-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp1.py
247 lines (204 loc) · 10.2 KB
/
app1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import streamlit as st
from streamlit_tags import st_tags
import requests, lxml, json, time, tldextract
from bs4 import BeautifulSoup
import pandas as pd
import plotly.express as px
def displayScraperResult():
st.title(':bar_chart: Analysis Visualizer')
df = pd.read_csv('AdScraperResult.csv')
keywords = df['Keyword'].unique().tolist()
keyword_selection = st.multiselect('Keyword:',keywords,default=keywords)
if not keyword_selection:
st.error("Please select at least one keyword to display the dataframe.")
mask = df['Keyword'].isin(keyword_selection)
number_of_result = df[mask].shape[0]
st.markdown(f'*Available rows: {number_of_result}*')
st.dataframe(df[mask])
# st.dataframe(groupedKeywordPercentage_df)
groupedKeywordPercentage_df = generateKeywordAdPercentage(df)
groupedKeywordPercentage_df = groupedKeywordPercentage_df[groupedKeywordPercentage_df.Percentage != 0]
bar_chart = px.bar(
groupedKeywordPercentage_df,
x="Keyword",
y="Percentage",
text="Percentage",
template="plotly_white",
title="Keyword Ads Percentage(%)"
)
st.plotly_chart(bar_chart)
test_df = df.groupby(by="Company", dropna=True)
companyList = []
companyCount = []
for key, item in test_df:
companyList.append(key)
companyCount.append(len(test_df.get_group(key)))
companyAppearance_df = pd.DataFrame({'Company': companyList, 'Appearance': companyCount},columns =['Appearance'],index=companyList)
st.bar_chart(companyAppearance_df)
for keyword in keywords:
keyword_df = df[df['Keyword'] == keyword]
if keyword_df['Company'] is not None:
st.write(keyword)
new_df = pd.DataFrame({'Company': keyword_df['Company'].tolist(),
'absolute-top': keyword_df['absolute-top'].tolist(),
'top': keyword_df['top'].tolist(),
'bottom': keyword_df['bottom'].tolist()},
columns=["absolute-top", "top", "bottom"],
index=keyword_df['Company'].tolist())
st.bar_chart(new_df)
def generateKeywordAdPercentage(df):
keywordAdPercentage = []
for keyword in df['Keyword'].unique().tolist():
if df[df['Keyword'] == keyword]['Keyword Ads Percentage(%)'].max() is None:
keywordAdPercentage.append(0)
else:
keywordAdPercentage.append(df[df['Keyword'] == keyword]['Keyword Ads Percentage(%)'].max())
groupedKeywordPercentage_df = pd.DataFrame(list(zip(df['Keyword'].unique().tolist(), keywordAdPercentage)),columns =['Keyword', 'Percentage'])
groupedKeywordPercentage_df = groupedKeywordPercentage_df.sort_values(by=['Percentage'],ascending=False)
return groupedKeywordPercentage_df
def adScraper(numberOfTimes,listOfKeywords):
# Specify User Agent
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36"
}
st.subheader('Progress:')
my_bar = st.progress(0)
resultDict = {}
progress = 0
for keyword in listOfKeywords:
companyList = []
numOfTopAds = 0
numOfBottomAds = 0
resultDict[keyword] = {}
absolute_top = 0
print(keyword)
for i in range(numberOfTimes):
payload = {'q': keyword}
html = requests.get("https://www.google.com/search?q=",params=payload,headers=headers)
status_code = html.status_code
if status_code == 200:
response = html.text
soup = BeautifulSoup(response, 'lxml')
print('----------------Top Ads-------------------')
topAds = soup.find(id='tvcap')
if (topAds):
if len(topAds.findAll('div',class_='uEierd')) > 0:
numOfTopAds += 1
absolute_top = 0
for container in topAds.findAll('div',class_='uEierd'):
try:
advertisementTitle = container.find('div',class_='CCgQ5 vCa9Yd QfkTvb MUxGbd v0nnCb').span.text
except:
advertisementTitle = 'N/A'
company = container.find('div',class_='v5yQqb').find('span',class_='x2VHCd OSrXXb nMdasd qzEoUe').text
company = tldextract.extract(company).domain
if company not in companyList:
companyList.append(company)
if absolute_top == 0:
resultDict[keyword][company] = {'absolute-top':1, 'top':0, 'bottom':0}
else:
resultDict[keyword][company] = {'absolute-top':0, 'top':1, 'bottom':0}
else:
if absolute_top == 0:
resultDict[keyword][company]['absolute-top'] += 1
else:
resultDict[keyword][company]['top'] += 1
productDescription = container.find('div',class_='MUxGbd yDYNvb lyLwlc').text
print(advertisementTitle)
print(company)
print(productDescription)
print()
absolute_top += 1
progress += (0.5/(len(listOfKeywords)*numberOfTimes))
my_bar.progress(progress)
time.sleep(5)
print('------------------------------------------')
print('----------------Bottom Ads-------------------')
bottomAds = soup.find(id='bottomads')
if (bottomAds):
if len(bottomAds.findAll('div',class_='uEierd')) > 0:
numOfBottomAds += 1
for container in bottomAds.findAll('div',class_='uEierd'):
try:
advertisementTitle = container.find('div',class_='CCgQ5 vCa9Yd QfkTvb MUxGbd v0nnCb').span.text
except:
advertisementTitle = 'N/A'
company = container.find('div',class_='v5yQqb').find('span',class_='x2VHCd OSrXXb nMdasd qzEoUe').text
company = tldextract.extract(company).domain
if company not in companyList:
companyList.append(company)
resultDict[keyword][company] = {'absolute-top':0, 'top':0, 'bottom':1}
else:
resultDict[keyword][company]['bottom'] += 1
productDescription = container.find('div',class_='MUxGbd yDYNvb lyLwlc').text
print(advertisementTitle)
print(company)
print(productDescription)
print()
progress += (0.5/(len(listOfKeywords)*numberOfTimes))
my_bar.progress(round(progress,1))
with open("output.html","w", encoding="utf-8") as file:
file.write(str(soup))
keys = list(resultDict[keyword].keys())
for name in ['bottom','top','absolute-top']:
keys.sort(key=lambda k: resultDict[keyword][k][name],reverse=True)
resultDict[keyword]['top performers'] = keys
resultDict[keyword]['total top ads'] = numOfTopAds
resultDict[keyword]['total bottom ads'] = numOfBottomAds
print(json.dumps(resultDict,indent=4))
st.success('Google Ads Scraping completed successfully.')
return resultDict
def jsonToDataFrame(resultDict,listOfKeywords):
resultList = []
for keyword in listOfKeywords:
if (resultDict[keyword]["top performers"] != []):
for company in resultDict[keyword]["top performers"]:
topPercentage = 0
bottomPercentage = 0
if resultDict[keyword]["total top ads"] != 0:
topPercentage = round((resultDict[keyword][company]["top"]+resultDict[keyword][company]["absolute-top"])/resultDict[keyword]["total top ads"] * 100,1)
if resultDict[keyword]["total bottom ads"] != 0:
bottomPercentage = round(resultDict[keyword][company]["bottom"]/resultDict[keyword]["total bottom ads"] * 100,1)
resultList.append(
[
keyword,
company,
resultDict[keyword][company]["absolute-top"],
resultDict[keyword][company]["top"],
resultDict[keyword][company]["bottom"],
topPercentage,
bottomPercentage,
round((resultDict[keyword]["total top ads"] + resultDict[keyword]["total bottom ads"])/(numberOfTimes*2) * 100,1),
]
)
else:
resultList.append([keyword,None,0,0,0,0,0,0])
df = pd.DataFrame(resultList,columns=["Keyword","Company","absolute-top","top","bottom","top(%)","bottom(%)","Keyword Ads Percentage(%)"])
return df
st.title(":male-detective: Ady Dasboard")
numberOfTimes = st.slider('How many times do you want this keyword scraping to be run?',1,100,10)
listOfKeywords = ["hosting"]
col1,col2 = st.columns(2)
with col1:
chosen_keywords = st_tags(
label="Add Keywords here!",
text="press enter to add more",
value=listOfKeywords,
suggestions=['insurance','loans','blockchain'],
maxtags=10,
key='aljnf'
)
with col2:
st.caption('Current List of Keywords')
st.write((chosen_keywords))
submitted = st.button("Submit")
if submitted:
st.write('Scraping for the following keywrods:', str(chosen_keywords),' for ',numberOfTimes, ' times.')
resultDict = adScraper(numberOfTimes,chosen_keywords)
rawOutput = jsonToDataFrame(resultDict,chosen_keywords)
rawOutput.to_csv('AdScraperResult.csv',index=False)
# resultJson = st.json(resultDict)
resultdf = st.dataframe(rawOutput)
displayResult = st.button("Display Result")
if displayResult:
displayScraperResult()