-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspamclassification.py
68 lines (53 loc) · 1.97 KB
/
spamclassification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
"""
Created on Fri May 29 10:53:43 2020
@author: Nihith
"""
#import the libraries
import pandas as pd
#Create a Dataframe Object
messages = pd.read_csv("smsspamcollection/SMSSpamCollection",sep="\t",names=["label","message"])
#Data Cleaning and Data Preprocessing
import re
import nltk
#Download stopwords
nltk.download('stopwords')
#import the libraries for doing stemming,lemmatization
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
#Creating an Object of PorterStemmer
ps = PorterStemmer()
#Create an Object of WordNetLemmatizer
wl = WordNetLemmatizer()
#Create a corpus for storing the final messages after data preprocessing
corpus = []
for i in range(len(messages)):
#Remove all the numbers and punctuations which are not neccessary
message = re.sub('[^a-zA-Z]',' ',messages['message'][i])
message = message.lower()
message = message.split()
message = [wl.lemmatize(word) for word in message if word not in stopwords.words('english')]
message = ' '.join(message)
corpus.append(message)
#Creating Bag of Words Model
from sklearn.feature_extraction.text import TfidfVectorizer
cv = TfidfVectorizer()
X = cv.fit_transform(corpus).toarray()
y = pd.get_dummies(messages['label'])
y = y.iloc[:,1].values
#Split the Dataset
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test =train_test_split(X,y,test_size = 0.2,random_state = 0)
#Train the model using NaiveBayes Classifier
from sklearn.naive_bayes import MultinomialNB
spam_detect_model = MultinomialNB().fit(X_train,y_train)
#Predict the values
y_pred = spam_detect_model.predict(X_test)
#Compare the prediction results with actual results
from sklearn.metrics import confusion_matrix
confusion_mat = confusion_matrix(y_test,y_pred)
#Find the Accuracy of the model
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_test,y_pred)
print("Accuracy of the model ",accuracy)