 2714 63.1 1 1862 1862-01-01 00:00:00 bone 1357 #> 2715 64.5 2 1862 1862-01-31 10:00:01 blood 1358 #> 2716 64.5 2 1862 1862-01-31 10:00:01 bone 1358 #> 2717 43.6 3 1862 1862-03-02 20:00:01 blood 1359 #> 2718 43.6 3 1862 1862-03-02 20:00:01 bone 1359 #> 2719 53.7 4 1862 1862-04-02 06:00:00 blood 1360 #> 2720 53.7 4 1862 1862-04-02 06:00:00 bone 1360 #> 2721 64.4 5 1862 1862-05-02 16:00:01 blood 1361 #> 2722 64.4 5 1862 1862-05-02 16:00:01 bone 1361 #> 2723 84.0 6 1862 1862-06-02 02:00:01 blood 1362 #> 2724 84.0 6 1862 1862-06-02 02:00:01 bone 1362 #> 2725 73.4 7 1862 1862-07-02 12:00:00 blood 1363 #> 2726 73.4 7 1862 1862-07-02 12:00:00 bone 1363 #> 2727 62.5 8 1862 1862-08-01 22:00:01 blood 1364 #> 2728 62.5 8 1862 1862-08-01 22:00:01 bone 1364 #> 2729 66.6 9 1862 1862-09-01 08:00:01 blood 1365 #> 2730 66.6 9 1862 1862-09-01 08:00:01 bone 1365 #> 2731 42.0 10 1862 1862-10-01 18:00:00 blood 1366 #> 2732 42.0 10 1862 1862-10-01 18:00:00 bone 1366 #> 2733 50.6 11 1862 1862-11-01 04:00:01 blood 1367 #> 2734 50.6 11 1862 1862-11-01 04:00:01 bone 1367 #> 2735 40.9 12 1862 1862-12-01 14:00:01 blood 1368 #> 2736 40.9 12 1862 1862-12-01 14:00:01 bone 1368 #> 2737 48.3 1 1863 1863-01-01 00:00:00 blood 1369 #> 2738 48.3 1 1863 1863-01-01 00:00:00 bone 1369 #> 2739 56.7 2 1863 1863-01-31 10:00:01 blood 1370 #> 2740 56.7 2 1863 1863-01-31 10:00:01 bone 1370 #> 2741 66.4 3 1863 1863-03-02 20:00:01 blood 1371 #> 2742 66.4 3 1863 1863-03-02 20:00:01 bone 1371 #> 2743 40.6 4 1863 1863-04-02 06:00:00 blood 1372 #> 2744 40.6 4 1863 1863-04-02 06:00:00 bone 1372 #> 2745 53.8 5 1863 1863-05-02 16:00:01 blood 1373 #> 2746 53.8 5 1863 1863-05-02 16:00:01 bone 1373 #> 2747 40.8 6 1863 1863-06-02 02:00:01 blood 1374 #> 2748 40.8 6 1863 1863-06-02 02:00:01 bone 1374 #> 2749 32.7 7 1863 1863-07-02 12:00:00 blood 1375 #> 2750 32.7 7 1863 1863-07-02 12:00:00 bone 1375 #> 2751 48.1 8 1863 1863-08-01 22:00:01 blood 1376 #> 2752 48.1 8 1863 1863-08-01 22:00:01 bone 1376 #> 2753 22.0 9 1863 1863-09-01 08:00:01 blood 1377 #> 2754 22.0 9 1863 1863-09-01 08:00:01 bone 1377 #> 2755 39.9 10 1863 1863-10-01 18:00:00 blood 1378 #> 2756 39.9 10 1863 1863-10-01 18:00:00 bone 1378 #> 2757 37.7 11 1863 1863-11-01 04:00:01 blood 1379 #> 2758 37.7 11 1863 1863-11-01 04:00:01 bone 1379 #> 2759 41.2 12 1863 1863-12-01 14:00:01 blood 1380 #> 2760 41.2 12 1863 1863-12-01 14:00:01 bone 1380 #> 2761 57.7 1 1864 1864-01-01 00:00:00 blood 1381 #> 2762 57.7 1 1864 1864-01-01 00:00:00 bone 1381 #> 2763 47.1 2 1864 1864-01-31 12:00:01 blood 1382 #> 2764 47.1 2 1864 1864-01-31 12:00:01 bone 1382 #> 2765 66.3 3 1864 1864-03-02 00:00:01 blood 1383 #> 2766 66.3 3 1864 1864-03-02 00:00:01 bone 1383 #> 2767 35.8 4 1864 1864-04-01 12:00:00 blood 1384 #> 2768 35.8 4 1864 1864-04-01 12:00:00 bone 1384 #> 2769 40.6 5 1864 1864-05-02 00:00:01 blood 1385 #> 2770 40.6 5 1864 1864-05-02 00:00:01 bone 1385 #> 2771 57.8 6 1864 1864-06-01 12:00:01 blood 1386 #> 2772 57.8 6 1864 1864-06-01 12:00:01 bone 1386 #> 2773 54.7 7 1864 1864-07-02 00:00:00 blood 1387 #> 2774 54.7 7 1864 1864-07-02 00:00:00 bone 1387 #> 2775 54.8 8 1864 1864-08-01 12:00:01 blood 1388 #> 2776 54.8 8 1864 1864-08-01 12:00:01 bone 1388 #> 2777 28.5 9 1864 1864-09-01 00:00:01 blood 1389 #> 2778 28.5 9 1864 1864-09-01 00:00:01 bone 1389 #> 2779 33.9 10 1864 1864-10-01 12:00:00 blood 1390 #> 2780 33.9 10 1864 1864-10-01 12:00:00 bone 1390 #> 2781 57.6 11 1864 1864-11-01 00:00:01 blood 1391 #> 2782 57.6 11 1864 1864-11-01 00:00:01 bone 1391 #> 2783 28.6 12 1864 1864-12-01 12:00:01 blood 1392 #> 2784 28.6 12 1864 1864-12-01 12:00:01 bone 1392 #> 2785 48.7 1 1865 1865-01-01 00:00:00 blood 1393 #> 2786 48.7 1 1865 1865-01-01 00:00:00 bone 1393 #> 2787 39.3 2 1865 1865-01-31 10:00:01 blood 1394 #> 2788 39.3 2 1865 1865-01-31 10:00:01 bone 1394 #> 2789 39.5 3 1865 1865-03-02 20:00:01 blood 1395 #> 2790 39.5 3 1865 1865-03-02 20:00:01 bone 1395 #> 2791 29.4 4 1865 1865-04-02 06:00:00 blood 1396 #> 2792 29.4 4 1865 1865-04-02 06:00:00 bone 1396 #> 2793 34.5 5 1865 1865-05-02 16:00:01 blood 1397 #> 2794 34.5 5 1865 1865-05-02 16:00:01 bone 1397 #> 2795 33.6 6 1865 1865-06-02 02:00:01 blood 1398 #> 2796 33.6 6 1865 1865-06-02 02:00:01 bone 1398 #> 2797 26.8 7 1865 1865-07-02 12:00:00 blood 1399 #> 2798 26.8 7 1865 1865-07-02 12:00:00 bone 1399 #> 2799 37.8 8 1865 1865-08-01 22:00:01 blood 1400 #> 2800 37.8 8 1865 1865-08-01 22:00:01 bone 1400 #> 2801 21.6 9 1865 1865-09-01 08:00:01 blood 1401 #> 2802 21.6 9 1865 1865-09-01 08:00:01 bone 1401 #> 2803 17.1 10 1865 1865-10-01 18:00:00 blood 1402 #> 2804 17.1 10 1865 1865-10-01 18:00:00 bone 1402 #> 2805 24.6 11 1865 1865-11-01 04:00:01 blood 1403 #> 2806 24.6 11 1865 1865-11-01 04:00:01 bone 1403 #> 2807 12.8 12 1865 1865-12-01 14:00:01 blood 1404 #> 2808 12.8 12 1865 1865-12-01 14:00:01 bone 1404 #> 2809 31.6 1 1866 1866-01-01 00:00:00 blood 1405 #> 2810 31.6 1 1866 1866-01-01 00:00:00 bone 1405 #> 2811 38.4 2 1866 1866-01-31 10:00:01 blood 1406 #> 2812 38.4 2 1866 1866-01-31 10:00:01 bone 1406 #> 2813 24.6 3 1866 1866-03-02 20:00:01 blood 1407 #> 2814 24.6 3 1866 1866-03-02 20:00:01 bone 1407 #> 2815 17.6 4 1866 1866-04-02 06:00:00 blood 1408 #> 2816 17.6 4 1866 1866-04-02 06:00:00 bone 1408 #> 2817 12.9 5 1866 1866-05-02 16:00:01 blood 1409 #> 2818 12.9 5 1866 1866-05-02 16:00:01 bone 1409 #> 2819 16.5 6 1866 1866-06-02 02:00:01 blood 1410 #> 2820 16.5 6 1866 1866-06-02 02:00:01 bone 1410 #> 2821 9.3 7 1866 1866-07-02 12:00:00 blood 1411 #> 2822 9.3 7 1866 1866-07-02 12:00:00 bone 1411 #> 2823 12.7 8 1866 1866-08-01 22:00:01 blood 1412 #> 2824 12.7 8 1866 1866-08-01 22:00:01 bone 1412 #> 2825 7.3 9 1866 1866-09-01 08:00:01 blood 1413 #> 2826 7.3 9 1866 1866-09-01 08:00:01 bone 1413 #> 2827 14.1 10 1866 1866-10-01 18:00:00 blood 1414 #> 2828 14.1 10 1866 1866-10-01 18:00:00 bone 1414 #> 2829 9.0 11 1866 1866-11-01 04:00:01 blood 1415 #> 2830 9.0 11 1866 1866-11-01 04:00:01 bone 1415 #> 2831 1.5 12 1866 1866-12-01 14:00:01 blood 1416 #> 2832 1.5 12 1866 1866-12-01 14:00:01 bone 1416 #> 2833 0.0 1 1867 1867-01-01 00:00:00 blood 1417 #> 2834 0.0 1 1867 1867-01-01 00:00:00 bone 1417 #> 2835 0.7 2 1867 1867-01-31 10:00:01 blood 1418 #> 2836 0.7 2 1867 1867-01-31 10:00:01 bone 1418 #> 2837 9.2 3 1867 1867-03-02 20:00:01 blood 1419 #> 2838 9.2 3 1867 1867-03-02 20:00:01 bone 1419 #> 2839 5.1 4 1867 1867-04-02 06:00:00 blood 1420 #> 2840 5.1 4 1867 1867-04-02 06:00:00 bone 1420 #> 2841 2.9 5 1867 1867-05-02 16:00:01 blood 1421 #> 2842 2.9 5 1867 1867-05-02 16:00:01 bone 1421 #> 2843 1.5 6 1867 1867-06-02 02:00:01 blood 1422 #> 2844 1.5 6 1867 1867-06-02 02:00:01 bone 1422 #> 2845 5.0 7 1867 1867-07-02 12:00:00 blood 1423 #> 2846 5.0 7 1867 1867-07-02 12:00:00 bone 1423 #> 2847 4.9 8 1867 1867-08-01 22:00:01 blood 1424 #> 2848 4.9 8 1867 1867-08-01 22:00:01 bone 1424 #> 2849 9.8 9 1867 1867-09-01 08:00:01 blood 1425 #> 2850 9.8 9 1867 1867-09-01 08:00:01 bone 1425 #> 2851 13.5 10 1867 1867-10-01 18:00:00 blood 1426 #> 2852 13.5 10 1867 1867-10-01 18:00:00 bone 1426 #> 2853 9.3 11 1867 1867-11-01 04:00:01 blood 1427 #> 2854 9.3 11 1867 1867-11-01 04:00:01 bone 1427 #> 2855 25.2 12 1867 1867-12-01 14:00:01 blood 1428 #> 2856 25.2 12 1867 1867-12-01 14:00:01 bone 1428 #> 2857 15.6 1 1868 1868-01-01 00:00:00 blood 1429 #> 2858 15.6 1 1868 1868-01-01 00:00:00 bone 1429 #> 2859 15.8 2 1868 1868-01-31 12:00:01 blood 1430 #> 2860 15.8 2 1868 1868-01-31 12:00:01 bone 1430 #> 2861 26.5 3 1868 1868-03-02 00:00:01 blood 1431 #> 2862 26.5 3 1868 1868-03-02 00:00:01 bone 1431 #> 2863 36.6 4 1868 1868-04-01 12:00:00 blood 1432 #> 2864 36.6 4 1868 1868-04-01 12:00:00 bone 1432 #> 2865 26.7 5 1868 1868-05-02 00:00:01 blood 1433 #> 2866 26.7 5 1868 1868-05-02 00:00:01 bone 1433 #> 2867 31.1 6 1868 1868-06-01 12:00:01 blood 1434 #> 2868 31.1 6 1868 1868-06-01 12:00:01 bone 1434 #> 2869 28.6 7 1868 1868-07-02 00:00:00 blood 1435 #> 2870 28.6 7 1868 1868-07-02 00:00:00 bone 1435 #> 2871 34.4 8 1868 1868-08-01 12:00:01 blood 1436 #> 2872 34.4 8 1868 1868-08-01 12:00:01 bone 1436 #> 2873 43.8 9 1868 1868-09-01 00:00:01 blood 1437 #> 2874 43.8 9 1868 1868-09-01 00:00:01 bone 1437 #> 2875 61.7 10 1868 1868-10-01 12:00:00 blood 1438 #> 2876 61.7 10 1868 1868-10-01 12:00:00 bone 1438 #> 2877 59.1 11 1868 1868-11-01 00:00:01 blood 1439 #> 2878 59.1 11 1868 1868-11-01 00:00:01 bone 1439 #> 2879 67.6 12 1868 1868-12-01 12:00:01 blood 1440 #> 2880 67.6 12 1868 1868-12-01 12:00:01 bone 1440 #> 2881 60.9 1 1869 1869-01-01 00:00:00 blood 1441 #> 2882 60.9 1 1869 1869-01-01 00:00:00 bone 1441 #> 2883 59.3 2 1869 1869-01-31 10:00:01 blood 1442 #> 2884 59.3 2 1869 1869-01-31 10:00:01 bone 1442 #> 2885 52.7 3 1869 1869-03-02 20:00:01 blood 1443 #> 2886 52.7 3 1869 1869-03-02 20:00:01 bone 1443 #> 2887 41.0 4 1869 1869-04-02 06:00:00 blood 1444 #> 2888 41.0 4 1869 1869-04-02 06:00:00 bone 1444 #> 2889 104.0 5 1869 1869-05-02 16:00:01 blood 1445 #> 2890 104.0 5 1869 1869-05-02 16:00:01 bone 1445 #> 2891 108.4 6 1869 1869-06-02 02:00:01 blood 1446 #> 2892 108.4 6 1869 1869-06-02 02:00:01 bone 1446 #> 2893 59.2 7 1869 1869-07-02 12:00:00 blood 1447 #> 2894 59.2 7 1869 1869-07-02 12:00:00 bone 1447 #> 2895 79.6 8 1869 1869-08-01 22:00:01 blood 1448 #> 2896 79.6 8 1869 1869-08-01 22:00:01 bone 1448 #> 2897 80.6 9 1869 1869-09-01 08:00:01 blood 1449 #> 2898 80.6 9 1869 1869-09-01 08:00:01 bone 1449 #> 2899 59.4 10 1869 1869-10-01 18:00:00 blood 1450 #> 2900 59.4 10 1869 1869-10-01 18:00:00 bone 1450 #> 2901 77.4 11 1869 1869-11-01 04:00:01 blood 1451 #> 2902 77.4 11 1869 1869-11-01 04:00:01 bone 1451 #> 2903 104.3 12 1869 1869-12-01 14:00:01 blood 1452 #> 2904 104.3 12 1869 1869-12-01 14:00:01 bone 1452 #> 2905 77.3 1 1870 1870-01-01 00:00:00 blood 1453 #> 2906 77.3 1 1870 1870-01-01 00:00:00 bone 1453 #> 2907 114.9 2 1870 1870-01-31 10:00:01 blood 1454 #> 2908 114.9 2 1870 1870-01-31 10:00:01 bone 1454 #> 2909 159.4 3 1870 1870-03-02 20:00:01 blood 1455 #> 2910 159.4 3 1870 1870-03-02 20:00:01 bone 1455 #> 2911 160.0 4 1870 1870-04-02 06:00:00 blood 1456 #> 2912 160.0 4 1870 1870-04-02 06:00:00 bone 1456 #> 2913 176.0 5 1870 1870-05-02 16:00:01 blood 1457 #> 2914 176.0 5 1870 1870-05-02 16:00:01 bone 1457 #> 2915 135.6 6 1870 1870-06-02 02:00:01 blood 1458 #> 2916 135.6 6 1870 1870-06-02 02:00:01 bone 1458 #> 2917 132.4 7 1870 1870-07-02 12:00:00 blood 1459 #> 2918 132.4 7 1870 1870-07-02 12:00:00 bone 1459 #> 2919 153.8 8 1870 1870-08-01 22:00:01 blood 1460 #> 2920 153.8 8 1870 1870-08-01 22:00:01 bone 1460 #> 2921 136.0 9 1870 1870-09-01 08:00:01 blood 1461 #> 2922 136.0 9 1870 1870-09-01 08:00:01 bone 1461 #> 2923 146.4 10 1870 1870-10-01 18:00:00 blood 1462 #> 2924 146.4 10 1870 1870-10-01 18:00:00 bone 1462 #> 2925 147.5 11 1870 1870-11-01 04:00:01 blood 1463 #> 2926 147.5 11 1870 1870-11-01 04:00:01 bone 1463 #> 2927 130.0 12 1870 1870-12-01 14:00:01 blood 1464 #> 2928 130.0 12 1870 1870-12-01 14:00:01 bone 1464 #> 2929 88.3 1 1871 1871-01-01 00:00:00 blood 1465 #> 2930 88.3 1 1871 1871-01-01 00:00:00 bone 1465 #> 2931 125.3 2 1871 1871-01-31 10:00:01 blood 1466 #> 2932 125.3 2 1871 1871-01-31 10:00:01 bone 1466 #> 2933 143.2 3 1871 1871-03-02 20:00:01 blood 1467 #> 2934 143.2 3 1871 1871-03-02 20:00:01 bone 1467 #> 2935 162.4 4 1871 1871-04-02 06:00:00 blood 1468 #> 2936 162.4 4 1871 1871-04-02 06:00:00 bone 1468 #> 2937 145.5 5 1871 1871-05-02 16:00:01 blood 1469 #> 2938 145.5 5 1871 1871-05-02 16:00:01 bone 1469 #> 2939 91.7 6 1871 1871-06-02 02:00:01 blood 1470 #> 2940 91.7 6 1871 1871-06-02 02:00:01 bone 1470 #> 2941 103.0 7 1871 1871-07-02 12:00:00 blood 1471 #> 2942 103.0 7 1871 1871-07-02 12:00:00 bone 1471 #> 2943 110.0 8 1871 1871-08-01 22:00:01 blood 1472 #> 2944 110.0 8 1871 1871-08-01 22:00:01 bone 1472 #> 2945 80.3 9 1871 1871-09-01 08:00:01 blood 1473 #> 2946 80.3 9 1871 1871-09-01 08:00:01 bone 1473 #> 2947 89.0 10 1871 1871-10-01 18:00:00 blood 1474 #> 2948 89.0 10 1871 1871-10-01 18:00:00 bone 1474 #> 2949 105.4 11 1871 1871-11-01 04:00:01 blood 1475 #> 2950 105.4 11 1871 1871-11-01 04:00:01 bone 1475 #> 2951 90.3 12 1871 1871-12-01 14:00:01 blood 1476 #> 2952 90.3 12 1871 1871-12-01 14:00:01 bone 1476 #> 2953 79.5 1 1872 1872-01-01 00:00:00 blood 1477 #> 2954 79.5 1 1872 1872-01-01 00:00:00 bone 1477 #> 2955 120.1 2 1872 1872-01-31 12:00:01 blood 1478 #> 2956 120.1 2 1872 1872-01-31 12:00:01 bone 1478 #> 2957 88.4 3 1872 1872-03-02 00:00:01 blood 1479 #> 2958 88.4 3 1872 1872-03-02 00:00:01 bone 1479 #> 2959 102.1 4 1872 1872-04-01 12:00:00 blood 1480 #> 2960 102.1 4 1872 1872-04-01 12:00:00 bone 1480 #> 2961 107.6 5 1872 1872-05-02 00:00:01 blood 1481 #> 2962 107.6 5 1872 1872-05-02 00:00:01 bone 1481 #> 2963 109.9 6 1872 1872-06-01 12:00:01 blood 1482 #> 2964 109.9 6 1872 1872-06-01 12:00:01 bone 1482 #> 2965 105.5 7 1872 1872-07-02 00:00:00 blood 1483 #> 2966 105.5 7 1872 1872-07-02 00:00:00 bone 1483 #> 2967 92.9 8 1872 1872-08-01 12:00:01 blood 1484 #> 2968 92.9 8 1872 1872-08-01 12:00:01 bone 1484 #> 2969 114.6 9 1872 1872-09-01 00:00:01 blood 1485 #> 2970 114.6 9 1872 1872-09-01 00:00:01 bone 1485 #> 2971 103.5 10 1872 1872-10-01 12:00:00 blood 1486 #> 2972 103.5 10 1872 1872-10-01 12:00:00 bone 1486 #> 2973 112.0 11 1872 1872-11-01 00:00:01 blood 1487 #> 2974 112.0 11 1872 1872-11-01 00:00:01 bone 1487 #> 2975 83.9 12 1872 1872-12-01 12:00:01 blood 1488 #> 2976 83.9 12 1872 1872-12-01 12:00:01 bone 1488 #> 2977 86.7 1 1873 1873-01-01 00:00:00 blood 1489 #> 2978 86.7 1 1873 1873-01-01 00:00:00 bone 1489 #> 2979 107.0 2 1873 1873-01-31 10:00:01 blood 1490 #> 2980 107.0 2 1873 1873-01-31 10:00:01 bone 1490 #> 2981 98.3 3 1873 1873-03-02 20:00:01 blood 1491 #> 2982 98.3 3 1873 1873-03-02 20:00:01 bone 1491 #> 2983 76.2 4 1873 1873-04-02 06:00:00 blood 1492 #> 2984 76.2 4 1873 1873-04-02 06:00:00 bone 1492 #> 2985 47.9 5 1873 1873-05-02 16:00:01 blood 1493 #> 2986 47.9 5 1873 1873-05-02 16:00:01 bone 1493 #> 2987 44.8 6 1873 1873-06-02 02:00:01 blood 1494 #> 2988 44.8 6 1873 1873-06-02 02:00:01 bone 1494 #> 2989 66.9 7 1873 1873-07-02 12:00:00 blood 1495 #> 2990 66.9 7 1873 1873-07-02 12:00:00 bone 1495 #> 2991 68.2 8 1873 1873-08-01 22:00:01 blood 1496 #> 2992 68.2 8 1873 1873-08-01 22:00:01 bone 1496 #> 2993 47.5 9 1873 1873-09-01 08:00:01 blood 1497 #> 2994 47.5 9 1873 1873-09-01 08:00:01 bone 1497 #> 2995 47.4 10 1873 1873-10-01 18:00:00 blood 1498 #> 2996 47.4 10 1873 1873-10-01 18:00:00 bone 1498 #> 2997 55.4 11 1873 1873-11-01 04:00:01 blood 1499 #> 2998 55.4 11 1873 1873-11-01 04:00:01 bone 1499 #> 2999 49.2 12 1873 1873-12-01 14:00:01 blood 1500 #> 3000 49.2 12 1873 1873-12-01 14:00:01 bone 1500 #> 3001 60.8 1 1874 1874-01-01 00:00:00 blood 1501 #> 3002 60.8 1 1874 1874-01-01 00:00:00 bone 1501 #> 3003 64.2 2 1874 1874-01-31 10:00:01 blood 1502 #> 3004 64.2 2 1874 1874-01-31 10:00:01 bone 1502 #> 3005 46.4 3 1874 1874-03-02 20:00:01 blood 1503 #> 3006 46.4 3 1874 1874-03-02 20:00:01 bone 1503 #> 3007 32.0 4 1874 1874-04-02 06:00:00 blood 1504 #> 3008 32.0 4 1874 1874-04-02 06:00:00 bone 1504 #> 3009 44.6 5 1874 1874-05-02 16:00:01 blood 1505 #> 3010 44.6 5 1874 1874-05-02 16:00:01 bone 1505 #> 3011 38.2 6 1874 1874-06-02 02:00:01 blood 1506 #> 3012 38.2 6 1874 1874-06-02 02:00:01 bone 1506 #> 3013 67.8 7 1874 1874-07-02 12:00:00 blood 1507 #> 3014 67.8 7 1874 1874-07-02 12:00:00 bone 1507 #> 3015 61.3 8 1874 1874-08-01 22:00:01 blood 1508 #> 3016 61.3 8 1874 1874-08-01 22:00:01 bone 1508 #> 3017 28.0 9 1874 1874-09-01 08:00:01 blood 1509 #> 3018 28.0 9 1874 1874-09-01 08:00:01 bone 1509 #> 3019 34.3 10 1874 1874-10-01 18:00:00 blood 1510 #> 3020 34.3 10 1874 1874-10-01 18:00:00 bone 1510 #> 3021 28.9 11 1874 1874-11-01 04:00:01 blood 1511 #> 3022 28.9 11 1874 1874-11-01 04:00:01 bone 1511 #> 3023 29.3 12 1874 1874-12-01 14:00:01 blood 1512 #> 3024 29.3 12 1874 1874-12-01 14:00:01 bone 1512 #> 3025 14.6 1 1875 1875-01-01 00:00:00 blood 1513 #> 3026 14.6 1 1875 1875-01-01 00:00:00 bone 1513 #> 3027 22.2 2 1875 1875-01-31 10:00:01 blood 1514 #> 3028 22.2 2 1875 1875-01-31 10:00:01 bone 1514 #> 3029 33.8 3 1875 1875-03-02 20:00:01 blood 1515 #> 3030 33.8 3 1875 1875-03-02 20:00:01 bone 1515 #> 3031 29.1 4 1875 1875-04-02 06:00:00 blood 1516 #> 3032 29.1 4 1875 1875-04-02 06:00:00 bone 1516 #> 3033 11.5 5 1875 1875-05-02 16:00:01 blood 1517 #> 3034 11.5 5 1875 1875-05-02 16:00:01 bone 1517 #> 3035 23.9 6 1875 1875-06-02 02:00:01 blood 1518 #> 3036 23.9 6 1875 1875-06-02 02:00:01 bone 1518 #> 3037 12.5 7 1875 1875-07-02 12:00:00 blood 1519 #> 3038 12.5 7 1875 1875-07-02 12:00:00 bone 1519 #> 3039 14.6 8 1875 1875-08-01 22:00:01 blood 1520 #> 3040 14.6 8 1875 1875-08-01 22:00:01 bone 1520 #> 3041 2.4 9 1875 1875-09-01 08:00:01 blood 1521 #> 3042 2.4 9 1875 1875-09-01 08:00:01 bone 1521 #> 3043 12.7 10 1875 1875-10-01 18:00:00 blood 1522 #> 3044 12.7 10 1875 1875-10-01 18:00:00 bone 1522 #> 3045 17.7 11 1875 1875-11-01 04:00:01 blood 1523 #> 3046 17.7 11 1875 1875-11-01 04:00:01 bone 1523 #> 3047 9.9 12 1875 1875-12-01 14:00:01 blood 1524 #> 3048 9.9 12 1875 1875-12-01 14:00:01 bone 1524 #> 3049 14.3 1 1876 1876-01-01 00:00:00 blood 1525 #> 3050 14.3 1 1876 1876-01-01 00:00:00 bone 1525 #> 3051 15.0 2 1876 1876-01-31 12:00:01 blood 1526 #> 3052 15.0 2 1876 1876-01-31 12:00:01 bone 1526 #> 3053 31.2 3 1876 1876-03-02 00:00:01 blood 1527 #> 3054 31.2 3 1876 1876-03-02 00:00:01 bone 1527 #> 3055 2.3 4 1876 1876-04-01 12:00:00 blood 1528 #> 3056 2.3 4 1876 1876-04-01 12:00:00 bone 1528 #> 3057 5.1 5 1876 1876-05-02 00:00:01 blood 1529 #> 3058 5.1 5 1876 1876-05-02 00:00:01 bone 1529 #> 3059 1.6 6 1876 1876-06-01 12:00:01 blood 1530 #> 3060 1.6 6 1876 1876-06-01 12:00:01 bone 1530 #> 3061 15.2 7 1876 1876-07-02 00:00:00 blood 1531 #> 3062 15.2 7 1876 1876-07-02 00:00:00 bone 1531 #> 3063 8.8 8 1876 1876-08-01 12:00:01 blood 1532 #> 3064 8.8 8 1876 1876-08-01 12:00:01 bone 1532 #> 3065 9.9 9 1876 1876-09-01 00:00:01 blood 1533 #> 3066 9.9 9 1876 1876-09-01 00:00:01 bone 1533 #> 3067 14.3 10 1876 1876-10-01 12:00:00 blood 1534 #> 3068 14.3 10 1876 1876-10-01 12:00:00 bone 1534 #> 3069 9.9 11 1876 1876-11-01 00:00:01 blood 1535 #> 3070 9.9 11 1876 1876-11-01 00:00:01 bone 1535 #> 3071 8.2 12 1876 1876-12-01 12:00:01 blood 1536 #> 3072 8.2 12 1876 1876-12-01 12:00:01 bone 1536 #> 3073 24.4 1 1877 1877-01-01 00:00:00 blood 1537 #> 3074 24.4 1 1877 1877-01-01 00:00:00 bone 1537 #> 3075 8.7 2 1877 1877-01-31 10:00:01 blood 1538 #> 3076 8.7 2 1877 1877-01-31 10:00:01 bone 1538 #> 3077 11.7 3 1877 1877-03-02 20:00:01 blood 1539 #> 3078 11.7 3 1877 1877-03-02 20:00:01 bone 1539 #> 3079 15.8 4 1877 1877-04-02 06:00:00 blood 1540 #> 3080 15.8 4 1877 1877-04-02 06:00:00 bone 1540 #> 3081 21.2 5 1877 1877-05-02 16:00:01 blood 1541 #> 3082 21.2 5 1877 1877-05-02 16:00:01 bone 1541 #> 3083 13.4 6 1877 1877-06-02 02:00:01 blood 1542 #> 3084 13.4 6 1877 1877-06-02 02:00:01 bone 1542 #> 3085 5.9 7 1877 1877-07-02 12:00:00 blood 1543 #> 3086 5.9 7 1877 1877-07-02 12:00:00 bone 1543 #> 3087 6.3 8 1877 1877-08-01 22:00:01 blood 1544 #> 3088 6.3 8 1877 1877-08-01 22:00:01 bone 1544 #> 3089 16.4 9 1877 1877-09-01 08:00:01 blood 1545 #> 3090 16.4 9 1877 1877-09-01 08:00:01 bone 1545 #> 3091 6.7 10 1877 1877-10-01 18:00:00 blood 1546 #> 3092 6.7 10 1877 1877-10-01 18:00:00 bone 1546 #> 3093 14.5 11 1877 1877-11-01 04:00:01 blood 1547 #> 3094 14.5 11 1877 1877-11-01 04:00:01 bone 1547 #> 3095 2.3 12 1877 1877-12-01 14:00:01 blood 1548 #> 3096 2.3 12 1877 1877-12-01 14:00:01 bone 1548 #> 3097 3.3 1 1878 1878-01-01 00:00:00 blood 1549 #> 3098 3.3 1 1878 1878-01-01 00:00:00 bone 1549 #> 3099 6.0 2 1878 1878-01-31 10:00:01 blood 1550 #> 3100 6.0 2 1878 1878-01-31 10:00:01 bone 1550 #> 3101 7.8 3 1878 1878-03-02 20:00:01 blood 1551 #> 3102 7.8 3 1878 1878-03-02 20:00:01 bone 1551 #> 3103 0.1 4 1878 1878-04-02 06:00:00 blood 1552 #> 3104 0.1 4 1878 1878-04-02 06:00:00 bone 1552 #> 3105 5.8 5 1878 1878-05-02 16:00:01 blood 1553 #> 3106 5.8 5 1878 1878-05-02 16:00:01 bone 1553 #> 3107 6.4 6 1878 1878-06-02 02:00:01 blood 1554 #> 3108 6.4 6 1878 1878-06-02 02:00:01 bone 1554 #> 3109 0.1 7 1878 1878-07-02 12:00:00 blood 1555 #> 3110 0.1 7 1878 1878-07-02 12:00:00 bone 1555 #> 3111 0.0 8 1878 1878-08-01 22:00:01 blood 1556 #> 3112 0.0 8 1878 1878-08-01 22:00:01 bone 1556 #> 3113 5.3 9 1878 1878-09-01 08:00:01 blood 1557 #> 3114 5.3 9 1878 1878-09-01 08:00:01 bone 1557 #> 3115 1.1 10 1878 1878-10-01 18:00:00 blood 1558 #> 3116 1.1 10 1878 1878-10-01 18:00:00 bone 1558 #> 3117 4.1 11 1878 1878-11-01 04:00:01 blood 1559 #> 3118 4.1 11 1878 1878-11-01 04:00:01 bone 1559 #> 3119 0.5 12 1878 1878-12-01 14:00:01 blood 1560 #> 3120 0.5 12 1878 1878-12-01 14:00:01 bone 1560 #> 3121 0.8 1 1879 1879-01-01 00:00:00 blood 1561 #> 3122 0.8 1 1879 1879-01-01 00:00:00 bone 1561 #> 3123 0.6 2 1879 1879-01-31 10:00:01 blood 1562 #> 3124 0.6 2 1879 1879-01-31 10:00:01 bone 1562 #> 3125 0.0 3 1879 1879-03-02 20:00:01 blood 1563 #> 3126 0.0 3 1879 1879-03-02 20:00:01 bone 1563 #> 3127 6.2 4 1879 1879-04-02 06:00:00 blood 1564 #> 3128 6.2 4 1879 1879-04-02 06:00:00 bone 1564 #> 3129 2.4 5 1879 1879-05-02 16:00:01 blood 1565 #> 3130 2.4 5 1879 1879-05-02 16:00:01 bone 1565 #> 3131 4.8 6 1879 1879-06-02 02:00:01 blood 1566 #> 3132 4.8 6 1879 1879-06-02 02:00:01 bone 1566 #> 3133 7.5 7 1879 1879-07-02 12:00:00 blood 1567 #> 3134 7.5 7 1879 1879-07-02 12:00:00 bone 1567 #> 3135 10.7 8 1879 1879-08-01 22:00:01 blood 1568 #> 3136 10.7 8 1879 1879-08-01 22:00:01 bone 1568 #> 3137 6.1 9 1879 1879-09-01 08:00:01 blood 1569 #> 3138 6.1 9 1879 1879-09-01 08:00:01 bone 1569 #> 3139 12.3 10 1879 1879-10-01 18:00:00 blood 1570 #> 3140 12.3 10 1879 1879-10-01 18:00:00 bone 1570 #> 3141 12.9 11 1879 1879-11-01 04:00:01 blood 1571 #> 3142 12.9 11 1879 1879-11-01 04:00:01 bone 1571 #> 3143 7.2 12 1879 1879-12-01 14:00:01 blood 1572 #> 3144 7.2 12 1879 1879-12-01 14:00:01 bone 1572 #> 3145 24.0 1 1880 1880-01-01 00:00:00 blood 1573 #> 3146 24.0 1 1880 1880-01-01 00:00:00 bone 1573 #> 3147 27.5 2 1880 1880-01-31 12:00:01 blood 1574 #> 3148 27.5 2 1880 1880-01-31 12:00:01 bone 1574 #> 3149 19.5 3 1880 1880-03-02 00:00:01 blood 1575 #> 3150 19.5 3 1880 1880-03-02 00:00:01 bone 1575 #> 3151 19.3 4 1880 1880-04-01 12:00:00 blood 1576 #> 3152 19.3 4 1880 1880-04-01 12:00:00 bone 1576 #> 3153 23.5 5 1880 1880-05-02 00:00:01 blood 1577 #> 3154 23.5 5 1880 1880-05-02 00:00:01 bone 1577 #> 3155 34.1 6 1880 1880-06-01 12:00:01 blood 1578 #> 3156 34.1 6 1880 1880-06-01 12:00:01 bone 1578 #> 3157 21.9 7 1880 1880-07-02 00:00:00 blood 1579 #> 3158 21.9 7 1880 1880-07-02 00:00:00 bone 1579 #> 3159 48.1 8 1880 1880-08-01 12:00:01 blood 1580 #> 3160 48.1 8 1880 1880-08-01 12:00:01 bone 1580 #> 3161 66.0 9 1880 1880-09-01 00:00:01 blood 1581 #> 3162 66.0 9 1880 1880-09-01 00:00:01 bone 1581 #> 3163 43.0 10 1880 1880-10-01 12:00:00 blood 1582 #> 3164 43.0 10 1880 1880-10-01 12:00:00 bone 1582 #> 3165 30.7 11 1880 1880-11-01 00:00:01 blood 1583 #> 3166 30.7 11 1880 1880-11-01 00:00:01 bone 1583 #> 3167 29.6 12 1880 1880-12-01 12:00:01 blood 1584 #> 3168 29.6 12 1880 1880-12-01 12:00:01 bone 1584 #> 3169 36.4 1 1881 1881-01-01 00:00:00 blood 1585 #> 3170 36.4 1 1881 1881-01-01 00:00:00 bone 1585 #> 3171 53.2 2 1881 1881-01-31 10:00:01 blood 1586 #> 3172 53.2 2 1881 1881-01-31 10:00:01 bone 1586 #> 3173 51.5 3 1881 1881-03-02 20:00:01 blood 1587 #> 3174 51.5 3 1881 1881-03-02 20:00:01 bone 1587 #> 3175 51.7 4 1881 1881-04-02 06:00:00 blood 1588 #> 3176 51.7 4 1881 1881-04-02 06:00:00 bone 1588 #> 3177 43.5 5 1881 1881-05-02 16:00:01 blood 1589 #> 3178 43.5 5 1881 1881-05-02 16:00:01 bone 1589 #> 3179 60.5 6 1881 1881-06-02 02:00:01 blood 1590 #> 3180 60.5 6 1881 1881-06-02 02:00:01 bone 1590 #> 3181 76.9 7 1881 1881-07-02 12:00:00 blood 1591 #> 3182 76.9 7 1881 1881-07-02 12:00:00 bone 1591 #> 3183 58.0 8 1881 1881-08-01 22:00:01 blood 1592 #> 3184 58.0 8 1881 1881-08-01 22:00:01 bone 1592 #> 3185 53.2 9 1881 1881-09-01 08:00:01 blood 1593 #> 3186 53.2 9 1881 1881-09-01 08:00:01 bone 1593 #> 3187 64.0 10 1881 1881-10-01 18:00:00 blood 1594 #> 3188 64.0 10 1881 1881-10-01 18:00:00 bone 1594 #> 3189 54.8 11 1881 1881-11-01 04:00:01 blood 1595 #> 3190 54.8 11 1881 1881-11-01 04:00:01 bone 1595 #> 3191 47.3 12 1881 1881-12-01 14:00:01 blood 1596 #> 3192 47.3 12 1881 1881-12-01 14:00:01 bone 1596 #> 3193 45.0 1 1882 1882-01-01 00:00:00 blood 1597 #> 3194 45.0 1 1882 1882-01-01 00:00:00 bone 1597 #> 3195 69.3 2 1882 1882-01-31 10:00:01 blood 1598 #> 3196 69.3 2 1882 1882-01-31 10:00:01 bone 1598 #> 3197 67.5 3 1882 1882-03-02 20:00:01 blood 1599 #> 3198 67.5 3 1882 1882-03-02 20:00:01 bone 1599 #> 3199 95.8 4 1882 1882-04-02 06:00:00 blood 1600 #> 3200 95.8 4 1882 1882-04-02 06:00:00 bone 1600 #> 3201 64.1 5 1882 1882-05-02 16:00:01 blood 1601 #> 3202 64.1 5 1882 1882-05-02 16:00:01 bone 1601 #> 3203 45.2 6 1882 1882-06-02 02:00:01 blood 1602 #> 3204 45.2 6 1882 1882-06-02 02:00:01 bone 1602 #> 3205 45.4 7 1882 1882-07-02 12:00:00 blood 1603 #> 3206 45.4 7 1882 1882-07-02 12:00:00 bone 1603 #> 3207 40.4 8 1882 1882-08-01 22:00:01 blood 1604 #> 3208 40.4 8 1882 1882-08-01 22:00:01 bone 1604 #> 3209 57.7 9 1882 1882-09-01 08:00:01 blood 1605 #> 3210 57.7 9 1882 1882-09-01 08:00:01 bone 1605 #> 3211 59.2 10 1882 1882-10-01 18:00:00 blood 1606 #> 3212 59.2 10 1882 1882-10-01 18:00:00 bone 1606 #> 3213 84.4 11 1882 1882-11-01 04:00:01 blood 1607 #> 3214 84.4 11 1882 1882-11-01 04:00:01 bone 1607 #> 3215 41.8 12 1882 1882-12-01 14:00:01 blood 1608 #> 3216 41.8 12 1882 1882-12-01 14:00:01 bone 1608 #> 3217 60.6 1 1883 1883-01-01 00:00:00 blood 1609 #> 3218 60.6 1 1883 1883-01-01 00:00:00 bone 1609 #> 3219 46.9 2 1883 1883-01-31 10:00:01 blood 1610 #> 3220 46.9 2 1883 1883-01-31 10:00:01 bone 1610 #> 3221 42.8 3 1883 1883-03-02 20:00:01 blood 1611 #> 3222 42.8 3 1883 1883-03-02 20:00:01 bone 1611 #> 3223 82.1 4 1883 1883-04-02 06:00:00 blood 1612 #> 3224 82.1 4 1883 1883-04-02 06:00:00 bone 1612 #> 3225 32.1 5 1883 1883-05-02 16:00:01 blood 1613 #> 3226 32.1 5 1883 1883-05-02 16:00:01 bone 1613 #> 3227 76.5 6 1883 1883-06-02 02:00:01 blood 1614 #> 3228 76.5 6 1883 1883-06-02 02:00:01 bone 1614 #> 3229 80.6 7 1883 1883-07-02 12:00:00 blood 1615 #> 3230 80.6 7 1883 1883-07-02 12:00:00 bone 1615 #> 3231 46.0 8 1883 1883-08-01 22:00:01 blood 1616 #> 3232 46.0 8 1883 1883-08-01 22:00:01 bone 1616 #> 3233 52.6 9 1883 1883-09-01 08:00:01 blood 1617 #> 3234 52.6 9 1883 1883-09-01 08:00:01 bone 1617 #> 3235 83.8 10 1883 1883-10-01 18:00:00 blood 1618 #> 3236 83.8 10 1883 1883-10-01 18:00:00 bone 1618 #> 3237 84.5 11 1883 1883-11-01 04:00:01 blood 1619 #> 3238 84.5 11 1883 1883-11-01 04:00:01 bone 1619 #> 3239 75.9 12 1883 1883-12-01 14:00:01 blood 1620 #> 3240 75.9 12 1883 1883-12-01 14:00:01 bone 1620 #> 3241 91.5 1 1884 1884-01-01 00:00:00 blood 1621 #> 3242 91.5 1 1884 1884-01-01 00:00:00 bone 1621 #> 3243 86.9 2 1884 1884-01-31 12:00:01 blood 1622 #> 3244 86.9 2 1884 1884-01-31 12:00:01 bone 1622 #> 3245 86.8 3 1884 1884-03-02 00:00:01 blood 1623 #> 3246 86.8 3 1884 1884-03-02 00:00:01 bone 1623 #> 3247 76.1 4 1884 1884-04-01 12:00:00 blood 1624 #> 3248 76.1 4 1884 1884-04-01 12:00:00 bone 1624 #> 3249 66.5 5 1884 1884-05-02 00:00:01 blood 1625 #> 3250 66.5 5 1884 1884-05-02 00:00:01 bone 1625 #> 3251 51.2 6 1884 1884-06-01 12:00:01 blood 1626 #> 3252 51.2 6 1884 1884-06-01 12:00:01 bone 1626 #> 3253 53.1 7 1884 1884-07-02 00:00:00 blood 1627 #> 3254 53.1 7 1884 1884-07-02 00:00:00 bone 1627 #> 3255 55.8 8 1884 1884-08-01 12:00:01 blood 1628 #> 3256 55.8 8 1884 1884-08-01 12:00:01 bone 1628 #> 3257 61.9 9 1884 1884-09-01 00:00:01 blood 1629 #> 3258 61.9 9 1884 1884-09-01 00:00:01 bone 1629 #> 3259 47.8 10 1884 1884-10-01 12:00:00 blood 1630 #> 3260 47.8 10 1884 1884-10-01 12:00:00 bone 1630 #> 3261 36.6 11 1884 1884-11-01 00:00:01 blood 1631 #> 3262 36.6 11 1884 1884-11-01 00:00:01 bone 1631 #> 3263 47.2 12 1884 1884-12-01 12:00:01 blood 1632 #> 3264 47.2 12 1884 1884-12-01 12:00:01 bone 1632 #> 3265 42.8 1 1885 1885-01-01 00:00:00 blood 1633 #> 3266 42.8 1 1885 1885-01-01 00:00:00 bone 1633 #> 3267 71.8 2 1885 1885-01-31 10:00:01 blood 1634 #> 3268 71.8 2 1885 1885-01-31 10:00:01 bone 1634 #> 3269 49.8 3 1885 1885-03-02 20:00:01 blood 1635 #> 3270 49.8 3 1885 1885-03-02 20:00:01 bone 1635 #> 3271 55.0 4 1885 1885-04-02 06:00:00 blood 1636 #> 3272 55.0 4 1885 1885-04-02 06:00:00 bone 1636 #> 3273 73.0 5 1885 1885-05-02 16:00:01 blood 1637 #> 3274 73.0 5 1885 1885-05-02 16:00:01 bone 1637 #> 3275 83.7 6 1885 1885-06-02 02:00:01 blood 1638 #> 3276 83.7 6 1885 1885-06-02 02:00:01 bone 1638 #> 3277 66.5 7 1885 1885-07-02 12:00:00 blood 1639 #> 3278 66.5 7 1885 1885-07-02 12:00:00 bone 1639 #> 3279 50.0 8 1885 1885-08-01 22:00:01 blood 1640 #> 3280 50.0 8 1885 1885-08-01 22:00:01 bone 1640 #> 3281 39.6 9 1885 1885-09-01 08:00:01 blood 1641 #> 3282 39.6 9 1885 1885-09-01 08:00:01 bone 1641 #> 3283 38.7 10 1885 1885-10-01 18:00:00 blood 1642 #> 3284 38.7 10 1885 1885-10-01 18:00:00 bone 1642 #> 3285 33.3 11 1885 1885-11-01 04:00:01 blood 1643 #> 3286 33.3 11 1885 1885-11-01 04:00:01 bone 1643 #> 3287 21.7 12 1885 1885-12-01 14:00:01 blood 1644 #> 3288 21.7 12 1885 1885-12-01 14:00:01 bone 1644 #> 3289 29.9 1 1886 1886-01-01 00:00:00 blood 1645 #> 3290 29.9 1 1886 1886-01-01 00:00:00 bone 1645 #> 3291 25.9 2 1886 1886-01-31 10:00:01 blood 1646 #> 3292 25.9 2 1886 1886-01-31 10:00:01 bone 1646 #> 3293 57.3 3 1886 1886-03-02 20:00:01 blood 1647 #> 3294 57.3 3 1886 1886-03-02 20:00:01 bone 1647 #> 3295 43.7 4 1886 1886-04-02 06:00:00 blood 1648 #> 3296 43.7 4 1886 1886-04-02 06:00:00 bone 1648 #> 3297 30.7 5 1886 1886-05-02 16:00:01 blood 1649 #> 3298 30.7 5 1886 1886-05-02 16:00:01 bone 1649 #> 3299 27.1 6 1886 1886-06-02 02:00:01 blood 1650 #> 3300 27.1 6 1886 1886-06-02 02:00:01 bone 1650 #> 3301 30.3 7 1886 1886-07-02 12:00:00 blood 1651 #> 3302 30.3 7 1886 1886-07-02 12:00:00 bone 1651 #> 3303 16.9 8 1886 1886-08-01 22:00:01 blood 1652 #> 3304 16.9 8 1886 1886-08-01 22:00:01 bone 1652 #> 3305 21.4 9 1886 1886-09-01 08:00:01 blood 1653 #> 3306 21.4 9 1886 1886-09-01 08:00:01 bone 1653 #> 3307 8.6 10 1886 1886-10-01 18:00:00 blood 1654 #> 3308 8.6 10 1886 1886-10-01 18:00:00 bone 1654 #> 3309 0.3 11 1886 1886-11-01 04:00:01 blood 1655 #> 3310 0.3 11 1886 1886-11-01 04:00:01 bone 1655 #> 3311 12.4 12 1886 1886-12-01 14:00:01 blood 1656 #> 3312 12.4 12 1886 1886-12-01 14:00:01 bone 1656 #> 3313 10.3 1 1887 1887-01-01 00:00:00 blood 1657 #> 3314 10.3 1 1887 1887-01-01 00:00:00 bone 1657 #> 3315 13.2 2 1887 1887-01-31 10:00:01 blood 1658 #> 3316 13.2 2 1887 1887-01-31 10:00:01 bone 1658 #> 3317 4.2 3 1887 1887-03-02 20:00:01 blood 1659 #> 3318 4.2 3 1887 1887-03-02 20:00:01 bone 1659 #> 3319 6.9 4 1887 1887-04-02 06:00:00 blood 1660 #> 3320 6.9 4 1887 1887-04-02 06:00:00 bone 1660 #> 3321 20.0 5 1887 1887-05-02 16:00:01 blood 1661 #> 3322 20.0 5 1887 1887-05-02 16:00:01 bone 1661 #> 3323 15.7 6 1887 1887-06-02 02:00:01 blood 1662 #> 3324 15.7 6 1887 1887-06-02 02:00:01 bone 1662 #> 3325 23.3 7 1887 1887-07-02 12:00:00 blood 1663 #> 3326 23.3 7 1887 1887-07-02 12:00:00 bone 1663 #> 3327 21.4 8 1887 1887-08-01 22:00:01 blood 1664 #> 3328 21.4 8 1887 1887-08-01 22:00:01 bone 1664 #> 3329 7.4 9 1887 1887-09-01 08:00:01 blood 1665 #> 3330 7.4 9 1887 1887-09-01 08:00:01 bone 1665 #> 3331 6.6 10 1887 1887-10-01 18:00:00 blood 1666 #> 3332 6.6 10 1887 1887-10-01 18:00:00 bone 1666 #> 3333 6.9 11 1887 1887-11-01 04:00:01 blood 1667 #> 3334 6.9 11 1887 1887-11-01 04:00:01 bone 1667 #> 3335 20.7 12 1887 1887-12-01 14:00:01 blood 1668 #> 3336 20.7 12 1887 1887-12-01 14:00:01 bone 1668 #> 3337 12.7 1 1888 1888-01-01 00:00:00 blood 1669 #> 3338 12.7 1 1888 1888-01-01 00:00:00 bone 1669 #> 3339 7.1 2 1888 1888-01-31 12:00:01 blood 1670 #> 3340 7.1 2 1888 1888-01-31 12:00:01 bone 1670 #> 3341 7.8 3 1888 1888-03-02 00:00:01 blood 1671 #> 3342 7.8 3 1888 1888-03-02 00:00:01 bone 1671 #> 3343 5.1 4 1888 1888-04-01 12:00:00 blood 1672 #> 3344 5.1 4 1888 1888-04-01 12:00:00 bone 1672 #> 3345 7.0 5 1888 1888-05-02 00:00:01 blood 1673 #> 3346 7.0 5 1888 1888-05-02 00:00:01 bone 1673 #> 3347 7.1 6 1888 1888-06-01 12:00:01 blood 1674 #> 3348 7.1 6 1888 1888-06-01 12:00:01 bone 1674 #> 3349 3.1 7 1888 1888-07-02 00:00:00 blood 1675 #> 3350 3.1 7 1888 1888-07-02 00:00:00 bone 1675 #> 3351 2.8 8 1888 1888-08-01 12:00:01 blood 1676 #> 3352 2.8 8 1888 1888-08-01 12:00:01 bone 1676 #> 3353 8.8 9 1888 1888-09-01 00:00:01 blood 1677 #> 3354 8.8 9 1888 1888-09-01 00:00:01 bone 1677 #> 3355 2.1 10 1888 1888-10-01 12:00:00 blood 1678 #> 3356 2.1 10 1888 1888-10-01 12:00:00 bone 1678 #> 3357 10.7 11 1888 1888-11-01 00:00:01 blood 1679 #> 3358 10.7 11 1888 1888-11-01 00:00:01 bone 1679 #> 3359 6.7 12 1888 1888-12-01 12:00:01 blood 1680 #> 3360 6.7 12 1888 1888-12-01 12:00:01 bone 1680 #> 3361 0.8 1 1889 1889-01-01 00:00:00 blood 1681 #> 3362 0.8 1 1889 1889-01-01 00:00:00 bone 1681 #> 3363 8.5 2 1889 1889-01-31 10:00:01 blood 1682 #> 3364 8.5 2 1889 1889-01-31 10:00:01 bone 1682 #> 3365 7.0 3 1889 1889-03-02 20:00:01 blood 1683 #> 3366 7.0 3 1889 1889-03-02 20:00:01 bone 1683 #> 3367 4.3 4 1889 1889-04-02 06:00:00 blood 1684 #> 3368 4.3 4 1889 1889-04-02 06:00:00 bone 1684 #> 3369 2.4 5 1889 1889-05-02 16:00:01 blood 1685 #> 3370 2.4 5 1889 1889-05-02 16:00:01 bone 1685 #> 3371 6.4 6 1889 1889-06-02 02:00:01 blood 1686 #> 3372 6.4 6 1889 1889-06-02 02:00:01 bone 1686 #> 3373 9.7 7 1889 1889-07-02 12:00:00 blood 1687 #> 3374 9.7 7 1889 1889-07-02 12:00:00 bone 1687 #> 3375 20.6 8 1889 1889-08-01 22:00:01 blood 1688 #> 3376 20.6 8 1889 1889-08-01 22:00:01 bone 1688 #> 3377 6.5 9 1889 1889-09-01 08:00:01 blood 1689 #> 3378 6.5 9 1889 1889-09-01 08:00:01 bone 1689 #> 3379 2.1 10 1889 1889-10-01 18:00:00 blood 1690 #> 3380 2.1 10 1889 1889-10-01 18:00:00 bone 1690 #> 3381 0.2 11 1889 1889-11-01 04:00:01 blood 1691 #> 3382 0.2 11 1889 1889-11-01 04:00:01 bone 1691 #> 3383 6.7 12 1889 1889-12-01 14:00:01 blood 1692 #> 3384 6.7 12 1889 1889-12-01 14:00:01 bone 1692 #> 3385 5.3 1 1890 1890-01-01 00:00:00 blood 1693 #> 3386 5.3 1 1890 1890-01-01 00:00:00 bone 1693 #> 3387 0.6 2 1890 1890-01-31 10:00:01 blood 1694 #> 3388 0.6 2 1890 1890-01-31 10:00:01 bone 1694 #> 3389 5.1 3 1890 1890-03-02 20:00:01 blood 1695 #> 3390 5.1 3 1890 1890-03-02 20:00:01 bone 1695 #> 3391 1.6 4 1890 1890-04-02 06:00:00 blood 1696 #> 3392 1.6 4 1890 1890-04-02 06:00:00 bone 1696 #> 3393 4.8 5 1890 1890-05-02 16:00:01 blood 1697 #> 3394 4.8 5 1890 1890-05-02 16:00:01 bone 1697 #> 3395 1.3 6 1890 1890-06-02 02:00:01 blood 1698 #> 3396 1.3 6 1890 1890-06-02 02:00:01 bone 1698 #> 3397 11.6 7 1890 1890-07-02 12:00:00 blood 1699 #> 3398 11.6 7 1890 1890-07-02 12:00:00 bone 1699 #> 3399 8.5 8 1890 1890-08-01 22:00:01 blood 1700 #> 3400 8.5 8 1890 1890-08-01 22:00:01 bone 1700 #> 3401 17.2 9 1890 1890-09-01 08:00:01 blood 1701 #> 3402 17.2 9 1890 1890-09-01 08:00:01 bone 1701 #> 3403 11.2 10 1890 1890-10-01 18:00:00 blood 1702 #> 3404 11.2 10 1890 1890-10-01 18:00:00 bone 1702 #> 3405 9.6 11 1890 1890-11-01 04:00:01 blood 1703 #> 3406 9.6 11 1890 1890-11-01 04:00:01 bone 1703 #> 3407 7.8 12 1890 1890-12-01 14:00:01 blood 1704 #> 3408 7.8 12 1890 1890-12-01 14:00:01 bone 1704 #> 3409 13.5 1 1891 1891-01-01 00:00:00 blood 1705 #> 3410 13.5 1 1891 1891-01-01 00:00:00 bone 1705 #> 3411 22.2 2 1891 1891-01-31 10:00:01 blood 1706 #> 3412 22.2 2 1891 1891-01-31 10:00:01 bone 1706 #> 3413 10.4 3 1891 1891-03-02 20:00:01 blood 1707 #> 3414 10.4 3 1891 1891-03-02 20:00:01 bone 1707 #> 3415 20.5 4 1891 1891-04-02 06:00:00 blood 1708 #> 3416 20.5 4 1891 1891-04-02 06:00:00 bone 1708 #> 3417 41.1 5 1891 1891-05-02 16:00:01 blood 1709 #> 3418 41.1 5 1891 1891-05-02 16:00:01 bone 1709 #> 3419 48.3 6 1891 1891-06-02 02:00:01 blood 1710 #> 3420 48.3 6 1891 1891-06-02 02:00:01 bone 1710 #> 3421 58.8 7 1891 1891-07-02 12:00:00 blood 1711 #> 3422 58.8 7 1891 1891-07-02 12:00:00 bone 1711 #> 3423 33.2 8 1891 1891-08-01 22:00:01 blood 1712 #> 3424 33.2 8 1891 1891-08-01 22:00:01 bone 1712 #> 3425 53.8 9 1891 1891-09-01 08:00:01 blood 1713 #> 3426 53.8 9 1891 1891-09-01 08:00:01 bone 1713 #> 3427 51.5 10 1891 1891-10-01 18:00:00 blood 1714 #> 3428 51.5 10 1891 1891-10-01 18:00:00 bone 1714 #> 3429 41.9 11 1891 1891-11-01 04:00:01 blood 1715 #> 3430 41.9 11 1891 1891-11-01 04:00:01 bone 1715 #> 3431 32.3 12 1891 1891-12-01 14:00:01 blood 1716 #> 3432 32.3 12 1891 1891-12-01 14:00:01 bone 1716 #> 3433 69.1 1 1892 1892-01-01 00:00:00 blood 1717 #> 3434 69.1 1 1892 1892-01-01 00:00:00 bone 1717 #> 3435 75.6 2 1892 1892-01-31 12:00:01 blood 1718 #> 3436 75.6 2 1892 1892-01-31 12:00:01 bone 1718 #> 3437 49.9 3 1892 1892-03-02 00:00:01 blood 1719 #> 3438 49.9 3 1892 1892-03-02 00:00:01 bone 1719 #> 3439 69.6 4 1892 1892-04-01 12:00:00 blood 1720 #> 3440 69.6 4 1892 1892-04-01 12:00:00 bone 1720 #> 3441 79.6 5 1892 1892-05-02 00:00:01 blood 1721 #> 3442 79.6 5 1892 1892-05-02 00:00:01 bone 1721 #> 3443 76.3 6 1892 1892-06-01 12:00:01 blood 1722 #> 3444 76.3 6 1892 1892-06-01 12:00:01 bone 1722 #> 3445 76.8 7 1892 1892-07-02 00:00:00 blood 1723 #> 3446 76.8 7 1892 1892-07-02 00:00:00 bone 1723 #> 3447 101.4 8 1892 1892-08-01 12:00:01 blood 1724 #> 3448 101.4 8 1892 1892-08-01 12:00:01 bone 1724 #> 3449 62.8 9 1892 1892-09-01 00:00:01 blood 1725 #> 3450 62.8 9 1892 1892-09-01 00:00:01 bone 1725 #> 3451 70.5 10 1892 1892-10-01 12:00:00 blood 1726 #> 3452 70.5 10 1892 1892-10-01 12:00:00 bone 1726 #> 3453 65.4 11 1892 1892-11-01 00:00:01 blood 1727 #> 3454 65.4 11 1892 1892-11-01 00:00:01 bone 1727 #> 3455 78.6 12 1892 1892-12-01 12:00:01 blood 1728 #> 3456 78.6 12 1892 1892-12-01 12:00:01 bone 1728 #> 3457 75.0 1 1893 1893-01-01 00:00:00 blood 1729 #> 3458 75.0 1 1893 1893-01-01 00:00:00 bone 1729 #> 3459 73.0 2 1893 1893-01-31 10:00:01 blood 1730 #> 3460 73.0 2 1893 1893-01-31 10:00:01 bone 1730 #> 3461 65.7 3 1893 1893-03-02 20:00:01 blood 1731 #> 3462 65.7 3 1893 1893-03-02 20:00:01 bone 1731 #> 3463 88.1 4 1893 1893-04-02 06:00:00 blood 1732 #> 3464 88.1 4 1893 1893-04-02 06:00:00 bone 1732 #> 3465 84.7 5 1893 1893-05-02 16:00:01 blood 1733 #> 3466 84.7 5 1893 1893-05-02 16:00:01 bone 1733 #> 3467 88.2 6 1893 1893-06-02 02:00:01 blood 1734 #> 3468 88.2 6 1893 1893-06-02 02:00:01 bone 1734 #> 3469 88.8 7 1893 1893-07-02 12:00:00 blood 1735 #> 3470 88.8 7 1893 1893-07-02 12:00:00 bone 1735 #> 3471 129.2 8 1893 1893-08-01 22:00:01 blood 1736 #> 3472 129.2 8 1893 1893-08-01 22:00:01 bone 1736 #> 3473 77.9 9 1893 1893-09-01 08:00:01 blood 1737 #> 3474 77.9 9 1893 1893-09-01 08:00:01 bone 1737 #> 3475 79.7 10 1893 1893-10-01 18:00:00 blood 1738 #> 3476 79.7 10 1893 1893-10-01 18:00:00 bone 1738 #> 3477 75.1 11 1893 1893-11-01 04:00:01 blood 1739 #> 3478 75.1 11 1893 1893-11-01 04:00:01 bone 1739 #> 3479 93.8 12 1893 1893-12-01 14:00:01 blood 1740 #> 3480 93.8 12 1893 1893-12-01 14:00:01 bone 1740 #> 3481 83.2 1 1894 1894-01-01 00:00:00 blood 1741 #> 3482 83.2 1 1894 1894-01-01 00:00:00 bone 1741 #> 3483 84.6 2 1894 1894-01-31 10:00:01 blood 1742 #> 3484 84.6 2 1894 1894-01-31 10:00:01 bone 1742 #> 3485 52.3 3 1894 1894-03-02 20:00:01 blood 1743 #> 3486 52.3 3 1894 1894-03-02 20:00:01 bone 1743 #> 3487 81.6 4 1894 1894-04-02 06:00:00 blood 1744 #> 3488 81.6 4 1894 1894-04-02 06:00:00 bone 1744 #> 3489 101.2 5 1894 1894-05-02 16:00:01 blood 1745 #> 3490 101.2 5 1894 1894-05-02 16:00:01 bone 1745 #> 3491 98.9 6 1894 1894-06-02 02:00:01 blood 1746 #> 3492 98.9 6 1894 1894-06-02 02:00:01 bone 1746 #> 3493 106.0 7 1894 1894-07-02 12:00:00 blood 1747 #> 3494 106.0 7 1894 1894-07-02 12:00:00 bone 1747 #> 3495 70.3 8 1894 1894-08-01 22:00:01 blood 1748 #> 3496 70.3 8 1894 1894-08-01 22:00:01 bone 1748 #> 3497 65.9 9 1894 1894-09-01 08:00:01 blood 1749 #> 3498 65.9 9 1894 1894-09-01 08:00:01 bone 1749 #> 3499 75.5 10 1894 1894-10-01 18:00:00 blood 1750 #> 3500 75.5 10 1894 1894-10-01 18:00:00 bone 1750 #> 3501 56.6 11 1894 1894-11-01 04:00:01 blood 1751 #> 3502 56.6 11 1894 1894-11-01 04:00:01 bone 1751 #> 3503 60.0 12 1894 1894-12-01 14:00:01 blood 1752 #> 3504 60.0 12 1894 1894-12-01 14:00:01 bone 1752 #> 3505 63.3 1 1895 1895-01-01 00:00:00 blood 1753 #> 3506 63.3 1 1895 1895-01-01 00:00:00 bone 1753 #> 3507 67.2 2 1895 1895-01-31 10:00:01 blood 1754 #> 3508 67.2 2 1895 1895-01-31 10:00:01 bone 1754 #> 3509 61.0 3 1895 1895-03-02 20:00:01 blood 1755 #> 3510 61.0 3 1895 1895-03-02 20:00:01 bone 1755 #> 3511 76.9 4 1895 1895-04-02 06:00:00 blood 1756 #> 3512 76.9 4 1895 1895-04-02 06:00:00 bone 1756 #> 3513 67.5 5 1895 1895-05-02 16:00:01 blood 1757 #> 3514 67.5 5 1895 1895-05-02 16:00:01 bone 1757 #> 3515 71.5 6 1895 1895-06-02 02:00:01 blood 1758 #> 3516 71.5 6 1895 1895-06-02 02:00:01 bone 1758 #> 3517 47.8 7 1895 1895-07-02 12:00:00 blood 1759 #> 3518 47.8 7 1895 1895-07-02 12:00:00 bone 1759 #> 3519 68.9 8 1895 1895-08-01 22:00:01 blood 1760 #> 3520 68.9 8 1895 1895-08-01 22:00:01 bone 1760 #> 3521 57.7 9 1895 1895-09-01 08:00:01 blood 1761 #> 3522 57.7 9 1895 1895-09-01 08:00:01 bone 1761 #> 3523 67.9 10 1895 1895-10-01 18:00:00 blood 1762 #> 3524 67.9 10 1895 1895-10-01 18:00:00 bone 1762 #> 3525 47.2 11 1895 1895-11-01 04:00:01 blood 1763 #> 3526 47.2 11 1895 1895-11-01 04:00:01 bone 1763 #> 3527 70.7 12 1895 1895-12-01 14:00:01 blood 1764 #> 3528 70.7 12 1895 1895-12-01 14:00:01 bone 1764 #> 3529 29.0 1 1896 1896-01-01 00:00:00 blood 1765 #> 3530 29.0 1 1896 1896-01-01 00:00:00 bone 1765 #> 3531 57.4 2 1896 1896-01-31 12:00:01 blood 1766 #> 3532 57.4 2 1896 1896-01-31 12:00:01 bone 1766 #> 3533 52.0 3 1896 1896-03-02 00:00:01 blood 1767 #> 3534 52.0 3 1896 1896-03-02 00:00:01 bone 1767 #> 3535 43.8 4 1896 1896-04-01 12:00:00 blood 1768 #> 3536 43.8 4 1896 1896-04-01 12:00:00 bone 1768 #> 3537 27.7 5 1896 1896-05-02 00:00:01 blood 1769 #> 3538 27.7 5 1896 1896-05-02 00:00:01 bone 1769 #> 3539 49.0 6 1896 1896-06-01 12:00:01 blood 1770 #> 3540 49.0 6 1896 1896-06-01 12:00:01 bone 1770 #> 3541 45.0 7 1896 1896-07-02 00:00:00 blood 1771 #> 3542 45.0 7 1896 1896-07-02 00:00:00 bone 1771 #> 3543 27.2 8 1896 1896-08-01 12:00:01 blood 1772 #> 3544 27.2 8 1896 1896-08-01 12:00:01 bone 1772 #> 3545 61.3 9 1896 1896-09-01 00:00:01 blood 1773 #> 3546 61.3 9 1896 1896-09-01 00:00:01 bone 1773 #> 3547 28.4 10 1896 1896-10-01 12:00:00 blood 1774 #> 3548 28.4 10 1896 1896-10-01 12:00:00 bone 1774 #> 3549 38.0 11 1896 1896-11-01 00:00:01 blood 1775 #> 3550 38.0 11 1896 1896-11-01 00:00:01 bone 1775 #> 3551 42.6 12 1896 1896-12-01 12:00:01 blood 1776 #> 3552 42.6 12 1896 1896-12-01 12:00:01 bone 1776 #> 3553 40.6 1 1897 1897-01-01 00:00:00 blood 1777 #> 3554 40.6 1 1897 1897-01-01 00:00:00 bone 1777 #> 3555 29.4 2 1897 1897-01-31 10:00:01 blood 1778 #> 3556 29.4 2 1897 1897-01-31 10:00:01 bone 1778 #> 3557 29.1 3 1897 1897-03-02 20:00:01 blood 1779 #> 3558 29.1 3 1897 1897-03-02 20:00:01 bone 1779 #> 3559 31.0 4 1897 1897-04-02 06:00:00 blood 1780 #> 3560 31.0 4 1897 1897-04-02 06:00:00 bone 1780 #> 3561 20.0 5 1897 1897-05-02 16:00:01 blood 1781 #> 3562 20.0 5 1897 1897-05-02 16:00:01 bone 1781 #> 3563 11.3 6 1897 1897-06-02 02:00:01 blood 1782 #> 3564 11.3 6 1897 1897-06-02 02:00:01 bone 1782 #> 3565 27.6 7 1897 1897-07-02 12:00:00 blood 1783 #> 3566 27.6 7 1897 1897-07-02 12:00:00 bone 1783 #> 3567 21.8 8 1897 1897-08-01 22:00:01 blood 1784 #> 3568 21.8 8 1897 1897-08-01 22:00:01 bone 1784 #> 3569 48.1 9 1897 1897-09-01 08:00:01 blood 1785 #> 3570 48.1 9 1897 1897-09-01 08:00:01 bone 1785 #> 3571 14.3 10 1897 1897-10-01 18:00:00 blood 1786 #> 3572 14.3 10 1897 1897-10-01 18:00:00 bone 1786 #> 3573 8.4 11 1897 1897-11-01 04:00:01 blood 1787 #> 3574 8.4 11 1897 1897-11-01 04:00:01 bone 1787 #> 3575 33.3 12 1897 1897-12-01 14:00:01 blood 1788 #> 3576 33.3 12 1897 1897-12-01 14:00:01 bone 1788 #> 3577 30.2 1 1898 1898-01-01 00:00:00 blood 1789 #> 3578 30.2 1 1898 1898-01-01 00:00:00 bone 1789 #> 3579 36.4 2 1898 1898-01-31 10:00:01 blood 1790 #> 3580 36.4 2 1898 1898-01-31 10:00:01 bone 1790 #> 3581 38.3 3 1898 1898-03-02 20:00:01 blood 1791 #> 3582 38.3 3 1898 1898-03-02 20:00:01 bone 1791 #> 3583 14.5 4 1898 1898-04-02 06:00:00 blood 1792 #> 3584 14.5 4 1898 1898-04-02 06:00:00 bone 1792 #> 3585 25.8 5 1898 1898-05-02 16:00:01 blood 1793 #> 3586 25.8 5 1898 1898-05-02 16:00:01 bone 1793 #> 3587 22.3 6 1898 1898-06-02 02:00:01 blood 1794 #> 3588 22.3 6 1898 1898-06-02 02:00:01 bone 1794 #> 3589 9.0 7 1898 1898-07-02 12:00:00 blood 1795 #> 3590 9.0 7 1898 1898-07-02 12:00:00 bone 1795 #> 3591 31.4 8 1898 1898-08-01 22:00:01 blood 1796 #> 3592 31.4 8 1898 1898-08-01 22:00:01 bone 1796 #> 3593 34.8 9 1898 1898-09-01 08:00:01 blood 1797 #> 3594 34.8 9 1898 1898-09-01 08:00:01 bone 1797 #> 3595 34.4 10 1898 1898-10-01 18:00:00 blood 1798 #> 3596 34.4 10 1898 1898-10-01 18:00:00 bone 1798 #> 3597 30.9 11 1898 1898-11-01 04:00:01 blood 1799 #> 3598 30.9 11 1898 1898-11-01 04:00:01 bone 1799 #> 3599 12.6 12 1898 1898-12-01 14:00:01 blood 1800 #> 3600 12.6 12 1898 1898-12-01 14:00:01 bone 1800 #> 3601 19.5 1 1899 1899-01-01 00:00:00 blood 1801 #> 3602 19.5 1 1899 1899-01-01 00:00:00 bone 1801 #> 3603 9.2 2 1899 1899-01-31 10:00:01 blood 1802 #> 3604 9.2 2 1899 1899-01-31 10:00:01 bone 1802 #> 3605 18.1 3 1899 1899-03-02 20:00:01 blood 1803 #> 3606 18.1 3 1899 1899-03-02 20:00:01 bone 1803 #> 3607 14.2 4 1899 1899-04-02 06:00:00 blood 1804 #> 3608 14.2 4 1899 1899-04-02 06:00:00 bone 1804 #> 3609 7.7 5 1899 1899-05-02 16:00:01 blood 1805 #> 3610 7.7 5 1899 1899-05-02 16:00:01 bone 1805 #> 3611 20.5 6 1899 1899-06-02 02:00:01 blood 1806 #> 3612 20.5 6 1899 1899-06-02 02:00:01 bone 1806 #> 3613 13.5 7 1899 1899-07-02 12:00:00 blood 1807 #> 3614 13.5 7 1899 1899-07-02 12:00:00 bone 1807 #> 3615 2.9 8 1899 1899-08-01 22:00:01 blood 1808 #> 3616 2.9 8 1899 1899-08-01 22:00:01 bone 1808 #> 3617 8.4 9 1899 1899-09-01 08:00:01 blood 1809 #> 3618 8.4 9 1899 1899-09-01 08:00:01 bone 1809 #> 3619 13.0 10 1899 1899-10-01 18:00:00 blood 1810 #> 3620 13.0 10 1899 1899-10-01 18:00:00 bone 1810 #> 3621 7.8 11 1899 1899-11-01 04:00:01 blood 1811 #> 3622 7.8 11 1899 1899-11-01 04:00:01 bone 1811 #> 3623 10.5 12 1899 1899-12-01 14:00:01 blood 1812 #> 3624 10.5 12 1899 1899-12-01 14:00:01 bone 1812 #> 3625 9.4 1 1900 1900-01-01 00:00:00 blood 1813 #> 3626 9.4 1 1900 1900-01-01 00:00:00 bone 1813 #> 3627 13.6 2 1900 1900-01-31 10:00:01 blood 1814 #> 3628 13.6 2 1900 1900-01-31 10:00:01 bone 1814 #> 3629 8.6 3 1900 1900-03-02 20:00:01 blood 1815 #> 3630 8.6 3 1900 1900-03-02 20:00:01 bone 1815 #> 3631 16.0 4 1900 1900-04-02 06:00:00 blood 1816 #> 3632 16.0 4 1900 1900-04-02 06:00:00 bone 1816 #> 3633 15.2 5 1900 1900-05-02 16:00:01 blood 1817 #> 3634 15.2 5 1900 1900-05-02 16:00:01 bone 1817 #> 3635 12.1 6 1900 1900-06-02 02:00:01 blood 1818 #> 3636 12.1 6 1900 1900-06-02 02:00:01 bone 1818 #> 3637 8.3 7 1900 1900-07-02 12:00:00 blood 1819 #> 3638 8.3 7 1900 1900-07-02 12:00:00 bone 1819 #> 3639 4.3 8 1900 1900-08-01 22:00:01 blood 1820 #> 3640 4.3 8 1900 1900-08-01 22:00:01 bone 1820 #> 3641 8.3 9 1900 1900-09-01 08:00:01 blood 1821 #> 3642 8.3 9 1900 1900-09-01 08:00:01 bone 1821 #> 3643 12.9 10 1900 1900-10-01 18:00:00 blood 1822 #> 3644 12.9 10 1900 1900-10-01 18:00:00 bone 1822 #> 3645 4.5 11 1900 1900-11-01 04:00:01 blood 1823 #> 3646 4.5 11 1900 1900-11-01 04:00:01 bone 1823 #> 3647 0.3 12 1900 1900-12-01 14:00:01 blood 1824 #> 3648 0.3 12 1900 1900-12-01 14:00:01 bone 1824 #> 3649 0.2 1 1901 1901-01-01 00:00:00 blood 1825 #> 3650 0.2 1 1901 1901-01-01 00:00:00 bone 1825 #> 3651 2.4 2 1901 1901-01-31 10:00:01 blood 1826 #> 3652 2.4 2 1901 1901-01-31 10:00:01 bone 1826 #> 3653 4.5 3 1901 1901-03-02 20:00:01 blood 1827 #> 3654 4.5 3 1901 1901-03-02 20:00:01 bone 1827 #> 3655 0.0 4 1901 1901-04-02 06:00:00 blood 1828 #> 3656 0.0 4 1901 1901-04-02 06:00:00 bone 1828 #> 3657 10.2 5 1901 1901-05-02 16:00:01 blood 1829 #> 3658 10.2 5 1901 1901-05-02 16:00:01 bone 1829 #> 3659 5.8 6 1901 1901-06-02 02:00:01 blood 1830 #> 3660 5.8 6 1901 1901-06-02 02:00:01 bone 1830 #> 3661 0.7 7 1901 1901-07-02 12:00:00 blood 1831 #> 3662 0.7 7 1901 1901-07-02 12:00:00 bone 1831 #> 3663 1.0 8 1901 1901-08-01 22:00:01 blood 1832 #> 3664 1.0 8 1901 1901-08-01 22:00:01 bone 1832 #> 3665 0.6 9 1901 1901-09-01 08:00:01 blood 1833 #> 3666 0.6 9 1901 1901-09-01 08:00:01 bone 1833 #> 3667 3.7 10 1901 1901-10-01 18:00:00 blood 1834 #> 3668 3.7 10 1901 1901-10-01 18:00:00 bone 1834 #> 3669 3.8 11 1901 1901-11-01 04:00:01 blood 1835 #> 3670 3.8 11 1901 1901-11-01 04:00:01 bone 1835 #> 3671 0.0 12 1901 1901-12-01 14:00:01 blood 1836 #> 3672 0.0 12 1901 1901-12-01 14:00:01 bone 1836 #> 3673 5.2 1 1902 1902-01-01 00:00:00 blood 1837 #> 3674 5.2 1 1902 1902-01-01 00:00:00 bone 1837 #> 3675 0.0 2 1902 1902-01-31 10:00:01 blood 1838 #> 3676 0.0 2 1902 1902-01-31 10:00:01 bone 1838 #> 3677 12.4 3 1902 1902-03-02 20:00:01 blood 1839 #> 3678 12.4 3 1902 1902-03-02 20:00:01 bone 1839 #> 3679 0.0 4 1902 1902-04-02 06:00:00 blood 1840 #> 3680 0.0 4 1902 1902-04-02 06:00:00 bone 1840 #> 3681 2.8 5 1902 1902-05-02 16:00:01 blood 1841 #> 3682 2.8 5 1902 1902-05-02 16:00:01 bone 1841 #> 3683 1.4 6 1902 1902-06-02 02:00:01 blood 1842 #> 3684 1.4 6 1902 1902-06-02 02:00:01 bone 1842 #> 3685 0.9 7 1902 1902-07-02 12:00:00 blood 1843 #> 3686 0.9 7 1902 1902-07-02 12:00:00 bone 1843 #> 3687 2.3 8 1902 1902-08-01 22:00:01 blood 1844 #> 3688 2.3 8 1902 1902-08-01 22:00:01 bone 1844 #> 3689 7.6 9 1902 1902-09-01 08:00:01 blood 1845 #> 3690 7.6 9 1902 1902-09-01 08:00:01 bone 1845 #> 3691 16.3 10 1902 1902-10-01 18:00:00 blood 1846 #> 3692 16.3 10 1902 1902-10-01 18:00:00 bone 1846 #> 3693 10.3 11 1902 1902-11-01 04:00:01 blood 1847 #> 3694 10.3 11 1902 1902-11-01 04:00:01 bone 1847 #> 3695 1.1 12 1902 1902-12-01 14:00:01 blood 1848 #> 3696 1.1 12 1902 1902-12-01 14:00:01 bone 1848 #> 3697 8.3 1 1903 1903-01-01 00:00:00 blood 1849 #> 3698 8.3 1 1903 1903-01-01 00:00:00 bone 1849 #> 3699 17.0 2 1903 1903-01-31 10:00:01 blood 1850 #> 3700 17.0 2 1903 1903-01-31 10:00:01 bone 1850 #> 3701 13.5 3 1903 1903-03-02 20:00:01 blood 1851 #> 3702 13.5 3 1903 1903-03-02 20:00:01 bone 1851 #> 3703 26.1 4 1903 1903-04-02 06:00:00 blood 1852 #> 3704 26.1 4 1903 1903-04-02 06:00:00 bone 1852 #> 3705 14.6 5 1903 1903-05-02 16:00:01 blood 1853 #> 3706 14.6 5 1903 1903-05-02 16:00:01 bone 1853 #> 3707 16.3 6 1903 1903-06-02 02:00:01 blood 1854 #> 3708 16.3 6 1903 1903-06-02 02:00:01 bone 1854 #> 3709 27.9 7 1903 1903-07-02 12:00:00 blood 1855 #> 3710 27.9 7 1903 1903-07-02 12:00:00 bone 1855 #> 3711 28.8 8 1903 1903-08-01 22:00:01 blood 1856 #> 3712 28.8 8 1903 1903-08-01 22:00:01 bone 1856 #> 3713 11.1 9 1903 1903-09-01 08:00:01 blood 1857 #> 3714 11.1 9 1903 1903-09-01 08:00:01 bone 1857 #> 3715 38.9 10 1903 1903-10-01 18:00:00 blood 1858 #> 3716 38.9 10 1903 1903-10-01 18:00:00 bone 1858 #> 3717 44.5 11 1903 1903-11-01 04:00:01 blood 1859 #> 3718 44.5 11 1903 1903-11-01 04:00:01 bone 1859 #> 3719 45.6 12 1903 1903-12-01 14:00:01 blood 1860 #> 3720 45.6 12 1903 1903-12-01 14:00:01 bone 1860 #> 3721 31.6 1 1904 1904-01-01 00:00:00 blood 1861 #> 3722 31.6 1 1904 1904-01-01 00:00:00 bone 1861 #> 3723 24.5 2 1904 1904-01-31 12:00:01 blood 1862 #> 3724 24.5 2 1904 1904-01-31 12:00:01 bone 1862 #> 3725 37.2 3 1904 1904-03-02 00:00:01 blood 1863 #> 3726 37.2 3 1904 1904-03-02 00:00:01 bone 1863 #> 3727 43.0 4 1904 1904-04-01 12:00:00 blood 1864 #> 3728 43.0 4 1904 1904-04-01 12:00:00 bone 1864 #> 3729 39.5 5 1904 1904-05-02 00:00:01 blood 1865 #> 3730 39.5 5 1904 1904-05-02 00:00:01 bone 1865 #> 3731 41.9 6 1904 1904-06-01 12:00:01 blood 1866 #> 3732 41.9 6 1904 1904-06-01 12:00:01 bone 1866 #> 3733 50.6 7 1904 1904-07-02 00:00:00 blood 1867 #> 3734 50.6 7 1904 1904-07-02 00:00:00 bone 1867 #> 3735 58.2 8 1904 1904-08-01 12:00:01 blood 1868 #> 3736 58.2 8 1904 1904-08-01 12:00:01 bone 1868 #> 3737 30.1 9 1904 1904-09-01 00:00:01 blood 1869 #> 3738 30.1 9 1904 1904-09-01 00:00:01 bone 1869 #> 3739 54.2 10 1904 1904-10-01 12:00:00 blood 1870 #> 3740 54.2 10 1904 1904-10-01 12:00:00 bone 1870 #> 3741 38.0 11 1904 1904-11-01 00:00:01 blood 1871 #> 3742 38.0 11 1904 1904-11-01 00:00:01 bone 1871 #> 3743 54.6 12 1904 1904-12-01 12:00:01 blood 1872 #> 3744 54.6 12 1904 1904-12-01 12:00:01 bone 1872 #> 3745 54.8 1 1905 1905-01-01 00:00:00 blood 1873 #> 3746 54.8 1 1905 1905-01-01 00:00:00 bone 1873 #> 3747 85.8 2 1905 1905-01-31 10:00:01 blood 1874 #> 3748 85.8 2 1905 1905-01-31 10:00:01 bone 1874 #> 3749 56.5 3 1905 1905-03-02 20:00:01 blood 1875 #> 3750 56.5 3 1905 1905-03-02 20:00:01 bone 1875 #> 3751 39.3 4 1905 1905-04-02 06:00:00 blood 1876 #> 3752 39.3 4 1905 1905-04-02 06:00:00 bone 1876 #> 3753 48.0 5 1905 1905-05-02 16:00:01 blood 1877 #> 3754 48.0 5 1905 1905-05-02 16:00:01 bone 1877 #> 3755 49.0 6 1905 1905-06-02 02:00:01 blood 1878 #> 3756 49.0 6 1905 1905-06-02 02:00:01 bone 1878 #> 3757 73.0 7 1905 1905-07-02 12:00:00 blood 1879 #> 3758 73.0 7 1905 1905-07-02 12:00:00 bone 1879 #> 3759 58.8 8 1905 1905-08-01 22:00:01 blood 1880 #> 3760 58.8 8 1905 1905-08-01 22:00:01 bone 1880 #> 3761 55.0 9 1905 1905-09-01 08:00:01 blood 1881 #> 3762 55.0 9 1905 1905-09-01 08:00:01 bone 1881 #> 3763 78.7 10 1905 1905-10-01 18:00:00 blood 1882 #> 3764 78.7 10 1905 1905-10-01 18:00:00 bone 1882 #> 3765 107.2 11 1905 1905-11-01 04:00:01 blood 1883 #> 3766 107.2 11 1905 1905-11-01 04:00:01 bone 1883 #> 3767 55.5 12 1905 1905-12-01 14:00:01 blood 1884 #> 3768 55.5 12 1905 1905-12-01 14:00:01 bone 1884 #> 3769 45.5 1 1906 1906-01-01 00:00:00 blood 1885 #> 3770 45.5 1 1906 1906-01-01 00:00:00 bone 1885 #> 3771 31.3 2 1906 1906-01-31 10:00:01 blood 1886 #> 3772 31.3 2 1906 1906-01-31 10:00:01 bone 1886 #> 3773 64.5 3 1906 1906-03-02 20:00:01 blood 1887 #> 3774 64.5 3 1906 1906-03-02 20:00:01 bone 1887 #> 3775 55.3 4 1906 1906-04-02 06:00:00 blood 1888 #> 3776 55.3 4 1906 1906-04-02 06:00:00 bone 1888 #> 3777 57.7 5 1906 1906-05-02 16:00:01 blood 1889 #> 3778 57.7 5 1906 1906-05-02 16:00:01 bone 1889 #> 3779 63.2 6 1906 1906-06-02 02:00:01 blood 1890 #> 3780 63.2 6 1906 1906-06-02 02:00:01 bone 1890 #> 3781 103.6 7 1906 1906-07-02 12:00:00 blood 1891 #> 3782 103.6 7 1906 1906-07-02 12:00:00 bone 1891 #> 3783 47.7 8 1906 1906-08-01 22:00:01 blood 1892 #> 3784 47.7 8 1906 1906-08-01 22:00:01 bone 1892 #> 3785 56.1 9 1906 1906-09-01 08:00:01 blood 1893 #> 3786 56.1 9 1906 1906-09-01 08:00:01 bone 1893 #> 3787 17.8 10 1906 1906-10-01 18:00:00 blood 1894 #> 3788 17.8 10 1906 1906-10-01 18:00:00 bone 1894 #> 3789 38.9 11 1906 1906-11-01 04:00:01 blood 1895 #> 3790 38.9 11 1906 1906-11-01 04:00:01 bone 1895 #> 3791 64.7 12 1906 1906-12-01 14:00:01 blood 1896 #> 3792 64.7 12 1906 1906-12-01 14:00:01 bone 1896 #> 3793 76.4 1 1907 1907-01-01 00:00:00 blood 1897 #> 3794 76.4 1 1907 1907-01-01 00:00:00 bone 1897 #> 3795 108.2 2 1907 1907-01-31 10:00:01 blood 1898 #> 3796 108.2 2 1907 1907-01-31 10:00:01 bone 1898 #> 3797 60.7 3 1907 1907-03-02 20:00:01 blood 1899 #> 3798 60.7 3 1907 1907-03-02 20:00:01 bone 1899 #> 3799 52.6 4 1907 1907-04-02 06:00:00 blood 1900 #> 3800 52.6 4 1907 1907-04-02 06:00:00 bone 1900 #> 3801 42.9 5 1907 1907-05-02 16:00:01 blood 1901 #> 3802 42.9 5 1907 1907-05-02 16:00:01 bone 1901 #> 3803 40.4 6 1907 1907-06-02 02:00:01 blood 1902 #> 3804 40.4 6 1907 1907-06-02 02:00:01 bone 1902 #> 3805 49.7 7 1907 1907-07-02 12:00:00 blood 1903 #> 3806 49.7 7 1907 1907-07-02 12:00:00 bone 1903 #> 3807 54.3 8 1907 1907-08-01 22:00:01 blood 1904 #> 3808 54.3 8 1907 1907-08-01 22:00:01 bone 1904 #> 3809 85.0 9 1907 1907-09-01 08:00:01 blood 1905 #> 3810 85.0 9 1907 1907-09-01 08:00:01 bone 1905 #> 3811 65.4 10 1907 1907-10-01 18:00:00 blood 1906 #> 3812 65.4 10 1907 1907-10-01 18:00:00 bone 1906 #> 3813 61.5 11 1907 1907-11-01 04:00:01 blood 1907 #> 3814 61.5 11 1907 1907-11-01 04:00:01 bone 1907 #> 3815 47.3 12 1907 1907-12-01 14:00:01 blood 1908 #> 3816 47.3 12 1907 1907-12-01 14:00:01 bone 1908 #> 3817 39.2 1 1908 1908-01-01 00:00:00 blood 1909 #> 3818 39.2 1 1908 1908-01-01 00:00:00 bone 1909 #> 3819 33.9 2 1908 1908-01-31 12:00:01 blood 1910 #> 3820 33.9 2 1908 1908-01-31 12:00:01 bone 1910 #> 3821 28.7 3 1908 1908-03-02 00:00:01 blood 1911 #> 3822 28.7 3 1908 1908-03-02 00:00:01 bone 1911 #> 3823 57.6 4 1908 1908-04-01 12:00:00 blood 1912 #> 3824 57.6 4 1908 1908-04-01 12:00:00 bone 1912 #> 3825 40.8 5 1908 1908-05-02 00:00:01 blood 1913 #> 3826 40.8 5 1908 1908-05-02 00:00:01 bone 1913 #> 3827 48.1 6 1908 1908-06-01 12:00:01 blood 1914 #> 3828 48.1 6 1908 1908-06-01 12:00:01 bone 1914 #> 3829 39.5 7 1908 1908-07-02 00:00:00 blood 1915 #> 3830 39.5 7 1908 1908-07-02 00:00:00 bone 1915 #> 3831 90.5 8 1908 1908-08-01 12:00:01 blood 1916 #> 3832 90.5 8 1908 1908-08-01 12:00:01 bone 1916 #> 3833 86.9 9 1908 1908-09-01 00:00:01 blood 1917 #> 3834 86.9 9 1908 1908-09-01 00:00:01 bone 1917 #> 3835 32.3 10 1908 1908-10-01 12:00:00 blood 1918 #> 3836 32.3 10 1908 1908-10-01 12:00:00 bone 1918 #> 3837 45.5 11 1908 1908-11-01 00:00:01 blood 1919 #> 3838 45.5 11 1908 1908-11-01 00:00:01 bone 1919 #> 3839 39.5 12 1908 1908-12-01 12:00:01 blood 1920 #> 3840 39.5 12 1908 1908-12-01 12:00:01 bone 1920 #> 3841 56.7 1 1909 1909-01-01 00:00:00 blood 1921 #> 3842 56.7 1 1909 1909-01-01 00:00:00 bone 1921 #> 3843 46.6 2 1909 1909-01-31 10:00:01 blood 1922 #> 3844 46.6 2 1909 1909-01-31 10:00:01 bone 1922 #> 3845 66.3 3 1909 1909-03-02 20:00:01 blood 1923 #> 3846 66.3 3 1909 1909-03-02 20:00:01 bone 1923 #> 3847 32.3 4 1909 1909-04-02 06:00:00 blood 1924 #> 3848 32.3 4 1909 1909-04-02 06:00:00 bone 1924 #> 3849 36.0 5 1909 1909-05-02 16:00:01 blood 1925 #> 3850 36.0 5 1909 1909-05-02 16:00:01 bone 1925 #> 3851 22.6 6 1909 1909-06-02 02:00:01 blood 1926 #> 3852 22.6 6 1909 1909-06-02 02:00:01 bone 1926 #> 3853 35.8 7 1909 1909-07-02 12:00:00 blood 1927 #> 3854 35.8 7 1909 1909-07-02 12:00:00 bone 1927 #> 3855 23.1 8 1909 1909-08-01 22:00:01 blood 1928 #> 3856 23.1 8 1909 1909-08-01 22:00:01 bone 1928 #> 3857 38.8 9 1909 1909-09-01 08:00:01 blood 1929 #> 3858 38.8 9 1909 1909-09-01 08:00:01 bone 1929 #> 3859 58.4 10 1909 1909-10-01 18:00:00 blood 1930 #> 3860 58.4 10 1909 1909-10-01 18:00:00 bone 1930 #> 3861 55.8 11 1909 1909-11-01 04:00:01 blood 1931 #> 3862 55.8 11 1909 1909-11-01 04:00:01 bone 1931 #> 3863 54.2 12 1909 1909-12-01 14:00:01 blood 1932 #> 3864 54.2 12 1909 1909-12-01 14:00:01 bone 1932 #> 3865 26.4 1 1910 1910-01-01 00:00:00 blood 1933 #> 3866 26.4 1 1910 1910-01-01 00:00:00 bone 1933 #> 3867 31.5 2 1910 1910-01-31 10:00:01 blood 1934 #> 3868 31.5 2 1910 1910-01-31 10:00:01 bone 1934 #> 3869 21.4 3 1910 1910-03-02 20:00:01 blood 1935 #> 3870 21.4 3 1910 1910-03-02 20:00:01 bone 1935 #> 3871 8.4 4 1910 1910-04-02 06:00:00 blood 1936 #> 3872 8.4 4 1910 1910-04-02 06:00:00 bone 1936 #> 3873 22.2 5 1910 1910-05-02 16:00:01 blood 1937 #> 3874 22.2 5 1910 1910-05-02 16:00:01 bone 1937 #> 3875 12.3 6 1910 1910-06-02 02:00:01 blood 1938 #> 3876 12.3 6 1910 1910-06-02 02:00:01 bone 1938 #> 3877 14.1 7 1910 1910-07-02 12:00:00 blood 1939 #> 3878 14.1 7 1910 1910-07-02 12:00:00 bone 1939 #> 3879 11.5 8 1910 1910-08-01 22:00:01 blood 1940 #> 3880 11.5 8 1910 1910-08-01 22:00:01 bone 1940 #> 3881 26.2 9 1910 1910-09-01 08:00:01 blood 1941 #> 3882 26.2 9 1910 1910-09-01 08:00:01 bone 1941 #> 3883 38.3 10 1910 1910-10-01 18:00:00 blood 1942 #> 3884 38.3 10 1910 1910-10-01 18:00:00 bone 1942 #> 3885 4.9 11 1910 1910-11-01 04:00:01 blood 1943 #> 3886 4.9 11 1910 1910-11-01 04:00:01 bone 1943 #> 3887 5.8 12 1910 1910-12-01 14:00:01 blood 1944 #> 3888 5.8 12 1910 1910-12-01 14:00:01 bone 1944 #> 3889 3.4 1 1911 1911-01-01 00:00:00 blood 1945 #> 3890 3.4 1 1911 1911-01-01 00:00:00 bone 1945 #> 3891 9.0 2 1911 1911-01-31 10:00:01 blood 1946 #> 3892 9.0 2 1911 1911-01-31 10:00:01 bone 1946 #> 3893 7.8 3 1911 1911-03-02 20:00:01 blood 1947 #> 3894 7.8 3 1911 1911-03-02 20:00:01 bone 1947 #> 3895 16.5 4 1911 1911-04-02 06:00:00 blood 1948 #> 3896 16.5 4 1911 1911-04-02 06:00:00 bone 1948 #> 3897 9.0 5 1911 1911-05-02 16:00:01 blood 1949 #> 3898 9.0 5 1911 1911-05-02 16:00:01 bone 1949 #> 3899 2.2 6 1911 1911-06-02 02:00:01 blood 1950 #> 3900 2.2 6 1911 1911-06-02 02:00:01 bone 1950 #> 3901 3.5 7 1911 1911-07-02 12:00:00 blood 1951 #> 3902 3.5 7 1911 1911-07-02 12:00:00 bone 1951 #> 3903 4.0 8 1911 1911-08-01 22:00:01 blood 1952 #> 3904 4.0 8 1911 1911-08-01 22:00:01 bone 1952 #> 3905 4.0 9 1911 1911-09-01 08:00:01 blood 1953 #> 3906 4.0 9 1911 1911-09-01 08:00:01 bone 1953 #> 3907 2.6 10 1911 1911-10-01 18:00:00 blood 1954 #> 3908 2.6 10 1911 1911-10-01 18:00:00 bone 1954 #> 3909 4.2 11 1911 1911-11-01 04:00:01 blood 1955 #> 3910 4.2 11 1911 1911-11-01 04:00:01 bone 1955 #> 3911 2.2 12 1911 1911-12-01 14:00:01 blood 1956 #> 3912 2.2 12 1911 1911-12-01 14:00:01 bone 1956 #> 3913 0.3 1 1912 1912-01-01 00:00:00 blood 1957 #> 3914 0.3 1 1912 1912-01-01 00:00:00 bone 1957 #> 3915 0.0 2 1912 1912-01-31 12:00:01 blood 1958 #> 3916 0.0 2 1912 1912-01-31 12:00:01 bone 1958 #> 3917 4.9 3 1912 1912-03-02 00:00:01 blood 1959 #> 3918 4.9 3 1912 1912-03-02 00:00:01 bone 1959 #> 3919 4.5 4 1912 1912-04-01 12:00:00 blood 1960 #> 3920 4.5 4 1912 1912-04-01 12:00:00 bone 1960 #> 3921 4.4 5 1912 1912-05-02 00:00:01 blood 1961 #> 3922 4.4 5 1912 1912-05-02 00:00:01 bone 1961 #> 3923 4.1 6 1912 1912-06-01 12:00:01 blood 1962 #> 3924 4.1 6 1912 1912-06-01 12:00:01 bone 1962 #> 3925 3.0 7 1912 1912-07-02 00:00:00 blood 1963 #> 3926 3.0 7 1912 1912-07-02 00:00:00 bone 1963 #> 3927 0.3 8 1912 1912-08-01 12:00:01 blood 1964 #> 3928 0.3 8 1912 1912-08-01 12:00:01 bone 1964 #> 3929 9.5 9 1912 1912-09-01 00:00:01 blood 1965 #> 3930 9.5 9 1912 1912-09-01 00:00:01 bone 1965 #> 3931 4.6 10 1912 1912-10-01 12:00:00 blood 1966 #> 3932 4.6 10 1912 1912-10-01 12:00:00 bone 1966 #> 3933 1.1 11 1912 1912-11-01 00:00:01 blood 1967 #> 3934 1.1 11 1912 1912-11-01 00:00:01 bone 1967 #> 3935 6.4 12 1912 1912-12-01 12:00:01 blood 1968 #> 3936 6.4 12 1912 1912-12-01 12:00:01 bone 1968 #> 3937 2.3 1 1913 1913-01-01 00:00:00 blood 1969 #> 3938 2.3 1 1913 1913-01-01 00:00:00 bone 1969 #> 3939 2.9 2 1913 1913-01-31 10:00:01 blood 1970 #> 3940 2.9 2 1913 1913-01-31 10:00:01 bone 1970 #> 3941 0.5 3 1913 1913-03-02 20:00:01 blood 1971 #> 3942 0.5 3 1913 1913-03-02 20:00:01 bone 1971 #> 3943 0.9 4 1913 1913-04-02 06:00:00 blood 1972 #> 3944 0.9 4 1913 1913-04-02 06:00:00 bone 1972 #> 3945 0.0 5 1913 1913-05-02 16:00:01 blood 1973 #> 3946 0.0 5 1913 1913-05-02 16:00:01 bone 1973 #> 3947 0.0 6 1913 1913-06-02 02:00:01 blood 1974 #> 3948 0.0 6 1913 1913-06-02 02:00:01 bone 1974 #> 3949 1.7 7 1913 1913-07-02 12:00:00 blood 1975 #> 3950 1.7 7 1913 1913-07-02 12:00:00 bone 1975 #> 3951 0.2 8 1913 1913-08-01 22:00:01 blood 1976 #> 3952 0.2 8 1913 1913-08-01 22:00:01 bone 1976 #> 3953 1.2 9 1913 1913-09-01 08:00:01 blood 1977 #> 3954 1.2 9 1913 1913-09-01 08:00:01 bone 1977 #> 3955 3.1 10 1913 1913-10-01 18:00:00 blood 1978 #> 3956 3.1 10 1913 1913-10-01 18:00:00 bone 1978 #> 3957 0.7 11 1913 1913-11-01 04:00:01 blood 1979 #> 3958 0.7 11 1913 1913-11-01 04:00:01 bone 1979 #> 3959 3.8 12 1913 1913-12-01 14:00:01 blood 1980 #> 3960 3.8 12 1913 1913-12-01 14:00:01 bone 1980 #> 3961 2.8 1 1914 1914-01-01 00:00:00 blood 1981 #> 3962 2.8 1 1914 1914-01-01 00:00:00 bone 1981 #> 3963 2.6 2 1914 1914-01-31 10:00:01 blood 1982 #> 3964 2.6 2 1914 1914-01-31 10:00:01 bone 1982 #> 3965 3.1 3 1914 1914-03-02 20:00:01 blood 1983 #> 3966 3.1 3 1914 1914-03-02 20:00:01 bone 1983 #> 3967 17.3 4 1914 1914-04-02 06:00:00 blood 1984 #> 3968 17.3 4 1914 1914-04-02 06:00:00 bone 1984 #> 3969 5.2 5 1914 1914-05-02 16:00:01 blood 1985 #> 3970 5.2 5 1914 1914-05-02 16:00:01 bone 1985 #> 3971 11.4 6 1914 1914-06-02 02:00:01 blood 1986 #> 3972 11.4 6 1914 1914-06-02 02:00:01 bone 1986 #> 3973 5.4 7 1914 1914-07-02 12:00:00 blood 1987 #> 3974 5.4 7 1914 1914-07-02 12:00:00 bone 1987 #> 3975 7.7 8 1914 1914-08-01 22:00:01 blood 1988 #> 3976 7.7 8 1914 1914-08-01 22:00:01 bone 1988 #> 3977 12.7 9 1914 1914-09-01 08:00:01 blood 1989 #> 3978 12.7 9 1914 1914-09-01 08:00:01 bone 1989 #> 3979 8.2 10 1914 1914-10-01 18:00:00 blood 1990 #> 3980 8.2 10 1914 1914-10-01 18:00:00 bone 1990 #> 3981 16.4 11 1914 1914-11-01 04:00:01 blood 1991 #> 3982 16.4 11 1914 1914-11-01 04:00:01 bone 1991 #> 3983 22.3 12 1914 1914-12-01 14:00:01 blood 1992 #> 3984 22.3 12 1914 1914-12-01 14:00:01 bone 1992 #> 3985 23.0 1 1915 1915-01-01 00:00:00 blood 1993 #> 3986 23.0 1 1915 1915-01-01 00:00:00 bone 1993 #> 3987 42.3 2 1915 1915-01-31 10:00:01 blood 1994 #> 3988 42.3 2 1915 1915-01-31 10:00:01 bone 1994 #> 3989 38.8 3 1915 1915-03-02 20:00:01 blood 1995 #> 3990 38.8 3 1915 1915-03-02 20:00:01 bone 1995 #> 3991 41.3 4 1915 1915-04-02 06:00:00 blood 1996 #> 3992 41.3 4 1915 1915-04-02 06:00:00 bone 1996 #> 3993 33.0 5 1915 1915-05-02 16:00:01 blood 1997 #> 3994 33.0 5 1915 1915-05-02 16:00:01 bone 1997 #> 3995 68.8 6 1915 1915-06-02 02:00:01 blood 1998 #> 3996 68.8 6 1915 1915-06-02 02:00:01 bone 1998 #> 3997 71.6 7 1915 1915-07-02 12:00:00 blood 1999 #> 3998 71.6 7 1915 1915-07-02 12:00:00 bone 1999 #> 3999 69.6 8 1915 1915-08-01 22:00:01 blood 2000 #> 4000 69.6 8 1915 1915-08-01 22:00:01 bone 2000 #> 4001 49.5 9 1915 1915-09-01 08:00:01 blood 2001 #> 4002 49.5 9 1915 1915-09-01 08:00:01 bone 2001 #> 4003 53.5 10 1915 1915-10-01 18:00:00 blood 2002 #> 4004 53.5 10 1915 1915-10-01 18:00:00 bone 2002 #> 4005 42.5 11 1915 1915-11-01 04:00:01 blood 2003 #> 4006 42.5 11 1915 1915-11-01 04:00:01 bone 2003 #> 4007 34.5 12 1915 1915-12-01 14:00:01 blood 2004 #> 4008 34.5 12 1915 1915-12-01 14:00:01 bone 2004 #> 4009 45.3 1 1916 1916-01-01 00:00:00 blood 2005 #> 4010 45.3 1 1916 1916-01-01 00:00:00 bone 2005 #> 4011 55.4 2 1916 1916-01-31 12:00:01 blood 2006 #> 4012 55.4 2 1916 1916-01-31 12:00:01 bone 2006 #> 4013 67.0 3 1916 1916-03-02 00:00:01 blood 2007 #> 4014 67.0 3 1916 1916-03-02 00:00:01 bone 2007 #> 4015 71.8 4 1916 1916-04-01 12:00:00 blood 2008 #> 4016 71.8 4 1916 1916-04-01 12:00:00 bone 2008 #> 4017 74.5 5 1916 1916-05-02 00:00:01 blood 2009 #> 4018 74.5 5 1916 1916-05-02 00:00:01 bone 2009 #> 4019 67.7 6 1916 1916-06-01 12:00:01 blood 2010 #> 4020 67.7 6 1916 1916-06-01 12:00:01 bone 2010 #> 4021 53.5 7 1916 1916-07-02 00:00:00 blood 2011 #> 4022 53.5 7 1916 1916-07-02 00:00:00 bone 2011 #> 4023 35.2 8 1916 1916-08-01 12:00:01 blood 2012 #> 4024 35.2 8 1916 1916-08-01 12:00:01 bone 2012 #> 4025 45.1 9 1916 1916-09-01 00:00:01 blood 2013 #> 4026 45.1 9 1916 1916-09-01 00:00:01 bone 2013 #> 4027 50.7 10 1916 1916-10-01 12:00:00 blood 2014 #> 4028 50.7 10 1916 1916-10-01 12:00:00 bone 2014 #> 4029 65.6 11 1916 1916-11-01 00:00:01 blood 2015 #> 4030 65.6 11 1916 1916-11-01 00:00:01 bone 2015 #> 4031 53.0 12 1916 1916-12-01 12:00:01 blood 2016 #> 4032 53.0 12 1916 1916-12-01 12:00:01 bone 2016 #> 4033 74.7 1 1917 1917-01-01 00:00:00 blood 2017 #> 4034 74.7 1 1917 1917-01-01 00:00:00 bone 2017 #> 4035 71.9 2 1917 1917-01-31 10:00:01 blood 2018 #> 4036 71.9 2 1917 1917-01-31 10:00:01 bone 2018 #> 4037 94.8 3 1917 1917-03-02 20:00:01 blood 2019 #> 4038 94.8 3 1917 1917-03-02 20:00:01 bone 2019 #> 4039 74.7 4 1917 1917-04-02 06:00:00 blood 2020 #> 4040 74.7 4 1917 1917-04-02 06:00:00 bone 2020 #> 4041 114.1 5 1917 1917-05-02 16:00:01 blood 2021 #> 4042 114.1 5 1917 1917-05-02 16:00:01 bone 2021 #> 4043 114.9 6 1917 1917-06-02 02:00:01 blood 2022 #> 4044 114.9 6 1917 1917-06-02 02:00:01 bone 2022 #> 4045 119.8 7 1917 1917-07-02 12:00:00 blood 2023 #> 4046 119.8 7 1917 1917-07-02 12:00:00 bone 2023 #> 4047 154.5 8 1917 1917-08-01 22:00:01 blood 2024 #> 4048 154.5 8 1917 1917-08-01 22:00:01 bone 2024 #> 4049 129.4 9 1917 1917-09-01 08:00:01 blood 2025 #> 4050 129.4 9 1917 1917-09-01 08:00:01 bone 2025 #> 4051 72.2 10 1917 1917-10-01 18:00:00 blood 2026 #> 4052 72.2 10 1917 1917-10-01 18:00:00 bone 2026 #> 4053 96.4 11 1917 1917-11-01 04:00:01 blood 2027 #> 4054 96.4 11 1917 1917-11-01 04:00:01 bone 2027 #> 4055 129.3 12 1917 1917-12-01 14:00:01 blood 2028 #> 4056 129.3 12 1917 1917-12-01 14:00:01 bone 2028 #> 4057 96.0 1 1918 1918-01-01 00:00:00 blood 2029 #> 4058 96.0 1 1918 1918-01-01 00:00:00 bone 2029 #> 4059 65.3 2 1918 1918-01-31 10:00:01 blood 2030 #> 4060 65.3 2 1918 1918-01-31 10:00:01 bone 2030 #> 4061 72.2 3 1918 1918-03-02 20:00:01 blood 2031 #> 4062 72.2 3 1918 1918-03-02 20:00:01 bone 2031 #> 4063 80.5 4 1918 1918-04-02 06:00:00 blood 2032 #> 4064 80.5 4 1918 1918-04-02 06:00:00 bone 2032 #> 4065 76.7 5 1918 1918-05-02 16:00:01 blood 2033 #> 4066 76.7 5 1918 1918-05-02 16:00:01 bone 2033 #> 4067 59.4 6 1918 1918-06-02 02:00:01 blood 2034 #> 4068 59.4 6 1918 1918-06-02 02:00:01 bone 2034 #> 4069 107.6 7 1918 1918-07-02 12:00:00 blood 2035 #> 4070 107.6 7 1918 1918-07-02 12:00:00 bone 2035 #> 4071 101.7 8 1918 1918-08-01 22:00:01 blood 2036 #> 4072 101.7 8 1918 1918-08-01 22:00:01 bone 2036 #> 4073 79.9 9 1918 1918-09-01 08:00:01 blood 2037 #> 4074 79.9 9 1918 1918-09-01 08:00:01 bone 2037 #> 4075 85.0 10 1918 1918-10-01 18:00:00 blood 2038 #> 4076 85.0 10 1918 1918-10-01 18:00:00 bone 2038 #> 4077 83.4 11 1918 1918-11-01 04:00:01 blood 2039 #> 4078 83.4 11 1918 1918-11-01 04:00:01 bone 2039 #> 4079 59.2 12 1918 1918-12-01 14:00:01 blood 2040 #> 4080 59.2 12 1918 1918-12-01 14:00:01 bone 2040 #> 4081 48.1 1 1919 1919-01-01 00:00:00 blood 2041 #> 4082 48.1 1 1919 1919-01-01 00:00:00 bone 2041 #> 4083 79.5 2 1919 1919-01-31 10:00:01 blood 2042 #> 4084 79.5 2 1919 1919-01-31 10:00:01 bone 2042 #> 4085 66.5 3 1919 1919-03-02 20:00:01 blood 2043 #> 4086 66.5 3 1919 1919-03-02 20:00:01 bone 2043 #> 4087 51.8 4 1919 1919-04-02 06:00:00 blood 2044 #> 4088 51.8 4 1919 1919-04-02 06:00:00 bone 2044 #> 4089 88.1 5 1919 1919-05-02 16:00:01 blood 2045 #> 4090 88.1 5 1919 1919-05-02 16:00:01 bone 2045 #> 4091 111.2 6 1919 1919-06-02 02:00:01 blood 2046 #> 4092 111.2 6 1919 1919-06-02 02:00:01 bone 2046 #> 4093 64.7 7 1919 1919-07-02 12:00:00 blood 2047 #> 4094 64.7 7 1919 1919-07-02 12:00:00 bone 2047 #> 4095 69.0 8 1919 1919-08-01 22:00:01 blood 2048 #> 4096 69.0 8 1919 1919-08-01 22:00:01 bone 2048 #> 4097 54.7 9 1919 1919-09-01 08:00:01 blood 2049 #> 4098 54.7 9 1919 1919-09-01 08:00:01 bone 2049 #> 4099 52.8 10 1919 1919-10-01 18:00:00 blood 2050 #> 4100 52.8 10 1919 1919-10-01 18:00:00 bone 2050 #> 4101 42.0 11 1919 1919-11-01 04:00:01 blood 2051 #> 4102 42.0 11 1919 1919-11-01 04:00:01 bone 2051 #> 4103 34.9 12 1919 1919-12-01 14:00:01 blood 2052 #> 4104 34.9 12 1919 1919-12-01 14:00:01 bone 2052 #> 4105 51.1 1 1920 1920-01-01 00:00:00 blood 2053 #> 4106 51.1 1 1920 1920-01-01 00:00:00 bone 2053 #> 4107 53.9 2 1920 1920-01-31 12:00:01 blood 2054 #> 4108 53.9 2 1920 1920-01-31 12:00:01 bone 2054 #> 4109 70.2 3 1920 1920-03-02 00:00:01 blood 2055 #> 4110 70.2 3 1920 1920-03-02 00:00:01 bone 2055 #> 4111 14.8 4 1920 1920-04-01 12:00:00 blood 2056 #> 4112 14.8 4 1920 1920-04-01 12:00:00 bone 2056 #> 4113 33.3 5 1920 1920-05-02 00:00:01 blood 2057 #> 4114 33.3 5 1920 1920-05-02 00:00:01 bone 2057 #> 4115 38.7 6 1920 1920-06-01 12:00:01 blood 2058 #> 4116 38.7 6 1920 1920-06-01 12:00:01 bone 2058 #> 4117 27.5 7 1920 1920-07-02 00:00:00 blood 2059 #> 4118 27.5 7 1920 1920-07-02 00:00:00 bone 2059 #> 4119 19.2 8 1920 1920-08-01 12:00:01 blood 2060 #> 4120 19.2 8 1920 1920-08-01 12:00:01 bone 2060 #> 4121 36.3 9 1920 1920-09-01 00:00:01 blood 2061 #> 4122 36.3 9 1920 1920-09-01 00:00:01 bone 2061 #> 4123 49.6 10 1920 1920-10-01 12:00:00 blood 2062 #> 4124 49.6 10 1920 1920-10-01 12:00:00 bone 2062 #> 4125 27.2 11 1920 1920-11-01 00:00:01 blood 2063 #> 4126 27.2 11 1920 1920-11-01 00:00:01 bone 2063 #> 4127 29.9 12 1920 1920-12-01 12:00:01 blood 2064 #> 4128 29.9 12 1920 1920-12-01 12:00:01 bone 2064 #> 4129 31.5 1 1921 1921-01-01 00:00:00 blood 2065 #> 4130 31.5 1 1921 1921-01-01 00:00:00 bone 2065 #> 4131 28.3 2 1921 1921-01-31 10:00:01 blood 2066 #> 4132 28.3 2 1921 1921-01-31 10:00:01 bone 2066 #> 4133 26.7 3 1921 1921-03-02 20:00:01 blood 2067 #> 4134 26.7 3 1921 1921-03-02 20:00:01 bone 2067 #> 4135 32.4 4 1921 1921-04-02 06:00:00 blood 2068 #> 4136 32.4 4 1921 1921-04-02 06:00:00 bone 2068 #> 4137 22.2 5 1921 1921-05-02 16:00:01 blood 2069 #> 4138 22.2 5 1921 1921-05-02 16:00:01 bone 2069 #> 4139 33.7 6 1921 1921-06-02 02:00:01 blood 2070 #> 4140 33.7 6 1921 1921-06-02 02:00:01 bone 2070 #> 4141 41.9 7 1921 1921-07-02 12:00:00 blood 2071 #> 4142 41.9 7 1921 1921-07-02 12:00:00 bone 2071 #> 4143 22.8 8 1921 1921-08-01 22:00:01 blood 2072 #> 4144 22.8 8 1921 1921-08-01 22:00:01 bone 2072 #> 4145 17.8 9 1921 1921-09-01 08:00:01 blood 2073 #> 4146 17.8 9 1921 1921-09-01 08:00:01 bone 2073 #> 4147 18.2 10 1921 1921-10-01 18:00:00 blood 2074 #> 4148 18.2 10 1921 1921-10-01 18:00:00 bone 2074 #> 4149 17.8 11 1921 1921-11-01 04:00:01 blood 2075 #> 4150 17.8 11 1921 1921-11-01 04:00:01 bone 2075 #> 4151 20.3 12 1921 1921-12-01 14:00:01 blood 2076 #> 4152 20.3 12 1921 1921-12-01 14:00:01 bone 2076 #> 4153 11.8 1 1922 1922-01-01 00:00:00 blood 2077 #> 4154 11.8 1 1922 1922-01-01 00:00:00 bone 2077 #> 4155 26.4 2 1922 1922-01-31 10:00:01 blood 2078 #> 4156 26.4 2 1922 1922-01-31 10:00:01 bone 2078 #> 4157 54.7 3 1922 1922-03-02 20:00:01 blood 2079 #> 4158 54.7 3 1922 1922-03-02 20:00:01 bone 2079 #> 4159 11.0 4 1922 1922-04-02 06:00:00 blood 2080 #> 4160 11.0 4 1922 1922-04-02 06:00:00 bone 2080 #> 4161 8.0 5 1922 1922-05-02 16:00:01 blood 2081 #> 4162 8.0 5 1922 1922-05-02 16:00:01 bone 2081 #> 4163 5.8 6 1922 1922-06-02 02:00:01 blood 2082 #> 4164 5.8 6 1922 1922-06-02 02:00:01 bone 2082 #> 4165 10.9 7 1922 1922-07-02 12:00:00 blood 2083 #> 4166 10.9 7 1922 1922-07-02 12:00:00 bone 2083 #> 4167 6.5 8 1922 1922-08-01 22:00:01 blood 2084 #> 4168 6.5 8 1922 1922-08-01 22:00:01 bone 2084 #> 4169 4.7 9 1922 1922-09-01 08:00:01 blood 2085 #> 4170 4.7 9 1922 1922-09-01 08:00:01 bone 2085 #> 4171 6.2 10 1922 1922-10-01 18:00:00 blood 2086 #> 4172 6.2 10 1922 1922-10-01 18:00:00 bone 2086 #> 4173 7.4 11 1922 1922-11-01 04:00:01 blood 2087 #> 4174 7.4 11 1922 1922-11-01 04:00:01 bone 2087 #> 4175 17.5 12 1922 1922-12-01 14:00:01 blood 2088 #> 4176 17.5 12 1922 1922-12-01 14:00:01 bone 2088 #> 4177 4.5 1 1923 1923-01-01 00:00:00 blood 2089 #> 4178 4.5 1 1923 1923-01-01 00:00:00 bone 2089 #> 4179 1.5 2 1923 1923-01-31 10:00:01 blood 2090 #> 4180 1.5 2 1923 1923-01-31 10:00:01 bone 2090 #> 4181 3.3 3 1923 1923-03-02 20:00:01 blood 2091 #> 4182 3.3 3 1923 1923-03-02 20:00:01 bone 2091 #> 4183 6.1 4 1923 1923-04-02 06:00:00 blood 2092 #> 4184 6.1 4 1923 1923-04-02 06:00:00 bone 2092 #> 4185 3.2 5 1923 1923-05-02 16:00:01 blood 2093 #> 4186 3.2 5 1923 1923-05-02 16:00:01 bone 2093 #> 4187 9.1 6 1923 1923-06-02 02:00:01 blood 2094 #> 4188 9.1 6 1923 1923-06-02 02:00:01 bone 2094 #> 4189 3.5 7 1923 1923-07-02 12:00:00 blood 2095 #> 4190 3.5 7 1923 1923-07-02 12:00:00 bone 2095 #> 4191 0.5 8 1923 1923-08-01 22:00:01 blood 2096 #> 4192 0.5 8 1923 1923-08-01 22:00:01 bone 2096 #> 4193 13.2 9 1923 1923-09-01 08:00:01 blood 2097 #> 4194 13.2 9 1923 1923-09-01 08:00:01 bone 2097 #> 4195 11.6 10 1923 1923-10-01 18:00:00 blood 2098 #> 4196 11.6 10 1923 1923-10-01 18:00:00 bone 2098 #> 4197 10.0 11 1923 1923-11-01 04:00:01 blood 2099 #> 4198 10.0 11 1923 1923-11-01 04:00:01 bone 2099 #> 4199 2.8 12 1923 1923-12-01 14:00:01 blood 2100 #> 4200 2.8 12 1923 1923-12-01 14:00:01 bone 2100 #> 4201 0.5 1 1924 1924-01-01 00:00:00 blood 2101 #> 4202 0.5 1 1924 1924-01-01 00:00:00 bone 2101 #> 4203 5.1 2 1924 1924-01-31 12:00:01 blood 2102 #> 4204 5.1 2 1924 1924-01-31 12:00:01 bone 2102 #> 4205 1.8 3 1924 1924-03-02 00:00:01 blood 2103 #> 4206 1.8 3 1924 1924-03-02 00:00:01 bone 2103 #> 4207 11.3 4 1924 1924-04-01 12:00:00 blood 2104 #> 4208 11.3 4 1924 1924-04-01 12:00:00 bone 2104 #> 4209 20.8 5 1924 1924-05-02 00:00:01 blood 2105 #> 4210 20.8 5 1924 1924-05-02 00:00:01 bone 2105 #> 4211 24.0 6 1924 1924-06-01 12:00:01 blood 2106 #> 4212 24.0 6 1924 1924-06-01 12:00:01 bone 2106 #> 4213 28.1 7 1924 1924-07-02 00:00:00 blood 2107 #> 4214 28.1 7 1924 1924-07-02 00:00:00 bone 2107 #> 4215 19.3 8 1924 1924-08-01 12:00:01 blood 2108 #> 4216 19.3 8 1924 1924-08-01 12:00:01 bone 2108 #> 4217 25.1 9 1924 1924-09-01 00:00:01 blood 2109 #> 4218 25.1 9 1924 1924-09-01 00:00:01 bone 2109 #> 4219 25.6 10 1924 1924-10-01 12:00:00 blood 2110 #> 4220 25.6 10 1924 1924-10-01 12:00:00 bone 2110 #> 4221 22.5 11 1924 1924-11-01 00:00:01 blood 2111 #> 4222 22.5 11 1924 1924-11-01 00:00:01 bone 2111 #> 4223 16.5 12 1924 1924-12-01 12:00:01 blood 2112 #> 4224 16.5 12 1924 1924-12-01 12:00:01 bone 2112 #> 4225 5.5 1 1925 1925-01-01 00:00:00 blood 2113 #> 4226 5.5 1 1925 1925-01-01 00:00:00 bone 2113 #> 4227 23.2 2 1925 1925-01-31 10:00:01 blood 2114 #> 4228 23.2 2 1925 1925-01-31 10:00:01 bone 2114 #> 4229 18.0 3 1925 1925-03-02 20:00:01 blood 2115 #> 4230 18.0 3 1925 1925-03-02 20:00:01 bone 2115 #> 4231 31.7 4 1925 1925-04-02 06:00:00 blood 2116 #> 4232 31.7 4 1925 1925-04-02 06:00:00 bone 2116 #> 4233 42.8 5 1925 1925-05-02 16:00:01 blood 2117 #> 4234 42.8 5 1925 1925-05-02 16:00:01 bone 2117 #> 4235 47.5 6 1925 1925-06-02 02:00:01 blood 2118 #> 4236 47.5 6 1925 1925-06-02 02:00:01 bone 2118 #> 4237 38.5 7 1925 1925-07-02 12:00:00 blood 2119 #> 4238 38.5 7 1925 1925-07-02 12:00:00 bone 2119 #> 4239 37.9 8 1925 1925-08-01 22:00:01 blood 2120 #> 4240 37.9 8 1925 1925-08-01 22:00:01 bone 2120 #> 4241 60.2 9 1925 1925-09-01 08:00:01 blood 2121 #> 4242 60.2 9 1925 1925-09-01 08:00:01 bone 2121 #> 4243 69.2 10 1925 1925-10-01 18:00:00 blood 2122 #> 4244 69.2 10 1925 1925-10-01 18:00:00 bone 2122 #> 4245 58.6 11 1925 1925-11-01 04:00:01 blood 2123 #> 4246 58.6 11 1925 1925-11-01 04:00:01 bone 2123 #> 4247 98.6 12 1925 1925-12-01 14:00:01 blood 2124 #> 4248 98.6 12 1925 1925-12-01 14:00:01 bone 2124 #> 4249 71.8 1 1926 1926-01-01 00:00:00 blood 2125 #> 4250 71.8 1 1926 1926-01-01 00:00:00 bone 2125 #> 4251 70.0 2 1926 1926-01-31 10:00:01 blood 2126 #> 4252 70.0 2 1926 1926-01-31 10:00:01 bone 2126 #> 4253 62.5 3 1926 1926-03-02 20:00:01 blood 2127 #> 4254 62.5 3 1926 1926-03-02 20:00:01 bone 2127 #> 4255 38.5 4 1926 1926-04-02 06:00:00 blood 2128 #> 4256 38.5 4 1926 1926-04-02 06:00:00 bone 2128 #> 4257 64.3 5 1926 1926-05-02 16:00:01 blood 2129 #> 4258 64.3 5 1926 1926-05-02 16:00:01 bone 2129 #> 4259 73.5 6 1926 1926-06-02 02:00:01 blood 2130 #> 4260 73.5 6 1926 1926-06-02 02:00:01 bone 2130 #> 4261 52.3 7 1926 1926-07-02 12:00:00 blood 2131 #> 4262 52.3 7 1926 1926-07-02 12:00:00 bone 2131 #> 4263 61.6 8 1926 1926-08-01 22:00:01 blood 2132 #> 4264 61.6 8 1926 1926-08-01 22:00:01 bone 2132 #> 4265 60.8 9 1926 1926-09-01 08:00:01 blood 2133 #> 4266 60.8 9 1926 1926-09-01 08:00:01 bone 2133 #> 4267 71.5 10 1926 1926-10-01 18:00:00 blood 2134 #> 4268 71.5 10 1926 1926-10-01 18:00:00 bone 2134 #> 4269 60.5 11 1926 1926-11-01 04:00:01 blood 2135 #> 4270 60.5 11 1926 1926-11-01 04:00:01 bone 2135 #> 4271 79.4 12 1926 1926-12-01 14:00:01 blood 2136 #> 4272 79.4 12 1926 1926-12-01 14:00:01 bone 2136 #> 4273 81.6 1 1927 1927-01-01 00:00:00 blood 2137 #> 4274 81.6 1 1927 1927-01-01 00:00:00 bone 2137 #> 4275 93.0 2 1927 1927-01-31 10:00:01 blood 2138 #> 4276 93.0 2 1927 1927-01-31 10:00:01 bone 2138 #> 4277 69.6 3 1927 1927-03-02 20:00:01 blood 2139 #> 4278 69.6 3 1927 1927-03-02 20:00:01 bone 2139 #> 4279 93.5 4 1927 1927-04-02 06:00:00 blood 2140 #> 4280 93.5 4 1927 1927-04-02 06:00:00 bone 2140 #> 4281 79.1 5 1927 1927-05-02 16:00:01 blood 2141 #> 4282 79.1 5 1927 1927-05-02 16:00:01 bone 2141 #> 4283 59.1 6 1927 1927-06-02 02:00:01 blood 2142 #> 4284 59.1 6 1927 1927-06-02 02:00:01 bone 2142 #> 4285 54.9 7 1927 1927-07-02 12:00:00 blood 2143 #> 4286 54.9 7 1927 1927-07-02 12:00:00 bone 2143 #> 4287 53.8 8 1927 1927-08-01 22:00:01 blood 2144 #> 4288 53.8 8 1927 1927-08-01 22:00:01 bone 2144 #> 4289 68.4 9 1927 1927-09-01 08:00:01 blood 2145 #> 4290 68.4 9 1927 1927-09-01 08:00:01 bone 2145 #> 4291 63.1 10 1927 1927-10-01 18:00:00 blood 2146 #> 4292 63.1 10 1927 1927-10-01 18:00:00 bone 2146 #> 4293 67.2 11 1927 1927-11-01 04:00:01 blood 2147 #> 4294 67.2 11 1927 1927-11-01 04:00:01 bone 2147 #> 4295 45.2 12 1927 1927-12-01 14:00:01 blood 2148 #> 4296 45.2 12 1927 1927-12-01 14:00:01 bone 2148 #> 4297 83.5 1 1928 1928-01-01 00:00:00 blood 2149 #> 4298 83.5 1 1928 1928-01-01 00:00:00 bone 2149 #> 4299 73.5 2 1928 1928-01-31 12:00:01 blood 2150 #> 4300 73.5 2 1928 1928-01-31 12:00:01 bone 2150 #> 4301 85.4 3 1928 1928-03-02 00:00:01 blood 2151 #> 4302 85.4 3 1928 1928-03-02 00:00:01 bone 2151 #> 4303 80.6 4 1928 1928-04-01 12:00:00 blood 2152 #> 4304 80.6 4 1928 1928-04-01 12:00:00 bone 2152 #> 4305 76.9 5 1928 1928-05-02 00:00:01 blood 2153 #> 4306 76.9 5 1928 1928-05-02 00:00:01 bone 2153 #> 4307 91.4 6 1928 1928-06-01 12:00:01 blood 2154 #> 4308 91.4 6 1928 1928-06-01 12:00:01 bone 2154 #> 4309 98.0 7 1928 1928-07-02 00:00:00 blood 2155 #> 4310 98.0 7 1928 1928-07-02 00:00:00 bone 2155 #> 4311 83.8 8 1928 1928-08-01 12:00:01 blood 2156 #> 4312 83.8 8 1928 1928-08-01 12:00:01 bone 2156 #> 4313 89.7 9 1928 1928-09-01 00:00:01 blood 2157 #> 4314 89.7 9 1928 1928-09-01 00:00:01 bone 2157 #> 4315 61.4 10 1928 1928-10-01 12:00:00 blood 2158 #> 4316 61.4 10 1928 1928-10-01 12:00:00 bone 2158 #> 4317 50.3 11 1928 1928-11-01 00:00:01 blood 2159 #> 4318 50.3 11 1928 1928-11-01 00:00:01 bone 2159 #> 4319 59.0 12 1928 1928-12-01 12:00:01 blood 2160 #> 4320 59.0 12 1928 1928-12-01 12:00:01 bone 2160 #> 4321 68.9 1 1929 1929-01-01 00:00:00 blood 2161 #> 4322 68.9 1 1929 1929-01-01 00:00:00 bone 2161 #> 4323 64.1 2 1929 1929-01-31 10:00:01 blood 2162 #> 4324 64.1 2 1929 1929-01-31 10:00:01 bone 2162 #> 4325 50.2 3 1929 1929-03-02 20:00:01 blood 2163 #> 4326 50.2 3 1929 1929-03-02 20:00:01 bone 2163 #> 4327 52.8 4 1929 1929-04-02 06:00:00 blood 2164 #> 4328 52.8 4 1929 1929-04-02 06:00:00 bone 2164 #> 4329 58.2 5 1929 1929-05-02 16:00:01 blood 2165 #> 4330 58.2 5 1929 1929-05-02 16:00:01 bone 2165 #> 4331 71.9 6 1929 1929-06-02 02:00:01 blood 2166 #> 4332 71.9 6 1929 1929-06-02 02:00:01 bone 2166 #> 4333 70.2 7 1929 1929-07-02 12:00:00 blood 2167 #> 4334 70.2 7 1929 1929-07-02 12:00:00 bone 2167 #> 4335 65.8 8 1929 1929-08-01 22:00:01 blood 2168 #> 4336 65.8 8 1929 1929-08-01 22:00:01 bone 2168 #> 4337 34.4 9 1929 1929-09-01 08:00:01 blood 2169 #> 4338 34.4 9 1929 1929-09-01 08:00:01 bone 2169 #> 4339 54.0 10 1929 1929-10-01 18:00:00 blood 2170 #> 4340 54.0 10 1929 1929-10-01 18:00:00 bone 2170 #> 4341 81.1 11 1929 1929-11-01 04:00:01 blood 2171 #> 4342 81.1 11 1929 1929-11-01 04:00:01 bone 2171 #> 4343 108.0 12 1929 1929-12-01 14:00:01 blood 2172 #> 4344 108.0 12 1929 1929-12-01 14:00:01 bone 2172 #> 4345 65.3 1 1930 1930-01-01 00:00:00 blood 2173 #> 4346 65.3 1 1930 1930-01-01 00:00:00 bone 2173 #> 4347 49.2 2 1930 1930-01-31 10:00:01 blood 2174 #> 4348 49.2 2 1930 1930-01-31 10:00:01 bone 2174 #> 4349 35.0 3 1930 1930-03-02 20:00:01 blood 2175 #> 4350 35.0 3 1930 1930-03-02 20:00:01 bone 2175 #> 4351 38.2 4 1930 1930-04-02 06:00:00 blood 2176 #> 4352 38.2 4 1930 1930-04-02 06:00:00 bone 2176 #> 4353 36.8 5 1930 1930-05-02 16:00:01 blood 2177 #> 4354 36.8 5 1930 1930-05-02 16:00:01 bone 2177 #> 4355 28.8 6 1930 1930-06-02 02:00:01 blood 2178 #> 4356 28.8 6 1930 1930-06-02 02:00:01 bone 2178 #> 4357 21.9 7 1930 1930-07-02 12:00:00 blood 2179 #> 4358 21.9 7 1930 1930-07-02 12:00:00 bone 2179 #> 4359 24.9 8 1930 1930-08-01 22:00:01 blood 2180 #> 4360 24.9 8 1930 1930-08-01 22:00:01 bone 2180 #> 4361 32.1 9 1930 1930-09-01 08:00:01 blood 2181 #> 4362 32.1 9 1930 1930-09-01 08:00:01 bone 2181 #> 4363 34.4 10 1930 1930-10-01 18:00:00 blood 2182 #> 4364 34.4 10 1930 1930-10-01 18:00:00 bone 2182 #> 4365 35.6 11 1930 1930-11-01 04:00:01 blood 2183 #> 4366 35.6 11 1930 1930-11-01 04:00:01 bone 2183 #> 4367 25.8 12 1930 1930-12-01 14:00:01 blood 2184 #> 4368 25.8 12 1930 1930-12-01 14:00:01 bone 2184 #> 4369 14.6 1 1931 1931-01-01 00:00:00 blood 2185 #> 4370 14.6 1 1931 1931-01-01 00:00:00 bone 2185 #> 4371 43.1 2 1931 1931-01-31 10:00:01 blood 2186 #> 4372 43.1 2 1931 1931-01-31 10:00:01 bone 2186 #> 4373 30.0 3 1931 1931-03-02 20:00:01 blood 2187 #> 4374 30.0 3 1931 1931-03-02 20:00:01 bone 2187 #> 4375 31.2 4 1931 1931-04-02 06:00:00 blood 2188 #> 4376 31.2 4 1931 1931-04-02 06:00:00 bone 2188 #> 4377 24.6 5 1931 1931-05-02 16:00:01 blood 2189 #> 4378 24.6 5 1931 1931-05-02 16:00:01 bone 2189 #> 4379 15.3 6 1931 1931-06-02 02:00:01 blood 2190 #> 4380 15.3 6 1931 1931-06-02 02:00:01 bone 2190 #> 4381 17.4 7 1931 1931-07-02 12:00:00 blood 2191 #> 4382 17.4 7 1931 1931-07-02 12:00:00 bone 2191 #> 4383 13.0 8 1931 1931-08-01 22:00:01 blood 2192 #> 4384 13.0 8 1931 1931-08-01 22:00:01 bone 2192 #> 4385 19.0 9 1931 1931-09-01 08:00:01 blood 2193 #> 4386 19.0 9 1931 1931-09-01 08:00:01 bone 2193 #> 4387 10.0 10 1931 1931-10-01 18:00:00 blood 2194 #> 4388 10.0 10 1931 1931-10-01 18:00:00 bone 2194 #> 4389 18.7 11 1931 1931-11-01 04:00:01 blood 2195 #> 4390 18.7 11 1931 1931-11-01 04:00:01 bone 2195 #> 4391 17.8 12 1931 1931-12-01 14:00:01 blood 2196 #> 4392 17.8 12 1931 1931-12-01 14:00:01 bone 2196 #> 4393 12.1 1 1932 1932-01-01 00:00:00 blood 2197 #> 4394 12.1 1 1932 1932-01-01 00:00:00 bone 2197 #> 4395 10.6 2 1932 1932-01-31 12:00:01 blood 2198 #> 4396 10.6 2 1932 1932-01-31 12:00:01 bone 2198 #> 4397 11.2 3 1932 1932-03-02 00:00:01 blood 2199 #> 4398 11.2 3 1932 1932-03-02 00:00:01 bone 2199 #> 4399 11.2 4 1932 1932-04-01 12:00:00 blood 2200 #> 4400 11.2 4 1932 1932-04-01 12:00:00 bone 2200 #> 4401 17.9 5 1932 1932-05-02 00:00:01 blood 2201 #> 4402 17.9 5 1932 1932-05-02 00:00:01 bone 2201 #> 4403 22.2 6 1932 1932-06-01 12:00:01 blood 2202 #> 4404 22.2 6 1932 1932-06-01 12:00:01 bone 2202 #> 4405 9.6 7 1932 1932-07-02 00:00:00 blood 2203 #> 4406 9.6 7 1932 1932-07-02 00:00:00 bone 2203 #> 4407 6.8 8 1932 1932-08-01 12:00:01 blood 2204 #> 4408 6.8 8 1932 1932-08-01 12:00:01 bone 2204 #> 4409 4.0 9 1932 1932-09-01 00:00:01 blood 2205 #> 4410 4.0 9 1932 1932-09-01 00:00:01 bone 2205 #> 4411 8.9 10 1932 1932-10-01 12:00:00 blood 2206 #> 4412 8.9 10 1932 1932-10-01 12:00:00 bone 2206 #> 4413 8.2 11 1932 1932-11-01 00:00:01 blood 2207 #> 4414 8.2 11 1932 1932-11-01 00:00:01 bone 2207 #> 4415 11.0 12 1932 1932-12-01 12:00:01 blood 2208 #> 4416 11.0 12 1932 1932-12-01 12:00:01 bone 2208 #> 4417 12.3 1 1933 1933-01-01 00:00:00 blood 2209 #> 4418 12.3 1 1933 1933-01-01 00:00:00 bone 2209 #> 4419 22.2 2 1933 1933-01-31 10:00:01 blood 2210 #> 4420 22.2 2 1933 1933-01-31 10:00:01 bone 2210 #> 4421 10.1 3 1933 1933-03-02 20:00:01 blood 2211 #> 4422 10.1 3 1933 1933-03-02 20:00:01 bone 2211 #> 4423 2.9 4 1933 1933-04-02 06:00:00 blood 2212 #> 4424 2.9 4 1933 1933-04-02 06:00:00 bone 2212 #> 4425 3.2 5 1933 1933-05-02 16:00:01 blood 2213 #> 4426 3.2 5 1933 1933-05-02 16:00:01 bone 2213 #> 4427 5.2 6 1933 1933-06-02 02:00:01 blood 2214 #> 4428 5.2 6 1933 1933-06-02 02:00:01 bone 2214 #> 4429 2.8 7 1933 1933-07-02 12:00:00 blood 2215 #> 4430 2.8 7 1933 1933-07-02 12:00:00 bone 2215 #> 4431 0.2 8 1933 1933-08-01 22:00:01 blood 2216 #> 4432 0.2 8 1933 1933-08-01 22:00:01 bone 2216 #> 4433 5.1 9 1933 1933-09-01 08:00:01 blood 2217 #> 4434 5.1 9 1933 1933-09-01 08:00:01 bone 2217 #> 4435 3.0 10 1933 1933-10-01 18:00:00 blood 2218 #> 4436 3.0 10 1933 1933-10-01 18:00:00 bone 2218 #> 4437 0.6 11 1933 1933-11-01 04:00:01 blood 2219 #> 4438 0.6 11 1933 1933-11-01 04:00:01 bone 2219 #> 4439 0.3 12 1933 1933-12-01 14:00:01 blood 2220 #> 4440 0.3 12 1933 1933-12-01 14:00:01 bone 2220 #> 4441 3.4 1 1934 1934-01-01 00:00:00 blood 2221 #> 4442 3.4 1 1934 1934-01-01 00:00:00 bone 2221 #> 4443 7.8 2 1934 1934-01-31 10:00:01 blood 2222 #> 4444 7.8 2 1934 1934-01-31 10:00:01 bone 2222 #> 4445 4.3 3 1934 1934-03-02 20:00:01 blood 2223 #> 4446 4.3 3 1934 1934-03-02 20:00:01 bone 2223 #> 4447 11.3 4 1934 1934-04-02 06:00:00 blood 2224 #> 4448 11.3 4 1934 1934-04-02 06:00:00 bone 2224 #> 4449 19.7 5 1934 1934-05-02 16:00:01 blood 2225 #> 4450 19.7 5 1934 1934-05-02 16:00:01 bone 2225 #> 4451 6.7 6 1934 1934-06-02 02:00:01 blood 2226 #> 4452 6.7 6 1934 1934-06-02 02:00:01 bone 2226 #> 4453 9.3 7 1934 1934-07-02 12:00:00 blood 2227 #> 4454 9.3 7 1934 1934-07-02 12:00:00 bone 2227 #> 4455 8.3 8 1934 1934-08-01 22:00:01 blood 2228 #> 4456 8.3 8 1934 1934-08-01 22:00:01 bone 2228 #> 4457 4.0 9 1934 1934-09-01 08:00:01 blood 2229 #> 4458 4.0 9 1934 1934-09-01 08:00:01 bone 2229 #> 4459 5.7 10 1934 1934-10-01 18:00:00 blood 2230 #> 4460 5.7 10 1934 1934-10-01 18:00:00 bone 2230 #> 4461 8.7 11 1934 1934-11-01 04:00:01 blood 2231 #> 4462 8.7 11 1934 1934-11-01 04:00:01 bone 2231 #> 4463 15.4 12 1934 1934-12-01 14:00:01 blood 2232 #> 4464 15.4 12 1934 1934-12-01 14:00:01 bone 2232 #> 4465 18.9 1 1935 1935-01-01 00:00:00 blood 2233 #> 4466 18.9 1 1935 1935-01-01 00:00:00 bone 2233 #> 4467 20.5 2 1935 1935-01-31 10:00:01 blood 2234 #> 4468 20.5 2 1935 1935-01-31 10:00:01 bone 2234 #> 4469 23.1 3 1935 1935-03-02 20:00:01 blood 2235 #> 4470 23.1 3 1935 1935-03-02 20:00:01 bone 2235 #> 4471 12.2 4 1935 1935-04-02 06:00:00 blood 2236 #> 4472 12.2 4 1935 1935-04-02 06:00:00 bone 2236 #> 4473 27.3 5 1935 1935-05-02 16:00:01 blood 2237 #> 4474 27.3 5 1935 1935-05-02 16:00:01 bone 2237 #> 4475 45.7 6 1935 1935-06-02 02:00:01 blood 2238 #> 4476 45.7 6 1935 1935-06-02 02:00:01 bone 2238 #> 4477 33.9 7 1935 1935-07-02 12:00:00 blood 2239 #> 4478 33.9 7 1935 1935-07-02 12:00:00 bone 2239 #> 4479 30.1 8 1935 1935-08-01 22:00:01 blood 2240 #> 4480 30.1 8 1935 1935-08-01 22:00:01 bone 2240 #> 4481 42.1 9 1935 1935-09-01 08:00:01 blood 2241 #> 4482 42.1 9 1935 1935-09-01 08:00:01 bone 2241 #> 4483 53.2 10 1935 1935-10-01 18:00:00 blood 2242 #> 4484 53.2 10 1935 1935-10-01 18:00:00 bone 2242 #> 4485 64.2 11 1935 1935-11-01 04:00:01 blood 2243 #> 4486 64.2 11 1935 1935-11-01 04:00:01 bone 2243 #> 4487 61.5 12 1935 1935-12-01 14:00:01 blood 2244 #> 4488 61.5 12 1935 1935-12-01 14:00:01 bone 2244 #> 4489 62.8 1 1936 1936-01-01 00:00:00 blood 2245 #> 4490 62.8 1 1936 1936-01-01 00:00:00 bone 2245 #> 4491 74.3 2 1936 1936-01-31 12:00:01 blood 2246 #> 4492 74.3 2 1936 1936-01-31 12:00:01 bone 2246 #> 4493 77.1 3 1936 1936-03-02 00:00:01 blood 2247 #> 4494 77.1 3 1936 1936-03-02 00:00:01 bone 2247 #> 4495 74.9 4 1936 1936-04-01 12:00:00 blood 2248 #> 4496 74.9 4 1936 1936-04-01 12:00:00 bone 2248 #> 4497 54.6 5 1936 1936-05-02 00:00:01 blood 2249 #> 4498 54.6 5 1936 1936-05-02 00:00:01 bone 2249 #> 4499 70.0 6 1936 1936-06-01 12:00:01 blood 2250 #> 4500 70.0 6 1936 1936-06-01 12:00:01 bone 2250 #> 4501 52.3 7 1936 1936-07-02 00:00:00 blood 2251 #> 4502 52.3 7 1936 1936-07-02 00:00:00 bone 2251 #> 4503 87.0 8 1936 1936-08-01 12:00:01 blood 2252 #> 4504 87.0 8 1936 1936-08-01 12:00:01 bone 2252 #> 4505 76.0 9 1936 1936-09-01 00:00:01 blood 2253 #> 4506 76.0 9 1936 1936-09-01 00:00:01 bone 2253 #> 4507 89.0 10 1936 1936-10-01 12:00:00 blood 2254 #> 4508 89.0 10 1936 1936-10-01 12:00:00 bone 2254 #> 4509 115.4 11 1936 1936-11-01 00:00:01 blood 2255 #> 4510 115.4 11 1936 1936-11-01 00:00:01 bone 2255 #> 4511 123.4 12 1936 1936-12-01 12:00:01 blood 2256 #> 4512 123.4 12 1936 1936-12-01 12:00:01 bone 2256 #> 4513 132.5 1 1937 1937-01-01 00:00:00 blood 2257 #> 4514 132.5 1 1937 1937-01-01 00:00:00 bone 2257 #> 4515 128.5 2 1937 1937-01-31 10:00:01 blood 2258 #> 4516 128.5 2 1937 1937-01-31 10:00:01 bone 2258 #> 4517 83.9 3 1937 1937-03-02 20:00:01 blood 2259 #> 4518 83.9 3 1937 1937-03-02 20:00:01 bone 2259 #> 4519 109.3 4 1937 1937-04-02 06:00:00 blood 2260 #> 4520 109.3 4 1937 1937-04-02 06:00:00 bone 2260 #> 4521 116.7 5 1937 1937-05-02 16:00:01 blood 2261 #> 4522 116.7 5 1937 1937-05-02 16:00:01 bone 2261 #> 4523 130.3 6 1937 1937-06-02 02:00:01 blood 2262 #> 4524 130.3 6 1937 1937-06-02 02:00:01 bone 2262 #> 4525 145.1 7 1937 1937-07-02 12:00:00 blood 2263 #> 4526 145.1 7 1937 1937-07-02 12:00:00 bone 2263 #> 4527 137.7 8 1937 1937-08-01 22:00:01 blood 2264 #> 4528 137.7 8 1937 1937-08-01 22:00:01 bone 2264 #> 4529 100.7 9 1937 1937-09-01 08:00:01 blood 2265 #> 4530 100.7 9 1937 1937-09-01 08:00:01 bone 2265 #> 4531 124.9 10 1937 1937-10-01 18:00:00 blood 2266 #> 4532 124.9 10 1937 1937-10-01 18:00:00 bone 2266 #> 4533 74.4 11 1937 1937-11-01 04:00:01 blood 2267 #> 4534 74.4 11 1937 1937-11-01 04:00:01 bone 2267 #> 4535 88.8 12 1937 1937-12-01 14:00:01 blood 2268 #> 4536 88.8 12 1937 1937-12-01 14:00:01 bone 2268 #> 4537 98.4 1 1938 1938-01-01 00:00:00 blood 2269 #> 4538 98.4 1 1938 1938-01-01 00:00:00 bone 2269 #> 4539 119.2 2 1938 1938-01-31 10:00:01 blood 2270 #> 4540 119.2 2 1938 1938-01-31 10:00:01 bone 2270 #> 4541 86.5 3 1938 1938-03-02 20:00:01 blood 2271 #> 4542 86.5 3 1938 1938-03-02 20:00:01 bone 2271 #> 4543 101.0 4 1938 1938-04-02 06:00:00 blood 2272 #> 4544 101.0 4 1938 1938-04-02 06:00:00 bone 2272 #> 4545 127.4 5 1938 1938-05-02 16:00:01 blood 2273 #> 4546 127.4 5 1938 1938-05-02 16:00:01 bone 2273 #> 4547 97.5 6 1938 1938-06-02 02:00:01 blood 2274 #> 4548 97.5 6 1938 1938-06-02 02:00:01 bone 2274 #> 4549 165.3 7 1938 1938-07-02 12:00:00 blood 2275 #> 4550 165.3 7 1938 1938-07-02 12:00:00 bone 2275 #> 4551 115.7 8 1938 1938-08-01 22:00:01 blood 2276 #> 4552 115.7 8 1938 1938-08-01 22:00:01 bone 2276 #> 4553 89.6 9 1938 1938-09-01 08:00:01 blood 2277 #> 4554 89.6 9 1938 1938-09-01 08:00:01 bone 2277 #> 4555 99.1 10 1938 1938-10-01 18:00:00 blood 2278 #> 4556 99.1 10 1938 1938-10-01 18:00:00 bone 2278 #> 4557 122.2 11 1938 1938-11-01 04:00:01 blood 2279 #> 4558 122.2 11 1938 1938-11-01 04:00:01 bone 2279 #> 4559 92.7 12 1938 1938-12-01 14:00:01 blood 2280 #> 4560 92.7 12 1938 1938-12-01 14:00:01 bone 2280 #> 4561 80.3 1 1939 1939-01-01 00:00:00 blood 2281 #> 4562 80.3 1 1939 1939-01-01 00:00:00 bone 2281 #> 4563 77.4 2 1939 1939-01-31 10:00:01 blood 2282 #> 4564 77.4 2 1939 1939-01-31 10:00:01 bone 2282 #> 4565 64.6 3 1939 1939-03-02 20:00:01 blood 2283 #> 4566 64.6 3 1939 1939-03-02 20:00:01 bone 2283 #> 4567 109.1 4 1939 1939-04-02 06:00:00 blood 2284 #> 4568 109.1 4 1939 1939-04-02 06:00:00 bone 2284 #> 4569 118.3 5 1939 1939-05-02 16:00:01 blood 2285 #> 4570 118.3 5 1939 1939-05-02 16:00:01 bone 2285 #> 4571 101.0 6 1939 1939-06-02 02:00:01 blood 2286 #> 4572 101.0 6 1939 1939-06-02 02:00:01 bone 2286 #> 4573 97.6 7 1939 1939-07-02 12:00:00 blood 2287 #> 4574 97.6 7 1939 1939-07-02 12:00:00 bone 2287 #> 4575 105.8 8 1939 1939-08-01 22:00:01 blood 2288 #> 4576 105.8 8 1939 1939-08-01 22:00:01 bone 2288 #> 4577 112.6 9 1939 1939-09-01 08:00:01 blood 2289 #> 4578 112.6 9 1939 1939-09-01 08:00:01 bone 2289 #> 4579 88.1 10 1939 1939-10-01 18:00:00 blood 2290 #> 4580 88.1 10 1939 1939-10-01 18:00:00 bone 2290 #> 4581 68.1 11 1939 1939-11-01 04:00:01 blood 2291 #> 4582 68.1 11 1939 1939-11-01 04:00:01 bone 2291 #> 4583 42.1 12 1939 1939-12-01 14:00:01 blood 2292 #> 4584 42.1 12 1939 1939-12-01 14:00:01 bone 2292 #> 4585 50.5 1 1940 1940-01-01 00:00:00 blood 2293 #> 4586 50.5 1 1940 1940-01-01 00:00:00 bone 2293 #> 4587 59.4 2 1940 1940-01-31 12:00:01 blood 2294 #> 4588 59.4 2 1940 1940-01-31 12:00:01 bone 2294 #> 4589 83.3 3 1940 1940-03-02 00:00:01 blood 2295 #> 4590 83.3 3 1940 1940-03-02 00:00:01 bone 2295 #> 4591 60.7 4 1940 1940-04-01 12:00:00 blood 2296 #> 4592 60.7 4 1940 1940-04-01 12:00:00 bone 2296 #> 4593 54.4 5 1940 1940-05-02 00:00:01 blood 2297 #> 4594 54.4 5 1940 1940-05-02 00:00:01 bone 2297 #> 4595 83.9 6 1940 1940-06-01 12:00:01 blood 2298 #> 4596 83.9 6 1940 1940-06-01 12:00:01 bone 2298 #> 4597 67.5 7 1940 1940-07-02 00:00:00 blood 2299 #> 4598 67.5 7 1940 1940-07-02 00:00:00 bone 2299 #> 4599 105.5 8 1940 1940-08-01 12:00:01 blood 2300 #> 4600 105.5 8 1940 1940-08-01 12:00:01 bone 2300 #> 4601 66.5 9 1940 1940-09-01 00:00:01 blood 2301 #> 4602 66.5 9 1940 1940-09-01 00:00:01 bone 2301 #> 4603 55.0 10 1940 1940-10-01 12:00:00 blood 2302 #> 4604 55.0 10 1940 1940-10-01 12:00:00 bone 2302 #> 4605 58.4 11 1940 1940-11-01 00:00:01 blood 2303 #> 4606 58.4 11 1940 1940-11-01 00:00:01 bone 2303 #> 4607 68.3 12 1940 1940-12-01 12:00:01 blood 2304 #> 4608 68.3 12 1940 1940-12-01 12:00:01 bone 2304 #> 4609 45.6 1 1941 1941-01-01 00:00:00 blood 2305 #> 4610 45.6 1 1941 1941-01-01 00:00:00 bone 2305 #> 4611 44.5 2 1941 1941-01-31 10:00:01 blood 2306 #> 4612 44.5 2 1941 1941-01-31 10:00:01 bone 2306 #> 4613 46.4 3 1941 1941-03-02 20:00:01 blood 2307 #> 4614 46.4 3 1941 1941-03-02 20:00:01 bone 2307 #> 4615 32.8 4 1941 1941-04-02 06:00:00 blood 2308 #> 4616 32.8 4 1941 1941-04-02 06:00:00 bone 2308 #> 4617 29.5 5 1941 1941-05-02 16:00:01 blood 2309 #> 4618 29.5 5 1941 1941-05-02 16:00:01 bone 2309 #> 4619 59.8 6 1941 1941-06-02 02:00:01 blood 2310 #> 4620 59.8 6 1941 1941-06-02 02:00:01 bone 2310 #> 4621 66.9 7 1941 1941-07-02 12:00:00 blood 2311 #> 4622 66.9 7 1941 1941-07-02 12:00:00 bone 2311 #> 4623 60.0 8 1941 1941-08-01 22:00:01 blood 2312 #> 4624 60.0 8 1941 1941-08-01 22:00:01 bone 2312 #> 4625 65.9 9 1941 1941-09-01 08:00:01 blood 2313 #> 4626 65.9 9 1941 1941-09-01 08:00:01 bone 2313 #> 4627 46.3 10 1941 1941-10-01 18:00:00 blood 2314 #> 4628 46.3 10 1941 1941-10-01 18:00:00 bone 2314 #> 4629 38.3 11 1941 1941-11-01 04:00:01 blood 2315 #> 4630 38.3 11 1941 1941-11-01 04:00:01 bone 2315 #> 4631 33.7 12 1941 1941-12-01 14:00:01 blood 2316 #> 4632 33.7 12 1941 1941-12-01 14:00:01 bone 2316 #> 4633 35.6 1 1942 1942-01-01 00:00:00 blood 2317 #> 4634 35.6 1 1942 1942-01-01 00:00:00 bone 2317 #> 4635 52.8 2 1942 1942-01-31 10:00:01 blood 2318 #> 4636 52.8 2 1942 1942-01-31 10:00:01 bone 2318 #> 4637 54.2 3 1942 1942-03-02 20:00:01 blood 2319 #> 4638 54.2 3 1942 1942-03-02 20:00:01 bone 2319 #> 4639 60.7 4 1942 1942-04-02 06:00:00 blood 2320 #> 4640 60.7 4 1942 1942-04-02 06:00:00 bone 2320 #> 4641 25.0 5 1942 1942-05-02 16:00:01 blood 2321 #> 4642 25.0 5 1942 1942-05-02 16:00:01 bone 2321 #> 4643 11.4 6 1942 1942-06-02 02:00:01 blood 2322 #> 4644 11.4 6 1942 1942-06-02 02:00:01 bone 2322 #> 4645 17.7 7 1942 1942-07-02 12:00:00 blood 2323 #> 4646 17.7 7 1942 1942-07-02 12:00:00 bone 2323 #> 4647 20.2 8 1942 1942-08-01 22:00:01 blood 2324 #> 4648 20.2 8 1942 1942-08-01 22:00:01 bone 2324 #> 4649 17.2 9 1942 1942-09-01 08:00:01 blood 2325 #> 4650 17.2 9 1942 1942-09-01 08:00:01 bone 2325 #> 4651 19.2 10 1942 1942-10-01 18:00:00 blood 2326 #> 4652 19.2 10 1942 1942-10-01 18:00:00 bone 2326 #> 4653 30.7 11 1942 1942-11-01 04:00:01 blood 2327 #> 4654 30.7 11 1942 1942-11-01 04:00:01 bone 2327 #> 4655 22.5 12 1942 1942-12-01 14:00:01 blood 2328 #> 4656 22.5 12 1942 1942-12-01 14:00:01 bone 2328 #> 4657 12.4 1 1943 1943-01-01 00:00:00 blood 2329 #> 4658 12.4 1 1943 1943-01-01 00:00:00 bone 2329 #> 4659 28.9 2 1943 1943-01-31 10:00:01 blood 2330 #> 4660 28.9 2 1943 1943-01-31 10:00:01 bone 2330 #> 4661 27.4 3 1943 1943-03-02 20:00:01 blood 2331 #> 4662 27.4 3 1943 1943-03-02 20:00:01 bone 2331 #> 4663 26.1 4 1943 1943-04-02 06:00:00 blood 2332 #> 4664 26.1 4 1943 1943-04-02 06:00:00 bone 2332 #> 4665 14.1 5 1943 1943-05-02 16:00:01 blood 2333 #> 4666 14.1 5 1943 1943-05-02 16:00:01 bone 2333 #> 4667 7.6 6 1943 1943-06-02 02:00:01 blood 2334 #> 4668 7.6 6 1943 1943-06-02 02:00:01 bone 2334 #> 4669 13.2 7 1943 1943-07-02 12:00:00 blood 2335 #> 4670 13.2 7 1943 1943-07-02 12:00:00 bone 2335 #> 4671 19.4 8 1943 1943-08-01 22:00:01 blood 2336 #> 4672 19.4 8 1943 1943-08-01 22:00:01 bone 2336 #> 4673 10.0 9 1943 1943-09-01 08:00:01 blood 2337 #> 4674 10.0 9 1943 1943-09-01 08:00:01 bone 2337 #> 4675 7.8 10 1943 1943-10-01 18:00:00 blood 2338 #> 4676 7.8 10 1943 1943-10-01 18:00:00 bone 2338 #> 4677 10.2 11 1943 1943-11-01 04:00:01 blood 2339 #> 4678 10.2 11 1943 1943-11-01 04:00:01 bone 2339 #> 4679 18.8 12 1943 1943-12-01 14:00:01 blood 2340 #> 4680 18.8 12 1943 1943-12-01 14:00:01 bone 2340 #> 4681 3.7 1 1944 1944-01-01 00:00:00 blood 2341 #> 4682 3.7 1 1944 1944-01-01 00:00:00 bone 2341 #> 4683 0.5 2 1944 1944-01-31 12:00:01 blood 2342 #> 4684 0.5 2 1944 1944-01-31 12:00:01 bone 2342 #> 4685 11.0 3 1944 1944-03-02 00:00:01 blood 2343 #> 4686 11.0 3 1944 1944-03-02 00:00:01 bone 2343 #> 4687 0.3 4 1944 1944-04-01 12:00:00 blood 2344 #> 4688 0.3 4 1944 1944-04-01 12:00:00 bone 2344 #> 4689 2.5 5 1944 1944-05-02 00:00:01 blood 2345 #> 4690 2.5 5 1944 1944-05-02 00:00:01 bone 2345 #> 4691 5.0 6 1944 1944-06-01 12:00:01 blood 2346 #> 4692 5.0 6 1944 1944-06-01 12:00:01 bone 2346 #> 4693 5.0 7 1944 1944-07-02 00:00:00 blood 2347 #> 4694 5.0 7 1944 1944-07-02 00:00:00 bone 2347 #> 4695 16.7 8 1944 1944-08-01 12:00:01 blood 2348 #> 4696 16.7 8 1944 1944-08-01 12:00:01 bone 2348 #> 4697 14.3 9 1944 1944-09-01 00:00:01 blood 2349 #> 4698 14.3 9 1944 1944-09-01 00:00:01 bone 2349 #> 4699 16.9 10 1944 1944-10-01 12:00:00 blood 2350 #> 4700 16.9 10 1944 1944-10-01 12:00:00 bone 2350 #> 4701 10.8 11 1944 1944-11-01 00:00:01 blood 2351 #> 4702 10.8 11 1944 1944-11-01 00:00:01 bone 2351 #> 4703 28.4 12 1944 1944-12-01 12:00:01 blood 2352 #> 4704 28.4 12 1944 1944-12-01 12:00:01 bone 2352 #> 4705 18.5 1 1945 1945-01-01 00:00:00 blood 2353 #> 4706 18.5 1 1945 1945-01-01 00:00:00 bone 2353 #> 4707 12.7 2 1945 1945-01-31 10:00:01 blood 2354 #> 4708 12.7 2 1945 1945-01-31 10:00:01 bone 2354 #> 4709 21.5 3 1945 1945-03-02 20:00:01 blood 2355 #> 4710 21.5 3 1945 1945-03-02 20:00:01 bone 2355 #> 4711 32.0 4 1945 1945-04-02 06:00:00 blood 2356 #> 4712 32.0 4 1945 1945-04-02 06:00:00 bone 2356 #> 4713 30.6 5 1945 1945-05-02 16:00:01 blood 2357 #> 4714 30.6 5 1945 1945-05-02 16:00:01 bone 2357 #> 4715 36.2 6 1945 1945-06-02 02:00:01 blood 2358 #> 4716 36.2 6 1945 1945-06-02 02:00:01 bone 2358 #> 4717 42.6 7 1945 1945-07-02 12:00:00 blood 2359 #> 4718 42.6 7 1945 1945-07-02 12:00:00 bone 2359 #> 4719 25.9 8 1945 1945-08-01 22:00:01 blood 2360 #> 4720 25.9 8 1945 1945-08-01 22:00:01 bone 2360 #> 4721 34.9 9 1945 1945-09-01 08:00:01 blood 2361 #> 4722 34.9 9 1945 1945-09-01 08:00:01 bone 2361 #> 4723 68.8 10 1945 1945-10-01 18:00:00 blood 2362 #> 4724 68.8 10 1945 1945-10-01 18:00:00 bone 2362 #> 4725 46.0 11 1945 1945-11-01 04:00:01 blood 2363 #> 4726 46.0 11 1945 1945-11-01 04:00:01 bone 2363 #> 4727 27.4 12 1945 1945-12-01 14:00:01 blood 2364 #> 4728 27.4 12 1945 1945-12-01 14:00:01 bone 2364 #> 4729 47.6 1 1946 1946-01-01 00:00:00 blood 2365 #> 4730 47.6 1 1946 1946-01-01 00:00:00 bone 2365 #> 4731 86.2 2 1946 1946-01-31 10:00:01 blood 2366 #> 4732 86.2 2 1946 1946-01-31 10:00:01 bone 2366 #> 4733 76.6 3 1946 1946-03-02 20:00:01 blood 2367 #> 4734 76.6 3 1946 1946-03-02 20:00:01 bone 2367 #> 4735 75.7 4 1946 1946-04-02 06:00:00 blood 2368 #> 4736 75.7 4 1946 1946-04-02 06:00:00 bone 2368 #> 4737 84.9 5 1946 1946-05-02 16:00:01 blood 2369 #> 4738 84.9 5 1946 1946-05-02 16:00:01 bone 2369 #> 4739 73.5 6 1946 1946-06-02 02:00:01 blood 2370 #> 4740 73.5 6 1946 1946-06-02 02:00:01 bone 2370 #> 4741 116.2 7 1946 1946-07-02 12:00:00 blood 2371 #> 4742 116.2 7 1946 1946-07-02 12:00:00 bone 2371 #> 4743 107.2 8 1946 1946-08-01 22:00:01 blood 2372 #> 4744 107.2 8 1946 1946-08-01 22:00:01 bone 2372 #> 4745 94.4 9 1946 1946-09-01 08:00:01 blood 2373 #> 4746 94.4 9 1946 1946-09-01 08:00:01 bone 2373 #> 4747 102.3 10 1946 1946-10-01 18:00:00 blood 2374 #> 4748 102.3 10 1946 1946-10-01 18:00:00 bone 2374 #> 4749 123.8 11 1946 1946-11-01 04:00:01 blood 2375 #> 4750 123.8 11 1946 1946-11-01 04:00:01 bone 2375 #> 4751 121.7 12 1946 1946-12-01 14:00:01 blood 2376 #> 4752 121.7 12 1946 1946-12-01 14:00:01 bone 2376 #> 4753 115.7 1 1947 1947-01-01 00:00:00 blood 2377 #> 4754 115.7 1 1947 1947-01-01 00:00:00 bone 2377 #> 4755 113.4 2 1947 1947-01-31 10:00:01 blood 2378 #> 4756 113.4 2 1947 1947-01-31 10:00:01 bone 2378 #> 4757 129.8 3 1947 1947-03-02 20:00:01 blood 2379 #> 4758 129.8 3 1947 1947-03-02 20:00:01 bone 2379 #> 4759 149.8 4 1947 1947-04-02 06:00:00 blood 2380 #> 4760 149.8 4 1947 1947-04-02 06:00:00 bone 2380 #> 4761 201.3 5 1947 1947-05-02 16:00:01 blood 2381 #> 4762 201.3 5 1947 1947-05-02 16:00:01 bone 2381 #> 4763 163.9 6 1947 1947-06-02 02:00:01 blood 2382 #> 4764 163.9 6 1947 1947-06-02 02:00:01 bone 2382 #> 4765 157.9 7 1947 1947-07-02 12:00:00 blood 2383 #> 4766 157.9 7 1947 1947-07-02 12:00:00 bone 2383 #> 4767 188.8 8 1947 1947-08-01 22:00:01 blood 2384 #> 4768 188.8 8 1947 1947-08-01 22:00:01 bone 2384 #> 4769 169.4 9 1947 1947-09-01 08:00:01 blood 2385 #> 4770 169.4 9 1947 1947-09-01 08:00:01 bone 2385 #> 4771 163.6 10 1947 1947-10-01 18:00:00 blood 2386 #> 4772 163.6 10 1947 1947-10-01 18:00:00 bone 2386 #> 4773 128.0 11 1947 1947-11-01 04:00:01 blood 2387 #> 4774 128.0 11 1947 1947-11-01 04:00:01 bone 2387 #> 4775 116.5 12 1947 1947-12-01 14:00:01 blood 2388 #> 4776 116.5 12 1947 1947-12-01 14:00:01 bone 2388 #> 4777 108.5 1 1948 1948-01-01 00:00:00 blood 2389 #> 4778 108.5 1 1948 1948-01-01 00:00:00 bone 2389 #> 4779 86.1 2 1948 1948-01-31 12:00:01 blood 2390 #> 4780 86.1 2 1948 1948-01-31 12:00:01 bone 2390 #> 4781 94.8 3 1948 1948-03-02 00:00:01 blood 2391 #> 4782 94.8 3 1948 1948-03-02 00:00:01 bone 2391 #> 4783 189.7 4 1948 1948-04-01 12:00:00 blood 2392 #> 4784 189.7 4 1948 1948-04-01 12:00:00 bone 2392 #> 4785 174.0 5 1948 1948-05-02 00:00:01 blood 2393 #> 4786 174.0 5 1948 1948-05-02 00:00:01 bone 2393 #> 4787 167.8 6 1948 1948-06-01 12:00:01 blood 2394 #> 4788 167.8 6 1948 1948-06-01 12:00:01 bone 2394 #> 4789 142.2 7 1948 1948-07-02 00:00:00 blood 2395 #> 4790 142.2 7 1948 1948-07-02 00:00:00 bone 2395 #> 4791 157.9 8 1948 1948-08-01 12:00:01 blood 2396 #> 4792 157.9 8 1948 1948-08-01 12:00:01 bone 2396 #> 4793 143.3 9 1948 1948-09-01 00:00:01 blood 2397 #> 4794 143.3 9 1948 1948-09-01 00:00:01 bone 2397 #> #> $data_test #> y season year date series time #> 1 136.3 10 1948 1948-10-01 12:00:00 blood 2398 #> 2 136.3 10 1948 1948-10-01 12:00:00 bone 2398 #> 3 95.8 11 1948 1948-11-01 00:00:01 blood 2399 #> 4 95.8 11 1948 1948-11-01 00:00:01 bone 2399 #> 5 138.0 12 1948 1948-12-01 12:00:01 blood 2400 #> 6 138.0 12 1948 1948-12-01 12:00:01 bone 2400 #> 7 119.1 1 1949 1949-01-01 00:00:00 blood 2401 #> 8 119.1 1 1949 1949-01-01 00:00:00 bone 2401 #> 9 182.3 2 1949 1949-01-31 10:00:01 blood 2402 #> 10 182.3 2 1949 1949-01-31 10:00:01 bone 2402 #> 11 157.5 3 1949 1949-03-02 20:00:01 blood 2403 #> 12 157.5 3 1949 1949-03-02 20:00:01 bone 2403 #> 13 147.0 4 1949 1949-04-02 06:00:00 blood 2404 #> 14 147.0 4 1949 1949-04-02 06:00:00 bone 2404 #> 15 106.2 5 1949 1949-05-02 16:00:01 blood 2405 #> 16 106.2 5 1949 1949-05-02 16:00:01 bone 2405 #> 17 121.7 6 1949 1949-06-02 02:00:01 blood 2406 #> 18 121.7 6 1949 1949-06-02 02:00:01 bone 2406 #> 19 125.8 7 1949 1949-07-02 12:00:00 blood 2407 #> 20 125.8 7 1949 1949-07-02 12:00:00 bone 2407 #> 21 123.8 8 1949 1949-08-01 22:00:01 blood 2408 #> 22 123.8 8 1949 1949-08-01 22:00:01 bone 2408 #> 23 145.3 9 1949 1949-09-01 08:00:01 blood 2409 #> 24 145.3 9 1949 1949-09-01 08:00:01 bone 2409 #> 25 131.6 10 1949 1949-10-01 18:00:00 blood 2410 #> 26 131.6 10 1949 1949-10-01 18:00:00 bone 2410 #> 27 143.5 11 1949 1949-11-01 04:00:01 blood 2411 #> 28 143.5 11 1949 1949-11-01 04:00:01 bone 2411 #> 29 117.6 12 1949 1949-12-01 14:00:01 blood 2412 #> 30 117.6 12 1949 1949-12-01 14:00:01 bone 2412 #> 31 101.6 1 1950 1950-01-01 00:00:00 blood 2413 #> 32 101.6 1 1950 1950-01-01 00:00:00 bone 2413 #> 33 94.8 2 1950 1950-01-31 10:00:01 blood 2414 #> 34 94.8 2 1950 1950-01-31 10:00:01 bone 2414 #> 35 109.7 3 1950 1950-03-02 20:00:01 blood 2415 #> 36 109.7 3 1950 1950-03-02 20:00:01 bone 2415 #> 37 113.4 4 1950 1950-04-02 06:00:00 blood 2416 #> 38 113.4 4 1950 1950-04-02 06:00:00 bone 2416 #> 39 106.2 5 1950 1950-05-02 16:00:01 blood 2417 #> 40 106.2 5 1950 1950-05-02 16:00:01 bone 2417 #> 41 83.6 6 1950 1950-06-02 02:00:01 blood 2418 #> 42 83.6 6 1950 1950-06-02 02:00:01 bone 2418 #> 43 91.0 7 1950 1950-07-02 12:00:00 blood 2419 #> 44 91.0 7 1950 1950-07-02 12:00:00 bone 2419 #> 45 85.2 8 1950 1950-08-01 22:00:01 blood 2420 #> 46 85.2 8 1950 1950-08-01 22:00:01 bone 2420 #> 47 51.3 9 1950 1950-09-01 08:00:01 blood 2421 #> 48 51.3 9 1950 1950-09-01 08:00:01 bone 2421 #> 49 61.4 10 1950 1950-10-01 18:00:00 blood 2422 #> 50 61.4 10 1950 1950-10-01 18:00:00 bone 2422 #> 51 54.8 11 1950 1950-11-01 04:00:01 blood 2423 #> 52 54.8 11 1950 1950-11-01 04:00:01 bone 2423 #> 53 54.1 12 1950 1950-12-01 14:00:01 blood 2424 #> 54 54.1 12 1950 1950-12-01 14:00:01 bone 2424 #> 55 59.9 1 1951 1951-01-01 00:00:00 blood 2425 #> 56 59.9 1 1951 1951-01-01 00:00:00 bone 2425 #> 57 59.9 2 1951 1951-01-31 10:00:01 blood 2426 #> 58 59.9 2 1951 1951-01-31 10:00:01 bone 2426 #> 59 59.9 3 1951 1951-03-02 20:00:01 blood 2427 #> 60 59.9 3 1951 1951-03-02 20:00:01 bone 2427 #> 61 92.9 4 1951 1951-04-02 06:00:00 blood 2428 #> 62 92.9 4 1951 1951-04-02 06:00:00 bone 2428 #> 63 108.5 5 1951 1951-05-02 16:00:01 blood 2429 #> 64 108.5 5 1951 1951-05-02 16:00:01 bone 2429 #> 65 100.6 6 1951 1951-06-02 02:00:01 blood 2430 #> 66 100.6 6 1951 1951-06-02 02:00:01 bone 2430 #> 67 61.5 7 1951 1951-07-02 12:00:00 blood 2431 #> 68 61.5 7 1951 1951-07-02 12:00:00 bone 2431 #> 69 61.0 8 1951 1951-08-01 22:00:01 blood 2432 #> 70 61.0 8 1951 1951-08-01 22:00:01 bone 2432 #> 71 83.1 9 1951 1951-09-01 08:00:01 blood 2433 #> 72 83.1 9 1951 1951-09-01 08:00:01 bone 2433 #> 73 51.6 10 1951 1951-10-01 18:00:00 blood 2434 #> 74 51.6 10 1951 1951-10-01 18:00:00 bone 2434 #> 75 52.4 11 1951 1951-11-01 04:00:01 blood 2435 #> 76 52.4 11 1951 1951-11-01 04:00:01 bone 2435 #> 77 45.8 12 1951 1951-12-01 14:00:01 blood 2436 #> 78 45.8 12 1951 1951-12-01 14:00:01 bone 2436 #> 79 40.7 1 1952 1952-01-01 00:00:00 blood 2437 #> 80 40.7 1 1952 1952-01-01 00:00:00 bone 2437 #> 81 22.7 2 1952 1952-01-31 12:00:01 blood 2438 #> 82 22.7 2 1952 1952-01-31 12:00:01 bone 2438 #> 83 22.0 3 1952 1952-03-02 00:00:01 blood 2439 #> 84 22.0 3 1952 1952-03-02 00:00:01 bone 2439 #> 85 29.1 4 1952 1952-04-01 12:00:00 blood 2440 #> 86 29.1 4 1952 1952-04-01 12:00:00 bone 2440 #> 87 23.4 5 1952 1952-05-02 00:00:01 blood 2441 #> 88 23.4 5 1952 1952-05-02 00:00:01 bone 2441 #> 89 36.4 6 1952 1952-06-01 12:00:01 blood 2442 #> 90 36.4 6 1952 1952-06-01 12:00:01 bone 2442 #> 91 39.3 7 1952 1952-07-02 00:00:00 blood 2443 #> 92 39.3 7 1952 1952-07-02 00:00:00 bone 2443 #> 93 54.9 8 1952 1952-08-01 12:00:01 blood 2444 #> 94 54.9 8 1952 1952-08-01 12:00:01 bone 2444 #> 95 28.2 9 1952 1952-09-01 00:00:01 blood 2445 #> 96 28.2 9 1952 1952-09-01 00:00:01 bone 2445 #> 97 23.8 10 1952 1952-10-01 12:00:00 blood 2446 #> 98 23.8 10 1952 1952-10-01 12:00:00 bone 2446 #> 99 22.1 11 1952 1952-11-01 00:00:01 blood 2447 #> 100 22.1 11 1952 1952-11-01 00:00:01 bone 2447 #> 101 34.3 12 1952 1952-12-01 12:00:01 blood 2448 #> 102 34.3 12 1952 1952-12-01 12:00:01 bone 2448 #> 103 26.5 1 1953 1953-01-01 00:00:00 blood 2449 #> 104 26.5 1 1953 1953-01-01 00:00:00 bone 2449 #> 105 3.9 2 1953 1953-01-31 10:00:01 blood 2450 #> 106 3.9 2 1953 1953-01-31 10:00:01 bone 2450 #> 107 10.0 3 1953 1953-03-02 20:00:01 blood 2451 #> 108 10.0 3 1953 1953-03-02 20:00:01 bone 2451 #> 109 27.8 4 1953 1953-04-02 06:00:00 blood 2452 #> 110 27.8 4 1953 1953-04-02 06:00:00 bone 2452 #> 111 12.5 5 1953 1953-05-02 16:00:01 blood 2453 #> 112 12.5 5 1953 1953-05-02 16:00:01 bone 2453 #> 113 21.8 6 1953 1953-06-02 02:00:01 blood 2454 #> 114 21.8 6 1953 1953-06-02 02:00:01 bone 2454 #> 115 8.6 7 1953 1953-07-02 12:00:00 blood 2455 #> 116 8.6 7 1953 1953-07-02 12:00:00 bone 2455 #> 117 23.5 8 1953 1953-08-01 22:00:01 blood 2456 #> 118 23.5 8 1953 1953-08-01 22:00:01 bone 2456 #> 119 19.3 9 1953 1953-09-01 08:00:01 blood 2457 #> 120 19.3 9 1953 1953-09-01 08:00:01 bone 2457 #> 121 8.2 10 1953 1953-10-01 18:00:00 blood 2458 #> 122 8.2 10 1953 1953-10-01 18:00:00 bone 2458 #> 123 1.6 11 1953 1953-11-01 04:00:01 blood 2459 #> 124 1.6 11 1953 1953-11-01 04:00:01 bone 2459 #> 125 2.5 12 1953 1953-12-01 14:00:01 blood 2460 #> 126 2.5 12 1953 1953-12-01 14:00:01 bone 2460 #> 127 0.2 1 1954 1954-01-01 00:00:00 blood 2461 #> 128 0.2 1 1954 1954-01-01 00:00:00 bone 2461 #> 129 0.5 2 1954 1954-01-31 10:00:01 blood 2462 #> 130 0.5 2 1954 1954-01-31 10:00:01 bone 2462 #> 131 10.9 3 1954 1954-03-02 20:00:01 blood 2463 #> 132 10.9 3 1954 1954-03-02 20:00:01 bone 2463 #> 133 1.8 4 1954 1954-04-02 06:00:00 blood 2464 #> 134 1.8 4 1954 1954-04-02 06:00:00 bone 2464 #> 135 0.8 5 1954 1954-05-02 16:00:01 blood 2465 #> 136 0.8 5 1954 1954-05-02 16:00:01 bone 2465 #> 137 0.2 6 1954 1954-06-02 02:00:01 blood 2466 #> 138 0.2 6 1954 1954-06-02 02:00:01 bone 2466 #> 139 4.8 7 1954 1954-07-02 12:00:00 blood 2467 #> 140 4.8 7 1954 1954-07-02 12:00:00 bone 2467 #> 141 8.4 8 1954 1954-08-01 22:00:01 blood 2468 #> 142 8.4 8 1954 1954-08-01 22:00:01 bone 2468 #> 143 1.5 9 1954 1954-09-01 08:00:01 blood 2469 #> 144 1.5 9 1954 1954-09-01 08:00:01 bone 2469 #> 145 7.0 10 1954 1954-10-01 18:00:00 blood 2470 #> 146 7.0 10 1954 1954-10-01 18:00:00 bone 2470 #> 147 9.2 11 1954 1954-11-01 04:00:01 blood 2471 #> 148 9.2 11 1954 1954-11-01 04:00:01 bone 2471 #> 149 7.6 12 1954 1954-12-01 14:00:01 blood 2472 #> 150 7.6 12 1954 1954-12-01 14:00:01 bone 2472 #> 151 23.1 1 1955 1955-01-01 00:00:00 blood 2473 #> 152 23.1 1 1955 1955-01-01 00:00:00 bone 2473 #> 153 20.8 2 1955 1955-01-31 10:00:01 blood 2474 #> 154 20.8 2 1955 1955-01-31 10:00:01 bone 2474 #> 155 4.9 3 1955 1955-03-02 20:00:01 blood 2475 #> 156 4.9 3 1955 1955-03-02 20:00:01 bone 2475 #> 157 11.3 4 1955 1955-04-02 06:00:00 blood 2476 #> 158 11.3 4 1955 1955-04-02 06:00:00 bone 2476 #> 159 28.9 5 1955 1955-05-02 16:00:01 blood 2477 #> 160 28.9 5 1955 1955-05-02 16:00:01 bone 2477 #> 161 31.7 6 1955 1955-06-02 02:00:01 blood 2478 #> 162 31.7 6 1955 1955-06-02 02:00:01 bone 2478 #> 163 26.7 7 1955 1955-07-02 12:00:00 blood 2479 #> 164 26.7 7 1955 1955-07-02 12:00:00 bone 2479 #> 165 40.7 8 1955 1955-08-01 22:00:01 blood 2480 #> 166 40.7 8 1955 1955-08-01 22:00:01 bone 2480 #> 167 42.7 9 1955 1955-09-01 08:00:01 blood 2481 #> 168 42.7 9 1955 1955-09-01 08:00:01 bone 2481 #> 169 58.5 10 1955 1955-10-01 18:00:00 blood 2482 #> 170 58.5 10 1955 1955-10-01 18:00:00 bone 2482 #> 171 89.2 11 1955 1955-11-01 04:00:01 blood 2483 #> 172 89.2 11 1955 1955-11-01 04:00:01 bone 2483 #> 173 76.9 12 1955 1955-12-01 14:00:01 blood 2484 #> 174 76.9 12 1955 1955-12-01 14:00:01 bone 2484 #> 175 73.6 1 1956 1956-01-01 00:00:00 blood 2485 #> 176 73.6 1 1956 1956-01-01 00:00:00 bone 2485 #> 177 124.0 2 1956 1956-01-31 12:00:01 blood 2486 #> 178 124.0 2 1956 1956-01-31 12:00:01 bone 2486 #> 179 118.4 3 1956 1956-03-02 00:00:01 blood 2487 #> 180 118.4 3 1956 1956-03-02 00:00:01 bone 2487 #> 181 110.7 4 1956 1956-04-01 12:00:00 blood 2488 #> 182 110.7 4 1956 1956-04-01 12:00:00 bone 2488 #> 183 136.6 5 1956 1956-05-02 00:00:01 blood 2489 #> 184 136.6 5 1956 1956-05-02 00:00:01 bone 2489 #> 185 116.6 6 1956 1956-06-01 12:00:01 blood 2490 #> 186 116.6 6 1956 1956-06-01 12:00:01 bone 2490 #> 187 129.1 7 1956 1956-07-02 00:00:00 blood 2491 #> 188 129.1 7 1956 1956-07-02 00:00:00 bone 2491 #> 189 169.6 8 1956 1956-08-01 12:00:01 blood 2492 #> 190 169.6 8 1956 1956-08-01 12:00:01 bone 2492 #> 191 173.2 9 1956 1956-09-01 00:00:01 blood 2493 #> 192 173.2 9 1956 1956-09-01 00:00:01 bone 2493 #> 193 155.3 10 1956 1956-10-01 12:00:00 blood 2494 #> 194 155.3 10 1956 1956-10-01 12:00:00 bone 2494 #> 195 201.3 11 1956 1956-11-01 00:00:01 blood 2495 #> 196 201.3 11 1956 1956-11-01 00:00:01 bone 2495 #> 197 192.1 12 1956 1956-12-01 12:00:01 blood 2496 #> 198 192.1 12 1956 1956-12-01 12:00:01 bone 2496 #> 199 165.0 1 1957 1957-01-01 00:00:00 blood 2497 #> 200 165.0 1 1957 1957-01-01 00:00:00 bone 2497 #> 201 130.2 2 1957 1957-01-31 10:00:01 blood 2498 #> 202 130.2 2 1957 1957-01-31 10:00:01 bone 2498 #> 203 157.4 3 1957 1957-03-02 20:00:01 blood 2499 #> 204 157.4 3 1957 1957-03-02 20:00:01 bone 2499 #> 205 175.2 4 1957 1957-04-02 06:00:00 blood 2500 #> 206 175.2 4 1957 1957-04-02 06:00:00 bone 2500 #> 207 164.6 5 1957 1957-05-02 16:00:01 blood 2501 #> 208 164.6 5 1957 1957-05-02 16:00:01 bone 2501 #> 209 200.7 6 1957 1957-06-02 02:00:01 blood 2502 #> 210 200.7 6 1957 1957-06-02 02:00:01 bone 2502 #> 211 187.2 7 1957 1957-07-02 12:00:00 blood 2503 #> 212 187.2 7 1957 1957-07-02 12:00:00 bone 2503 #> 213 158.0 8 1957 1957-08-01 22:00:01 blood 2504 #> 214 158.0 8 1957 1957-08-01 22:00:01 bone 2504 #> 215 235.8 9 1957 1957-09-01 08:00:01 blood 2505 #> 216 235.8 9 1957 1957-09-01 08:00:01 bone 2505 #> 217 253.8 10 1957 1957-10-01 18:00:00 blood 2506 #> 218 253.8 10 1957 1957-10-01 18:00:00 bone 2506 #> 219 210.9 11 1957 1957-11-01 04:00:01 blood 2507 #> 220 210.9 11 1957 1957-11-01 04:00:01 bone 2507 #> 221 239.4 12 1957 1957-12-01 14:00:01 blood 2508 #> 222 239.4 12 1957 1957-12-01 14:00:01 bone 2508 #> 223 202.5 1 1958 1958-01-01 00:00:00 blood 2509 #> 224 202.5 1 1958 1958-01-01 00:00:00 bone 2509 #> 225 164.9 2 1958 1958-01-31 10:00:01 blood 2510 #> 226 164.9 2 1958 1958-01-31 10:00:01 bone 2510 #> 227 190.7 3 1958 1958-03-02 20:00:01 blood 2511 #> 228 190.7 3 1958 1958-03-02 20:00:01 bone 2511 #> 229 196.0 4 1958 1958-04-02 06:00:00 blood 2512 #> 230 196.0 4 1958 1958-04-02 06:00:00 bone 2512 #> 231 175.3 5 1958 1958-05-02 16:00:01 blood 2513 #> 232 175.3 5 1958 1958-05-02 16:00:01 bone 2513 #> 233 171.5 6 1958 1958-06-02 02:00:01 blood 2514 #> 234 171.5 6 1958 1958-06-02 02:00:01 bone 2514 #> 235 191.4 7 1958 1958-07-02 12:00:00 blood 2515 #> 236 191.4 7 1958 1958-07-02 12:00:00 bone 2515 #> 237 200.2 8 1958 1958-08-01 22:00:01 blood 2516 #> 238 200.2 8 1958 1958-08-01 22:00:01 bone 2516 #> 239 201.2 9 1958 1958-09-01 08:00:01 blood 2517 #> 240 201.2 9 1958 1958-09-01 08:00:01 bone 2517 #> 241 181.5 10 1958 1958-10-01 18:00:00 blood 2518 #> 242 181.5 10 1958 1958-10-01 18:00:00 bone 2518 #> 243 152.3 11 1958 1958-11-01 04:00:01 blood 2519 #> 244 152.3 11 1958 1958-11-01 04:00:01 bone 2519 #> 245 187.6 12 1958 1958-12-01 14:00:01 blood 2520 #> 246 187.6 12 1958 1958-12-01 14:00:01 bone 2520 #> 247 217.4 1 1959 1959-01-01 00:00:00 blood 2521 #> 248 217.4 1 1959 1959-01-01 00:00:00 bone 2521 #> 249 143.1 2 1959 1959-01-31 10:00:01 blood 2522 #> 250 143.1 2 1959 1959-01-31 10:00:01 bone 2522 #> 251 185.7 3 1959 1959-03-02 20:00:01 blood 2523 #> 252 185.7 3 1959 1959-03-02 20:00:01 bone 2523 #> 253 163.3 4 1959 1959-04-02 06:00:00 blood 2524 #> 254 163.3 4 1959 1959-04-02 06:00:00 bone 2524 #> 255 172.0 5 1959 1959-05-02 16:00:01 blood 2525 #> 256 172.0 5 1959 1959-05-02 16:00:01 bone 2525 #> 257 168.7 6 1959 1959-06-02 02:00:01 blood 2526 #> 258 168.7 6 1959 1959-06-02 02:00:01 bone 2526 #> 259 149.6 7 1959 1959-07-02 12:00:00 blood 2527 #> 260 149.6 7 1959 1959-07-02 12:00:00 bone 2527 #> 261 199.6 8 1959 1959-08-01 22:00:01 blood 2528 #> 262 199.6 8 1959 1959-08-01 22:00:01 bone 2528 #> 263 145.2 9 1959 1959-09-01 08:00:01 blood 2529 #> 264 145.2 9 1959 1959-09-01 08:00:01 bone 2529 #> 265 111.4 10 1959 1959-10-01 18:00:00 blood 2530 #> 266 111.4 10 1959 1959-10-01 18:00:00 bone 2530 #> 267 124.0 11 1959 1959-11-01 04:00:01 blood 2531 #> 268 124.0 11 1959 1959-11-01 04:00:01 bone 2531 #> 269 125.0 12 1959 1959-12-01 14:00:01 blood 2532 #> 270 125.0 12 1959 1959-12-01 14:00:01 bone 2532 #> 271 146.3 1 1960 1960-01-01 00:00:00 blood 2533 #> 272 146.3 1 1960 1960-01-01 00:00:00 bone 2533 #> 273 106.0 2 1960 1960-01-31 12:00:01 blood 2534 #> 274 106.0 2 1960 1960-01-31 12:00:01 bone 2534 #> 275 102.2 3 1960 1960-03-02 00:00:01 blood 2535 #> 276 102.2 3 1960 1960-03-02 00:00:01 bone 2535 #> 277 122.0 4 1960 1960-04-01 12:00:00 blood 2536 #> 278 122.0 4 1960 1960-04-01 12:00:00 bone 2536 #> 279 119.6 5 1960 1960-05-02 00:00:01 blood 2537 #> 280 119.6 5 1960 1960-05-02 00:00:01 bone 2537 #> 281 110.2 6 1960 1960-06-01 12:00:01 blood 2538 #> 282 110.2 6 1960 1960-06-01 12:00:01 bone 2538 #> 283 121.7 7 1960 1960-07-02 00:00:00 blood 2539 #> 284 121.7 7 1960 1960-07-02 00:00:00 bone 2539 #> 285 134.1 8 1960 1960-08-01 12:00:01 blood 2540 #> 286 134.1 8 1960 1960-08-01 12:00:01 bone 2540 #> 287 127.2 9 1960 1960-09-01 00:00:01 blood 2541 #> 288 127.2 9 1960 1960-09-01 00:00:01 bone 2541 #> 289 82.8 10 1960 1960-10-01 12:00:00 blood 2542 #> 290 82.8 10 1960 1960-10-01 12:00:00 bone 2542 #> 291 89.6 11 1960 1960-11-01 00:00:01 blood 2543 #> 292 89.6 11 1960 1960-11-01 00:00:01 bone 2543 #> 293 85.6 12 1960 1960-12-01 12:00:01 blood 2544 #> 294 85.6 12 1960 1960-12-01 12:00:01 bone 2544 #> 295 57.9 1 1961 1961-01-01 00:00:00 blood 2545 #> 296 57.9 1 1961 1961-01-01 00:00:00 bone 2545 #> 297 46.1 2 1961 1961-01-31 10:00:01 blood 2546 #> 298 46.1 2 1961 1961-01-31 10:00:01 bone 2546 #> 299 53.0 3 1961 1961-03-02 20:00:01 blood 2547 #> 300 53.0 3 1961 1961-03-02 20:00:01 bone 2547 #> 301 61.4 4 1961 1961-04-02 06:00:00 blood 2548 #> 302 61.4 4 1961 1961-04-02 06:00:00 bone 2548 #> 303 51.0 5 1961 1961-05-02 16:00:01 blood 2549 #> 304 51.0 5 1961 1961-05-02 16:00:01 bone 2549 #> 305 77.4 6 1961 1961-06-02 02:00:01 blood 2550 #> 306 77.4 6 1961 1961-06-02 02:00:01 bone 2550 #> 307 70.2 7 1961 1961-07-02 12:00:00 blood 2551 #> 308 70.2 7 1961 1961-07-02 12:00:00 bone 2551 #> 309 55.9 8 1961 1961-08-01 22:00:01 blood 2552 #> 310 55.9 8 1961 1961-08-01 22:00:01 bone 2552 #> 311 63.6 9 1961 1961-09-01 08:00:01 blood 2553 #> 312 63.6 9 1961 1961-09-01 08:00:01 bone 2553 #> 313 37.7 10 1961 1961-10-01 18:00:00 blood 2554 #> 314 37.7 10 1961 1961-10-01 18:00:00 bone 2554 #> 315 32.6 11 1961 1961-11-01 04:00:01 blood 2555 #> 316 32.6 11 1961 1961-11-01 04:00:01 bone 2555 #> 317 40.0 12 1961 1961-12-01 14:00:01 blood 2556 #> 318 40.0 12 1961 1961-12-01 14:00:01 bone 2556 #> 319 38.7 1 1962 1962-01-01 00:00:00 blood 2557 #> 320 38.7 1 1962 1962-01-01 00:00:00 bone 2557 #> 321 50.3 2 1962 1962-01-31 10:00:01 blood 2558 #> 322 50.3 2 1962 1962-01-31 10:00:01 bone 2558 #> 323 45.6 3 1962 1962-03-02 20:00:01 blood 2559 #> 324 45.6 3 1962 1962-03-02 20:00:01 bone 2559 #> 325 46.4 4 1962 1962-04-02 06:00:00 blood 2560 #> 326 46.4 4 1962 1962-04-02 06:00:00 bone 2560 #> 327 43.7 5 1962 1962-05-02 16:00:01 blood 2561 #> 328 43.7 5 1962 1962-05-02 16:00:01 bone 2561 #> 329 42.0 6 1962 1962-06-02 02:00:01 blood 2562 #> 330 42.0 6 1962 1962-06-02 02:00:01 bone 2562 #> 331 21.8 7 1962 1962-07-02 12:00:00 blood 2563 #> 332 21.8 7 1962 1962-07-02 12:00:00 bone 2563 #> 333 21.8 8 1962 1962-08-01 22:00:01 blood 2564 #> 334 21.8 8 1962 1962-08-01 22:00:01 bone 2564 #> 335 51.3 9 1962 1962-09-01 08:00:01 blood 2565 #> 336 51.3 9 1962 1962-09-01 08:00:01 bone 2565 #> 337 39.5 10 1962 1962-10-01 18:00:00 blood 2566 #> 338 39.5 10 1962 1962-10-01 18:00:00 bone 2566 #> 339 26.9 11 1962 1962-11-01 04:00:01 blood 2567 #> 340 26.9 11 1962 1962-11-01 04:00:01 bone 2567 #> 341 23.2 12 1962 1962-12-01 14:00:01 blood 2568 #> 342 23.2 12 1962 1962-12-01 14:00:01 bone 2568 #> 343 19.8 1 1963 1963-01-01 00:00:00 blood 2569 #> 344 19.8 1 1963 1963-01-01 00:00:00 bone 2569 #> 345 24.4 2 1963 1963-01-31 10:00:01 blood 2570 #> 346 24.4 2 1963 1963-01-31 10:00:01 bone 2570 #> 347 17.1 3 1963 1963-03-02 20:00:01 blood 2571 #> 348 17.1 3 1963 1963-03-02 20:00:01 bone 2571 #> 349 29.3 4 1963 1963-04-02 06:00:00 blood 2572 #> 350 29.3 4 1963 1963-04-02 06:00:00 bone 2572 #> 351 43.0 5 1963 1963-05-02 16:00:01 blood 2573 #> 352 43.0 5 1963 1963-05-02 16:00:01 bone 2573 #> 353 35.9 6 1963 1963-06-02 02:00:01 blood 2574 #> 354 35.9 6 1963 1963-06-02 02:00:01 bone 2574 #> 355 19.6 7 1963 1963-07-02 12:00:00 blood 2575 #> 356 19.6 7 1963 1963-07-02 12:00:00 bone 2575 #> 357 33.2 8 1963 1963-08-01 22:00:01 blood 2576 #> 358 33.2 8 1963 1963-08-01 22:00:01 bone 2576 #> 359 38.8 9 1963 1963-09-01 08:00:01 blood 2577 #> 360 38.8 9 1963 1963-09-01 08:00:01 bone 2577 #> 361 35.3 10 1963 1963-10-01 18:00:00 blood 2578 #> 362 35.3 10 1963 1963-10-01 18:00:00 bone 2578 #> 363 23.4 11 1963 1963-11-01 04:00:01 blood 2579 #> 364 23.4 11 1963 1963-11-01 04:00:01 bone 2579 #> 365 14.9 12 1963 1963-12-01 14:00:01 blood 2580 #> 366 14.9 12 1963 1963-12-01 14:00:01 bone 2580 #> 367 15.3 1 1964 1964-01-01 00:00:00 blood 2581 #> 368 15.3 1 1964 1964-01-01 00:00:00 bone 2581 #> 369 17.7 2 1964 1964-01-31 12:00:01 blood 2582 #> 370 17.7 2 1964 1964-01-31 12:00:01 bone 2582 #> 371 16.5 3 1964 1964-03-02 00:00:01 blood 2583 #> 372 16.5 3 1964 1964-03-02 00:00:01 bone 2583 #> 373 8.6 4 1964 1964-04-01 12:00:00 blood 2584 #> 374 8.6 4 1964 1964-04-01 12:00:00 bone 2584 #> 375 9.5 5 1964 1964-05-02 00:00:01 blood 2585 #> 376 9.5 5 1964 1964-05-02 00:00:01 bone 2585 #> 377 9.1 6 1964 1964-06-01 12:00:01 blood 2586 #> 378 9.1 6 1964 1964-06-01 12:00:01 bone 2586 #> 379 3.1 7 1964 1964-07-02 00:00:00 blood 2587 #> 380 3.1 7 1964 1964-07-02 00:00:00 bone 2587 #> 381 9.3 8 1964 1964-08-01 12:00:01 blood 2588 #> 382 9.3 8 1964 1964-08-01 12:00:01 bone 2588 #> 383 4.7 9 1964 1964-09-01 00:00:01 blood 2589 #> 384 4.7 9 1964 1964-09-01 00:00:01 bone 2589 #> 385 6.1 10 1964 1964-10-01 12:00:00 blood 2590 #> 386 6.1 10 1964 1964-10-01 12:00:00 bone 2590 #> 387 7.4 11 1964 1964-11-01 00:00:01 blood 2591 #> 388 7.4 11 1964 1964-11-01 00:00:01 bone 2591 #> 389 15.1 12 1964 1964-12-01 12:00:01 blood 2592 #> 390 15.1 12 1964 1964-12-01 12:00:01 bone 2592 #> 391 17.5 1 1965 1965-01-01 00:00:00 blood 2593 #> 392 17.5 1 1965 1965-01-01 00:00:00 bone 2593 #> 393 14.2 2 1965 1965-01-31 10:00:01 blood 2594 #> 394 14.2 2 1965 1965-01-31 10:00:01 bone 2594 #> 395 11.7 3 1965 1965-03-02 20:00:01 blood 2595 #> 396 11.7 3 1965 1965-03-02 20:00:01 bone 2595 #> 397 6.8 4 1965 1965-04-02 06:00:00 blood 2596 #> 398 6.8 4 1965 1965-04-02 06:00:00 bone 2596 #> 399 24.1 5 1965 1965-05-02 16:00:01 blood 2597 #> 400 24.1 5 1965 1965-05-02 16:00:01 bone 2597 #> 401 15.9 6 1965 1965-06-02 02:00:01 blood 2598 #> 402 15.9 6 1965 1965-06-02 02:00:01 bone 2598 #> 403 11.9 7 1965 1965-07-02 12:00:00 blood 2599 #> 404 11.9 7 1965 1965-07-02 12:00:00 bone 2599 #> 405 8.9 8 1965 1965-08-01 22:00:01 blood 2600 #> 406 8.9 8 1965 1965-08-01 22:00:01 bone 2600 #> 407 16.8 9 1965 1965-09-01 08:00:01 blood 2601 #> 408 16.8 9 1965 1965-09-01 08:00:01 bone 2601 #> 409 20.1 10 1965 1965-10-01 18:00:00 blood 2602 #> 410 20.1 10 1965 1965-10-01 18:00:00 bone 2602 #> 411 15.8 11 1965 1965-11-01 04:00:01 blood 2603 #> 412 15.8 11 1965 1965-11-01 04:00:01 bone 2603 #> 413 17.0 12 1965 1965-12-01 14:00:01 blood 2604 #> 414 17.0 12 1965 1965-12-01 14:00:01 bone 2604 #> 415 28.2 1 1966 1966-01-01 00:00:00 blood 2605 #> 416 28.2 1 1966 1966-01-01 00:00:00 bone 2605 #> 417 24.4 2 1966 1966-01-31 10:00:01 blood 2606 #> 418 24.4 2 1966 1966-01-31 10:00:01 bone 2606 #> 419 25.3 3 1966 1966-03-02 20:00:01 blood 2607 #> 420 25.3 3 1966 1966-03-02 20:00:01 bone 2607 #> 421 48.7 4 1966 1966-04-02 06:00:00 blood 2608 #> 422 48.7 4 1966 1966-04-02 06:00:00 bone 2608 #> 423 45.3 5 1966 1966-05-02 16:00:01 blood 2609 #> 424 45.3 5 1966 1966-05-02 16:00:01 bone 2609 #> 425 47.7 6 1966 1966-06-02 02:00:01 blood 2610 #> 426 47.7 6 1966 1966-06-02 02:00:01 bone 2610 #> 427 56.7 7 1966 1966-07-02 12:00:00 blood 2611 #> 428 56.7 7 1966 1966-07-02 12:00:00 bone 2611 #> 429 51.2 8 1966 1966-08-01 22:00:01 blood 2612 #> 430 51.2 8 1966 1966-08-01 22:00:01 bone 2612 #> 431 50.2 9 1966 1966-09-01 08:00:01 blood 2613 #> 432 50.2 9 1966 1966-09-01 08:00:01 bone 2613 #> 433 57.2 10 1966 1966-10-01 18:00:00 blood 2614 #> 434 57.2 10 1966 1966-10-01 18:00:00 bone 2614 #> 435 57.2 11 1966 1966-11-01 04:00:01 blood 2615 #> 436 57.2 11 1966 1966-11-01 04:00:01 bone 2615 #> 437 70.4 12 1966 1966-12-01 14:00:01 blood 2616 #> 438 70.4 12 1966 1966-12-01 14:00:01 bone 2616 #> 439 110.9 1 1967 1967-01-01 00:00:00 blood 2617 #> 440 110.9 1 1967 1967-01-01 00:00:00 bone 2617 #> 441 93.6 2 1967 1967-01-31 10:00:01 blood 2618 #> 442 93.6 2 1967 1967-01-31 10:00:01 bone 2618 #> 443 111.8 3 1967 1967-03-02 20:00:01 blood 2619 #> 444 111.8 3 1967 1967-03-02 20:00:01 bone 2619 #> 445 69.5 4 1967 1967-04-02 06:00:00 blood 2620 #> 446 69.5 4 1967 1967-04-02 06:00:00 bone 2620 #> 447 86.5 5 1967 1967-05-02 16:00:01 blood 2621 #> 448 86.5 5 1967 1967-05-02 16:00:01 bone 2621 #> 449 67.3 6 1967 1967-06-02 02:00:01 blood 2622 #> 450 67.3 6 1967 1967-06-02 02:00:01 bone 2622 #> 451 91.5 7 1967 1967-07-02 12:00:00 blood 2623 #> 452 91.5 7 1967 1967-07-02 12:00:00 bone 2623 #> 453 107.2 8 1967 1967-08-01 22:00:01 blood 2624 #> 454 107.2 8 1967 1967-08-01 22:00:01 bone 2624 #> 455 76.8 9 1967 1967-09-01 08:00:01 blood 2625 #> 456 76.8 9 1967 1967-09-01 08:00:01 bone 2625 #> 457 88.2 10 1967 1967-10-01 18:00:00 blood 2626 #> 458 88.2 10 1967 1967-10-01 18:00:00 bone 2626 #> 459 94.3 11 1967 1967-11-01 04:00:01 blood 2627 #> 460 94.3 11 1967 1967-11-01 04:00:01 bone 2627 #> 461 126.4 12 1967 1967-12-01 14:00:01 blood 2628 #> 462 126.4 12 1967 1967-12-01 14:00:01 bone 2628 #> 463 121.8 1 1968 1968-01-01 00:00:00 blood 2629 #> 464 121.8 1 1968 1968-01-01 00:00:00 bone 2629 #> 465 111.9 2 1968 1968-01-31 12:00:01 blood 2630 #> 466 111.9 2 1968 1968-01-31 12:00:01 bone 2630 #> 467 92.2 3 1968 1968-03-02 00:00:01 blood 2631 #> 468 92.2 3 1968 1968-03-02 00:00:01 bone 2631 #> 469 81.2 4 1968 1968-04-01 12:00:00 blood 2632 #> 470 81.2 4 1968 1968-04-01 12:00:00 bone 2632 #> 471 127.2 5 1968 1968-05-02 00:00:01 blood 2633 #> 472 127.2 5 1968 1968-05-02 00:00:01 bone 2633 #> 473 110.3 6 1968 1968-06-01 12:00:01 blood 2634 #> 474 110.3 6 1968 1968-06-01 12:00:01 bone 2634 #> 475 96.1 7 1968 1968-07-02 00:00:00 blood 2635 #> 476 96.1 7 1968 1968-07-02 00:00:00 bone 2635 #> 477 109.3 8 1968 1968-08-01 12:00:01 blood 2636 #> 478 109.3 8 1968 1968-08-01 12:00:01 bone 2636 #> 479 117.2 9 1968 1968-09-01 00:00:01 blood 2637 #> 480 117.2 9 1968 1968-09-01 00:00:01 bone 2637 #> 481 107.7 10 1968 1968-10-01 12:00:00 blood 2638 #> 482 107.7 10 1968 1968-10-01 12:00:00 bone 2638 #> 483 86.0 11 1968 1968-11-01 00:00:01 blood 2639 #> 484 86.0 11 1968 1968-11-01 00:00:01 bone 2639 #> 485 109.8 12 1968 1968-12-01 12:00:01 blood 2640 #> 486 109.8 12 1968 1968-12-01 12:00:01 bone 2640 #> 487 104.4 1 1969 1969-01-01 00:00:00 blood 2641 #> 488 104.4 1 1969 1969-01-01 00:00:00 bone 2641 #> 489 120.5 2 1969 1969-01-31 10:00:01 blood 2642 #> 490 120.5 2 1969 1969-01-31 10:00:01 bone 2642 #> 491 135.8 3 1969 1969-03-02 20:00:01 blood 2643 #> 492 135.8 3 1969 1969-03-02 20:00:01 bone 2643 #> 493 106.8 4 1969 1969-04-02 06:00:00 blood 2644 #> 494 106.8 4 1969 1969-04-02 06:00:00 bone 2644 #> 495 120.0 5 1969 1969-05-02 16:00:01 blood 2645 #> 496 120.0 5 1969 1969-05-02 16:00:01 bone 2645 #> 497 106.0 6 1969 1969-06-02 02:00:01 blood 2646 #> 498 106.0 6 1969 1969-06-02 02:00:01 bone 2646 #> 499 96.8 7 1969 1969-07-02 12:00:00 blood 2647 #> 500 96.8 7 1969 1969-07-02 12:00:00 bone 2647 #> 501 98.0 8 1969 1969-08-01 22:00:01 blood 2648 #> 502 98.0 8 1969 1969-08-01 22:00:01 bone 2648 #> 503 91.3 9 1969 1969-09-01 08:00:01 blood 2649 #> 504 91.3 9 1969 1969-09-01 08:00:01 bone 2649 #> 505 95.7 10 1969 1969-10-01 18:00:00 blood 2650 #> 506 95.7 10 1969 1969-10-01 18:00:00 bone 2650 #> 507 93.5 11 1969 1969-11-01 04:00:01 blood 2651 #> 508 93.5 11 1969 1969-11-01 04:00:01 bone 2651 #> 509 97.9 12 1969 1969-12-01 14:00:01 blood 2652 #> 510 97.9 12 1969 1969-12-01 14:00:01 bone 2652 #> 511 111.5 1 1970 1970-01-01 00:00:00 blood 2653 #> 512 111.5 1 1970 1970-01-01 00:00:00 bone 2653 #> 513 127.8 2 1970 1970-01-31 10:00:00 blood 2654 #> 514 127.8 2 1970 1970-01-31 10:00:00 bone 2654 #> 515 102.9 3 1970 1970-03-02 20:00:00 blood 2655 #> 516 102.9 3 1970 1970-03-02 20:00:00 bone 2655 #> 517 109.5 4 1970 1970-04-02 06:00:00 blood 2656 #> 518 109.5 4 1970 1970-04-02 06:00:00 bone 2656 #> 519 127.5 5 1970 1970-05-02 16:00:00 blood 2657 #> 520 127.5 5 1970 1970-05-02 16:00:00 bone 2657 #> 521 106.8 6 1970 1970-06-02 02:00:00 blood 2658 #> 522 106.8 6 1970 1970-06-02 02:00:00 bone 2658 #> 523 112.5 7 1970 1970-07-02 12:00:00 blood 2659 #> 524 112.5 7 1970 1970-07-02 12:00:00 bone 2659 #> 525 93.0 8 1970 1970-08-01 22:00:00 blood 2660 #> 526 93.0 8 1970 1970-08-01 22:00:00 bone 2660 #> 527 99.5 9 1970 1970-09-01 08:00:00 blood 2661 #> 528 99.5 9 1970 1970-09-01 08:00:00 bone 2661 #> 529 86.6 10 1970 1970-10-01 18:00:00 blood 2662 #> 530 86.6 10 1970 1970-10-01 18:00:00 bone 2662 #> 531 95.2 11 1970 1970-11-01 04:00:00 blood 2663 #> 532 95.2 11 1970 1970-11-01 04:00:00 bone 2663 #> 533 83.5 12 1970 1970-12-01 14:00:00 blood 2664 #> 534 83.5 12 1970 1970-12-01 14:00:00 bone 2664 #> 535 91.3 1 1971 1971-01-01 00:00:00 blood 2665 #> 536 91.3 1 1971 1971-01-01 00:00:00 bone 2665 #> 537 79.0 2 1971 1971-01-31 10:00:00 blood 2666 #> 538 79.0 2 1971 1971-01-31 10:00:00 bone 2666 #> 539 60.7 3 1971 1971-03-02 20:00:00 blood 2667 #> 540 60.7 3 1971 1971-03-02 20:00:00 bone 2667 #> 541 71.8 4 1971 1971-04-02 06:00:00 blood 2668 #> 542 71.8 4 1971 1971-04-02 06:00:00 bone 2668 #> 543 57.5 5 1971 1971-05-02 16:00:00 blood 2669 #> 544 57.5 5 1971 1971-05-02 16:00:00 bone 2669 #> 545 49.8 6 1971 1971-06-02 02:00:00 blood 2670 #> 546 49.8 6 1971 1971-06-02 02:00:00 bone 2670 #> 547 81.0 7 1971 1971-07-02 12:00:00 blood 2671 #> 548 81.0 7 1971 1971-07-02 12:00:00 bone 2671 #> 549 61.4 8 1971 1971-08-01 22:00:00 blood 2672 #> 550 61.4 8 1971 1971-08-01 22:00:00 bone 2672 #> 551 50.2 9 1971 1971-09-01 08:00:00 blood 2673 #> 552 50.2 9 1971 1971-09-01 08:00:00 bone 2673 #> 553 51.7 10 1971 1971-10-01 18:00:00 blood 2674 #> 554 51.7 10 1971 1971-10-01 18:00:00 bone 2674 #> 555 63.2 11 1971 1971-11-01 04:00:00 blood 2675 #> 556 63.2 11 1971 1971-11-01 04:00:00 bone 2675 #> 557 82.2 12 1971 1971-12-01 14:00:00 blood 2676 #> 558 82.2 12 1971 1971-12-01 14:00:00 bone 2676 #> 559 61.5 1 1972 1972-01-01 00:00:00 blood 2677 #> 560 61.5 1 1972 1972-01-01 00:00:00 bone 2677 #> 561 88.4 2 1972 1972-01-31 12:00:00 blood 2678 #> 562 88.4 2 1972 1972-01-31 12:00:00 bone 2678 #> 563 80.1 3 1972 1972-03-02 00:00:00 blood 2679 #> 564 80.1 3 1972 1972-03-02 00:00:00 bone 2679 #> 565 63.2 4 1972 1972-04-01 12:00:00 blood 2680 #> 566 63.2 4 1972 1972-04-01 12:00:00 bone 2680 #> 567 80.5 5 1972 1972-05-02 00:00:00 blood 2681 #> 568 80.5 5 1972 1972-05-02 00:00:00 bone 2681 #> 569 88.0 6 1972 1972-06-01 12:00:00 blood 2682 #> 570 88.0 6 1972 1972-06-01 12:00:00 bone 2682 #> 571 76.5 7 1972 1972-07-02 00:00:00 blood 2683 #> 572 76.5 7 1972 1972-07-02 00:00:00 bone 2683 #> 573 76.8 8 1972 1972-08-01 12:00:00 blood 2684 #> 574 76.8 8 1972 1972-08-01 12:00:00 bone 2684 #> 575 64.0 9 1972 1972-09-01 00:00:00 blood 2685 #> 576 64.0 9 1972 1972-09-01 00:00:00 bone 2685 #> 577 61.3 10 1972 1972-10-01 12:00:00 blood 2686 #> 578 61.3 10 1972 1972-10-01 12:00:00 bone 2686 #> 579 41.6 11 1972 1972-11-01 00:00:00 blood 2687 #> 580 41.6 11 1972 1972-11-01 00:00:00 bone 2687 #> 581 45.3 12 1972 1972-12-01 12:00:00 blood 2688 #> 582 45.3 12 1972 1972-12-01 12:00:00 bone 2688 #> 583 43.4 1 1973 1973-01-01 00:00:00 blood 2689 #> 584 43.4 1 1973 1973-01-01 00:00:00 bone 2689 #> 585 42.9 2 1973 1973-01-31 10:00:00 blood 2690 #> 586 42.9 2 1973 1973-01-31 10:00:00 bone 2690 #> 587 46.0 3 1973 1973-03-02 20:00:00 blood 2691 #> 588 46.0 3 1973 1973-03-02 20:00:00 bone 2691 #> 589 57.7 4 1973 1973-04-02 06:00:00 blood 2692 #> 590 57.7 4 1973 1973-04-02 06:00:00 bone 2692 #> 591 42.4 5 1973 1973-05-02 16:00:00 blood 2693 #> 592 42.4 5 1973 1973-05-02 16:00:00 bone 2693 #> 593 39.5 6 1973 1973-06-02 02:00:00 blood 2694 #> 594 39.5 6 1973 1973-06-02 02:00:00 bone 2694 #> 595 23.1 7 1973 1973-07-02 12:00:00 blood 2695 #> 596 23.1 7 1973 1973-07-02 12:00:00 bone 2695 #> 597 25.6 8 1973 1973-08-01 22:00:00 blood 2696 #> 598 25.6 8 1973 1973-08-01 22:00:00 bone 2696 #> 599 59.3 9 1973 1973-09-01 08:00:00 blood 2697 #> 600 59.3 9 1973 1973-09-01 08:00:00 bone 2697 #> 601 30.7 10 1973 1973-10-01 18:00:00 blood 2698 #> 602 30.7 10 1973 1973-10-01 18:00:00 bone 2698 #> 603 23.9 11 1973 1973-11-01 04:00:00 blood 2699 #> 604 23.9 11 1973 1973-11-01 04:00:00 bone 2699 #> 605 23.3 12 1973 1973-12-01 14:00:00 blood 2700 #> 606 23.3 12 1973 1973-12-01 14:00:00 bone 2700 #> 607 27.6 1 1974 1974-01-01 00:00:00 blood 2701 #> 608 27.6 1 1974 1974-01-01 00:00:00 bone 2701 #> 609 26.0 2 1974 1974-01-31 10:00:00 blood 2702 #> 610 26.0 2 1974 1974-01-31 10:00:00 bone 2702 #> 611 21.3 3 1974 1974-03-02 20:00:00 blood 2703 #> 612 21.3 3 1974 1974-03-02 20:00:00 bone 2703 #> 613 40.3 4 1974 1974-04-02 06:00:00 blood 2704 #> 614 40.3 4 1974 1974-04-02 06:00:00 bone 2704 #> 615 39.5 5 1974 1974-05-02 16:00:00 blood 2705 #> 616 39.5 5 1974 1974-05-02 16:00:00 bone 2705 #> 617 36.0 6 1974 1974-06-02 02:00:00 blood 2706 #> 618 36.0 6 1974 1974-06-02 02:00:00 bone 2706 #> 619 55.8 7 1974 1974-07-02 12:00:00 blood 2707 #> 620 55.8 7 1974 1974-07-02 12:00:00 bone 2707 #> 621 33.6 8 1974 1974-08-01 22:00:00 blood 2708 #> 622 33.6 8 1974 1974-08-01 22:00:00 bone 2708 #> 623 40.2 9 1974 1974-09-01 08:00:00 blood 2709 #> 624 40.2 9 1974 1974-09-01 08:00:00 bone 2709 #> 625 47.1 10 1974 1974-10-01 18:00:00 blood 2710 #> 626 47.1 10 1974 1974-10-01 18:00:00 bone 2710 #> 627 25.0 11 1974 1974-11-01 04:00:00 blood 2711 #> 628 25.0 11 1974 1974-11-01 04:00:00 bone 2711 #> 629 20.5 12 1974 1974-12-01 14:00:00 blood 2712 #> 630 20.5 12 1974 1974-12-01 14:00:00 bone 2712 #> 631 18.9 1 1975 1975-01-01 00:00:00 blood 2713 #> 632 18.9 1 1975 1975-01-01 00:00:00 bone 2713 #> 633 11.5 2 1975 1975-01-31 10:00:00 blood 2714 #> 634 11.5 2 1975 1975-01-31 10:00:00 bone 2714 #> 635 11.5 3 1975 1975-03-02 20:00:00 blood 2715 #> 636 11.5 3 1975 1975-03-02 20:00:00 bone 2715 #> 637 5.1 4 1975 1975-04-02 06:00:00 blood 2716 #> 638 5.1 4 1975 1975-04-02 06:00:00 bone 2716 #> 639 9.0 5 1975 1975-05-02 16:00:00 blood 2717 #> 640 9.0 5 1975 1975-05-02 16:00:00 bone 2717 #> 641 11.4 6 1975 1975-06-02 02:00:00 blood 2718 #> 642 11.4 6 1975 1975-06-02 02:00:00 bone 2718 #> 643 28.2 7 1975 1975-07-02 12:00:00 blood 2719 #> 644 28.2 7 1975 1975-07-02 12:00:00 bone 2719 #> 645 39.7 8 1975 1975-08-01 22:00:00 blood 2720 #> 646 39.7 8 1975 1975-08-01 22:00:00 bone 2720 #> 647 13.9 9 1975 1975-09-01 08:00:00 blood 2721 #> 648 13.9 9 1975 1975-09-01 08:00:00 bone 2721 #> 649 9.1 10 1975 1975-10-01 18:00:00 blood 2722 #> 650 9.1 10 1975 1975-10-01 18:00:00 bone 2722 #> 651 19.4 11 1975 1975-11-01 04:00:00 blood 2723 #> 652 19.4 11 1975 1975-11-01 04:00:00 bone 2723 #> 653 7.8 12 1975 1975-12-01 14:00:00 blood 2724 #> 654 7.8 12 1975 1975-12-01 14:00:00 bone 2724 #> 655 8.1 1 1976 1976-01-01 00:00:00 blood 2725 #> 656 8.1 1 1976 1976-01-01 00:00:00 bone 2725 #> 657 4.3 2 1976 1976-01-31 12:00:00 blood 2726 #> 658 4.3 2 1976 1976-01-31 12:00:00 bone 2726 #> 659 21.9 3 1976 1976-03-02 00:00:00 blood 2727 #> 660 21.9 3 1976 1976-03-02 00:00:00 bone 2727 #> 661 18.8 4 1976 1976-04-01 12:00:00 blood 2728 #> 662 18.8 4 1976 1976-04-01 12:00:00 bone 2728 #> 663 12.4 5 1976 1976-05-02 00:00:00 blood 2729 #> 664 12.4 5 1976 1976-05-02 00:00:00 bone 2729 #> 665 12.2 6 1976 1976-06-01 12:00:00 blood 2730 #> 666 12.2 6 1976 1976-06-01 12:00:00 bone 2730 #> 667 1.9 7 1976 1976-07-02 00:00:00 blood 2731 #> 668 1.9 7 1976 1976-07-02 00:00:00 bone 2731 #> 669 16.4 8 1976 1976-08-01 12:00:00 blood 2732 #> 670 16.4 8 1976 1976-08-01 12:00:00 bone 2732 #> 671 13.5 9 1976 1976-09-01 00:00:00 blood 2733 #> 672 13.5 9 1976 1976-09-01 00:00:00 bone 2733 #> 673 20.6 10 1976 1976-10-01 12:00:00 blood 2734 #> 674 20.6 10 1976 1976-10-01 12:00:00 bone 2734 #> 675 5.2 11 1976 1976-11-01 00:00:00 blood 2735 #> 676 5.2 11 1976 1976-11-01 00:00:00 bone 2735 #> 677 15.3 12 1976 1976-12-01 12:00:00 blood 2736 #> 678 15.3 12 1976 1976-12-01 12:00:00 bone 2736 #> 679 16.4 1 1977 1977-01-01 00:00:00 blood 2737 #> 680 16.4 1 1977 1977-01-01 00:00:00 bone 2737 #> 681 23.1 2 1977 1977-01-31 10:00:00 blood 2738 #> 682 23.1 2 1977 1977-01-31 10:00:00 bone 2738 #> 683 8.7 3 1977 1977-03-02 20:00:00 blood 2739 #> 684 8.7 3 1977 1977-03-02 20:00:00 bone 2739 #> 685 12.9 4 1977 1977-04-02 06:00:00 blood 2740 #> 686 12.9 4 1977 1977-04-02 06:00:00 bone 2740 #> 687 18.6 5 1977 1977-05-02 16:00:00 blood 2741 #> 688 18.6 5 1977 1977-05-02 16:00:00 bone 2741 #> 689 38.5 6 1977 1977-06-02 02:00:00 blood 2742 #> 690 38.5 6 1977 1977-06-02 02:00:00 bone 2742 #> 691 21.4 7 1977 1977-07-02 12:00:00 blood 2743 #> 692 21.4 7 1977 1977-07-02 12:00:00 bone 2743 #> 693 30.1 8 1977 1977-08-01 22:00:00 blood 2744 #> 694 30.1 8 1977 1977-08-01 22:00:00 bone 2744 #> 695 44.0 9 1977 1977-09-01 08:00:00 blood 2745 #> 696 44.0 9 1977 1977-09-01 08:00:00 bone 2745 #> 697 43.8 10 1977 1977-10-01 18:00:00 blood 2746 #> 698 43.8 10 1977 1977-10-01 18:00:00 bone 2746 #> 699 29.1 11 1977 1977-11-01 04:00:00 blood 2747 #> 700 29.1 11 1977 1977-11-01 04:00:00 bone 2747 #> 701 43.2 12 1977 1977-12-01 14:00:00 blood 2748 #> 702 43.2 12 1977 1977-12-01 14:00:00 bone 2748 #> 703 51.9 1 1978 1978-01-01 00:00:00 blood 2749 #> 704 51.9 1 1978 1978-01-01 00:00:00 bone 2749 #> 705 93.6 2 1978 1978-01-31 10:00:00 blood 2750 #> 706 93.6 2 1978 1978-01-31 10:00:00 bone 2750 #> 707 76.5 3 1978 1978-03-02 20:00:00 blood 2751 #> 708 76.5 3 1978 1978-03-02 20:00:00 bone 2751 #> 709 99.7 4 1978 1978-04-02 06:00:00 blood 2752 #> 710 99.7 4 1978 1978-04-02 06:00:00 bone 2752 #> 711 82.7 5 1978 1978-05-02 16:00:00 blood 2753 #> 712 82.7 5 1978 1978-05-02 16:00:00 bone 2753 #> 713 95.1 6 1978 1978-06-02 02:00:00 blood 2754 #> 714 95.1 6 1978 1978-06-02 02:00:00 bone 2754 #> 715 70.4 7 1978 1978-07-02 12:00:00 blood 2755 #> 716 70.4 7 1978 1978-07-02 12:00:00 bone 2755 #> 717 58.1 8 1978 1978-08-01 22:00:00 blood 2756 #> 718 58.1 8 1978 1978-08-01 22:00:00 bone 2756 #> 719 138.2 9 1978 1978-09-01 08:00:00 blood 2757 #> 720 138.2 9 1978 1978-09-01 08:00:00 bone 2757 #> 721 125.1 10 1978 1978-10-01 18:00:00 blood 2758 #> 722 125.1 10 1978 1978-10-01 18:00:00 bone 2758 #> 723 97.9 11 1978 1978-11-01 04:00:00 blood 2759 #> 724 97.9 11 1978 1978-11-01 04:00:00 bone 2759 #> 725 122.7 12 1978 1978-12-01 14:00:00 blood 2760 #> 726 122.7 12 1978 1978-12-01 14:00:00 bone 2760 #> 727 166.6 1 1979 1979-01-01 00:00:00 blood 2761 #> 728 166.6 1 1979 1979-01-01 00:00:00 bone 2761 #> 729 137.5 2 1979 1979-01-31 10:00:00 blood 2762 #> 730 137.5 2 1979 1979-01-31 10:00:00 bone 2762 #> 731 138.0 3 1979 1979-03-02 20:00:00 blood 2763 #> 732 138.0 3 1979 1979-03-02 20:00:00 bone 2763 #> 733 101.5 4 1979 1979-04-02 06:00:00 blood 2764 #> 734 101.5 4 1979 1979-04-02 06:00:00 bone 2764 #> 735 134.4 5 1979 1979-05-02 16:00:00 blood 2765 #> 736 134.4 5 1979 1979-05-02 16:00:00 bone 2765 #> 737 149.5 6 1979 1979-06-02 02:00:00 blood 2766 #> 738 149.5 6 1979 1979-06-02 02:00:00 bone 2766 #> 739 159.4 7 1979 1979-07-02 12:00:00 blood 2767 #> 740 159.4 7 1979 1979-07-02 12:00:00 bone 2767 #> 741 142.2 8 1979 1979-08-01 22:00:00 blood 2768 #> 742 142.2 8 1979 1979-08-01 22:00:00 bone 2768 #> 743 188.4 9 1979 1979-09-01 08:00:00 blood 2769 #> 744 188.4 9 1979 1979-09-01 08:00:00 bone 2769 #> 745 186.2 10 1979 1979-10-01 18:00:00 blood 2770 #> 746 186.2 10 1979 1979-10-01 18:00:00 bone 2770 #> 747 183.3 11 1979 1979-11-01 04:00:00 blood 2771 #> 748 183.3 11 1979 1979-11-01 04:00:00 bone 2771 #> 749 176.3 12 1979 1979-12-01 14:00:00 blood 2772 #> 750 176.3 12 1979 1979-12-01 14:00:00 bone 2772 #> 751 159.6 1 1980 1980-01-01 00:00:00 blood 2773 #> 752 159.6 1 1980 1980-01-01 00:00:00 bone 2773 #> 753 155.0 2 1980 1980-01-31 12:00:00 blood 2774 #> 754 155.0 2 1980 1980-01-31 12:00:00 bone 2774 #> 755 126.2 3 1980 1980-03-02 00:00:00 blood 2775 #> 756 126.2 3 1980 1980-03-02 00:00:00 bone 2775 #> 757 164.1 4 1980 1980-04-01 12:00:00 blood 2776 #> 758 164.1 4 1980 1980-04-01 12:00:00 bone 2776 #> 759 179.9 5 1980 1980-05-02 00:00:00 blood 2777 #> 760 179.9 5 1980 1980-05-02 00:00:00 bone 2777 #> 761 157.3 6 1980 1980-06-01 12:00:00 blood 2778 #> 762 157.3 6 1980 1980-06-01 12:00:00 bone 2778 #> 763 136.3 7 1980 1980-07-02 00:00:00 blood 2779 #> 764 136.3 7 1980 1980-07-02 00:00:00 bone 2779 #> 765 135.4 8 1980 1980-08-01 12:00:00 blood 2780 #> 766 135.4 8 1980 1980-08-01 12:00:00 bone 2780 #> 767 155.0 9 1980 1980-09-01 00:00:00 blood 2781 #> 768 155.0 9 1980 1980-09-01 00:00:00 bone 2781 #> 769 164.7 10 1980 1980-10-01 12:00:00 blood 2782 #> 770 164.7 10 1980 1980-10-01 12:00:00 bone 2782 #> 771 147.9 11 1980 1980-11-01 00:00:00 blood 2783 #> 772 147.9 11 1980 1980-11-01 00:00:00 bone 2783 #> 773 174.4 12 1980 1980-12-01 12:00:00 blood 2784 #> 774 174.4 12 1980 1980-12-01 12:00:00 bone 2784 #> 775 114.0 1 1981 1981-01-01 00:00:00 blood 2785 #> 776 114.0 1 1981 1981-01-01 00:00:00 bone 2785 #> 777 141.3 2 1981 1981-01-31 10:00:00 blood 2786 #> 778 141.3 2 1981 1981-01-31 10:00:00 bone 2786 #> 779 135.5 3 1981 1981-03-02 20:00:00 blood 2787 #> 780 135.5 3 1981 1981-03-02 20:00:00 bone 2787 #> 781 156.4 4 1981 1981-04-02 06:00:00 blood 2788 #> 782 156.4 4 1981 1981-04-02 06:00:00 bone 2788 #> 783 127.5 5 1981 1981-05-02 16:00:00 blood 2789 #> 784 127.5 5 1981 1981-05-02 16:00:00 bone 2789 #> 785 90.0 6 1981 1981-06-02 02:00:00 blood 2790 #> 786 90.0 6 1981 1981-06-02 02:00:00 bone 2790 #> 787 143.8 7 1981 1981-07-02 12:00:00 blood 2791 #> 788 143.8 7 1981 1981-07-02 12:00:00 bone 2791 #> 789 158.7 8 1981 1981-08-01 22:00:00 blood 2792 #> 790 158.7 8 1981 1981-08-01 22:00:00 bone 2792 #> 791 167.3 9 1981 1981-09-01 08:00:00 blood 2793 #> 792 167.3 9 1981 1981-09-01 08:00:00 bone 2793 #> 793 162.4 10 1981 1981-10-01 18:00:00 blood 2794 #> 794 162.4 10 1981 1981-10-01 18:00:00 bone 2794 #> 795 137.5 11 1981 1981-11-01 04:00:00 blood 2795 #> 796 137.5 11 1981 1981-11-01 04:00:00 bone 2795 #> 797 150.1 12 1981 1981-12-01 14:00:00 blood 2796 #> 798 150.1 12 1981 1981-12-01 14:00:00 bone 2796 #> 799 111.2 1 1982 1982-01-01 00:00:00 blood 2797 #> 800 111.2 1 1982 1982-01-01 00:00:00 bone 2797 #> 801 163.6 2 1982 1982-01-31 10:00:00 blood 2798 #> 802 163.6 2 1982 1982-01-31 10:00:00 bone 2798 #> 803 153.8 3 1982 1982-03-02 20:00:00 blood 2799 #> 804 153.8 3 1982 1982-03-02 20:00:00 bone 2799 #> 805 122.0 4 1982 1982-04-02 06:00:00 blood 2800 #> 806 122.0 4 1982 1982-04-02 06:00:00 bone 2800 #> 807 82.2 5 1982 1982-05-02 16:00:00 blood 2801 #> 808 82.2 5 1982 1982-05-02 16:00:00 bone 2801 #> 809 110.4 6 1982 1982-06-02 02:00:00 blood 2802 #> 810 110.4 6 1982 1982-06-02 02:00:00 bone 2802 #> 811 106.1 7 1982 1982-07-02 12:00:00 blood 2803 #> 812 106.1 7 1982 1982-07-02 12:00:00 bone 2803 #> 813 107.6 8 1982 1982-08-01 22:00:00 blood 2804 #> 814 107.6 8 1982 1982-08-01 22:00:00 bone 2804 #> 815 118.8 9 1982 1982-09-01 08:00:00 blood 2805 #> 816 118.8 9 1982 1982-09-01 08:00:00 bone 2805 #> 817 94.7 10 1982 1982-10-01 18:00:00 blood 2806 #> 818 94.7 10 1982 1982-10-01 18:00:00 bone 2806 #> 819 98.1 11 1982 1982-11-01 04:00:00 blood 2807 #> 820 98.1 11 1982 1982-11-01 04:00:00 bone 2807 #> 821 127.0 12 1982 1982-12-01 14:00:00 blood 2808 #> 822 127.0 12 1982 1982-12-01 14:00:00 bone 2808 #> 823 84.3 1 1983 1983-01-01 00:00:00 blood 2809 #> 824 84.3 1 1983 1983-01-01 00:00:00 bone 2809 #> 825 51.0 2 1983 1983-01-31 10:00:00 blood 2810 #> 826 51.0 2 1983 1983-01-31 10:00:00 bone 2810 #> 827 66.5 3 1983 1983-03-02 20:00:00 blood 2811 #> 828 66.5 3 1983 1983-03-02 20:00:00 bone 2811 #> 829 80.7 4 1983 1983-04-02 06:00:00 blood 2812 #> 830 80.7 4 1983 1983-04-02 06:00:00 bone 2812 #> 831 99.2 5 1983 1983-05-02 16:00:00 blood 2813 #> 832 99.2 5 1983 1983-05-02 16:00:00 bone 2813 #> 833 91.1 6 1983 1983-06-02 02:00:00 blood 2814 #> 834 91.1 6 1983 1983-06-02 02:00:00 bone 2814 #> 835 82.2 7 1983 1983-07-02 12:00:00 blood 2815 #> 836 82.2 7 1983 1983-07-02 12:00:00 bone 2815 #> 837 71.8 8 1983 1983-08-01 22:00:00 blood 2816 #> 838 71.8 8 1983 1983-08-01 22:00:00 bone 2816 #> 839 50.3 9 1983 1983-09-01 08:00:00 blood 2817 #> 840 50.3 9 1983 1983-09-01 08:00:00 bone 2817 #> 841 55.8 10 1983 1983-10-01 18:00:00 blood 2818 #> 842 55.8 10 1983 1983-10-01 18:00:00 bone 2818 #> 843 33.3 11 1983 1983-11-01 04:00:00 blood 2819 #> 844 33.3 11 1983 1983-11-01 04:00:00 bone 2819 #> 845 33.4 12 1983 1983-12-01 14:00:00 blood 2820 #> 846 33.4 12 1983 1983-12-01 14:00:00 bone 2820 #> # An xts object example library(xts) #> Loading required package: zoo #> #> Attaching package: 'zoo' #> The following objects are masked from 'package:base': #> #> as.Date, as.Date.numeric dates <- seq(as.Date(\"2001-05-01\"), length=30, by=\"quarter\") data <- cbind(c(gas = rpois(30, cumprod(1+rnorm(30, mean = 0.01, sd = 0.001)))), c(oil = rpois(30, cumprod(1+rnorm(30, mean = 0.01, sd = 0.001))))) series <- xts(x = data, order.by = dates) colnames(series) <- c('gas', 'oil') head(series) #> gas oil #> 2001-05-01 2 2 #> 2001-08-01 0 2 #> 2001-11-01 4 1 #> 2002-02-01 4 2 #> 2002-05-01 2 0 #> 2002-08-01 4 3 series_to_mvgam(series, freq = 4, train_prop = 0.85) #> $data_train #> y season year date series time #> 1 2 2 2001 2001-05-01 gas 1 #> 2 2 2 2001 2001-05-01 oil 1 #> 3 0 3 2001 2001-08-01 gas 2 #> 4 2 3 2001 2001-08-01 oil 2 #> 5 4 4 2001 2001-11-01 gas 3 #> 6 1 4 2001 2001-11-01 oil 3 #> 7 4 1 2002 2002-02-01 gas 4 #> 8 2 1 2002 2002-02-01 oil 4 #> 9 2 2 2002 2002-05-01 gas 5 #> 10 0 2 2002 2002-05-01 oil 5 #> 11 4 3 2002 2002-08-01 gas 6 #> 12 3 3 2002 2002-08-01 oil 6 #> 13 3 4 2002 2002-11-01 gas 7 #> 14 1 4 2002 2002-11-01 oil 7 #> 15 1 1 2003 2003-02-01 gas 8 #> 16 2 1 2003 2003-02-01 oil 8 #> 17 2 2 2003 2003-05-01 gas 9 #> 18 2 2 2003 2003-05-01 oil 9 #> 19 0 3 2003 2003-08-01 gas 10 #> 20 1 3 2003 2003-08-01 oil 10 #> 21 2 4 2003 2003-11-01 gas 11 #> 22 0 4 2003 2003-11-01 oil 11 #> 23 0 1 2004 2004-02-01 gas 12 #> 24 5 1 2004 2004-02-01 oil 12 #> 25 1 2 2004 2004-05-01 gas 13 #> 26 0 2 2004 2004-05-01 oil 13 #> 27 1 3 2004 2004-08-01 gas 14 #> 28 4 3 2004 2004-08-01 oil 14 #> 29 0 4 2004 2004-11-01 gas 15 #> 30 1 4 2004 2004-11-01 oil 15 #> 31 0 1 2005 2005-02-01 gas 16 #> 32 0 1 2005 2005-02-01 oil 16 #> 33 1 2 2005 2005-05-01 gas 17 #> 34 3 2 2005 2005-05-01 oil 17 #> 35 0 3 2005 2005-08-01 gas 18 #> 36 1 3 2005 2005-08-01 oil 18 #> 37 1 4 2005 2005-11-01 gas 19 #> 38 1 4 2005 2005-11-01 oil 19 #> 39 1 1 2006 2006-02-01 gas 20 #> 40 3 1 2006 2006-02-01 oil 20 #> 41 3 2 2006 2006-05-01 gas 21 #> 42 2 2 2006 2006-05-01 oil 21 #> 43 2 3 2006 2006-08-01 gas 22 #> 44 2 3 2006 2006-08-01 oil 22 #> 45 0 4 2006 2006-11-01 gas 23 #> 46 0 4 2006 2006-11-01 oil 23 #> 47 1 1 2007 2007-02-01 gas 24 #> 48 0 1 2007 2007-02-01 oil 24 #> 49 1 2 2007 2007-05-01 gas 25 #> 50 0 2 2007 2007-05-01 oil 25 #> #> $data_test #> y season year date series time #> 1 0 3 2007 2007-08-01 gas 26 #> 2 0 3 2007 2007-08-01 oil 26 #> 3 2 4 2007 2007-11-01 gas 27 #> 4 0 4 2007 2007-11-01 oil 27 #> 5 4 1 2008 2008-02-01 gas 28 #> 6 0 1 2008 2008-02-01 oil 28 #> 7 3 2 2008 2008-05-01 gas 29 #> 8 3 2 2008 2008-05-01 oil 29 #> 9 2 3 2008 2008-08-01 gas 30 #> 10 1 3 2008 2008-08-01 oil 30 #>"},{"path":"https://nicholasjclark.github.io/mvgam/reference/sim_mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","title":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","text":"function simulates discrete time series data fitting multivariate GAM includes shared seasonality dependence state-space latent dynamic factors. Random dependencies among series, .e. correlations long-term trends, included form correlated loadings latent dynamic factors","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/sim_mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","text":"","code":"sim_mvgam( T = 100, n_series = 3, seasonality = \"shared\", use_lv = FALSE, n_lv = 1, trend_model = \"RW\", drift = FALSE, trend_rel = 0.2, freq = 12, family = poisson(), phi, shape, sigma, nu, mu, prop_missing = 0, prop_train = 0.85 )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/sim_mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","text":"T integer. Number observations (timepoints) n_series integer. Number discrete time series seasonality character. Either shared, meaning series share exact seasonal pattern, hierarchical, meaning global seasonality series' pattern can deviate slightly use_lv logical. TRUE, use dynamic factors estimate series' latent trends reduced dimension format. FALSE, estimate independent latent trends series n_lv integer. Number latent dynamic factors generating series' trends trend_model character specifying time series dynamics latent trend. Options : None (latent trend component; .e. GAM component contributes linear predictor, observation process source error; similarly estimated gam) RW (random walk possible drift) AR1 (possible drift) AR2 (possible drift) AR3 (possible drift) VAR1 (contemporaneously uncorrelated VAR1) VAR1cor (contemporaneously correlated VAR1) GP (Gaussian Process squared exponential kernel) See mvgam_trends details drift logical, simulate drift term trend trend_rel numeric. Relative importance trend series. 0 1 freq integer. seasonal frequency series family family specifying exponential observation family series. Currently supported families : nb(), poisson(), tweedie(), gaussian(), betar(), lognormal(), student_t() Gamma() phi vector dispersion parameters series (.e. size Negative Binomial phi Tweedie Beta). length(phi) < n_series, first element phi replicated n_series times. Defaults 5 Negative Binomial Tweedie; 10 Beta shape vector shape parameters series (.e. shape Gamma) length(shape) < n_series, first element shape replicated n_series times. Defaults 10 sigma vector scale parameters series (.e. sd Normal Student-T, log(sd) LogNormal). length(sigma) < n_series, first element sigma replicated n_series times. Defaults 0.5 Normal Student-T; 0.2 Lognormal nu vector degrees freedom parameters series (.e. nu Student-T) length(nu) < n_series, first element nu replicated n_series times. Defaults 3 mu vector location parameters series. length(mu) < n_series, first element mu replicated n_series times. Defaults small random values -0.5 0.5 link scale prop_missing numeric stating proportion observations missing. 0 0.8, inclusive prop_train numeric stating proportion data use training. 0.25 0.75","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/sim_mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","text":"list object containing outputs needed mvgam, including 'data_train' 'data_test', well additional information simulated seasonality trend dependencies","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/sim_mvgam.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Simulate a set of discrete time series for mvgam modelling — sim_mvgam","text":"","code":"#Simulate series with observations bounded at 0 and 1 (Beta responses) sim_data <- sim_mvgam(family = betar(), trend_model = 'GP', trend_rel = 0.6) plot_mvgam_series(data = sim_data$data_train, series = 'all') #Now simulate series with overdispersed discrete observations sim_data <- sim_mvgam(family = nb(), trend_model = 'GP', trend_rel = 0.6, phi = 10) plot_mvgam_series(data = sim_data$data_train, series = 'all')"},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Summary for a fitted mvgam object — summary.mvgam","title":"Summary for a fitted mvgam object — summary.mvgam","text":"functions take fitted mvgam object return various useful summaries","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Summary for a fitted mvgam object — summary.mvgam","text":"","code":"# S3 method for mvgam summary(object, ...) # S3 method for mvgam_prefit summary(object, ...) # S3 method for mvgam coef(object, summarise = TRUE, ...)"},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Summary for a fitted mvgam object — summary.mvgam","text":"object list object returned mvgam ... Ignored summarise logical. Summaries coefficients returned TRUE. Otherwise full posterior distribution returned","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Summary for a fitted mvgam object — summary.mvgam","text":"summary.mvgam summary.mvgam_prefit, Aalist printed -screen showing summaries model coef.mvgam, either matrix posterior coefficient distributions (summarise == FALSE data.frame coefficient summaries)","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Summary for a fitted mvgam object — summary.mvgam","text":"summary.mvgam summary.mvgam_prefit return brief summaries model's call printed, along posterior intervals key parameters model. Note smooths extra penalties null space, summaries rho parameters may include penalty terms number smooths original model formula. coef.mvgam returns either summaries full posterior estimates GAM component coefficients","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/summary.mvgam.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Summary for a fitted mvgam object — summary.mvgam","text":"Nicholas J Clark","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/update.mvgam.html","id":null,"dir":"Reference","previous_headings":"","what":"Update an existing mvgam object — update.mvgam","title":"Update an existing mvgam object — update.mvgam","text":"function allows previously fitted mvgam model updated","code":""},{"path":"https://nicholasjclark.github.io/mvgam/reference/update.mvgam.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Update an existing mvgam object — update.mvgam","text":"","code":"# S3 method for mvgam update( object, formula, trend_formula, data, newdata, trend_model, trend_map, use_lv, n_lv, family, priors, ... )"},{"path":"https://nicholasjclark.github.io/mvgam/reference/update.mvgam.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Update an existing mvgam object — update.mvgam","text":"object fitted mvgam model formula Optional new formula object. Note, mvgam currently support dynamic formula updates removal specific terms - term. updating, entire formula needs supplied trend_formula optional character string specifying GAM process model formula. supplied, linear predictor modelled latent trends capture process model evolution separately observation model. response variable specified left-hand side formula (.e. valid option ~ season + s(year)). feature experimental, currently available Random Walk trend models. data dataframe list containing model response variable covariates required GAM formula. include columns: 'series' (character factor index series IDs) 'time' (numeric index time point observation). variables included linear predictor formula must also present newdata Optional dataframe list test data containing least 'series' 'time' addition variables included linear predictor formula. included, observations variable y set NA fitting model posterior simulations can obtained trend_model character specifying time series dynamics latent trend. Options : None (latent trend component; .e. GAM component contributes linear predictor, observation process source error; similarly estimated gam) RW (random walk possible drift) AR1 (possible drift) AR2 (possible drift) AR3 (possible drift) VAR1 (possible drift; available Stan) GP (Gaussian Process squared exponential kernel; available Stan) trend_map Optional data.frame specifying series depend latent trends. Useful allowing multiple series depend latent trend process, different observation processes. supplied, latent factor model set setting use_lv = TRUE using mapping set shared trends. Needs column names series trend, integer values trend column state trend series depend . series column single unique entry series data (names perfectly match factor levels series variable data). See examples mvgam details use_lv logical. TRUE, use dynamic factors estimate series' latent trends reduced dimension format. FALSE, estimate independent latent trends series n_lv integer number latent dynamic factors use use_lv == TRUE. >n_series. Defaults arbitrarily min(2, floor(n_series / 2)) family family specifying exponential observation family series. Currently supported families : nb(), poisson(), tweedie(), gaussian(), betar(), lognormal(), student_t() Gamma() priors optional data.frame prior definitions. See get_mvgam_priors mvgam information changing default prior distributions ... arguments passed mvgam","code":""}] diff --git a/docs/sitemap.xml b/docs/sitemap.xml index b6d2c725..65802532 100644 --- a/docs/sitemap.xml +++ b/docs/sitemap.xml @@ -33,6 +33,9 @@ https://nicholasjclark.github.io/mvgam/reference/forecast.mvgam.html + + https://nicholasjclark.github.io/mvgam/reference/formula.mvgam.html + https://nicholasjclark.github.io/mvgam/reference/get_monitor_pars.html @@ -57,6 +60,9 @@ https://nicholasjclark.github.io/mvgam/reference/lv_correlations.html + + https://nicholasjclark.github.io/mvgam/reference/model.frame.mvgam.html + https://nicholasjclark.github.io/mvgam/reference/mvgam-class.html @@ -72,6 +78,9 @@ https://nicholasjclark.github.io/mvgam/reference/mvgam_forecast-class.html + + https://nicholasjclark.github.io/mvgam/reference/mvgam_marginaleffects.html + https://nicholasjclark.github.io/mvgam/reference/mvgam_trends.html