-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNurse.py
119 lines (89 loc) · 3.64 KB
/
Nurse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import pandas as pd
import numpy as np
import geocoder, os
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from matplotlib.colors import rgb2hex
from matplotlib import cm
from mpl_toolkits.basemap import Basemap
import folium
from folium.plugins import MarkerCluster
from folium.plugins import BeautifyIcon
from get_api_key import api_key
def load_file():
print ('loaded')
if os.path.isfile('fixedNurseSalaryCA.csv'):
df = pd.read_csv('fixedNurseSalaryCA.csv')
else:
df = pd.read_csv('WagesCaRN.csv', skiprows=1)
df = df.loc[2:,['Hospital','City','New Grad Base Pay','Salary (Estimate)']]
df.columns = ['Hospital','City','Hourly','Yearly']
df.iloc[49]['Yearly'] =0
df = df.reset_index(drop=True)
def fix_money_string(x):
if type(x) == str:
return float(x.replace('$','').replace(',',''))
else:
return x
def get_loc(x):
g = geocoder.bing(x, key=api_key(), locality='California', maxRows=1)
return (g.latlng)
df['Hourly'] = df['Hourly'].apply(fix_money_string)
df['Yearly'] = df['Yearly'].apply(fix_money_string)
df['Search'] = df['Hospital'] + ' ' + df['City'] + ' California'
df['Lat Long'] = df['Search'].apply(get_loc)
df = pd.concat([df, pd.DataFrame(df['Lat Long'].values.tolist(), columns=['Lat', 'Long'])], axis=1)
df = df[['Hospital','Hourly','Yearly','Lat','Long']]
df['Yearly'] = df['Yearly'].fillna(value=df['Hourly']*2080)
df = df[['Hospital','Yearly','Lat','Long']]
df['Yearly'] = df['Yearly'].fillna(0)
df = df[df['Yearly'] != 0]
df = df[df['Lat'] > 30]
df = df[df['Long'] < 0]
df.reset_index(drop=True)
df.to_csv('fixedNurseSalaryCA.csv', index=False)
return df
def make_basemap_image(df):
print (df.head())
scaler = MinMaxScaler(feature_range=(10,100))
size = scaler.fit_transform(df['Yearly'].values.reshape(-1,1))
fig = plt.figure(figsize=(8,8))
m = Basemap(projection='lcc', resolution='h',
lat_0=df['Lat'].mean(), lon_0=df['Long'].mean(),
width=1E6*.75, height=1.2E6*.75)
m.shadedrelief()
m.drawcoastlines(color='black')
m.drawcountries(color='gray')
m.drawstates(color='black')
parallels = np.arange(0.,81,2.)
meridians = np.arange(-360,351.,2.)
# labels = [left,right,top,bottom]
m.drawparallels(parallels,labels=[False,True,False,False])
m.drawmeridians(meridians,labels=[False,False,False,True])
m.scatter(df['Long'].values, df['Lat'].values,
latlon=True, c=df['Yearly'].values,
cmap='coolwarm', alpha=0.75,
s=size, marker='o')
plt.savefig('scatterMap.png')
def make_html(df):
print (df.head())
scaler = MinMaxScaler(feature_range=(0,1))
size = scaler.fit_transform(df['Yearly'].values.reshape(-1,1))
cmap = cm.get_cmap('coolwarm')
m = folium.Map(location=[df['Lat'].mean(), df['Long'].mean()], zoom_start=6.3)
marker_cluster = MarkerCluster().add_to(m)
for idx in range(len(df)):
rgb = cmap(size[idx])[:3]
color = rgb2hex(rgb[0])
folium.Marker(
location=[df['Lat'][idx], df['Long'][idx]],
popup='''{}<br><center>${:,.2f} per year</center>'''.format(df['Hospital'][idx], df['Yearly'][idx]),
icon=folium.Icon(color='red', icon='heart',icon_color=color),
).add_to(marker_cluster)
m.save('CaNurseSalaries.html')
def main():
df = load_file()
# make_basemap_image(df)
make_html(df)
if __name__ == '__main__':
main()