-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
32 lines (24 loc) · 834 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
from flask import Flask, request, render_template
import pickle
app = Flask(__name__)
model = pickle.load(open("diabetes-model.pkl", "rb"))
@app.route("/")
def home():
return render_template("index.html")
@app.route("/predict", methods=["POST"])
def predict():
feature_list = request.form.to_dict()
feature_list = list(feature_list.values())
feature_list = list(map(int, feature_list))
final_features = np.array(feature_list).reshape(1, 14)
prediction = model.predict(final_features)
if int(prediction[0]) == 0:
output = "You are safe"
else:
output = "You are at high risk of getting diabetes"
return render_template(
"index.html", prediction_text=output
)
if __name__ == "__main__":
app.run(debug=True)