-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_experiments.py
186 lines (173 loc) · 7.82 KB
/
run_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/python
import argparse
import glob
from pathlib import Path
from cbs import CBSSolver
from independent import IndependentSolver
from prioritized import PrioritizedPlanningSolver
from random_instance import random_map, save_map, correct_random_map
from visualize import Animation
from single_agent_planner import get_sum_of_cost
import os
import time as timer
import random
SOLVER = "CBS"
def print_mapf_instance(my_map, starts, goals):
print('Start locations')
print_locations(my_map, starts)
print('Goal locations')
print_locations(my_map, goals)
def print_locations(my_map, locations):
starts_map = [[-1 for _ in range(len(my_map[0]))] for _ in range(len(my_map))]
for i in range(len(locations)):
starts_map[locations[i][0]][locations[i][1]] = i
to_print = ''
for x in range(len(my_map)):
for y in range(len(my_map[0])):
if starts_map[x][y] >= 0:
to_print += str(starts_map[x][y]) + ' '
elif my_map[x][y]:
to_print += '@ '
else:
to_print += '. '
to_print += '\n'
print(to_print)
def import_mapf_instance(filename):
f = Path(filename)
if not f.is_file():
raise BaseException(filename + " does not exist.")
f = open(filename, 'r')
# first line: #rows #columns
line = f.readline()
rows, columns = [int(x) for x in line.split(' ')]
rows = int(rows)
columns = int(columns)
# #rows lines with the map
my_map = []
for r in range(rows):
line = f.readline()
my_map.append([])
for cell in line:
if cell == '@':
my_map[-1].append(True)
elif cell == '.':
my_map[-1].append(False)
# #agents
line = f.readline()
num_agents = int(line)
# #agents lines with the start/goal positions
starts = []
goals = []
for a in range(num_agents):
line = f.readline()
sx, sy, gx, gy = [int(x) for x in line.split(' ')]
starts.append((sx, sy))
goals.append((gx, gy))
f.close()
return my_map, starts, goals
import json
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Runs various MAPF algorithms')
parser.add_argument('--instance', type=str, default=None,
help='The name of the instance file(s)')
parser.add_argument('--random', action='store_true', default=False,
help='Use a random map with auto-genereted agents (see function random_map)')
parser.add_argument('--benchmark', type=str, default=None,
help='Runs on benchmark mode (random, success)')
parser.add_argument('--batch', action='store_true', default=False,
help='Use batch output instead of animation')
parser.add_argument('--disjoint', action='store_true', default=False,
help='Use the disjoint splitting')
parser.add_argument('--solver', type=str, default=SOLVER,
help='The solver to use (one of: {CBS,Independent,Prioritized}), defaults to ' + str(SOLVER))
args = parser.parse_args()
result_file = open("results.csv", "w", buffering=1)
if args.benchmark:
# Benchmark mode
if args.benchmark == "random":
map_size = 10;obstacles_dist = .05;max_agents=20
experiment = 0;max_time = 2*60
result = {};samples = 25
start_agents = 4
for agents in range(start_agents, max_agents,2):
result[agents] = {
'cbs': {'cpu_time':[-1]*samples, 'expanded':[-1]*samples},
'cbs_disjoint': {'cpu_time':[-1]*samples, 'expanded':[-1]*samples},
}
for _ in range(samples):
print("Samples {} with {} agents".format(_, agents))
my_map, starts, goals = random_map(map_size, map_size, agents, obstacles_dist)
filename = "benchmark/max_agents_{}/test_{}.txt".format(agents, _)
os.makedirs(os.path.dirname(filename), exist_ok=True)
save_map(my_map, starts, goals, filename)
for alg in ['cbs','cbs_disjoint']:
solver = CBSSolver(my_map,starts,goals,max_time)
try:
solver.find_solution(alg=='cbs_disjoint')
result[agents][alg]['cpu_time'][_] = round(timer.time() - solver.start_time,2)
except BaseException as e:
# Timeout
pass
result[agents][alg]['expanded'][_] = solver.num_of_expanded
with open('benchmark/result.json', 'w') as outfile:
json.dump(result, outfile)
if args.benchmark == "success":
obstacles_dist = .05; map_size = 20; max_agents = 26
samples = 25
time_limit = 5*60
result = {}
map, starts, goals = random_map(map_size, map_size, max_agents, obstacles_dist)
save_map(map, starts, goals, "benchmark/{}_agents_success.txt".format(max_agents))
for agents in range(4,max_agents + 1,2):
result[agents] = {
'cbs': {'cpu_time': [-1] * samples, 'expanded': [-1] * samples},
'cbs_disjoint': {'cpu_time': [-1] * samples, 'expanded': [-1] * samples},
}
for i in range(samples):
# take first i agents
random.shuffle(starts);sub_goals = goals[0:agents]
random.shuffle(goals);sub_starts = starts[0:agents]
print("sample {} with {} agents".format(i,agents))
for alg in ['cbs','cbs_disjoint']:
solver = CBSSolver(map,sub_starts,sub_goals,time_limit)
try:
solver.find_solution(alg=='cbs_disjoint')
result[agents][alg]['cpu_time'][i] = round(timer.time() - solver.start_time, 2)
except BaseException as e:
# Timeout
pass
result[agents][alg]['expanded'][i] = solver.num_of_expanded
print(result)
with open('benchmark/result_success.json', 'w') as outfile:
json.dump(result, outfile)
else:
# Otherwise, run the algorithm
files = ["random.generated"] if args.random else glob.glob(args.instance)
for file in files:
print("***Import an instance***")
my_map, starts, goals = random_map(8, 8, 6, .1) if args.random else import_mapf_instance(file)
print_mapf_instance(my_map, starts, goals)
save_map(my_map, starts, goals, 'img/output_map.txt')
if args.solver == "CBS":
print("***Run CBS***")
cbs = CBSSolver(my_map, starts, goals)
paths = cbs.find_solution(args.disjoint)
elif args.solver == "Independent":
print("***Run Independent***")
solver = IndependentSolver(my_map, starts, goals)
paths = solver.find_solution()
elif args.solver == "Prioritized":
print("***Run Prioritized***")
solver = PrioritizedPlanningSolver(my_map, starts, goals)
paths = solver.find_solution()
else:
raise RuntimeError("Unknown solver!")
cost = get_sum_of_cost(paths)
result_file.write("{},{}\n".format(file, cost))
if not args.batch:
print("***Test paths on a simulation***")
animation = Animation(my_map, starts, goals, paths)
#animation.save("output.mp4", 1.0)
animation.show()
print("***Done***")
result_file.close()