forked from samuelkim314/DeepSymReg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sho_sr_l0.py
185 lines (151 loc) · 7.46 KB
/
sho_sr_l0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import tensorflow as tf
import numpy as np
import os
import pickle
from utils.symbolic_network import SymbolicNetL0, SymbolicCell
from utils import functions, helpers, pretty_print
import argparse
def main(results_dir='results/sho/test', trials=20, learning_rate=1e-3, reg_weight=1e-3, timesteps=25, batch_size=128,
n_epochs1=10001, n_epochs2=10001):
# Hyperparameters
summary_step = 1000
primitive_funcs = [
*[functions.Constant()] * 2,
*[functions.Identity()] * 4,
*[functions.Square()] * 4,
*[functions.Sin()] * 2,
*[functions.Exp()] * 2,
*[functions.Sigmoid()] * 2,
*[functions.Product(norm=0.1)] * 2,
]
# Import parabola data
data = np.load('dataset/sho.npz')
x_d = np.asarray(data["x_d"])
x_v = np.asarray(data["x_v"])
y_d = np.asarray(data["y_d"])
y_v = np.asarray(data["y_v"])
omega2_data = data["omega2"]
N = data["N"]
# Prepare data
x = np.stack((x_d, x_v), axis=2) # Shape (N, NT, 2)
y0 = np.stack((y_d[:, 0], y_v[:, 0]), axis=1) # Initial conditions for prediction y, fed into propagator
y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]), axis=2) # shape(NG, timesteps, 2)
z_data = omega2_data[:, np.newaxis]
# Tensorflow placeholders for x, y0, y
x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]), dtype=tf.float32, name="enc_input")
y0_input = tf.placeholder(shape=(None, 2), dtype=tf.float32, name="prop_input") # input is d, v
y_input = tf.placeholder(shape=(None, timesteps, 2), dtype=tf.float32, name="label_input")
length_input = tf.placeholder(dtype=tf.int32, shape=())
# Dynamics encoder
encoder = helpers.Encoder(n_filters=[16, 16, 16, 16])
training = tf.placeholder_with_default(False, [])
z = encoder(x_input, training=training)
# Propagating decoders
prop_d = SymbolicNetL0(2, funcs=primitive_funcs)
prop_v = SymbolicNetL0(2, funcs=primitive_funcs)
prop_d.build(4)
prop_v.build(4)
# Building recurrent structure
rnn = tf.keras.layers.RNN(SymbolicCell(prop_d, prop_v), return_sequences=True)
y0_rnn = tf.concat([tf.expand_dims(y0_input, axis=1), tf.zeros((tf.shape(y0_input)[0], length_input - 1, 2))], axis=1)
prop_input = tf.concat([y0_rnn, tf.keras.backend.repeat(z, length_input),
tf.ones((tf.shape(y0_input)[0], length_input, 1))], axis=2)
y_hat = rnn(prop_input)
length_list = [1, 2, 3, 4, 5, 7, 10, 15, 25] # Slowly increase the length of propagation
# Training
learning_rate_ph = tf.placeholder(tf.float32)
opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph)
reg_weight_ph = tf.placeholder(tf.float32)
reg_loss = prop_d.get_loss() + prop_v.get_loss()
error = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=y_hat)
loss = error + reg_weight_ph * reg_loss
train = tf.group([opt.minimize(loss), encoder.bn.updates])
batch = helpers.batch_generator([x, y_data, y0, z_data], N=N, batch_size=batch_size)
# Training session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
for _ in range(trials):
loss_i = np.nan
while np.isnan(loss_i):
loss_list = []
error_list = []
reg_list = []
sess.run(tf.global_variables_initializer())
length_i = 1
for i in range(n_epochs1 + n_epochs2):
if i < n_epochs1:
lr_i = learning_rate
else:
lr_i = learning_rate/10
x_batch, y_batch, y0_batch, z_batch = next(batch)
feed_dict = {x_input: x_batch, y0_input: y0_batch, y_input: y_batch,
learning_rate_ph: lr_i, training: True, reg_weight_ph: reg_weight,
length_input: length_i}
_ = sess.run(train, feed_dict=feed_dict)
if i % summary_step == 0:
feed_dict[training] = False
loss_i, error_i, reg_i, z_arr = sess.run((loss, error, reg_loss, z), feed_dict=feed_dict)
r = np.corrcoef(z_batch[:, 0], z_arr[:, 0])[1, 0]
loss_list.append(loss_i)
error_list.append(error_i)
reg_list.append(reg_i)
print("Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f\tCorrelation: %f"
% (i, loss_i, error_i, reg_i, r))
if np.isnan(loss_i):
break
i_length = min(i // 1000, len(length_list)-1)
length_i = length_list[i_length]
weights_d = sess.run(prop_d.get_weights())
expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1])
print(expr_d)
weights_v = sess.run(prop_v.get_weights())
expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1])
print(expr_v)
print("Done. Saving results.")
# z_arr = sess.run(z, feed_dict=feed_dict)
# Save results
results = {
"summary_step": summary_step,
"learning_rate": learning_rate,
"n_epochs1": n_epochs1,
"reg_weight": reg_weight,
"timesteps": timesteps,
"weights_d": weights_d,
"weights_v": weights_v,
"loss_plot": loss_list,
"error_plot": error_list,
"reg_plot": reg_list,
"expr_d": expr_d,
"expr_v": expr_v
}
trial_dir = helpers.get_trial_path(results_dir) # Get directory in which to save trial results
tf.saved_model.simple_save(sess, trial_dir, inputs={"x": x_input, "y0": y0_input, "training": training},
outputs={"z": z, "y": y_hat})
# Save a summary of the parameters and results
with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f:
pickle.dump(results, f)
with open(os.path.join(results_dir, 'eq_summary.txt'), 'a') as f:
f.write(str(expr_d) + "\n")
f.write(str(expr_v) + "\n")
f.write("Error: %f\n\n" % error_list[-1])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--results-dir', type=str, default='results/sho/test_l0')
parser.add_argument('--learning-rate', type=float, default=1e-3)
parser.add_argument('--reg-weight', type=float, default=1e-2)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--n-epochs1', type=int, default=10001)
parser.add_argument('--n-epochs2', type=int, default=10001)
parser.add_argument("--timesteps", type=int, default=25, help="Number of time steps to predict")
parser.add_argument('--trials', type=int, default=1, help="Number of trials to train.")
args = parser.parse_args()
kwargs = vars(args)
print(kwargs)
if not os.path.exists(kwargs['results_dir']):
os.makedirs(kwargs['results_dir'])
meta = open(os.path.join(kwargs['results_dir'], 'args.txt'), 'a')
import json
meta.write(json.dumps(kwargs))
meta.close()
main(**kwargs)