forked from samuelkim314/DeepSymReg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sho_sr.py
227 lines (193 loc) · 10.6 KB
/
sho_sr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import tensorflow as tf
import numpy as np
import os
import pickle
from utils.symbolic_network import SymbolicNet, MaskedSymbolicNet, SymbolicCell
from utils import functions, regularization, helpers, pretty_print
import argparse
def main(results_dir='results/sho/test', trials=1, learning_rate=1e-2, reg_weight=2e-4, timesteps=25, batch_size=129,
n_epochs1=2001, n_epochs2=5001, n_epochs3=5001):
# Hyperparameters
summary_step = 500
timesteps0 = 1
primitive_funcs = [
*[functions.Constant()] * 2,
*[functions.Identity()] * 4,
*[functions.Square()] * 4,
*[functions.Sin()] * 2,
*[functions.Exp()] * 2,
*[functions.Sigmoid()] * 2,
*[functions.Product(norm=0.1)] * 2,
]
# Import parabola data
data = np.load('dataset/sho.npz')
x_d = np.asarray(data["x_d"])
x_v = np.asarray(data["x_v"])
y_d = np.asarray(data["y_d"])
y_v = np.asarray(data["y_v"])
omega2_data = data["omega2"]
N = data["N"]
# Prepare data
x = np.stack((x_d, x_v), axis=2) # Shape (N, NT, 2)
y0 = np.stack((y_d[:, 0], y_v[:, 0]), axis=1) # Initial conditions for prediction y, fed into propagator
y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]), axis=2) # shape(NG, LENGTH, 2)
# Tensorflow placeholders for x, y0, y
x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]), dtype=tf.float32, name="enc_input")
y0_input = tf.placeholder(shape=(None, 2), dtype=tf.float32, name="prop_input") # input is d, v
y_input = tf.placeholder(shape=(None, timesteps, 2), dtype=tf.float32, name="label_input")
length_input = tf.placeholder(dtype=tf.int32, shape=())
# Dynamics encoder
encoder = helpers.Encoder()
training = tf.placeholder_with_default(False, [])
z = encoder(x_input, training=training)
z_data = omega2_data[:, np.newaxis]
# Propagating decoders
prop_d = SymbolicNet(2, funcs=primitive_funcs)
prop_v = SymbolicNet(2, funcs=primitive_funcs)
prop_d.build(4)
prop_v.build(4)
# Building recurrent structure
rnn = tf.keras.layers.RNN(SymbolicCell(prop_d, prop_v), return_sequences=True)
y0_rnn = tf.concat([tf.expand_dims(y0_input, axis=1), tf.zeros((tf.shape(y0_input)[0], length_input - 1, 2))],
axis=1)
prop_input = tf.concat([y0_rnn, tf.keras.backend.repeat(z, length_input),
tf.ones((tf.shape(y0_input)[0], length_input, 1))], axis=2)
prop_output = rnn(prop_input)
epoch = tf.placeholder(tf.float32)
reg_freq = np.pi / (n_epochs1 + n_epochs2) / 1.1
reg_loss = tf.sin(reg_freq * epoch) ** 2 * regularization.l12_smooth(prop_d.get_weights()) + \
tf.sin(reg_freq * epoch) ** 2 * regularization.l12_smooth(prop_v.get_weights())
# reg_loss = regularization.l12_smooth(prop_d.get_weights()) + regularization.l12_smooth(prop_v.get_weights())
# Training
learning_rate_ph = tf.placeholder(tf.float32)
opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph)
reg_weight_ph = tf.placeholder(tf.float32)
error = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=prop_output)
loss = error + reg_weight_ph * reg_loss
train = tf.group([opt.minimize(loss), encoder.bn.updates])
batch = helpers.batch_generator([x, y_data, y0, z_data], N=N, batch_size=batch_size)
# Training session
with tf.Session() as sess:
for _ in range(trials):
loss_i = np.nan
while np.isnan(loss_i):
loss_list = []
error_list = []
reg_list = []
sess.run(tf.global_variables_initializer())
for i in range(n_epochs1 + n_epochs2):
if i < n_epochs1:
reg_weight_i = reg_weight / 5
learning_rate_i = learning_rate
length_i = min(i // 500 * 2 + timesteps0, timesteps)
else:
reg_weight_i = reg_weight
learning_rate_i = learning_rate / 5
length_i = timesteps
x_batch, y_batch, y0_batch, z_batch = next(batch)
feed_dict = {x_input: x_batch, y0_input: y0_batch, y_input: y_batch,
epoch: i, learning_rate_ph: learning_rate_i, training: True,
reg_weight_ph: reg_weight_i, length_input: length_i}
_ = sess.run(train, feed_dict=feed_dict)
if i % summary_step == 0 or i == n_epochs1 - 1:
feed_dict[training] = False
loss_i, error_i, reg_i = sess.run((loss, error, reg_loss), feed_dict=feed_dict)
z_arr = sess.run(z, feed_dict=feed_dict)
r = np.corrcoef(z_batch[:, 0], z_arr[:, 0])[1, 0]
loss_list.append(loss_i)
error_list.append(error_i)
reg_list.append(reg_i)
print("Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f\tCorrelation: %f"
% (i, loss_i, error_i, reg_i, r))
if np.isnan(loss_i):
break
# Setting small weights to 0 and freezing them
prop_d_masked = MaskedSymbolicNet(sess, prop_d, threshold=0.01)
prop_v_masked = MaskedSymbolicNet(sess, prop_v, threshold=0.01)
# Keep track of currently existing variables. When we rebuild the rnn, it makes new variables that we need
# to initialize. Later, we will use this to figure out what the uninitialized variables are.
temp = set(tf.global_variables())
# Rebuilding the decoding propagator. Remove regularization
rnn = tf.keras.layers.RNN(SymbolicCell(prop_d_masked, prop_v_masked), return_sequences=True)
prop_output = rnn(prop_input)
loss = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=prop_output)
train = tf.group([opt.minimize(loss), encoder.bn.updates])
weights_d = sess.run(prop_d_masked.get_weights())
expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1])
print(expr_d)
weights_v = sess.run(prop_v_masked.get_weights())
expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1])
print(expr_v)
print("Frozen weights. Next stage of training.")
# Initialize only the uninitialized variables.
sess.run(tf.variables_initializer(set(tf.global_variables()) - temp))
for i in range(n_epochs3):
x_batch, y_batch, y0_batch, z_batch = next(batch)
feed_dict = {x_input: x_batch, y0_input: y0_batch, y_input: y_batch,
epoch: 0, learning_rate_ph: learning_rate / 10, training: True, reg_weight_ph: 0,
length_input: length_i}
_ = sess.run(train, feed_dict=feed_dict)
if i % summary_step == 0:
feed_dict[training] = False
loss_i, error_i, reg_i = sess.run((loss, error, reg_loss), feed_dict=feed_dict)
z_arr = sess.run(z, feed_dict=feed_dict)
r = np.corrcoef(z_batch[:, 0], z_arr[:, 0])[1, 0]
loss_list.append(loss_i)
error_list.append(error_i)
reg_list.append(reg_i)
print("Epoch %d\tError: %g\tCorrelation: %f" % (i, error_i, r))
weights_d = sess.run(prop_d_masked.get_weights())
expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1])
print(expr_d)
weights_v = sess.run(prop_v_masked.get_weights())
expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1])
print(expr_v)
# Save results
results = {
"summary_step": summary_step,
"learning_rate": learning_rate,
"n_epochs1": n_epochs1,
"n_epochs2": n_epochs2,
"reg_weight": reg_weight,
"timesteps": timesteps,
"timesteps0": timesteps0,
"weights_d": weights_d,
"weights_v": weights_v,
"loss_plot": loss_list,
"error_plot": error_list,
"reg_plot": reg_list,
"expr_d": expr_d,
"expr_v": expr_v
}
trial_dir = helpers.get_trial_path(results_dir) # Get directory in which to save trial results
tf.saved_model.simple_save(sess, trial_dir,
inputs={"x": x_input, "y0": y0_input, "training": training},
outputs={"z": z, "y": prop_output})
# Save a summary of the parameters and results
with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f:
pickle.dump(results, f)
with open(os.path.join(results_dir, 'eq_summary.txt'), 'a') as f:
f.write(str(expr_d) + "\n")
f.write(str(expr_v) + "\n")
f.write("Error: %f\n\n" % error_list[-1])
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Train the EQL network on simple harmonic oscillator (SHO) task.")
parser.add_argument("--results-dir", type=str, default='results/sho/test')
parser.add_argument("--reg-weight", type=float, default=2e-4, help='Regularization weight, lambda')
parser.add_argument('--learning-rate', type=float, default=1e-2, help='Base learning rate for training')
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument("--n-epochs1", type=int, default=2001, help="Number of epochs to train in 1st stage")
parser.add_argument("--n-epochs2", type=int, default=5001, help="Number of epochs to train in 2nd stage")
parser.add_argument("--n-epochs3", type=int, default=5001, help="Number of epochs to train in 3rd stage")
parser.add_argument("--timesteps", type=int, default=25, help="Number of time steps to predict")
parser.add_argument('--trials', type=int, default=1, help="Number of trials to train.")
args = parser.parse_args()
kwargs = vars(args)
print(kwargs)
if not os.path.exists(kwargs['results_dir']):
os.makedirs(kwargs['results_dir'])
meta = open(os.path.join(kwargs['results_dir'], 'args.txt'), 'a')
import json
meta.write(json.dumps(kwargs))
meta.close()
main(**kwargs)