You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The goal of `mvgam` is to fit Bayesian Dynamic Generalized Additive Models to time series data. The motivation for the package is described in [Clark & Wells 2022](https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13974){target="_blank"} (published in *Methods in Ecology and Evolution*), with additional inspiration on the use of Bayesian probabilistic modelling coming from [Michael Betancourt](https://betanalpha.github.io/writing/){target="_blank"}, [Michael Dietze](https://www.bu.edu/earth/profiles/michael-dietze/){target="_blank"} and [Sarah Heaps](https://www.durham.ac.uk/staff/sarah-e-heaps/){target="_blank"}, among many others.
35
+
The goal of `mvgam` is to fit Bayesian (Dynamic) Generalized Additive Models. This package constructs State-Space models that can include highly flexible nonlinear predictor effects for both process and observation components by leveraging functionalities from the impressive [`brms`](https://paulbuerkner.com/brms/){target="_blank"} and [`mgcv`](https://cran.r-project.org/web/packages/mgcv/index.html){target="_blank"} packages. This allows `mvgam` to fit a wide range of models, including hierarchical ecological models such as N-mixture or Joint Species Distribution models, as well as univariate and multivariate time series models with imperfect detection. The original motivation for the package is described in [Clark & Wells 2022](https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13974){target="_blank"} (published in *Methods in Ecology and Evolution*), with additional inspiration on the use of Bayesian probabilistic modelling coming from [Michael Betancourt](https://betanalpha.github.io/writing/){target="_blank"}, [Michael Dietze](https://www.bu.edu/earth/profiles/michael-dietze/){target="_blank"} and [Sarah Heaps](https://www.durham.ac.uk/staff/sarah-e-heaps/){target="_blank"}, among many others.
33
36
34
37
## Resources
35
38
A series of [vignettes cover data formatting, forecasting and several extended case studies of DGAMs](https://nicholasjclark.github.io/mvgam/){target="_blank"}. A number of other examples have also been compiled:
0 commit comments