-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_LM.py
194 lines (166 loc) · 6.5 KB
/
train_LM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from transformers import RobertaConfig, RobertaForMaskedLM
from transformers import AutoTokenizer,Trainer, TrainingArguments, DataCollatorForLanguageModeling
from torch.utils.data import Dataset
from transformers import PreTrainedTokenizer
from typing import Dict
import torch
import math
import os
import pandas as pd
import argparse
class LineByLineTextDataset(Dataset):
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int):
if os.path.isfile(file_path) is False:
raise ValueError(f"Input file path {file_path} not found")
with open(file_path, encoding="utf-8") as f:
lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)
self.examples = batch_encoding["input_ids"]
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
return self.examples[i]
def prepare_dataset(train_data,val_data,lm_data_dir):
# load dataset
if train_data.split('.')[-1] == 'tsv':
train_df = pd.read_csv(train_data,sep='\t')
val_df = pd.read_csv(val_data,sep='\t')
elif train_data.split('.')[-1] == 'xlsx':
train_df = pd.read_excel(train_data)
val_df = pd.read_excel(val_data)
elif train_data.split('.')[-1] == 'csv':
train_df = pd.read_csv(train_data)
val_df = pd.read_csv(val_data)
else:
print('ERROR: undefined data format')
train_sequences = train_df['sequence_alignment_aa_heavy'].apply(lambda x: ' '.join(list(x))) + ' <null_1> ' + train_df['sequence_alignment_aa_light'].apply(lambda x: ' '.join(list(x)))
val_sequences = val_df['sequence_alignment_aa_heavy'].apply(lambda x: ' '.join(list(x))) + ' <null_1> ' + val_df['sequence_alignment_aa_light'].apply(lambda x: ' '.join(list(x)))
with open(os.path.join(lm_data_dir,'LM_train.txt') , 'w') as f:
for item in train_sequences.tolist():
f.write("%s\n" % item)
with open(os.path.join(lm_data_dir,'LM_val.txt') , 'w') as f:
for item in val_sequences.tolist():
f.write("%s\n" % item)
return os.path.join(lm_data_dir,'LM_train.txt'), os.path.join(lm_data_dir,'LM_val.txt')
def mBLM(vocab_size,max_position_embeddings,num_attention_heads,num_hidden_layers):
config = RobertaConfig(
vocab_size=vocab_size,
max_position_embeddings=max_position_embeddings,
num_attention_heads=num_attention_heads,
num_hidden_layers=num_hidden_layers,
type_vocab_size=1,
)
model = RobertaForMaskedLM(config=config)
return model
def train_mBLM(tokenizer,train_dir,val_dir,epoch,per_gpu_train_batch_size,output_dir):
train_dataset = LineByLineTextDataset(
tokenizer=tokenizer,
file_path=train_dir,
block_size=150,
)
val_dataset = LineByLineTextDataset(
tokenizer=tokenizer,
file_path=val_dir,
block_size=150,
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=True, mlm_probability=0.15
)
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
num_train_epochs=epoch,
per_gpu_train_batch_size=per_gpu_train_batch_size,
save_steps=1000,
save_total_limit=2,
prediction_loss_only=True,
)
trainer = Trainer(
model = model,
args = training_args,
data_collator = data_collator,
train_dataset = train_dataset,
eval_dataset = val_dataset
)
print('Start training ..')
trainer.train()
eval_results = trainer.evaluate()
print(f"Evaluation perplexity: {math.exp(eval_results['eval_loss']):.2f}")
# save model
trainer.save_model(args.model_location)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train custom antibody language model")
parser.add_argument(
"--model_location",
default='./mBLM',
type=str,
help="model dir to save ",)
parser.add_argument(
"--tokenizer",
default='facebook/esm2_t6_8M_UR50D',
type=str,
help="tokenizer name to use",)
parser.add_argument(
"--vocab_size",
default=33,
type=int,
help=" the token size used in the language model ",)
parser.add_argument(
"--max_position_embeddings",
default=514,
type=int,
help=" the maximum sequence length that the model can accept as input ",)
parser.add_argument(
"--num_attention_heads",
default=12,
type=int,
help="the number of attention head ",)
parser.add_argument(
"--num_hidden_layers",
default=6,
type=int,
help="the number of hidden layer ",)
parser.add_argument(
"--epoch",
default=10,
type=int,
help="the number of training epoch ",)
parser.add_argument(
"--train_data",
default='./data/dataset/memory_paired_Abs_train.tsv',
type=str,
help="train dataset",)
parser.add_argument(
"--val_data",
default='./data/dataset/memory_paired_Abs_val.tsv',
type=str,
help="validation dataset",)
parser.add_argument(
"--lm_data_dir",
default='./data/dataset/',
type=str,
help="Language model dataset directory ",)
parser.add_argument(
"--batch_size",
type=int, default=64,
help="batch size per GPU")
args = parser.parse_args()
# load tokenizer
os.makedirs(args.model_location, exist_ok=True)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
tokenizer.save_pretrained(args.model_location)
# load dataset
train_dir, val_dir = prepare_dataset(args.train_data,args.val_data,args.lm_data_dir)
# define model
model = mBLM(vocab_size=args.vocab_size,
max_position_embeddings=args.max_position_embeddings,
num_attention_heads=args.num_attention_heads,
num_hidden_layers=args.num_hidden_layers)
# train model
train_mBLM(tokenizer=tokenizer,
train_dir=train_dir,
val_dir=val_dir,
epoch=args.epoch,
per_gpu_train_batch_size=args.batch_size,
output_dir=args.model_location)