-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils.py
169 lines (137 loc) · 5.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import numbers
import numpy as np
import argparse
from pytorch3d.structures import Meshes
from pytorch3d.renderer import Textures
from scipy.optimize import linear_sum_assignment
from tqdm import tqdm
from PIL import Image
from pytorch3d.io import load_obj
import matplotlib.pyplot as plt
import meshplot as mp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import colorsys
def generate_colors(n):
hues = [i / n for i in range(n)]
saturation = 1
value = 1
colors = [colorsys.hsv_to_rgb(hue, saturation, value) for hue in hues]
colors = [(int(r * 255), int(g * 255), int(b * 255)) for r, g, b in colors]
return colors
def plot_mesh(myMesh,cmap=None):
mp.plot(myMesh.vert, myMesh.face,c=cmap)
def double_plot(myMesh1,myMesh2,cmap1=None,cmap2=None):
d = mp.subplot(myMesh1.vert, myMesh1.face, c=cmap1, s=[2, 2, 0])
mp.subplot(myMesh2.vert, myMesh2.face, c=cmap2, s=[2, 2, 1], data=d)
def get_colors(vertices):
min_coord,max_coord = np.min(vertices,axis=0,keepdims=True),np.max(vertices,axis=0,keepdims=True)
cmap = (vertices-min_coord)/(max_coord-min_coord)
return cmap
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def to_numpy(tensor):
"""Wrapper around .detach().cpu().numpy()"""
if isinstance(tensor, torch.Tensor):
return tensor.detach().cpu().numpy()
elif isinstance(tensor, np.ndarray):
return tensor
elif isinstance(tensor, numbers.Number):
return np.array(tensor)
else:
raise NotImplementedError
def to_tensor(ndarray):
if isinstance(ndarray, torch.Tensor):
return ndarray
elif isinstance(ndarray, np.ndarray):
return torch.from_numpy(ndarray)
elif isinstance(ndarray, numbers.Number):
return torch.tensor(ndarray)
else:
raise NotImplementedError
def convert_trimesh_to_torch_mesh(tm, device, is_tosca=True):
verts_1, faces_1 = torch.tensor(tm.vertices, dtype=torch.float32), torch.tensor(
tm.faces, dtype=torch.float32
)
if is_tosca:
verts_1 = verts_1 / 10
verts_rgb = torch.ones_like(verts_1)[None] * 0.8
textures = Textures(verts_rgb=verts_rgb)
mesh = Meshes(verts=[verts_1], faces=[faces_1], textures=textures)
mesh = mesh.to(device)
return mesh
def convert_mesh_container_to_torch_mesh(tm, device, is_tosca=True):
verts_1, faces_1 = torch.tensor(tm.vert, dtype=torch.float32), torch.tensor(
tm.face, dtype=torch.float32
)
if is_tosca:
verts_1 = verts_1 / 10
verts_rgb = torch.ones_like(verts_1)[None] * 0.8
textures = Textures(verts_rgb=verts_rgb)
mesh = Meshes(verts=[verts_1], faces=[faces_1], textures=textures)
mesh = mesh.to(device)
return mesh
def load_textured_mesh(mesh_path, device):
verts, faces, aux = load_obj(mesh_path)
verts_uvs = aux.verts_uvs[None, ...] # (1, V, 2)
faces_uvs = faces.textures_idx[None, ...] # (1, F, 3)
tex_maps = aux.texture_images
texture_image = list(tex_maps.values())[0]
texture_image = texture_image[None, ...] # (1, H, W, 3)
# Create a textures object
tex = Textures(verts_uvs=verts_uvs, faces_uvs=faces_uvs, maps=texture_image)
# Initialise the mesh with textures
mesh = Meshes(verts=[verts], faces=[faces.verts_idx], textures=tex)
mesh = mesh.to(device)
return mesh
def cosine_similarity(a, b):
if len(a) > 30000:
return cosine_similarity_batch(a, b, batch_size=30000)
dot_product = torch.mm(a, b.t())
norm_a = torch.norm(a, dim=1, keepdim=True)
norm_b = torch.norm(b, dim=1, keepdim=True)
similarity = dot_product / (norm_a * norm_b.t())
return similarity
def cosine_similarity_batch(a, b, batch_size=30000):
num_a, dim_a = a.size()
num_b, dim_b = b.size()
similarity_matrix = torch.empty(num_a, num_b, device="cpu")
for i in tqdm(range(0, num_a, batch_size)):
a_batch = a[i:i+batch_size]
for j in range(0, num_b, batch_size):
b_batch = b[j:j+batch_size]
dot_product = torch.mm(a_batch, b_batch.t())
norm_a = torch.norm(a_batch, dim=1, keepdim=True)
norm_b = torch.norm(b_batch, dim=1, keepdim=True)
similarity_batch = dot_product / (norm_a * norm_b.t())
similarity_matrix[i:i+batch_size, j:j+batch_size] = similarity_batch.cpu()
return similarity_matrix
def hungarian_correspondence(similarity_matrix):
# Convert similarity matrix to a cost matrix by negating the similarity values
cost_matrix = -similarity_matrix.cpu().numpy()
# Use the Hungarian algorithm to find the best assignment
row_indices, col_indices = linear_sum_assignment(cost_matrix)
# Create a binary matrix with 1s at matched indices and 0s elsewhere
num_rows, num_cols = similarity_matrix.shape
match_matrix = np.zeros((num_rows, num_cols), dtype=int)
match_matrix[row_indices, col_indices] = 1
match_matrix = torch.from_numpy(match_matrix).cuda()
return match_matrix
def gmm(a, b):
# Compute Gram matrices
gram_matrix_a = torch.mm(a, a.t())
gram_matrix_b = torch.mm(b, b.t())
# Expand dimensions to facilitate broadcasting
gram_matrix_a = gram_matrix_a.unsqueeze(1)
gram_matrix_b = gram_matrix_b.unsqueeze(0)
# Compute Frobenius norm for each pair of vertices using vectorized operations
correspondence_matrix = torch.norm(gram_matrix_a - gram_matrix_b, p='fro', dim=2)
return correspondence_matrix